Science.gov

Sample records for 219-s waste handling

  1. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    SciTech Connect

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior to the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.

  2. Solid waste handling

    SciTech Connect

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  3. 219-S CORROSION STUDY

    SciTech Connect

    DIVINE JR; PARSONS GL

    2008-12-01

    A minor leak was detected in a drain line for Hood 2B located in the 222-S Laboratory. The line transfers radioactive waste, spent analytical standards, and chemicals used in various analytical procedures. Details are in the report provided by David Comstock, 2B NDE June 2008, work package LAB-WO-07-2012. Including the noted leak, the 222-S Laboratory has experienced two drain line leaks in approximately the last two years of operation. As a consequence, CH2M HILL Hanford Group, Inc. (CH2M HILL) requested the support of ChemMet, Ltd., PC (ChemMet) at the Hanford Site 222-S Laboratory. The corrosion expertise from ChemMet was required prior to preparation of a compatibility assessment for the 222-S Laboratory waste transfer system to assure the expected life of the piping system is extended as much as practicable. The system includes piping within the 222-S Laboratory and the 219-S Waste Storage and Transfer Facility and Operations Process. The ChemMet support was required for an assessment by 222-S staff to analyze what improvements to operational activities may be implemented to extend the tank/piping system life. This assessment will include a summary of the various material types, age, and locations throughout the facility. The assessment will also include a discussion of materials that are safe for drain line disposal on a regular basis, materials that are safe for disposal on a case-by-case basis including specific additional requirements such as flushing, neutralization to a specific pH, and materials prohibited from disposal. The assessment shall include adequate information for 222-S Laboratory personnel to make informed decisions in the future disposal of specific material types by discussing types of compatibility of system materials and potential wastes. The assessment is expected to contain some listing of acceptable waste materials but is not anticipated to be a complete or comprehensive list. Finally the assessment will encompass a brief discussion of

  4. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    SciTech Connect

    McVey, C.B.

    1994-10-13

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

  5. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations

  6. Automated system for handling tritiated mixed waste

    SciTech Connect

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  7. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  8. Remote-handled transuranic waste study

    SciTech Connect

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

  9. 340 waste handling facility interim safety basis

    SciTech Connect

    VAIL, T.S.

    1999-04-01

    This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

  10. The Remote-Handled TRU Waste Program

    SciTech Connect

    Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

    2002-02-26

    RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput

  11. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  12. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  13. Safety Enhancements for TRU Waste Handling - 12258

    SciTech Connect

    Cannon, Curt N.

    2012-07-01

    For years, proper Health Physics practices and 'As Low As Reasonably Achievable' (ALARA) principles have fostered the use of glove boxes or other methods of handling (without direct contact) high activities of radioactive material. The physical limitations of using glove boxes on certain containers have resulted in high-activity wastes being held in storage awaiting a path forward. Highly contaminated glove boxes and other remote handling equipment no longer in use have also been added to the growing list of items held for storage with no efficient method of preparation for proper disposal without creating exposure risks to personnel. This is especially true for wastes containing alpha-emitting radionuclides such as Plutonium and Americium that pose significant health risks to personnel if these Transuranic (TRU) wastes are not controlled effectively. Like any good safety program or root cause investigation PFNW has found that the identification of the cause of a negative change, if stopped, can result in a near miss and lessons learned. If this is done in the world of safety, it is considered a success story and is to be shared with others to protect the workers. PFNW believes that the tools, equipment and resources have improved over the past number of years but that the use of them has not progressed at the same rate. If we use our tools to timely identify the effect on the work environment and immediately following or possibly even simultaneously identify the cause or some of the causal factors, we may have the ability to continue to work rather than succumb to the start and stop-work mentality trap that is not beneficial in waste minimization, production efficiency or ALARA. (authors)

  14. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other... to prevent escape as a result of percolation, rain, high water or other causes, and such wastes must... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Handling of wastes....

  15. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other... to prevent escape as a result of percolation, rain, high water or other causes, and such wastes must... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Handling of wastes....

  16. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other... to prevent escape as a result of percolation, rain, high water or other causes, and such wastes must... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Handling of wastes....

  17. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other... to prevent escape as a result of percolation, rain, high water or other causes, and such wastes must... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Handling of wastes....

  18. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other... to prevent escape as a result of percolation, rain, high water or other causes, and such wastes must... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Handling of wastes....

  19. Waste Handling Practices for the Plutonium Immobilization Plant

    SciTech Connect

    Severynse, T.F.

    2000-08-04

    Solid waste handling operations refers to all activities associated with the segregation, collection, packaging, assay, storage, and removal of solid radioactive waste from radiological facilities. The Plutonium Immobilization Plant (PIP) is expected to generate the following types of radiological waste, as defined in WSRC Manual 1S, ''Waste Acceptance Criteria'': Low level waste; Mixed hazardous waste; TRU waste; and Mixed TRU waste. Historically, waste handling activities have been demanding proportionately larger amounts of labor, time, and space to effectively manage waste in accordance with increasing regulatory requirements. Since the PIP will be designed for an annual throughput of five metric tonnes plutonium, the facility waste handling operations can be expected to have at least twice the impact of such operations at existing facilities.

  20. 324 Bldg Liquid Waste Handling System Functional Design Criteria

    SciTech Connect

    HAM, J.E.

    1999-12-16

    The 324 Building in the 300 Area of the Hanford Site, is preparing to design, construct, and operate the Liquid Waste Handling System (LWHS). The system will include transfer, collection, treatment, and disposal of radiological and mixed liquid waste.

  1. DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan

    EPA Pesticide Factsheets

    Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.

  2. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  3. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  4. EPA Examines Schools' Handling of Toxic Waste.

    ERIC Educational Resources Information Center

    Hanson, David

    1989-01-01

    Estimates that about 30,000 universities, colleges, and high schools produce a total of 4000 metric tons of hazardous waste annually. Discusses the difficulties that academic institutions have in disposing of small amounts of waste. Lists college courses with the potentially hazardous wastes usually produced. (MVL)

  5. [Problems in medical waste handling in penitentiaries].

    PubMed

    Kudasheva, L T; Shudegova, E V; Ponomarev, S B; Cherenkov, A A

    2010-01-01

    The urgency of the problems associated with epidemiologically hazardous waste resulting in the penitentiary system stems from that about half of the convicts seeking medical advice suffer from social diseases. In this connection the authors propose to combine Classes B and C medical waste and to consider them to be Class C (extremely hazardous substances) and to refer Class A waste to as Class B (hazardous substances). Classes A, B, and C waste results in the penitentiaries with patients with active tuberculosis should be regarded as Class C (extremely hazardous substances).

  6. Remote automated material handling of radioactive waste containers

    SciTech Connect

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

  7. [Nursing workers' perceptions regarding the handling of hazardous chemical waste].

    PubMed

    Costa, Taiza Florêncio; Felli, Vanda Elisa Andres; Baptista, Patrícia Campos Pavan

    2012-12-01

    The objectives of this study were to identify the perceptions of nursing workers regarding the handling of hazardous chemical waste at the University of São Paulo University Hospital (HU-USP), and develop a proposal to improve safety measures. This study used a qualitative approach and a convenience sample consisting of eighteen nursing workers. Data collection was performed through focal groups. Thematic analysis revealed four categories that gave evidence of training deficiencies in terms of the stages of handling waste. Difficulties that emerged included a lack of knowledge regarding exposure and its impact, the utilization of personal protective equipment versus collective protection, and suggestions regarding measures to be taken by the institution and workers for the safe handling of hazardous chemical waste. The present data allowed for recommending proposals regarding the safe management of hazardous chemical waste by the nursing staff.

  8. Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP

    SciTech Connect

    Anastas, G.; Channell, J. K.

    2002-02-26

    Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

  9. 340 Waste handling facility deactivation plan

    SciTech Connect

    Stordeur, R.T., Westinghouse Hanford

    1996-12-27

    This document provides an overview of both the present status of the 340 Complex (within Hanford`s 300 Area), and of tasks associated with the deactivation of segments associated with radioactive, mixed liquid waste receipt, storage, and shipping. The plan also describes activities that will allow portions of the 340 Complex to remain in service.

  10. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2010-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Conceptual design report, 219-S secondary containment upgrade, Project W-178

    SciTech Connect

    Beyer, J.J.

    1993-05-01

    The 219-S Facility is located in the 200-West Area on the Hanford Site and was constructed in 1951. The facility receives and treats liquid, low-level mixed waste from the 222-S Laboratory prior to transfer of that waste to the SY Tank Farm. The 219-S Facility consists of Cell A containing Tanks 101 and 102 and Cell B containing Tank 103 and a spare space. Project W-178 will modify the 219-S Facility to bring it into compliance with the tank system standards in WAC 173-303-640. The secondary containment upgrade will consist of a stainless steel cell liner in both Cell A and the spare space in Cell B. Additionally, Cell B will be modified by taking Tank 103 out of service and installing a new tank: Tank 104. The construction work will be accomplished in phases to minimize service interruption to the 222-S Laboratory. The proposed design and construction method is the most cost effective of four alternatives evaluated during a value engineering session. Project W-178 is a fiscal year 1995 Line Item. Total estimated construction costs of the project are $2,600,000; other project costs are $710,000. The total project cost is $3,300,000.

  12. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  13. Remote Handling Equipment for a High-Level Waste Waste Package Closure System

    SciTech Connect

    Kevin M. Croft; Scott M. Allen; Mark W. Borland

    2006-04-01

    High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

  14. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  15. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    SciTech Connect

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

  16. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 101

    SciTech Connect

    Diaz, L.A.

    1998-02-04

    One waste sample that was obtained with solids from tank 101 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprene tubing (Phthalate free) was obtained in a glass jar with teflon lid was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Results are presented.

  17. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  18. 340 waste handling complex: Deactivation project management plan

    SciTech Connect

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  19. Criticality safety analysis for remote handled TRU waste at the Waste Isolation Pilot Plant

    SciTech Connect

    Not Available

    1988-07-01

    The Waste Isolation Pilot Plant (WIPP) is a facility designed to store transuranic (TRU) waste underground in a mined salt bed. All fissile nuclides except U/sup 235/ are considered TRU nuclides. This report presents the results of the nuclear criticality analysis for Remote-Handled (RH) TRU waste stored at the WIPP site. The RH waste material will be contained in steel canisters that are five feet or ten feet long. Each ten foot canister is capable of holding three 55 gallon drums of waste material. The five foot canisters are to be welded together to form one ten foot long canister. In general the fissile waste material is mainly surface contamination on clothing, wipes, wrappings, tools, etc., or mixed in a borosilicate glass matrix or concrete. Other fissile material may be contained in absorbent mixtures. As a result, the fissile material will typically be spread over a large fraction of the volume in most of the waste storage canisters. Typical isotopic content of the fissile/other radioactive material is shown in Table 1-1. This analysis will analyze the RH waste storage and handling configurations at the WIPP site to show that up to 600 grams of fissile material per ten foot canister can be received and stored at the site without criticality safety concerns. 6 refs., 14 figs., 1 tab.

  20. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  1. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  2. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    SciTech Connect

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-08-02

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure.

  3. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  4. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.

    PubMed

    Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H

    2015-11-01

    The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as

  5. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  6. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect

    Washington TRU Solutions LLC

    2005-09-01

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  7. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  8. Results from simulated remote-handled transuranic waste experiments at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Molecke, M A

    1992-01-01

    Multi-year, simulated remote-handled transuranic waste (RH TRU, nonradioactive) experiments are being conducted underground in the Waste Isolation Pilot-Plant (WIPP) facility. These experiments involve the near-reference (thermal and geometrical) testing of eight full size RH TRU test containers emplaced into horizontal, unlined rock salt boreholes. Half of the test emplacements are partially filled with bentonite/silica-sand backfill material. All test containers were electrically heated at about 115 W/each for three years, then raised to about 300 W/each for the remaining time. Each test borehole was instrumented with a selection of remote-reading thermocouples, pressure gages, borehole vertical-closure gages, and vertical and horizontal borehole-diameter closure gages. Each test emplacements was also periodically opened for visual inspections of brine intrusions and any interactions with waste package materials, materials sampling, manual closure measurements, and observations of borehole changes. Effects of heat on borehole closure rates and near-field materials (metals, backfill, rock salt, and intruding brine) interactions were closely monitored as a function of time. This paper summarizes results for the first five years of in situ test operation with supporting instrumentation and laboratory data and interpretations. Some details of RH TRU waste package materials, designs, and assorted underground test observations are also discussed. Based on the results, the tested RH TRU waste packages, materials, and emplacement geometry in unlined salt boreholes appear to be quite adequate for initial WIPP repository-phase operations.

  9. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    SciTech Connect

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-12-31

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at {approximately}40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations.

  10. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  11. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  12. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-05-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  13. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  14. Advanced robotics handling and controls applied to Mixed Waste characterization, segregation and treatment

    SciTech Connect

    Grasz, E.; Huber, L.; Horvath, J.; Roberson, P.; Wilhelmsen, K.; Ryon, R.

    1994-11-01

    At Lawrence Livermore National Laboratory under the Mixed Waste Operations program of the Department of Energy Robotic Technology Development Program (RTDP), a key emphasis is developing a total solution to the problem of characterizing, handling and treating complex and potentially unknown mixed waste objects. LLNL has been successful at looking at the problem from a system perspective and addressing some of the key issues including non-destructive evaluation of the waste stream prior to the materials entering the handling workcell, the level of automated material handling required for effective processing of the waste stream objects (both autonomous and tele-operational), and the required intelligent robotic control to carry out the characterization, segregation, and waste treating processes. These technologies were integrated and demonstrated in a prototypical surface decontamination workcell this past year.

  15. An Alternative to Performing Remote-Handled Transuranic Waste Container Headspace Gas Sampling and Analysis

    SciTech Connect

    Spangler, L. R.; Djordjevic, S. M.; Kehrman, R. F.; Most, W. A.

    2002-02-26

    The Waste Isolation Pilot Plant (WIPP) is operating under a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit (HWFP) for contact-handled (CH) transuranic (TRU) waste. The HWFP contains limitations on allowable emissions from waste disposed in the underground. This environmental performance standard imposed on the WIPP consists of limiting volatile organic compound (VOC) emissions from emplaced waste to ensure protection of human health and the environment. The standard is currently met by tracking individual waste container headspace gas concentrations, which are determined by headspace gas sampling and analysis of CH TRU waste containers. The WIPP is seeking a HWFP modification to allow the disposal of remote-handled (RH) TRU waste. Because RH TRU waste is limited to approximately 5% of the waste volume and is emplaced in the disposal room walls, it is possible to bound the potential RH TRU waste contribution to VOC emissions using conservative upper bounds. These conservative upper bounds were developed as an alternative to RH TRU waste canister headspace gas sampling and analysis. The methodology used to perform the calculations used to evaluate VOC emissions from emplaced RH TRU waste canisters applied the same equations as those used to evaluate VOC emissions in the original HWFP application.

  16. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect

    2010-05-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  17. Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes

    SciTech Connect

    B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

    2009-03-01

    The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and

  18. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    SciTech Connect

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared.

  19. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  20. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  1. Oak Ridge National Laboratory contact-handled Transuranic Waste Certification Program plan

    SciTech Connect

    Smith, J.H.; Smith, M.A.

    1990-08-01

    The Oak Ridge National Laboratory (ORNL) is required by Department of Energy (DOE) Order 5820.2A to package its transuranic (TRU) waste to comply with waste acceptance criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). TRU wastes are defined in DOE Order 5820.A as those radioactive wastes that are contaminated with alpha-emitting transuranium radionuclides having half-lives greater than 20 years and concentrations greater than 100 nCi/g at the time of the assay. In addition, ORNL handles U{sup 233}, Cm{sup 244}, and Cf{sup 252} as TRU waste radionuclides. The ORNL Transuranic Waste Certification Program was established to ensure that all TRU waste at ORNL is packaged to meet the required transportation and storage criteria for shipping to and storage at the WIPP. The objective of this document is to describe the methods that will be used at ORNL to package contact handled-transuranic (CH-TRU) waste to meet the criteria set forth in the WIPP certification requirements documents. This document addresses newly generated (NG) CH-TRU waste. Stored CH-TRU will be repackaged. This document is organized to provide a brief overview of waste generation operations at ORNL, along with details on data management for CH-TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. Techniques used for waste data collection, records control, and data archiving are defined. Procedures for the procurement and handling of waste containers are also described along with related quality control methods. 11 refs., 3 figs.

  2. EPA requires Phoenix facility to safely handle hazardous waste

    EPA Pesticide Factsheets

    SAN FRANCISCO - The U.S. Environmental Protection Agency recently fined World Resources Company $39,900 for violations of hazardous waste laws. World Resources, located in Tolleson, Ariz. uses manufactured residues to produce metal concentrate

  3. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  4. Remote handling equipment at the hanford waste treatment plant

    SciTech Connect

    Bardal, M.A.; Roach, J.D.

    2007-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on

  5. Proposed low-level radioactive waste handling building at Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Low-Level Radioactive Waste Building at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. As a result of the high energy physics program at Fermilab, small quantities of low-level radioactive wastes are generated. These wastes are collected, sorted and packaged for shipment to an off-site disposal facility in Hanford, Washington. The proposed project includes the construction of a new building to house, all low-level radioactive waste handling operations. The building would provide workspace for five full-time workers. The proposed project would improve the efficiency and safety of the low-level radioactive waste handling at Fermilab by upgrading equipment and consolidating operations into one facility.

  6. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  7. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  8. Modeling the flows of engineered nanomaterials during waste handling.

    PubMed

    Mueller, Nicole C; Buha, Jelena; Wang, Jing; Ulrich, Andrea; Nowack, Bernd

    2013-01-01

    Little is known about the behavior of engineered nanomaterials (ENM) at the interface from the technosphere to the ecosphere. Previous modeling of ENM flows to the environment revealed that significant amounts of ENM enter the waste stream and therefore waste incineration plants and landfills. It is the aim of this study to model the flows of ENM during waste incineration and landfilling in greater depth by including a more detailed description of the different processes and considering ENM-specific transformation reactions. Four substances were modeled: nano-TiO2, nano-ZnO, nano-Ag and carbon nanotube (CNT). These ENM are representative for commonly used materials and products, illustrating a variety of ENM with different behavior. The modeling was performed for Switzerland where almost 100% of the municipal waste and sewage sludge are burned. The mass-based modeling showed that – despite several differences among the models for nano-TiO2, nano-ZnO and nano-Ag (e.g. partial dissolution of nano-ZnO in acid washing of exhaust air or fly ash) – the major ENM flows go from the waste incineration plant to the landfill as bottom ash. All other flows within the system boundary (e.g. with the fly ash) were predicted to be about one magnitude smaller than the bottom ash flow. A different ENM distribution was found for CNTs that are expected to burn to a large extent (94%) so that only insignificant amounts remain in the system. The results of the modeling show that waste incineration can have a strong influence on some ENM but that still the majority of the ENM-mass is expected to end up in landfills.

  9. Handling 78,000 drums of mixed-waste sludge

    SciTech Connect

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, {approximately}46,000 drums of material in various stages of solidification and {approximately}32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains {approximately}16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of {approximately}78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs.

  10. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2010-06-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2009-10-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  12. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2011-04-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  13. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect

    David Duncan

    2011-03-01

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  14. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  15. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    SciTech Connect

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    1997-01-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application of emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.

  16. Review of DOE Planned Change Request for Shielded Containers for Remote-Handled Transuranic Waste

    EPA Pesticide Factsheets

    This report summarizes SC&A's review of the planned change request (PCR) submitted by DOE to EPA proposing the disposal of some remote-handled (RH) transuranic (TRU) waste in shielded containers on the floor of the disposal rooms at WIPP

  17. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ...Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment the Draft Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power...

  18. Robotics and remote handling concepts for disposal of high-level nuclear waste

    SciTech Connect

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-04-27

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies.

  19. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  20. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  1. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  3. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  4. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  5. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  6. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  7. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.; Ferguson, D. S.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  8. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  9. DOE assay methods used for characterization of contact-handled transuranic waste

    SciTech Connect

    Schultz, F.J. ); Caldwell, J.T. )

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  10. Handling and Treatment of Uranium Contaminated Combustible Radioactive Low Level Waste (LLW)

    SciTech Connect

    Lorenzen, J,; Lindberg, M.; Luvstrand, J.

    2002-02-26

    Studsvik RadWaste in Sweden has many years of experience in handling of low-level radioactive waste, such as burnable waste for incineration and scrap metal for melting. In Erwin, TN, in the USA, Studsvik Inc also operates a THOR (pyrolysis) facility for treatment of various kinds of ion-exchange resins. The advantage of incineration of combustible waste as well as of ion-exchange resins by pyrolysis, is the vast volume reduction which minimizes the cost for final storage and results in an inert end-product which is feasible for safe final disposal. The amount of uranium in the incinerable waste has impact on the quality of the resulting ash. The quality improves with lower U-content. One way of reducing the Ucontent is leaching using a chemical process before and if necessary also after the incineration. Ranstad Mineral AB has been established in the 1960s to support the Swedish national program for uranium mining in southern Sweden. Ranstad Mineral works among others wit h chemical processes to reduce uranium content by leaching. During 1998-2000 about 150 tons/year have been processed. The goal was to reach uranium residues of less than 0.02% for disposal on the municipal waste disposal.

  11. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  12. Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System

    SciTech Connect

    Barker, M.E.; Holt, T.E.; LaValle, D.R.; Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V.

    2008-07-01

    In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

  13. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  14. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  15. DOE's Notification of Planned Change to the EPA 40 CFR Part 194 Certification of the Waste Isolation Pilot Plant: Remote-Handled Transuranic Waste Characterization Plan

    EPA Pesticide Factsheets

    The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  16. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    SciTech Connect

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

    2000-02-07

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic

  17. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    PubMed

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  18. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 104

    SciTech Connect

    Ross, G.A.

    1998-03-27

    A sample of solids was obtained from tank 104 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprenel tubing (Phthalate free). The sample obtained in a glass jar with Teflon 2 lid, was analyzed for PCBs as Aroclor mixtures. A soxhlet extraction procedure was used to extract the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). The extraction method closely follows SW-846 method 3540C and the analysis follows SW-846 method.

  19. Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System

    SciTech Connect

    Rodney M. Shurtliff

    2005-09-01

    Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

  20. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  1. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2015-03-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1C, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  2. Waste coal: how to avoid flow stoppages during storage and handling

    SciTech Connect

    Hossfeld, R.J.; Barnum, R.A.

    2007-10-15

    Typically, waste coals are reclaimed from uncovered piles or ponds and transported to a power plant either to sit in another exposed pile or in a large storage silo before being conveyed into feed bunkers to feed the power boilers. The article explains how best to avoid problems related to flow stoppages such as spontaneous combustion when handling gob (bituminous and subbituminous) and culm (anthracite). Common problems are no-flow, due to arching (when an arch-shaped obstruction forms and prevents discharge) and rat-holing (when flow occurs in a channel above the outlet). To achieve mass flow, the sloping hopper walls must be steep enough and sufficiently low in friction for a particle to slide along them and the hopper outlet must be large enough to prevent arching. Equipment is best designed to satisfy flow properties of the particular materials being handled but if the plant is already built, problems can be solved by changing the bulk solid (by minimising moisture, increasing particle size etc.), changing the operating procedures or changing/modifying the equipment (hopper, chute or feeder). 1 ref., 4 figs.

  3. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  4. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  5. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Gary Mecham

    2009-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  6. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  7. The Second Opening of the Waste Isolation Pilot Plant? Review of Salient Characteristics and Unique Operational Considerations for Remote Handled Transuranic Waste

    SciTech Connect

    Anastas, G.; Walker, B.A.

    2003-02-24

    The U.S. Department of Energy (DOE) intends to dispose of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) beginning in 2005. (1) Four principle regulatory agencies are involved in the process of approving the RH TRU waste activities. The DOE is responsible for operational activities. The U. S. Nuclear Regulatory Commission (NRC) approves the design and use of shipping containers. The U.S. Environmental Protection Agency (EPA) is responsible for assuring safe and environmentally effective long-term disposal of the radioactive component of the waste and operational environmental monitoring. The New Mexico Environment Department (NMED) is responsible for the handling and the disposal of the non-radioactive hazardous component of the waste. The Environmental Evaluation Group (EEG) is responsible for performing independent technical oversight of all WIPP activities, and will comment on documents and practices for the various regulated RH TRU waste activities. The DOE has already obtained the necessary approvals from the NRC, and has submitted a Class 3 Modification request to the NMED. On December 16, 2002 the DOE Carlsbad Field Office (CBFO) provided the EPA with a notice of proposed change, in accordance with 40 CFR 194.4 (b) (3), to receive and dispose of remote handled transuranic waste. (2) WIPP procedures for the management of RH TRU waste at the site are being developed. While there are no issues with current NRC Certificates of Compliance for the RH TRU waste shipping containers, it is likely that there will be some controversy over other aspects of the currently planned RH TRU waste program. These issues may include: (1) the published RH TRU waste inventory, (2) the characterization of the radionuclide portion of the waste, for which one planned method is to use dose-to-Curie conversions, and (3) the plans to use bounding estimates for the hazardous portion of the WIPP waste, rather than measuring VOCs on a container

  8. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect

    Boyd D. Christensen

    2012-05-01

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  9. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  10. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J.

    1991-12-01

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

  11. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect

    Not Available

    2010-09-01

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  12. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect

    Peggy Hinman

    2010-10-01

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  13. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility

    SciTech Connect

    Rathbun, R.

    1993-10-01

    Separate review of NMP-NCS-930058, {open_quotes}Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility`s Waste Handling Facility (U), August 17, 1993,{close_quotes} was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility`s Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2{times}2{times}1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion.

  14. Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory

    SciTech Connect

    Field, L.R.; Villarreal, R.

    1998-02-24

    Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

  15. Cultural Resource Investigations for the Remote Handled Low Level Waste Facility at the Idaho National Laboratory

    SciTech Connect

    Brenda R. Pace; Hollie Gilbert; Julie Braun Williams; Clayton Marler; Dino Lowrey; Cameron Brizzee

    2010-06-01

    The U. S. Department of Energy, Idaho Operations Office is considering options for construction of a facility for disposal of Idaho National Laboratory (INL) generated remote-handled low-level waste. Initial screening has resulted in the identification of two recommended alternative locations for this new facility: one near the Advanced Test Reactor (ATR) Complex and one near the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility (ICDF). In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, intensive archaeological field surveys, and initial coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by new construction within either one of these candidate locations. This investigation showed that construction within the location near the ATR Complex may impact one historic homestead and several historic canals and ditches that are potentially eligible for nomination to the National Register of Historic Places. No resources judged to be of National Register significance were identified in the candidate location near the ICDF. Generalized tribal concerns regarding protection of natural resources were also documented in both locations. This report outlines recommendations for protective measures to help ensure that the impacts of construction on the identified resources are not adverse.

  16. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  17. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  18. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste

    SciTech Connect

    Lipinski, R.M.

    1994-10-01

    All transuranic (TRU) waste generators are required by US Department of Energy Order 5820.2A to package their TRU waste to comply with the Waste Acceptance Criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly waste generated at WHC meets the WIPP-WAC and/or. The methods used at WHC to package TRU waste are described in sufficient detail to meet WIPP certification or the regulations. This document is organized to provide a brief overview of waste generation operations at WHC, along with details on data management for TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This certification plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WIPP-DOE-069.

  19. Waste Water Handling Proof of Concepts at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-09-17

    5 2.2.3 McMurdo Waste Water Treatment Plant...Compound WWTP Waste Water Treatment Plant ERDC/CRREL TR-14-17 vii Unit Conversion Factors Multiply By To Obtain British thermal units (International...transportation of waste back to the waste water treatment plant (WWTP) at McMurdo Station via a vacuum tank. After three seasons of testing both the

  20. Excavation and Repackaging of Retrievably-Stored, Remote-Handled Transuranic Waste at Oak Ridge National Laboratory

    SciTech Connect

    Skinner, R.; Bolling, D.; Johnson, Ch.; Cange, J.; Turner, D.

    2008-07-01

    Between 1972 and 1981, remote-handled transuranic (RH-TRU) wastes generated at Oak Ridge National Laboratory (ORNL) were retrievably stored through shallow land burial in a series of 22 earthen trenches in the northern portion of Solid Waste Storage Area 5 in ORNL's Melton Valley. A Dispute Resolution Agreement signed by the Tennessee Department of Environment and Conservation and DOE specified removal of the buried (stored) waste to allow for repackaging, processing, and offsite disposal at an appropriate facility. A total of 204 concrete casks were successfully retrieved and over-packed from the 22-trench area between November 2004 and June 2006. Wastes originally stored in boxes, drums or placed without packaging was also recovered and repackaged. The repackaged wastes were transported to a nearby temporary storage facility at ORNL pending processing at DOE's Transuranic Waste Processing Center. In summary: The objective of the MVTRU Waste Retrieval Project was to satisfy conditions of the Dispute Resolution Agreement. This remedial action consisted of removal of all buried waste containers and loose items from the 22-trench area. The TRU waste casks were placed in steel overpacks, while other waste boxes, drums, and loose items were placed in steel drums or boxes. The over-packed waste was placed in an approved staging area until it can be accepted for treatment at the ORNL TRU Waste Processing Facility and ultimately disposed. A total of 204 casks were indicated by historical records to have been buried in the 22-Trench area, and 204 casks were found and over-packed during the retrieval operations. The historical records also indicated that some 18 steel or wood boxes, 12 steel drums, and approximately 15 m{sup 3} of loose waste were buried in the trenches. The contents of approximately 12 boxes, 3 drums, and approximately the expected 15 m{sup 3} quantity of loose waste were retrieved and over-packed. One significant deviation from the actions described in

  1. Hepatitis A virus infection and the waste handling industry: a seroprevalence study.

    PubMed

    Rachiotis, George; Papagiannis, Dimitrios; Thanasias, Efthimios; Dounias, George; Hadjichristodoulou, Christos

    2012-12-07

    Waste collectors have a theoretical risk of Hepatitis A virus infection. The aim of the study was to assess the prevalence and risk factors of hepatitis A virus infection (HAV) among municipal solid waste workers (MSWWs) in a municipality of central Greece. A seroprevalence study of HAV was conducted among 208 employees (100 waste collectors and 108 municipal gardeners) of a municipality in central Greece. Total antibodies against HAV were measured and information regarding potential risk factors was collected through a face to face interview. The prevalence of HAV infection among the municipal waste collectors was 61% vs. 27% among municipal gardeners. Logistic regression analysis showed that exposure to waste (OR = 2.87; 95% CI = 1.24-6.62) and age (OR = 22.57; 95% CI = 7.29-69.88) were independently associated with the anti-HAV positivity. Moreover, waste collectors who reported smoking/drinking/eating during waste collection were at higher risk of HAV infection (RR = 2.84; 95% CI = 1.73-4.63). Stratified analysis among municipal waste collectors indicated an independent association between eating/smoking/ drinking during waste collection and anti-HAV (+) (OR = 3.85; 95% CI = 1.34-11.06). Occupational exposure to waste is a potential risk factor for HAV infection. Smoking/eating/drinking during waste collection could be the mode of hepatitis A virus transmission among municipal waste collectors.

  2. 76 FR 62062 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    .../epahome/dockets.htm . Docket: All documents in the docket are listed in the http://www.regulations.gov... shipment of TRU waste for disposal at WIPP from any site other than Los Alamos National Laboratories (LANL... waste streams and equipment at LANL) prohibit shipment of TRU waste for disposal at WIPP (from LANL...

  3. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...://www.epa.gov/epahome/dockets.htm . Docket: All documents in the docket are listed in the www... shipment of TRU waste for disposal at WIPP from any site other than Los Alamos National Laboratories (LANL... waste streams and equipment at LANL) prohibit shipment of TRU waste for disposal at WIPP (from LANL...

  4. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    PubMed Central

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  5. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  6. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    SciTech Connect

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4.

  7. The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan

    SciTech Connect

    DEFFENBAUGH, M.L.

    2000-08-01

    The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational

  8. Development of the remote-handled transuranic waste radioassay data quality objectives. An evaluation of RH-TRU waste inventories, characteristics, radioassay methods and capabilities

    SciTech Connect

    Meeks, A.M.; Chapman, J.A.

    1997-09-01

    The Waste Isolation Pilot Plant will accept remote-handled transuranic waste as early as October of 2001. Several tasks must be accomplished to meet this schedule, one of which is the development of Data Quality Objectives (DQOs) and corresponding Quality Assurance Objectives (QAOs) for the assay of radioisotopes in RH-TRU waste. Oak Ridge National Laboratory (ORNL) was assigned the task of providing to the DOE QAO, information necessary to aide in the development of DQOs for the radioassay of RH-TRU waste. Consistent with the DQO process, information needed and presented in this report includes: identification of RH-TRU generator site radionuclide data that may have potential significance to the performance of the WIPP repository or transportation requirements; evaluation of existing methods to measure the identified isotopic and quantitative radionuclide data; evaluation of existing data as a function of site waste streams using documented site information on fuel burnup, radioisotope processing and reprocessing, special research and development activities, measurement collection efforts, and acceptable knowledge; and the current status of technologies and capabilities at site facilities for the identification and assay of radionuclides in RH-TRU waste streams. This report is intended to provide guidance in developing the RH-TRU waste radioassay DQOs, first by establishing a baseline from which to work, second, by identifying needs to fill in the gaps between what is known and achievable today and that which will be required before DQOs can be formulated, and third, by recommending measures that should be taken to assure that the DQOs in fact balance risk and cost with an achievable degree of certainty.

  9. Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines

    SciTech Connect

    Martynov, B.V.

    1995-10-01

    Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

  10. Environmental and health impacts of household solid waste handling and disposal practices in third world cities: the case of the Accra Metropolitan Area, Ghana.

    PubMed

    Boadi, Kwasi Owusu; Kuitunen, Markku

    2005-11-01

    Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.

  11. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    SciTech Connect

    BLACKFORD LT

    2008-02-04

    CH2M HILL Hanford Group, Inc. (CH2M HILL) plays a critical role in Hanford Site cleanup for the U. S. Department of Energy, Office of River Protection (ORP). CH2M HILL is responsible for the management of 177 tanks containing 53 million gallons of highly radioactive wastes generated from weapons production activities from 1943 through 1990. In that time, 149 single-shell tanks, ranging in capacity from 50,000 gallons to 500,000 gallons, and 28 double-shell tanks with a capacity of 1 million gallons each, were constructed and filled with toxic liquid wastes and sludges. The cleanup mission includes removing these radioactive waste solids from the single-shell tanks to double-shell tanks for staging as feed to the Waste Treatment Plant (WTP) on the Hanford Site for vitrification of the wastes and disposal on the Hanford Site and Yucca Mountain repository. Concentrated efforts in retrieving residual solid and sludges from the single-shell tanks began in 2003; the first tank retrieved was C-106 in the 200 East Area of the site. The process for retrieval requires installation of modified sluicing systems, vacuum systems, and pumping systems into existing tank risers. Inherent with this process is the removal of existing pumps, thermo-couples, and agitating and monitoring equipment from the tank to be retrieved. Historically, these types of equipment have been extremely difficult to manage from the aspect of radiological dose, size, and weight of the equipment, as well as their attendant operating and support systems such as electrical distribution and control panels, filter systems, and mobile retrieval systems. Significant effort and expense were required to manage this new waste stream and resulted in several events over time that were both determined to be unsafe for workers and potentially unsound for protection of the environment. Over the last four years, processes and systems have been developed that reduce worker exposures to these hazards, eliminate violations

  12. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect

    D. Craig Cooper

    2011-11-01

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  13. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  14. Handling of combustion and emission-abatement wastes from coal-fired power plants: implications for fish and wildlife resources

    SciTech Connect

    Wyman, D.J.

    1980-09-01

    The goals of this report are to: (1) provide a basic introduction to handling of wastes from coal combustion and emission abatement and (2) present a procedure for evaluating the potential for these wastes to impact fish and wildlife resources. Coal combustion ashes and flue-gas-desulfurization (FGD) sludges contain trace elements that can be toxic to biota in sufficient quantities. Both ashes and FGD sludges are usually deposited in pond or landfill storage areas. Dispersal of constituents from waste-storage sites occurs primarily by runoff, seepage, and wind erosion. This report contains methods for evaluating the potential impacts from these routes of dispersal in site-specific situations. Generally, pond storage methods, even when properly managed, have a greater impact upon fish and wildlife resources than do landfill methods. The potential for uptake of trace elements to toxic levels is dependent upon a number of factors including: (1) pH of the dispersal and growth media, (2) capacity of the dispersal and growth media to bind elements in a form unavailable for uptake, (3) magnitude of biological concentration of elements in primary producers and succeeding trophic levels, and (4) tolerances of individual species. We have provided some generalized information that can be used to estimate the relative likelihood of toxicity problems resulting from dispersal of trace elements from coal ashes and FGD sludges. After the active lifetime of a waste-storage site, revegetation is desirable as a means of controlling erosion and regaining potential fish and wildlife habitat. A number of plant species have been shown to successfully establish on fly ash; however, toxic effects of the ash constituents have been demonstrated in several cases, and wildlife forage plants have been shown to accumulate some of these constituents to potentially toxic levels.

  15. Human factors programs for high-level radioactive waste handling systems

    SciTech Connect

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process.

  16. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    SciTech Connect

    Nakayama, S.; Kawase, K.; Iijima, K.; Kato, M.

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup and waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)

  17. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  18. Assessment of the Municipal Solid Waste & Status of Implementation of Municipal Solid Waste (Management & Handling), Rules, 2000 in the State of Madhya Pradesh, 2008 - a case study.

    PubMed

    Lal Patel, Munna; Jain, Rajnikant; Saxena, Alok

    2011-05-01

    The municipal solid waste (MSW), generated from different activities in the township and city areas is a subject of deep concern for its proper management. The improper management of the MSW is a major cause for water, air and soil pollution. The population explosion and sustained drive for economic progress and development have resulted in a remarkable increase/ change in quantity and characteristics of MSW generation over the last 20 years. The local bodies are responsible for the management of the MSW in the State. The Municipal Solid Waste (Management & Handling), Rules, 2000 came into force from the date of its publication in the official Gazette of India and are applicable to every local body responsible for the proper management of the MSW in the State. The status report of the implementation of the Municipal Solid Waste (Management & Handling), Rules, 2000 in the State of Madhya Pradesh, is prepared as per the MOU signed by the State Pollution Control Board with the Central Pollution Control Board, New Delhi. The necessary data for the preparation of the report, collected from the respective local bodies through the regional offices of the Board during the period February to December 2008. There are 342 local bodies (municipal corporations, 14; municipal committees or municipalities, 86; Nagar Panchyats, 237; and cantonment boards, 5) responsible for the implementation of the MSW, in the State. It is estimated that around 4500 Mt day(-1) MSW is generated from all the 342 local bodies. The local bodies of the State are not well equipped for the proper management of the MSW. A total of 323 local bodies has identified land for the development of the landfill sites as per the provisions of the Rules but only 90 local bodies acquired the same. As an outcome of this assessment, the local bodies are not financially and technically capable for the proper implementation of the Rules. The collection of the waste is around 60-70%. This status report will serve as an

  19. The Zwilag interim storage plasma plant technology to handle operational waste from nuclear plants

    SciTech Connect

    Heep, Walter

    2007-07-01

    The first processing of low level radioactive wastes from Swiss nuclear power plants marks the successful completion of commissioning in March 2004 of a treatment facility for low and intermediate level radioactive wastes, which is operated with the help of plasma technology. The theoretical principles of this metallurgy-derived process technology are based on plasma technology, which has already been used for a considerable period outside of nuclear technology for the production of highly pure metal alloys and for the plasma synthesis of acetylene. The commercial operation of the Plasma Plant owned by Zwischenlager Wuerenlingen AG (ZWILAG) has also enabled this technology to be used successfully for the first time in the nuclear field, especially in compliance with radiation protection aspects. In addition to a brief presentation of the technology used in the plant, the melting process under operating conditions will be explained in more detail. The separation factors attained and volume reductions achieved open interesting perspectives for the further optimisation of the entire process in the future. (author)

  20. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    SciTech Connect

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    2012-07-01

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gas blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into containers

  1. Polychlorinate biphenyls (PCB) analysis report for solid sample for 219S tank 102

    SciTech Connect

    Ross, G.A.

    1997-12-05

    One waste sample was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Extraction follows closely method 354 C of SW-846, analysis follows SW-846 method 8082. A cross reference of laboratory sample number to the customer identification is given in a table.

  2. Effect of Design Changes On Remote Handled Trench Waste Form Release Calculations

    SciTech Connect

    Bacon, Diana H.; McGrail, B. Peter

    2002-09-20

    A set of reactive chemical transport calculations was conducted with the Subsurface Transport Over Reactive Multi-phases (STORM) code to evaluate the long-term performance of a representative low-activity waste glass in a shallow subsurface disposal system located on the Hanford Site. One-dimensional simulations were conducted out to times of 20,000 yr. The simulations predict a lower release rate for the new trench design (0.605 ppm/yr) than for the old trench design (0.726 ppm/yr). Because the glass corrosion rate is significantly higher at the backfill/glass interfaces, having one less interface with the 3-layer design offsets the effect of the slightly higher pH relative to the 4-layer design. The differences between the old and new trench designs were much less significant than differences due to differences in recharge rate.

  3. Waste analysis plan for 222-S dangerous and mixed waste storage area

    SciTech Connect

    Warwick, G.J.

    1994-08-30

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility.

  4. Design and Construction of a High Energy X-Ray R and D Facility, and the Development and Optimization of Real Time Radioisotopic Characterization of Remote Handled Waste at MeV Energies

    SciTech Connect

    Halliwell, S.; Georgiev, G.

    2007-07-01

    Real time radioscopy (RTR) is used extensively for the non-destructive examination (NDE) modality in the characterization of waste using x-ray energies of up to 450 keV. The majority of contact handled waste in drums and boxes such as the standard waste box (SWB) and the B25 box, can be penetrated by x-rays at these energies. However, the shielding within remote handled (RH) waste packages, the high density of many waste matrices, and the large size of other waste packages containing both remote handled and contact handled waste, require x-rays at MeV energies, in order to penetrate the waste matrices to enable x-ray images to be made. To develop, optimize and validate the performance of high energy x-ray imaging systems, requires a shielded vault complete with remote handling equipment for the manipulation of the x-ray generating equipment, the imaging chain, and the surrogate waste being inspected. This paper describes the design and construction of a High Energy X-Ray, R and D facility, and the results of the initial program of work to optimize systems for the real time inspection of RH waste. (authors)

  5. Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites

    SciTech Connect

    A. Jeff Sondrup; Annette L. Schafter

    2010-09-01

    Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for

  6. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE.

    PubMed

    Nurrokhmah, Laila; Mezher, Toufic; Abu-Zahra, Mohammad R M

    2013-01-01

    A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.

  7. Remote-handled transuranic system assessment appendices. Volume 2

    SciTech Connect

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

  8. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  9. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect

    Not Available

    1990-07-01

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  10. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources

  11. 3D thermal stress analysis of WIPP (Waste Isolation Pilot Plant) Room T RH TRU (Remote Handled Transuranic) experiments

    SciTech Connect

    Argueello, J.G.; Beraun, R.; Molecke, M.A.

    1989-08-01

    A three-dimensional finite element thermal stress analysis of the RH TRU experiments in WIPP Room T has been performed. This analysis aids in the interpretation of the borehole closure results being obtained from the Room T experiments and helps in assessing potential performance impacts in a typical storage room, during the waste retrieval period. Computed results are presented and compared to available in situ data, and a qualitative agreement between measured and computed closures is seen. 9 refs., 10 figs.

  12. Research, development and optimization of real time radioscopic characterization of remote handled waste and intermediate level waste, using X-ray imaging at MeV energies

    SciTech Connect

    Halliwell, Stephen

    2007-07-01

    Available in abstract form only. Full text of publication follows: Real time radioscopy (RTR) using X-ray energies of up to 450 keV, is used extensively in the characterization of nuclear waste. The majority of LLW and some ILW in drums and boxes can be penetrated, for successful imaging, by X-rays with energies of up to 450 keV. However, the shielding of many waste packages, and the range of higher density waste matrices, require X-rays at MeV energies, for X-ray imaging to achieve the performance criteria. A broad imaging performance is required to enable the identification of a range of prohibited items, including the ability to see a moving liquid meniscus which indicates the presence of free liquid, in a high density or a waste matrix with substantial containment shielding. Enhanced, high energy X-ray imaging technology to meet the future characterization demands of the nuclear industry required the design and build of a high energy facility, and the implementation of a program of research and development. The initial phase of development has confirmed that digital images meeting the required performance criteria can be made using high energy X-rays. The evaluation of real time imaging and the optimization of imaging with high energy X-rays is currently in progress. (author)

  13. Design and Preliminary Monte Carlo Calculations of an Active Compton Suppressed LaBr3(Ce) Detector System for TRU Assay in Remote-Handled Wastes

    SciTech Connect

    J. Kulisek; J. K. Hartwell; M. E. McIlwain; R. P. Gardner

    2006-09-01

    Recent studies indicate LaBr3(Ce) scintillation detectors have desirable attributes, such as room temperature operability, which may make them viable alternatives as primary detectors (PD) in a Compton suppression spectrometer (CSS) used for remote-handled transuranic (RH-TRU) waste assay. A CSS with a LaBr3(Ce) PD has been designed and its expected performance evaluated using Monte Carlo analysis. The unique design of this unit minimizes the amount of "dead" material between the PD and the secondary guard detector. The analysis results indicate that this detector will have a relatively high Compton-suppression capability, with greater suppression ability for large angle-scattered photons in the PD. J. K. Hartwell1, M. E. McIlwain1, R. P. Gardner2, J. Kulisek3 1) Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2114 USA 2) North Carolina State University, Dept of Nuclear Eng., PO Box 7909, Raleigh, NC 27695 USA 3) Ohio State University, Columbus, Ohio 43210 The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes. The RH-TRU waste stream is composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The expected detector performance has been modeled using MCNP-X [1] and CEARCPG [2], and incorporates certain design features modeled as important to active Compton suppression systems in previously-published work [3]. The unique detector system is sketched in Fig. 1. The ~25 mm diameter by 75 mm long LaBr3(Ce

  14. Oncology pharmacy units: a safety policy for handling hazardous drugs and related waste in low- and middle-income African countries—Angolan experience

    PubMed Central

    da Conceição, Ana Vaz; Bernardo, Dora; Lopes, Lygia Vieira; Miguel, Fernando; Bessa, Fernanda; Monteiro, Fernando; Santos, Cristina; Oliveira, Blasques; Santos, Lúcio Lara

    2015-01-01

    In African countries, higher rates of late-stage cancers at the time of first diagnosis are a reality. In this context, hazardous drugs (HDs), such as chemotherapy, play an important role and have immense benefits for patients’ treatment. HDs should be handled under specific conditions. At least a class 5 environment primary engineering control (PEC), physically located in an appropriate buffer area, is mandatory for sterile HDs compounding, as well as administrative control, personal protective equipment, work practices and other engineering and environmental controls, in order to protect the environment, patient, and worker. The aim of this study is to describe the Angolan experience regarding the development of oncology pharmacy units and discuss international evidence-based guidelines on handling HDs and related waste. Measures to incorporate modern and economical solutions to upgrade or build adequate and safe facilities and staff training, in order to comply with international guidelines in this area, are crucial tasks for African countries of low and middle income. PMID:26557873

  15. Quarter-scale modeling of room convergence effects on CH (contact-handled) TRU drum waste emplacements using WIPP (Waste Isolation Pilot Plant) reference design geometries

    SciTech Connect

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs.

  16. Tritium handling in vacuum systems

    SciTech Connect

    Gill, J.T.; Coffin, D.O.

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  17. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  18. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  19. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  20. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

    2011-12-23

    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining

  1. Droplet Handling

    NASA Astrophysics Data System (ADS)

    Torii, Toru

    When quantitative analysis or quantitative chemical synthesis is performed using a micrototal analysis system (microTAS), the technologies for precise metering, transporting, and mixing of droplets are required. In this chapter, several technologies for the handling of droplets are described. For metering, dispensing and transporting of droplets, pneumatic and electrokinetic forces are used. Separation of cells and particles is also performed by electrical operation. Other handling technique, such as ultrasonic or centrifugal force applications, are also reviewed. Robotic synthesis devices or high throughput screening devices are promising applications for these technologies.

  2. Droplet handling.

    PubMed

    Torii, Toru

    2010-01-01

    When quantitative analysis or quantitative chemical synthesis is performed using a micrototal analysis system (microTAS), the technologies for precise metering, transporting, and mixing of droplets are required. In this chapter, several technologies for the handling of droplets are described. For metering, dispensing and transporting of droplets, pneumatic and electrokinetic forces are used. Separation of cells and particles is also performed by electrical operation. Other handling technique, such as ultrasonic or centrifugal force applications, are also reviewed. Robotic synthesis devices or high throughput screening devices are promising applications for these technologies.

  3. Issues and Recommendations Arising from the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility Composite Analysis - 13374

    SciTech Connect

    Rood, Arthur S.; Schafer, Annette L.; Sondrup, A. Jeff

    2013-07-01

    Development of the composite analysis (CA) for the Idaho National Laboratory's (INLs) proposed remote-handled (RH) low-level waste (LLW) disposal facility has underscored the importance of consistency between analyses conducted for site-specific performance assessments (PAs) for LLW disposal facilities, sites regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [1], and residual decontamination and decommissioning (D and D) inventories. Consistency is difficult to achieve because: 1) different legacy sources and compliance time-periods were deemed important for each of the sites evaluated at INL (e.g., 100 years for CERCLA regulated facilities vs. 1,000 years for LLW disposal facilities regulated under U.S. Department of Energy (DOE) Order 435.1 [2]); 2) fate and transport assumptions, parameters, and models have evolved through time at the INL including the use of screening-level parameters vs. site-specific values; and 3) evaluation objectives for the various CERCLA sites were inconsistent with those relevant to either the PA or CA including the assessment of risk rather than effective dose. The proposed single site-wide CA approach would provide needed consistency, allowing ready incorporation of new information and/or facilities in addition to being cost effective in terms of preparation of CAs and review by the DOE. A single site-wide CA would include a central database of all existing INL sources, including those from currently operating LLW facilities, D and D activities, and those from the sites evaluated under CERCLA. The framework presented for the INL RH-LLW disposal facility allows for development of a single CA encompassing air and groundwater impacts. For groundwater impacts, a site-wide MODFLOW/MT3D-MS model was used to develop unit-response functions for all potential sources providing responses for a grid of receptors. Convolution and superposition of the response functions are used to compute groundwater

  4. Enclosure (from letter from EPA to DOE sent 3/26/04) - Technical and Regulatory Support Document: EPA's Remote Handled Waste Characterization Determination

    EPA Pesticide Factsheets

    Based on the requirements presented in 40 CFR 194.24(c )(2) to (4) and 194.22(a)(1) and using experience gained as part of the CH waste characterization program, EPA examined the DOE's RH Waste Characterization Proposal as presented in the WCPIP.

  5. Cask system design guidance for robotic handling

    SciTech Connect

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

  6. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  7. Objectives and limitations of scientific studies with reference to the Swedish R&D programme 1992 for handling and final disposal of nuclear waste

    SciTech Connect

    Sjoeblom, R.; Dverstorp, B.; Wingefors, S.

    1994-12-31

    The Swedish Nuclear Power Inspectorate (SKI) has recently concluded its evaluation of the Swedish programme for the development of a system for the management of nuclear waste. The programme was compiled and issued by the Swedish Nuclear Fuel and Waste Management Company (SKB). In this process of programme formulation and review, considerable attention has been paid to the question of how scientific studies should be directed and performed in order to provide the support needed in the programme.

  8. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  9. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    SciTech Connect

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  10. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  11. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building

  12. 7 CFR 322.21 - Post-entry handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Will the facility's entryways, windows, and other structures, including water, air, and waste handling... 7 Agriculture 5 2011-01-01 2011-01-01 false Post-entry handling. 322.21 Section 322.21 Agriculture... Organisms § 322.21 Post-entry handling. (a) Immediately following clearance at the port of entry,...

  13. Waste from food processors

    SciTech Connect

    Sheehan, K.

    1993-12-01

    Food processing companies, by nature of the commodities they deal in and the products they provide, generate a much higher percentage of biodegradable, organic wastes than they do nonorganic wastes. The high percentage of food materials, and to a lesser extent, paper, found in a food processor's waste stream makes composting a highly cost-effective way to manage the wastes. This is the last in a series of articles that discussed solid waste management in various public arenas. Each segment highlighted particulars -- the waste stream; how the waste is handled; waste reduction and recovery programs; and the direction of future waste management -- that are specific to that area.

  14. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  15. The Computer Subroutine in Information Handling.

    ERIC Educational Resources Information Center

    Riggs, Donald E.

    Generalized computational subroutines can reduce programing repetitions and wasteful computer storage use. The most useful are those that are flexible enough to handle a wide variety of situations. Subroutines may have details open to change in order to blend into the main program. They may be built into the computer library or supplied by the…

  16. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  17. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  18. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  19. Waste management and chemical inventories

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  20. Central waste complex interim safety basis

    SciTech Connect

    Cain, F.G.

    1995-05-15

    This interim safety basis provides the necessary information to conclude that hazards at the Central Waste Complex are controlled and that current and planned activities at the CWC can be conducted safely. CWC is a multi-facility complex within the Solid Waste Management Complex that receives and stores most of the solid wastes generated and received at the Hanford Site. The solid wastes that will be handled at CWC include both currently stored and newly generated low-level waste, low-level mixed waste, contact-handled transuranic, and contact-handled TRU mixed waste.

  1. Data Handling and Citizenship

    ERIC Educational Resources Information Center

    Tresidder, Gwen

    2006-01-01

    When marking GCSE data handling coursework, the author was repeatedly reminded just how poor the level of statistical understanding is among students. In response to a feeling that the teaching of handling data topics was limited, the author and her colleague designed a project with Y8 students to try to teach statistics for a deeper…

  2. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  3. CHR -- Character Handling Routines

    NASA Astrophysics Data System (ADS)

    Charles, A. C.; Rees, P. C. T.; Chipperfield, A. J.; Jenness, T.

    This document describes the Character Handling Routine library, CHR, and its use. The CHR library augments the limited character handling facilities provided by the Fortran 77 standard. It offers a range of character handling facilities: from formatting Fortran data types into text strings and the reverse, to higher level functions such as wild card matching, string sorting, paragraph reformatting and justification. The library may be used simply for building text strings for interactive applications or as a basis for more complex text processing applications.

  4. Future of remote handling

    SciTech Connect

    Grisham, D.L.; Lambert, J.E.

    1986-01-01

    The field of remote handling started in the late 1940's and early 1950's with the invention of mechanical master-slave and electromechanical manipulators. That field now consists of three major divisions: (1) conventional remote handling in fixed facilities with shielding windows and mechanical manipulators; (2) large area remote handling using portable equipment, electric master-slave manipulators, and television for viewing; and (3) the field of robotics which is beginning to be applied to repetitive operations on toxic and dangerous materials. All three divisions will continue to develop and evolve over the next decade.

  5. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  6. CANISTER HANDLING FACILITY WORKER DOSE ASSESSMENT

    SciTech Connect

    D.T. Dexheimer

    2004-02-27

    The purpose of this calculation is to estimate radiation doses received by personnel working in the Canister Handling Facility (CHF) performing operations to receive transportation casks, transfer wastes, prepare waste packages, perform associated equipment maintenance. The specific scope of work contained in this calculation covers individual worker group doses on an annual basis, and includes the contributions due to external and internal radiation. The results of this calculation will be used to support the design of the CHF and provide occupational dose estimates for the License Application.

  7. Radiation and ecological aspects of tritium handling

    SciTech Connect

    Belovodskiy, L.F.

    1994-12-31

    Results of VNIIEF investigations into regularities of radioactive waste production in tritium handling (gaseous, liquid, solid wastes) as well as tritium and its oxide (HTO, DTO, TTO) migration in environmental objects (air, water, soil, vegetation) are presented. The doses of population exposure due to tritium release into the atmosphere have been determined. The dose factor being 2.2 E13 mrem{sup *}L/Ci/year. The constants of tritium oxide sorption by foods and the density of tritium fallout near the term source have been used to develop the conceptual international design of thermonuclear reactor (ITER).

  8. Handling Pyrophoric Reagents

    SciTech Connect

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  9. Helicopter Handling Qualities

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Helicopters are used by the military and civilian communities for a variety of tasks and must be capable of operating in poor weather conditions and at night. Accompanying extended helicopter operations is a significant increase in pilot workload and a need for better handling qualities. An overview of the status and problems in the development and specification of helicopter handling-qualities criteria is presented. Topics for future research efforts by government and industry are highlighted.

  10. DOE handbook: Tritium handling and safe storage

    SciTech Connect

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  11. Remote-Handled Transuranic Content Codes

    SciTech Connect

    Washington TRU Solutions

    2001-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely

  12. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    SciTech Connect

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs.

  13. Citrus waste stream utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste streams, generated during fruit processing, consist of solid fruit residues in addition to liquid waste streams from washing operations which must be handled in an environmentally acceptable manner. Unsound fruit from packing houses are usually sent off to be processed for juice and the solid ...

  14. SPAR data handling utilities

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Haftka, R. T.

    1978-01-01

    The SPAR computer software system is a collection of processors that perform particular steps in the finite-element structural analysis procedure. The data generated by each processor are stored on a data base complex residing on an auxiliary storage device, and these data are then used by subsequent processors. The SPAR data handling utilities use routines to transfer data between the processors and the data base complex. A detailed description of the data base complex organization is presented. A discussion of how these SPAR data handling utilities are used in an application program to perform desired user functions is given with the steps necessary to convert an existing program to a SPAR processor by incorporating these utilities. Finally, a sample SPAR processor is included to illustrate the use of the data handling utilities.

  15. Wastes from plutonium conversion and scrap recovery operations

    SciTech Connect

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

  16. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  18. Grain Grading and Handling.

    ERIC Educational Resources Information Center

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  19. Microforms in Information Handling.

    ERIC Educational Resources Information Center

    Williams, B. J. S.

    In an attempt to identify some of the factors which influence the utility of microforms as a medium for information handling, this report first traces some of the landmarks in the evolution of microforms since their invention in 1893. It next provides a factual account of current microform media and formats. The last section of the report contains…

  20. Overview of robotics for Mixed Waste Operations

    SciTech Connect

    Ward, C.R.

    1994-02-01

    The Mixed Waste Operations Robotics program is developing robotics technology to make the handling and treatment of Department of Energy mixed waste; better, faster, safer and cheaper. This technology will provide remote operations and not require humans to be in contact with this radioactive and hazardous waste. The technology includes remote handling and opening of waste containers, remote removal of waste from the containers, remote characterization and sorting of the waste, and remote treatment and disposition of the waste. The initial technology development program culminated in an integrated demonstration in November 1993 and each aspect of this technology is described.

  1. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  2. Remote-Handled Transuranic Content Codes

    SciTech Connect

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR

  3. Waste in Place Elementary Curriculum Guide.

    ERIC Educational Resources Information Center

    Keep America Beautiful, Inc., Stamford, CT.

    This curriculum guide is a behavioral-based, systematic approach to changing attitudes and practices related to waste handling. Activities included are on litter prevention, waste reduction, reuse, recycling, composting, waste-to-energy, and landfill. These activities are used to assist students in making informed decisions about waste disposal…

  4. Space shuttle handling qualities

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1985-01-01

    The initial Orbiter handling qualities requirements, their effect on the vehicle design, and how it all turned out through the first six orbital missions are reviewed. Specific areas consisting of hand controller considerations and the wheelie problem are discussed. The requirements for the pitch axis subsonic flight control system are reviewed. Results of recent simulator evaluations to compare the existing system at landing with several other configurations are presented.

  5. Renal phosphate handling: Physiology

    PubMed Central

    Prasad, Narayan; Bhadauria, Dharmendra

    2013-01-01

    Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23) and klotho coreceptor are the key regulators of phosphorus balance in body. PMID:23961477

  6. Uranium hexafluoride handling. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  7. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect

    Shipers, L.R.; Allen, G.C.

    1992-09-09

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  8. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  9. Insulin and renal sodium handling: clinical implications.

    PubMed

    DeFronzo, R A

    1981-01-01

    Over the last ten years a large body of information has accumulated which indicates that physiologic changes in the plasma insulin concentration are capable of affecting electrolyte transport by the kidney as well as by variety of other tissues. In the present discussion the effect of insulin on the renal handling of sodium, potassium, phosphate, and calcium is reviewed, with an emphasis on sodium transport (Table 1). An attempt is made to relate the effects of insulin on sodium metabolism to four common clinical situations: (a) hypertension and obesity, (b) sodium wasting in diabetes mellitus, (c) natriuresis of starvation, and (d) sodium retention and edema following refeeding.

  10. Solid handling valve

    DOEpatents

    Williams, William R.

    1979-01-01

    The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

  11. Students' Strategies for Exception Handling

    ERIC Educational Resources Information Center

    Rashkovits, Rami; Lavy, Ilana

    2011-01-01

    This study discusses and presents various strategies employed by novice programmers concerning exception handling. The main contributions of this paper are as follows: we provide an analysis tool to measure the level of assimilation of exception handling mechanism; we present and analyse strategies to handle exceptions; we present and analyse…

  12. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  13. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  14. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    SciTech Connect

    1994-12-31

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented.

  15. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  16. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  17. Platelets: handle with care.

    PubMed

    Thomas, S

    2016-10-01

    Platelets are delicate cells that require careful handling between collection, preparation and transfusion. This review addresses practical questions relating to platelet concentration, resting time after collection, total time and number of periods without agitation and temperature. The bags in which platelets are stored are made from gas-permeable plastic to allow sufficient oxygen for the platelets to maintain aerobic respiration. Manufacturers have assigned limits for platelet content and concentration, and these must not be exceeded. There is no strong evidence for or against the resting of platelets post-collection and pre-agitation, but platelets should not be over-wrapped during this period as this compromises gas exchange; a short rest period of up to 1 h may allow the separation of minor aggregates. It is necessary to transport platelet concentrates (e.g. from manufacturing site to hospital), but these periods without gas exchange must be limited to avoid excessive damage to the platelets. Current data support a total of 24 h of transportation per component but with no individual period lasting more than 8 h. Platelets need to be stored at 20-24 °C based on evidence that colder storage leads to irreversible changes on the platelet membrane, resulting in phagocytosis of the platelets following transfusion. Storage at warmer temperatures may lead to an increase in bacterial risk. On the basis of this review, the UK Guidelines for Blood Transfusion Services have been updated to ensure that platelets are handled in the most appropriate way to ensure that efficacious components are provided for patients.

  18. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  19. Protecting worker health and safety using remote handling systems

    SciTech Connect

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL`s existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling.

  20. SOLID WASTE STUDY

    SciTech Connect

    PAUL G. ORTIZ - COLEMAN RESEARCH CORP /COMPA INDUSTRIES

    1995-08-01

    The purpose of this document is to study the solid waste issues brought about by a Type C Investigation; ``Disposal of Inappropriate Material in the Los Alamos County Landfill'' (May 28, 1993). The study was completed in August 1995 by Coleman Research Corporation, under subcontract number 405810005-Y for Los Alamos National Laboratory (LANL). The study confirmed the issues identified in the Type C investigation, and also ascertained further issues or problems. During the course of this study two incidents involving hazardous waste resulted in the inappropriate disposal of the waste. An accidental spill, on June 8, 1995, at one of Laboratory buildings was not handled correctly, and ended up in the LAC Landfill. Hazardous waste was disposed of in a solid waste container and sent to the Los Alamos County Landfill. An attempt to locate the hazardous waste at the LAC Landfill was not successful. The second incident involving hazardous waste was discovered by the FSS-8, during a random dumpster surveillance. An interim dumpster program managed by FSS-8 discovered hazardous waste and copper chips in the solid waste, on August 9, 1995. The hazardous waste and copper chips would have been transported to the LAC Landfill if the audit team had not brought the problem to the awareness of the facility waste management personnel.

  1. REMOTE HANDLING ARRANGEMENTS

    DOEpatents

    Ginns, D.W.

    1958-04-01

    A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

  2. CERISE, a French radioprotection code, to assess the radiological impact and acceptance criteria of installations for material handling, and recycling or disposal of very low-level radioactive waste

    SciTech Connect

    Santucci, P.; Guetat, P.

    1993-12-31

    This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activity unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.

  3. Waste Controls at Base Metal Mines

    ERIC Educational Resources Information Center

    Bell, Alan V.

    1976-01-01

    Mining and milling of copper, lead, zinc and nickel in Canada involves an accumulation of a half-million tons of waste material each day and requires 250 million gallons of process water daily. Waste management considerations for handling large volumes of wastes in an economically and environmentally safe manner are discussed. (BT)

  4. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  5. Issue briefs on low-level radioactive wastes

    SciTech Connect

    Not Available

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

  6. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  7. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    SciTech Connect

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes.

  8. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  9. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  10. Improved mouse cage provides versatility and ease in handling laboratory mice

    NASA Technical Reports Server (NTRS)

    Jones, N. D.

    1969-01-01

    Mouse cage system provides versatility and ease in handling laboratory mice, cleaning their cages, and collecting uncontaminated metabolic test specimens. The cage, compact and free standing, contains a screened bottom and funnel channel to collect waste. The feed is in the cage top and thereby separates the food and waste.

  11. Medical waste management - A review.

    PubMed

    Windfeld, Elliott Steen; Brooks, Marianne Su-Ling

    2015-11-01

    This paper examines medical waste management, including the common sources, governing legislation and handling and disposal methods. Many developed nations have medical waste legislation, however there is generally little guidance as to which objects can be defined as infectious. This lack of clarity has made sorting medical waste inefficient, thereby increasing the volume of waste treated for pathogens, which is commonly done by incineration. This review highlights that the unnecessary classification of waste as infectious results in higher disposal costs and an increase in undesirable environmental impacts. The review concludes that better education of healthcare workers and standardized sorting of medical waste streams are key avenues for efficient waste management at healthcare facilities, and that further research is required given the trend in increased medical waste production with increasing global GDP.

  12. Analysis of U.S. Army Solid Waste Management Policy.

    DTIC Science & Technology

    1992-07-01

    27 3.2.1 Army Solid Waste Generation ............................... 27 3.2.2 Non- Municipal Solid Waste .................................. 28...130 Glossary ...................................................................................... 131 List of Figures 2-1 U. S. Municipal Solid Waste Handling...and Alternatives ................................... 94 9 List of Tables 3-1 Examples of Army Municipal Solid Waste Composition .... 29 3-2 DoD and

  13. Information Handling is the Problem

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2001-01-01

    This slide presentation reviews the concerns surrounding the automation of information handling. There are two types of decision support software that supports most Space Station Flight Controllers. one is very simple, and the other is very complex. A middle ground is sought. This is the reason for the Human Centered Autonomous and Assistant Systems Testbed (HCAAST) Project. The aim is to study flight controllers at work, and in the bigger picture, with particular attention to how they handle information and how coordination of multiple teams is performed. The focus of the project is on intelligent assistants to assist in handling information for the flight controllers.

  14. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  15. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  16. Dazomet Fumigant Safe Handling Guide

    EPA Pesticide Factsheets

    Dazomet is the active ingredient in Basamid G soil fumigant pesticide. Wear personal protective equipment such as respirators when handling Basamid granules or making an application, mitigate exposures, and recognize signs of vapor inhalation.

  17. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  18. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  19. Air handling units for hospitals.

    PubMed

    Amoroso, V; Gjestvang, R

    1989-10-01

    Air handling units should provide proper quality and conditioned air to various hospital areas. Unit capacity should be able to meet limited space functionality or load changes as well as any smoke control requirements. System components should be readily accessible and appropriate for spaces served. In summary, engineers should consider the following: Environmental design criteria for area being served Components desired Unit type required Economic issues affecting design. Using this approach, design engineers can design hospital air handling units methodically and logically.

  20. Material Handling in Dry Docks.

    DTIC Science & Technology

    1981-11-01

    final report of work completed under Naval Sea Systems Command Work Request N0002470WR9666 to identify segments of drydock material handling which may... segment of drydock/shipboard material handling which may be improved to achieve reductions in manhours and overhaul costs for typical availabilities...IAN’ Earthquake criteria, regardless of geograp tical area, which can eliminate anywhere from 1/3 to 1/2 of the blocks required and meet an additional

  1. Double shell tank waste analysis plan

    SciTech Connect

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  2. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  3. Robotic control architecture development for automated nuclear material handling systems

    SciTech Connect

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies.

  4. 21 CFR 1250.75 - Disposal of human wastes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wastes. All soil cans and removable containers shall be thoroughly cleaned before being returned to use... connected with the handling of food, water or ice. (c) All persons who have handled soil cans or other... soap and warm water and to remove any garments which have become soiled with such wastes...

  5. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  6. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  7. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  8. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  9. Mixed waste treatment capabilities at Envirocare

    SciTech Connect

    Rafati, A.

    1994-12-31

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented.

  10. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor unit; (3) Procedures for receiving, handling, and feeding municipal solid waste; (4) Municipal... proper combustion air supply levels; (6) Procedures for operating the municipal waste combustor unit...) Procedures for handling ash; (10) Procedures for monitoring municipal waste combustor unit emissions; and...

  11. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor unit; (3) Procedures for receiving, handling, and feeding municipal solid waste; (4) Municipal... proper combustion air supply levels; (6) Procedures for operating the municipal waste combustor unit...) Procedures for handling ash; (10) Procedures for monitoring municipal waste combustor unit emissions; and...

  12. A sampling device with a capped body and detachable handle

    SciTech Connect

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and out of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.

  13. Implementation of SAP Waste Management System

    SciTech Connect

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  14. Swedish nuclear waste efforts

    SciTech Connect

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

  15. Area 5 Radioactive Waste Management Site Safety Assessment Document

    SciTech Connect

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization.

  16. 7 CFR 906.7 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 906.7 Section 906.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.7 Handle. Handle or ship means...

  17. 7 CFR 959.7 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 959.7 Section 959.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 959.7 Handle. Handle or ship means to package, load, sell, transport, or in any...

  18. 7 CFR 946.7 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 946.7 Section 946.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Regulating Handling Definitions § 946.7 Handle. Handle is synonymous with ship and means to transport,...

  19. 7 CFR 958.7 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 958.7 Section 958.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 958.7 Handle. Handle...

  20. Portable vacuum object handling device

    DOEpatents

    Anderson, Gordon H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

  1. FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect

    C.E. Sanders

    2005-06-30

    The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6

  2. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  3. Handling and Disposal of Asbestos-Containing Waste.

    DTIC Science & Technology

    1980-10-01

    Comnud to task tie Civil Entineering Laboratory to devlop p uidance on appropriate practices for handing and dasposal of asbest -ontalning product. I...Hayward Chemical Co. 1280 N. 10th St. Box 2383 San Jose, CA 95112 Kansas City , KS 66110 Vineland Chemical Co. Box 745 Vineland, NJ 08360 NOTE Wetting...D. Good). Panama City FL: Code 713 (J. Quirk) Panama City . FL. Code 715 (J. Mittleman) Panama City . FL. Libiary Panama City . FL NAVCOMMAREAMSTRSTA

  4. Recycling behaviour in healthcare: waste handling at work.

    PubMed

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  5. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  6. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  7. Is Industry Managing Its Wastes Properly?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Industry is faced with handling, disposing and recovering vast amounts of waste, much of it as a result of present pollution control technology. Industry has found the technology available, expensive and, without regulation, easy to ignore. Many industries are therefore improperly managing their wastes. (BT)

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    SciTech Connect

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  9. Annual Radioactive Waste Tank Inspection Program - 2000

    SciTech Connect

    West, W.R.

    2001-04-17

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  10. Survey of Geothermal Solid Toxic Waste

    SciTech Connect

    Darnell, A.J.; Gay, R.L.; Klenck, M.M.; Nealy, C.L.

    1982-09-30

    This is an early survey and analysis of the types and quantities of solid toxic wastes to be expected from geothermal power systems, particularly at the Salton Sea, California. It includes a literature search (48 references/citations), descriptions of methods for handling wastes, and useful quantitative values. It also includes consideration of reclaiming metals and mineral byproducts from geothermal power systems. (DJE 2005)

  11. Phase Stability Determinations of DWPF Waste Glasses

    SciTech Connect

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  12. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  13. E-Alerts: Nuclear science and technology (radioactive wastes and radioactivity). E-mail newsletter

    SciTech Connect

    1999-05-01

    The newsletter discusses the following: Separation, processing, handling, storage, disposal, and reuse of radioactive wastes; Radioactive fallout; Fission products; Man-made or natural radioactivity; and Decommissioning.

  14. The CDF data handling system

    SciTech Connect

    Dmitry O. Litvintsev

    2003-11-05

    The Collider Detector at Fermilab (CDF) records proton-antiproton collisions at center of mass energy of 2.0 TeV at the Tevatron collider. A new collider run, Run II, of the Tevatron started in April 2001. Increased luminosity will result in about 1 PB of data recorded on tapes in the next two years. Currently the CDF experiment has about 260 TB of data stored on tapes. This amount includes raw and reconstructed data and their derivatives. The data storage and retrieval are managed by the CDF Data Handling (DH) system. This system has been designed to accommodate the increased demands of the Run II environment and has proven robust and reliable in providing reliable flow of data from the detector to the end user. This paper gives an overview of the CDF Run II Data Handling system which has evolved significantly over the course of this year. An outline of the future direction of the system is given.

  15. Portable vacuum object handling device

    DOEpatents

    Anderson, G.H.

    1983-08-09

    The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

  16. Solid Waste Reduction--A Hands-on Study.

    ERIC Educational Resources Information Center

    Wiessinger, Diane

    1991-01-01

    This lesson plan uses grocery shopping to demonstrate the importance of source reduction in the handling of solid waste problems. Students consider different priorities in shopping (convenience, packaging, and waste reduction) and draw conclusions about the relationship between packaging techniques and solid waste problems. (MCO)

  17. Recommendations for continuous emissions monitoring of mixed waste incinerators

    SciTech Connect

    Quigley, G.P.

    1992-02-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator.

  18. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  19. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  20. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  1. Hazardous waste operational plan for site 300

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  2. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    SciTech Connect

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  3. Procedures for handling antineoplastic injections in comprehensive cancer centers.

    PubMed

    LeRoy, M L; Roberts, M J; Theisen, J A

    1983-04-01

    The procedures for handling injectable antineoplastic drugs in comprehensive cancer centers in the U.S. are summarized. In May 1982, a survey was sent to directors of pharmacy at 27 institutions designated as comprehensive cancer centers. Some questions duplicated a 1979 survey, while others addressed points in recently published guidelines on handling antineoplastic medications. Representatives of 21 institutions responded. These institutions represented 13,638 beds, 1,848 of which were oncology beds. Seventeen institutions had written policies for the preparation of antineoplastics, but only nine had a training program. The pharmacist or pharmacy technician prepared these medications in 12 institutions. Ten institutions prepared antineoplastics in a vertical laminar-flow hood. Gloves and masks were worn by employees in 20 and 13 of the institutions, respectively. Six institutions in some way assessed the health of employees handling antineoplastics. Eleven institutions had written policies on disposal of antineoplastics; 13 institutions disposed of this waste separately. Ten institutions had a training program for administration of antineoplastics. Compared with 1979, the trend is toward increased protection of persons handling injectable antineoplastic agents, but the procedures used at comprehensive cancer centers are not uniform.

  4. Orion Entry Handling Qualities Assessments

    NASA Technical Reports Server (NTRS)

    Bihari, B.; Tiggers, M.; Strahan, A.; Gonzalez, R.; Sullivan, K.; Stephens, J. P.; Hart, J.; Law, H., III; Bilimoria, K.; Bailey, R.

    2011-01-01

    The Orion Command Module (CM) is a capsule designed to bring crew back from the International Space Station (ISS), the moon and beyond. The atmospheric entry portion of the flight is deigned to be flown in autopilot mode for nominal situations. However, there exists the possibility for the crew to take over manual control in off-nominal situations. In these instances, the spacecraft must meet specific handling qualities criteria. To address these criteria two separate assessments of the Orion CM s entry Handling Qualities (HQ) were conducted at NASA s Johnson Space Center (JSC) using the Cooper-Harper scale (Cooper & Harper, 1969). These assessments were conducted in the summers of 2008 and 2010 using the Advanced NASA Technology Architecture for Exploration Studies (ANTARES) six degree of freedom, high fidelity Guidance, Navigation, and Control (GN&C) simulation. This paper will address the specifics of the handling qualities criteria, the vehicle configuration, the scenarios flown, the simulation background and setup, crew interfaces and displays, piloting techniques, ratings and crew comments, pre- and post-fight briefings, lessons learned and changes made to improve the overall system performance. The data collection tools, methods, data reduction and output reports will also be discussed. The objective of the 2008 entry HQ assessment was to evaluate the handling qualities of the CM during a lunar skip return. A lunar skip entry case was selected because it was considered the most demanding of all bank control scenarios. Even though skip entry is not planned to be flown manually, it was hypothesized that if a pilot could fly the harder skip entry case, then they could also fly a simpler loads managed or ballistic (constant bank rate command) entry scenario. In addition, with the evaluation set-up of multiple tasks within the entry case, handling qualities ratings collected in the evaluation could be used to assess other scenarios such as the constant bank angle

  5. POLLUTION BALANCE METHOD AND THE DEMONSTRATION OF ITS APPLICATION TO MINIMIZING WASTE IN A BIOCHEMICAL PROCESS

    EPA Science Inventory

    In this study, we introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appro...

  6. Hazardous-waste analysis plan for LLNL operations

    SciTech Connect

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  7. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  8. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  9. 7 CFR 1205.312 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.312 Handle. Handle means to harvest, gin,...

  10. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  11. Safe handling of cytotoxic agents: a team approach.

    PubMed

    Willemsen-McBride, Tara; Willemson-McBride, Tara L; Gehan, Karen

    2009-11-01

    The use of cytotoxic medications has become increasingly prevalent in the OR for the treatment of bladder tumors. Perioperative nursing staff members in the day surgery unit, OR, and postanesthesia care unit at St Mary's General Hospital, Kitchener, Ontario, Canada, expressed concern about their lack of knowledge in the safe handling of cytotoxic medications and contaminated wastes. Facility educators recognized this as an area of risk for the hospital and a learning need for staff members. As a result, they formed a committee with members representing nursing, pharmacy, infection control, occupational health, and environmental safety to develop a policy and protocol for the safe use of cytotoxic medications.

  12. 7 CFR 981.16 - To handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.16 To handle. To handle means to use almonds commercially of own production or to sell, consign, transport, ship (except as a common carrier of almonds owned by another)...

  13. 7 CFR 981.16 - To handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.16 To handle. To handle means to use almonds commercially of own production or to sell, consign, transport, ship (except as a common carrier of almonds owned by another)...

  14. 7 CFR 981.16 - To handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.16 To handle. To handle means to use almonds commercially of own production or to sell, consign, transport, ship (except as a common carrier of almonds owned by another)...

  15. 7 CFR 981.16 - To handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.16 To handle. To handle means to use almonds commercially of own production or to sell, consign, transport, ship (except as a common carrier of almonds owned by another)...

  16. 7 CFR 981.16 - To handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.16 To handle. To handle means to use almonds commercially of own production or to sell, consign, transport, ship (except as a common carrier of almonds owned by another)...

  17. 7 CFR 946.336 - Handling regulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... includes, but is not restricted to, potatoes for dehydration, chips, shoestrings, starch, and flour. It... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Handling Regulations § 946.336 Handling regulation. No person shall handle any lot of...

  18. 7 CFR 948.386 - Handling regulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., starch, and flour. It includes only that preparation of potatoes for market which involves the... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Handling Regulations § 948.386 Handling regulation. No person shall handle any lot of potatoes grown...

  19. 7 CFR 948.386 - Handling regulation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., starch, and flour. It includes only that preparation of potatoes for market which involves the... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Handling Regulations § 948.386 Handling regulation. No person shall handle any lot of potatoes grown...

  20. 7 CFR 948.386 - Handling regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... is not restricted to, potatoes for dehydration, chips, shoestrings, starch, and flour. It includes... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Handling Regulations § 948.386 Handling regulation. No person shall handle any lot of potatoes grown...

  1. 7 CFR 948.386 - Handling regulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is not restricted to, potatoes for dehydration, chips, shoestrings, starch, and flour. It includes... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Handling Regulations § 948.386 Handling regulation. No person shall handle any lot of potatoes grown...

  2. 7 CFR 946.336 - Handling regulation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... includes, but is not restricted to, potatoes for dehydration, chips, shoestrings, starch, and flour. It... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Handling Regulations § 946.336 Handling regulation. No person shall handle any lot of...

  3. 7 CFR 948.386 - Handling regulation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., starch, and flour. It includes only that preparation of potatoes for market which involves the... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Handling Regulations § 948.386 Handling regulation. No person shall handle any lot of potatoes grown...

  4. 7 CFR 946.336 - Handling regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... includes, but is not restricted to, potatoes for dehydration, chips, shoestrings, starch, and flour. It... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN WASHINGTON Handling Regulations § 946.336 Handling regulation. No person shall handle any lot of...

  5. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Handling, Storage, Distribution, and Installation § 820.140 Handling....

  6. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Handling, Storage, Distribution, and Installation § 820.140 Handling....

  7. 7 CFR 58.443 - Whey handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Whey handling. 58.443 Section 58.443 Agriculture... Procedures § 58.443 Whey handling. (a) Adequate sanitary facilities shall be provided for the handling of whey. If outside, necessary precautions shall be taken to minimize flies, insects and development...

  8. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Handling, Storage, Distribution, and Installation § 820.140 Handling....

  9. 7 CFR 947.7 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle. 947.7 Section 947.7 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 947.7 Handle. Handle is synonymous with ship and means to sell, transport, or in any other...

  10. 7 CFR 932.16 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.16 Handle. Handle means to: (a) Size-grade olives, (b) process olives, or (c) use processed olives in the production of packaged olives, within the production area, or (d)...

  11. 7 CFR 932.16 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.16 Handle. Handle means to: (a) Size-grade olives, (b) process olives, or (c) use processed olives in the production of packaged olives, within the production area, or (d)...

  12. 7 CFR 932.16 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.16 Handle. Handle means to: (a) Size-grade olives, (b) process olives, or (c) use processed olives in the production of packaged olives, within the production area, or (d)...

  13. 7 CFR 932.16 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.16 Handle. Handle means to: (a) Size-grade olives, (b) process olives, or (c) use processed olives in the production of packaged olives, within the production area, or (d)...

  14. 7 CFR 932.16 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.16 Handle. Handle means to: (a) Size-grade olives, (b) process olives, or (c) use processed olives in the production of packaged olives, within the production area, or (d)...

  15. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    SciTech Connect

    Dziewinska, K.M.

    1998-09-28

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

  16. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  17. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    SciTech Connect

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  18. Addendum to the Safety Analysis Report for the Steel Waste Packaging. Revision 1

    SciTech Connect

    Crow, S R

    1996-02-15

    The Battelle Pacific Northwest National Laboratory Safety Analysis Report (SAR) for the Steel Waste Package requires additional analyses to support the shipment of remote-handled radioactive waste and special-case waste from the 324 building hot cells to PUREX for interim storage. This addendum provides the analyses required to show that this waste can be safely shipped onsite in the configuration shown.

  19. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

  20. 7 CFR 319.8-24 - Collection and disposal of waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Collection and disposal of waste. 319.8-24 Section 319... Miscellaneous Provisions § 319.8-24 Collection and disposal of waste. (a) Importers shall handle imported, unfumigated cotton and covers in a manner to avoid waste. If waste does occur, the importer or his or...

  1. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 2

    SciTech Connect

    Not Available

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL`s Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL`s research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL`s acceptance criteria for hazardous chemical waste.

  2. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  3. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  4. Transfer Area Mechanical Handling Calculation

    SciTech Connect

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  5. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  6. EXTREME -- Handling extreme data sets

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    This package provides some utilities, background documentation, and associated files for adapting the Starlink Software Collection, and software which uses it, to handle very large data sets. The principal focus of this is to move to use of 64 bits of address space on 64-bit operating systems. This document (SSN/73) is squarely aimed at the problem of adapting the Starlink Software Collection, and consequently focuses on the three operating systems (Solaris, Linux and Tru64) supported by Starlink, the compiled languages Fortran 77 and ANSI C, and Starlink's somewhat idiosyncratic build mechanisms. However, some of the discussion here may be of interest or use to people who are considering the change from 32 to 64 bits for software in other contexts.

  7. Integrated Payload Data Handling Demonstrator

    NASA Astrophysics Data System (ADS)

    FitzGeorge, T.; Wishart, A.; Hann, M.; Phan, N.; Carr, C. M.; Cupido, E.; Fox, P.; Oddy, T.; McGregor, A.; Marshall, A.; Waltham, N.

    2013-09-01

    An integrated Payload Data Handling System (IPDHS) is one in which multiple instruments share a central payload processor for their on-board data processing tasks. This offers a number of advantages over the conventional decentralised architecture. Savings in payload mass and power can be realised because the total processing resource is matched to the requirement, as opposed to the decentralised architecture where the processing resource is in effect the sum of all the applications. Overall development cost can be reduced using a common processor. At individual instrument level the potential benefits include a standardised application development environment, and the opportunity to run the instrument data handling application on a fully redundant and more powerful processor. This paper describes a joint programme by Astrium Ltd, SCISYS UK Limited, Imperial College London and RAL Space to implement a realistic demonstration of an I-PDHS using engineering models of flight instruments (a magnetometer and a camera) and a laboratory demonstrator of a central payload processor which is functionally representative of a flight design. The objective is to raise the Technology Readiness Level (TRL) of the centralised data processing technique by addressing the key areas of task partitioning to prevent fault propagation and the use of a common development process for the instrument applications. The project is supported by a UK Space Agency grant awarded under the National Space Technology Programme SpaceCITI scheme. The demonstration system is set up at the UK Space Agency's International Space Innovation Centre (ISIC) at Harwell and makes use of the ISIC Concurrent Design Facility (CDF).

  8. Process Description for the Retrieval of Earth Covered Transuranic (TRU) Waste Containers at the Hanford Site

    SciTech Connect

    DEROSA, D.C.

    2000-01-13

    This document describes process and operational options for retrieval of the contact-handled suspect transuranic waste drums currently stored below grade in earth-covered trenches at the Hanford Site. Retrieval processes and options discussed include excavation, container retrieval, venting, non-destructive assay, criticality avoidance, incidental waste handling, site preparation, equipment, and shipping.

  9. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  10. Waste certification: Who really is on first?

    SciTech Connect

    Smith, M.A.

    1989-11-01

    Waste certification is the process of stating whether or not a given waste package meets the acceptance criteria of whatever facility is receiving the package. Establishing a program for certification of low-level waste requires coordination of a variety of requirements and limitations, including regulations, physical characteristics of the waste and of the type of radiation emitted by radionuclides in the waste, uncertainty in measurements, quality assurance, and personnel exposures. The goal of such a program must be to provide an acceptable degree of assurance that the waste generating facility will be able to convince the waste receiving facility that individual waste packages do meet the applicable waste acceptance criteria. The preceding paragraph raises many questions: what is an acceptable degree of assurance? What does one have to do to convince a receiving facility? How can the measurement uncertainty be taken into account? This paper attempts to address several of those questions in the context of the development being done in the solid low-level waste (SLLW) certification program at the Oak Ridge National Laboratory (ORNL). First, a brief history of the SLLW certification program at ORNL is presented. The remaining discussions are devoted to considering the problems and pitfalls of implementing a waste certification program, concentrating on such areas as the responsibilities of various organizations and individuals, waste characterization techniques, handling levels of uncertainty, and development of waste acceptance criteria.

  11. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  12. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    SciTech Connect

    Rubick, L.M.; Burke, L.L.

    1998-12-31

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described.

  13. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  14. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  15. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  16. Handling S/MAR vectors.

    PubMed

    Hagedorn, Claudia; Baiker, Armin; Postberg, Jan; Ehrhardt, Anja; Lipps, Hans J

    2012-06-01

    Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.

  17. Apparatus for remotely handling components

    DOEpatents

    Szkrybalo, Gregory A.; Griffin, Donald L.

    1994-01-01

    The inventive apparatus for remotely handling bar-like components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of the first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components.

  18. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  19. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  20. Management of chemical toxic wastes

    SciTech Connect

    Gold, L.

    1982-05-25

    Two regimes of vertical shaft furnace operation can be employed to slag encapsulate hazardous chemical wastes. One of these is similar to a method applicable to radioactive wastes, involving the pouring of hot molten slag from a coal reactor over the hazardous matter contained in a suitable designed crucible. The other method is especially appropriate for the treatment of chemical wastes that have become mixed with a great deal of soil or other diluent as must be handled as in the case of the love canal incident. It consists of feeding the contaminated solid mass into the coal reactor with a predetermined amount of coal and limestone that will still admit an adequate heat balance to generate a carefully tailored slag to incorporate the reacted waste feedstock.

  1. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  2. Medical Waste Act. Requires physician compliance.

    PubMed

    Chadzynki, L

    1991-07-01

    In Michigan, the medical care community has a long history of carefully managing infectious medical wastes within their facilities to control communicable diseases. Never the less, concerns have surfaced about health risks posed by medical waste because of the notoriety of reported incidents of improperly disposed medical waste that led to the promulgation of emergency rules and now permanent statutes. As the environment reemerges as a national issue, the proper disposal of medical waste remains, at the very least, a highly visible and volatile part of this nation's solid waste crisis. To better develop appropriate controls for dealing with regulated medical waste, we will need to work together. Journal articles such as this provide an important opportunity to share and more forward our understanding of this problem so that we may all enjoy a safer and better environment. Proper handling and disposal of medical waste will remain a public issue as long as wastes believed to be of medical origin are found on beaches or at unauthorized storage or disposal locations. Hence, compliance with the regulations for the handling, storing, treating, transporting and ultimate disposal of regulated medical waste by providers of health care in Michigan must be observed.

  3. Developing Automated Methods of Waste Sorting

    SciTech Connect

    Shurtliff, Rodney Marvin

    2002-08-01

    The U.S. Department of Energy (DOE) analyzed the need complex-wide for remote and automated technologies as they relate to the treatment and disposal of mixed wastes. This analysis revealed that several DOE sites need the capability to open drums containing waste, visually inspect and sort the contents, and finally repackage the containers that are acceptable at a waste disposal facility such as the Waste Isolation Pilot Plant (WIPP) in New Mexico. Conditioning contaminated waste so that it is compatible with the WIPP criteria for storage is an arduous task whether the waste is contact handled (waste having radioactivity levels below 200 mrem/hr) or remote handled. Currently, WIPP non-compliant items are removed from the waste stream manually, at a rate of about one 55-gallon drum per day. Issues relating to contamination-based health hazards as well as repetitive motion health hazards are steering industry towards a more user-friendly, method of conditioning or sorting waste.

  4. Machine coolant waste reduction by optimizing coolant life. Project summary

    SciTech Connect

    Pallansch, J.

    1995-08-01

    The project was designed to study the following: A specific water-soluble coolant (Blasocut 2000 Universal) in use with a variety of machines, tools, and materials; Coolant maintenance practices associated with three types of machines; Health effects of use and handling of recycled coolant; Handling practices for chips and waste coolant; Chip/coolant separation; and Oil/water separation.

  5. Robotics for mixed waste operations, demonstration description

    SciTech Connect

    Ward, C.R.

    1993-11-01

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

  6. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect

    Kirch, N.W.; Uytioco, E.M.; Jo, J.

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  7. Technology transfer in hazardous waste management

    SciTech Connect

    Drucker, H.

    1989-01-01

    Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

  8. Multimedia strategy considers waste treatment

    SciTech Connect

    Phillips, J.B.

    1995-05-01

    The advent of multimedia pollution prevention programs has raised some interesting and challenging questions on the subject of facility operations. First and foremost is the goal of a multimedia pollution prevention program: how can industrial streams in an operating facility be treated to prevent pollutants from escaping in a particular effluent or waste streams without transferring the same pollutants to another medium? Once this is resolved, the next issue to be addressed is the fate of pollutants removed from effluent streams. EPA is moving toward discouraging destruction as an acceptable means of waste treatment. The strategies are presented for handling pollutants from one media without contaminating another.

  9. 7 CFR 1207.307 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place potatoes or cause potatoes to be placed in...

  10. 7 CFR 1207.307 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place potatoes or cause potatoes to be placed in...

  11. 7 CFR 1207.307 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place potatoes or cause potatoes to be placed in...

  12. 7 CFR 1207.307 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place potatoes or cause potatoes to be placed in...

  13. 7 CFR 1207.307 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan Definitions § 1207.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place potatoes or cause potatoes to be placed in...

  14. 7 CFR 926.9 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle... contract carrier of cranberries owned by another person) fresh or processed cranberries produced within or outside the United States or in any other way to place fresh or processed cranberries into the current...

  15. 7 CFR 926.9 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle... contract carrier of cranberries owned by another person) fresh or processed cranberries produced within or outside the United States or in any other way to place fresh or processed cranberries into the current...

  16. 7 CFR 926.9 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle... contract carrier of cranberries owned by another person) fresh or processed cranberries produced within or outside the United States or in any other way to place fresh or processed cranberries into the current...

  17. 7 CFR 926.9 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle... contract carrier of cranberries owned by another person) fresh or processed cranberries produced within or outside the United States or in any other way to place fresh or processed cranberries into the current...

  18. 7 CFR 926.9 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.9 Handle. Handle... contract carrier of cranberries owned by another person) fresh or processed cranberries produced within or outside the United States or in any other way to place fresh or processed cranberries into the current...

  19. 9 CFR 3.92 - Handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Handling. 3.92 Section 3.92 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...

  20. 9 CFR 3.66 - Handling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Handling. 3.66 Section 3.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of...

  1. 7 CFR 1221.11 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.11 Handle. Handle means to engage in the receiving or acquiring of sorghum and in the shipment (except as a common...

  2. 7 CFR 1221.11 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.11 Handle. Handle means to engage in the receiving or acquiring of sorghum and in the shipment (except as a common...

  3. 7 CFR 1221.11 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.11 Handle. Handle means to engage in the receiving or acquiring of sorghum and in the shipment (except as a common...

  4. 7 CFR 1221.11 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.11 Handle. Handle means to engage in the receiving or acquiring of sorghum and in the shipment (except as a common...

  5. 7 CFR 1221.11 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.11 Handle. Handle means to engage in the receiving or acquiring of sorghum and in the shipment (except as a common...

  6. 9 CFR 3.118 - Handling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Handling. 3.118 Section 3.118 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...

  7. 9 CFR 3.118 - Handling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Handling. 3.118 Section 3.118 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...

  8. 7 CFR 1216.12 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.12 Handle. Handle means... peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or...

  9. 7 CFR 1216.12 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.12 Handle. Handle means... peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or...

  10. 7 CFR 996.4 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.4 Handle. Handle means to... imported peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or sale of cleaned-inshell or shelled peanuts or other activity causing peanuts to enter into...

  11. 7 CFR 1216.12 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.12 Handle. Handle means... peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or...

  12. 7 CFR 1216.12 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.12 Handle. Handle means... peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or...

  13. 7 CFR 1216.12 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE PEANUT PROMOTION, RESEARCH, AND INFORMATION ORDER Peanut Promotion, Research, and Information Order Definitions § 1216.12 Handle. Handle means... peanuts and in the shipment (except as a common or contract carrier of peanuts owned by another) or...

  14. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  15. 7 CFR 983.14 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.14 Handle. Handle means to engage in: (a) Receiving pistachios; (b) Hulling and drying pistachios; (c) Further preparing pistachios by sorting, sizing, shelling,...

  16. 7 CFR 983.14 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.14 Handle. Handle means to engage in: (a) Receiving pistachios; (b) Hulling and drying pistachios; (c) Further preparing pistachios by sorting, sizing, shelling,...

  17. 7 CFR 983.14 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.14 Handle. Handle means to engage in: (a) Receiving pistachios; (b) Hulling and drying pistachios; (c) Further preparing pistachios by sorting, sizing, shelling,...

  18. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES..., contamination, or other adverse effects to product do not occur during handling....

  19. 21 CFR 820.140 - Handling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Handling. 820.140 Section 820.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES..., contamination, or other adverse effects to product do not occur during handling....

  20. 7 CFR 1219.11 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.11 Handle. Handle means to pack, process, transport, purchase, or in any other way to place or cause Hass...

  1. 7 CFR 1219.11 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.11 Handle. Handle means to pack, process, transport, purchase, or in any other way to place or cause Hass...

  2. 7 CFR 1219.11 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.11 Handle. Handle means to pack, process, transport, purchase, or in any other way to place or cause Hass...

  3. 7 CFR 1219.11 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.11 Handle. Handle means to pack, process, transport, purchase, or in any other way to place or cause Hass...

  4. 7 CFR 1219.11 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information Order Definitions § 1219.11 Handle. Handle means to pack, process, transport, purchase, or in any other way to place or cause Hass...

  5. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place or cause watermelons to which one...

  6. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place or cause watermelons to which one...

  7. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place or cause watermelons to which one...

  8. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place or cause watermelons to which one...

  9. 7 CFR 1210.307 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.307 Handle. Handle means to grade, pack, process, sell, transport, purchase, or in any other way to place or cause watermelons to which one...

  10. 9 CFR 3.66 - Handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Handling. 3.66 Section 3.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment and Transportation of...

  11. 9 CFR 3.92 - Handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Handling. 3.92 Section 3.92 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of...

  12. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  13. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  14. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  15. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Material handling. 1926.953 Section 1926.953 Labor... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the... shall be attached to the trailing end of the longest pole. (c) Storage. (1) No materials or...

  16. Handling an Asthma Flare-Up

    MedlinePlus

    ... dientes Video: Getting an X-ray Handling an Asthma Flare-Up KidsHealth > For Kids > Handling an Asthma Flare-Up Print A A A What's in ... asmáticas What's a Flare-Up? If you have asthma, you probably know about flare-ups . That's when ...

  17. 9 CFR 3.118 - Handling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.118 Handling. (a) Carriers and intermediate handlers moving marine... protect the marine mammals. Marine mammals must not be subjected to surrounding air temperatures...

  18. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  19. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  20. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  1. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  2. 29 CFR 1917.18 - Log handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Log handling. 1917.18 Section 1917.18 Labor Regulations...) MARINE TERMINALS Marine Terminal Operations § 1917.18 Log handling. (a) The employer shall ensure that structures (bunks) used to contain logs have rounded corners and rounded structural parts to avoid...

  3. Textile Wastes.

    ERIC Educational Resources Information Center

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  4. Animal waste utilization: Effective use of manure as a soil resource

    SciTech Connect

    Hatfield, J.L.; Stewart, B.A.

    1998-12-31

    This unique book examines the beneficial aspects of animal waste as a soil resource--not simply as an agricultural by-product with minimal practical use. Topics include: types of livestock waste--swine, poultry, dairy; methods and management of waste utilization; storage, handling, processing and application of animal waste; economics of waste utilization; new modeling and management techniques; and nonpoint source pollution, water quality, leaching, and air quality.

  5. Agricultural Waste.

    PubMed

    Shu, Huajie; Zhang, Panpan; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2015-10-01

    The management and disposal of agricultural waste are drawn more and more attention because of the increasing yields and negative effects on the environment. However, proper treatments such as converting abundant biomass wastes into biogas through anaerobic digestion technology, can not only avoid the negative impacts, but also convert waste into available resources. This review summarizes the studies of nearly two hundred scholars from the following four aspects: the characterization, reuse, treatment, and management of agricultural waste.

  6. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  7. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  8. Automotive Wastes.

    PubMed

    Guigard, Selma E; Shariaty, Pooya; Niknaddaf, Saeid; Lashaki, Masoud Jahandar; Atkinson, John D; Hashisho, Zaher

    2015-10-01

    A review of the literature from 2014 related to automotive wastes is presented. Topics include solid wastes from autobodies and tires as well as vehicle emissions to soil and air as a result of the use of conventional and alternative fuels. Potential toxicological and health risks related to automotive wastes are also discussed.

  9. DOE mixed waste treatment capacity analysis

    SciTech Connect

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  10. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    2007-11-02

    in generating a plasma arc include nitrogen, oxygen, noble gases, air , and mixtures of these gases. Electrode life is a major concern and is... air and gas heating and drying. A transferred arc uses the working material as one of the electrodes . Therefore, in a trans- ferred arc application...or gamma radiation absorbed per unit mass of air . Radiation is measured by electric charge per unit mass, Coulombs (C) per kilogram of air . There is

  11. Energy from waste in Kvaerner BFB and CFB boilers

    SciTech Connect

    Larsson, A.

    1998-07-01

    Since the early 70's, Kvaerner Pulping has delivered more than 150 fluidized bed boilers of the bubbling (BFB) and circulating (CFB) types, the largest units with a thermal capacity of more than 400 MW. Kvaerner Pulping has extensive experience from waste combustion (MSW, industrial waste, RDF, sludges etc.) and has delivered more than 20 fluidized boilers for this application. One of Kvaerner's recent orders is a waste burning plant in Dundee, Scotland. This plant will be completed in 1999 and is designed to handle 120,000 tons of mixed waste a year, including household waste, civic amenity waste, industrial waste, clinical waste and liquid waste. The thermal efficiency of the plant will be 90% with a production of 10.5 MW of electricity. It will be the first boiler of its kind in the U.K.

  12. Self Audits of Hazardous Waste Operations in Laboratories.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1987-01-01

    Discusses the need for compliance with state and federal regulations regarding the handling of hazardous wastes in college chemistry laboratories. Addresses: (1) waste determination; (2) facility requirements; (3) use of the manifest, vendor, transporter, site selection requirements, and training; (4) contingency planning; and (5) documentation.…

  13. Waste Information Management System v. 1.0

    SciTech Connect

    Bustamante, David G.; Schade, A. Carl

    2016-08-25

    WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.

  14. Nondestructive radioassay for waste management: an assessment

    SciTech Connect

    Lehmkuhl, G.D.

    1981-06-01

    Nondestructive Assay (NDA) for Transuranic Waste Management is used to mean determining the amount of transuranic (TRU) isotopes in crates, drums, boxes, cans, or other containers without having to open the container. It also means determining the amount of TRU in soil, bore holes, and other environmental testing areas without having to go through extensive laboratory wet chemistry analyses. it refers to radioassay techniques used to check for contamination on objects after decontamination and to determine amounts of TRU in waste processing streams without taking samples to a laboratory. Gednerally, NDA instrumentation in this context refers to all use of radioassay which does not involve taking samples and using wet chemistry techniques. NDA instruments have been used for waste assay at some sites for over 10 years and other sites are just beginning to consider assay of wastes. The instrumentation used at several sites is discussed in this report. Almost all these instruments in use today were developed for special nuclear materials safeguards purposes and assay TRU waste down to the 500 nCi/g range. The need for instruments to assay alpha particle emitters at 10 nCi/g or less has risen from the wish to distinguish between Low Level Waste (LLW) and TRU Waste at the defined interface of 10 nCi/g. Wastes have historically been handled as TRU wastes if they were just suspected to be transuranically contaminated but their exact status was unknown. Economic and political considerations make this practice undesirable since it is easier and less costly to handle LLW. This prompted waste generators to want better instrumentation and led the Transuranic Waste Management Program to develop and test instrumentation capable of assaying many types of waste at the 10 nCi/g level. These instruments are discussed.

  15. How the NWC handles software as product

    SciTech Connect

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customers will be described.

  16. Mooring and ground handling rigid airships

    NASA Technical Reports Server (NTRS)

    Walker, H., Jr.

    1975-01-01

    The problems of mooring and ground handling rigid airships are discussed. A brief history of Mooring and Ground Handling Rigid Airships from July 2, 1900 through September 1, 1939 is included. Also a brief history of ground handling developments with large U. S. Navy nonrigid airships between September 1, 1939 and August 31, 1962 is included wherein developed equipment and techniques appear applicable to future large rigid airships. Finally recommendations are made pertaining to equipment and procedures which appear desirable and feasible for future rigid airship programs.

  17. Effects of handle orientation and between-handle distance on bi-manual isometric push strength.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2012-07-01

    Hand-handle interface is seldom considered in contemporary upper limb biomechanical analyses of pushing and pulling strength. A laboratory study was designed to examine if handle rotation in the frontal plane (0°-horizontal, 45°, and 90°-vertical), anterior tilt (0°-parallel to the frontal plane, and 15°), and distance between two handles (31 and 48.6 cm) affect pushing strength and subjective rating of handle preference. A special testing station was constructed to elicit upper limb push exertions that involved minimal contribution of the torso and legs. Within the station, four load cells were used to measure the horizontal (forward pushing) and vertical components of the pushing forces. Thirty-one participants performed seated bi-manual pushing strength tests. Comparing to the reference handle configuration (horizontal, straight, and a 31-cm between-handle distance), the 45°-rotated and tilted handles with a 31-cm between-handle distance allowed 6.7% more pushing output, while the horizontal and tilted handles with a 31-cm between-handle distance resulted in 2.8% less. Subjective preference was correlated with normalized pushing strength (r=0.89). Tilted handles, at 45°-rotated and vertical positions received highest subjective ratings of preference among all handle configurations. Men exerted greater pushing strength with the 48.6-cm handle distance while women's capacity was greatest with the 31-cm distance. The results demonstrated that handle rotation and tilt angles affected pushing strength and should be taken into consideration when evaluating or designing pushing tasks.

  18. Recycling and reuse of industrial wastes in Taiwan.

    PubMed

    Wei, M S; Huang, K H

    2001-01-01

    Eighteen million metric tons of industrial wastes are produced every year in Taiwan. In order to properly handle the industrial wastes, the Taiwan Environmental Protection Administration (Taiwan EPA) has set up strategic programs that include establishment of storage, treatment, and final disposal systems, establishment of a management center for industrial wastes, and promotion of recycling and reuse of industrial wastes. The Taiwan EPA has been actively promoting the recycling and reuse of industrial wastes over the years. In July 1995 the Taiwan EPA amended and promulgated the Criteria for the Industrial Waste Storage, Collection and Processing Facility, July, 1995 that added articles related to general industrial waste recycling and reuse. In June 1996 the Taiwan EPA promulgated the Non-listed General Industrial Waste Reuse Application Procedures, June, 1996, followed by the Regulations Governing the Permitting of Hazardous Industrial Waste Reuse, June 1996, setting up a full regulatory framework for governing industrial waste reuse. To broaden the recycling and reuse of general industrial wastes, the Taiwan EPA has listed 14 industrial waste items for recycling and reuse, including waste paper, waste iron, coal ash, tempered high furnace bricks (cinder), high furnace bricks (cinder), furnace transfer bricks (cinder), sweetening dregs, wood (whole/part), glass (whole/part), bleaching earth, ceramics (pottery, brick, tile and cast sand), individual metal scraps (copper, zinc, aluminum and tin), distillery grain (dregs) and plastics. As of June 1999, 99 applications for reuse of industrial wastes had been approved with 1.97 million metric tons of industrial wastes being reused.

  19. A Renal Olfactory Receptor Aids in Kidney Glucose Handling

    PubMed Central

    Shepard, Blythe D.; Cheval, Lydie; Peterlin, Zita; Firestein, Stuart; Koepsell, Hermann; Doucet, Alain; Pluznick, Jennifer L.

    2016-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway. PMID:27739476

  20. The handling of antineoplastic drugs in a major cancer center.

    PubMed

    Hoffman, D M

    1980-06-01

    It has long been known that many commonly used antineoplastic agents are carcinogenic. Yet most health care professionals take few precautions, if any, when handling these drugs. Recent findings suggest a possible hazard to personnel as evidenced by increased mutagenicity of urine of nurses exposed to anticancer drugs during preparation and administration of doses. Although more study is needed to determine the significance of these data, it would seem prudent to take measures to prevent any unnecessary exposure to these drugs by those preparing and administering them. The policies and procedures at the Memorial Sloan-Kettering Cancer Center require that chemotherapeutic drugs be prepared in a vertical laminar flow containment hood by personnel wearing sterile disposable gloves. Chemotherapeutic agents are specially labeled to ensure segregated disposal of waste, which is subsequently incinerated.

  1. NSF's Handling of Allegations of Misconduct in Science

    NASA Astrophysics Data System (ADS)

    Manka, Aaron

    2000-03-01

    Under NSF's Office of Inspector General mandate to prevent fraud, waste, abuse, or mismanagement involving NSF's proposals and awards, our office is unique in that it also investigates allegations of misconduct in science. I will discuss our office's handling of such matters, focusing on the ethical and legal obligations of proposal submitters and awardees and the role of the scientific community. To illustrate some of these points that are of interest to the physics community, I will discuss some of our investigative activities relevant to: duplicate funding, cost sharing, and the accuracy of information in proposals. If the OSTP policy on research misconduct has been released for public comment, I will briefly discuss this policy, which is meant to be adopted by all federal funding agencies, and what it will mean for us and the community we serve.

  2. Characteristics of transuranic waste at Department of Energy sites

    SciTech Connect

    Jensen, R.T.; Wilkinson, F.J. III

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981.

  3. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... handling activity and now wishes to engage in another PCB waste activity (e.g., previously only... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Notification of PCB waste activity..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification...

  4. 40 CFR 761.205 - Notification of PCB waste activity (EPA Form 7710-53).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... handling activity and now wishes to engage in another PCB waste activity (e.g., previously only... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Notification of PCB waste activity..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.205 Notification...

  5. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  6. 40 CFR 262.106 - When must a hazardous waste determination be made?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... laboratory to a TSD facility permitted to handle the waste, each University must evaluate such laboratory... Laboratories XL Project-Laboratory Environmental Management Standard § 262.106 When must a hazardous waste determination be made? (a) For laboratory waste sent from a laboratory to an on-site hazardous...

  7. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking... ignitable or reactive waste is being handled, you must confine smoking and open flames to specially... specified in § 267.13), or the results of the treatment of similar wastes by similar treatment processes...

  8. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking... ignitable or reactive waste is being handled, you must confine smoking and open flames to specially... specified in § 267.13), or the results of the treatment of similar wastes by similar treatment processes...

  9. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking... ignitable or reactive waste is being handled, you must confine smoking and open flames to specially... specified in § 267.13), or the results of the treatment of similar wastes by similar treatment processes...

  10. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking... ignitable or reactive waste is being handled, you must confine smoking and open flames to specially... specified in § 267.13), or the results of the treatment of similar wastes by similar treatment processes...

  11. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking... ignitable or reactive waste is being handled, you must confine smoking and open flames to specially... specified in § 267.13), or the results of the treatment of similar wastes by similar treatment processes...

  12. Assessment of medical waste management in the main hospitals in Yemen.

    PubMed

    Al-Emad, A A

    2011-10-01

    No previous studies about the management of medical waste have been published in Yemen. This research in 5 government and 12 private hospitals in Sana'a aimed to evaluate waste-workers' and hospital administrators' knowledge and practices regarding medical waste handling. Interviews and observations showedadministrators' knowledge and practices regarding medical waste handling. Interviews and observations showed that the waste-workers were collecting medical and nonmedical wastes together manually in all hospitals without receiving adequate training and without using proper protection equipment. There was poor awareness about medical waste risks and safe handling procedures among hospital administrators, and most hospitals did not differentiate between domestic and medical waste disposal. Budgets were not allocated for waste management purposes, which led to shortages in waste handling equipment and an absence of training programmes for staff. Poor knowledge and practices and a high rate of injuries among waste-workers were noted, together with a risk of exposure of staff and visitors to hazardous waste.

  13. Waste reduction at the source-the next step

    SciTech Connect

    Redd, K.; Barker, T.

    1995-09-01

    Radioactive waste minimization has been prompted by tightening regulations and restrictions on waste volumes and discharges, uncertainty of disposal access, slow development of disposal sites, and costs. This article describes the approach Chem-Nuclear Systems has taken. A liquid-waste processing development team was assembled to design an effective ways to handle low-level radioactive wastes at the source, minimizing the volumn of waste requiring storage or disposal. Covered are both the Thermex Process and the Nine Mile Point Project. 1 fig., 3 tabs.

  14. Reduction in waste load from a meat processing plant: Beef

    SciTech Connect

    1986-10-31

    ;Contents: Introduction (Randolph Packing Company, Meat Plant Wastewaters, Slaughterhouses, Packing Houses, Sources of Wastewater, Secondary Manufacturing Processes, An Example of Water Conservation and Waste Control, Water Conservation Program); Plant Review and Survey (Survey for Product Losses and Wastes, Water Use and Waste Load, Wastewater Discharge Limitations and Costs); Waste Centers, Changes, Costs and Results (In-Plant Control Measures, Water Conservation, Recovery Products, By-Products and Reducing Waste Load, Blood Conservation, Paunch Handling and Processing, Summary of Process Changes, Pretreatment, Advantages and Disadvantages of Pretreatment, Pretreatment Systems).

  15. Parametric study of radionuclide characterization -- Low-level waste. Draft

    SciTech Connect

    Amir, S.J.

    1993-04-01

    The criteria and guidance given in this addendum specifically address the classification of low-level waste at the Hanford Reservation into Category 1, Category 3, and Greater Than Category 3 (GTC3). These categories are developed based on the performance assessment (PA) being conducted for the Hanford Site. The radionuclides and their concentration for each category are listed in the revised Table 1-1 (Attachment 1). The information to classify the waste for US Department of Transportation (DOT) and to classify Transuranic (TRU)/ Non-TRU, Contact Handled (CH)/Remote Handled (RH) waste is given in WHC-EP-0063-3 (WHC 1991).

  16. Sampling and handling of desert soils

    NASA Technical Reports Server (NTRS)

    Blank, G. B.; Cameron, R. E.

    1969-01-01

    Report on sampling and handling desert soils includes sections on selection, characterization, and photography of area, site, and soil, sterilization of sampling equipment and containers, and soil sample collection, transport, storage, and dispersal.

  17. Intertextuality for Handling Complex Environmental Issues

    NASA Astrophysics Data System (ADS)

    Byhring, Anne Kristine; Knain, Erik

    2016-02-01

    Nowhere is the need for handling complexity more pertinent than in addressing environmental issues. Our study explores students' situated constructs of complexity in unfolding discourses on socio-scientific issues. Students' dialogues in two group-work episodes are analysed in detail, with tools from Systemic Functional Linguistics. We identify the significance of intertextuality in students' realizations of low- and high-complexity discourses. In the high-complexity event, we show how students take on different roles and use modality and projection as grammatical resources for opening up, for different positions, multiple voices, and various contextual resources. Successful handling of complexity is construed by the interplay between students' roles in the discourse and resources in language for making multiple voices present. In the high-complexity event, the handling of complexity is guided by the students' sense of purpose. Handling complexity is demanding, and explicit scaffolding is necessary to prevent a potentially complex challenge from being treated as a simple one.

  18. Upgrading and refurbishing coal-handling systems

    SciTech Connect

    Strauss, S.D.

    1983-03-01

    Case histories presented at the Coal Technology '82 meetings are singled out in this article as examples of integrated attacks on coal-handling problems. At the Ohio Edison Co. Sammis Plant the conveyor passed over a public highway, and fugitive coal rained on passing vehicles. Four belt cleaners and a modified gas reducer were installed. Belt-cleaning systems were then installed throughout the plant. At the Con Edison Arthur Kill station coal-receiving facilities, coal conveyors, and ash-handling systems were upgraded. The rotary dumper was modified, the coal-thawing equipment modernized. In the breaker house a rotary breaker was replaced by a ring-type coal crusher. The outmoded pneumatic type ash-handling system was replaced by a drag-chain conveyor. Such concerted plantwide efforts are still the exception, where coal-handling equipment is cared for on a day-to-day patchwork basis.

  19. 7 CFR 996.4 - Handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MINIMUM QUALITY AND HANDLING STANDARDS FOR... consumption channels of commerce: Provided, That this term does not include sales or deliveries of peanuts...

  20. 7 CFR 996.4 - Handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE MINIMUM QUALITY AND HANDLING STANDARDS FOR... consumption channels of commerce: Provided, That this term does not include sales or deliveries of peanuts...

  1. 7 CFR 996.4 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MINIMUM QUALITY AND HANDLING STANDARDS FOR... consumption channels of commerce: Provided, That this term does not include sales or deliveries of peanuts...

  2. 7 CFR 996.4 - Handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE MINIMUM QUALITY AND HANDLING STANDARDS FOR... consumption channels of commerce: Provided, That this term does not include sales or deliveries of peanuts...

  3. 7 CFR 959.322 - Handling regulation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quantity exemption. Any handler may handle, other than for resale, up to, but not to exceed 110 pounds of.... Processing means cooking or freezing the onions in such a way, or with such other food components, that...

  4. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  5. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  6. Remote-Handled Transuranic Content Codes

    SciTech Connect

    Washington TRU Solutions

    2000-11-01

    Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatdesignates the physical location of the RH-TRU waste. The site-specific letter designations for eachof the DOE sites are provided in Table 2. All TRU waste generating/storage sites are included inTable 2 for completeness. Not all of the sites listed in Table 2 have generated/stored RH-TRU waste.

  7. Waiting on More than 64 Handles

    DTIC Science & Technology

    2015-10-01

    defined as 64, then some extra code must be written to deal with this. 15. SUBJECT TERMS Handle MAXIMUM_WAIT_OBJECTS...RESPONSIBLE PERSON Tom Nealis a. REPORT U b. ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code ) (973) 724-8048 Standard...one would wait on all the handles produced by spawning a thread for each group. The following sequence is the block of code /algorithm that was

  8. Dependence in Classification of Aluminium Waste

    NASA Astrophysics Data System (ADS)

    Resti, Y.

    2015-06-01

    Based on the dependence between edge and colour intensity of aluminium waste image, the aim of this paper is to classify the aluminium waste into three types; pure aluminium, not pure aluminium type-1 (mixed iron/lead) and not pure aluminium type 2 (unrecycle). Principal Component Analysis (PCA) was employed to reduction the dimension of image data, while Bayes’ theorem with the Gaussian copula was applied to classification. The copula was employed to handle dependence between edge and colour intensity of aluminium waste image. The results showed that the classifier has been correctly classifiable by 88.33%.

  9. Transportation training: Focusing on movement of hazardous substances and wastes

    SciTech Connect

    Jones, E.; Moreland, W.M.

    1988-01-01

    Over the past 25 years extensive federal legislation involving the handling and transport of hazardous materials/waste has been passed that has resulted in numerous overlapping regulations administered and enforced by different federal agencies. The handling and transport of hazardous materials/waste involves a significant number of workers who are subject to a varying degree of risk should an accident occur during handling or transport. Effective transportation training can help workers address these risks and mitigate them, and at the same time enable ORNL to comply with the federal regulations concerning the transport of hazardous materials/waste. This presentation will outline how the Environmental and Health Protection Division's Technical Resources and Training Program at the Oak Ridge National Laboratory, working with transportation and waste disposal personnel, are developing and implementing a comprehensive transportation safety training program to meet the needs of our workers while satisfying appropriate federal regulations. 8 refs., 5 figs., 3 tabs.

  10. Technical Safety Requirements for the Waste Storage Facilities May 2014

    SciTech Connect

    Laycak, D. T.

    2014-04-16

    This document contains the Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Building 693 (B693) Yard Area of the Decontamination and Waste Treatment Facility (DWTF) at LLNL. The TSRs constitute requirements for safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analyses for the Waste Storage Facilities (DSA) (LLNL 2011). The analysis presented therein concluded that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts of waste from other DOE facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities.

  11. Biomedical waste management operating plan. Revision C

    SciTech Connect

    Not Available

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  12. Federal facilities compliance act waste management

    SciTech Connect

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  13. Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams

    SciTech Connect

    Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L.

    2007-07-01

    The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

  14. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  15. Transuranic waste: long-term planning

    SciTech Connect

    Young, K.C.

    1985-07-01

    Societal concerns for the safe handling and disposal of toxic waste are behind many of the regulations and the control measures in effect today. Transuranic waste, a specific category of toxic (radioactive) waste, serves as a good example of how regulations and controls impact changes in waste processing - and vice versa. As problems would arise with waste processing, changes would be instituted. These changes improved techniques for handling and disposal of transuranic waste, reduced the risk of breached containment, and were usually linked with regulatory changes. Today, however, we face a greater public awareness of and concern for toxic waste control; thus, we must anticipate potential problems and work on resolving them before they can become real problems. System safety analyses are valuable aids in long-term planning for operations involving transuranic as well as other toxic materials. Examples of specific system safety analytical methods demonstrate how problems can be anticipated and resolution initiated in a timely manner having minimal impacts upon allocation of resource and operational goals. 7 refs., 1 fig.

  16. 7 CFR 959.53 - Handling for special purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulating Handling Regulations § 959.53 Handling for special purposes. Regulations in effect pursuant to §§ 959.42, 959.52, or 959.60 may be modified, suspended, or terminated to facilitate handling of...

  17. 7 CFR 929.60 - Handling for special purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Reports and Records § 929.60 Handling... facilitate handling of excess cranberries for the following purposes: (a) Charitable institutions;...

  18. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  19. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  20. Economic evaluation of volume reduction for Defense transuranic waste

    SciTech Connect

    Brown, C.M.

    1981-07-01

    This study evaluates the economics of volume reduction of retrievably stored and newly generated DOE transuranic waste by comparing the costs of reduction of the waste with the savings possible in transportation and disposal of the waste. The report develops a general approach to the comparison of TRU waste volume reduction costs and cost savings, establishes an initial set of cost data, and develops conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled newly generated, and retrievably stored DOE transuranic waste. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal, and transportation savings with volume reduction and the volume reduction techniques and savings.

  1. Handling Qualities Optimization for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Theodore, Colin R.; Berger, Tom

    2016-01-01

    Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.

  2. Minnesota Mining and Manufacturing Company's hazardous waste program.

    PubMed

    Van Noordwyk, H J; Santoro, M A

    1978-12-01

    This paper discusses the present hazardous waste program of 3M Company (Minnesota Mining and Manufacturing Company). 3M's definition of hazardous waste and the company's position on hazardous waste disposal are first considered. The company position is that wherever and whenever the disposal of a waste material threatens the environment or public safety, then that waste should be considered a hazardous waste and treated accordingly in terms of its handling and ultimate disposal. The generation of hazardous wastes and the differentiation of "hazardous" and "nonhazardous" wastes are described next. Handling of hazardous wastes from their generation to their disposal is then covered. This includes a definition of internal 3M terminology and a description of the hazard rating system used by the company. Finally, 3M disposal practices are presented. It is 3M's position that thermal destruction of hazardous wastes, where appropriate, is the best method for their disposal. With this in mind, 3M has constructed incineration facilities throughout the country. The rotary kiln incinerator at the 3M Chemolite plant in Cottage Grove, Minnesota is briefly described. Disposal of certain hazardous wastes in controlled secure land disposal sites is then briefly discussed.

  3. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The

  4. Handling Qualities Implications for Crewed Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Arthur, J. J.

    2012-01-01

    Abstract Handling qualities embody those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role. These same qualities are as critical, if not more so, in the operation of spacecraft. A research, development, test, and evaluation process was put into effect to identify, understand, and interpret the engineering and human factors principles which govern the pilot-vehicle dynamic system as they pertain to space exploration missions and tasks. Toward this objective, piloted simulations were conducted at the NASA Langley Research Center and Ames Research Center for earth-orbit proximity operations and docking and lunar landing. These works provide broad guidelines for the design of spacecraft to exhibit excellent handling characteristics. In particular, this work demonstrates how handling qualities include much more than just stability and control characteristics of a spacecraft or aircraft. Handling qualities are affected by all aspects of the pilot-vehicle dynamic system, including the motion, visual and aural cues of the vehicle response as the pilot performs the required operation or task. A holistic approach to spacecraft design, including the use of manual control, automatic control, and pilot intervention/supervision is described. The handling qualities implications of design decisions are demonstrated using these pilot-in-the-loop evaluations of docking operations and lunar landings.

  5. Rotorcraft handling-qualities design criteria development

    NASA Technical Reports Server (NTRS)

    Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.

    1988-01-01

    Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.

  6. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  7. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  8. Standardizing the Handling of Surgical Specimens.

    PubMed

    Shirey, Cheryl; Perrego, Kristen

    2015-11-01

    To standardize the handling of surgical specimens, the OR clinical educators in a community hospital setting devised a series of departmental changes as a quality improvement project. A newly created skill validation was reviewed in an hour-long educational meeting with all OR staff members. In addition to creating a new annual skill validation, discussions about specimens were included in the hand over, the time out, and a newly instituted debriefing tool to be used toward the end of a procedure. This interdisciplinary group devised interventions to improve the process of handling specimens such as standardizing the labeling process and changing the transparency of the specimen container. The goal was to assure standardization of specimen handling, specifically to assist novice staff members, and to harmonize inconsistencies between specialties within the practice of existing staff members. These combined methods helped to ensure accurate communication and procurement of specimens for all procedures.

  9. Food waste volume and origin: Case studies in the Finnish food service sector.

    PubMed

    Silvennoinen, Kirsi; Heikkilä, Lotta; Katajajuuri, Juha-Matti; Reinikainen, Anu

    2015-12-01

    We carried out a project to map the volume and composition of food waste in the Finnish food service sector. The amount, type and origin of avoidable food waste were investigated in 51 food service outlets, including schools, day-care centres, workplace canteens, petrol stations, restaurants and diners. Food service outlet personnel kept diaries and weighed the food produced and wasted during a one-week or one-day period. For weighing and sorting, the food waste was divided into two categories: originally edible (OE) food waste was separated from originally inedible (OIE) waste, such as vegetable peelings, bones and coffee grounds. In addition, food waste (OE) was divided into three categories in accordance with its origins: kitchen waste, service waste and customer leftovers. According to the results, about 20% of all food handled and prepared in the sector was wasted. The findings also suggest that the main drivers of wasted food are buffet services and overproduction.

  10. Planetary sample rapid recovery and handling

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.

  11. Options in Extraterrestrial Sample Handling and Study

    NASA Technical Reports Server (NTRS)

    Papanastassiou, Dimitri A.

    2000-01-01

    This presentation mentions important service functions such as: sample preservation, hazard assessment, and handling. It also discuss how preliminary examination of samples is necessary for sample hazard assessment and for sample allocations. Clean facilities and clean sample handling are required. Conflicts, cross contamination issues will be present and need to be resolved. Extensive experience is available for extraterrestrial samples and must be sought and applied. Extensive experience is available in studies of pathogenicity and must be sought and applied as necessary. Advisory and oversight structures must also be in place

  12. Structural interaction with transportation and handling systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Problems involved in the handling and transportation of finished space vehicles from the factory to the launch site are presented, in addition to recommendations for properly accounting for in space vehicle structural design, adverse interactions during transportation. Emphasis is given to the protection of vehicle structures against those environments and loads encountered during transportation (including temporary storage) which would exceed the levels that the vehicle can safely withstand. Current practices for verifying vehicle safety are appraised, and some of the capabilities and limitations of transportation and handling systems are summarized.

  13. Hanford Site Solid Waste Landfill permit application

    SciTech Connect

    Not Available

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs.

  14. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

  15. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    SciTech Connect

    Rathbun, L A; Boothe, G F

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits.

  16. Handling Hot Water, With a Payoff

    ERIC Educational Resources Information Center

    Stewart, Ronald; Mathur, S. P.

    1970-01-01

    Discusses methods of utilizing waste heat from the increasing number of power stations. Possible uses include agri- and mariculture, centralized urban and industrial heating, and deicing of airports and marine facilities. (AL)

  17. Technical area status report for waste destruction and stabilization

    SciTech Connect

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office of Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.

  18. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  19. CHALLENGES WITH RETRIEVING TRANSURANIC WASTE FROM THE HANFORD BURIAL GROUNDS

    SciTech Connect

    SWAN, R.J.; LAKES, M.E.

    2007-08-06

    The U.S. DOE's Hanford Reservation produced plutonium and other nuclear materials for the nation's defense starting in World War II. The defense mission generated wastes that were either retrievably stored (i.e. retrievably stored waste) and/or disposed of in burial grounds. Challenges have emerged from retrieving suspect TRU waste including adequacy of records, radiological concerns, container integrity, industrial hygiene and safety issues, the lack of processing/treatment facilities, and the integration of regulatory requirements. All retrievably stored waste is managed as mixed waste and assumed to be TRU waste, unless documented otherwise. Mixed waste is defined as radioactive waste that contains hazardous constituents. The Atomic Energy Act governs waste with radionuclides, and the Resource Conservation and Recovery Act (RCRA) governs waste with hazardous constituents. Waste may also be governed by the Toxic Substances Control Act (TSCA), and a portion may be managed under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). In 1970, TRU waste was required to be placed in 20-year retrievable storage and segregated from other Waste. Prior to that date, segregation did not occur. Because of the changing definition of TRU over the years, and the limitations of early assay equipment, all retrievably stored waste in the burial grounds is managed as suspect TRU. Experience has shown that some of this waste will be characterized as low-level (non-TRU) waste after assay. The majority of the retrieved waste is not amenable to sampling due to waste type and/or radiological issues. Key to waste retrieval and disposition are characterization, historical investigation and research, knowledge of past handling and packaging, as well as a broad understanding and application of the regulations.

  20. Hanford 200 area (sanitary) waste water system

    SciTech Connect

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system.

  1. Electrochemical treatment of liquid wastes

    SciTech Connect

    Hobbs, D.T.

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  2. 41 CFR 101-25.405 - Materials handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Materials handling...-Replacement Standards § 101-25.405 Materials handling equipment. (a) Materials handling equipment will not be... materials handling equipment in storage, one month in storage equals 50 hours of operation. (ii) The...

  3. 7 CFR 945.9 - Ship or handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Ship or handle. 945.9 Section 945.9 Agriculture... DESIGNATED COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 945.9 Ship or handle. Ship or handle means to pack, sell, consign, transport or in any other way to...

  4. 7 CFR 945.9 - Ship or handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Ship or handle. 945.9 Section 945.9 Agriculture... DESIGNATED COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 945.9 Ship or handle. Ship or handle means to pack, sell, consign, transport or in any other way to...

  5. 7 CFR 948.8 - Handle or ship.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Handle or ship. 948.8 Section 948.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 948.8 Handle or ship. Handle or ship means to transport,...

  6. 7 CFR 927.8 - Ship or handle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Ship or handle. 927.8 Section 927.8 Agriculture... Order Regulating Handling Definitions § 927.8 Ship or handle. Ship or handle means to sell, deliver, consign, transport or ship pears within the production area or between the production area and any...

  7. 7 CFR 927.8 - Ship or handle.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Ship or handle. 927.8 Section 927.8 Agriculture... Order Regulating Handling Definitions § 927.8 Ship or handle. Ship or handle means to sell, deliver, consign, transport or ship pears within the production area or between the production area and any...

  8. 7 CFR 927.8 - Ship or handle.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Ship or handle. 927.8 Section 927.8 Agriculture... Order Regulating Handling Definitions § 927.8 Ship or handle. Ship or handle means to sell, deliver, consign, transport or ship pears within the production area or between the production area and any...

  9. 7 CFR 905.9 - Handle or ship.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Handle or ship. 905.9 Section 905.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.9 Handle or ship. Handle or...

  10. 7 CFR 948.8 - Handle or ship.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Handle or ship. 948.8 Section 948.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Order Regulating Handling Definitions § 948.8 Handle or ship. Handle or ship means to transport,...

  11. 7 CFR 945.9 - Ship or handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Ship or handle. 945.9 Section 945.9 Agriculture... DESIGNATED COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 945.9 Ship or handle. Ship or handle means to pack, sell, consign, transport or in any other way to...

  12. 7 CFR 905.9 - Handle or ship.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Handle or ship. 905.9 Section 905.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.9 Handle or ship. Handle or...

  13. 7 CFR 948.8 - Handle or ship.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Handle or ship. 948.8 Section 948.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 948.8 Handle or ship. Handle or ship means to transport,...

  14. 7 CFR 905.9 - Handle or ship.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Handle or ship. 905.9 Section 905.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.9 Handle or ship. Handle or...

  15. 7 CFR 948.8 - Handle or ship.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle or ship. 948.8 Section 948.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Order Regulating Handling Definitions § 948.8 Handle or ship. Handle or ship means to transport,...

  16. 7 CFR 905.9 - Handle or ship.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Handle or ship. 905.9 Section 905.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.9 Handle or ship. Handle or...

  17. 7 CFR 905.9 - Handle or ship.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Handle or ship. 905.9 Section 905.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... TANGELOS GROWN IN FLORIDA Order Regulating Handling Definitions § 905.9 Handle or ship. Handle or...

  18. 7 CFR 948.8 - Handle or ship.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Handle or ship. 948.8 Section 948.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Order Regulating Handling Definitions § 948.8 Handle or ship. Handle or ship means to transport,...

  19. 7 CFR 927.8 - Ship or handle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Ship or handle. 927.8 Section 927.8 Agriculture... Order Regulating Handling Definitions § 927.8 Ship or handle. Ship or handle means to sell, deliver, consign, transport or ship pears within the production area or between the production area and any...

  20. 7 CFR 945.9 - Ship or handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Ship or handle. 945.9 Section 945.9 Agriculture... DESIGNATED COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Definitions § 945.9 Ship or handle. Ship or handle means to pack, sell, consign, transport or in any other way to...