Science.gov

Sample records for 21cm baryon acoustic

  1. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo

    2017-04-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.

  2. Differentiating CDM and baryon isocurvature models with 21 cm fluctuations

    SciTech Connect

    Kawasaki, Masahiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: sekiguti@icrr.u-tokyo.ac.jp

    2011-10-01

    We discuss how one can discriminate models with cold dark matter (CDM) and baryon isocurvature fluctuations. Although current observations such as cosmic microwave background (CMB) can severely constrain the fraction of such isocurvature modes in the total density fluctuations, CMB cannot differentiate CDM and baryon ones by the shapes of their power spectra. However, the evolution of CDM and baryon density fluctuations are different for each model, thus it would be possible to discriminate those isocurvature modes by extracting information on the fluctuations of CDM/baryon itself. We discuss that observations of 21 cm fluctuations can in principle differentiate these modes and demonstrate to what extent we can distinguish them with future 21 cm surveys. We show that, when the isocurvature mode has a large blue-tilted initial spectrum, 21 cm surveys can clearly probe the difference.

  3. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  4. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  5. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8lesssim zlesssim1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  6. Equivalence principle and the baryon acoustic peak

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias

    2015-08-01

    We study the dominant effect of a long wavelength density perturbation δ (λL) on short distance physics. In the nonrelativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at ℓBAO, this naive expectation breaks down for λL<ℓBAO. We calculate a universal piece of the three-point correlation function in this regime. The same effect is shown to underlie the spread of the acoustic peak, and is calculable to all orders in the long modes. This can be used to improve the result of perturbative calculations—a technique known as "infra-red resummation"—and is explicitly applied to the one-loop calculation of the power spectrum. Finally, the success of baryon acoustic oscillation reconstruction schemes is argued to be another empirical evidence for the validity of the results.

  7. Cosmological implications of baryon acoustic oscillation measurements

    SciTech Connect

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species,

  8. Cosmological implications of baryon acoustic oscillation measurements

    DOE PAGES

    Aubourg, Eric

    2015-12-01

    Here, we derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. Particularly, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibratedmore » physical scale of the sound horizon, the combination of BAO and SN data into an “inverse distance ladder” yields a measurement of H0=67.3±1.1 km s-1 Mpc-1, with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat ΛCDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ), our BAO+SN+CMB combination yields matter density Ωm=0.301±0.008 and curvature Ωk=-0.003±0.003. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints are always consistent with flat ΛCDM values at ≈1σ. And while the overall χ2 of model fits is satisfactory, the LyaF BAO measurements are in moderate (2–2.5σ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H0 and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, Σmν<0.56 eV (95% confidence), improving to Σmν<0.25 eV if we include

  9. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki; DeBoer, David R.; McDonald, Patrick; Aguirre, James E.; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.

  10. Mapping Cosmic Structure Using 21-cm Hydrogen Signal at Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; GBT 21-cm Intensity Mapping Group

    2011-05-01

    We are using the Green Bank Telescope to make 21-cm intensity maps of cosmic structure in a 0.15 Gpc^3 box at redshift of z 1. The intensity mapping technique combines the flux from many galaxies in each pixel, allowing much greater mapping speed than the traditional redshift survey. Measurement is being made at z 1 to take advantage of a window in frequency around 700 MHz where terrestrial radio frequency interference (RFI) is currently at a minimum. This minimum is due to a reallocation of this frequency band from analog television to wide area wireless internet and public service usage. We will report progress of our attempt to detect autocorrelation of the 21-cm signal. The ultimate goal of this mapping is to use Baryon Acoustic Oscillations to provide more precise constraints to dark energy models.

  11. Reionization on large scales. IV. Predictions for the 21 cm signal incorporating the light cone effect

    SciTech Connect

    La Plante, P.; Battaglia, N.; Natarajan, A.; Peterson, J. B.; Trac, H.; Cen, R.; Loeb, A.

    2014-07-01

    We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization (EoR). We discuss the implications of the 'light cone' effect, which incorporates evolution of the neutral hydrogen fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L = 2 Gpc h {sup –1}). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light cone effect is important when considering redshift space distortions and future application to the Alcock-Paczyński test for the determination of cosmological parameters.

  12. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    PubMed

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  13. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  14. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    SciTech Connect

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  15. Wavelet analysis of baryon acoustic structures in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Labatie, A.; Clerc, N.; Martínez, V. J.; Starck, J.-L.; Lachièze-Rey, M.; Saar, E.; Paredes, S.

    2012-06-01

    Context. Baryon acoustic oscillations (BAO) are imprinted in the density field by acoustic waves travelling in the plasma of the early universe. Their fixed scale can be used as a standard ruler to study the geometry of the universe. Aims: The BAO have been previously detected using correlation functions and power spectra of the galaxy distribution. We present a new method to detect the real-space structures associated with BAO. These baryon acoustic structures are spherical shells of relatively small density contrast, surrounding high density central regions. Methods: We design a specific wavelet adapted to search for shells, and exploit the physics of the process by making use of two different mass tracers, introducing a specific statistic to detect the BAO features. We show the effect of the BAO signal in this new statistic when applied to the Λ - cold dark matter (ΛCDM) model, using an analytical approximation to the transfer function. We confirm the reliability and stability of our method by using cosmological N-body simulations from the MareNostrum Institut de Ciències de l'Espai (MICE). Results: We apply our method to the detection of BAO in a galaxy sample drawn from the Sloan Digital Sky Survey (SDSS). We use the "main" catalogue to trace the shells, and the luminous red galaxies (LRG) as tracers of the high density central regions. Using this new method, we detect, with a high significance, that the LRG in our sample are preferentially located close to the centres of shell-like structures in the density field, with characteristics similar to those expected from BAO. We show that stacking selected shells, we can find their characteristic density profile. Conclusions: We delineate a new feature of the cosmic web, the BAO shells. As these are real spatial structures, the BAO phenomenon can be studied in detail by examining those shells. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  16. Efficient construction of mock catalogs for baryon acoustic oscillation surveys

    NASA Astrophysics Data System (ADS)

    Sunayama, Tomomi; Padmanabhan, Nikhil; Heitmann, Katrin; Habib, Salman; Rangel, Esteban

    2016-05-01

    Precision measurements of the large scale structure of the Universe require large numbers of high fidelity mock catalogs to accurately assess, and account for, the presence of systematic effects. We introduce and test a scheme for generating mock catalogs rapidly using suitably derated N-body simulations. Our aim is to reproduce the large scale structure and the gross properties of dark matter halos with high accuracy, while sacrificing the details of the halo's internal structure. By adjusting global and local time-steps in an N-body code, we demonstrate that we recover halo masses to better than 0.5% and the power spectrum to better than 1% both in real and redshift space for k=1hMpc-1, while requiring a factor of 4 less CPU time. We also calibrate the redshift spacing of outputs required to generate simulated light cones. We find that outputs separated by Δ z=0.05 allow us to interpolate particle positions and velocities to reproduce the real and redshift space power spectra to better than 1% (out to k=1hMpc-1). We apply these ideas to generate a suite of simulations spanning a range of cosmologies, motivated by the Baryon Oscillation Spectroscopic Survey (BOSS) but broadly applicable to future large scale structure surveys including eBOSS and DESI. As an initial demonstration of the utility of such simulations, we calibrate the shift in the baryonic acoustic oscillation peak position as a function of galaxy bias with higher precision than has been possible so far. This paper also serves to document the simulations, which we make publicly available.

  17. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

    SciTech Connect

    Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi E-mail: kohri@post.kek.jp

    2016-02-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.

  18. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: oyamayo@post.kek.jp E-mail: tomot@cc.saga-u.ac.jp

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ξ{sub ν}=μ{sub ν}/T{sub ν} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ξ{sub ν} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  19. MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS

    SciTech Connect

    Wang Qiao; Zhan Hu

    2013-05-10

    We characterize the baryon acoustic oscillations (BAO) feature in halo two-point statistics using N-body simulations. We find that nonlinear damping of the BAO signal is less severe for halos in the mass range we investigate than for dark matter. The amount of damping depends weakly on the halo mass. The correlation functions show a mass-dependent drop of the halo clustering bias below roughly 90 h {sup -1} Mpc, which coincides with the scale of the BAO trough. The drop of bias is 4% for halos with mass M > 10{sup 14} h {sup -1} M{sub Sun} and reduces to roughly 2% for halos with mass M > 10{sup 13} h {sup -1} M{sub Sun }. In contrast, halo biases in simulations without BAO change more smoothly around 90 h {sup -1} Mpc. In Fourier space, the bias of M > 10{sup 14} h {sup -1} M{sub Sun} halos decreases smoothly by 11% from wavenumber k = 0.012 h Mpc{sup -1} to 0.2 h Mpc{sup -1}, whereas that of M > 10{sup 13} h {sup -1} M{sub Sun} halos decreases by less than 4% over the same range. By comparing the halo biases in pairs of otherwise identical simulations, one with and the other without BAO, we also observe a modulation of the halo bias. These results suggest that precise calibrations of the mass-dependent BAO signal and scale-dependent bias on large scales would be needed for interpreting precise measurements of the two-point statistics of clusters or massive galaxies in the future.

  20. Cosmological implications of different baryon acoustic oscillation data

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Hu, YaZhou; Li, Miao

    2017-04-01

    In this work, we explore the cosmological implications of different baryon acoustic oscillation (BAO) data, including the BAO data extracted by using the spherically averaged one-dimensional galaxy clustering (GC) statistics (hereafter BAO1) and the BAO data obtained by using the anisotropic two-dimensional GC statistics (hereafter BAO2). To make a comparison, we also take into account the case without BAO data (hereafter NO BAO). Firstly, making use of these BAO data, as well as the SNLS3 type Ia supernovae sample and the Planck distance priors data, we give the cosmological constraints of the ΛCDM, the wCDM, and the Chevallier-Polarski-Linder (CPL) model. Then, we discuss the impacts of different BAO data on cosmological consquences, including its effects on parameter space, equation of state (EoS), figure of merit (FoM), deceleration-acceleration transition redshift, Hubble parameter H( z), deceleration parameter q( z), statefinder hierarchy S 3 (1)( z), S 4 (1)( z) and cosmic age t( z). We find that: (1) NO BAO data always give a smallest fractional matter density Ω m0, a largest fractional curvature density Ωk0 and a largest Hubble constant h; in contrast, BAO1 data always give a largest Ω m0, a smallest Ω k0 and a smallest h. (2) For the wCDM and the CPL model, NO BAO data always give a largest EoS w; in contrast, BAO2 data always give a smallest w. (3) Compared with the case of BAO1, BAO2 data always give a slightly larger FoM, and thus can give a cosmological constraint with a slightly better accuracy. (4) The impacts of different BAO data on the cosmic evolution and the comic age are very small, and cannot be distinguished by using various dark energy diagnoses and the cosmic age data.

  1. On measuring the absolute scale of baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2012-10-01

    The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation DV(z)≃34DL(43z)(1+43z)-1(1-0.02455 z3+0.0105 z4) which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103 ≲ z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

  2. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  3. The cross correlation between the 21-cm radiation and the CMB lensing field: a new cosmological signal

    SciTech Connect

    Vallinotto, Alberto

    2011-01-01

    The measurement of Baryon Acoustic Oscillations through the 21-cm intensity mapping technique at redshift z {<=} 4 has the potential to tightly constrain the evolution of dark energy. Crucial to this experimental effort is the determination of the biasing relation connecting fluctuations in the density of neutral hydrogen (HI) with the ones of the underlying dark matter field. In this work I show how the HI bias relevant to these 21-cm intensity mapping experiments can successfully be measured by cross-correlating their signal with the lensing signal obtained from CMB observations. In particular I show that combining CMB lensing maps from Planck with 21-cm field measurements carried out with an instrument similar to the Cylindrical Radio Telescope, this cross-correlation signal can be detected with a signal-to-noise (S/N) ratio of more than 5. Breaking down the signal arising from different redshift bins of thickness {Delta}z = 0.1, this signal leads to constraining the large scale neutral hydrogen bias and its evolution to 4{sigma} level.

  4. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  5. Data Simulation for 21 cm Cosmology Experiments

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan

    2017-01-01

    21 cm cosmologists seek a measurement of the hyperfine line of neutral hydrogen from very high redshifts. While this signal has the potential to provide an unprecedented view into the early universe, it is also buried under exceedingly bright foreground emission. Over the last several years, 21 cm cosmology research has led to an improved understanding of how low frequency radio interferometers will affect the separation of cosmological signal from foregrounds. This talk will describe new efforts to incorporate this understanding into simulations of the most realistic data sets for the Precision Array for Probing the Epoch of Reionization (PAPER), the Murchison Widefield Array (MWA), and the Hydrogen Epoch of Reionization Array (HERA). These high fidelity simulations are essential for robust algorithm design and validation of early results from these experiments.

  6. Mapmaking for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max; Liu, Adrian; Ewall-Wice, Aaron; Hewitt, Jacqueline N.; Morales, Miguel F.; Neben, Abraham R.; Parsons, Aaron R.; Zheng, Haoxuan

    2015-01-01

    In order to study the "Cosmic Dawn" and the Epoch of Reionization with 21 cm tomography, we need to statistically separate the cosmological signal from foregrounds known to be orders of magnitude brighter. Over the last few years, we have learned much about the role our telescopes play in creating a putatively foreground-free region called the "EoR window." In this work, we examine how an interferometer's effects can be taken into account in a way that allows for the rigorous estimation of 21 cm power spectra from interferometric maps while mitigating foreground contamination and thus increasing sensitivity. This requires a precise understanding of the statistical relationship between the maps we make and the underlying true sky. While some of these calculations would be computationally infeasible if performed exactly, we explore several well-controlled approximations that make mapmaking and the calculation of map statistics much faster, especially for compact and highly redundant interferometers designed specifically for 21 cm cosmology. We demonstrate the utility of these methods and the parametrized trade-offs between accuracy and speed using one such telescope, the upcoming Hydrogen Epoch of Reionization Array, as a case study.

  7. Cosmic sound: Measuring the Universe with baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert

    2006-05-01

    During the last ten to fifteen years cosmology has turned from a data-starved to a data-driven science. Several key parameters of the Universe have now been measured with an accuracy better than 10%. Surprisingly, it has been found that instead of slowing down, the expansion of the Universe proceeds at an ever increasing rate. From this we infer the existence of a negative pressure component -- the so-called Dark Energy (DE) -- that makes up more than two thirds of the total matter-energy content of our Universe. It is generally agreed amongst cosmologists and high energy physicists that understanding the nature of the DE poses one of the biggest challenges for the modern theoretical physics. Future cosmological datasets, being superior in both quantity and quality to currently existing data, hold the promise for unveiling many of the properties of the mysterious DE component. With ever larger datasets, as the statistical errors decrease, one needs to have a very good control over the possible systematic uncertainties. To make progress, one has to concentrate the observational effort towards the phenomena that are theoretically best understood and also least ``contaminated'' by complex astrophysical processes or several intervening foregrounds. Currently by far the cleanest cosmological information has been obtained through measurements of the angular temperature fluctuations of the Cosmic Microwave Background (CMB). The typical angular size of the CMB temperature fluctuations is determined by the distance the sound waves in the tightly coupled baryon-photon fluid can have traveled since the Big Bang until the epoch of recombination. A similar scale is also expected to be imprinted in the large-scale matter distribution as traced by, for instance, galaxies or galaxy clusters. Measurements of the peaks in the CMB angular power spectrum fix the physical scale of the sound horizon with a high precision. By identifying the corresponding features in the low redshift

  8. Detailed modelling of the 21-cm forest

    NASA Astrophysics Data System (ADS)

    Semelin, B.

    2016-01-01

    The 21-cm forest is a promising probe of the Epoch of Reionization. The local state of the intergalactic medium (IGM) is encoded in the spectrum of a background source (radio-loud quasars or gamma-ray burst afterglow) by absorption at the local 21-cm wavelength, resulting in a continuous and fluctuating absorption level. Small-scale structures (filaments and minihaloes) in the IGM are responsible for the strongest absorption features. The absorption can also be modulated on large scales by inhomogeneous heating and Wouthuysen-Field coupling. We present the results from a simulation that attempts to preserve the cosmological environment while resolving some of the small-scale structures (a few kpc resolution in a 50 h-1 Mpc box). The simulation couples the dynamics and the ionizing radiative transfer and includes X-ray and Lyman lines radiative transfer for a detailed physical modelling. As a result we find that soft X-ray self-shielding, Ly α self-shielding and shock heating all have an impact on the predicted values of the 21-cm optical depth of moderately overdense structures like filaments. A correct treatment of the peculiar velocities is also critical. Modelling these processes seems necessary for accurate predictions and can be done only at high enough resolution. As a result, based on our fiducial model, we estimate that LOFAR should be able to detect a few (strong) absorptions features in a frequency range of a few tens of MHz for a 20 mJy source located at z = 10, while the SKA would extract a large fraction of the absorption information for the same source.

  9. Redundant Array Configurations for 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Parsons, Aaron R.

    2016-08-01

    Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.

  10. How does non-linear dynamics affect the baryon acoustic oscillation?

    SciTech Connect

    Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.

  11. 21 cm intensity mapping with the Five hundred metre Aperture Spherical Telescope

    NASA Astrophysics Data System (ADS)

    Smoot, George F.; Debono, Ivan

    2017-01-01

    This paper describes a programme to map large-scale cosmic structures on the largest possible scales by using the Five hundred metre Aperture Spherical Telescope (FAST) to make a 21 cm (red-shifted) intensity map of the sky for the range 0.5 < z < 2.5. The goal is to map to the angular and spectral resolution of FAST a large swath of the sky by simple drift scans with a transverse set of beams. This approach would be complementary to galaxy surveys and could be completed before the Square Kilometre Array (SKA) could begin a more detailed and precise effort. The science would be to measure the large-scale structure on the size of the baryon acoustic oscillations and larger scale, and the results would be complementary to its contemporary observations and significant. The survey would be uniquely sensitive to the potential very large-scale features from inflation at the Grand Unified Theory (GUT) scale and complementary to observations of the cosmic microwave background.

  12. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.

    2016-05-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.

  13. NONLINEAR BEHAVIOR OF BARYON ACOUSTIC OSCILLATIONS IN REDSHIFT SPACE FROM THE ZEL'DOVICH APPROXIMATION

    SciTech Connect

    McCullagh, Nuala; Szalay, Alexander S.

    2015-01-10

    Baryon acoustic oscillations (BAO) are a powerful probe of the expansion history of the universe, which can tell us about the nature of dark energy. In order to accurately characterize the dark energy equation of state using BAO, we must understand the effects of both nonlinearities and redshift space distortions on the location and shape of the acoustic peak. In a previous paper, we introduced a novel approach to second order perturbation theory in configuration space using the Zel'dovich approximation, and presented a simple result for the first nonlinear term of the correlation function. In this paper, we extend this approach to redshift space. We show how to perform the computation and present the analytic result for the first nonlinear term in the correlation function. Finally, we validate our result through comparison with numerical simulations.

  14. The 21-cm Signal from the cosmological epoch of recombination

    SciTech Connect

    Fialkov, A.; Loeb, A. E-mail: aloeb@cfa.harvard.edu

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  15. Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function

    NASA Astrophysics Data System (ADS)

    Carvalho, G. C.; Bernui, A.; Benetti, M.; Carvalho, J. C.; Alcaniz, J. S.

    2016-01-01

    The 2-point angular correlation function w (θ ) (2PACF), where θ is the angular separation between pairs of galaxies, provides the transversal baryon acoustic oscillation (BAO) signal almost model independently. In this paper we use 409 337 luminous red galaxies in the redshift range z =[0.440 ,0.555 ] obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate θBAO(z ) from the 2PACF at six redshift shells. Since noise and systematics can hide the BAO signature in the w -θ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model dependence in the analysis, namely, the value of the acoustic scale from cosmic microwave background (CMB) measurements and the correction in the θBAO(z ) position due to projection effects. Constraints on the dark energy equation-of-state parameter w (z ) from the θBAO(z ) diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard Λ CDM model as well as some of its extensions are in good agreement with these θBAO(z ) measurements.

  16. The BOSS-WiggleZ overlap region - I. Baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Koda, Jun; Marín, Felipe A.; Seo, Hee-Jong; Cuesta, Antonio J.; Schneider, Donald P.

    2016-01-01

    We study the large-scale clustering of galaxies in the overlap region of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample and the WiggleZ Dark Energy Survey. We calculate the auto-correlation and cross-correlation functions in the overlap region of the two data sets and detect a Baryon Acoustic Oscillation (BAO) signal in each of them. The BAO measurement from the cross-correlation function represents the first such detection between two different galaxy surveys. After applying density-field reconstruction we report distance-scale measurements D_V r_s^fid / r_s = (1970 ± 45, 2132 ± 65, 2100 ± 200) Mpc from CMASS, the cross-correlation and WiggleZ, respectively. The distance scales derived from the two data sets are consistent, and are also robust against switching the displacement fields used for reconstruction between the two surveys. We use correlated mock realizations to calculate the covariance between the three BAO constraints. This approach can be used to construct a correlation matrix, permitting for the first time a rigorous combination of WiggleZ and CMASS BAO measurements. Using a volume-scaling technique, our result can also be used to combine WiggleZ and future CMASS DR12 results. Finally, we show that the relative velocity effect, a possible source of systematic uncertainty for the BAO technique, is consistent with zero for our samples.

  17. Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations

    SciTech Connect

    Font-Ribera, Andreu; Kirkby, David; Blomqvist, Michael; Busca, Nicolas; Aubourg, Éric; Bautista, Julian; Ross, Nicholas P.; Bailey, Stephen; Beutler, Florian; Carithers, Bill; Slosar, Anže; Rich, James; Delubac, Timothée; Bhardwaj, Vaishali; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, Jon; Brownstein, Joel R.; Dawson, Kyle S.; and others

    2014-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption, using over 164,000 quasars from Data Release 11 of the SDSS-III Baryon Oscillation Spectroscopic Survey. We extend the previous study of roughly 60,000 quasars from Data Release 9 to larger separations, allowing a measurement of the Baryonic Acoustic Oscillation (BAO) scale along the line of sight c/(H(z = 2.36)r{sub s}) = 9.0±0.3 and across the line of sight D{sub A}(z = 2.36)/r{sub s} = 10.8±0.4, consistent with CMB and other BAO data. Using the best fit value of the sound horizon from Planck data (r{sub s} = 147.49 Mpc), we can translate these results to a measurement of the Hubble parameter of H(z = 2.36) = 226±8 km s{sup −1} Mpc{sup −1} and of the angular diameter distance of D{sub A}(z = 2.36) = 1590±60 Mpc. The measured cross-correlation function and an update of the code to fit the BAO scale (baofit) are made publicly available.

  18. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  19. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints.

    PubMed

    Hinton, Samuel R; Kazin, Eyal; Davis, Tamara M; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J; Drinkwater, Michael J; Glazebrook, Karl; Jurek, Russell J; Parkinson, David; Pimbblet, Kevin A; Poole, Gregory B; Pracy, Michael; Woods, David

    2017-02-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ω c  h(2), H(z), and DA (z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey.

  20. Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints

    PubMed Central

    Hinton, Samuel R.; Kazin, Eyal; Davis, Tamara M.; Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Glazebrook, Karl; Jurek, Russell J.; Parkinson, David; Pimbblet, Kevin A.; Poole, Gregory B.; Pracy, Michael; Woods, David

    2016-01-01

    We present results from the 2D anisotropic baryon acoustic oscillation (BAO) signal present in the final data set from the WiggleZ Dark Energy Survey. We analyse the WiggleZ data in two ways: first using the full shape of the 2D correlation function and secondly focusing only on the position of the BAO peak in the reconstructed data set. When fitting for the full shape of the 2D correlation function we use a multipole expansion to compare with theory. When we use the reconstructed data we marginalize over the shape and just measure the position of the BAO peak, analysing the data in wedges separating the signal along the line of sight from that parallel to the line of sight. We verify our method with mock data and find the results to be free of bias or systematic offsets. We also redo the pre-reconstruction angle-averaged (1D) WiggleZ BAO analysis with an improved covariance and present an updated result. The final results are presented in the form of Ωc h2, H(z), and DA(z) for three redshift bins with effective redshifts z = 0.44, 0.60, and 0.73. Within these bins and methodologies, we recover constraints between 5 and 22 per cent error. Our cosmological constraints are consistent with flat ΛCDM cosmology and agree with results from the Baryon Oscillation Spectroscopic Survey. PMID:28066154

  1. Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale

    NASA Astrophysics Data System (ADS)

    Seo, Hee-Jong; Eisenstein, Daniel J.

    2007-08-01

    We present the cosmological distance errors achievable using the baryonic acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from earlier Seo and Eisenstein work. We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile, we accommodate the Lagrangian displacement distribution into the Fisher matrix calculation to reflect the gradual loss of information in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift distortions. We then show that we can contract the multidimensional Fisher matrix calculations into a two-dimensional or even one-dimensional formalism with physically motivated approximations. We present the resulting fitting formula for the cosmological distance errors from galaxy redshift surveys as a function of survey parameters and nonlinearity, which saves us going through the 12 dimensional Fisher matrix calculations. Finally, we show excellent agreement between the distance error estimates from the revised Fisher matrix and the precision on the distance scale recovered from N-body simulations.

  2. Cosmic distance-duality relation test using type Ia supernovae and the baryon acoustic oscillation

    NASA Astrophysics Data System (ADS)

    Wu, Puxun; Li, Zhengxiang; Liu, Xiaoliang; Yu, Hongwei

    2015-07-01

    A check of the validity of the distance-duality relation (DDR) is necessary since a violation of one of the assumptions underlying this relation might be possible. In this paper, we test the DDR by combining the Union2.1 type Ia supernovae (SNIa) and five angular diameter distance data from the baryonic acoustic oscillation (BAO) measurements. We find that the DDR is consistent with the observations at the 2 σ confidence level (CL) for the case of the Hubble constant h =0.7 , and the consistency is improved to be 1 σ CL when h =0.7 is replaced by the latest constraint from the Planck satellite, i.e., h =0.678 , or h is marginalized. Our results show that the BAO measurement is a very powerful tool to test the DDR. With more and more BAO data being released in the future, we are expecting a better validity check of the DDR.

  3. REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES

    SciTech Connect

    Kazin, Eyal A.; Blanton, Michael R.; Scoccimarro, Roman; McBride, Cameron K.; Berlind, Andreas A.

    2010-08-20

    We analyze the line-of-sight baryonic acoustic feature in the two-point correlation function {xi} of the Sloan Digital Sky Survey luminous red galaxy (LRG) sample (0.16 < z < 0.47). By defining a narrow line-of-sight region, r{sub p} < 5.5 h {sup -1} Mpc, where r{sub p} is the transverse separation component, we measure a strong excess of clustering at {approx}110 h {sup -1} Mpc, as previously reported in the literature. We also test these results in an alternative coordinate system, by defining the line of sight as {theta} < 3{sup 0}, where {theta} is the opening angle. This clustering excess appears much stronger than the feature in the better-measured monopole. A fiducial {Lambda}CDM nonlinear model in redshift space predicts a much weaker signature. We use realistic mock catalogs to model the expected signal and noise. We find that the line-of-sight measurements can be explained well by our mocks as well as by a featureless {xi} = 0. We conclude that there is no convincing evidence that the strong clustering measurement is the line-of-sight baryonic acoustic feature. We also evaluate how detectable such a signal would be in the upcoming Baryon Oscillation Spectroscopic Survey (BOSS) LRG volume. Mock LRG catalogs (z < 0.6) suggest that (1) the narrow line-of-sight cylinder and cone defined above probably will not reveal a detectable acoustic feature in BOSS; (2) a clustering measurement as high as that in the current sample can be ruled out (or confirmed) at a high confidence level using a BOSS-sized data set; (3) an analysis with wider angular cuts, which provide better signal-to-noise ratios, can nevertheless be used to compare line-of-sight and transverse distances, and thereby constrain the expansion rate H(z) and diameter distance D{sub A}(z).

  4. Signatures of modified gravity on the 21 cm power spectrum at reionisation

    SciTech Connect

    Brax, Philippe

    2013-01-01

    Scalar modifications of gravity have an impact on the growth of structure. Baryon and Cold Dark Matter (CDM) perturbations grow anomalously for scales within the Compton wavelength of the scalar field. In the late time Universe when reionisation occurs, the spectrum of the 21 cm brightness temperature is thus affected. We study this effect for chameleon-f(R) models, dilatons and symmetrons. Although the f(R) models are more tightly constrained by solar system bounds, and effects on dilaton models are negligible, we find that symmetrons where the phase transition occurs before z{sub *} ∼ 12 could be detectable for a scalar field range as low as 5kpc. For all these models, the detection prospects of modified gravity effects are higher when considering modes parallel to the line of sight where very small scales can be probed. The study of the 21 cm spectrum thus offers a complementary approach to testing modified gravity with large scale structure surveys. Short scales, which would be highly non-linear in the very late time Universe when structure forms and where modified gravity effects are screened, appear in the linear spectrum of 21 cm physics, hence deviating from General Relativity in a maximal way.

  5. 21 cm radiation: A new probe of fundamental physics

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi; Wandelt, Benjamin D.

    2010-11-01

    New low frequency radio telescopes currently being built open up the possibility of observing the 21 cm radiation from redshifts 200 > z > 30, also known as the dark ages, see Furlanetto, Oh, & Briggs(2006) for a review. At these high redshifts, Cosmic Microwave Background (CMB) radiation is absorbed by neutral hydrogen at its 21 cm hyperfine transition. This redshifted 21 cm signal thus carries information about the state of the early Universe and can be used to test fundamental physics. The 21 cm radiation probes a volume of the early Universe on kpc scales in contrast with CMB which probes a surface (of some finite thickness) on Mpc scales. Thus there is many orders of more information available, in principle, from the 21 cm observations of dark ages. We have studied the constraints these observations can put on the variation of fundamental constants (Khatri & Wandelt(2007)). Since the 21 cm signal depends on atomic physics it is very sensitive to the variations in the fine structure constant and can place constraints comparable to or better than the other astrophysical experiments (Δα/α= < 10-5) as shown in Figure 1. Making such observations will require radio telescopes of collecting area 10 - 106 km2 compared to ~ 1 km2 of current telescopes, for example LOFAR. We should also expect similar sensitivity to the electron to proton mass ratio. One of the challenges in observing this 21 cm cosmological signal is the presence of the synchrotron foregrounds which is many orders of magnitude larger than the cosmological signal but the two can be separated because of their different statistical nature (Zaldarriaga, Furlanetto, & Hernquist(2004)). Terrestrial EM interference from radio/TV etc. and Earth's ionosphere poses problems for telescopes on ground which may be solved by going to the Moon and there are proposals for doing so, one of which is the Dark Ages Lunar Interferometer (DALI). In conclusion 21 cm cosmology promises a large wealth of data and provides

  6. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    SciTech Connect

    Mehta, Kushal T.; Seo, Hee -Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  7. Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo

    2016-09-01

    Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.

  8. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    SciTech Connect

    Nakamura, Gen; Sato, Takahiro; Yamamoto, Kazuhiro; Huetsi, Gert

    2009-12-15

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan digital sky survey luminous red galaxy sample. We obtain an effective upper limit on {sigma}{sub 8}D{sub 1}(z=0.3) using the damping of the baryon acoustic oscillation signature, where {sigma}{sub 8} is the root mean square overdensity in a sphere of radius 8h{sup -1} Mpc and D{sub 1}(z) is the growth factor at redshift z. The above result assumes that other parameters are fixed and the cosmology is taken to be a spatially flat cold dark matter universe with the cosmological constant.

  9. Precision measurement of cosmic magnification from 21 cm emitting galaxies

    SciTech Connect

    Zhang, Pengjie; Pen, Ue-Li; /Canadian Inst. Theor. Astrophys.

    2005-04-01

    We show how precision lensing measurements can be obtained through the lensing magnification effect in high redshift 21cm emission from galaxies. Normally, cosmic magnification measurements have been seriously complicated by galaxy clustering. With precise redshifts obtained from 21cm emission line wavelength, one can correlate galaxies at different source planes, or exclude close pairs to eliminate such contaminations. We provide forecasts for future surveys, specifically the SKA and CLAR. SKA can achieve percent precision on the dark matter power spectrum and the galaxy dark matter cross correlation power spectrum, while CLAR can measure an accurate cross correlation power spectrum. The neutral hydrogen fraction was most likely significantly higher at high redshifts, which improves the number of observed galaxies significantly, such that also CLAR can measure the dark matter lensing power spectrum. SKA can also allow precise measurement of lensing bispectrum.

  10. Intensity Mapping During Reionization: 21 cm and Cross-correlations

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration

    2016-01-01

    The first generation of 21 cm epoch of reionization (EoR) experiments are now reaching the sensitivities necessary for a detection of the power spectrum of plausible reionization models, and with the advent of next-generation capabilities (e.g. the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometer Array Phase I Low) will move beyond the power spectrum to imaging of the EoR intergalactic medium. Such datasets provide context to galaxy evolution studies for the earliest galaxies on scales of tens of Mpc, but at present wide, deep galaxy surveys are lacking, and attaining the depth to survey the bulk of galaxies responsible for reionization will be challenging even for JWST. Thus we seek useful cross-correlations with other more direct tracers of the galaxy population. I review near-term prospects for cross-correlation studies with 21 cm and CO and CII emission, as well as future far-infrared misions suchas CALISTO.

  11. Lensing of 21-cm fluctuations by primordial gravitational waves.

    PubMed

    Book, Laura; Kamionkowski, Marc; Schmidt, Fabian

    2012-05-25

    Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.

  12. How accurately can 21cm tomography constrain cosmology?

    NASA Astrophysics Data System (ADS)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 621 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  13. The future of primordial features with 21 cm tomography

    NASA Astrophysics Data System (ADS)

    Chen, Xingang; Meerburg, P. Daniel; Münchmeyer, Moritz

    2016-09-01

    Detecting a deviation from a featureless primordial power spectrum of fluctuations would give profound insight into the physics of the primordial Universe. Depending on their nature, primordial features can either provide direct evidence for the inflation scenario or pin down details of the inflation model. Thus far, using the cosmic microwave background (CMB) we have only been able to put stringent constraints on the amplitude of features, but no significant evidence has been found for such signals. Here we explore the limit of the experimental reach in constraining such features using 21 cm tomography at high redshift. A measurement of the 21 cm power spectrum from the Dark Ages is generally considered as the ideal experiment for early Universe physics, with potentially access to a large number of modes. We consider three different categories of theoretically motivated models: the sharp feature models, resonance models, and standard clock models. We study the improvements on bounds on features as a function of the total number of observed modes and identify parameter degeneracies. The detectability depends critically on the amplitude, frequency and scale-location of the features, as well as the angular and redshift resolution of the experiment. We quantify these effects by considering different fiducial models. Our forecast shows that a cosmic variance limited 21 cm experiment measuring fluctuations in the redshift range 30 <= z <= 100 with a 0.01-MHz bandwidth and sub-arcminute angular resolution could potentially improve bounds by several orders of magnitude for most features compared to current Planck bounds. At the same time, 21 cm tomography also opens up a unique window into features that are located on very small scales.

  14. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  15. Supernova and baryon acoustic oscillation constraints on (new) polynomial dark energy parametrizations: current results and forecasts

    NASA Astrophysics Data System (ADS)

    Sendra, Irene; Lazkoz, Ruth

    2012-05-01

    In this work we introduce two new polynomial parametrizations of dark energy and explore their correlation properties. The parameters to fit are the equation-of-state values at z= 0 and z= 0.5, which have naturally low correlation and have already been shown to improve the popular Chevallier-Polarski-Linder (CPL) parametrization. We test our models with low-redshift astronomical probes: type Ia supernovae and baryon acoustic oscillations (BAO), in the form of both current and synthetic data. Specifically, we present simulations of measurements of the radial and transversal BAO scales similar to those expected in a BAO high-precision spectroscopic redshift survey such as EUCLID. According to the Bayesian deviance information criterion (DIC), which penalizes large errors and correlations, we show that our models perform better than the CPL reparametrization proposed by Wang (in terms of z= 0 and z= 0.5). This is due to the combination of lower correlation and smaller relative errors. The same holds for a frequentist perspective: the figure-of-merit is larger for our parametrizations.

  16. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  17. The Alcock Paczy'nski test with Baryon Acoustic Oscillations: systematic effects for future surveys

    NASA Astrophysics Data System (ADS)

    Lepori, Francesca; Di Dio, Enea; Viel, Matteo; Baccigalupi, Carlo; Durrer, Ruth

    2017-02-01

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifies the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).

  18. The 21 cm signature of shock heated and diffuse cosmic string wakes

    SciTech Connect

    Hernández, Oscar F.; Brandenberger, Robert H. E-mail: rhb@physics.mcgill.ca

    2012-07-01

    The analysis of the 21 cm signature of cosmic string wakes is extended in several ways. First we consider the constraints on Gμ from the absorption signal of shock heated wakes laid down much later than matter radiation equality. Secondly we analyze the signal of diffuse wake, that is those wakes in which there is a baryon overdensity but which have not shock heated. Finally we compare the size of these signals to the expected thermal noise per pixel which dominates over the background cosmic gas brightness temperature and find that the cosmic string signal will exceed the thermal noise of an individual pixel in the Square Kilometre Array for string tensions Gμ > 2.5 × 10{sup −8}.

  19. Exploring 21cm-Lyman Alpha Emitter Synergies for SKA

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Dayal, Pratika; Müller, Volker; Trott, Cathryn M.

    2017-02-01

    We study the signatures of reionization and ionizing properties of early galaxies in the cross-correlations between the 21 cm emission from the spin-flip transition of neutral hydrogen (H i) and the underlying galaxy population. In particular, we focus on a sub-population of galaxies visible as Lyα Emitters (LAEs). With both observables simultaneously derived from a z≃ 6.6 hydrodynamical simulation (GADGET-2) snapshot post-processed with a radiative transfer code (pCRASH) and a dust model, we perform a parameter study and aim to constrain both the average intergalactic medium (IGM) ionization state (1-< {χ }{{H}{{I}}}> ) and the reionization topology (outside-in versus inside-out). We find that, in our model, LAEs occupy the densest and most-ionized regions resulting in a very strong anti-correlation between the LAEs and the 21 cm emission. A 1000 hr Square Kilometer Array (SKA)-LOW1—Subaru Hyper Suprime-Cam experiment can provide constraints on < {χ }{{H}{{I}}}> , allowing us to distinguish between IGM ionization levels of 50%, 25%, 10%, and fully ionized at scales r≲ 10 comoving Mpc (assuming foreground avoidance for SKA). Our results support the inside-out reionization scenario where the densest knots (under-dense voids) are ionized first (last) for < {χ }{{H}{{I}}}> ≳ 0.1. Further, 1000 hr SKA-LOW1 observations should be able to confirm the inside-out scenario by detecting a lower 21 cm brightness temperature (by about 2–10 mK) in the densest regions (≳2 arcmin scales) hosting LAEs, compared to lower-density regions devoid of them.

  20. THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-10

    We calculate the correlation function of 13,904 galaxy clusters of z {<=} 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model {xi}(r) = (r/R{sub 0}){sup -{gamma}} on the scales of 10 h{sup -1} Mpc {<=} r {<=} 50 h{sup -1} Mpc, with a larger correlation length of R{sub 0} = 18.84 {+-} 0.27 h{sup -1} Mpc for clusters with a richness of R {>=} 15 and a smaller length of R{sub 0} = 16.15 {+-} 0.13 h{sup -1} Mpc for clusters with a richness of R {>=} 5. The power-law index of {gamma} = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r {approx} 110 h{sup -1} Mpc with a significance of {approx}1.9{sigma}. By analyzing the correlation function in the range of 20 h{sup -1} Mpc {<=} r {<=} 200 h{sup -1} Mpc, we find that the constraints on distance parameters are D{sub v} (z{sub m} = 0.276) = 1077 {+-} 55(1{sigma}) Mpc and h = 0.73 {+-} 0.039(1{sigma}), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density {Omega}{sub m} h{sup 2} = 0.093 {+-} 0.0077(1{sigma}), which deviates from the WMAP7 result by more than 3{sigma}. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  1. The Correlation Function of Galaxy Clusters and Detection of Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Hong, T.; Han, J. L.; Wen, Z. L.; Sun, L.; Zhan, H.

    2012-04-01

    We calculate the correlation function of 13,904 galaxy clusters of z <= 0.4 selected from the cluster catalog of Wen et al. The correlation function can be fitted with a power-law model ξ(r) = (r/R 0)-γ on the scales of 10 h -1 Mpc <= r <= 50 h -1 Mpc, with a larger correlation length of R 0 = 18.84 ± 0.27 h -1 Mpc for clusters with a richness of R >= 15 and a smaller length of R 0 = 16.15 ± 0.13 h -1 Mpc for clusters with a richness of R >= 5. The power-law index of γ = 2.1 is found to be almost the same for all cluster subsamples. A pronounced baryon acoustic oscillations (BAO) peak is detected at r ~ 110 h -1 Mpc with a significance of ~1.9σ. By analyzing the correlation function in the range of 20 h -1 Mpc <= r <= 200 h -1 Mpc, we find that the constraints on distance parameters are Dv (zm = 0.276) = 1077 ± 55(1σ) Mpc and h = 0.73 ± 0.039(1σ), which are consistent with the cosmology derived from Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data. However, the BAO signal from the cluster sample is stronger than expected and leads to a rather low matter density Ω m h 2 = 0.093 ± 0.0077(1σ), which deviates from the WMAP7 result by more than 3σ. The correlation function of the GMBCG cluster sample is also calculated and our detection of the BAO feature is confirmed.

  2. Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hu; Knox, Lloyd; Tyson, J. Anthony

    2009-01-01

    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques, and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints, but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well-determined distance eigenmodes that are not very sensitive to the dark energy equation-of-state parameters w0 and wa, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1 + z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, the LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Ω k of the universe simultaneously with the constraints on the comoving distances.

  3. EFFECT OF MODEL-DEPENDENT COVARIANCE MATRIX FOR STUDYING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-12-01

    Large-scale structures in the universe are a powerful tool to test cosmological models and constrain cosmological parameters. A particular feature of interest comes from baryon acoustic oscillations (BAOs), which are sound waves traveling in the hot plasma of the early universe that stopped at the recombination time. This feature can be observed as a localized bump in the correlation function at the scale of the sound horizon r{sub s} . As such, it provides a standard ruler and a lot of constraining power in the correlation function analysis of galaxy surveys. Moreover, the detection of BAOs at the expected scale gives strong support to cosmological models. Both of these studies (BAO detection and parameter constraints) rely on a statistical modeling of the measured correlation function {xi}-circumflex. Usually {xi}-circumflex is assumed to be Gaussian, with a mean {xi}{sub {theta}} depending on the cosmological model and a covariance matrix C generally approximated as a constant (i.e., independent of the model). In this article, we study whether a realistic model-dependent C {sub {theta}} changes the results of cosmological parameter constraints compared to the approximation of a constant covariance matrix C. For this purpose, we use a new procedure to generate lognormal realizations of the luminous red galaxy sample of the Sloan Digital Sky Survey Data Release 7 to obtain a model-dependent C {sub {theta}} in a reasonable time. The approximation of C {sub {theta}} as a constant creates small changes in the cosmological parameter constraints on our sample. We quantify this modeling error using a lot of simulations and find that it only has a marginal influence on cosmological parameter constraints for current and next-generation galaxy surveys. It can be approximately taken into account by extending the 1{sigma} intervals by a factor Almost-Equal-To 1.3.

  4. Distinguishing interacting dark energy from wCDM with CMB, lensing, and baryon acoustic oscillation data

    SciTech Connect

    Väliviita, Jussi; Palmgren, Elina E-mail: elina.palmgren@helsinki.fi

    2015-07-01

    We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy. Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.

  5. MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A. E-mail: arman@apctp.org

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s{sup –1} Mpc{sup –1} at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh {sup 2} from SDSS DR9 and DR11 data, namely, Omh {sup 2} ≈ 0.122 ± 0.01, which is equivalent to Ω{sub 0m} h {sup 2} for the spatially flat ΛCDM model, is in tension with the value Ω{sub 0m} h {sup 2} = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  6. Model-independent Evidence for Dark Energy Evolution from Baryon Acoustic Oscillations

    NASA Astrophysics Data System (ADS)

    Sahni, V.; Shafieloo, A.; Starobinsky, A. A.

    2014-10-01

    Baryon acoustic oscillations (BAOs) allow us to determine the expansion history of the universe, thereby shedding light on the nature of dark energy. Recent observations of BAOs in the Sloan Digital Sky Survey (SDSS) DR9 and DR11 have provided us with statistically independent measurements of H(z) at redshifts of 0.57 and 2.34, respectively. We show that these measurements can be used to test the cosmological constant hypothesis in a model-independent manner by means of an improved version of the Om diagnostic. Our results indicate that the SDSS DR11 measurement of H(z) = 222 ± 7 km s-1 Mpc-1 at z = 2.34, when taken in tandem with measurements of H(z) at lower redshifts, imply considerable tension with the standard ΛCDM model. Our estimation of the new diagnostic Omh 2 from SDSS DR9 and DR11 data, namely, Omh 2 ≈ 0.122 ± 0.01, which is equivalent to Ω0m h 2 for the spatially flat ΛCDM model, is in tension with the value Ω0m h 2 = 0.1426 ± 0.0025 determined for ΛCDM from Planck+WP. This tension is alleviated in models in which the cosmological constant was dynamically screened (compensated) in the past. Such evolving dark energy models display a pole in the effective equation of state of dark energy at high redshifts, which emerges as a smoking gun test for these theories.

  7. Measuring the Cosmological 21 cm Monopole with an Interferometer

    NASA Astrophysics Data System (ADS)

    Presley, Morgan E.; Liu, Adrian; Parsons, Aaron R.

    2015-08-01

    A measurement of the cosmological 21 {cm} signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 {cm} brightness temperature as a function of redshift (the “global signal”). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (FWHM of ∼ 40^\\circ ) can compete with typical single-element experiments in their ability to constrain phenomenological parameters pertaining to reionization and the pre-reionization era. We also provide a general data analysis framework for extracting the global signal from interferometric measurements (with analysis of single-element experiments arising as a special case) and discuss trade-offs with various data analysis choices. Given that interferometric measurements are able to avoid a number of systematics inherent in single-element experiments, our results suggest that interferometry ought to be explored as a complementary way to probe the global signal.

  8. Discovery and First Observations of the 21-cm Hydrogen Line

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2005-08-01

    Unlike most of the great discoveries in the first decade of radio astronomy after World War II, the 21 cm hydrogen line was first predicted theoretically and then purposely sought. The story is familiar of graduate student Henk van de Hulst's prediction in occupied Holland in 1944 and the nearly simultaneous detection of the line by teams at Harvard, Leiden, and Sydney in 1951. But in this paper I will describe various aspects that are little known: (1) In van de Hulst's original paper he not only worked out possible intensities for the 21 cm line, but also for radio hydrogen recombination lines (not detected until the early 1960s), (2) in that same paper he also used Jansky's and Reber's observations of a radio background to make cosmological conclusions, (3) there was no "race" between the Dutch, Americans, and Australians to detect the line, (4) a fire that destroyed the Dutch team's equipment in March 1950 ironically did not hinder their progress, but actually speeded it up (because it led to a change of their chief engineer, bringing in the talented Lex Muller). The scientific and technical styles of the three groups will also be discussed as results of the vastly differing environments in which they operated.

  9. Probing patchy reionization through τ-21 cm correlation statistics

    SciTech Connect

    Meerburg, P. Daniel; Spergel, David N.; Dvorkin, Cora E-mail: dns@astro.princeton.edu

    2013-12-20

    We consider the cross-correlation between free electrons and neutral hydrogen during the epoch of reionization (EoR). The free electrons are traced by the optical depth to reionization τ, while the neutral hydrogen can be observed through 21 cm photon emission. As expected, this correlation is sensitive to the detailed physics of reionization. Foremost, if reionization occurs through the merger of relatively large halos hosting an ionizing source, the free electrons and neutral hydrogen are anticorrelated for most of the reionization history. A positive contribution to the correlation can occur when the halos that can form an ionizing source are small. A measurement of this sign change in the cross-correlation could help disentangle the bias and the ionization history. We estimate the signal-to-noise ratio of the cross-correlation using the estimator for inhomogeneous reionization τ-hat {sub ℓm} proposed by Dvorkin and Smith. We find that with upcoming radio interferometers and cosmic microwave background (CMB) experiments, the cross-correlation is measurable going up to multipoles ℓ ∼ 1000. We also derive parameter constraints and conclude that, despite the foregrounds, the cross-correlation provides a complementary measurement of the EoR parameters to the 21 cm and CMB polarization autocorrelations expected to be observed in the coming decade.

  10. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.

    2017-01-01

    We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  11. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function

    NASA Astrophysics Data System (ADS)

    Ross, Ashley J.; Beutler, Florian; Chuang, Chia-Hsun; Pellejero-Ibanez, Marcos; Seo, Hee-Jong; Vargas-Magaña, Mariana; Cuesta, Antonio J.; Percival, Will J.; Burden, Angela; Sánchez, Ariel G.; Grieb, Jan Niklas; Reid, Beth; Brownstein, Joel R.; Dawson, Kyle S.; Eisenstein, Daniel J.; Ho, Shirley; Kitaura, Francisco-Shu; Nichol, Robert C.; Olmstead, Matthew D.; Prada, Francisco; Rodríguez-Torres, Sergio A.; Saito, Shun; Salazar-Albornoz, Salvador; Schneider, Donald P.; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Wang, Yuting; White, Martin; Zhao, Gong-bo

    2017-01-01

    We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  12. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    SciTech Connect

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Joel R. Brownstein; Chuang, Chia -Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco -Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sanchez, Ariel G.; Schneider, Donald P.; Slosar, Anze; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Vazquez, Jose A.

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.

  13. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE PAGES

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; ...

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhance themore » BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on DA(z) and 2.9% and 2.3% constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  14. Smith's Cloud (HVC) in 21 cm HI emission

    NASA Astrophysics Data System (ADS)

    Heroux, A. J.

    2006-12-01

    In studying the continuing formation of the Milky Way, we have used the Green Bank Telescope (GBT) of the NRAO to measure the 21 cm HI emission from a specific high velocity cloud known as “Smith’s Cloud”. This cloud is likely within the bounds of the galaxy and appears to be actively plunging into the disk. Our map covers an area about 10x14 degrees, with data taken every 3’ over this range. Most of the emission is concentrated into a single large structure with an unusual cometary morphology, which displays signs of interaction between the cloud and the Galactic halo. We will present an analysis of the cloud, along with information on possible FIR emission with information gained from the IRAS data, kinematics and likely orbits and paths for the origin and future of the cloud. This research was funded through an NSF REU Grant.

  15. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  16. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  17. Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering in N-body simulations

    NASA Astrophysics Data System (ADS)

    Nishimichi, Takahiro; Taruya, Atsushi

    2011-08-01

    We measure the halo power spectrum in redshift space from cosmological N-body simulations, and test the analytical models of redshift distortions particularly focusing on the scales of baryon acoustic oscillations. Remarkably, the measured halo power spectrum in redshift space exhibits a large-scale enhancement in amplitude relative to the real-space clustering, and the effect becomes significant for the massive or highly biased halo samples. These findings cannot be simply explained by the so-called streaming model frequently used in the literature. By contrast, a physically motivated perturbation theory model developed in the previous paper reproduces the halo power spectrum very well, and the model combining a simple linear scale-dependent bias can accurately characterize the clustering anisotropies of halos in two dimensions, i.e., line-of-sight and its perpendicular directions. The results highlight the significance of nonlinear coupling between density and velocity fields associated with two competing effects of redshift distortions, i.e., Kaiser and Finger-of-God effects, and a proper account of this effect would be important in accurately characterizing the baryon acoustic oscillations in two dimensions.

  18. Foregrounds in Wide-field Redshifted 21 cm Power Spectra

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Jacobs, Daniel C.; Bowman, Judd D.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, Joshua S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2015-05-01

    Detection of 21 cm emission of H i from the epoch of reionization, at redshifts z\\gt 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H i signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.

  19. The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z= 0.6

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Davis, Tamara; Poole, Gregory B.; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J.; Li, I.-Hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2011-08-01

    We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z= 0.6, using the distribution of N= 132 509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. The results are mutually consistent, corresponding to a 4.0 per cent measurement of the cosmic distance-redshift relation at z= 0.6 [in terms of the acoustic parameter 'A(z)' introduced by Eisenstein et al., we find A(z= 0.6) = 0.452 ± 0.018]. Both BAOs and power spectrum shape information contribute towards these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2σ. The ratios of our distance measurements to those obtained using BAOs in the distribution of luminous red galaxies at redshifts z= 0.2 and 0.35 are consistent with a flat Λ cold dark matter model that also provides a good fit to the pattern of observed fluctuations in the cosmic microwave background radiation. The addition of the current WiggleZ data results in a ≈30 per cent improvement in the measurement accuracy of a constant equation of state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8 per cent, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ survey data set is complete.

  20. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    SciTech Connect

    Delubac, Timothée; Bautista, Julian E.; Rich, James; Kirkby, David; Bailey, Stephen; Font-Ribera, Andreu; Slosar, Anže; Lee, Khee-Gan; Pieri, Matthew M.; Hamilton, Jean-Christophe; Bovy, Jo; Brinkmann, Jon; Carithers, William; Dawson, Kyle S.; Eisenstein, Daniel J.; Gontcho A Gontcho, Satya; Kneib, Jean-Paul; Margala, Daniel; Miralda-Escudé, Jordi; Myers, Adam D.; Nichol, Robert C.; Noterdaeme, Pasquier; O’Connell, Ross; Olmstead, Matthew D.; Palanque-Delabrouille, Nathalie; Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; Rossi, Graziano; Schlegel, David J.; Schneider, Donald P.; Weinberg, David H.; Yèche, Christophe; York, Donald G.

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)$+2.8\\atop{-1.2}$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$0.7\\atop{H}$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.

  1. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars

    DOE PAGES

    Delubac, Timothée; Bautista, Julian E.; Busca, Nicolás G.; ...

    2015-01-26

    We report a detection of the baryon acousticoscillation (BAO) feature in the flux-correlation function of the Lyα forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the data release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z = 2.34) and expansion rate, H(z = 2.34), both on a scale set by the sound horizon at the drag epoch, rd. We find DA/rd = 11.28 ± 0.65(1σ)more » $$+2.8\\atop{-1.2}$$(2σ) and DH/rd = 9.18 ± 0.28(1σ) ± 0.6(2σ) where DH = c/H. The optimal combination, ~D$$0.7\\atop{H}$$ D$0.3\\atop{A}/rd is determined with a precision of ~2%. For the value rd = 147.4 Mpc, consistent with the cosmic microwave background power spectrum measured by Planck, we find DA(z = 2.34) = 1662 ± 96(1σ) Mpc and H(z = 2.34) = 222 ± 7(1σ) km s-1 Mpc-1. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Lyα forest cross-correlation. The autocorrelation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rd that are 7% lower and 7% higher for DH/rd than the predictions of a flat ΛCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is ≈2.5σ.« less

  2. 21cm bispectrum as method to measure cosmic dawn and EoR

    NASA Astrophysics Data System (ADS)

    Shimabukuro, H.

    2016-12-01

    Cosmological 21cm signal is a promising tool to investigate the state of the Inter Galactic Medium (IGM) during cosmic dawn (CD) and Epoch of Reionization (EoR). Ongoing telescopes such as MWA,LOFAR,PAPER and future telescopes like SKA are expected to detect cosmological 21cm signal. Statistical analysis of the 21cm signal is very important to extract information of the IGM which is related to nature of galaxies and first generation stars. We expect that cosmological 21cm signal follows non-gaussian distribution because various astrophysical processes deviate the distribution from gaussian. In order to evaluate the non-gaussian features, we introduce the bispectrum of the 21cm signal and discuss the property of the 21cm bispectrum such as redshift dependence and configuration dependence. We found that the we can see correlation between large scales and small scales via the 21cm bispectrum and also found that the 21cm bispectrum can give the information of matter fluctuation, neural fraction fluctuation and spin temperature fluctuation by means of its configure dependence.

  3. Performance study of Lagrangian methods: reconstruction of large scale peculiar velocities and baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Keselman, J. A.; Nusser, A.

    2017-01-01

    NoAM for "No Action Method" is a framework for reconstructing the past orbits of observed tracers of the large scale mass density field. It seeks exact solutions of the equations of motion (EoM), satisfying initial homogeneity and the final observed particle (tracer) positions. The solutions are found iteratively reaching a specified tolerance defined as the RMS of the distance between reconstructed and observed positions. Starting from a guess for the initial conditions, NoAM advances particles using standard N-body techniques for solving the EoM. Alternatively, the EoM can be replaced by any approximation such as Zel'dovich and second order perturbation theory (2LPT). NoAM is suitable for billions of particles and can easily handle non-regular volumes, redshift space, and other constraints. We implement NoAM to systematically compare Zel'dovich, 2LPT, and N-body dynamics over diverse configurations ranging from idealized high-res periodic simulation box to realistic galaxy mocks. Our findings are (i) Non-linear reconstructions with Zel'dovich, 2LPT, and full dynamics perform better than linear theory only for idealized catalogs in real space. For realistic catalogs, linear theory is the optimal choice for reconstructing velocity fields smoothed on scales {buildrel > over {˜}} 5 h^{-1}{Mpc}.(ii) all non-linear back-in-time reconstructions tested here, produce comparable enhancement of the baryonic oscillation signal in the correlation function.

  4. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  5. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  6. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  7. Studying topological structure of 21-cm line fluctuations with 3D Minkowski functionals before reionization

    NASA Astrophysics Data System (ADS)

    Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro; Matsubara, Takahiko

    2017-02-01

    The brightness temperature of the redshifted 21-cm line brings rich information about the intergalactic medium (IGM) from the cosmic dawn and epoch of reionization (EoR). While the power spectrum is a useful tool to investigate the 21-cm signal statistically, the 21-cm brightness temperature field is highly non-Gaussian and the power spectrum is inadequate to characterize the non-Gaussianity. Minkowski functionals (MFs) are promising tools to extract non-Gaussian features of the 21-cm signal and give topological information, such as morphology of ionized bubbles. In this work, we study the 21-cm line signal in detail with MFs. To promote understanding of basic features of the 21-cm signal, we calculate the MFs of not only the hydrogen neutral fraction but also the matter density and spin temperature, which contribute to brightness-temperature fluctuations. We find that the structure of the brightness temperature depends mainly on the ionized fraction and the spin temperature at late and early stages of the EoR, respectively. Further, we investigate the redshift evolution of MFs at 7 < z < 20. We find that, after the onset of reionization, MFs mainly reflect the ionized bubble property. In addition, MFs are sensitive to model parameters related to the topology of ionized bubbles and we consider the possibility of constraining the parameters using future 21-cm signal observations.

  8. Probing large-scale structure with large samples of X-ray selected AGN. I. Baryonic acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Hütsi, Gert; Gilfanov, Marat; Kolodzig, Alexander; Sunyaev, Rashid

    2014-12-01

    We investigate the potential of large X-ray-selected AGN samples for detecting baryonic acoustic oscillations (BAO). Though AGN selection in X-ray band is very clean and efficient, it does not provide redshift information, and thus needs to be complemented with an optical follow-up. The main focus of this study is (i) to find the requirements needed for the quality of the optical follow-up and (ii) to formulate the optimal strategy of the X-ray survey, in order to detect the BAO. We demonstrate that redshift accuracy of σ0 = 10-2 at z = 1 and the catastrophic failure rate of ffail ≲ 30% are sufficient for a reliable detection of BAO in future X-ray surveys. Spectroscopic quality redshifts (σ0 = 10-3 and ffail ~ 0) will boost the confidence level of the BAO detection by a factor of ~2. For meaningful detection of BAO, X-ray surveys of moderate depth of Flim ~ few 10-15 erg s-1/cm2 covering sky area from a few hundred to ~ten thousand square degrees are required. The optimal strategy for the BAO detection does not necessarily require full sky coverage. For example, in a 1000 day-long survey by an eROSITA type telescope, an optimal strategy would be to survey a sky area of ~9000 deg2, yielding a ~16σ BAO detection. A similar detection will be achieved by ATHENA+ or WFXT class telescopes in a survey with a duration of 100 days, covering a similar sky area. XMM-Newton can achieve a marginal BAO detection in a 100-day survey covering ~400 deg2. These surveys would demand a moderate-to-high cost in terms the optical follow-ups, requiring determination of redshifts of ~105 (XMM-Newton) to ~3 × 106 objects (eROSITA, ATHENA+, and WFXT) in these sky areas.

  9. An intensity map of hydrogen 21-cm emission at redshift z approximately 0.8.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Bandura, Kevin; Peterson, Jeffrey B

    2010-07-22

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z approximately 0.5 to approximately 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z approximately 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z = 0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three-dimensional 21-cm intensity field at z = 0.53 to 1.12. We then co-add neutral-hydrogen (H i) emission from the volumes surrounding about 10,000 galaxies (from the DEEP2 optical galaxy redshift survey). We detect the aggregate 21-cm glow at a significance of approximately 4sigma.

  10. RESEARCH PAPER: Foreground removal of 21 cm fluctuation with multifrequency fitting

    NASA Astrophysics Data System (ADS)

    He, Li-Ping

    2009-06-01

    The 21 centimeter (21 cm) line emission from neutral hydrogen in the intergalactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in frequency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary significantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of approx10 mK at 150 MHz with 40 antennas in 120 hours of observations.

  11. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  12. 21 cm signals from ionized and heated regions around first stars

    NASA Astrophysics Data System (ADS)

    Fang, Li-Zhi

    2008-01-01

    The 21 cm signals from the UV photon sources of reionization epoch is investigated with solving the radiative transfer equation by the WENO algorithm. The results show that a spherical shell of 21 cm emission and absorption will develop around a point source once the speed of the ionization front (I-front) is significantly lower than the speed of light. The 21 cm shell extends from the I-front to the front of light; its inner part is the emission region and its outer part is the absorption region. The 21 cm emission region depends strongly on the intensity, frequency-spectrum and life-time of the UV ionizing source. At redshift 1+z = 20, for a UV ionizing source with an intensity Ė~=1045 erg s-1 and a power law spectrum ν-α with α = 2, the emission region has a comoving size of 1-3 Mpc at the age of the source to be ~=2 Myr. However, the emission regions are very small, and would even be erased by thermal broadening if the source satisfies one of the following conditions: 1. the intensity is less than Ė~=1043 erg s-1 2. the frequency spectrum is thermal at temperature T~=105 K, and 3. the frequency spectrum is a power law with α>=3. On the other hand, the 21 cm absorption regions are developed in all these cases. For a source of short life-time, no 21 cm emission region can be formed if the source dies out before the I-front speed is significantly lower than the speed of light. Yet, a 21 cm absorption region can form and develop even after the emission of the source ceases.

  13. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    SciTech Connect

    Evoli, C.; Mesinger, A.; Ferrara, A. E-mail: andrei.mesinger@sns.it

    2014-11-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale (k ≅ 0.1 Mpc{sup -1}) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. These signatures are robust to astrophysical uncertainties, and will be easily detectable with second generation interferometers. We also briefly show that decaying warm dark matter has a negligible role in heating the IGM.

  14. Contributions of dark matter annihilation within ultracompact minihalos to the 21 cm background signal

    NASA Astrophysics Data System (ADS)

    Yang, Yupeng

    2016-12-01

    In the dark age of the Universe, any exotic sources, e.g. the dark matter annihilation, which inject the energy into the intergalactic medium (IGM) will left some imprint on the 21cm background signal. Recently, one new kind of dark matter structure named ultracompact dark matter minihalos (UCMHs) was proposed. Near the inner part of UCMHs, the distribution of dark matter particles is steeper than that of the general dark matter halos, ρ_{UCMHs}(r) ˜ r^{-2.25}, and the formation time of UCMHs is earlier, zc ˜ 1000. Therefore, it is excepted that the dark matter annihilation within UCMHs can effect the 21cm background signal. In this paper, we investigated the contributions of the dark matter annihilation within UCMHs to the 21cm background signal.

  15. Constraining the redshifted 21-cm signal with the unresolved soft X-ray background

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Cohen, Aviad; Barkana, Rennan; Silk, Joseph

    2017-01-01

    We use the observed unresolved cosmic X-ray background (CXRB) in the 0.5-2 keV band and existing upper limits on the 21-cm power spectrum to constrain the high-redshift population of X-ray sources, focusing on their effect on the thermal history of the Universe and the cosmic 21-cm signal. Because the properties of these sources are poorly constrained, we consider hot gas, X-ray binaries and mini-quasars (i.e. sources with soft or hard X-ray spectra) as possible candidates. We find that (1) the soft-band CXRB sets an upper limit on the X-ray efficiency of sources that existed before the end of reionization, which is one-to-two orders of magnitude higher than typically assumed efficiencies, (2) hard sources are more effective in generating the CXRB than the soft ones, (3) the commonly assumed limit of saturated heating is not valid during the first half of reionization in the case of hard sources, with any allowed value of X-ray efficiency, (4) the maximal allowed X-ray efficiency sets a lower limit on the depth of the absorption trough in the global 21-cm signal and an upper limit on the height of the emission peak, while in the 21-cm power spectrum it sets a minimum amplitude and frequency for the high-redshift peaks, and (5) the existing upper limit on the 21-cm power spectrum sets a lower limit on the X-ray efficiency for each model. When combined with the 21-cm global signal, the CXRB will be useful for breaking degeneracies and helping constrain the nature of high-redshift heating sources.

  16. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (i) a total sky power consisting both the foreground and the 21 cm background and (ii) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  17. BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS

    SciTech Connect

    Zhang, Le; Timbie, Peter T.; Bunn, Emory F.; Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S.; Sutter, P. M.; Wandelt, Benjamin D.

    2016-01-15

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation–Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

  18. The rise of the first stars: Supersonic streaming, radiative feedback, and 21-cm cosmology

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan

    2016-07-01

    Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising method for observing the epoch of the first stars is to use the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also beginning and promise exciting discoveries. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from the astrophysics of the early galaxies that formed during cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced feedback that radically affected both the intergalactic medium and the character of newly-forming stars. Lyman- α radiation from stars generated a strong 21-cm absorption signal, observation of which is currently the only feasible method of detecting the dominant population of galaxies at redshifts as early as z ∼ 25. Another major player is cosmic heating; if due to soft X-rays, then it occurred fairly early (z ∼ 15) and produced the strongest pre-reionization signal, while if it is due to hard X-rays, as now seems more likely, then it occurred later and may have dramatically affected the 21-cm sky even during reionization. In terms of analysis, much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations, a rich dataset that can be used to reconstruct the astrophysical information of greatest interest. This does not, however, diminish the importance of finding additional probes that are complementary or amenable to a more model-independent analysis. Examples include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. Another striking feature may result from a recently recognized effect of a supersonic relative velocity

  19. From Darkness to Light: Signatures of the Universe's First Galaxies in the Cosmic 21-cm Background

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    Within the first billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this Epoch of Reionization -- the emergence of the first stars, black holes, and full-fledged galaxies -- are expected to manifest as spectral "turning points" in the sky-averaged ("global") 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) required to model the signal. In this thesis, I make the first attempt to build the final piece of a global 21-cm data analysis pipeline: an inference tool capable of extracting the properties of the IGM and the Universe's first galaxies from the recovered signal. Such a framework is valuable even prior to a detection of the global 21-cm signal as it enables end-to-end simulations of 21-cm observations that can be used to optimize the design of upcoming instruments, their observing strategies, and their signal extraction algorithms. En route to a complete pipeline, I found that (1) robust limits on the physical properties of the IGM, such as its temperature and ionization state, can be derived analytically from the 21-cm turning points within two-zone models for the IGM, (2) improved constraints on the IGM properties can be obtained through simultaneous fitting of the global 21-cm signal and foregrounds, though biases can emerge depending on the parameterized form of the signal one adopts, (3) a simple four-parameter galaxy formation model can be constrained in only 100 hours of integration provided a stable instrumental response over a broad frequency range (~80 MHz), and (4) frequency-dependent RT solutions in physical models for the global 21-cm signal will be required to properly interpret the 21-cm absorption minimum, as the IGM thermal history is highly sensitive to the

  20. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    SciTech Connect

    Christian, Pierre; Loeb, Abraham

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  1. INTERPRETING THE GLOBAL 21 cm SIGNAL FROM HIGH REDSHIFTS. I. MODEL-INDEPENDENT CONSTRAINTS

    SciTech Connect

    Mirocha, Jordan; Harker, Geraint J. A.; Burns, Jack O.

    2013-11-10

    The sky-averaged (global) 21 cm signal is a powerful probe of the intergalactic medium (IGM) prior to the completion of reionization. However, so far it has been unclear whether it will provide more than crude estimates of when the universe's first stars and black holes formed, even in the best case scenario in which the signal is accurately extracted from the foregrounds. In contrast to previous work, which has focused on predicting the 21 cm signatures of the first luminous objects, we investigate an arbitrary realization of the signal and attempt to translate its features to the physical properties of the IGM. Within a simplified global framework, the 21 cm signal yields quantitative constraints on the Lyα background intensity, net heat deposition, ionized fraction, and their time derivatives without invoking models for the astrophysical sources themselves. The 21 cm absorption signal is most easily interpreted, setting strong limits on the heating rate density of the universe with a measurement of its redshift alone, independent of the ionization history or details of the Lyα background evolution. In a companion paper, we extend these results, focusing on the confidence with which one can infer source emissivities from IGM properties.

  2. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; Zwart, J. T. L.; Price, D.; Greenhill, L. J.; Mesinger, A.; Dowell, J.; Eftekhari, T.; Ellingson, S. W.; Kocz, J.; Schinzel, F.

    2016-09-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 ≲ z ≲ 30), parametrized by an amplitude A_{H I}, a frequency peak ν _{H I} and a width σ _{H I}, can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 < A_{H I} < 0 mK and σ _{H I} > 6.5 MHz (corresponding to Δz > 1.9 at redshift z ≃ 20) respectively at the 95-per cent confidence level in the range 13.2 < z < 27.4 (100 > ν > 50 MHz).

  3. The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes

    NASA Astrophysics Data System (ADS)

    Lopez-Honorez, Laura; Mena, Olga; Moliné, Ángeles; Palomares-Ruiz, Sergio; Vincent, Aaron C.

    2016-08-01

    Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-α pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of ~100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21 cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21 cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from ~100 MeV.

  4. Simulating the 21 cm signal from reionization including non-linear ionizations and inhomogeneous recombinations

    NASA Astrophysics Data System (ADS)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2016-04-01

    We explore the impact of incorporating physically motivated ionization and recombination rates on the history and topology of cosmic reionization and the resulting 21 cm power spectrum, by incorporating inputs from small-volume hydrodynamic simulations into our semi-numerical code, SIMFAST21, that evolves reionization on large scales. We employ radiative hydrodynamic simulations to parametrize the ionization rate Rion and recombination rate Rrec as functions of halo mass, overdensity and redshift. We find that Rion scales superlinearly with halo mass ({R_ion}∝ M_h^{1.41}), in contrast to previous assumptions. Implementing these scalings into SIMFAST21, we tune our one free parameter, the escape fraction fesc, to simultaneously reproduce recent observations of the Thomson optical depth, ionizing emissivity and volume-averaged neutral fraction by the end of reionization. This yields f_esc=4^{+7}_{-2} per cent averaged over our 0.375 h-1 Mpc cells, independent of halo mass or redshift, increasing to 6 per cent if we also constrain to match the observed z = 7 star formation rate function. Introducing superlinear Rion increases the duration of reionization and boosts small-scale 21 cm power by two to three times at intermediate phases of reionization, while inhomogeneous recombinations reduce ionized bubble sizes and suppress large-scale 21 cm power by two to three times. Gas clumping on sub-cell scales has a minimal effect on the 21 cm power. Superlinear Rion also significantly increases the median halo mass scale for ionizing photon output to ˜ 1010 M⊙, making the majority of reionizing sources more accessible to next-generation facilities. These results highlight the importance of accurately treating ionizing sources and recombinations for modelling reionization and its 21 cm power spectrum.

  5. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  6. Modelling the 21-cm Signal from the Epoch of Reionization and Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Choudhury, T. Roy; Datta, Kanan; Majumdar, Suman; Ghara, Raghunath; Paranjape, Aseem; Mondal, Rajesh; Bharadwaj, Somnath; Samui, Saumyadip

    2016-12-01

    Studying the cosmic dawn and the epoch of reionization through the redshifted 21-cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the Universe. Interpreting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21-cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.

  7. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  8. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  9. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  10. Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-20

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends tomore » $$\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc–1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.« less

  11. Z > 6 Galaxy Signatures in the Infrared Background and the 21-cm background

    NASA Astrophysics Data System (ADS)

    Cooray, A.

    2006-08-01

    We will discuss the signatures of the high-redshift galaxy formation in the near-infrared background. Ionizing sources at high redshift generically imprint a distinctive Lyman-cutoff feature and a unique spatial anisotropy signature to the IRB, both of which may be detectable in a short rocket flight. We will discuss the Cosmic Infrared Background ExpeRiment (CIBER), a rocket-borne instrument to probe the absolute spectrum and spatial anisotropy of the extragalactic InfraRed Background (IRB) optimized for detection of the integrated spatial anisotropies in the IR background from high-redshift galaxies. We will also discuss the signatures of first galaxies in the low radio frequency 21-cm background from the neutral Hydrogen distribution at z > 6; When combined with arcminute-scale temperature anisotropy and the polarization of the cosmic microwave background, the 21-cm background will allow a determination of inhomogeneous distribution of Lyman-alpha photons from first galaxies. We will discuss these and other possibilities to understand the first galaxy population with IR, 21-cm, and CMB backgrounds.

  12. Prospects of probing quintessence with H I 21-cm intensity mapping survey

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Thakur, Shruti; Guha Sarkar, Tapomoy; Sen, Anjan A.

    2016-12-01

    We investigate the prospect of constraining scalar field dark energy models using H I 21-cm intensity mapping surveys. We consider a wide class of coupled scalar field dark energy models whose predictions about the background cosmological evolution are different from the Λ cold dark matter (ΛCDM) predictions by a few per cent. We find that these models can be statistically distinguished from ΛCDM through their imprint on the 21-cm angular power spectrum. At the fiducial z = 1.5, corresponding to a radio interferometric observation of the post-reionization H I 21-cm observation at frequency 568 MHz, these models can in fact be distinguished from the ΛCDM model at signal-to-noise ratio >3σ level using a 10 000 h radio observation distributed over 40 pointings of a SKA1-mid-like radio telescope. We also show that tracker models are more likely to be ruled out in comparison with ΛCDM than the thawer models. Future radio observations can be instrumental in obtaining tighter constraints on the parameter space of dark energy models and supplement the bounds obtained from background studies.

  13. PAPER-128 Status Update: Towards a 21cm Power Spectrum Detection

    NASA Astrophysics Data System (ADS)

    Cheng, Carina; Jacobs, Danny; Aryeh Kohn, Saul; Parsons, Aaron; PAPER Collaboration

    2016-01-01

    The Epoch of Reionization (EoR) represents an unexplored phase in cosmic history when UV photons from the first galaxies ionized the majority of the hydrogen in the intergalactic medium. The Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) is a dedicated experiment that aims to measure EoR fluctuations by mapping the red-shifted 21cm hyperfine transition of neutral hydrogen. While PAPER-64 put the most constraining upper limits on the 21cm power spectrum to date, PAPER-128 is forecast to offer a factor of 4 increase in sensitivity, putting it in the range of plausible predicted signal levels. We present a status update of our ongoing PAPER-128 data analysis efforts, including new insights into data quality assessment, calibration, and foreground removal. As we continue our pursuit of the cosmological signal, the lessons we have learned with PAPER are an integral component for next generation 21cm experiments like the Hydrogen Epoch of Reionization Array (HERA).

  14. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  15. Cosmic reionization on computers. Mean and fluctuating redshifted 21 CM signal

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2016-06-20

    We explore the mean and fluctuating redshifted 21 cm signal in numerical simulations from the Cosmic Reionization On Computers project. We find that the mean signal varies between about ±25 mK. Most significantly, we find that the negative pre-reionization dip at z ~ 10–15 only extends to $\\langle {\\rm{\\Delta }}{T}_{B}\\rangle \\sim -25\\,{\\rm{mK}}$, requiring substantially higher sensitivity from global signal experiments that operate in this redshift range (EDGES-II, LEDA, SCI-HI, and DARE) than has often been assumed previously. We also explore the role of dense substructure (filaments and embedded galaxies) in the formation of the 21 cm power spectrum. We find that by neglecting the semi-neutral substructure inside ionized bubbles, the power spectrum can be misestimated by 25%–50% at scales k ~ 0.1–1h Mpc–1. Furthermore, this scale range is of particular interest, because the upcoming 21 cm experiments (Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization, Hydrogen Epoch of Reionization Array) are expected to be most sensitive within it.

  16. ON THE DETECTION OF GLOBAL 21-cm SIGNAL FROM REIONIZATION USING INTERFEROMETERS

    SciTech Connect

    Singh, Saurabh; Subrahmanyan, Ravi; Shankar, N. Udaya; Raghunathan, A.

    2015-12-20

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to global signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.

  17. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-11-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sightline to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesized that this is due to high-velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳ 80 per cent accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  18. Extracting Physical Parameters for the First Galaxies from the Cosmic Dawn Global 21-cm Spectrum

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Mirocha, Jordan; harker, geraint; Tauscher, Keith; Datta, Abhirup

    2016-01-01

    The all-sky or global redshifted 21-cm HI signal is a potentially powerful probe of the first luminous objects and their environs during the transition from the Dark Ages to Cosmic Dawn (35 > z > 6). The first stars, black holes, and galaxies heat and ionize the surrounding intergalactic medium, composed mainly of neutral hydrogen, so the hyperfine 21-cm transition can be used to indirectly study these early radiation sources. The properties of these objects can be examined via the broad absorption and emission features that are expected in the spectrum. The Dark Ages Radio Explorer (DARE) is proposed to conduct these observations at low radio astronomy frequencies, 40-120 MHz, in a 125 km orbit about the Moon. The Moon occults both the Earth and the Sun as DARE makes observations above the lunar farside, thus eliminating the corrupting effects from Earth's ionosphere, radio frequency interference, and solar nanoflares. The signal is extracted from the galactic/extragalactic foreground employing Bayesian methods, including Markov Chain Monte Carlo (MCMC) techniques. Theory indicates that the 21-cm signal is well described by a model in which the evolution of various physical quantities follows a hyperbolic tangent (tanh) function of redshift. We show that this approach accurately captures degeneracies and covariances between parameters, including those related to the signal, foreground, and the instrument. Furthermore, we also demonstrate that MCMC fits will set meaningful constraints on the Ly-α, ionizing, and X-ray backgrounds along with the minimum virial temperature of the first star-forming halos.

  19. The global 21-cm signal in the context of the high- z galaxy luminosity function

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan; Furlanetto, Steven R.; Sun, Guochao

    2017-01-01

    We build a new model for the global 21-cm signal that is calibrated to measurements of the high-z galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, τe. Assuming that the z ≲ 8 galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fitting values of τe and the inefficient heating induced by X-ray binaries (the presumptive sources of the high-z X-ray background) imply that the entirety of cosmic reionization and reheating occurs at z ≲ 12. In contrast to past global 21-cm models, whose z ˜ 20 (ν ˜ 70 MHz) absorption features and strong ˜25 mK emission features were driven largely by the assumption of efficient early star formation and X-ray heating, our new models peak in absorption at ν ˜ 110 MHz at depths ˜-160 mK and have negligible emission components. Current uncertainties in the faint-end of the LF, binary populations in star-forming galaxies, and UV and X-ray escape fractions introduce ˜20 MHz (˜50 mK) deviations in the trough's frequency (amplitude), while emission signals remain weak (≲10 mK) and are confined to ν ≳ 140 MHz. These predictions, which are intentionally conservative, suggest that the detection of a 21-cm absorption minimum at frequencies below ˜90 MHz and/or emission signals stronger than ˜10mK at ν ≲ 140 MHz would provide strong evidence for `new' sources at high redshifts, such as Population III stars and their remnants.

  20. On the Detection of Global 21-cm Signal from Reionization Using Interferometers

    NASA Astrophysics Data System (ADS)

    Singh, Saurabh; Subrahmanyan, Ravi; Udaya Shankar, N.; Raghunathan, A.

    2015-12-01

    Detection of the global redshifted 21-cm signal is an excellent means of deciphering the physical processes during the Dark Ages and subsequent Epoch of Reionization (EoR). However, detection of this faint monopole is challenging due to the high precision required in instrumental calibration and modeling of substantially brighter foregrounds and instrumental systematics. In particular, modeling of receiver noise with mK accuracy and its separation remains a formidable task in experiments aiming to detect the global signal using single-element spectral radiometers. Interferometers do not respond to receiver noise; therefore, here we explore the theory of the response of interferometers to global signals. In other words, we discuss the spatial coherence in the electric field arising from the monopole component of the 21-cm signal and methods for its detection using sensor arrays. We proceed by first deriving the response to uniform sky of two-element interferometers made of unit dipole and resonant loop antennas, then extend the analysis to interferometers made of one-dimensional arrays and also consider two-dimensional aperture antennas. Finally, we describe methods by which the coherence might be enhanced so that the interferometer measurements yield improved sensitivity to the monopole component. We conclude (a) that it is indeed possible to measure the global 21-cm from EoR using interferometers, (b) that a practically useful configuration is with omnidirectional antennas as interferometer elements, and (c) that the spatial coherence may be enhanced using, for example, a space beam splitter between the interferometer elements.

  1. 21-cm lensing and the cold spot in the cosmic microwave background.

    PubMed

    Kovetz, Ely D; Kamionkowski, Marc

    2013-04-26

    An extremely large void and a cosmic texture are two possible explanations for the cold spot seen in the cosmic microwave background. We investigate how well these two hypotheses can be tested with weak lensing of 21-cm fluctuations from the epoch of reionization measured with the Square Kilometer Array. While the void explanation for the cold spot can be tested with Square Kilometer Array, given enough observation time, the texture scenario requires significantly prolonged observations, at the highest frequencies that correspond to the epoch of reionization, over the field of view containing the cold spot.

  2. Intensity Mapping with Carbon Monoxide Emission Lines and the Redshifted 21 cm Line

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Furlanetto, Steven R.; Oh, S. Peng; Aguirre, James; Chang, Tzu-Ching; Doré, Olivier; Pritchard, Jonathan R.

    2011-11-01

    We quantify the prospects for using emission lines from rotational transitions of the CO molecule to perform an "intensity mapping" observation at high redshift during the Epoch of Reionization (EoR). The aim of CO intensity mapping is to observe the combined CO emission from many unresolved galaxies, to measure the spatial fluctuations in this emission, and to use this as a tracer of large-scale structure at very early times in the history of our universe. This measurement would help determine the properties of molecular clouds—the sites of star formation—in the very galaxies that reionize the universe. We further consider the possibility of cross-correlating CO intensity maps with future observations of the redshifted 21 cm line. The cross spectrum is less sensitive to foreground contamination than the auto power spectra, and can therefore help confirm the high-redshift origin of each signal. Furthermore, the cross spectrum measurement would help extract key information about the EoR, especially regarding the size distribution of ionized regions. We discuss uncertainties in predicting the CO signal at high redshift, and discuss strategies for improving these predictions. Under favorable assumptions and feasible specifications for a CO survey mapping the CO(2-1) and CO(1-0) lines, the power spectrum of CO emission fluctuations and its cross spectrum with future 21 cm measurements from the Murchison Widefield Array are detectable at high significance.

  3. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  4. A Low-cost 21 cm Horn-antenna Radio Telescope for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Patel, Rishi N; Kimberk, Robert S; Test, John H; Krolewski, Alex; Ryan, James; Karkare, Kirit S; Kovac, John M; Dame, Thomas M.

    2014-06-01

    Small radio telescopes (1-3m) for observations of the 21 cm hydrogen line are widely used for education and outreach. A pyramidal horn was used by Ewen & Purcell (1951) to first detect the 21cm line at Harvard. Such a horn is simple to design and build, compared to a parabolic antenna which is usually purchased ready-made. Here we present a design of a horn antenna radio telescope that can be built entirely by students, using simple components costing less than $300. The horn has an aperture of 75 cm along the H-plane, 59 cm along the E-plane, and gain of about 20 dB. The receiver system consists of low noise amplifiers, band-pass filters and a software-defined-radio USB receiver that provides digitized samples for spectral processing in a computer. Starting from construction of the horn antenna, and ending with the measurement of the Galactic rotation curve, took about 6 weeks, as part of an undergraduate course at Harvard University. The project can also grow towards building a two-element interferometer for follow-up studies.

  5. Tracing the Milky Way Nuclear Wind with 21cm Atomic Hydrogen Emission

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.; McClure-Griffiths, N. M.

    2016-08-01

    There is evidence in 21 cm H i emission for voids several kiloparsecs in size centered approximately on the Galactic center, both above and below the Galactic plane. These appear to map the boundaries of the Galactic nuclear wind. An analysis of H i at the tangent points, where the distance to the gas can be estimated with reasonable accuracy, shows a sharp transition at Galactic radii R ≲ 2.4 kpc from the extended neutral gas layer characteristic of much of the Galactic disk, to a thin Gaussian layer with FWHM ˜ 125 pc. An anti-correlation between H i and γ-ray emission at latitudes 10^\\circ ≤slant | b| ≤slant 20^\\circ suggests that the boundary of the extended H i layer marks the walls of the Fermi Bubbles. With H i, we are able to trace the edges of the voids from | z| \\gt 2 {{kpc}} down to z ≈ 0, where they have a radius ˜2 kpc. The extended Hi layer likely results from star formation in the disk, which is limited largely to R ≳ 3 kpc, so the wind may be expanding into an area of relatively little H i. Because the H i kinematics can discriminate between gas in the Galactic center and foreground material, 21 cm H i emission may be the best probe of the extent of the nuclear wind near the Galactic plane.

  6. Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations

    SciTech Connect

    Sekiguchi, Toyokazu; Sugiyama, Naoshi; Tashiro, Hiroyuki; Silk, Joseph E-mail: hiroyuki.tashiro@asu.edu E-mail: naoshi@nagoya-u.jp

    2014-03-01

    We investigate cosmological signatures of uncorrelated isocurvature perturbations whose power spectrum is blue-tilted with spectral index 2∼21cm line fluctuations due to neutral hydrogens in minihalos. Combination of measurements of the reionization optical depth and 21cm line fluctuations will provide complementary probes of a highly blue-tilted isocurvature power spectrum.

  7. 21 cm signal from cosmic dawn - II. Imprints of the light-cone effects

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Datta, Kanan K.; Choudhury, T. Roy

    2015-11-01

    Details of various unknown physical processes during the cosmic dawn and the epoch of reionization can be extracted from observations of the redshifted 21 cm signal. These observations, however, will be affected by the evolution of the signal along the line of sight which is known as the `light-cone effect'. We model this effect by post-processing a dark matter N-body simulation with an 1D radiative transfer code. We find that the effect is much stronger and dramatic in presence of inhomogeneous heating and Ly α coupling compared to the case where these processes are not accounted for. One finds increase (decrease) in the spherically averaged power spectrum up to a factor of 3 (0.6) at large scales (k ˜ 0.05 Mpc- 1) when the light-cone effect is included, though these numbers are highly dependent on the source model. The effect is particularly significant near the peak and dip-like features seen in the power spectrum. The peaks and dips are suppressed and thus the power spectrum can be smoothed out to a large extent if the width of the frequency band used in the experiment is large. We argue that it is important to account for the light-cone effect for any 21-cm signal prediction during cosmic dawn.

  8. Signatures of clumpy dark matter in the global 21 cm background signal

    SciTech Connect

    Cumberbatch, Daniel T.; Lattanzi, Massimiliano; Silk, Joseph

    2010-11-15

    We examine the extent to which the self-annihilation of supersymmetric neutralino dark matter, as well as light dark matter, influences the rate of heating, ionization, and Lyman-{alpha} pumping of interstellar hydrogen and helium and the extent to which this is manifested in the 21 cm global background signal. We fully consider the enhancements to the annihilation rate from dark matter halos and substructures within them. We find that the influence of such structures can result in significant changes in the differential brightness temperature, {delta}T{sub b}. The changes at redshifts z<25 are likely to be undetectable due to the presence of the astrophysical signal; however, in the most favorable cases, deviations in {delta}T{sub b}, relative to its value in the absence of self-annihilating dark matter, of up to {approx_equal}20 mK at z=30 can occur. Thus we conclude that, in order to exclude these models, experiments measuring the global 21 cm signal, such as EDGES and CORE, will need to reduce the systematics at 50 MHz to below 20 mK.

  9. Incidence of H I 21-cm absorption in strong Fe II systems at 0.5 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Srianand, R.; Gupta, N.; Joshi, R.; Petitjean, P.; Noterdaeme, P.; Ge, J.; Krogager, J.-K.

    2017-03-01

    We present the results from our search for H I 21-cm absorption in a sample of 16 strong Fe II systems [Wr(Mg II λ2796) ≥ 1.0 Å and Wr(Fe II λ2600) or W_{Fe II} ≥ 1 Å] at 0.5 < z < 1.5 using the Giant Metrewave Radio Telescope and the Green Bank Telescope. We report six new H I 21-cm absorption detections from our sample, which have increased the known number of detections in strong Mg II systems at this redshift range by ∼50 per cent. Combining our measurements with those in the literature, we find that the detection rate of H I 21-cm absorption increases with W_{Fe II}, being four times higher in systems with W_{Fe II} ≥ 1 Å compared to systems with W_{Fe II} < 1 Å. The N(H I) associated with the H I 21-cm absorbers would be ≥2 × 1020 cm-2, assuming a spin temperature of ∼500 K (based on H I 21-cm absorption measurements of damped Lyman α systems at this redshift range) and unit covering factor. We find that H I 21-cm absorption arises on an average in systems with stronger metal absorption. We also find that quasars with H I 21-cm absorption detected towards them have systematically higher E(B - V) values than those which do not. Further, by comparing the velocity widths of H I 21-cm absorption lines detected in absorption- and galaxy-selected samples, we find that they show an increasing trend (significant at 3.8σ) with redshift at z < 3.5, which could imply that the absorption originates from more massive galaxy haloes at high z. Increasing the number of H I 21-cm absorption detections at these redshifts is important to confirm various trends noted here with higher statistical significance.

  10. De-coding the Neutral Hydrogen (21cm) Line Profiles of Disk galaxies

    NASA Astrophysics Data System (ADS)

    Moak, Sandy; Madore, Barry; Khatami, David

    2017-01-01

    Neutral hydrogen is the most abundant element in the interstellar medium, and it has long lent astronomers insight into galaxy structure, galactic interactions, and even dark matter prevalence. It is necessary to implement a detailed coding scheme that characterizes the 21-cm HI line profiles which exist in abundance throughout literature. We have utilized a new computer simulation program that exposes the internal architecture of a galaxy by way of mapping the one-dimensional line profile on to the three-dimensional parameters of a given galaxy. We have created a naming system to classify HI line profiles, which represents a kinematic description of the galaxy simply by considering its classification within the coding scheme.

  11. Method for direct measurement of cosmic acceleration by 21-cm absorption systems.

    PubMed

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-25

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  12. Method for Direct Measurement of Cosmic Acceleration by 21-cm Absorption Systems

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Zhang, Tong-Jie; Pen, Ue-Li

    2014-07-01

    So far there is only indirect evidence that the Universe is undergoing an accelerated expansion. The evidence for cosmic acceleration is based on the observation of different objects at different distances and requires invoking the Copernican cosmological principle and Einstein's equations of motion. We examine the direct observability using recession velocity drifts (Sandage-Loeb effect) of 21-cm hydrogen absorption systems in upcoming radio surveys. This measures the change in velocity of the same objects separated by a time interval and is a model-independent measure of acceleration. We forecast that for a CHIME-like survey with a decade time span, we can detect the acceleration of a ΛCDM universe with 5σ confidence. This acceleration test requires modest data analysis and storage changes from the normal processing and cannot be recovered retroactively.

  13. Using 21 cm absorption surveys to measure the average H I spin temperature in distant galaxies

    NASA Astrophysics Data System (ADS)

    Allison, J. R.; Zwaan, M. A.; Duchesne, S. W.; Curran, S. J.

    2016-10-01

    We present a statistical method for measuring the average H I spin temperature in distant galaxies using the expected detection yields from future wide-field 21 cm absorption surveys. As a demonstrative case study, we consider an all-southern-sky simulated survey of 2-h per pointing with the Australian Square Kilometre Array Pathfinder for intervening H I absorbers at intermediate cosmological redshifts between z = 0.4 and 1. For example, if such a survey yielded 1000 absorbers, we would infer a harmonic-mean spin temperature of overline{T}_spin ˜ 100 K for the population of damped Lyman α absorbers (DLAs) at these redshifts, indicating that more than 50 per cent of the neutral gas in these systems is in a cold neutral medium (CNM). Conversely, a lower yield of only 100 detections would imply overline{T}_spin ˜ 1000 K and a CNM fraction less than 10 per cent. We propose that this method can be used to provide independent verification of the spin temperature evolution reported in recent 21 cm surveys of known DLAs at high redshift and for measuring the spin temperature at intermediate redshifts below z ≈ 1.7, where the Lyman α line is inaccessible using ground-based observatories. Increasingly more sensitive and larger surveys with the Square Kilometre Array should provide stronger statistical constraints on the average spin temperature. However, these will ultimately be limited by the accuracy to which we can determine the H I column density frequency distribution, the covering factor and the redshift distribution of the background radio source population.

  14. Warm dark matter signatures on the 21cm power spectrum: intensity mapping forecasts for SKA

    SciTech Connect

    Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo; Lapi, Andrea E-mail: villaescusa@oats.inaf.it E-mail: lapi@sissa.it

    2015-07-01

    We investigate the impact that warm dark matter (WDM) has in terms of 21 cm intensity mapping in the post-reionization Universe at z=3−5. We perform hydrodynamic simulations for 5 different models: cold dark matter and WDM with 1,2,3,4 keV (thermal relic) mass and assign the neutral hydrogen a-posteriori using two different methods that both reproduce observations in terms of column density distribution function of neutral hydrogen systems. Contrary to naive expectations, the suppression of power present in the linear and non-linear matter power spectra, results in an increase of power in terms of neutral hydrogen and 21 cm power spectra. This is due to the fact that there is a lack of small mass halos in WDM models with respect to cold dark matter: in order to distribute a total amount of neutral hydrogen within the two cosmological models, a larger quantity has to be placed in the most massive halos, that are more biased compared to the cold dark matter cosmology. We quantify this effect and address significance for the telescope SKA1-LOW, including a realistic noise modeling. The results indicate that we will be able to rule out a 4 keV WDM model with 5000 hours of observations at z>3, with a statistical significance of >3 σ, while a smaller mass of 3 keV, comparable to present day constraints, can be ruled out at more than 2 σ confidence level with 1000 hours of observations at z>5.

  15. Warm dark matter signatures on the 21cm power spectrum: intensity mapping forecasts for SKA

    NASA Astrophysics Data System (ADS)

    Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo; Lapi, Andrea

    2015-07-01

    We investigate the impact that warm dark matter (WDM) has in terms of 21 cm intensity mapping in the post-reionization Universe at z=3-5. We perform hydrodynamic simulations for 5 different models: cold dark matter and WDM with 1,2,3,4 keV (thermal relic) mass and assign the neutral hydrogen a-posteriori using two different methods that both reproduce observations in terms of column density distribution function of neutral hydrogen systems. Contrary to naive expectations, the suppression of power present in the linear and non-linear matter power spectra, results in an increase of power in terms of neutral hydrogen and 21 cm power spectra. This is due to the fact that there is a lack of small mass halos in WDM models with respect to cold dark matter: in order to distribute a total amount of neutral hydrogen within the two cosmological models, a larger quantity has to be placed in the most massive halos, that are more biased compared to the cold dark matter cosmology. We quantify this effect and address significance for the telescope SKA1-LOW, including a realistic noise modeling. The results indicate that we will be able to rule out a 4 keV WDM model with 5000 hours of observations at z>3, with a statistical significance of >3 σ, while a smaller mass of 3 keV, comparable to present day constraints, can be ruled out at more than 2 σ confidence level with 1000 hours of observations at z>5.

  16. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  17. Probing Individual Sources during Reionization and Cosmic Dawn using Square Kilometre Array HI 21-cm Observations

    NASA Astrophysics Data System (ADS)

    Datta, Kanan K.; Ghara, Raghunath; Majumdar, Suman; Choudhury, T. Roy; Bharadwaj, Somnath; Roy, Himadri; Datta, Abhirup

    2016-12-01

    Detection of individual luminous sources during the reionization epoch and cosmic dawn through their signatures in the HI 21-cm signal is one of the direct approaches to probe the epoch. Here, we summarize our previous works on this and present preliminary results on the prospects of detecting such sources using the SKA1-low experiment. We first discuss the expected HI 21-cm signal around luminous sources at different stages of reionization and cosmic dawn. We then introduce two visibility based estimators for detecting such signals: one based on the matched filtering technique and the other relies on simply combing the visibility signal from different baselines and frequency channels. We find that the SKA1-low should be able to detect ionized bubbles of radius Rb ≳ 10 Mpc with ˜100 h of observations at redshift z˜8 provided that the mean outside neutral hydrogen fraction x_{ {HI}} ≳ 0.5. We also investigate the possibility of detecting HII regions around known bright QSOs such as around ULASJ1120+0641 discovered by Mortlock et al. ( Nature 474, 7353 (2011)). We find that a 5 σ detection is possible with 600 h of SKA1-low observations if the QSO age and the outside xHI are at least ˜2×107 Myr and ˜0.2 respectively. Finally, we investigate the possibility of detecting the very first X-ray and Ly- α sources during the cosmic dawn. We consider mini-QSOs like sources which emits in X-ray frequency band. We find that with a total ˜ 1000 h of observations, SKA1-low should be able to detect those sources individually with a ˜ 9 σ significance at redshift z=15. We summarize how the SNR changes with various parameters related to the source properties.

  18. Cross-correlating 21cm intensity maps with Lyman Break Galaxies in the post-reionization era

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Alonso, David; Datta, Kanan K.; Santos, Mário G. E-mail: viel@oats.inaf.it E-mail: kanan@ncra.tifr.res.in E-mail: mgrsantos@uwc.ac.za

    2015-03-01

    We investigate the cross-correlation between the spatial distribution of Lyman Break Galaxies (LBGs) and the 21cm intensity mapping signal at z∼[3–5]. At these redshifts, galactic feedback is supposed to only marginally affect the matter power spectrum, and the neutral hydrogen distribution is independently constrained by quasar spectra. Using a high resolution N-body simulation, populated with neutral hydrogen a posteriori, we forecast for the expected LBG-21cm cross-spectrum and its error for a 21cm field observed by the Square Kilometre Array (SKA1-LOW and SKA1-MID), combined with a spectroscopic LBG survey with the same volume. The cross power can be detected with a signal-to-noise ratio (SNR) up to ∼10 times higher (and down to ∼ 4 times smaller scales) than the 21cm auto-spectrum for this set-up, with the SNR depending only very weakly on redshift and the LBG population. We also show that while both the 21cm auto- and LBG-21cm cross-spectra can be reliably recovered after the cleaning of smooth-spectrum foreground contamination, only the cross-power is robust to problematic non-smooth foregrounds like polarized synchrotron emission.

  19. Cross-correlating 21cm intensity maps with Lyman Break Galaxies in the post-reionization era

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Viel, Matteo; Alonso, David; Datta, Kanan K.; Bull, Philip; Santos, Mário G.

    2015-03-01

    We investigate the cross-correlation between the spatial distribution of Lyman Break Galaxies (LBGs) and the 21cm intensity mapping signal at z~[3-5]. At these redshifts, galactic feedback is supposed to only marginally affect the matter power spectrum, and the neutral hydrogen distribution is independently constrained by quasar spectra. Using a high resolution N-body simulation, populated with neutral hydrogen a posteriori, we forecast for the expected LBG-21cm cross-spectrum and its error for a 21cm field observed by the Square Kilometre Array (SKA1-LOW and SKA1-MID), combined with a spectroscopic LBG survey with the same volume. The cross power can be detected with a signal-to-noise ratio (SNR) up to ~10 times higher (and down to ~ 4 times smaller scales) than the 21cm auto-spectrum for this set-up, with the SNR depending only very weakly on redshift and the LBG population. We also show that while both the 21cm auto- and LBG-21cm cross-spectra can be reliably recovered after the cleaning of smooth-spectrum foreground contamination, only the cross-power is robust to problematic non-smooth foregrounds like polarized synchrotron emission.

  20. Tests of the Tully-Fisher relation. 1: Scatter in infrared magnitude versus 21 cm width

    NASA Technical Reports Server (NTRS)

    Bernstein, Gary M.; Guhathakurta, Puragra; Raychaudhury, Somak; Giovanelli, Riccardo; Haynes, Martha P.; Herter, Terry; Vogt, Nicole P.

    1994-01-01

    We examine the precision of the Tully-Fisher relation (TFR) using a sample of galaxies in the Coma region of the sky, and find that it is good to 5% or better in measuring relative distances. Total magnitudes and disk axis ratios are derived from H and I band surface photometry, and Arecibo 21 cm profiles define the rotation speeds of the galaxies. Using 25 galaxies for which the disk inclination and 21 cm width are well defined, we find an rms deviation of 0.10 mag from a linear TFR with dI/d(log W(sub c)) = -5.6. Each galaxy is assumed to be at a distance proportional to its redshift, and an extinction correction of 1.4(1-b/a) mag is applied to the total I magnitude. The measured scatter is less than 0.15 mag using milder extinction laws from the literature. The I band TFR scatter is consistent with measurement error, and the 95% CL limits on the intrinsic scatter are 0-0.10 mag. The rms scatter using H band magnitudes is 0.20 mag (N = 17). The low width galaxies have scatter in H significantly in excess of known measurement error, but the higher width half of the galaxies have scatter consistent with measurement error. The H band TFR slope may be as steep as the I band slope. As the first applications of this tight correlation, we note the following: (1) the data for the particular spirals commonly used to define the TFR distance to the Coma cluster are inconsistent with being at a common distance and are in fact in free Hubble expansion, with an upper limit of 300 km/s on the rms peculiar line-of-sight velocity of these gas-rich spirals; and (2) the gravitational potential in the disks of these galaxies has typical ellipticity less than 5%. The published data for three nearby spiral galaxies with Cepheid distance determinations are inconsistent with our Coma TFR, suggesting that these local calibrators are either ill-measured or peculiar relative to the Coma Supercluster spirals, or that the TFR has a varying form in different locales.

  1. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Technical Reports Server (NTRS)

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  2. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Astrophysics Data System (ADS)

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ~ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ~10-4. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ~10-2 level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  3. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  4. Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.

    PubMed

    Tarter, J

    1989-01-01

    Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.

  5. Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Saiyad; Bharadwaj, Somnath; Chengalur, Jayaram N.

    2008-04-01

    Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153MHz to characterize the statistical properties of the background radiation across ~1° to subarcmin angular scales, and across a frequency band of 5MHz with 62.5kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum Cl. We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency V2(U, 0). From our observations, we find that V2(U, 0) is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies κ(U, Δν) seems to be much more sensitive to calibration errors. We find a rapid decline in κ(U, Δν), in contrast with the prediction of less than 1 per cent variation across 2.5MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.

  6. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  7. Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR

    NASA Astrophysics Data System (ADS)

    Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.

    2017-03-01

    We present the first limits on the Epoch of Reionization 21 cm H i power spectra, in the redshift range z = 7.9–10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc‑1 in the range z = 9.6–10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

  8. Prospects of Detecting HI using Redshifted 21-cm Radiation at z˜3

    NASA Astrophysics Data System (ADS)

    Gehlot, Bharat Kumar; Bagla, J. S.

    2017-03-01

    Distribution of cold gas in the post-reionization era provides an important link between distribution of galaxies and the process of star formation. Redshifted 21-cm radiation from the hyperfine transition of neutral hydrogen allows us to probe the neutral component of cold gas, most of which is to be found in the interstellar medium of galaxies. Existing and upcoming radio telescopes can probe the large scale distribution of neutral hydrogen via HI intensity mapping. In this paper, we use an estimate of the HI power spectrum derived using an ansatz to compute the expected signal from the large scale HI distribution at z˜3. We find that the scale dependence of bias at small scales makes a significant difference to the expected signal even at large angular scales. We compare the predicted signal strength with the sensitivity of radio telescopes that can observe such radiation and calculate the observation time required for detecting neutral hydrogen at these redshifts. We find that OWFA (Ooty Wide Field Array) offers the best possibility to detect neutral hydrogen at z˜3 before the SKA (Square Kilometer Array) becomes operational. We find that the OWFA should be able to make a 3 σ or a more significant detection in 2000 hours of observations at several angular scales. Calculations done using the Fisher matrix approach indicate that a 5 σ detection of the binned HI power spectrum via measurement of the amplitude of the HI power spectrum is possible in 1000 h (Sarkar et al. 2017).

  9. Eliminating Polarized Leakage as a Systematic for 21 cm Epoch of Reionization Experiments

    NASA Astrophysics Data System (ADS)

    Aguirre, James E.; HERA Collaboration, PAPER Collaboration

    2016-01-01

    Because of the extreme brightness of foreground emission relative to the desired signal, experiments seeking the 21 cm HI signal from the epoch of reionization must employ foreground removal or avoidance strategies with high dynamic range. Almost all of these techniques rely on the spectral smoothness of the foreground emission, which is dominated by synchrotron emission. The polarized component of such emission can suffer Faraday rotation through the interstellar medium of the Milky Way, thereby inducing frequency structure which can be mistaken for real reionization signal. Therefore, it is of great importance for such experiments to eliminate leakage of Faraday-rotated, polarized emission into the unpolarized (Stokes I) component where the reionization signal lives. We discuss a number of approaches under investigation for mitigating this leakage in the PAPER and HERA experiments, including calibration and careful instrument design. Importantly, however, we show that the ionosphere may provide a very strong suppression of the polarized signal, when averaged over the integration times required for EoR experiments, by scrambling the phase of polarized sources. Moreover, this attenuation comes with very little suppression of the desired unpolarized signal. We consider the implications of this strategy for PAPER and HERA.

  10. MITEoR: a scalable interferometer for precision 21 cm cosmology

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Tegmark, M.; Buza, V.; Dillon, J. S.; Gharibyan, H.; Hickish, J.; Kunz, E.; Liu, A.; Losh, J.; Lutomirski, A.; Morrison, S.; Narayanan, S.; Perko, A.; Rosner, D.; Sanchez, N.; Schutz, K.; Tribiano, S. M.; Valdez, M.; Yang, H.; Adami, K. Zarb; Zelko, I.; Zheng, K.; Armstrong, R. P.; Bradley, R. F.; Dexter, M. R.; Ewall-Wice, A.; Magro, A.; Matejek, M.; Morgan, E.; Neben, A. R.; Pan, Q.; Penna, R. F.; Peterson, C. M.; Su, M.; Villasenor, J.; Williams, C. L.; Zhu, Y.

    2014-12-01

    We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of the high-sensitivity 3D mapping required for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that the calibration parameters precisely describe the effect of the instrument upon our measurements, allowing us to form a model that is consistent with χ2 per degree of freedom <1.2 for as much as 80 per cent of the observations. We use these results to develop an optimal estimator of calibration parameters using Wiener filtering, and explore the question of how often and how finely in frequency visibilities must be reliably measured to solve for calibration coefficients. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen Epoch of Reionization Array project and other next-generation instruments, which would incorporate many identical or similar technologies.

  11. Confirmation of Wide-field Signatures in Redshifted 21 cm Power Spectra

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Jacobs, Daniel C.; Bowman, Judd D.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Deshpande, A. A.; de Oliveira-Costa, A.; Dillon, Joshua S.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hernquist, L.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kim, Han-Seek; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Tingay, S. J.; Trott, C. M.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2015-07-01

    We confirm our recent prediction of the “pitchfork” foreground signature in power spectra of high-redshift 21 cm measurements where the interferometer is sensitive to large-scale structure on all baselines. This is due to the inherent response of a wide-field instrument and is characterized by enhanced power from foreground emission in Fourier modes adjacent to those considered to be the most sensitive to the cosmological H i signal. In our recent paper, many signatures from the simulation that predicted this feature were validated against Murchison Widefield Array (MWA) data, but this key pitchfork signature was close to the noise level. In this paper, we improve the data sensitivity through the coherent averaging of 12 independent snapshots with identical instrument settings and provide the first confirmation of the prediction with a signal-to-noise ratio \\gt 10. This wide-field effect can be mitigated by careful antenna designs that suppress sensitivity near the horizon. Simple models for antenna apertures that have been proposed for future instruments such as the Hydrogen Epoch of Reionization Array and the Square Kilometre Array indicate they should suppress foreground leakage from the pitchfork by ∼40 dB relative to the MWA and significantly increase the likelihood of cosmological signal detection in these critical Fourier modes in the three-dimensional power spectrum.

  12. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  13. The visibility-based tapered gridded estimator (TGE) for the redshifted 21-cm power spectrum

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Chatterjee, Suman; Ali, Sk. Saiyad; Roy, Nirupam; Ghosh, Abhik

    2016-12-01

    We present an improved visibility-based tapered gridded estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the total computation time for the calculation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum Cℓ is improved and then extended to obtain the 3D TGE for the power spectrum P(k) of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of 150-MHz Giant Metrewave Radio Telescope (GMRT) observations. We find that the estimator accurately recovers the input model for the 1D spherical power spectrum P(k) and the 2D cylindrical power spectrum P(k⊥, k∥), and that the predicted variance is in reasonably good agreement with the simulations.

  14. Erasing the variable: empirical foreground discovery for global 21 cm spectrum experiments

    SciTech Connect

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ∼ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ∼10{sup –4}. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼10{sup –2} level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  15. Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles

    NASA Astrophysics Data System (ADS)

    Hall, Alex; Bonvin, Camille

    2017-02-01

    We investigate the feasibility of measuring the effects of peculiar velocities in large-scale structure using the dipole of the redshift-space cross-correlation function. We combine number counts of galaxies with brightness-temperature fluctuations from 21 cm intensity mapping, demonstrating that the dipole may be measured at modest significance (≲2 σ ) by combining the upcoming radio survey Canadian Hydrogen Intensity Mapping Experiment with the future redshift surveys of Dark Energy Spectroscopic Instrument (DESI) and Euclid. More significant measurements (≲10 σ ) will be possible by combining intensity maps from the Square Kilometre Array (SKA) with these of DESI or Euclid, and an even higher significance measurement (≲100 σ ) may be made by combining observables completely internally to the SKA. We account for effects such as contamination by wide-angle terms, interferometer noise and beams in the intensity maps, nonlinear enhancements to the power spectrum, stacking multiple populations, sensitivity to the magnification slope, and the possibility that number counts and intensity maps probe the same tracers. We also derive a new expression for the covariance matrix of multitracer redshift-space correlation function estimators with arbitrary orientation weights, which may be useful for upcoming surveys aiming at measuring redshift-space clustering with multiple tracers.

  16. Improved foreground removal in GMRT 610 MHz observations towards redshifted 21-cm tomography

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Bharadwaj, Somnath; Ali, Sk. Saiyad; Chengalur, Jayaram N.

    2011-12-01

    Foreground removal is a challenge for 21-cm tomography of the high-redshift Universe. We use archival Giant Metrewave Radio Telescope (GMRT) data (obtained for completely different astronomical goals) to estimate the foregrounds at a redshift of ˜1. The statistic we use is the cross power spectrum between two frequencies separated by Δν at the angular multipole ℓ, or equivalently the multi-frequency angular power spectrum Cℓ(Δν). An earlier measurement of Cℓ(Δν) using these data had revealed the presence of oscillatory patterns along Δν, which turned out to be a severe impediment for foreground removal. Using the same data, in this paper we show that it is possible to considerably reduce these oscillations by suppressing the sidelobe response of the primary antenna elements. The suppression works best at the angular multipoles ℓ for which there is a dense sampling of the u-v plane. For three angular multipoles ℓ= 1405, 1602 and 1876, this sidelobe suppression along with a low order polynomial fitting completely results in residuals of (≤ 0.02 mK2), consistent with the noise at the 3σ level. Since the polynomial fitting is done after estimation of the power spectrum it can be ensured that the estimation of the H I signal is not biased. The corresponding 99 per cent upper limit on the H I signal is ?, where ? is the mean neutral fraction and b is the bias.

  17. EXPLORING THE COSMIC REIONIZATION EPOCH IN FREQUENCY SPACE: AN IMPROVED APPROACH TO REMOVE THE FOREGROUND IN 21 cm TOMOGRAPHY

    SciTech Connect

    Wang, Jingying; Xu, Haiguang; Guo, Xueying; Li, Weitian; Liu, Chengze; An, Tao; Wang, Yu; Gu, Junhua; Martineau-Huynh, Olivier; Wu, Xiang-Ping E-mail: zishi@sjtu.edu.cn

    2013-02-15

    With the intent of correctly restoring the redshifted 21 cm signals emitted by neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space in order to investigate whether they work satisfactorily with complex foreground by quantitatively evaluating the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias b and average ionization fraction x{sub e} of the reionization processes, at z = 8 and the noise level of 60 mK we find that although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of the Mpc-scale components of the 21 cm signals (75% for {approx}> 6 h {sup -1} Mpc scales and 34% for {approx}> 1 h {sup -1} Mpc scales) is lost because it tends to be misidentified as part of the foreground when the single-narrow-segment separation approach is applied. The best restoration of the 21 cm signals and the tightest determination of b and x{sub e} can be obtained with the three-narrow-segment fitting technique as proposed in this paper. Similar results can be obtained at other redshifts.

  18. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis

    NASA Astrophysics Data System (ADS)

    Shaw, J. Richard; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert; Pen, Ue-Li

    2015-04-01

    In this paper we continue to develop the m -mode formalism, a technique for efficient and optimal analysis of wide-field transit radio telescopes, targeted at 21 cm cosmology. We extend this formalism to give an accurate treatment of the polarized sky, fully accounting for the effects of polarization leakage and cross polarization. We use the geometry of the measured set of visibilities to project down to pure temperature modes on the sky, serving as a significant compression, and an effective first filter of polarized contaminants. As in our previous work, we use the m -mode formalism with the Karhunen-Loève transform to give a highly efficient method for foreground cleaning, and demonstrate its success in cleaning realistic polarized skies observed with an instrument suffering from substantial off axis polarization leakage. We develop an optimal quadratic estimator in the m -mode formalism which can be efficiently calculated using a Monte Carlo technique. This is used to assess the implications of foreground removal for power spectrum constraints where we find that our method can clean foregrounds well below the foreground wedge, rendering only scales k∥<0.02 h Mpc-1 inaccessible. As this approach assumes perfect knowledge of the telescope, we perform a conservative test of how essential this is by simulating and analyzing data sets with deviations about our assumed telescope. Assuming no other techniques to mitigate bias are applied, we find we recover unbiased power spectra when the per-feed beamwidth to be measured to 0.1%, and amplifier gains to be known to 1% within each minute. Finally, as an example application, we extend our forecasts to a wideband 400-800 MHz cosmological observation and consider the implications for probing dark energy, finding a pathfinder-scale medium-sized cylinder telescope improves the Dark Energy Task Force figure of merit by around 70% over Planck and Stage II experiments alone.

  19. New Evidence for Mass Loss from δ Cephei from H I 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Marengo, M.; Evans, N. R.; Bono, G.

    2012-01-01

    Recently published Spitzer Space Telescope observations of the classical Cepheid archetype δ Cephei revealed an extended dusty nebula surrounding this star and its hot companion HD 213307. At far-infrared wavelengths, the emission resembles a bow shock aligned with the direction of space motion of the star, indicating that δ Cephei is undergoing mass loss through a stellar wind. Here we report H I 21 cm line observations with the Very Large Array (VLA) to search for neutral atomic hydrogen associated with this wind. Our VLA data reveal a spatially extended H I nebula (~13' or 1 pc across) surrounding the position of δ Cephei. The nebula has a head-tail morphology, consistent with circumstellar ejecta shaped by the interaction between a stellar wind and the interstellar medium (ISM). We directly measure a mass of circumstellar atomic hydrogen M_H I ≈ 0.07 M_{⊙}, although the total H I mass may be larger, depending on the fraction of circumstellar material that is hidden by Galactic contamination within our band or that is present on angular scales too large to be detected by the VLA. It appears that the bulk of the circumstellar gas has originated directly from the star, although it may be augmented by material swept from the surrounding ISM. The H I data are consistent with a stellar wind with an outflow velocity V o = 35.6 ± 1.2 km s-1 and a mass-loss rate of {\\dot{M}}≈ (1.0+/- 0.8)× 10^{-6} M_{⊙} yr-1. We have computed theoretical evolutionary tracks that include mass loss across the instability strip and show that a mass-loss rate of this magnitude, sustained over the preceding Cepheid lifetime of δ Cephei, could be sufficient to resolve a significant fraction of the discrepancy between the pulsation and evolutionary masses for this star.

  20. A Practical Theorem on Using Interferometry to Measure the Global 21-cm Signal

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Chang, Tzu-Ching; Doré, Olivier; Hirata, Christopher M.

    2016-08-01

    The sky-averaged, or global, background of redshifted 21 cm radiation is expected to be a rich source of information on cosmological reheating and reionization. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e., the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g., absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor—instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short-dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.

  1. A Flux Scale for Southern Hemisphere 21 cm Epoch of Reionization Experiments

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki; Bowman, Judd; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; Gugliucci, Nicole E.; Klima, Pat; MacMahon, Dave H. E.; Manley, Jason R.; Moore, David F.; Pober, Jonathan C.; Stefan, Irina I.; Walbrugh, William P.

    2013-10-01

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46° to -40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of -0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  2. Redshifted HI 21-cm Signal from the Post-Reionization Epoch: Cross-Correlations with Other Cosmological Probes

    NASA Astrophysics Data System (ADS)

    Sarkar, T. Guha; Datta, K. K.; Pal, A. K.; Choudhury, T. Roy; Bharadwaj, S.

    2016-12-01

    Tomographic intensity mapping of the HI using the redshifted 21-cm observations opens up a new window towards our understanding of cosmological background evolution and structure formation. This is a key science goal of several upcoming radio telescopes including the Square Kilometer Array (SKA). In this article, we focus on the post-reionization signal and investigate the cross correlating of the 21-cm signal with other tracers of the large scale structure. We consider the cross-correlation of the post-reionization 21-cm signal with the Lyman- α forest, Lyman-break galaxies and late time anisotropies in the CMBR maps like weak lensing and the integrated Sachs Wolfe effect. We study the feasibility of detecting the signal and explore the possibility of obtaining constraints on cosmological models using it.

  3. Models of the cosmological 21 cm signal from the epoch of reionization calibrated with Ly α and CMB data

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Choudhury, Tirthankar Roy; Puchwein, Ewald; Haehnelt, Martin G.

    2016-12-01

    We present here 21 cm predictions from high dynamic range simulations for a range of reionization histories that have been tested against available Ly α and cosmic microwave background (CMB) data. We assess the observability of the predicted spatial 21 cm fluctuations by ongoing and upcoming experiments in the late stages of reionization in the limit in which the hydrogen spin temperature is significantly larger than the CMB temperature. Models consistent with the available Ly α data and CMB measurement of the Thomson optical depth predict typical values of 10-20 mK2 for the variance of the 21 cm brightness temperature at redshifts z = 7-10 at scales accessible to ongoing and upcoming experiments (k ≲ 1 cMpc-1h). This is within a factor of a few magnitude of the sensitivity claimed to have been already reached by ongoing experiments in the signal rms value. Our different models for the reionization history make markedly different predictions for the redshift evolution and thus frequency dependence of the 21 cm power spectrum and should be easily discernible by Low-Frequency Array (and later Hydrogen Epoch of Reionization Array and Square Kilometre Array1) at their design sensitivity. Our simulations have sufficient resolution to assess the effect of high-density Lyman limit systems that can self-shield against ionizing radiation and stay 21 cm bright even if the hydrogen in their surroundings is highly ionized. Our simulations predict that including the effect of the self-shielded gas in highly ionized regions reduces the large-scale 21 cm power by about 30 per cent.

  4. The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization

    NASA Astrophysics Data System (ADS)

    Mesinger, Andrei; Greig, Bradley; Sobacchi, Emanuele

    2016-07-01

    We introduce the Evolution Of 21 cm Structure (EOS) project: providing periodic, public releases of the latest cosmological 21 cm simulations. 21 cm interferometry is set to revolutionize studies of the Cosmic Dawn (CD) and Epoch of Reionization (EoR). Progress will depend on sophisticated data analysis pipelines, initially tested on large-scale mock observations. Here we present the 2016 EOS release: 10243, 1.6 Gpc, 21 cm simulations of the CD and EoR, calibrated to the Planck 2015 measurements. We include calibrated, sub-grid prescriptions for inhomogeneous recombinations and photoheating suppression of star formation in small-mass galaxies. Leaving the efficiency of supernovae feedback as a free parameter, we present two runs which bracket the contribution from faint unseen galaxies. From these two extremes, we predict that the duration of reionization (defined as a change in the mean neutral fraction from 0.9 to 0.1) should be between 2.7 ≲ Δzre ≲ 5.7. The large-scale 21 cm power during the advanced EoR stages can be different by up to a factor of ˜10, depending on the model. This difference has a comparable contribution from (i) the typical bias of sources and (ii) a more efficient negative feedback in models with an extended EoR driven by faint galaxies. We also present detectability forecasts. With a 1000 h integration, Hydrogen Epoch of Reionization Array and (Square Kilometre Array phase 1) SKA1 should achieve a signal-to-noise of ˜few to hundreds throughout the EoR/CD. We caution that our ability to clean foregrounds determines the relative performance of narrow/deep versus wide/shallow surveys expected with SKA1. Our 21-cm power spectra, simulation outputs and visualizations are publicly available.

  5. Holographic Baryons

    NASA Astrophysics Data System (ADS)

    Yi, Piljin

    We review baryons in the D4-D8 holographic model of low energy QCD, with the large Nc and the large't Hooft coupling limit. The baryon is identified with a bulk soliton of a unit Pontryagin number, which from the four-dimensional viewpoint translates to a modified Skyrmion dressed by condensates of spin one mesons. We explore classical properties and find that the baryon in the holographic limit is amenable to an effective field theory description. We also present a simple method to capture all leading and subleading interactions in the 1/Nc and the derivative expansions. An infinitely predictive model of baryon-meson interactions is thus derived, although one may trust results only for low energy processes, given various approximations in the bulk. We showcase a few comparisons to experiments, such as the leading axial couplings to pions, the leading vector-like coupling, and a qualitative prediction of the electromagnetic vector dominance that involves the entire tower of vector mesons.

  6. SENSITIVE 21 cm OBSERVATIONS OF NEUTRAL HYDROGEN IN THE LOCAL GROUP NEAR M31

    SciTech Connect

    Wolfe, Spencer A.; Pisano, D. J.; Lockman, Felix J. E-mail: DJPisano@mail.wvu.edu

    2016-01-10

    Very sensitive 21 cm H i measurements have been made at several locations around the Local Group galaxy M31 using the Green Bank Telescope at an angular resolution of 9.′1, with a 5σ detection level of N{sub H} {sub i} = 3.9 × 10{sup 17} cm{sup −2} for a 30 km s{sup −1} line. Most of the H i in a 12 square-degree area almost equidistant between M31 and M33 is contained in nine discrete clouds that have a typical size of a few kpc and a H i mass of 10{sup 5}M{sub ⊙}. Their velocities in the Local Group Standard of Rest lie between −100 and +40 km s{sup −1}, comparable to the systemic velocities of M31 and M33. The clouds appear to be isolated kinematically and spatially from each other. The total H i mass of all nine clouds is 1.4 × 10{sup 6}M{sub ⊙} for an adopted distance of 800 kpc, with perhaps another 0.2 × 10{sup 6}M{sub ⊙} in smaller clouds or more diffuse emission. The H i mass of each cloud is typically three orders of magnitude less than the dynamical (virial) mass needed to bind the cloud gravitationally. Although they have the size and H i mass of dwarf galaxies, the clouds are unlikely to be part of the satellite system of the Local Group, as they lack stars. To the north of M31, sensitive H i measurements on a coarse grid find emission that may be associated with an extension of the M31 high-velocity cloud (HVC) population to projected distances of ∼100 kpc. An extension of the M31 HVC population at a similar distance to the southeast, toward M33, is not observed.

  7. Light-cone anisotropy in the 21 cm signal from the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Zawada, Karolina; Semelin, Benoît; Vonlanthen, Patrick; Baek, Sunghye; Revaz, Yves

    2014-04-01

    Using a suite of detailed numerical simulations, we estimate the level of anisotropy generated by the time evolution along the light cone of the 21 cm signal from the epoch of reionization. Our simulations include the physics necessary to model the signal during both the late emission regime and the early absorption regime, namely X-ray and Lyman band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight. We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light-cone anisotropy is visible only on large scales (100 comoving Mpc). However, the detailed behaviour is different. We find that, at three different epochs, the amplitudes of the correlations along and perpendicular to the line of sight differ from each other, indicating anisotropy. We show that these three epochs are associated with three events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman α coupling in regions around the sources. We find that a 20 × 20 deg2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 Mpc (comoving) scale, we show that the light-cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the Square Kilometre Array, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the Low-Frequency Array for radio astronomy, it is likely that only one anisotropy episode (ionized bubble overlap) will fall in the observing frequency range. This episode will be detectable only if sample

  8. The multifrequency angular power spectrum of the epoch of reionization 21-cm signal

    NASA Astrophysics Data System (ADS)

    Datta, Kanan K.; Choudhury, T. Roy; Bharadwaj, Somnath

    2007-06-01

    Observations of redshifted 21-cm radiation from neutral hydrogen (HI) at high redshifts is an important future probe of reionization. We consider the multifrequency angular power spectrum (MAPS) to quantify the statistics of the HI signal as a joint function of the angular multipole l and frequency separation Δν. The signal at two different frequencies is expected to decorrelate as Δν is increased, and quantifying this is particularly important in deciding the frequency resolution for future HI observations. This is also expected to play a very crucial role in extracting the signal from foregrounds as the signal is expected to decorrelate much faster than the foregrounds (which are largely continuum sources) with increasing Δν. In this paper, we develop formulae relating MAPS to different components of the 3D HI power spectrum taking into account HI peculiar velocities. We show that the flat-sky approximation provides a very good representation over the angular scales of interest, and a final expression which is very simple to calculate and interpret. We present results for z = 10 assuming a neutral hydrogen fraction of 0.6 considering two models for the HI distribution, namely, (i) DM: where HI traces the dark matter and (ii) PR: where the effects of patchy reionization are incorporated through two parameters which are the bubble size and the clustering of the bubble centres relative to the dark matter (bias), respectively. We find that while the DM signal is largely featureless, the PR signal peaks at the angular scales of the individual bubbles where it is Poisson fluctuation dominated, and the signal is considerably enhanced for large bubble size. For most cases of interest at l ~ 100 the signal is uncorrelated beyond Δν ~ 1MHz or even less, whereas this occurs around ~0.1MHz at l ~ 103. The Δν dependence also carries an imprint of the bubble size and the bias, and is expected to be an important probe of the reionization scenario. Finally, we find

  9. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS

    SciTech Connect

    Jacobs, Daniel C.; Bowman, Judd; Parsons, Aaron R.; Ali, Zaki; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, Dave H. E.; Gugliucci, Nicole E.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2013-10-20

    We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64 antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease our reliance on an accurate beam calibration, we focus on calibrating sources in a narrow declination range from –46° to –40°. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations; 90% are found to confirm and refine a power-law model for flux density. Of particular importance is the new Pictor A flux model, which is accurate to 1.4% and shows that between 100 MHz and 2 GHz, in contrast with previous models, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382 ± 5.4 Jy and a spectral index of –0.76 ± 0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor A's spectrum make it an excellent calibrator in a band important for experiments seeking to measure 21 cm emission from the epoch of reionization.

  10. Imaging the redshifted 21 cm pattern around the first sources during the cosmic dawn using the SKA

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Choudhuri, Samir

    2017-01-01

    Understanding properties of the first sources in the Universe using the redshifted H I 21 cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21 cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the H I 21 cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we also account for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over 10-30 arcmin angular scale, the isolated sources at z ˜ 15 are detectable with the ˜4σ-9σ confidence level in 2000 h of observation with the SKA1-low. Although the 21 cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the source properties. We account for overlaps in the patterns of the individual sources by generating realistic H I 21 cm maps of the cosmic dawn that are based on N-body simulations and a one-dimensional radiative transfer code. We find that these sources should be detectable in the SKA1-low images at z = 15 with a signal-to-noise ratio (SNR) of ˜14(4) in 2000 (200) h of observations. One possible observational strategy thus could be to observe multiple fields for shorter observation times, identify fields with SNR ≳ 3 and observe these fields for much longer duration. Such observations are expected to be useful in constraining the parameters related to the first sources.

  11. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  12. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  13. Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?

    NASA Astrophysics Data System (ADS)

    Iliev, Ilian T.; Mellema, Garrelt; Shapiro, Paul R.; Pen, Ue-Li; Mao, Yi; Koda, Jun; Ahn, Kyungjin

    2012-07-01

    The prospect of detecting the first galaxies by observing their impact on the intergalactic medium (IGM) as they reionized it during the first billion years leads us to ask whether such indirect observations are capable of diagnosing which types of galaxies were most responsible for reionization. We attempt to answer this with new large-scale radiative transfer simulations of reionization including the entire mass range of atomically cooling haloes (M > 108 M⊙). We divide these haloes into two groups, high-mass, atomically cooling haloes, or HMACHs (M > 109 M⊙), and low-mass, atomically cooling haloes, or LMACHs (108 < M < 109 M⊙), the latter being susceptible to negative feedback due to Jeans mass filtering in ionized regions, which leads to a process we refer to as self-regulation. We focus here on predictions of the redshifted 21-cm emission, to see if upcoming observations are capable of distinguishing a universe ionized primarily by HMACHs from one in which both HMACHs and LMACHs are responsible, and to see how these results depend upon the uncertain source efficiencies. We find that 21-cm fluctuation power spectra observed by the first-generation Epoch of Reionization 21-cm radio interferometer arrays should be able to distinguish the case of reionization by HMACHs alone from that by both HMACHs and LMACHs, together. Some reionization scenarios, e.g. one with abundant low-efficiency sources versus one with self-regulation, yield very similar power spectra and rms evolution and thus can only be discriminated by their different mean reionization history and 21-cm probability distribution function (PDF) distributions. We also find that the skewness of the 21-cm PDF distribution smoothed with Low Frequency Array (LOFAR)-like resolution shows a clear feature correlated with the rise of the rms due to patchiness. This is independent of the reionization scenario and thus provides a new approach for detecting the rise of large-scale patchiness. The peak epoch

  14. Factor analysis as a tool for spectral line component separation 21cm emission in the direction of L1780

    NASA Technical Reports Server (NTRS)

    Toth, L. V.; Mattila, K.; Haikala, L.; Balazs, L. G.

    1992-01-01

    The spectra of the 21cm HI radiation from the direction of L1780, a small high-galactic latitude dark/molecular cloud, were analyzed by multivariate methods. Factor analysis was performed on HI (21cm) spectra in order to separate the different components responsible for the spectral features. The rotated, orthogonal factors explain the spectra as a sum of radiation from the background (an extended HI emission layer), and from the L1780 dark cloud. The coefficients of the cloud-indicator factors were used to locate the HI 'halo' of the molecular cloud. Our statistically derived 'background' and 'cloud' spectral profiles, as well as the spatial distribution of the HI halo emission distribution were compared to the results of a previous study which used conventional methods analyzing nearly the same data set.

  15. GIANT METREWAVE RADIO TELESCOPE DETECTION OF TWO NEW H I 21 cm ABSORBERS AT z ≈ 2

    SciTech Connect

    Kanekar, N.

    2014-12-20

    I report the detection of H I 21 cm absorption in two high column density damped Lyα absorbers (DLAs) at z ≈ 2 using new wide-band 250-500 MHz receivers on board the Giant Metrewave Radio Telescope. The integrated H I 21 cm optical depths are 0.85 ± 0.16 km s{sup –1} (TXS1755+578) and 2.95 ± 0.15 km s{sup –1} (TXS1850+402). For the z = 1.9698 DLA toward TXS1755+578, the difference in H I 21 cm and C I profiles and the weakness of the radio core suggest that the H I 21cm absorption arises toward radio components in the jet, and that the optical and radio sightlines are not the same. This precludes an estimate of the DLA spin temperature. For the z = 1.9888 DLA toward TXS1850+402, the absorber covering factor is likely to be close to unity, as the background source is extremely compact, with the entire 5 GHz emission arising from a region of ≤ 1.4 mas in size. This yields a DLA spin temperature of T{sub s} = (372 ± 18) × (f/1.0) K, lower than typical T{sub s} values in high-z DLAs. This low spin temperature and the relatively high metallicity of the z = 1.9888 DLA ([Zn/H] =(– 0.68 ± 0.04)) are consistent with the anti-correlation between metallicity and spin temperature that has been found earlier in damped Lyα systems.

  16. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NASA Astrophysics Data System (ADS)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Mellema, G.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.

    2013-07-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find that the 21 cm emission is initially correlated with haloes on large scales (≳30 Mpc), anticorrelated on intermediate (˜5 Mpc) and uncorrelated on small (≲3 Mpc) scales. This picture quickly changes as reionization proceeds and the two fields become anticorrelated on large scales. The normalization of the cross-power spectrum can be used to set constraints on the average neutral fraction in the intergalactic medium and its shape can be a powerful tool to study the topology of reionization. When we apply a drop-out technique to select galaxies and add to the 21 cm signal the noise expected from the LOw Frequency ARray (LOFAR) telescope, we find that while the normalization of the cross-power spectrum remains a useful tool for probing reionization, its shape becomes too noisy to be informative. On the other hand, for an Lyα Emitter (LAE) survey both the normalization and the shape of the cross-power spectrum are suitable probes of reionization. A closer look at a specific planned LAE observing program using Subaru Hyper-Suprime Cam reveals concerns about the strength of the 21 cm signal at the planned redshifts. If the ionized fraction at z ˜ 7 is lower than the one estimated here, then using the cross-power spectrum may be a useful exercise given that at higher redshifts and neutral fractions it is able to distinguish between two toy models with different topologies.

  17. Probing Reionization with the Cross-power Spectrum of 21 cm and Near-infrared Radiation Backgrounds

    NASA Astrophysics Data System (ADS)

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |\\Delta ^2_{21,NIR}|\\sim 10^{-4} mK nW m-2 sr-1, reached at l ~ 1000 when the mean fraction of ionized hydrogen is \\bar{x}_{i}\\sim 0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10-4 to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the "missing" NIR background.

  18. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    SciTech Connect

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  19. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    SciTech Connect

    Fialkov, Anastasia; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2016-04-10

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  20. Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei

    2016-11-01

    We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} < 0.06 + 0.05 (1σ ) derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) < 10-20 mK2 over a range of k from 0.5 to 2.0 h Mpc-1, with the exact limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  1. Line-of-Sight Anisotropies in the Cosmic Dawn and Epoch of Reionization 21-cm Power Spectrum

    NASA Astrophysics Data System (ADS)

    Majumdar, Suman; Datta, Kanan K.; Ghara, Raghunath; Mondal, Rajesh; Choudhury, T. Roy; Bharadwaj, Somnath; Ali, Sk. Saiyad; Datta, Abhirup

    2016-12-01

    The line-of-sight direction in the redshifted 21-cm signal coming from the cosmic dawn and the epoch of reionization is quite unique in many ways compared to any other cosmological signal. Different unique effects, such as the evolution history of the signal, non-linear peculiar velocities of the matter etc. will imprint their signature along the line-of-sight axis of the observed signal. One of the major goals of the future SKA-LOW radio interferometer is to observe the cosmic dawn and the epoch of reionization through this 21-cm signal. It is thus important to understand how these various effects affect the signal for its actual detection and proper interpretation. For more than one and half decades, various groups in India have been actively trying to understand and quantify the different line-of-sight effects that are present in this signal through analytical models and simulations. In many ways the importance of this sub-field under 21-cm cosmology have been identified, highlighted and pushed forward by the Indian community. In this article, we briefly describe their contribution and implication of these effects in the context of the future surveys of the cosmic dawn and the epoch of reionization that will be conducted by the SKA-LOW.

  2. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  3. e-MERLIN 21 cm constraints on the mass-loss rates of OB stars in Cyg OB2

    NASA Astrophysics Data System (ADS)

    Morford, J. C.; Fenech, D. M.; Prinja, R. K.; Blomme, R.; Yates, J. A.

    2016-11-01

    We present e-MERLIN 21 cm (L-band) observations of single luminous OB stars in the Cygnus OB2 association, from the Cyg OB2 Radio Survey Legacy programme. The radio observations potentially offer the most straightforward, least model-dependent, determinations of mass-loss rates, and can be used to help resolve current discrepancies in mass-loss rates via clumped and structured hot star winds. We report here that the 21 cm flux densities of O3 to O6 supergiant and giant stars are less than ˜70 μJy. These fluxes may be translated to `smooth' wind mass-loss upper limits of ˜4.4-4.8 × 10-6 M⊙ yr -1 for O3 supergiants and ≲2.9 × 10-6 M⊙ yr -1 for B0 to B1 supergiants. The first ever resolved 21 cm detections of the hypergiant (and luminous blue variable candidate) Cyg OB2 #12 are discussed; for multiple observations separated by 14 d, we detect an ˜69 per cent increase in its flux density. Our constraints on the upper limits for the mass-loss rates of evolved OB stars in Cyg OB2 support the model that the inner wind region close to the stellar surface (where Hα forms) is more clumped than the very extended geometric region sampled by our radio observations.

  4. A SENSITIVITY AND ARRAY-CONFIGURATION STUDY FOR MEASURING THE POWER SPECTRUM OF 21 cm EMISSION FROM REIONIZATION

    SciTech Connect

    Parsons, Aaron; Pober, Jonathan; McQuinn, Matthew; Jacobs, Daniel; Aguirre, James

    2012-07-01

    Telescopes aiming to measure 21 cm emission from the Epoch of Reionization must toe a careful line, balancing the need for raw sensitivity against the stringent calibration requirements for removing bright foregrounds. It is unclear what the optimal design is for achieving both of these goals. Via a pedagogical derivation of an interferometer's response to the power spectrum of 21 cm reionization fluctuations, we show that even under optimistic scenarios first-generation arrays will yield low-signal-to-noise detections, and that different compact array configurations can substantially alter sensitivity. We explore the sensitivity gains of array configurations that yield high redundancy in the uv-plane-configurations that have been largely ignored since the advent of self-calibration for high-dynamic-range imaging. We first introduce a mathematical framework to generate optimal minimum-redundancy configurations for imaging. We contrast the sensitivity of such configurations with high-redundancy configurations, finding that high-redundancy configurations can improve power-spectrum sensitivity by more than an order of magnitude. We explore how high-redundancy array configurations can be tuned to various angular scales, enabling array sensitivity to be directed away from regions of the uv-plane (such as the origin) where foregrounds are brighter and instrumental systematics are more problematic. We demonstrate that a 132 antenna deployment of the Precision Array for Probing the Epoch of Reionization observing for 120 days in a high-redundancy configuration will, under ideal conditions, have the requisite sensitivity to detect the power spectrum of the 21 cm signal from reionization at a 3{sigma} level at k < 0.25 h Mpc{sup -1} in a bin of {Delta}ln k = 1. We discuss the tradeoffs of low- versus high-redundancy configurations.

  5. INTERPRETING THE GLOBAL 21-cm SIGNAL FROM HIGH REDSHIFTS. II. PARAMETER ESTIMATION FOR MODELS OF GALAXY FORMATION

    SciTech Connect

    Mirocha, Jordan; Burns, Jack O.; Harker, Geraint J. A.

    2015-11-01

    Following our previous work, which related generic features in the sky-averaged (global) 21-cm signal to properties of the intergalactic medium, we now investigate the prospects for constraining a simple galaxy formation model with current and near-future experiments. Markov-Chain Monte Carlo fits to our synthetic data set, which includes a realistic galactic foreground, a plausible model for the signal, and noise consistent with 100 hr of integration by an ideal instrument, suggest that a simple four-parameter model that links the production rate of Lyα, Lyman-continuum, and X-ray photons to the growth rate of dark matter halos can be well-constrained (to ∼0.1 dex in each dimension) so long as all three spectral features expected to occur between 40 ≲ ν/MHz ≲ 120 are detected. Several important conclusions follow naturally from this basic numerical result, namely that measurements of the global 21-cm signal can in principle (i) identify the characteristic halo mass threshold for star formation at all redshifts z ≳ 15, (ii) extend z ≲ 4 upper limits on the normalization of the X-ray luminosity star formation rate (L{sub X}–SFR) relation out to z ∼ 20, and (iii) provide joint constraints on stellar spectra and the escape fraction of ionizing radiation at z ∼ 12. Though our approach is general, the importance of a broadband measurement renders our findings most relevant to the proposed Dark Ages Radio Explorer, which will have a clean view of the global 21-cm signal from ∼40 to 120 MHz from its vantage point above the radio-quiet, ionosphere-free lunar far-side.

  6. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    SciTech Connect

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  7. Multi-redshift limits on the 21cm power spectrum from PAPER 64: XRays in the early universe

    NASA Astrophysics Data System (ADS)

    Kolopanis, Matthew; Jacobs, Danny; PAPER Collaboration

    2016-06-01

    Here we present new constraints on 21cm emission from cosmic reionization from the 64 element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER). These results extend the single redshift 8.4 result presented in Ali et al 2015 to include redshifts from 7.3 to 10.9. These new limits offer as much as a factor of 4 improvement in sensitivity compared to previous 32 element PAPER results by Jacobs et al (2015). Using these limits we place constraints on a parameterized model of heating due to XRays emitted by early collapsed objects.

  8. Extraction of global 21-cm signal from simulated data for the Dark Ages Radio Explorer (DARE) using an MCMC pipeline

    NASA Astrophysics Data System (ADS)

    Tauscher, Keith A.; Burns, Jack O.; Rapetti, David; Mirocha, Jordan; Monsalve, Raul A.

    2017-01-01

    The Dark Ages Radio Explorer (DARE) is a mission concept proposed to NASA in which a crossed dipole antenna collects low frequency (40-120 MHz) radio measurements above the farside of the Moon to detect and characterize the global 21-cm signal from the early (z~35-11) Universe's neutral hydrogen. Simulated data for DARE includes: 1) the global signal modeled using the ares code, 2) spectrally smooth Galactic foregrounds with spatial structure taken from multiple radio foreground maps averaged over a large, well characterized beam, 3) systematics introduced in the data by antenna/receiver reflections, and 4) the Moon. This simulated data is fed into a signal extraction pipeline. As the signal is 4-5 orders of magnitude below the Galactic synchrotron contribution, it is best extracted from the data using Bayesian techniques which take full advantage of prior knowledge of the instrument and foregrounds. For the DARE pipeline, we use the affine-invariant MCMC algorithm implemented in the Python package, emcee. The pipeline also employs singular value decomposition to use known spectral features of the antenna and receiver to form a natural basis with which to fit instrumental systematics. Taking advantage of high-fidelity measurements of the antenna beam (to ~20 ppm) and precise calibration of the instrument, the pipeline extracts the global 21-cm signal with an average RMS error of 10-15 mK for multiple signal models.

  9. Cosmology on ultralarge scales with intensity mapping of the neutral hydrogen 21 cm emission: limits on primordial non-Gaussianity.

    PubMed

    Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís

    2013-10-25

    The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.

  10. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    SciTech Connect

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-02-20

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km{sup 2} collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km{sup 2} of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  11. Simulating the z = 3.35 HI 21-cm Visibility Signal for the Ooty Wide Field Array (OWFA)

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suman; Bharadwaj, Somnath; Marthi, Visweshwar Ram

    2017-03-01

    The upcoming Ooty Wide Field Array (OWFA) will operate at 326.5 MHz which corresponds to the redshifted 21-cm signal from neutral hydrogen (HI) at z = 3.35. We present two different prescriptions to simulate this signal and calculate the visibilities expected in radio-interferometric observations with OWFA. In the first method we use an input model for the expected 21-cm power spectrum to directly simulate different random realizations of the brightness temperature fluctuations and calculate the visibilities. This method, which models the HI signal entirely as a diffuse radiation, is completely oblivious to the discrete nature of the astrophysical sources which host the HI. While each discrete source subtends an angle that is much smaller than the angular resolution of OWFA, the velocity structure of the HI inside the individual sources is well within the reach of OWFA's frequency resolution and this is expected to have an impact on the observed HI signal. The second prescription is based on cosmological N-body simulations. Here we identify each simulation particle with a source that hosts the HI, and we have the freedom to implement any desired line profile for the HI emission from the individual sources. Implementing a simple model for the line profile, we have generated several random realizations of the complex visibilities. Correlations between the visibilities measured at different baselines and channels provides an unique method to quantify the statistical properties of the HI signal. We have used this to quantify the results of our simulations, and explore the relation between the expected visibility correlations and the underlying HI power spectrum.

  12. Spatially Extended 21 cm Signal from Strongly Clustered Uv and X-Ray Sources in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ahn, Kyungjin; Xu, Hao; Norman, Michael L.; Alvarez, Marcelo A.; Wise, John H.

    2015-03-01

    We present our prediction for the local 21 cm differential brightness temperature (δTb) from a set of strongly clustered sources of Population III (Pop III) and II (Pop II) objects in the early universe, by a numerical simulation of their formation and radiative feedback. These objects are located inside a highly biased environment, which is a rare, high-density peak (“Rarepeak”) extending to ∼7 comoving Mpc. We study the impact of ultraviolet and X-ray photons on the intergalactic medium (IGM) and the resulting δTb, when Pop III stars are assumed to emit X-ray photons by forming X-ray binaries very efficiently. We parameterize the rest-frame spectral energy distribution of X-ray photons, which regulates X-ray photon-trapping, IGM-heating, secondary Lyα pumping and the resulting morphology of δTb. A combination of emission (δTb > 0) and absorption (δTb < 0) regions appears in varying amplitudes and angular scales. The boost of the signal by the high-density environment (δ ∼ 0.64) and on a relatively large scale combines to make Rarepeak a discernible, spatially extended (θ ∼ 10‧) object for 21 cm observation at 13 ≲ z ≲ 17, which is found to be detectable as a single object by SKA with integration time of ∼1000 hr. Power spectrum analysis by some of the SKA precursors (Low Frequency Array, Murchison Widefield Array, Precision Array for Probing the Epoch of Reionization) of such rare peaks is found to be difficult due to the rarity of these peaks, and the contribution only by these rare peaks to the total power spectrum remains subdominant compared to that by all astrophysical sources.

  13. Spectroscopy of charmed baryons

    SciTech Connect

    Solovieva, E. I.

    2015-12-15

    Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.

  14. Baryonic matter perturbations in decaying vacuum cosmology

    SciTech Connect

    Marttens, R.F. vom; Zimdahl, W.; Hipólito-Ricaldi, W.S. E-mail: wiliam.ricaldi@ufes.br

    2014-08-01

    We consider the perturbation dynamics for the cosmic baryon fluid and determine the corresponding power spectrum for a Λ(t)CDM model in which a cosmological term decays into dark matter linearly with the Hubble rate. The model is tested by a joint analysis of data from supernovae of type Ia (SNIa) (Constitution and Union 2.1), baryonic acoustic oscillations (BAO), the position of the first peak of the anisotropy spectrum of the cosmic microwave background (CMB) and large-scale-structure (LSS) data (SDSS DR7). While the homogeneous and isotropic background dynamics is only marginally influenced by the baryons, there are modifications on the perturbative level if a separately conserved baryon fluid is included. Considering the present baryon fraction as a free parameter, we reproduce the observed abundance of the order of 5% independently of the dark-matter abundance which is of the order of 32% for this model. Generally, the concordance between background and perturbation dynamics is improved if baryons are explicitly taken into account.

  15. A 21 cm Spectral and Continuum Study of IC 443 Using the Very Large Array and the Arecibo Telescope

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Joon; Koo, Bon-Chul; Yun, Min S.; Stanimirović, Snežana; Heiles, Carl; Heyer, Mark

    2008-03-01

    We report 21 cm spectral-line and continuum observations of the Galactic supernova remnant IC 443 using the Very Large Array (VLA) and the Arecibo telescope. By combining the VLA and Arecibo data, both covering the full extent of IC 443, we have achieved an unprecedented combination of sensitivity and angular resolution, over the continuous range of angular scales from ~40'' to ~1°. Our new radio observations not only reveal previously unknown features of IC 443 but also show the details of the remnant more clearly. The radio morphology of IC 443 consists of two nearly concentric shells. Our 21 cm radio continuum data show that the two shells have distinctly different radial intensity distributions. This morphology supports the scenario whereby the western shell is a breakout portion of the remnant into a rarefied medium. We have developed a dynamical model accounting for the breakout, which provides an estimate for the remnant age of ~2 × 104 yr. The southeastern boundary of the remnant shows interesting features, seen in our observations for the first time: a faint radio continuum halo and numerous "spurs." These features are mainly found in the region where IC 443 overlaps with another remnant, G189.6+3.3. These features most likely originate from the interactions of IC 443 with the surrounding medium. The H I emission associated with IC 443 appears over the velocity range between -100 km s-1 and 50 km s-1. The strongest absorption is seen around v LSR ~ -5 km s-1, which corresponds to the systemic velocity of IC 443. We identify a broad, extended lane of H I gas near the systemic velocity as preshock gas in the southern part of the remnant. Most of the shocked H I gas is located along the southern supernova remnant (SNR) boundary and is blueshifted. We derive an accurate mass of the shocked H I gas using template HCO+ (1-0) spectra, which is 493 ± 56 M ⊙. Our high-resolution H I data enable us to resolve the shocked H I in the northeastern region into a

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. A Search for Mass Loss on the Cepheid Instability Strip using H i 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Marengo, M.; Evans, N. R.

    2016-12-01

    We present the results of a search for H i 21 cm line emission from the circumstellar environments of four Galactic Cepheids (RS Pup, X Cyg, ζ Gem, and T Mon) based on observations with the Karl G. Jansky Very Large Array. The observations were aimed at detecting gas associated with previous or ongoing mass loss. Near the long-period Cepheid T Mon, we report the detection of a partial shell-like structure whose properties appear consistent with originating from an earlier epoch of Cepheid mass loss. At the distance of T Mon, the nebula would have a mass (H i+He) of ˜ 0.5{M}⊙ , or ˜6% of the stellar mass. Assuming that one-third of the nebular mass comprises swept-up interstellar gas, we estimate an implied mass-loss rate of \\dot{M}˜ (0.6{--}2)× {10}-5 {M}⊙ yr-1. No clear signatures of circumstellar emission were found toward ζ Gem, RS Pup, or X Cyg, although in each case, line-of-sight confusion compromised portions of the spectral band. For the undetected stars, we derive model-dependent 3σ upper limits on the mass-loss rates, averaged over their lifetimes on the instability strip, of ≲ (0.3{--}6)× {10}-6 {M}⊙ yr-1 and estimate the total amount of mass lost to be less than a few percent of the stellar mass.

  18. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  19. Comparison of 2.8- and 21-cm microwave radiometer observations over soils with emission model calculations

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Schmugge, T.; Paris, J. F.

    1979-01-01

    An airborne experiment was conducted under NASA auspices to test the feasibility of detecting soil moisture by microwave remote sensing techniques over agricultural fields near Phoenix, Arizona at midday of April 5, 1974 and at dawn of the following day. Extensive ground data were obtained from 96 bare, sixteen hectare fields. Observations made using a scanning (2.8 cm) and a nonscanning (21 cm) radiometer were compared with the predictions of a radiative transfer emission model. It is shown that (1) the emitted intensity at both wavelengths correlates best with the near surface moisture, (2) surface roughness is found to more strongly affect the degree of polarization than the emitted intensity, (3) the slope of the intensity-moisture curves decreases in going from day to dawn, and (4) increased near surface moisture at dawn is characterized by increased polarization of emissions. The results of the experiment indicate that microwave techniques can be used to observe the history of the near surface moisture. The subsurface history must be inferred from soil physics models which use microwave results as boundary conditions.

  20. Calibration of the EDGES High-band Receiver to Observe the Global 21 cm Signature from the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Monsalve, Raul A.; Rogers, Alan E. E.; Bowman, Judd D.; Mozdzen, Thomas J.

    2017-01-01

    The EDGES High-Band experiment aims to detect the sky-average brightness temperature of the 21 cm signal from the epoch of reionization in the redshift range 14.8≳ z≳ 6.5. To probe this redshifted signal, EDGES High-Band conducts single-antenna measurements in the frequency range 90–190 MHz from the Murchison Radio-astronomy Observatory in Western Australia. In this paper, we describe the current strategy for calibration of the EDGES High-Band receiver and report calibration results for the instrument used in the 2015–2016 observational campaign. We propagate uncertainties in the receiver calibration measurements to the antenna temperature using a Monte Carlo approach. We define a performance objective of 1 mK residual rms after modeling foreground subtraction from a fiducial temperature spectrum using a five-term polynomial. Most of the calibration uncertainties yield residuals of 1 mK or less at 95 % confidence. However, current uncertainties in the antenna and receiver reflection coefficients can lead to residuals of up to 20 mK even in low-foreground sky regions. These dominant residuals could be reduced by (1) improving the accuracy in reflection measurements, especially their phase, (2) improving the impedance match at the antenna-receiver interface, and (3) decreasing the changes with frequency of the antenna reflection phase.

  1. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  2. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  3. H I 21-cm absorption survey of quasar-galaxy pairs: distribution of cold gas around z < 0.4 galaxies

    NASA Astrophysics Data System (ADS)

    Dutta, R.; Srianand, R.; Gupta, N.; Momjian, E.; Noterdaeme, P.; Petitjean, P.; Rahmani, H.

    2017-02-01

    We present the results from our survey of H I 21-cm absorption, using Giant Metrewave Radio Telescope, Very Large Array and Westerbork Radio Synthesis Telescope, in a sample of 55 z < 0.4 galaxies towards radio sources with impact parameters (b) in the range ˜0-35 kpc. In our primary sample (defined for statistical analyses) of 40 quasar-galaxy pairs, probed by 45 sightlines, we have found seven H I 21-cm absorption detections, two of which are reported here for the first time. Combining our primary sample with measurements having similar optical depth sensitivity (∫τdv ≤ 0.3 km s-1) from the literature, we find a weak anti-correlation (rank correlation coefficient = -0.20 at 2.42σ level) between ∫τdv and b, consistent with previous literature results. The covering factor of H I 21-cm absorbers (C21) is estimated to be 0.24^{+0.12}_{-0.08} at b ≤ 15 kpc and 0.06^{+0.09}_{-0.04} at b = 15-35 kpc. ∫τdv and C21 show similar declining trend with radial distance along the galaxy's major axis and distances scaled with the effective H I radius. There is also tentative indication that most of the H I 21-cm absorbers could be co-planar with the extended H I discs. No significant dependence of ∫τdv and C21 on galaxy luminosity, stellar mass, colour and star formation rate is found, though the H I 21-cm absorbing gas cross-section may be larger for the luminous galaxies. The higher detection rate (by a factor of ˜4) of H I 21-cm absorption in z < 1 damped Lyman-α systems compared to the quasar-galaxy pairs indicates towards small covering factor and patchy distribution of cold gas clouds around low-z galaxies.

  4. The Effects of the Ionosphere on Ground-based Detection of the Global 21 cm Signal from the Cosmic Dawn and the Dark Ages

    NASA Astrophysics Data System (ADS)

    Datta, Abhirup; Bradley, Richard; Burns, Jack O.; Harker, Geraint; Komjathy, Attila; Lazio, T. Joseph W.

    2016-11-01

    Detection of the global H i 21 cm signal from the Cosmic Dawn and the Epoch of Reionization is the key science driver for several ongoing ground-based and future ground-/space-based experiments. The crucial spectral features in the global 21 cm signal (turning points) occur at low radio frequencies ≲ 100 {{MHz}}. In addition to the human-generated radio frequency interference, Earth’s ionosphere drastically corrupts low-frequency radio observations from the ground. In this paper, we examine the effects of time-varying ionospheric refraction, absorption, and thermal emission at these low radio frequencies and their combined effect on any ground-based global 21 cm experiment. It should be noted that this is the first study of the effect of a dynamic ionosphere on global 21 cm experiments. The fluctuations in the ionosphere are influenced by solar activity with flicker noise characteristics. The same characteristics are reflected in the ionospheric corruption to any radio signal passing through the ionosphere. As a result, any ground-based observations of the faint global 21 cm signal are corrupted by flicker noise (or 1/f noise, where f is the dynamical frequency) which scales as {ν }-2 (where ν is the frequency of radio observation) in the presence of a bright galactic foreground (\\propto {ν }-s, where s is the radio spectral index). Hence, the calibration of the ionosphere for any such experiment is critical. Any attempt to calibrate the ionospheric effects will be subject to the inaccuracies in the current ionospheric measurements using Global Positioning System (GPS) ionospheric measurements, riometer measurements, ionospheric soundings, etc. Even considering an optimistic improvement in the accuracy of GPS-total electron content measurements, we conclude that Earth’s ionosphere poses a significant challenge in the absolute detection of the global 21 cm signal below 100 MHz.

  5. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  6. Towards an optimal reconstruction of baryon oscillations

    SciTech Connect

    Tassev, Svetlin; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2012-10-01

    The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the universe leave a distinct peak in the two-point correlation function of the matter distribution. That acoustic peak is smeared and shifted by bulk flows and non-linear evolution. However, it has been shown that it is still possible to sharpen the peak and remove its shift by undoing the effects of the bulk flows. We propose an improvement to the standard acoustic peak reconstruction. Contrary to the standard approach, the new scheme has no free parameters, treats the large-scale modes consistently, and uses optimal filters to extract the BAO information. At redshift of zero, the reconstructed linear matter power spectrum leads to a markedly improved sharpening of the reconstructed acoustic peak compared to standard reconstruction.

  7. A Fourth H I 21 cm Absorption System in the Sight Line of MG J0414+0534: A Record for Intervening Absorbers

    NASA Astrophysics Data System (ADS)

    Tanna, A.; Curran, S. J.; Whiting, M. T.; Webb, J. K.; Bignell, C.

    2013-08-01

    We report the detection of a strong H I 21 cm absorption system at z = 0.5344, as well as a candidate system at z = 0.3389, in the sight line toward the z = 2.64 quasar MG J0414+0534. This, in addition to the absorption at the host redshift and the other two intervening absorbers, takes the total to four (possibly five). The previous maximum number of 21 cm absorbers detected along a single sight line is two and so we suspect that this number of gas-rich absorbers is in some way related to the very red color of the background source. Despite this, no molecular gas (through OH absorption) has yet been detected at any of the 21 cm redshifts, although, from the population of 21 cm absorbers as a whole, there is evidence for a weak correlation between the atomic line strength and the optical-near-infrared color. In either case, the fact that so many gas-rich galaxies (likely to be damped Lyα absorption systems) have been found along a single sight line toward a highly obscured source may have far-reaching implications for the population of faint galaxies not detected in optical surveys, a possibility which could be addressed through future wide-field absorption line surveys with the Square Kilometer Array.

  8. THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS

    SciTech Connect

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Carroll, P.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Emrich, D.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; De Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua S.; Ewall-Wice, A. M.; and others

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k{sub ∥} modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  9. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    SciTech Connect

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  10. The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration with Early MWA Epoch of Reionization Observations

    NASA Astrophysics Data System (ADS)

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua. S.; Emrich, D.; Ewall-Wice, A. M.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Sethi, Shiv K.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k∥ modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  11. The cross-correlation between 21 cm intensity mapping maps and the Lyα forest in the post-reionization era

    NASA Astrophysics Data System (ADS)

    Carucci, Isabella P.; Villaescusa-Navarro, Francisco; Viel, Matteo

    2017-04-01

    We investigate the cross-correlation signal between 21cm intensity mapping maps and the Lyα forest in the fully non-linear regime using state-of-the-art hydrodynamic simulations. The cross-correlation signal between the Lyα forest and 21cm maps can provide a coherent and comprehensive picture of the neutral hydrogen (HI) content of our Universe in the post-reionization era, probing both its mass content and volume distribution. We compute the auto-power spectra of both fields together with their cross-power spectrum at z = 2.4 and find that on large scales the fields are completely anti-correlated. This anti-correlation arises because regions with high (low) 21cm emission, such as those with a large (low) concentration of damped Lyα systems, will show up as regions with low (high) transmitted flux. We find that on scales smaller than k simeq 0.2 hMpc‑1 the cross-correlation coefficient departs from ‑1, at a scale where non-linearities show up. We use the anisotropy of the power spectra in redshift-space to determine the values of the bias and of the redshift-space distortion parameters of both fields. We find that the errors on the value of the cosmological and astrophysical parameters could decrease by 30% when adding data from the cross-power spectrum, in a conservative analysis. Our results point out that linear theory is capable of reproducing the shape and amplitude of the cross-power up to rather non-linear scales. Finally, we find that the 21cm-Lyα cross-power spectrum can be detected by combining data from a BOSS-like survey together with 21cm intensity mapping observations by SKA1-MID with a S/N ratio higher than 3 in kin[0.06,1] hMpc‑1. We emphasize that while the shape and amplitude of the 21cm auto-power spectrum can be severely affected by residual foreground contamination, cross-power spectra will be less sensitive to that and therefore can be used to identify systematics in the 21cm maps.

  12. Statistics of the epoch of reionization (EoR) 21-cm signal - II. The evolution of the power-spectrum error-covariance

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman

    2017-01-01

    The epoch of reionization (EoR) 21-cm signal is expected to become highly non-Gaussian as reionization progresses. This severely affects the error-covariance of the EoR 21-cm power spectrum that is important for predicting the prospects of a detection with ongoing and future experiments. Most earlier works have assumed that the EoR 21-cm signal is a Gaussian random field where (1) the error-variance depends only on the power spectrum and the number of Fourier modes in the particular k bin, and (2) the errors in the different k bins are uncorrelated. Here, we use an ensemble of simulated 21-cm maps to analyse the error-covariance at various stages of reionization. We find that even at the very early stages of reionization (bar{x}_{H I}˜ 0.9), the error-variance significantly exceeds the Gaussian predictions at small length-scales (k > 0.5 Mpc-1) while they are consistent at larger scales. The errors in most k bins (both large and small scales) are however found to be correlated. Considering the later stages (bar{x}_{H I}=0.15), the error-variance shows an excess in all k bins within k ≥ 0.1 Mpc-1, and it is around 200 times larger than the Gaussian prediction at k ˜ 1 Mpc-1. The errors in the different k bins are all also highly correlated, barring the two smallest k bins that are anti-correlated with the other bins. Our results imply that the predictions for different 21-cm experiments based on the Gaussian assumption underestimate the errors, and it is necessary to incorporate the non-Gaussianity for more realistic predictions.

  13. Precision Holographic Baryons

    SciTech Connect

    Yi Piljin

    2011-10-21

    We overview a holographic QCD based on the D4-D8 string theory model, with emphasis on baryons and nucleon-meson interactions thereof. Baryons are realized as holographic images of Skyrmions, but with much qualitative changes. This allows us to derive, without adjustable parameters, couplings of baryons to the entire tower of spin one mesons and also to pseudoscalar mesons. We find some surprisingly good match against empirical values for nucleons, in particular. Tensor couplings to all axial-vectors and iso-singlet vectors all vanish, while, for {rho} mesons, tensor couplings are found to be dominant. We close with various cautionary comments and speculations.

  14. Charm Baryon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    B-factories Belle and BaBar during its operation made not only measurements connected with B-meson decays but also numerous observation and measurements in charm physics. In particular, their results on charm baryon decays and spectroscopy have enlarged and enriched the current picture of heavy flavour hadrons. In this talk we overview current status of charm baryons and their excited states.

  15. Giant Metrewave Radio Telescope detection of associated H I 21-cm absorption at z = 1.2230 towards TXS 1954+513

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Prochaska, J. Xavier; Day, Brandon; Lynam, Paul; Cruz, Jocelyn

    2017-03-01

    We have used the 610-MHz receivers of the Giant Metrewave Radio Telescope (GMRT) to detect associated H I 21-cm absorption from the z = 1.2230 blazar TXS 1954+513. The GMRT H I 21-cm absorption is likely to arise against either the milliarcsecond-scale core or the one-sided milliarcsecond-scale radio jet, and is blueshifted by ≈328 km s-1 from the blazar redshift. This is consistent with a scenario in which the H I cloud giving rise to the absorption is being driven outwards by the radio jet. The integrated H I 21-cm optical depth is (0.716 ± 0.037) km s-1, implying a high H I column density, N_{H I} = (1.305 ± 0.067) × ({ T_s/100 K}) × 10^{20} cm-2, for an assumed H I spin temperature of 100 K. We use Nickel Telescope photometry of TXS 1954+513 to infer a high rest-frame 1216 Å luminosity of (4.1 ± 1.2) × 1023 W Hz-1. The z = 1.2230 absorber towards TXS 1954+513 is only the fifth case of a detection of associated H I 21-cm absorption at z > 1, and is also the first case of such a detection towards an active galactic nucleus (AGN) with a rest-frame ultraviolet (UV) luminosity ≫1023 W Hz-1, demonstrating that neutral hydrogen can survive in AGN environments in the presence of high UV luminosities.

  16. Constraining the population of radio-loud active galactic nuclei at high redshift with the power spectrum of the 21 cm Forest

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Mesinger, Andrei; Hewitt, Jacqueline N.

    2014-06-01

    The 21 cm forest, the absorption by the intergalactic medium (IGM) towards a high redshift radio-loud source, is a probe of the thermal state of the IGM. To date, the literature has focused on line-of-sight spectral studies of a single quasar known to have a large redshift. We instead examine many sources in a wide field of view, and show that the imprint from the 21 cm forest absorption of these sources is detectible in the power spectrum. The properties of the power spectrum can reveal information on the population of the earliest radio loud sources that may have existed during the pre-reionization epoch at z>10.Using semi-numerical simulations of the IGM and a semi-empirical source population, we show that the 21 cm forest dominates, in a distinctive region of Fourier space, the brightness temperature power spectrum that many contemporary experiments aim to measure. In particular, the forest dominates the diffuse emission on smaller spatial scales along the line of sight. Exploiting this separation, one may constrain the IGM thermal history, such as heating by the first X-ray sources, on large spatial scales and the absorption of radio loud active galactic nuclei on small ones.Using realistic simulations of noise and foregrounds, we show that planned instruments on the scale of the Hydrogen Epoch of Reionization Array (HERA) with a collecting area of one tenth of a square kilometer can detect the 21cm forest in this small spatial scale region with high signal to noise. We develop an analytic toy model for the signal and explore its detectability over a large range of thermal histories and potential high redshift source scenarios.

  17. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    SciTech Connect

    Curran, S. J.; Whiting, M. T.

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  18. Foregrounds for observations of the cosmological 21 cm line. II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; de Bruyn, A. G.; Harker, G.; Brentjens, M. A.; Ciardi, B.; Jelić, V.; Koopmans, L. V. E.; Labropoulos, P.; Offringa, A.; Pandey, V. N.; Schaye, J.; Thomas, R. M.; Yatawatta, S.; Zaroubi, S.

    2010-11-01

    Context. In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. Aims: The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. Methods: We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C 196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Results: Total intensity maps were carefully calibrated, reaching a high dynamic range, 150 000:1 in the case of the 3C 196 field. No evidence of diffuse Galactic emission was found in the angular power spectrum analysis on scales smaller than ~10 arcmin in either of the two fields. On these angular scales the signal is consistent with the classical confusion noise of ~3 mJy beam-1. On scales greater than 30 arcmin we found an excess of power attributed to the Galactic foreground with an rms of 3.4 K and 5.5 K for the 3C 196 and the NCP field respectively. The intermediate angular scales suffered from systematic errors which prevented any detection. Patchy polarized emission was found only in the 3C 196 field whereas the polarization in the NCP area was essentially due to radio frequency interference. The polarized signal in the 3C

  19. Hybrid baryons in QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  20. Baryonic Spectroscopy at BESIII

    NASA Astrophysics Data System (ADS)

    Liu, Fang

    Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.

  1. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  2. Baryons and chiral symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  3. The effect of non-Gaussianity on error predictions for the Epoch of Reionization (EoR) 21-cm power spectrum

    NASA Astrophysics Data System (ADS)

    Mondal, Rajesh; Bharadwaj, Somnath; Majumdar, Suman; Bera, Apurba; Acharyya, Ayan

    2015-04-01

    The Epoch of Reionization (EoR) 21-cm signal is expected to become increasingly non-Gaussian as reionization proceeds. We have used seminumerical simulations to study how this affects the error predictions for the EoR 21-cm power spectrum. We expect SNR=√{N_k} for a Gaussian random field where Nk is the number of Fourier modes in each k bin. We find that non-Gaussianity is important at high SNR where it imposes an upper limit [SNR]l. For a fixed volume V, it is not possible to achieve SNR > [SNR]l even if Nk is increased. The value of [SNR]l falls as reionization proceeds, dropping from ˜500 at bar{x}_{H I} = 0.8-0.9 to ˜10 at bar{x}_{H I} = 0.15 for a [150.08 Mpc]3 simulation. We show that it is possible to interpret [SNR]l in terms of the trispectrum, and we expect [SNR]_l ∝ √{V} if the volume is increased. For SNR ≪ [SNR]l we find SNR= √{N_k}/A with A ˜ 0.95-1.75, roughly consistent with the Gaussian prediction. We present a fitting formula for the SNR as a function of Nk, with two parameters A and [SNR]l that have to be determined using simulations. Our results are relevant for predicting the sensitivity of different instruments to measure the EoR 21-cm power spectrum, which till date have been largely based on the Gaussian assumption.

  4. On using large scale correlation of the Ly-α forest and redshifted 21-cm signal to probe HI distribution during the post reionization era

    SciTech Connect

    Sarkar, Tapomoy Guha; Datta, Kanan K. E-mail: kanan.physics@presiuniv.ac.in

    2015-08-01

    We investigate the possibility of detecting the 3D cross correlation power spectrum of the Ly-α forest and HI 21 cm signal from the post reionization epoch. (The cross-correlation signal is directly dependent on the dark matter power spectrum and is sensitive to the 21-cm brightness temperature and Ly-α forest biases. These bias parameters dictate the strength of anisotropy in redshift space.) We find that the cross-correlation power spectrum can be detected using 400 hrs observation with SKA-mid (phase 1) and a futuristic BOSS like experiment with a quasar (QSO) density of 30 deg{sup −2} at a peak SNR of 15 for a single field experiment at redshift z = 2.5. on large scales using the linear bias model. We also study the possibility of constraining various bias parameters using the cross power spectrum. We find that with the same experiment 1 σ (conditional errors) on the 21-cm linear redshift space distortion parameter β{sub T} and β{sub F} corresponding to the Ly-α  forest are ∼ 2.7 % and ∼ 1.4 % respectively for 01 independent pointings of the SKA-mid (phase 1). This prediction indicates a significant improvement over existing measurements. We claim that the detection of the 3D cross correlation power spectrum will not only ascertain the cosmological origin of the signal in presence of astrophysical foregrounds but will also provide stringent constraints on large scale HI biases. This provides an independent probe towards understanding cosmological structure formation.

  5. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    SciTech Connect

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  6. The Properties of Primordial Stars and Galaxies measured from the 21-cm Global Spectrum using the Dark Ages Radio Explorer (DARE)

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Bowman, Judd D.; Bradley, Richard F.; Fialkov, Anastasia; Furlanetto, Steven R.; Jones, Dayton L.; Kasper, Justin; Loeb, Abraham; Mirocha, Jordan; Monsalve, Raul A.; Rapetti, David; Tauscher, Keith; Wollack, Edward

    2017-01-01

    DARE is a mission concept designed to observe the formation of primordial stars, black holes, and galaxies (z=11-35) by measuring their spectral effects on the redshifted 21-cm hydrogen line. The UV and X-ray radiation emitted by these first objects ionized and heated the intergalactic medium and imprinted characteristic features in the 21-cm spectrum. The 1.4 GHz signal is redshifted into the radio band 40-120 MHz. DARE will take advantage of the quietest RF environment in the inner solar system by using the Moon as a shield from human radio frequency interference and solar emissions via observations on the lunar farside. DARE’s science objectives are to determine: when the first stars turned on and their properties, when the first black holes began accreting and their masses, the reionization history of the early Universe, and if evidence exists for exotic physics in the Dark Ages such as Dark Matter decay. Wideband crossed-dipole antennas, pilot tone stablized radiometric receivers, a polarimeter, and a digital spectrometer constitute the science instrument. DARE’s radiometer is precisely calibrated with a featureless spectral response, controlled systematics, and heritage from CMB missions. Models for the instrument main beam and sidelobes, antenna reflection coefficient, gain variations, and calibrations will be validated with electromagnetic simulations, laboratory and anechoic chamber measurements, and verified on-orbit. The unique frequency structure of the 21-cm spectrum, its uniformity over large angular scales, and its unpolarized state are unlike the spectrally featureless, spatially-varying, polarized emission of the bright Galactic foreground, allowing the signal to be cleanly separated from the foreground. The 21-cm signal will be extracted in the presence of foregrounds using a Bayesian framework with a Markov Chain Monto Carlo (MCMC) numerical inference technique. The DARE data analysis pipeline enables efficient, simultaneous, and self

  7. Baryons and QCD

    SciTech Connect

    Nathan Isgur

    1997-03-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.

  8. Inflating with baryons

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Green, Daniel

    2011-04-01

    We present a field theory solution to the eta problem. By making the inflaton field the phase of a baryon of SU( N c ) supersymmetric Yang-Mills theory we show that all operators that usually spoil the flatness of the inflationary potential are absent. Our solution naturally generalizes to non-supersymmetric theories.

  9. Problems in baryon spectroscopy

    SciTech Connect

    Capstick, S.

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  10. Spontaneous baryogenesis without baryon isocurvature

    NASA Astrophysics Data System (ADS)

    De Simone, Andrea; Kobayashi, Takeshi

    2017-02-01

    We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.

  11. Fisher Matrix-based Predictions for Measuring the z = 3.35 Binned 21-cm Power Spectrum using the Ooty Wide Field Array (OWFA)

    NASA Astrophysics Data System (ADS)

    Sarkar, Anjan Kumar; Bharadwaj, Somnath; Ali, Sk. Saiyad

    2017-03-01

    We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5 σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc-1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1-0.2 Mpc-1 where a 10 σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.

  12. From Enormous 3D Maps of the Universe to Astrophysical and Cosmological Constraints: Statistical Tools for Realizing the Promise of 21 cm Cosmology

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Tegmark, Max

    2015-01-01

    21 cm cosmology promises to provide an exquisite probe of astrophysics and cosmology during the cosmic dark ages and the epoch of reionization. An enormous volume of the universe, previously inaccessible, can be directly mapped by looking for the faint signal from hyperfine transition of neutral hydrogen. One day, 21 cm tomography could even eclipse the CMB as the most precise test of our cosmological models. Realizing that promise, however, has proven extremely challenging. We're looking for a small signal buried under foregrounds orders of magnitude stronger. We know that we're going to need very sensitive, and thus very large, low frequency interferometers. Those large interferometers produce vast quantities data, which must be carefully analyzed. In talk, I will present my Ph.D. work at MIT on the development and application of rigorous, fast, and robust statistical tools for extracting that cosmological signal while maintaining a thorough understanding of the error properties of those measurements. These tools reduce vast quanities of interferometric data into the statistics like the power spectrum that can be directly compared with theory and simulation, all while minimizing the amount of cosmological information lost. I will also present results from applying those techniques to data from the the Murchison Widefield Array and will discuss the exciting science they will enable with the upcoming Hydrogen Epoch of Reionization Array.

  13. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Neben, Abraham R.; Hewitt, Jacqueline N.; Tegmark, Max; Barry, N.; Beardsley, A. P.; Bowman, J. D.; Briggs, F.; Carroll, P.; de Oliveira-Costa, A.; Ewall-Wice, A.; Feng, L.; Greenhill, L. J.; Hazelton, B. J.; Hernquist, L.; Hurley-Walker, N.; Jacobs, D. C.; Kim, H. S.; Kittiwisit, P.; Lenc, E.; Line, J.; Loeb, A.; McKinley, B.; Mitchell, D. A.; Morales, M. F.; Offringa, A. R.; Paul, S.; Pindor, B.; Pober, J. C.; Procopio, P.; Riding, J.; Sethi, S.; Shankar, N. Udaya; Subrahmanyan, R.; Sullivan, I.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C.; Wayth, R. B.; Webster, R. L.; Wyithe, S.; Bernardi, G.; Cappallo, R. J.; Deshpande, A. A.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Srivani, K. S.; Williams, A.; Williams, C. L.

    2015-06-01

    The separation of the faint cosmological background signal from bright astrophysical foregrounds remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect. Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the "EoR window" from foreground contamination. We present a method to infer the covariance of foreground residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of Δ2(k )<3.7 ×104 mK2 at comoving scale k =0.18 h Mpc-1 and at z =6.8 , consistent with existing limits.

  14. Expected constraints on models of the epoch of reionization with the variance and skewness in redshifted 21 cm-line fluctuations

    NASA Astrophysics Data System (ADS)

    Kubota, Kenji; Yoshiura, Shintaro; Shimabukuro, Hayato; Takahashi, Keitaro

    2016-08-01

    The redshifted 21 cm-line signal from neutral hydrogen in the intergalactic medium (IGM) gives a direct probe of the epoch of reionization (EoR). In this paper, we investigate the potential of the variance and skewness of the probability distribution function of the 21 cm brightness temperature for constraining EoR models. These statistical quantities are simple, easy to calculate from the observed visibility, and thus suitable for the early exploration of the EoR with current telescopes such as the Murchison Widefield Array (MWA) and LOw Frequency ARray (LOFAR). We show, by performing Fisher analysis, that the variance and skewness at z = 7-9 are complementary to each other to constrain the EoR model parameters such as the minimum virial temperature of halos which host luminous objects, ionizing efficiency, and mean free path of ionizing photons in the IGM. Quantitatively, the constraining power highly depends on the quality of the foreground subtraction and calibration. We give a best case estimate of the constraints on the parameters, neglecting the systematics other than the thermal noise.

  15. Three-dimensional Hydrodynamic Simulations of Multiphase Galactic Disks with Star Formation Feedback. II. Synthetic H I 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.; Kim, Woong-Tae

    2014-05-01

    We use three-dimensional numerical hydrodynamic simulations of the turbulent, multiphase atomic interstellar medium (ISM) to construct and analyze synthetic H I 21 cm emission and absorption lines. Our analysis provides detailed tests of 21 cm observables as physical diagnostics of the atomic ISM. In particular, we construct (1) the "observed" spin temperature, T_{s, obs}(v_ch)≡ T_B(v_ch)/[1-e^{-τ (v_ch)}], and its optical-depth weighted mean T s, obs; (2) the absorption-corrected "observed" column density, N_H,obs∝ ∫ dv_chT_B(v_ch) τ (v_ch)/[1-e^{-τ (v_ch)}]; and (3) the "observed" fraction of cold neutral medium (CNM), f c, obs ≡ Tc /T s, obs for Tc the CNM temperature; we compare each observed parameter with true values obtained from line-of-sight (LOS) averages in the simulation. Within individual velocity channels, T s, obs(v ch) is within a factor 1.5 of the true value up to τ(v ch) ~ 10. As a consequence, N H, obs and T s, obs are, respectively, within 5% and 12% of the true values for 90% and 99% of LOSs. The optically thin approximation significantly underestimates N H for τ > 1. Provided that Tc is constrained, an accurate observational estimate of the CNM mass fraction can be obtained down to 20%. We show that T s, obs cannot be used to distinguish the relative proportions of warm and thermally unstable atomic gas, although the presence of thermally unstable gas can be discerned from 21 cm lines with 200 K <~ T s, obs(v ch) <~ 1000 K. Our mock observations successfully reproduce and explain the observed distribution of the brightness temperature, optical depth, and spin temperature in Roy et al. The threshold column density for CNM seen in observations is also reproduced by our mock observations. We explain this observed threshold behavior in terms of vertical equilibrium in the local Milky Way's ISM disk.

  16. Baryons with functional methods

    NASA Astrophysics Data System (ADS)

    Fischer, Christian S.

    2017-01-01

    We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.

  17. Lattice studies of baryons

    SciTech Connect

    David Richards

    2004-10-01

    This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.

  18. Baryons in holographic QCD

    NASA Astrophysics Data System (ADS)

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-01

    We study baryons in holographic QCD with D4/D8/D8¯ multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8¯ holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and ρ mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large Nc, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and ρ-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the ρ-meson profile G˜(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without ρ mesons. We analyze interaction terms of pions and ρ mesons in brane-induced Skyrmion, and find a significant ρ-meson component appearing in the core region of a baryon.

  19. Baryons in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-15

    We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.

  20. Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT

    SciTech Connect

    Haidenbauer, Johann

    2011-10-24

    I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.

  1. Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT

    NASA Astrophysics Data System (ADS)

    Haidenbauer, Johann

    2011-10-01

    I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.

  2. From Darkness to Light: Observing the First Stars and Galaxies with the Redshifted 21-cm Line using the Dark Ages Radio Explorer

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Lazio, Joseph; Bowman, Judd D.; Bradley, Richard F.; Datta, Abhirup; Furlanetto, Steven; Jones, Dayton L.; Kasper, Justin; Loeb, Abraham; Harker, Geraint

    2015-01-01

    The Dark Ages Radio Explorer (DARE) will reveal when the first stars, black holes, and galaxies formed in the early Universe and will define their characteristics, from the Dark Ages (z=35) to the Cosmic Dawn (z=11). This epoch of the Universe has never been directly observed. The DARE science instrument is composed of electrically-short bi-conical dipole antennas, a correlation receiver, and a digital spectrometer that measures the sky-averaged, low frequency (40-120 MHz) spectral features from the highly redshifted 21-cm HI line that surrounds the first objects. These observations are possible because DARE will orbit the Moon at an altitude of 125 km and takes data when it is above the radio-quiet, ionosphere-free, solar-shielded lunar farside. DARE executes the small-scale mission described in the NASA Astrophysics Roadmap (p. 83): 'mapping the Universe's hydrogen clouds using 21-cm radio wavelengths via lunar orbiter from the farside of the Moon'. This mission will address four key science questions: (1) When did the first stars form and what were their characteristics? (2) When did the first accreting black holes form and what was their characteristic mass? (3) When did reionization begin? (4) What surprises emerged from the Dark Ages (e.g., Dark Matter decay). DARE uniquely complements other major telescopes including Planck, JWST, and ALMA by bridging the gap between the smooth Universe seen via the CMB and rich web of galaxy structures seen with optical/IR/mm telescopes. Support for the development of this mission concept was provided by the Office of the Director, NASA Ames Research Center and by JPL/Caltech.

  3. Spectroscopy of doubly charmed baryons

    SciTech Connect

    Vijande, J.; Valcarce, A.; Fernandez, F.; Garcilazo, H.

    2006-02-11

    We study the mass spectrum of baryons with two and three charmed quarks. For double charm baryons the spin splitting is found to be smaller than standard quark-model potential predictions. This splitting is not influenced either by the particular form of the confining potential or by the regularization taken for the contact term of the spin-spin potential. We consistently predict the spectra for triply charmed baryons.

  4. Is Baryon Number Conserved?

    NASA Astrophysics Data System (ADS)

    Pati, Jogesh C.; Salam, Abdus

    We suggest that baryon-number conservation may not be absolute and that an integrally charged quark may disintegrate into two leptons and an antilepton with a coupling strength G Bmp2≲ 10-9. On the other hand, if quarks are much heavier than low-lying hadrons, the decay of a three-quark system like the proton is highly forbidden (proton lifetime ≳ 1028 y). Motivation for these ideas appears to arise within a unified theory of hadrons and leptons and their gauge interactions. We emphasize the consequences of such a possibility for real quark searches.

  5. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  6. Baryon stopping probes deconfinement

    NASA Astrophysics Data System (ADS)

    Wolschin, Georg

    2016-08-01

    Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.

  7. Holographic Baryons and Instanton Crystal

    NASA Astrophysics Data System (ADS)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated ADHM construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review we summarize the known results on the construction and phases of crystals of the holographic baryons.

  8. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  9. Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis

    SciTech Connect

    Kurki-Suonio, H.; Jedamzik, K.; Mathews, G.J.

    1997-04-01

    We examine effects on primordial nucleosynthesis from a truly random, one-dimensional spatial distribution in the baryon-to-photon ratio ({eta}). We generate stochastic fluctuation spectra characterized by different spectral indices and rms fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large mass scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in {eta} which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon fluctuation (PIB) models. The amplitudes of fluctuations that are scale-invariant in baryon density are found to be severely constrained by primordial nucleosynthesis. However, when the {eta} distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion scale are allowed. {copyright} {ital 1997} {ital The American Astronomical Society}

  10. Excitations of strange bottom baryons

    NASA Astrophysics Data System (ADS)

    Woloshyn, R. M.

    2016-09-01

    The ground-state and first-excited-state masses of Ωb and Ω_{bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.

  11. Baryonic Operators for Lattice Simulations

    SciTech Connect

    R. Edwards; R. Fiebig; G. Fleming; U.M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace

    2004-03-01

    The construction of baryonic operators for determining the N* excitation spectrum is discussed. The operators are designed with one eye towards maximizing overlaps with the low-lying states of interest, and the other eye towards minimizing the number of sources needed in computing the required quark propagators. Issues related to spin identification are outlined. Although we focus on tri-quark baryon operators, the construction method is applicable to both mesons and penta-quark operators.

  12. Progress towards understanding baryon resonances

    SciTech Connect

    Crede, Volker; Roberts, Winston

    2013-07-01

    The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.

  13. The baryonic susceptibility near critical temperature

    SciTech Connect

    Lin Shu

    2010-08-05

    We discuss the role of quarks and baryons near the QCD phase transition. The former is modelled in the spirit of PNJL model, while the latter is splitted into two classes: 'stringy' and 'non-stringy' baryons. We represent the non-stringy baryons by a sum over the resonance on equal footing, and obtain the density of states of stringy baryons from string inspired model at finite-T. Our model produce a rise and fall of baryonic contribution to the susceptibility, which is in qualitative agreement with lattice results. We also discuss the chiral effect on the baryonic mass and susceptibility.

  14. Strange Baryon Physics in Full Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-11-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.

  15. Density-dependent effective baryon-baryon interaction from chiral three-baryon forces

    NASA Astrophysics Data System (ADS)

    Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram

    2017-01-01

    A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  16. Predictions for Excited Strange Baryons

    SciTech Connect

    Fernando, Ishara P.; Goity, Jose L.

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  17. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  18. Discovery of 21-cm absorption in a zabs = 2.289 damped Lyman α system towards TXS 0311+430: the first low spin temperature absorber at z > 1

    NASA Astrophysics Data System (ADS)

    York, Brian A.; Kanekar, Nissim; Ellison, Sara L.; Pettini, Max

    2007-11-01

    We report the detection of HI 21-cm absorption from the z = 2.289 damped Lyman α system (DLA) towards TXS 0311+430 with the Green Bank Telescope. The 21-cm absorption has a velocity spread (between nulls) of ~110 km s-1 and an integrated optical depth of . We also present new Giant Metrewave Radio Telescope 602-MHz imaging of the radio continuum. TXS 0311+430 is unresolved at this frequency, indicating that the covering factor of the DLA is likely to be high. Combining the integrated optical depth with the DLA HIcolumn density of yields a spin temperature of Ts = (138 +/- 36) K, assuming a covering factor of unity. This is the first case of a low spin temperature (<350 K) in a z > 1 DLA and is among the lowest temperatures ever measured in any DLA. Indeed, the Ts measured for this DLA is similar to values measured in the Milky Way and local disc galaxies. We also determine a lower limit (Si/H) >~ 1/3 solar for the DLA metallicity, amongst the highest abundances measured in DLAs at any redshift. Based on low-redshift correlations, the low Ts, large 21-cm absorption width and high metallicity all suggest that the z ~ 2.289 DLA is likely to arise in a massive, luminous disc galaxy.

  19. The status of pentaquark baryons

    SciTech Connect

    V.D. Burkert

    2006-06-01

    The status of the search for peritaquark baryon states is reviewed in light of new results from the first two dedicated experiments from CLAS at Jefferson Lab and of new analyses from several labs on the Theta^+(1540). Evidence for and against the heavier pentaquark states, the Xi(1862) and the Theta^0_c(3100) observed at CERN and at HERA, respectively, are also discussed. I conclude that the evidence against the latter two heavier pentaquark baryons is rapidly increasing making their existence highly questionable. I also conclude that the evidence for the Theta^+ state has significantly eroded with the recent CLAS results, and just leaves room for a possible state with an intrinsic width of Gamma < 0.5 MeV. Preliminary new evidence from various experiments will be discussed as well.

  20. Strange Baryon to Meson Ratio

    NASA Astrophysics Data System (ADS)

    Cuautle, Eleazar; Ayala, Alejandro

    2014-05-01

    We present a model to compute baryon and meson transverse momentum distributions, and their ratios, in relativistic heavy-ion collisions. The model allows to compute the probability to form colorless bound states of either two or three quarks as functions of the evolving density during the collision. The qualitative differences of the baryon to meson ratio for different collision energies and for different particle species can be associated to the different density dependent probabilities and to the combinatorial factors which in turn depend on whether the quarks forming the bound states are heavy or light. We compare to experimental data and show that we obtain a good description up to intermediate values of pt.

  1. Hadronic molecules in the heavy baryon spectrum

    SciTech Connect

    Entem, D. R.; Fernández, F.; Ortega, P. G.

    2016-01-22

    We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λ{sub c}(2940) as a D*N molecule with J{sup P} = 3/2{sup −} quantum numbers. We also find D{sup (*)}Δ candidates for the recently discovered X{sub c}(3250) resonance.

  2. Baryon asymmetry, inflation and squeezed states

    SciTech Connect

    Bambah, Bindu A. . E-mail: bbsp@uohyd.ernet.in; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-04-15

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry.

  3. Decay properties of double heavy baryons

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-08-05

    We study the semileptonic decays of double heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.

  4. Towards precision spectroscopy of baryonic resonances

    DOE PAGES

    Doring, Michael; Mai, Maxim; Ronchen, Deborah

    2017-01-26

    Recent progress in baryon spectroscopy is reviewed. In a common effort, various groups have analyzed a set of new high-precision polarization observables from ELSA. The Julich-Bonn group has finalized the analysis of pion-induced meson-baryon production, the potoproduction of pions and eta mesons, and (almost) the KΛ final state. Lastly, as data become preciser, statistical aspects in the analysis of excited baryons become increasingly relevant and several advances in this direction are proposed.

  5. Searching for the missing baryons in clusters

    PubMed Central

    Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul

    2011-01-01

    Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229

  6. Baryon semileptonic decays: the Mexican contribution

    SciTech Connect

    Flores-Mendieta, Ruben; Martinez, Alfonso

    2006-09-25

    We give a detailed account of the techniques to compute radiative corrections in baryon semileptonic decays developed over the years by Mexican collaborations. We explain how the method works by obtaining an expression for the Dalitz plot of semileptonic decays of polarized baryons including radiative corrections to order O({alpha}q/{pi}M1), where q is the four-momentum transfer and M1 is the mass of the decaying baryon. From here we compute the totally integrated spin angular asymmetry coefficient of the emitted baryon and compare its value with other results.

  7. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  8. Results and Frontiers in Lattice Baryon Spectroscopy

    SciTech Connect

    Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.

    2007-10-26

    The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.

  9. Isospin Splittings of Doubly Heavy Baryons

    SciTech Connect

    Brodsky, Stanley J.; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G.; /Julich, Forschungszentrum /JCHP, Julich /IAS, Julich /Bonn U., HISKP /Bonn U.

    2011-08-18

    The SELEX Collaboration has reported a very large isospin splitting of doubly charmed baryons. We show that this effect would imply that the doubly charmed baryons are very compact. One intriguing possibility is that such baryons have a linear geometry Q-q-Q where the light quark q oscillates between the two heavy quarks Q, analogous to a linear molecule such as carbon dioxide. However, using conventional arguments, the size of a heavy-light hadron is expected to be around 0.5 fm, much larger than the size needed to explain the observed large isospin splitting. Assuming the distance between two heavy quarks is much smaller than that between the light quark and a heavy one, the doubly heavy baryons are related to the heavy mesons via heavy quark-diquark symmetry. Based on this symmetry, we predict the isospin splittings for doubly heavy baryons including {Xi}{sub cc}, {Xi}{sub bb} and {Xi}{sub bc}. The prediction for the {Xi}{sub cc} is much smaller than the SELEX value. On the other hand, the {Xi}{sub bb} baryons are predicted to have an isospin splitting as large as (6.3 {+-} 1.7) MeV. An experimental study of doubly bottomed baryons is therefore very important to better understand the structure of baryons with heavy quarks.

  10. Baryon and lepton violation in astrophysics.

    NASA Astrophysics Data System (ADS)

    Kolb, E. W.

    The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.

  11. Baryon spectroscopy and the omega minus

    SciTech Connect

    Samios, N.P.

    1994-12-31

    In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.

  12. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  13. Excited baryons in the 1/Nc expansion

    NASA Astrophysics Data System (ADS)

    Matagne, N.; Stancu, Fl.

    2012-04-01

    We briefly describe the 1/Nc expansion method for studying baryon masses. Two approaches of the large Nc excited baryons have been proposed so far. The first one, based on the Hartree picture, treats the baryon as a ground state core and an excited quark and the second one, suggested recently, considers the baryon globally, without decoupling the system. The masses of excited states of mixed orbital symmetry of nonstrange and strange baryons belonging to the lowest [70, -] multiplet are calculated in the 1/Nc expansion to order 1/Nc with the new method which allows to considerably reduce the number of linearly independent operators entering the mass formula. The status of the resonance Λ(1405) is discussed.

  14. 21 CM searches for DIM galaxies

    NASA Astrophysics Data System (ADS)

    Disney, Mike; Banks, Gareth

    1997-04-01

    We review very strong selection effects which operate against the detection of dim (i.e. low surface brightness) galaxies. The Parkes multibeam instrument offers a wonderful opportunity to turn up new populations of such galaxies. However, to explore the newly accessible parameter space, it will be necessary to survey both a very deep patch (105 s/pointing, limiting N hi ˜ 1018 cm-2) and a deep patch (104 s/pointing, limiting N hi ˜ 3 × 1018 cm-2) in carefully selected areas, and we outline the case to do this.

  15. Masses of doubly and triply charmed baryons

    NASA Astrophysics Data System (ADS)

    Wei, Ke-Wei; Chen, Bing; Guo, Xin-Heng

    2015-10-01

    Until now, the first reported doubly charmed baryon Ξcc +(3520 ) is still a puzzle. It was discovered and confirmed by SELEX collaboration, but not confirmed by LHCb, BABAR, BELLE, FOCUS, or any other collaboration. In the present paper, by employing Regge phenomenology, we first express the mass of the ground state (L =0 ) doubly charmed baryon Ωcc *+ as a function of masses of the well established light baryons and singly charmed baryons. Inserting the recent experimental data, the mass of Ωcc *+ is given to be 3809 ±36 MeV , which is independent of any unobservable parameters. Then, with the quadratic mass relations, we calculate the masses of the ground state triply charmed baryon Ωcc c ++ and doubly charmed baryons Ξcc (*)++, Ξcc (*)+ , and Ωcc + [the mass of Ξcc + is determined as 3520-40+41 MeV , which agrees with the mass of Ξcc +(3520 ) ]. The isospin splitting MΞcc ++-MΞcc +=0.4 ±0.3 MeV . After that, masses of the orbitally excited (L =1 , 2, 3) doubly and triply charmed baryons are estimated. The results are reasonable comparing with those extracted in many other approaches. We suggest more efforts to study doubly and triply charmed baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for numerically examining whether the linear mass relations or the quadratic mass relations are realized in nature. Our predictions are useful for the discovery of unobserved doubly and triply charmed baryon states and the JP assignment of these states.

  16. Light baryons and their excitations

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios

    2016-11-01

    We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.

  17. Baryon-meson mass inequality

    SciTech Connect

    Nussinov, S.

    1983-12-05

    It is suggested that the inequality m/sub B/>(3/2)m/sub M/ is a rigorous result in quantum chromodynamics. The analog for a (q/sub 1/. . .q/sub N/) baryon in SU(N) is m/sub B/>((1/2)N)m/sub M/. The inequality is proved for weak coupling and a version of the strong-coupling expansion where a separation H/sub q//sub 1/q/sub 2/q/sub 3/ = H/sub 12/+H/sub 23/+H/sub 31/ of the problem can be achieved. Implications for quantum chromodynamics and composite models are briefly discussed.

  18. Holographic heavy ion collisions with baryon charge

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel

    2016-09-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  19. More About the Light Baryon Spectrum

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot

    2017-03-01

    We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with `anomalous' states, and we propose a method to eliminate them from the spectrum.

  20. Heavy baryons - Recent and very new results

    SciTech Connect

    Peter S Cooper

    2003-01-15

    Recent results on observations, properties and decay modes of the charmed and beauty baryons will be reviewed. Candidates for several new high mass states which include a cleanly-identified daughter {Lambda}{sub c}{sup +} baryon are seen in data from the SELEX experiment at Fermilab. These states are candidates for doubly-charmed baryons: a {Xi}{sub cc}{sup ++} state and a {Xi}{sub cc}{sup +} state. These candidates are more than 5{sigma} signals in each case at masses of 3520 and 3460 MeV respectively.

  1. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  2. Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.

    PubMed

    Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn

    2015-11-13

    Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130  MeV≤T≤300  MeV and baryon chemical potentials 0≤μ(B)≤400  MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.

  3. Precombination Cloud Collapse and Baryonic Dark Matter

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  4. Spin-flavor composition of excited baryons

    NASA Astrophysics Data System (ADS)

    Fernando, Ishara; Goity, Jose

    2015-10-01

    The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).

  5. The baryon content of the Cosmic Web

    PubMed Central

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-01-01

    Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589

  6. The baryonic mass function of galaxies.

    PubMed

    Read, J I; Trentham, Neil

    2005-12-15

    In the Big Bang about 5% of the mass that was created was in the form of normal baryonic matter (neutrons and protons). Of this about 10% ended up in galaxies in the form of stars or of gas (that can be in molecules, can be atomic, or can be ionized). In this work, we measure the baryonic mass function of galaxies, which describes how the baryonic mass is distributed within galaxies of different types (e.g. spiral or elliptical) and of different sizes. This can provide useful constraints on our current cosmology, convolved with our understanding of how galaxies form. This work relies on various large astronomical surveys, e.g. the optical Sloan Digital Sky Survey (to observe stars) and the HIPASS radio survey (to observe atomic gas). We then perform an integral over our mass function to determine the cosmological density of baryons in galaxies: Omega(b,gal)=0.0035. Most of these baryons are in stars: Omega(*)=0.0028. Only about 20% are in gas. The error on the quantities, as determined from the range obtained between different methods, is ca 10%; systematic errors may be much larger. Most (ca 90%) of the baryons in the Universe are not in galaxies. They probably exist in a warm/hot intergalactic medium. Searching for direct observational evidence and deeper theoretical understanding for this will form one of the major challenges for astronomy in the next decade.

  7. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  8. Disentanglement of Electromagnetic Baryon Properties

    NASA Astrophysics Data System (ADS)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  9. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    SciTech Connect

    Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-03-17

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

  10. Radiative corrections in baryon semileptonic decays with the emission of a polarized baryon

    SciTech Connect

    Juarez-Leon, C.; Martinez, A.; Neri, M.; Torres, J. J.; Flores-Mendieta, R.

    2010-07-29

    We present an overview of the calculation of radiative corrections to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. We discuss both charged and neutral decaying baryons, restricted to the three-body region of the Dalitz plot. Our analysis is specialized to cover two possible scenarios: The center-of-mass frames of the emitted and the decaying baryons. We have accounted for terms up to order ({alpha}/{pi})(q/M{sub 1}){sup 0}, where q is the momentum-transfer and M{sup 1} is the mass of the decaying baryon, and neglected terms of order ({alpha}/{pi})(q/M{sub 1}){sup n} for n{>=}1. The expressions displayed are ready to obtain numerical results, suitable for model-independent experimental analyses.

  11. Kinematics of the Local Universe. XIV. Measurements from the 21 cm line and the HI mass function from a homogeneous catalog gathered with the Nançay radio telescope

    NASA Astrophysics Data System (ADS)

    Theureau, G.; Coudreau, N.; Hallet, N.; Hanski, M. O.; Poulain, M.

    2017-03-01

    Aims: This paper presents 828 new 21 cm neutral hydrogen line measurements carried out with the FORT receiver of the meridian transit Nançay radio telescope (NRT) in the years 2000-2007. Methods: This observational program was part of a larger project aimed at collecting an exhaustive and magnitude-complete HI extragalactic catalog for Tully-Fisher applications. Through five massive data releases, the KLUN series has collected a homogeneous sample of 4876 HI-spectra of spiral galaxies, complete down to a flux of 5 Jy km s-1 and with declination δ > -40°. Results: We publish here the last release of the KLUN HI observational program, corresponding to the faint end of the survey, with HI masses ranging from 5 × 108 to 5 × 1010 solar masses. The size of this final sample is comparable to the catalogs based on the Arecibo and Parkes radio telescope campaigns, and it allows general HI mass distribution studies from a set of homogeneous radio measurements. Full Tables 2 and 3, together with HI profiles in ascii format, are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A104

  12. An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies

    NASA Astrophysics Data System (ADS)

    Papastergis, E.; Adams, E. A. K.; van der Hulst, J. M.

    2016-09-01

    We use a sample of 97 galaxies selected from the Arecibo legacy fast ALFA (ALFALFA) 21 cm survey to make an accurate measurement of the baryonic Tully-Fisher relation (BTFR). These galaxies are specifically selected to be heavily gas-dominated (Mgas/M∗ ≳ 2.7) and to be oriented edge-on. The former property ensures that the error on the galactic baryonic mass is small, despite the large systematic uncertainty involved in galactic stellar mass estimates. The latter property means that rotational velocities can be derived directly from the width of the 21 cm emission line, without any need for inclination corrections. We measure a slope for the linewidth-based BTFR of α = 3.75 ± 0.11, a value that is somewhat steeper than (but in broad agreement with) previous literature results. The relation is remarkably tight, with almost all galaxies being located within a perpendicular distance of ± 0.1 dex from the best fit line. The low observational error budget for our sample enables us to establish that, despite its tightness, the measured linewidth-based BTFR has some small (i.e., non-zero) intrinsic scatter. We furthermore find a systematic difference in the BTFR of galaxies with "double-horned" 21 cm line profiles - suggestive of flat outer galactic rotation curves - and those with "peaked" profiles - suggestive of rising rotation curves. When we restrict our sample of galaxies to objects in the former category, we measure a slightly steeper slope of α = 4.13 ± 0.15. Overall, the high-accuracy measurement of the BTFR presented in this article is intended as a reliable observational benchmark against which to test theoretical expectations. Here we consider a representative set of semi-analytic models and hydrodynamic simulations in the lambda cold dark matter (ΛCDM) context, as well as modified Newtonian dynamics (MOND). In the near future, interferometric follow-up observations of several sample members will enable us to further refine the BTFR measurement, and

  13. Q-balls of clusterized baryonic matter

    NASA Astrophysics Data System (ADS)

    Mişicu, Ş.; Mishustin, I. N.; Greiner, W.

    2017-01-01

    Properties of baryonic matter made of nucleons and α-particles are studied within a relativistic mean-field (RMF) model. The Lagrangian describing the relativistic field ϕ of α-particles is allowed to contain also self-interaction terms. Various types of RMF parametrizations are employed to calculate the energy of α-particles embedded in the baryonic matter. We first consider baryonic systems with small admixtures of α-particles and calculate the energy spectrum as a function of baryon density. Then we turn to the case of pure α-matter and derive once again the energy spectrum, this time as a function of α-particle density, with and without quartic self-interaction. In the second part of the paper, we focus on the ground-state properties (energy per particle, radii of the spherical lumps made of α-particles) of charge neutralized Q-balls formed of baryonic α-particles for the case of linear σ and ω fields and nonlinear (quartic+sextic) self-interactions of the ϕ field.

  14. Baryon Spectroscopy and the Origin of Mass

    SciTech Connect

    Klempt, Eberhard

    2010-08-05

    The proton mass arises from spontaneous breaking of chiral symmetry and the formation of constituent quarks. Their dynamics cannot be tested by proton tomography but only by studying excited baryons. However, the number of excited baryons is much smaller than expected within quark models; even worse, the existence of many known states has been challenged in a recent analysis which includes - compared to older analyses - high-precision data from meson factories. Hence {pi}N elastic scattering data do not provide a well-founded starting point of any phenomenological analysis of the baryon excitation spectrum. Photoproduction experiments now start to fill in this hole. Often, they confirm the old findings and even suggest a few new states. These results encourage attempts to compare the pattern of observed baryon resonances with predictions from quark models, from models generating baryons dynamically from meson-nucleon scattering amplitudes, from models based on gravitational theories, and with the conjecture that chiral symmetry may be restored at high excitation energies. Best agreement is found with a simple mass formula derived within AdS/QCD. Consequences for our understanding of QCD are discussed as well as experiments which may help to decide on the validity of models.

  15. Production and decay of charmed baryons

    NASA Astrophysics Data System (ADS)

    Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro

    2016-10-01

    In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.

  16. Heavy flavor baryon states at the Tevatron

    SciTech Connect

    Seidel, Sally; /New Mexico U.

    2011-08-01

    Precision measurements of the masses and widths of the bottom baryon resonances {Sigma}{sub b} and {Sigma}*{sub b} and charm baryons {Lambda}{sub c}(2595), {Lambda}{sub c}(2625), {Sigma}{sub c}(2455), and {Sigma}{sub c}(2520) are reported. A new measurement of {Lambda}{sub b} production is described. The studies include the first measurement of the widths and isospin mass splittings of the members of the {Sigma}{sub b} family. The charm baryons are examined through their strong decays to the {Lambda}{sub c} ground state, and measurements of their mass differences relative to the ground state, and corresponding decay widths, are reported. The data were collected by the CDF and D0 detectors for 1.96 TeV proton-antiproton collisions during Run II at the Fermilab Tevatron.

  17. Spectroscopy of charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  18. Primordial nucleosynthesis and primoridal isocurvature baryon fluctuations

    SciTech Connect

    Mathews, G.T.; Kurki-Suonio, Hannu; Jedamzik, K.

    1995-10-01

    Recently, there has been interest in inflation-generated cosmological primordial isocurvature baryon fluctuation (PIB) models as a means to account for the large scale clustering of galaxies. However, the extension of the isocurvature fluctuations contained in such models to the mass scales of nucleosynthesis would imply large stochastic fluctuations in baryon-to-photon ratio during the epoch of primordial nucleosynthesis. We discuss constraints on the spectral index and rms amplitude of such fluctuations based upon the computed light element abundances. Our calculations include nuclear reaction networks in up to 40,000 zones in which stockastic fluctuations are spatially resolved. The effects of baryon diffusion among the fluctuations are also explicitly coupled and followed during nucleosynthesis. We confirm that the fluctuations must be significantly damped compared to a straight-forward extension of the cosmological PIB models.

  19. Heavy Baryons in a Quark Model

    SciTech Connect

    Winston Roberts; Muslema Pervin

    2007-11-14

    A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.

  20. The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Wang, Yuting; Ross, Ashley J.; Shandera, Sarah; Percival, Will J.; Dawson, Kyle S.; Kneib, Jean-Paul; Myers, Adam D.; Brownstein, Joel R.; Comparat, Johan; Delubac, Timothée; Gao, Pengyuan; Hojjati, Alireza; Koyama, Kazuya; McBride, Cameron K.; Meza, Andrés; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Pogosian, Levon; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tao, Charling; Wang, Dandan; Yèche, Christophe; Zhang, Hanyu; Zhang, Yuecheng; Zhou, Xu; Zhu, Fangzhou; Zou, Hu

    2016-04-01

    We present a science forecast for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) survey. Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the fNL parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Lyman α forest to constrain the total neutrino mass. We find that eBOSS luminous red galaxies, emission line galaxies and clustering quasars can achieve a precision of 1, 2.2 and 1.6 per cent, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on fσ8 is expected to be 2.5, 3.3 and 2.8 per cent, respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of σ(fNL) ˜ 10-15. eBOSS can at most improve the dark energy figure of merit by a factor of 3 for the Chevallier-Polarski-Linder parametrization, and can well constrain three eigenmodes for the general equation-of-state parameter. eBOSS can also significantly improve constraints on modified gravity parameters by providing the RSD information, which is highly complementary to constraints obtained from weak lensing measurements. A principal component analysis shows that eBOSS can measure the eigenmodes of the effective Newton's constant to 2 per cent precision; this is a factor of 10 improvement over that achievable without eBOSS. Finally, we derive the eBOSS constraint (combined with Planck, Dark Energy Survey and BOSS) on the total neutrino mass, σ(Σmν) = 0.03 eV (68 per cent CL), which in principle makes it possible to distinguish between the two scenarios of neutrino mass hierarchies.

  1. The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Smith, Britton D.; Danforth, Charles W.

    2012-11-01

    Although galaxies, groups, and clusters contain ~10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Lyα forest and warm-hot IGM (WHIM) at 105-6 K traced by O VI λ1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z ⊙) and ionization fractions (f H I , f O VI ). Statistically, the O VI correction product correlates with column density, (Z/Z ⊙)f O VI ≈ (0.015)(N O VI /1014 cm-2)0.70, with an N O VI -weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Lyα forest contribution to baryon density out to z = 0.4, correcting for the (1 + z)3 increase in absorber density, the (1 + z)4.4 rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Lyα forest (28% ± 11%) and WHIM traced by O VI and broad-Lyα absorbers (25% ± 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% ± 4%, leaving an apparent baryon shortfall of 29% ± 13%. Our simulations suggest that ~15% reside in hotter WHIM (T >= 106 K). Additional baryons could be detected in weaker Lyα and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N H I >= 1012.0 cm-2, N O VI >= 1012.5 cm-2, N O VII >= 1014.5 cm-2, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.

  2. Strong decays of excited baryons in Large Nc QCD

    SciTech Connect

    Goity, Jose; Scoccola, Norberto

    2007-02-01

    We present the analysis of the strong decays widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  3. Baryon onset in a magnetic field

    SciTech Connect

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2016-01-22

    The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models – including magnetic catalysis, but omitting the anomalous magnetic moment – that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.

  4. Observational tests of Baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Observational evidence for Baryon symmetric (matter/antimatter) cosmology and future observational tests are reviewed. The most significant consequences of Baryon symmetric cosmology lie in the prediction of an observable cosmic background of gamma radiation from the decay of pi(0)-mesons produced in nucleon-antinucleon annihilations. Equations for the prediction of the amma ray background spectrum for the case of high redshifts are presented. The theoretical and observational plots of the background spectrum are shown to be in good agreement. Measurement of cosmic ray antiprotons and the use of high energy neutrino astronomy to look for antimatter elsewhere in the universe are also addressed.

  5. Exciting baryons: Now and in the future

    NASA Astrophysics Data System (ADS)

    Pennington, M. R.

    2012-04-01

    This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.

  6. Probing the Baryon Cycle in Galaxy Outskirts

    NASA Astrophysics Data System (ADS)

    Davé, Romeel

    2017-03-01

    Galaxies are born and grow within a cosmic ecosystem, in which they receive material from surrounding intergalactic gas via gravitationally-driven inflows and expel material via powerful galactic outflows. These processes, collectively referred to as the baryon cycle, are increasingly believed to govern galaxy growth over cosmic time. I discuss new insights on the baryon cycle using analytic models and hydrodynamical simulations of galaxy evolution, particularly emphasizing how galaxy outskirts are the prime locale within which to observe these processes in action by examining observational tracers such as rest-ultraviolet absorption lines and the neutral and molecular gas content of galaxies.

  7. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  8. Strangeness -2 and -3 Baryons in a Constituent Quark Model

    SciTech Connect

    Muslema Pervin; Winston Roberts

    2007-09-19

    We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.

  9. Baryon Regge Trajectories and the 1/Nc Expansion

    SciTech Connect

    Goity, Jose; Matagne, Nicolas

    2008-12-01

    Baryon Regge trajectories are discussed in the light of the 1/Nc expansion. The approximate dynamical symmetry SU(6)x O(3) is used to identify the spin-flavor singlet component of baryon masses. By fitting to the known baryon spectrum, this component is shown to produce distinct Regge trajectories for SU(6) 56- and 70-plets which are remarkably linear.

  10. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  11. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  12. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  13. Missing baryonic resonances in the Hagedorn spectrum

    NASA Astrophysics Data System (ADS)

    Man Lo, Pok; Marczenko, Michał; Redlich, Krzysztof; Sasaki, Chihiro

    2016-08-01

    The hadronic medium of QCD is modeled as a gas of point-like hadrons, with its composition determined by the Hagedorn mass spectrum. The spectrum consists of a discrete and a continuous part. The former is determined by the experimentally confirmed resonances tabulated by the Particle Data Group (PDG), while the latter can be extracted from the existing lattice data. This formulation of the hadron resonance gas (HRG) provides a transparent framework to relate the fluctuation of conserved charges as calculated in the lattice QCD approach to the particle content of the medium. A comparison of the two approaches shows that the equation of state is well described by the standard HRG model, which includes only a discrete spectrum of known hadrons. The corresponding description in the strange sector, however, shows clear discrepancies, thus a continuous spectrum is added to incorporate the effect of missing resonances. We propose a method to extract the strange-baryon spectrum from the lattice data. The result is consistent with the trend set by the unconfirmed strange baryons resonances listed by the PDG, suggesting that most of the missing interaction strength for the strange baryons reside in the | S| = 1 sector. This scenario is also supported by recent lattice calculations, and might be important in the energy region covered by the NICA accelerator in Dubna, where in the heavy-ion collisions, baryons are the dominating degrees of freedom in the final state.

  14. Baryonic Distributions in Galaxy Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.

    2016-01-01

    Understanding the role and significance of dark matter in the evolution of baryonic components (i.e., conversion of the gaseous disk into stars) is a critical aspect for realistic models of galaxy evolution. In an effort to address fundamental questions regarding the growth and distribution of stellar disks in dark matter halos in a statistical manner, we have undertaken a project correlating structural properties and star formation activity with the dark matter properties of the host galaxy. The project uses a statistical sample of 45 nearby galaxies which are optimally suited for rotation curve decomposition analysis. The dataset includes deep Spitzer 3.6μm images to trace the stellar distribution, neutral and ionized gas rotation curves to trace the total mass distribution, and optical images to examine the dominant stellar populations. Using a sub-set of galaxies from the full sample, we find that the distribution of the baryonic mass relative to the total mass is roughly self-similar in more massive galaxies when normalized by the average stellar disk scale length measured at 3.6μm. We additionally observe an emerging trend between total baryonic mass and the radius at which the total mass distribution transitions from baryon-dominated to dark matter-dominated. However, we find no significant correlation between the distribution of dark matter and structural properties of the stellar disk, such as changes in color or star formation activity.

  15. The baryonic self similarity of dark matter

    SciTech Connect

    Alard, C.

    2014-06-20

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  16. The CMU Baryon Amplitude Analysis Program

    NASA Astrophysics Data System (ADS)

    Bellis, Matt

    2007-05-01

    The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.

  17. Weak radiative baryonic decays of B mesons

    SciTech Connect

    Kohara, Yoji

    2004-11-01

    Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.

  18. Beauty baryon decays: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming

    2014-11-01

    I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.

  19. On the nature of the baryon asymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1984-01-01

    Whether the baryon asymmetry in the universe is a locally varying or universally fixed number is examined with focus on the existence of a possible matter antimatter domain structure in the universe arising from a GUT with spontaneous CP symmetry breaking. Theoretical considerations and observational data and astrophysical tests relating to this fundamental question are reviewed.

  20. Magnetic moments of negative parity baryons in QCD

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Savcı, M.

    2014-03-01

    Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons and also from a nondiagonal transition between positive- and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in the literature is presented.

  1. Magnetic moments of JP=3/2- baryons in QCD

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Savcı, M.

    2014-12-01

    The magnetic moments of the low lying, negative parity, spin-3 /2 baryons, including the Λ* baryon, are calculated within the light cone QCD sum rules method. The contributions coming from the positive parity, spin-3 /2 baryons, as well as from the positive and negative parity spin-1 /2 baryons are eliminated by constructing combinations of various invariant amplitudes corresponding to the coefficients of the different Lorentz structures. We also present the results for the magnetic moments of the positive parity, spin-3 /2 baryons.

  2. THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING

    SciTech Connect

    Shull, J. Michael; Danforth, Charles W.; Smith, Britton D. E-mail: smit1685@msu.edu

    2012-11-01

    Although galaxies, groups, and clusters contain {approx}10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Ly{alpha} forest and warm-hot IGM (WHIM) at 10{sup 5-6} K traced by O VI {lambda}1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z {sub Sun }) and ionization fractions (f {sub HI}, f {sub OVI}). Statistically, the O VI correction product correlates with column density, (Z/Z {sub Sun })f {sub OVI} Almost-Equal-To (0.015)(N {sub OVI}/10{sup 14} cm{sup -2}){sup 0.70}, with an N {sub OVI}-weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Ly{alpha} forest contribution to baryon density out to z = 0.4, correcting for the (1 + z){sup 3} increase in absorber density, the (1 + z){sup 4.4} rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Ly{alpha} forest (28% {+-} 11%) and WHIM traced by O VI and broad-Ly{alpha} absorbers (25% {+-} 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% {+-} 4%, leaving an apparent baryon shortfall of 29% {+-} 13%. Our simulations suggest that {approx}15% reside in hotter WHIM (T {>=} 10{sup 6} K). Additional baryons could be detected in weaker Ly{alpha} and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N {sub HI} {>=} 10{sup 12.0} cm{sup -2}, N {sub OVI} {>=} 10{sup 12.5} cm{sup -2}, N {sub OVII} {>=} 10{sup 14.5} cm{sup -2}, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.

  3. An Unquenched Quark Model of Baryons

    SciTech Connect

    Bijker, Roelof; Santopinto, Elena

    2007-10-26

    We present the formalism for a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The present approach is an extension of the fiux-tube breaking model of Geiger and Isgur in which now the contribution of quark-antiquark pairs can be studied for any inital baryon, for any fiavor of the qq-bar pair (not only ss-bar but also uu-bar and dd-bar) and for arbitrary hadron wave functions. The method is illustrated with an application to the spin of the proton and the flavor asymmetry of the nucleon sea.

  4. Exotic Baryon Resonances in the Skyrme Model

    NASA Astrophysics Data System (ADS)

    Diakonov, Dmitri; Petrov, Victor

    We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colors the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Θ+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Θ+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Θ+ resonance is briefly reviewed and affirmed.

  5. Two Baryons with Twisted Boundary Conditions

    SciTech Connect

    Briceno, Raul; Davoudi, Zohreh; Luu, Thomas; Savage, Martin

    2014-04-01

    The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.

  6. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

    SciTech Connect

    Fernando, I. P.; Goity, J. L.

    2015-02-01

    The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.

  7. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

    DOE PAGES

    Fernando, I. P.; Goity, J. L.

    2015-02-01

    The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less

  8. Understanding the baryon and meson spectra

    SciTech Connect

    Pennington, Michael R.

    2013-10-01

    A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.

  9. Baryon spectroscopy with polarization observables from CLAS

    SciTech Connect

    Strauch, Steffen

    2016-08-01

    Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.

  10. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  11. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  12. Charmed bottom baryon spectroscopy from lattice QCD

    SciTech Connect

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  13. Chiral Lagrangian for baryons in the 1/Nc expansion

    NASA Astrophysics Data System (ADS)

    Jenkins, Elizabeth

    1996-03-01

    A 1/Nc expansion of the chiral Lagrangian for baryons is formulated and used to study the low-energy dynamics of baryons interacting with the pion nonet π, K, η, and η' in a combined expansion in chiral symmetry breaking and 1/Nc. Strong CP violation is included. The chiral Lagrangian correctly implements nonet symmetry and contracted spin-flavor symmetry for baryons in the large Nc limit. The implications of nonet symmetry for low-energy baryon-pion interactions are described in detail. The procedure for calculating nonanalytic pion-loop corrections to baryon amplitudes in the 1/Nc expansion for finite Nc is explained. Flavor-27 baryon mass splittings are calculated at leading order in chiral perturbation theory as an example.

  14. Baryon superfluids in AdS/CFT with flavor

    NASA Astrophysics Data System (ADS)

    Hoyos, Carlos; Itsios, Georgios; Vasilakis, Orestis

    2017-01-01

    Baryonic matter is notoriously difficult to deal with in the large-N limit, as baryons become operators of very large dimension with N fields in the fundamental representation. This issue is also present in gauge/gravity duals as baryons are described by very heavy localized objects. There are however alternative large-N extrapolations of QCD where small baryonic operators exist and can be treated on an equal footing to mesons. We explore the possibility of turning on a finite density of "light" baryons in a theory with a hadronic mass gap using a gauge/gravity construction based on the D3/D7 intersection. We find a novel phase with spontaneous breaking of baryon symmetry at zero temperature.

  15. High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions

    SciTech Connect

    Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A

    2010-01-19

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.

  16. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  17. Baryons as Fock states of 3,5,... Quarks

    SciTech Connect

    Dmitri Diakonov; Victor Petrov

    2004-09-01

    We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.

  18. Precision cosmology and the density of baryons in the universe.

    PubMed

    Kaplinghat, M; Turner, M S

    2001-01-15

    Big-bang nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the long-standing conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.

  19. a Relativistic Calculation of Baryon Masses

    NASA Astrophysics Data System (ADS)

    Giammarco, Joseph Michael

    1990-01-01

    We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.

  20. Baryon Loaded Relativistic Blast Waves in Supernovae

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-03-01

    We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.

  1. Baryon Resonances in the Strangeness Production

    NASA Astrophysics Data System (ADS)

    Xie, Ju-Jun; Wang, En; Wu, Jia-Jun

    We have studied the N*(2120), Δ*(1940), and the possible Σ*(1380) resonances in the γp → K+Λ(1520), pp → nK+Σ(1385), and Λp → Λpπ0 reactions within the resonance model and the effective Lagrangian approach. It is shown that when the contributions from these baryonic states were considered, the current experimental measurement could be well reproduced. In addition, we also demonstrate that the angular distributions provide direct information of these reactions, which could be useful for the investigation of those states and may be tested by future experiments.

  2. Flavour Oscillations in Dense Baryonic Matter

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2017-01-01

    We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.

  3. High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions

    SciTech Connect

    Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting

  4. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  5. Baryogenesis from baryon-number-violating scalar interactions

    NASA Astrophysics Data System (ADS)

    Bowes, J. P.; Volkas, R. R.

    1997-03-01

    In the following work we consider the possibility of explaining the observed baryon-number asymmetry in the universe from simple baryon-number-violating modifications, involving massive scalar bosons, to the standard model. In these cases baryon-number violation is mediated through a combination of Yukawa and scalar self-coupling interactions. Starting with a previously compiled catalogue of baryon-number-violating extensions of the standard model, we identify the minimal subsets which can induce a B-L asymmetry and thus be immune to sphaleron washout. For each of these models, we identify the region of parameter space that leads to the production of a baryon number asymmetry of the correct order of magnitude.

  6. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    SciTech Connect

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  7. nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction

    SciTech Connect

    Fujiwara, Y.; Fukukawa, K.

    2010-05-12

    We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.

  8. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  9. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  10. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2016-10-01

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0 .51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3 N and 4 N systems based only on the standard plateau fitting of the temporal correlation functions. [Figure not available: see fulltext.

  11. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  12. Quantum Operator Design for Lattice Baryon Spectroscopy

    SciTech Connect

    Lichtl, Adam

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  13. Baryon transition form factors at the pole

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  14. Measurements of baryon form factors at BESIII

    NASA Astrophysics Data System (ADS)

    Li, Cui

    2016-08-01

    The momentum transfer dependence of the electromagnetic form factors is an important probe of the structure of hadrons at different scales. Using data samples collected with the BESIII detector at the BEPCII collider, we study the process of e+e- → pp¯ at 12 c.m. energies from 2232.4 to 3671.0 MeV. The Born cross section at these energy points are measured as well as the corresponding effective electromagnetic form factors. Furthermore, the ratio of electric to magnetic form factors, |GE/GM | and |GM | are measured at the c.m. energies where the data samples are the largest. We also report preliminary results of e+e- → ˄˄̅, which is analysed with the same method. Moreover, future prospects of the measurement of baryon electromagnetic form factors from a unique high luminosity data scan by BESIII, are given.

  15. Excited state baryon spectroscopy from lattice QCD

    SciTech Connect

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.

  16. Baryon transition form factors at the pole

    SciTech Connect

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  17. Leptogenesis and gravity: Baryon asymmetry without decays

    NASA Astrophysics Data System (ADS)

    McDonald, J. I.; Shore, G. M.

    2017-03-01

    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  18. Cluster outskirts and the missing baryons

    NASA Astrophysics Data System (ADS)

    Eckert, D.

    2016-06-01

    Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.

  19. Shedding light on baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  20. Charm Baryon Studies at BaBar

    SciTech Connect

    Ziegler, V.; /Iowa U.

    2006-04-21

    The authors present a precision measurement of the mass of the {Lambda}{sub c}{sup +} and studies of the production and decay of the {Omega}{sub c}{sup 0} and {Xi}{sub c}{sup 0} charm baryons using data collected by the BABAR experiment. To keep the systematic uncertainty as low as possible, the {Lambda}{sub c}{sup +} mass measurement is performed using the low Q-value decays, {Lambda}{sub c}{sup +} {yields} {Lambda}{sup 0} K{sub S}{sup 0}K{sup +} and {Lambda}{sub c}{sup +} {yields} {Sigma}{sup 0} K{sub S}{sup 0}K{sup +}. Several hadronic final states involving an {Omega}{sup -} and a {Xi}{sup -} hyperon are analyzed to reconstruct the {Xi}{sub c}{sup 0} and the {Omega}{sub c}{sup 0}.

  1. Halo Density Reduction by Baryonic Settling?

    NASA Astrophysics Data System (ADS)

    Jardel, J. R.; Sellwood, J. A.

    2009-02-01

    We test the proposal by El-Zant et al. that the dark matter density of halos could be reduced through dynamical friction acting on heavy baryonic clumps in the early stages of galaxy formation. Using N-body simulations, we confirm that the inner halo density cusp is flattened to 0.2 of the halo break radius by the settling of a single clump of mass gsim0.5% of the halo mass. We also find that an ensemble of 50 clumps, each having masses gsim0.2%, can flatten the cusp to almost the halo break radius on a timescale of ~9 Gyr, for a Navarro-Frenk-White profile halo of concentration 15. We summarize some of the difficulties that need to be overcome if this mechanism is to resolve the apparent conflict between the observed inner densities of galaxy halos and the predictions of ΛCDM.

  2. The Compressed Baryonic Matter Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Heuser, J. M.

    2011-04-01

    The Compressed Baryonic Matter (CBM) experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  3. Introducing the working group on excited baryons at the CEBAF 1986 workshop

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    Several important issues related to excited baryons are outlined. These include the questions of why to study electromagnetic excitation of baryons, which excited baryons to study, and what new physics to expect. Also considered are amplitude ambiguities for ..gamma..BB* and theoretical problems of extracting the resonant amplitude. Excited baryons in nuclei and future experiments are considered. (LEW)

  4. Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism

    SciTech Connect

    Bamba, Kazuharu

    2006-12-15

    The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can be generated.

  5. Dark matter and the baryon asymmetry of the universe.

    PubMed

    Farrar, Glennys R; Zaharijas, Gabrijela

    2006-02-03

    We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the big bang. If dark matter particles carry baryon number Bx, and sigmaxannih

  6. Negative Parity Baryon Decays in the 1/Nc Expansion

    SciTech Connect

    Chandana Jayalath, Jose L. Goity, Norberto N. Scoccola

    2010-08-01

    The $1/N_c$ expansion of QCD provides a useful framework for phenomenological studies of both ground state and excited baryons. Here, we focus on its application to the excited baryon strong decays via emission of single pseudoscalar meson. The S- and D-wave decay amplitudes of the negative parity baryons in the $[70,1^-]$ of $SU(6)$ are analyzed to subleading order in $1/N_c$ and to first order in SU(3) symmetry breaking. In particular, the SU(3) symmetry breaking is studied in detail through SU(3) breaking decay operators and state mixing.

  7. Medium modifications of baryon properties in nuclear matter and hypernuclei

    NASA Astrophysics Data System (ADS)

    Liang, J. S.; Shen, H.

    2013-09-01

    We study the medium modifications of baryon properties in nuclear many-body systems, especially in Λ hypernuclei. The nucleon and the Λ hyperon are described in the Friedberg-Lee model as nontopological solitons which interact through the self-consistent exchange of scalar and vector mesons. The quark degrees of freedom are explicitly considered in the model, so that the medium effects on baryons could be investigated. It is found that the model can provide reasonable descriptions for nuclear matter, finite nuclei, and Λ hypernuclei. The present model predicts a significant increase of the baryon radius in nuclear medium.

  8. Nonlinear Acoustics

    DTIC Science & Technology

    1974-02-14

    Wester- velt. [60] Streaming. In 1831, Michael Faraday [61] noted that currents of air were set up in the neighborhood of vibrating plates-the first... ducei in the case of a paramettc amy (from Berktay an Leahy 141). C’ "". k•, SEC 10.1 NONLINEAR ACOUSTICS 345 The principal results of their analysis

  9. Masses and axial currents of the doubly charmed baryons

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Feng; Liu, Zhan-Wei; Liu, Xiang; Zhu, Shi-Lin

    2015-05-01

    The chiral dynamics of the doubly heavy baryons is solely governed by the light quark. In this paper, we have derived the chiral corrections to the mass of the doubly heavy baryons up to N3LO . The mass splitting of Ξc c and Ωc c at the N2LO depends on one unknown low energy constant c7. By fitting the lattice masses of Ξc c(3520 ), we estimate the mass of Ωc c to be around 3.726 GeV. Moreover, we have also performed a systematical analysis of the chiral corrections to the axial currents and axial charges of the doubly heavy baryons. The chiral structure and analytical expressions will be very useful to the chiral extrapolations of the future lattice QCD simulations of the doubly heavy baryons.

  10. Studying time-like baryonic transitions with HADES

    NASA Astrophysics Data System (ADS)

    Ramstein, B.

    2016-05-01

    Recent results of the HADES collaboration are presented with emphasis on the e+e- production in elementary reactions. Via the Dalitz decay of baryonic resonances (R →Ne+e-), access is given to the time-like electromagnetic structure of baryonic transitions. This process could be measured for the first time for Δ(1232) in pp reactions at 1.25 GeV. At higher energies, the sensitivity of e+e- emission to transition form factors of the Vector Dominance type has been demonstrated. Very recently, experiments with the GSI pion beam started, allowing for more direct studies of baryonic resonances Dalitz decays. In addition, the measurement of hadronic channels provides a new data base for baryon spectroscopy issues, in particular in the 2πN channel.

  11. Penguin diagram dominance in radiative weak decays of bottom baryons

    SciTech Connect

    Kohara, Yoji

    2005-05-01

    Radiative weak decays of antitriplet bottom baryons are studied under the assumption of penguin diagram dominance and flavor-SU(3) (or SU(2)) symmetry. Relations among decay rates of various decay modes are derived.

  12. Excited state mass spectra of doubly heavy Ξ baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Rai, Ajay Kumar

    2017-02-01

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ _{cc}+, Ξ _{cc}^{++}, Ξ _{bb}-, Ξ _{bb}0, Ξ _{bc}0 and Ξ _{bc}+. These baryons consist of two heavy quarks ( cc, bb, and bc) with a light ( d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in ( n, M2) and ( J, M2) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated.

  13. Color fluxes in the production of doubly heavy baryons

    SciTech Connect

    Baranov, S. P.

    2007-04-15

    The production of doubly heavy baryons in hadron-hadron collisions is considered. A method is proposed for decomposing the respective differential cross section into parts associated with contributions of various color-flux configurations.

  14. Mass spectra and Regge trajectories of , , and baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P. C.

    2016-12-01

    We calculate the mass spectra of the singly charmed baryons (, , and ) using the hypercentral constituent quark model (hCQM). The hyper color Coulomb plus linear potential is used to calculate the masses of positive (up to ) and negative (up to ) parity excited states. The spin-spin, spin-orbital and tensor interaction terms are also incorporated for mass spectra. We have compared our results with other theoretical and lattice QCD predictions for each baryon. Moreover, the known experimental results are also reasonably close to our predicted masses. By using the radial and orbital excitation, we construct Regge trajectories for the baryons in the (n, M2) plane and find their slopes and intercepts. Other properties of these baryons, like magnetic moments, radiative transitions and radiative decay widths, are also calculated successfully. Supported in part (A. K. Rai) by DST, India (SERB Fast Track Scheme SR/FTP/PS-152/2012)

  15. Strange form factors of octet and decuplet baryons

    SciTech Connect

    Hong, Soon-Tae

    1999-11-22

    The strange form factors of baryon octet are evaluated, in the chiral models with the general chiral SU(3) group structure, to yield the theoretical predictions comparable to the recent experimental data of SAMPLE Collaboration and to study the spin symmetries. Other model predictions are also briefly reviewed to compare with our results and then the strange form factors of baryon octet and decuplet are predicted.

  16. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  17. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  18. Study of ψ(3770) decaying to baryon anti-baryon pairs

    NASA Astrophysics Data System (ADS)

    Xia, Li-Gang

    2016-05-01

    To study the decays of ψ (3770) going to baryon anti-baryon pairs (B B bar), all available experiments of measuring the cross sections of e+e- → B B bar at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3) flavor symmetry is used and the SU(3) breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE | = |GM |), a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ (3770) → B B bar is determined to be (2.4 ± 0.8 ± 0.3) ×10-5, (1.7 ± 0.6 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (4.5 ± 0.9 ± 0.1) ×10-5, (2.0 ± 0.7 ± 0.1) ×10-5, and (2.0 ± 0.7 ± 0.1) ×10-5 for B = p , Λ ,Σ+ ,Σ0 ,Ξ- and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE | = |GM |. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J / ψ / ψ (3686) → B B bar .

  19. Observing the Dark Baryons with Planck

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2015-08-01

    Planck has offered us an unprecedented view on the early cosmology. However the secondary anisotropy analysis is still not complete though they would give us insights on a totally different part of the history of the Universe. This is the case of the Sunyaev Zel'dovich effects and, in particular, the kinetic component (kSZ) produced by electrons in the halos of galaxies. This effect is sensitive to the electron momentum along the line of sight. Provided the peculiar velocity field is known, it becomes possible to linearly relate the temperature anisotropy to the distribution of baryons around galaxies. I will discuss the detectability prospects, the challenges and the current state of the kSZ analysis based on optimal template fitting on Planck data and futuristic surveys.The kSZ template that I propose are generated based on detailed, statistical, dynamical modeling of the Large Scale structures. The most advanced model involves full Baysian formulation of the formation of Large Scale structure and statistical reconstruction of initial conditions (BORG, Jasche & Wandelt 2013) I will describe these models and how they are related to the kSZ template maps.

  20. The CLAS Excited Baryon Program at JLab

    SciTech Connect

    Crede, Volker

    2007-10-26

    Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.

  1. The CLAS Excited Baryon Program at Jlab

    SciTech Connect

    Volker Crede

    2007-10-01

    Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multichannel framework that permits separating resonance from background contributions. Very often, resonances reveal themselves more clearly through interference with dominant amplitudes. These interference terms can be isolated via polarization observables. The current CLAS effort is to utilize highly-polarized hydrogen and deuterium targets as well as polarized photon beams toward a complete measurement of a large number of reaction channels.

  2. First observation of a baryonic Bc+ decay.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-10

    A baryonic decay of the B(c)(+) meson, B(c)(+) → J/ψppπ(+), is observed for the first time, with a significance of 7.3 standard deviations, in pp collision data collected with the LHCb detector and corresponding to an integrated luminosity of 3.0 fb(-1) taken at center-of-mass energies of 7 and 8 TeV. With the B(c)(+) → J/ψπ(+) decay as the normalization channel, the ratio of branching fractions is measured to be B(B(c)(+) → J/ψppπ(+))/B(B(c)(+) → J/ψπ(+)) = 0.143(-0.034)(+0.039)(stat) ± 0.013(syst). The mass of the B(c)(+) meson is determined as M(B(c)(+) = 6274.0 ± 1.8(stat) ± 0.4(syst) MeV/c(2), using the B(c)(+) → J/ψppπ(+) channel.

  3. Quark interchange model of baryon interactions

    SciTech Connect

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  4. Heavy to light baryon transition form factors

    SciTech Connect

    Guo, X. |; Huang, T. |; Li, Z.

    1996-05-01

    Recently, Stech found form factor relations for heavy to light transitions based on two simple dynamical assumptions for a spectator particle. In this paper we generalize his approach to the case of baryons and find that for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} ({ital Q}={ital b} or {ital c}) only one independent form factor remains in the limit {ital m}{sub {ital Q}}{r_arrow}{infinity}. Furthermore, combining with the model of Guo and Kroll we determine both of the two form factors for {Lambda}{sub {ital Q}}{r_arrow}{Lambda} in the heavy quark limit. The results are applied to {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} which is not clarified both theoretically and experimentally. It is found that the branching ratio of {Lambda}{sub {ital b}}{r_arrow}{Lambda}+{ital J}/{psi} is of order 10{sup {minus}5}. {copyright} {ital 1996 The American Physical Society.}

  5. Is the cygnet the quintessential baryon?

    PubMed Central

    Segal, I E

    1991-01-01

    The apparently new hadron-like particle ("cygnet") indicated by cosmic ray observations on certain neutron stars is predicted to be a spin 1/2 fermion of magnetic moment and charge 0 and lifetime infinity. This derives from the natural identification of the cygnet with the one hitherto unobserved fundamental fermion of chronometric particle theory, the x or "exon", which plays the role of a quintessential baryon. The "partons" are represented by the other fundamental fermions, consisting of e, nue, and numu; e.g., n = x + e+ + e-, p = x + e+ + nue. With further empirical assignments, chronometric theory has a potential for explaining diverse phenomena, such as mixing in the neutral kaon complex and the nature of the higher electrons. Its fundamental fermion and boson fields transform indecomposably under its symmetry group, the conformal group G. Theoretical elementary particles transforming irreducibly under G derive as successive quotients in a maximal chain of invariant subspaces. Mass fixing by Mach's principle breaks the symmetry down to microscopically observed covariance with respect to the Poincare group P0. The resulting representation is normally irreducible, but splits in the case of the K0 into two P0-irreducible components that are mixed by the excess of the chronometric over the relativistic energy ("gravity"), which provides a "superweak" force that may be explanatory of CP violation. PMID:11607152

  6. A NEW WAY OF DETECTING INTERGALACTIC BARYONS

    SciTech Connect

    Lieu, Richard; Duan Lingze

    2013-02-01

    For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales, it should be possible to determine the line-of-sight plasma column along the many directions and distances to the various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.

  7. Results on Charm Baryon Spectroscopy from Tevatron

    SciTech Connect

    Wick, Felix

    2011-05-01

    Due to an excellent mass resolution and a large amount of available data, the CDF experiment, located at the Tevatron proton-antiproton accelerator, allows the precise measurement of spectroscopic properties, like mass and decay width, of a variety of states. This was exploited to examine the first orbital excitations of the {Lambda}{sub c} baryon, the resonances {Lambda}{sub c}(2595) and {Lambda}{sub c}(2625), in the decay channel {Lambda}{sub c}{sup +} {pi}{sup +}{pi}{sup -}, as well as the {Lambda}{sub c} spin excitations {Sigma}{sub c}(2455) and {Sigma}{sub c}(2520) in its decays to {Lambda}{sub c}{sup +} {pi}{sup -} and {Lambda}{sub c}{sup +} {pi}{sup -} final states in a data sample corresponding to an integrated luminosity of 5.2 fb{sup -1}. We present measurements of the mass differences with respect to the {Lambda}{sub c} and the decay widths of these states, using significantly higher statistics than previous experiments.

  8. Heavy-Baryon Spectroscopy from Lattice QCD

    SciTech Connect

    Huey-Wen Lin, Saul D. Cohen, Liuming Liu, Nilmani Mathur, Konstantinos Orginos, Andre Walker-Loud

    2011-01-01

    We use a four-dimensional lattice calculation of the full-QCD (quantum chromodynamics, the non-abliean gauge theory of the strong interactions of quarks and gluons) path integrals needed to determine the masses of the charmed and bottom baryons. In the charm sector, our results are in good agreement with experiment within our systematics, except for the spin-1/2 $\\Xi_{cc}$, for which we found the isospin-averaged mass to be $\\Xi_{cc}$ to be $3665\\pm17\\pm14^{+0}_{-78}$ MeV. We predict the mass of the (isospin-averaged) spin-1/2 $\\Omega_{cc}$ to be $3763\\pm19\\pm26^{+13}_{-79}$ {MeV}. In the bottom sector, our results are also in agreement with experimental observations and other lattice calculations within our statistical and systematic errors. In particular, we find the mass of the $\\Omega_b$ to be consistent with the recent CDF measurement. We also predict the mass for the as yet unobserved $\\Xi^\\prime_b$ to be 5955(27) MeV.

  9. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  10. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  11. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  12. Redshifted 21cm Line Absorption by Intervening Galaxies

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    The present generation of radio telescopes, combined with powerful new spectrometers, is opening a new age of redshifted radio absorption-line studies. Out-fitting of arrays of antennas, such as the European VLBI Network and the upgraded VLA, with flexibly tuned receivers, will measure sizes and kinematics of intervening galaxies as a function of cosmic time.

  13. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  14. Baryons, universe and everything in between

    NASA Astrophysics Data System (ADS)

    Ho, Shirley

    2008-06-01

    This thesis is a tour of topics in cosmology, unified by their diversity and pursuits in better understanding of our Universe. The first chapter measures the Integrated Sachs-Wolfe effect as a function of redshift utilizing a large range of large scale structure observations and the cosmic microwave background. We combine the ISW likelihood function with weak lensing of CMB (which is described in Chapter 2) and CMB powerspectrum to constrain the equation of state of dark energy and the curvature of the Universe. The second chapter investigates the correlation of gravitational lensing of the cosmic microwave background (CMB) with several tracers of large-scale structure, and we find evidence for a positive cross-correlation at the 2.5s level. The third chapter explores the statistical properties of Luminous Red Galaxies in a sample of X-ray selected galaxy clusters, including the halo occupation distribution, how Poisson is the satellite distribution of LRGs and the radial profile of LRGs within clusters. The forth chapter explores the idea of using multiplicity of galaxies to understand their merging timescales. We find that (by using the multiplicity function of LRGs in Chapter 3) Massive halos (~ 10 14 M [Special characters omitted.] ) at low redshift have, for example, been bombarded by several ~ 10 13 M [Special characters omitted.] halos throughout their history and these accreted LRGs merge on relatively short timescales (~ 2 Gyr). The fifth chapter presents a new method for generating a template for the kinematic Sunyaev-Zel'dovich effect that can be used to detect the missing baryons. We assessed the feasibility of the method by investigating combinations of differeng galaxy surveys and CMB observations and find that we can detect the gas-momentum kSZ correlation, and thus the ionized gas, at significant signal-to-noise level.

  15. Self Interacting Dark Matter and Baryons

    NASA Astrophysics Data System (ADS)

    Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.

    2015-01-01

    Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.

  16. Structure of charmed baryons studied by pionic decays

    NASA Astrophysics Data System (ADS)

    Nagahiro, Hideko; Yasui, Shigehiro; Hosaka, Atsushi; Oka, Makoto; Noumi, Hiroyuki

    2017-01-01

    We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the decay widths from the one-pion emission for the known excited states, Λc*(2595 ), Λc*(2625 ), Λc*(2765 ), Λc*(2880 ), and Λc*(2940 ), as well as for the ground states Σc(2455 ) and Σc*(2520 ). The decay properties of the lower excited charmed baryons are well explained, and several important predictions for higher excited baryons are given. We find that the axial-vector-type coupling of the pion to the light quarks is essential, which is expected from chiral symmetry, to reproduce the decay widths especially of the low-lying Λc* baryons. We emphasize the importance of the branching ratios of Γ (Σc*π )/Γ (Σcπ ) for the study of the nature of higher excited Λc* baryons.

  17. Spectroscopy of doubly charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  18. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  19. Spectrum and Structure of Excited Baryons with CLAS

    NASA Astrophysics Data System (ADS)

    Burkert, Volker D.

    2017-01-01

    In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.

  20. Finite volume effects in the chiral extrapolation of baryon masses

    NASA Astrophysics Data System (ADS)

    Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.

    2014-09-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  1. Spectroscopy of doubly charmed baryons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael; Hadron Spectrum Collaboration

    2015-05-01

    We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 1 63×128 , with inverse spacing in temporal direction at-1=5.67 (4 ) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3 ) F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7 /2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU (6 )×O (3 ) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  2. Acoustic iridescence.

    PubMed

    Cox, Trevor J

    2011-03-01

    An investigation has been undertaken into acoustic iridescence, exploring how a device can be constructed which alter sound waves, in a similar way to structures in nature that act on light to produce optical iridescence. The main construction had many thin perforated sheets spaced half a wavelength apart for a specified design frequency. The sheets create the necessary impedance discontinuities to create backscattered waves, which then interfere to create strongly reflected sound at certain frequencies. Predictions and measurements show a set of harmonics, evenly spaced in frequency, for which sound is reflected strongly. And the frequency of these harmonics increases as the angle of observation gets larger, mimicking the iridescence seen in natural optical systems. Similar to optical systems, the reflections become weaker for oblique angles of reflection. A second construction was briefly examined which exploited a metamaterial made from elements and inclusions which were much smaller than the wavelength. Boundary element method predictions confirmed the potential for creating acoustic iridescence from layers of such a material.

  3. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  4. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  5. Quark-Pauli effects in three octet-baryons

    NASA Astrophysics Data System (ADS)

    Nakamoto, C.; Suzuki, Y.

    2016-09-01

    To sustain a neutron star with about two times the solar mass, multibaryons including hyperons are expected to produce repulsive effects in the interior of its high-baryon-density region. To examine possible quark-Pauli repulsion among the baryons, we solve the eigenvalue problem of the quark antisymmetrizer for three octet-baryons that are described by most compact spatial configurations. We find that the Pauli blocking effect is weak in the Λ n n system, while it is strong in the Σ-n n system. The appearance of the Σ- hyperon is suppressed in the neutron star interior but no quark-Pauli repulsion effectively works for the Λ hyperon.

  6. Measurement of b-Baryons with the CDF II detector

    SciTech Connect

    Heuser, Joachim; /Karlsruhe U., EKP

    2007-10-01

    We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.

  7. Impact of finite density on spectroscopic parameters of decuplet baryons

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.; Sundu, H.

    2016-12-01

    The decuplet baryons, Δ , Σ*, Ξ*, and Ω-, are studied in nuclear matter by using the in-medium QCD sum rules. By fixing the three-momentum of the particles under consideration at the rest frame of the medium, the negative energy contributions are removed. It is obtained that the parameters of the Δ baryon are more affected by the medium against the Ω- state, containing three strange quarks, whose mass and residue are not considerably affected by the medium. We also find the vector and scalar self-energies of these baryons in nuclear matter. By the recent progresses at the P ¯ ANDA experiment at the FAIR and NICA facility, it may be possible to study the in-medium properties of such states, even the multistrange Ξ* and Ω- systems, in the near future.

  8. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    SciTech Connect

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-05-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.

  9. On Possible Variation in the Cosmological Baryon Fraction

    NASA Astrophysics Data System (ADS)

    Holder, Gilbert P.; Nollett, Kenneth M.; van Engelen, Alexander

    2010-06-01

    The fraction of matter that is in the form of baryons or dark matter could have spatial fluctuations in the form of baryon-dark matter isocurvature fluctuations. We use big bang nucleosynthesis calculations compared with observed light-element abundances as well as galaxy cluster gas fractions to constrain cosmological variations in the baryon fraction. Light-element abundances constrain spatial variations to be less than 26%-27%, while a sample of "relaxed" galaxy clusters shows spatial variations in gas fractions less than 8%. Larger spatial variations could cause differential screening of the primary cosmic microwave background (CMB) anisotropies, leading to asymmetries in the fluctuations, and ease some tension with the halo-star 7Li abundance. We also show that fluctuations within our allowed bounds can lead to "B-mode" CMB polarization anisotropies at a non-negligible level.

  10. Estimates of isospin breaking contributions to baryon masses

    SciTech Connect

    Ha, Phuoc

    2007-10-01

    We estimate the isospin breaking contributions to the baryon masses which we analyzed recently using a loop expansion in the heavy-baryon chiral effective field theory. To one loop, the isospin breaking corrections come from the effects of the d, u quark mass difference, the Coulomb and magnetic moment interactions, and effective point interactions attributable to color-magnetic effects. The addition of the first meson loop corrections introduces new structure. We estimate the resulting low-energy, long-range contributions to the mass splittings by regularizing the loop integrals using connections to dynamical models for finite-size baryons. We find that the resulting contributions to the isospin breaking corrections are of the right general size, have the correct sign pattern, and agree with the experimental values within the margin of error.

  11. Chiral dynamics of the polarizing fracture functions for baryon production

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2009-04-01

    The concept of spin-directed momentum provides a useful and restrictive framework for describing dynamical mechanisms that can lead to single-spin observables. The value of this framework can be demonstrated by consideration of the polarizing fracture functions, ΔNMB↑/pq(x,z,kTN;Q2), that characterize the production of polarized baryons in the target fragmentation region of semi-inclusive deep-inelastic scattering from an unpolarized target. When Bjorken x is chosen large enough to indicate a hard scattering from a valence quark, the fracture function formalism dynamically selects a quark-diquark basis for baryon structure. Attention to constituent orbital angular momentum in the formation process and its role in contributing to the transverse momentum of the produced baryon illustrates important aspects of the generation of polarization observables.

  12. Magnetic moments of octet baryons and sea antiquark polarizations

    SciTech Connect

    Bartelski, Jan; Tatur, Stanislaw

    2005-01-01

    Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.

  13. Excited baryons from Bayesian priors and overlap fermions

    SciTech Connect

    F.X. Lee; S.J. Dong; T. Draper; I. Horvath; K.F. Liu; N. Mathur; J.B. Zhang

    2003-05-01

    Using the constrained-fitting method based on Bayesian priors, we extract the masses of the two lowest states of octet and decouplet baryons with both parities. The calculation is done on quenched 163 x 28 lattices of a = 0.2 fm using an improved gauge action and overlap fermions, with the pion mass as low as 180 MeV. The Roper state N(1440)+ is clearly observed for the first time as the 1st-excited state of the nucleon from the standard interpolating field. Together with other baryons, our preliminary results indicate that the level-ordering of the low-lying baryon states on the lattice is largely consistent with experiment. The realization is helped by cross-overs between the excited + and - states in the region of mp 300 to 400 MeV.

  14. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Quasar Target Selection

    NASA Astrophysics Data System (ADS)

    Myers, Adam D.; Palanque-Delabrouille, Nathalie; Prakash, Abhishek; Pâris, Isabelle; Yeche, Christophe; Dawson, Kyle S.; Bovy, Jo; Lang, Dustin; Schlegel, David J.; Newman, Jeffrey A.; Petitjean, Patrick; Kneib, Jean-Paul; Laurent, Pierre; Percival, Will J.; Ross, Ashley J.; Seo, Hee-Jong; Tinker, Jeremy L.; Armengaud, Eric; Brownstein, Joel; Burtin, Etienne; Cai, Zheng; Comparat, Johan; Kasliwal, Mansi; Kulkarni, Shrinivas R.; Laher, Russ; Levitan, David; McBride, Cameron K.; McGreer, Ian D.; Miller, Adam A.; Nugent, Peter; Ofek, Eran; Rossi, Graziano; Ruan, John; Schneider, Donald P.; Sesar, Branimir; Streblyanska, Alina; Surace, Jason

    2015-12-01

    As part of the Sloan Digital Sky Survey (SDSS) IV the extended Baryon Oscillation Spectroscopic Survey (eBOSS) will improve measurements of the cosmological distance scale by applying the Baryon Acoustic Oscillation (BAO) method to quasar samples. eBOSS will adopt two approaches to target quasars over 7500 deg2. First, a “CORE” quasar sample will combine the optical selection in ugriz using a likelihood-based routine called XDQSOz, with a mid-IR-optical color cut. eBOSS CORE selection (to g < 22 or r < 22) should return ˜70 deg-2 quasars at redshifts 0.9 < z < 2.2 and ˜7 deg-2z > 2.1 quasars. Second, a selection based on variability in multi-epoch imaging from the Palomar Transient Factory should recover an additional ˜3-4 deg-2z > 2.1 quasars to g < 22.5. A linear model of how imaging systematics affect target density recovers the angular distribution of eBOSS CORE quasars over 96.7% (76.7%) of the SDSS north (south) Galactic Cap area. The eBOSS CORE quasar sample should thus be sufficiently dense and homogeneous over 0.9 < z < 2.2 to yield the first few-percent-level BAO constraint near \\bar{z}˜ 1.5.eBOSS quasars at z > 2.1 will be used to improve BAO measurements in the Lyα Forest. Beyond its key cosmological goals, eBOSS should be the next-generation quasar survey, comprising >500,000 new quasars and >500,000 uniformly selected spectroscopically confirmed 0.9 < z < 2.2 quasars. At the conclusion of eBOSS, the SDSS will have provided unique spectra for more than 800,000 quasars.

  15. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE PAGES

    Dawson, Kyle S.

    2016-02-04

    The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO). Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements ofmore » $$d_A(z)$$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $$d_A(z)$$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.92.1; these new data will enhance the precision of $$d_A(z)$$ and H(z) by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Furthermore, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.« less

  16. Conformal symmetry and light flavor baryon spectra

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.; Compean, C. B.

    2010-08-01

    The degeneracy among parity pairs systematically observed in the N and Δ spectra is interpreted to hint on a possible conformal symmetry realization in the light flavor baryon sector in line with AdS5/CFT4. The case is made by showing that all the observed N and Δ resonances with masses below 2500 MeV distribute fairly well each over the first levels of a unitary representation of the conformal group, a representation that covers the spectrum of a quark-diquark system, placed directly on a conformally compactified Minkowski spacetime, R1⊗S3, as approached from the AdS5 cone. The free geodesic motion on the S3 manifold is described by means of the scalar conformal equation there, which is of the Klein-Gordon-type. The equation is then gauged by the curved Coulomb potential that has the form of a cotangent function. Conformal symmetry is not exact, this because the gauge potential slightly modifies the conformal centrifugal barrier of the free geodesic motion. Thanks to this, the degeneracy between P11-S11 pairs from same level is relaxed, while the remaining states belonging to same level remain practically degenerate. The model describes the correct mass ordering in the P11-S11 pairs through the spectra as a combined effect of the above conformal symmetry breaking, on the one side, and a parity change of the diquark from a scalar at low masses, to a pseudoscalar at higher masses, on the other. The quality of the wave functions is illustrated by calculations of realistic mean square charge radii and electric charge form factors on the examples of the proton, and the protonic P11(1440), and S11(1535) resonances. The scheme also allows for a prediction of the dressing function of an effective instantaneous gluon propagator from the Fourier transform of the gauge potential. We find a dressing function that is finite in the infrared and tends to zero at infinity.

  17. Decays of excited baryons in the large Nc expansion of QCD

    SciTech Connect

    Jose Goity; Norberto Scoccola

    2006-05-06

    We present the analysis of the decay widths of excited baryons in the framework of the 1/Nc expansion of QCD. These studies are performed up to order 1/Nc and include both positive and negative parity excited baryons.

  18. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  19. Baryon as impurity for phase transition in string landscape

    NASA Astrophysics Data System (ADS)

    Kasai, Aya; Nakai, Yuichiro; Ookouchi, Yutaka

    2016-06-01

    We consider a decay of a false vacuum in flux compactifications of type IIB string theory and study a catalytic effect for a phase transition induced by a new type of impurities. We concentrate on the large N dual of a D5-brane/anti-D5-brane system which has a rich vacuum structure. We show that D3-branes wrapping the 3-cycles can form a baryon bound state with a monopole. We find that these baryon-like objects can make the lifetime of the metastable vacuum shorter.

  20. The Evolution of Baryons in Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Snedden, Ali; Arielle Phillips, Lara; Mathews, Grant James; Coughlin, Jared; Suh, In-Saeng; Bhattacharya, Aparna

    2015-01-01

    The environments of galaxies play a critical role in their formation and evolution. We study these environments using cosmological simulations with star formation and supernova feedback included. From these simulations, we parse the large scale structure into clusters, filaments and voids using a segmentation algorithm adapted from medical imaging. We trace the star formation history, gas phase and metal evolution of the baryons in the intergalactic medium as function of structure. We find that our algorithm reproduces the baryon fraction in the intracluster medium and that the majority of star formation occurs in cold, dense filaments. We present the consequences this large scale environment has for galactic halos and galaxy evolution.

  1. Baryon number violation and a new electroweak interaction

    SciTech Connect

    Chernodub, M. N.; Niemi, Antti J.

    2009-04-01

    We introduce a new supercurrent in the electroweak sector of the standard model. Its interaction with the hypergauge field influences the mass of the Z boson but has no effect on the W{sup {+-}} boson masses. In the leptonic sector it affects the numerical value of the vector and axial coupling constants between neutral currents and the Z boson, and a comparison with experimental values yields an upper bound to the strength of the coupling between the supercurrent and the hypergauge field. In the baryonic sector the supercurrent gives a new contribution to the anomaly equation for baryon number current. As a consequence it may have an effect on baryogenesis.

  2. Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

    SciTech Connect

    Volker Crede

    2011-12-01

    Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nucleon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.

  3. Spectroscopy of triply charmed baryons from lattice QCD

    DOE PAGES

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...

    2014-10-14

    The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.

  4. Baryon number and strangeness: signals of a deconfinedantecedent

    SciTech Connect

    Majumder, A.; Koch, V.; Randrup, J.

    2005-06-29

    The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.

  5. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  6. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  7. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  8. Baryons:the Promise, the Problems, and the Prospects

    SciTech Connect

    Isgur, Nathan

    1995-10-01

    An idiosyncratic view of Baryons '95 that calls for a marriage between quark-based and hadronic models of QCD is presented.A treatment based on valence quark plus glue dominance of hadron structure, with the sea of qq{bar} pairs (in the form of virtual hadron pairs) as important corrections is advocated.

  9. THE SLOPE OF THE BARYONIC TULLY-FISHER RELATION

    SciTech Connect

    Gurovich, Sebastian; Freeman, Kenneth; Jerjen, Helmut; Staveley-Smith, Lister; Puerari, Ivanio

    2010-09-15

    We present the results of a baryonic Tully-Fisher relation (BTFR) study for a local sample of relatively isolated disk galaxies. We derive a BTFR with a slope near 3 measured over about 4 dex in baryon mass for our combined H I and bright spiral disk samples. This BTFR is significantly flatter and has less scatter than the TFR (stellar mass only) with its slope near 4 reported for other samples and studies. A BTFR slope near 3 is in better agreement with the expected slope from simple {Lambda}CDM cosmological simulations that include both stellar and gas baryons. The scatter in the TFR/BTFR appears to depend on W{sub 20}: galaxies that rotate slower have more scatter. The atomic gas-to-stars ratio shows a break near W{sub 20} = 250 km s{sup -1} probably associated with a change in star formation efficiency. In contrast, the absence of such a break in the BTFR suggests that this relation was probably set at the main epoch of baryon dissipation rather than as a product of later galactic evolution.

  10. Staggered baryon operators with flavor SU(3) quantum numbers

    SciTech Connect

    Bailey, Jon A.

    2007-06-01

    The construction of the first baryon operators for staggered lattice QCD exploited the taste symmetry to emulate physical quark flavor; contemporary 2+1 flavor simulations explicitly include three physical quark flavors and necessitate interpreting a valence sector with 12 quarks. After discussing expected features of the resulting baryon spectrum, I consider the spectra of operators transforming irreducibly under SU(3){sub F}xGTS, the direct product of flavor SU(3){sub F} and the geometrical time-slice group of the 1-flavor staggered theory. I then describe the construction of a set of maximally local baryon operators transforming irreducibly under SU(3){sub F}xGTS and enumerate this set. In principle, the operators listed here could be used to extract the masses of all the lightest spin-(1/2) and spin-(3/2) baryon resonances of staggered QCD. Using appropriate operators from this set in partially quenched simulations should allow for particularly clean 2+1 flavor calculations of the masses of the nucleon, {delta}, {sigma}*, {xi}*, and {omega}{sup -}.

  11. Baryon Asymmetry of the Universe (2/2)

    ScienceCinema

    None

    2016-07-12

    In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments

  12. Why baryons matter: The kinematics of dwarf spheroidal satellites

    SciTech Connect

    Brooks, Alyson M.; Zolotov, Adi E-mail: zolotov@physics.huji.ac.il

    2014-05-10

    We use high-resolution cosmological simulations of Milky Way (MW) mass galaxies that include both baryons and dark matter (DM) to show that baryonic physics (energetic feedback from supernovae and subsequent tidal stripping) significantly reduces the DM mass in the central regions of luminous satellite galaxies. The reduced central masses of the simulated satellites reproduce the observed internal dynamics of MW and M31 satellites as a function of luminosity. We use these realistic satellites to update predictions for the observed velocity and luminosity functions of satellites around MW-mass galaxies when baryonic effects are accounted for. We also predict that field dwarf galaxies in the same luminosity range as the MW classical satellites should not exhibit velocities as low as the satellites because the field dwarfs do not experience tidal stripping. Additionally, the early formation times of the satellites compared to field galaxies at the same luminosity may be apparent in the star formation histories of the two populations. Including baryonic physics in cold dark matter (CDM) models naturally explains the observed low DM densities in the MWs dwarf spheroidal population. Our simulations therefore resolve the tension between kinematics predicted in CDM theory and observations of satellites, without invoking alternative forms of DM.

  13. A BARYONIC EFFECT ON THE MERGER TIMESCALE OF GALAXY CLUSTERS

    SciTech Connect

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2016-04-01

    Accurate estimation of the merger timescales of galaxy clusters is important for understanding the cluster merger process and further understanding the formation and evolution of the large-scale structure of the universe. In this paper, we explore a baryonic effect on the merger timescale of galaxy clusters by using hydrodynamical simulations. We find that the baryons play an important role in accelerating the merger process. The merger timescale decreases upon increasing the gas fraction of galaxy clusters. For example, the merger timescale is shortened by a factor of up to 3 for merging clusters with gas fractions of 0.15, compared with the timescale obtained with 0 gas fractions. The baryonic effect is significant for a wide range of merger parameters and is particularly more significant for nearly head-on mergers and high merging velocities. The baryonic effect on the merger timescale of galaxy clusters is expected to have an impact on the structure formation in the universe, such as the cluster mass function and massive substructures in galaxy clusters, and a bias of “no-gas” may exist in the results obtained from the dark matter-only cosmological simulations.

  14. The status of the Excited Baryon Analysis Center

    SciTech Connect

    B. Julia-Diaz

    2010-08-01

    The Excited Baryon Analysis Center (EBAC), which is associated with the Theory Group at Jefferson Laboratory, was initiated in 2006. Its main goal is to extract and interpret properties of nucleon resonances (N*) from the world data of meson production reactions induced by pions, photons and electrons. We review the main accomplishments of the center since then and sketch its near future perspectives.

  15. Group-theoretical construction of extended baryon operators

    SciTech Connect

    S. Basak; R. Edwards; R. Fiebig; G. T. Fleming; U. M. Heller; C. Morningstar; D. Richards; I. Sato; S. Wallace

    2004-06-01

    The design and implementation of large sets of spatially extended baryon operators for use in lattice simulations are described. The operators are constructed to maximize overlaps with the low-lying states of interest, while minimizing the number of sources needed in computing the required quark propagators.

  16. Meson-baryon effective chiral Lagrangians at order p4

    NASA Astrophysics Data System (ADS)

    Jiang, Shao-Zhou; Chen, Qing-Sen; Liu, Yan-Rui

    2017-01-01

    We construct the three-flavor Lorentz-invariant meson-baryon chiral Lagrangians at the order p4, with which a full one-loop investigation may be performed. One obtains 540 independent terms. The processes with the minimal number of mesons and photons to which this order of Lagrangians may contribute are also presented.

  17. Baryon Asymmetry of the Universe (1/2)

    ScienceCinema

    None

    2016-07-12

    In two lectures, the following topics will be discussed: (1) Why baryon asymmetry is a problem at all (2) Review of the Sakharov's conditions (3) Why old models based on GUT did not work (4) Electroweak baryogenesis (5) Leptogenesis (6) Connections to the near-future experiments

  18. Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities

    NASA Astrophysics Data System (ADS)

    Albright, Michael Glenn

    In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic

  19. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: anisotropic galaxy clustering in Fourier space

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana

    2017-04-01

    We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 < z < 0.75 and a sky coverage of 10 252 deg2. We analyse this data set in Fourier space, using the power-spectrum multipoles to measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

  20. Mock Quasar-Lyman-α forest data-sets for the SDSS-III Baryon Oscillation Spectroscopic Survey

    SciTech Connect

    Bautista, Julian E.; Busca, Nicolas G.; Pieri, Matthew M.; Miralda-Escudé, Jordi; Gontcho, Satya Gontcho A.; Feng, Yu; Ho, Shirley; Ge, Jian; Noterdaeme, Pasquier; Pâris, Isabelle; Rossi, Graziano

    2015-05-01

    We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.

  1. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    NASA Astrophysics Data System (ADS)

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2017-01-01

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. We present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  2. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    SciTech Connect

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Alam, Shadab; Beutler, Florian; Ross, Ashley J.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Kitaura, Francisco-Shu; Percival, Will J.; Prada, Francisco; Rodríguez-Torres, Sergio; Seo, Hee-Jong; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.; Zhao, Gong-Bo

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock catalogues of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.

  3. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: combining correlated Gaussian posterior distributions

    DOE PAGES

    Sánchez, Ariel G.; Grieb, Jan Niklas; Salazar-Albornoz, Salvador; ...

    2016-09-30

    The cosmological information contained in anisotropic galaxy clustering measurements can often be compressed into a small number of parameters whose posterior distribution is well described by a Gaussian. Here, we present a general methodology to combine these estimates into a single set of consensus constraints that encode the total information of the individual measurements, taking into account the full covariance between the different methods. We also illustrate this technique by applying it to combine the results obtained from different clustering analyses, including measurements of the signature of baryon acoustic oscillations and redshift-space distortions, based on a set of mock cataloguesmore » of the final SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our results show that the region of the parameter space allowed by the consensus constraints is smaller than that of the individual methods, highlighting the importance of performing multiple analyses on galaxy surveys even when the measurements are highly correlated. Our paper is part of a set that analyses the final galaxy clustering data set from BOSS. The methodology presented here is used in Alam et al. to produce the final cosmological constraints from BOSS.« less

  4. Strangeness as a probe to baryon-rich QCD matter at NICA

    NASA Astrophysics Data System (ADS)

    Fukushima, Kenji

    2016-08-01

    We elucidate a prospect of strangeness fluctuation measurements in the heavy-ion collision at NICA energies. The strangeness fluctuation is sensitive to quark deconfinement. At the same time strangeness has a strong correlation with the baryon number under the condition of vanishing net strangeness, which leads to an enhancement of Λ0, Ξ0, Ξ-, and K+ at high baryon density. The baryon density is maximized around the NICA energies, and strangeness should be an ideal probe to investigate quark deconfinement phenomena of baryon-rich QCD matter created at NICA. We also utilize the hadron resonance gas model to estimate a mixed fluctuation of strangeness and baryon number.

  5. Baryon Acoustic Oscillations in Lyman Alpha Forest - Quasar Cross-Correlations

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Aubourg, E.; Bailey, S. J.; Bautista, J.; Beutler, F.; Bizyaev, D.; Blomqvist, M.; Bolton, A. S.; Brewington, H.; Brinkmann, J. V.; Brownstein, J.; Busca, N. G.; Carithers, W.; Croft, R. A.; Dawson, K. S.; Delubac, T.; Ebelke, G.; Eisenstein, D.; Feng, Y.; Font-Ribera, A.; Hogg, D. W.; Kinemuchi, K.; Kirkby, D.; Le Goff, J.; Lee, K.; Malanushenko, E.; Malanushenko, V.; Marchante, M.; Margela, D.; Miralda-Escudé, J.; Muna, D.; Myers, A. D.; Nichol, R.; Oravetz, D.; Palanque-Delabrouille, N.; Pan, K.; Noterdaeme, P.; O'Connel, R.; Paris, I.; Petitjean, P.; Pieri, M.; Rollinde, E.; Ross, N.; Rossi, G.; Schlegel, D. J.; Schneider, D. P.; Simmons, A.; Slosar, A.; Viel, M.; Weinberg, D. H.; Xu, X.; Yeche, C.; York, D. G.

    2014-01-01

    We investigate the signal of BAO in the cross-correlations between SDSS III-BOSS DR10 and DR11 quasars and Lyman Alpha Forest. We present two independent analyses that follow slightly different methodologies. In one, we fit the BAO using DR10 data only following multipole methods described in Xu et al. 2012 adapting to the fact that Lyman-Alpha forest is negatively biased, while in the other analyses, we analyze DR11 data following methodologies in Font-Ribera et al., 2012 and Kirkby et al. 2013. In the two analyses, we use different treatments of the Lyman Alpha Forest, different fitting methodologies and found consistent cosmological results. The expected signal-to-noise is weaker than the Lyman-Alpha Forest auto-correlations, however this will be a test of principle of finding BAO in cross-correlations, where systematics can be more easily mitigated. This method also applies to future surveys with medium/dense coverage of multiple tracers in similar redshift range, such as SDSS IV, DESI, WFIRST and EUCLID.

  6. Searching for Baryon Acoustic Oscillations in Intergalactic Absorption: The Expanding Universe

    SciTech Connect

    2010-01-01

    Credits: Science: Michael L. Norman, Robert Harkness, Pascal Paschos, Rick Wagner, San Diego Supercomputer Center/University of California, San Diego Visualization: Mark Hereld, Joseph A. Insley, Michael E. Papka, Argonne National Laboratory; Eric C. Olson, University of Chicago This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. The computation was performed at the National Institute for Computational Sciences (NICS).

  7. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  8. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  9. What Is an Acoustic Neuroma

    MedlinePlus

    ... ANAUSA.org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important ... Acoustic Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular ...

  10. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  11. NPL closes acoustics department

    NASA Astrophysics Data System (ADS)

    Extance, Andy

    2016-11-01

    The UK's National Physical Laboratory (NPL) has withdrawn funding for its acoustics, polymer and thermoelectrics groups, triggering concern among airborne acoustics specialists that the move could undermine the country's noise-management policies.

  12. Identifying the Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  13. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  14. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-07-17

    under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics

  15. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-10-19

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-093015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...number. 1. REPORT DATE OCT 2015 2. REPORT TYPE 3. DATES COVERED 01-07-2015 to 30-09-2015 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to develop

  16. Shallow Water Acoustics Studies

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Acoustics Studies James F. Lynch MS #12...N00014-14-1-0040 http://acoustics.whoi.edu/sw06/ LONG TERM GOALS The long term goals of our shallow water acoustics work are to: 1) understand the...nature of low frequency (10-1500 Hz) acoustic propagation, scattering and noise in shallow water when strong oceanic variability is present in the

  17. Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data

    NASA Astrophysics Data System (ADS)

    Grin, Daniel; Hanson, Duncan; Holder, Gilbert P.; Doré, Olivier; Kamionkowski, Marc

    2014-01-01

    Primordial isocurvature fluctuations between photons and either neutrinos or nonrelativistic species such as baryons or dark matter are known to be subdominant to adiabatic fluctuations. Perturbations in the relative densities of baryons and dark matter (known as compensated isocurvature perturbations or CIPs), however, are surprisingly poorly constrained. CIPs leave no imprint in the cosmic microwave background (CMB) on observable scales, at least at linear order in their amplitude and zeroth order in the amplitude of adiabatic perturbations. It is thus not yet empirically known if baryons trace dark matter at the surface of last scattering. If CIPs exist, they would spatially modulate the Silk damping scale and acoustic horizon, causing distinct fluctuations in the CMB temperature/polarization power spectra across the sky: this effect is first order in both the CIP and adiabatic mode amplitudes. Here, temperature data from the Wilkinson Microwave Anisotropy Probe (WMAP) are used to conduct the first CMB-based observational search for CIPs, using off-diagonal correlations and the CMB trispectrum. Reconstruction noise from weak lensing and point sources is shown to be negligible for this data set. No evidence for CIPs is observed, and a 95% confidence upper limit of 1.1×10-2 is imposed to the amplitude of a scale-invariant CIP power spectrum. This limit agrees with CIP sensitivity forecasts for WMAP and is competitive with smaller-scale constraints from measurements of the baryon fraction in galaxy clusters. It is shown that the root-mean-squared CIP amplitude on 5-100° scales is smaller than ˜0.07-0.17 (depending on the scale) at the 95% confidence level. Temperature data from the Planck satellite will provide an even more sensitive probe for the existence of CIPs, as will the upcoming ACTPol and SPTPol experiments on smaller angular scales.

  18. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  19. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  20. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2017-02-01

    The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.

  1. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks

  2. Two potential quark models for double heavy baryons

    SciTech Connect

    Puchkov, A. M.; Kozhedub, A. V.

    2016-01-22

    Baryons containing two heavy quarks (QQ{sup ′} q) are treated in the Born-Oppenheimer approximation. Two non-relativistic potential models are proposed, in which the Schrödinger equation admits a separation of variables in prolate and oblate spheroidal coordinates, respectively. In the first model, the potential is equal to the sum of Coulomb potentials of the two heavy quarks, separated from each other by a distance - R and linear potential of confinement. In the second model the center distance parameter R is assumed to be purely imaginary. In this case, the potential is defined by the two-sheeted mapping with singularities being concentrated on a circle rather than at separate points. Thus, in the first model diquark appears as a segment, and in the second - as a circle. In this paper we calculate the mass spectrum of double heavy baryons in both models, and compare it with previous results.

  3. Observation of the Heavy Baryons Sigma b and Sigma b*.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-16

    We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2.

  4. Cascade ({xi}) Physics: a New Approach to Baryon Spectroscopy

    SciTech Connect

    Nefkens, B. M. K.

    2006-11-17

    Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and {delta}+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two ''massive'' strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and {delta}* resonances to make a conclusive search for the 'Unseen Resonances' of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?.

  5. Baryons in QCDAS at large Nc: A roundabout approach

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.; Shafer, Daniel L.; Lebed, Richard F.

    2010-02-01

    QCDAS, a variant of large Nc QCD in which quarks transform under the color two-index antisymmetric representation, reduces to standard QCD at Nc=3 and provides an alternative to the usual large Nc extrapolation that uses fundamental representation quarks. Previous strong plausibility arguments assert that the QCDAS baryon mass scales as Nc2; however, the complicated combinatoric problem associated with quarks carrying two color indices impeded a complete demonstration. We develop a diagrammatic technique to solve this problem. The key ingredient is the introduction of an effective multigluon vertex: a “traffic circle” or roundabout diagram. We show that arbitrarily complicated diagrams can be reduced to simple ones with the same leading Nc scaling using this device, and that the leading contribution to baryon mass does, in fact, scale as Nc2.

  6. Spinodal instabilities in baryon-rich quark matter

    NASA Astrophysics Data System (ADS)

    Ko, Che Ming; Li, Feng

    For quark matter at finite baryon chemical potential, its density develops large fluctuations when it undergoes a first-order phase transition. Based on the Nambu-Jona-Lasinio (NJL) model, we have used the linear response theory to study the growth rate of density fluctuations and its dependence on the wavelength of unstable modes. Using the transport equation derived from the NJL model, we have also studied the time evolution of the unstable modes and the density fluctuations in a baryon-rich quark matter that is confined in a finite volume. Allowing the expansion of the quark matter, we have further studied the survivability of the density fluctuations as the density and temperature of the quark matter decrease. Possible experimental signatures of the density fluctuations have been suggested.

  7. Flavor violation in Higgs-boson couplings to baryons

    SciTech Connect

    Bagchi, B. ); Niyogi, S. )

    1992-06-01

    The 1/2{sup +} baryon mass spectrum is studied to determine the {ital {bar u}u}, {ital {bar d}d}, and {ital {bar s}s} contents in the nucleon. We find that higher-order symmetry-breaking terms in the mass operator are necessary to estimate {l angle}{ital p}{vert bar}{ital {bar u}u}{vert bar}{ital p}{r angle}, {l angle}{ital p}{vert bar}{ital {bar d}d}{vert bar}{ital p}{r angle}, and {l angle}{ital p}{vert bar}{ital {bar s}s}{vert bar}{ital p}{r angle} in a self-consistent way. We also assess the scalar (pseudoscalar) Higgs-boson couplings to baryons.

  8. Baryon number dissipation at finite temperature in the standard model

    SciTech Connect

    Mottola, E. ); Raby, S. . Dept. of Physics); Starkman, G. . Dept. of Astronomy)

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, {gamma} is given in terms of real time correlation functions of the operator E{center dot}B, and is directly proportional to the sphaleron transition rate, {Gamma}: {gamma} {preceq} n{sub f}{Gamma}/T{sup 3}. Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs.

  9. CP violation in multibody decays of beauty baryons

    NASA Astrophysics Data System (ADS)

    Durieux, Gauthier

    2016-10-01

    Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ b → Λ φ → p π K + K - decay are expected to vanish identically.

  10. Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction

    SciTech Connect

    Manley, D. Mark

    2016-09-08

    The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.

  11. Exodus: Hidden origin of dark matter and baryons

    NASA Astrophysics Data System (ADS)

    Unwin, James

    2013-06-01

    We propose a new framework for explaining the proximity of the baryon and dark matter relic densities ΩDM ≈ 5Ω B . The scenario assumes that the number density of the observed dark matter states is generated due to decays from a second hidden sector which simultaneously generates the baryon asymmetry. In contrast to asymmetric dark matter models, the dark matter can be a real scalar or Majorana fermion and thus presents distinct phenomenology. We discuss aspects of model building and general constraints in this framework. Moreover, we argue that this scenario circumvents several of the experimental bounds which significantly constrain typical models of asymmetric dark matter. We present a simple supersymmetric implementation of this mechanism and show that it can be used to obtain the correct dark matter relic density for a bino LSP.

  12. Determination of the quark coupling strength |Vub| using baryonic decays

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Mohr, R. Casanova; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; de Bruyn, K.; de Capua, S.; de Cian, M.; de Miranda, J. M.; de Paula, L.; de Silva, W.; de Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; di Canto, A.; di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Suárez, A. Dosil; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Pardiñas, J. García; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gándara, M. Grabalosa; Diaz, R. Graciani; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Morata, J. A. Hernando; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Benito, C. Marin; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Santos, D. Martinez; Vidal, F. Martinez; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Rodrigues, B. Osorio; Goicochea, J. M. Otalora; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; Dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Lopez, J. A. Rodriguez; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Vidal, A. Romero; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Mayordomo, C. Sanchez; Sedes, B. Sanmartin; Santacesaria, R.; Rios, C. Santamarina; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza de Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Regueiro, P. Vazquez; Sierra, C. Vázquez; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Barbosa, J. V. Viana; Viaud, B.; Vieira, D.; Diaz, M. Vieites; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-09-01

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, |Vub| and |Vcb|, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Λb0 baryon to decay into the p final state relative to the final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of |Vcb|, the first |Vub| measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of |Vub| using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.

  13. The baryonic Tully-Fisher relationship for S{sup 4}G galaxies and the 'condensed' baryon fraction of galaxies

    SciTech Connect

    Zaritsky, Dennis; Courtois, Helene; Sorce, Jenny; Gadotti, D. A.; Gil de Paz, A.; Hinz, J. L.; Menéndez-Delmestre, K.; Regan, M. W.; Seibert, M.; Athanassoula, E.; Bosma, A.; and others

    2014-06-01

    We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of H I spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 ± 0.2 (Δlog M {sub baryon}/Δlog v{sub c} ), implies that on average a nearly constant fraction (∼0.4) of all baryons expected to be in a halo are 'condensed' onto the central region of rotationally supported galaxies. The condensed baryon fraction, M {sub baryon}/M {sub total}, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, v {sub c} , between 60 and 250 km s{sup –1}, but is extended to v{sub c} ∼ 10 km s{sup –1} using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally ≤ a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v{sub c} < 250 km s{sup –1} and typically introduce no more than a factor of two range in the resulting M {sub baryon}/M {sub total}. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the

  14. Properties of Baryons from Bonn-Gatchina Partial Wave Analysis

    NASA Astrophysics Data System (ADS)

    Sarantsev, Andrey

    The recent results from the Bonn-Gatchinal partial wave analysis are reported. The analysis includes a large number of new pseudoscalar meson photoproduction data taken with polarized beam and target. The analysis also includes the information about photoproduction of vector mesons, which reveals resonant signals at masses above 2 GeV. The impact of the new data on spectrum of baryons and their properties is discussed.

  15. The Baryon Number Two System in the Chiral Soliton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Drago, Alessandro; Vento, Vicente; Park, Byung-Yoon

    2013-03-01

    We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.

  16. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  17. Baryons with Ginsparg-Wilson quarks in a staggered sea

    SciTech Connect

    Tiburzi, Brian C.

    2005-11-01

    We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral expansion. Expressions derived for masses and magnetic moments are required for addressing lattice artifacts in mixed-action simulations of these observables.

  18. BARYONS MATTER: WHY LUMINOUS SATELLITE GALAXIES HAVE REDUCED CENTRAL MASSES

    SciTech Connect

    Zolotov, Adi; Dekel, Avishai; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Quinn, Tom; Pontzen, Andrew; Christensen, Charlotte; Wadsley, James

    2012-12-10

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < M{sub V} < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H{sub 2} formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M{sub vir} {>=} 10{sup 9} M{sub Sun }, M{sub *} {>=} 10{sup 7} M{sub Sun }) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations

  19. Search for Popcorn Mesons in Events with Two Charmed Baryons

    SciTech Connect

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  20. Prospects for baryon instability search with long-lived isotopes

    SciTech Connect

    Efremenko, Yu.; Bugg, W.; Cohn, H.; Kamyshkov, Yu.; Parker, G.; Plasil, F.

    1996-12-31

    In this paper we consider the possibility of observation of baryon instability processes occurring inside nuclei by searching for the remnants of such processes that could have been accumulated in nature as mm long-lived isotopes. As an example, we discuss here the possible detection of traces of {sup 97}Tc, {sup 98}Tc, and {sup 99}Tc in deep-mined nonradioactive tin ores.

  1. Baryon to meson transition distribution amplitudes and their spectral representation

    SciTech Connect

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.

    2011-07-15

    We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.

  2. The riddle of high-energy baryon number violation

    SciTech Connect

    Mattis, M.P.

    1991-09-01

    The exciting possibility that anomalous baryon and lepton number violation might be observable at the next generation of supercolliders is suggested by an instanton calculation due to Ringwald and Espinosa. In these Lectures, the current controversial status of these claims is discussed, and several new technologies designed to analyze this question are reviewed. These technologies should contribute more generally to our understanding of weakly- coupled field theories in the nonperturbative regime where both energies and multiplicities are very large. 61 refs., 35 figs.

  3. Recent Progress in Understanding the Baryon Resonance Spectrum

    NASA Astrophysics Data System (ADS)

    Crede, Volker

    2017-01-01

    Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. These states are sensitive to the details of quark confinement, which is only poorly understood with quantum chromodynamics (QCD), the fundamental theory of the strong interaction. To gain insight into this complex dynamics, the baryonic excitation spectrum has been studied for many years. The key question remains what are the relevant degrees of freedom for the resonance physics of QCD. Are the so-called constituent quarks the most efficient way to describe reaction amplitudes and the excitation spectrum of QCD with light quarks? To what extent are diquark correlations, gluonic modes or hadronic degrees of freedom important in this physics? In recent years, lattice-QCD has made significant progress toward understanding the spectra of hadrons, reducing statistical uncertainties and employing robust techniques for spin identication. However, a calculation of the physical excited baryon spectrum is still a tough challenge with present computing power. On the experimental side, high-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining atomic nuclei and the strong nuclear force. Significant progress has been achieved with the recent availability of new polarization data, utilizing polarized beams and/or polarized targets at various laboratories worldwide, e.g. Jefferson Lab in the United States. These are important steps toward so-called complete experiments that will allow us to unambiguously determine the scattering amplitudes in the underlying reactions and to identify resonance contributions. In this presentation, I will give an overview of the excited baryon program and I will discuss the current (experimental) status of the nucleon excitation spectrum. Support is acknowledged from the Department of Energy grant #DE-FG02-92ER40735.

  4. Excited State Mass Spectra of Ω0 c Baryon

    NASA Astrophysics Data System (ADS)

    Shah, Z.; Thakkar, K.; Rai, A. K.; Vinodkumar, P. C.

    2016-10-01

    We have calculated the radial and orbital excited states of singly charmed baryon Oc using the Hypercentral Constituent Quark Model (hCQM). The confinement potential is assumed as coulomb plus power potential (CPP V ). The ground state and excited state masses are determined with and with out first order correction to the potential. Furthermore, we plot graph between Mass(M) → Potential Index(v). Our calculated results are in good agreement with experimental and other theoretical predictions.

  5. Radiative corrections to the Dalitz plot of charged and neutral baryon semileptonic decays with angular correlation between polarized emitted baryons and charged lepton

    SciTech Connect

    Manriquez, J. J. Torres; Martinez, A.; Neri, M.; Garcia, A.

    2008-07-02

    Because of the near future work of the NA48 experimental group, we have calculated the radiative corrections (RC) to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. This work covers the two cases, charged and neutral decaying baryons, and it is restricted to the so called three body region of the Dalitz plot. Also it is specialized at the c.m. frame of the emitted baryon. We consider terms up to ({alpha}/ product )(q/M{sub 1}){sup 0}, where q is the momentum transfer and M{sub 1} is the mass of the decaying baryon, and neglect terms of the order ({alpha}/ product )(q/M{sub 1}){sup n}, n = 1,2,.... The analytical expressions displayed are ready to obtain numerical results, suitable for a model-independent experimental analysis.

  6. Baryons as relativistic three-quark bound states

    NASA Astrophysics Data System (ADS)

    Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.

    2016-11-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.

  7. Discriminating Majorana neutrino textures in light of the baryon asymmetry

    NASA Astrophysics Data System (ADS)

    Borah, Manikanta; Borah, Debasish; Das, Mrinal Kumar

    2015-06-01

    We study all possible texture zeros in the Majorana neutrino mass matrix which are allowed from neutrino oscillation as well as cosmology data when the charged lepton mass matrix is assumed to take the diagonal form. In the case of one-zero texture, we write down the Majorana phases which are assumed to be equal and the lightest neutrino mass as a function of the Dirac C P phase. In the case of two-zero texture, we numerically evaluate all the three C P phases and lightest neutrino mass by solving four real constraint equations. We then constrain texture zero mass matrices from the requirement of producing correct baryon asymmetry through the mechanism of leptogenesis by assuming the Dirac neutrino mass matrix to be diagonal. Adopting a type I seesaw framework, we consider the C P -violating out of equilibrium decay of the lightest right-handed neutrino as the source of lepton asymmetry. Apart from discriminating between the texture zero mass matrices and light neutrino mass hierarchy, we also constrain the Dirac and Majorana C P phases so that the observed baryon asymmetry can be produced. In two-zero texture, we further constrain the diagonal form of the Dirac neutrino mass matrix from the requirement of producing correct baryon asymmetry.

  8. A Baryonic Solution to the Missing Satellites Problem

    SciTech Connect

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem

  9. Baryon Masses and Hadronic Decay Widths with Explicit Pionic Contributions

    NASA Astrophysics Data System (ADS)

    Schmidt, R. A.; Canton, L.; Plessas, W.; Schweiger, W.

    2017-03-01

    We report results from studies of baryon ground and resonant states by taking explicit mesonic degrees of freedom into account. We are following a relativistic coupled-channels approach relying on a Poincaré-invariant mass operator in matrix form. Generally, it corresponds to a bare particle that is coupled to a number of further mesonic channels. Here we present results, where the bare particle is either a bare nucleon or a bare Delta coupled to pion-nucleon and pion-Delta channels, respectively. For the pion-baryon vertices we employ coupling constants and form factors from different models in the literature. From the mass-operator eigenvalue equation we obtain the pion-dressing effects on the nucleon mass as well as the mass and pion-decay width of the Delta. The dressed masses become smaller than the bare ones, and a finite width of the Delta is naturally generated. The results are relevant for the construction of constituent-quark models for baryons, which have so far not included explicit mesonic degrees of freedom, but have rather relied on three-quark configurations only.

  10. A scenario of heavy but visible baryonic dark matter

    NASA Astrophysics Data System (ADS)

    Huo, Ran; Matsumoto, Shigeki; Tsai, Yue-Lin Sming; Yanagida, Tsutomu T.

    2016-09-01

    We consider a model in which dark matter is a composite baryon of a dark sector governed by SU(3) gauge theory, with vector-like quarks also charged under U(1) Y . The model provides simple answer to the dark matter stability problem: it is a result of the accidental dark baryon number conservation. And with an analogy to QCD, all physical quantities of the dark matter can be calculated by rescaling the QCD experimental results. According to the thermal freeze-out mechanism the mass of the dark matter is predicted to be O(100) TeV in order to achieve a correct relic abundance. Such heavy dark matter is in general hard for detection due to small dark matter number density in the universe. However, dark baryon number in our model is not necessarily strictly preserved thanks to operators suppressed by the Planck scale, and such decay operator results in a decay lifetime marginal to the current detection bound. We show our model with O({10}^{27}) s dark matter decay life time can explain the AMS-02 anti-proton data, if it is experimentally interpreted as an access, although some theoretical uncertainty may weaken its significance. We also investigate other phenomena of this model such as the extragalactic gamma ray and neutrino signatures.

  11. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM

    SciTech Connect

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan E-mail: mqk@astro.berkeley.edu E-mail: dhooper@fnal.gov

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.

  12. Indoor acoustic gain design

    NASA Astrophysics Data System (ADS)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  13. Addendum to triton and hypertriton binding energies calculated from SU{sub 6} quark-model baryon-baryon interactions

    SciTech Connect

    Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.

    2008-02-15

    Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction obtained by a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction that is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.

  14. Triton and hypertriton binding energies with SU{sub 6} quark-model baryon-baryon interactions

    SciTech Connect

    Fujiwara, Y.; Suzuki, Y.; Kohno, M.; Miyagawa, K.

    2008-04-29

    Previously we calculated the binding energies of the triton and hypertriton, using an SU{sub 6} quark-model interaction which is obtained by a resonating-group method for two baryon clusters. In contrast to the previous calculations employing the energy-dependent interaction kernel, we present new results using a renormalized interaction which is energy-independent and still preserves all the two-baryon data. The new binding energies are slightly smaller than the previous values. In particular the triton binding energy turns out to be 8.14 MeV with a charge-dependence correction of the two-nucleon force, 190 keV, being included. This indicates that the energy to be accounted for by three-body forces is about 350 keV.

  15. Baryon-Baryon Interaction in a Chiral-Quark Mean - Model

    NASA Astrophysics Data System (ADS)

    Pineda, Fernando Javier

    The nontopological soliton solution of a chirally invariant Lagrangian which incorporates the linear (sigma) -model BB84,KR84 is used as a model for Baryons. The nucleon-nucleon interaction is modeled by the interaction of two such solitons. The soliton-soliton interaction is calculated adiabatically by extremizing the energy of the two-soliton system subject to the constraint that the inter-soliton separation is fixed. The fields and wavefunctions are expanded in a two-center harmonic oscillator basis thus permitting essentially arbitrary tri-axial deformations. The hedgehog form is imposed on the spin-isospin wavefunction of the solitons. The isospin (or spin) of the two solitons may be quantized along different directions thus introducing a dependence in the energy on the relative orientation of the quantization axes. This permits the extraction of a low energy effective NN potential by an approximate method. An OBE calculation between identical undeformed solitons shows that the pion form factor is quite soft. It also suggests that the mass ((TURN)550 MeV) of the (sigma) -meson, responsible for intermediate range attraction in the central potential of phenomenological meson-exchange models, is a consequence of the coupling of a heavier (sigma) -meson with lighter pions. The Euler-Lagrange equations for the six-quark system are solved approximately using a variational method. The solutions exhibit a dynamical boundary which divides the NN interaction into two domains, an exterior domain where the solitons maintain their identity and the six-quark system is appropriately described as two distinct solitons, and an interior domain where the system is more appropriately described as a single highly deformed soliton. The boundary occurs sharply for critical inter-soliton separations in the range 0.8 - 0.1 fm. The even parity interior solution and the critical separation are shown to be consistent with the energy independence of the F-matrix at low energy in the

  16. Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Kiskis, J.; Lin, M. F.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Voronov, G.; Vranas, P.; Weinberg, E.; Witzel, O.; Kribs, G. D.; Lattice Strong Dynamics LSD Collaboration

    2014-05-01

    We present the spectrum of baryons in SU(4) gauge theory with fundamental fermion constituents, which is of significant interest for composite dark matter model building. We first compare the spectra and properties of baryons in SU(3) and SU(4) gauge theories (in which they are fermionic and bosonic, respectively) and then compute the cross section for direct detection of dark matter via Higgs boson exchange for TeV-scale composite dark matter arising from a confining SU(4) gauge sector. Comparison with the latest LUX results leads to tight bounds on the fraction of the mass of the constituent fermion that may arise from electroweak symmetry breaking. Lattice calculations of the dark matter mass spectrum and the Higgs-dark-matter coupling are performed on quenched 163×32, 323×64, 483×96, and 643×128 lattices with three different lattice spacings, using Wilson fermions with moderate to large pseudoscalar meson masses. Our results lay a foundation for future analytic and numerical studies of composite baryonic dark matter.

  17. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    SciTech Connect

    Kyle S. Dawson

    2016-02-04

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non

  18. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Overview and Early Data

    NASA Astrophysics Data System (ADS)

    Dawson, Kyle S.; Kneib, Jean-Paul; Percival, Will J.; Alam, Shadab; Albareti, Franco D.; Anderson, Scott F.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Bautista, Julian E.; Berlind, Andreas A.; Bershady, Matthew A.; Beutler, Florian; Bizyaev, Dmitry; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Bovy, Jo; Brandt, W. N.; Brinkmann, Jon; Brownstein, Joel R.; Burtin, Etienne; Busca, N. G.; Cai, Zheng; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Cope, Frances; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; da Costa, Luiz N.; Cousinou, Marie-Claude; Darling, Jeremy; de la Macorra, Axel; de la Torre, Sylvain; Delubac, Timothée; du Mas des Bourboux, Hélion; Dwelly, Tom; Ealet, Anne; Eisenstein, Daniel J.; Eracleous, Michael; Escoffier, S.; Fan, Xiaohui; Finoguenov, Alexis; Font-Ribera, Andreu; Frinchaboy, Peter; Gaulme, Patrick; Georgakakis, Antonis; Green, Paul; Guo, Hong; Guy, Julien; Ho, Shirley; Holder, Diana; Huehnerhoff, Joe; Hutchinson, Timothy; Jing, Yipeng; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark A.; Laher, Russ R.; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Li, Cheng; Liang, Yu; Lima, Marcos; Lin, Qiufan; Lin, Weipeng; Lin, Yen-Ting; Long, Daniel C.; Lundgren, Britt; MacDonald, Nicholas; Geimba Maia, Marcio Antonio; Malanushenko, Elena; Malanushenko, Viktor; Mariappan, Vivek; McBride, Cameron K.; McGreer, Ian D.; Ménard, Brice; Merloni, Andrea; Meza, Andres; Montero-Dorta, Antonio D.; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Naugle, Tracy; Newman, Jeffrey A.; Noterdaeme, Pasquier; Nugent, Peter; Ogando, Ricardo; Olmstead, Matthew D.; Oravetz, Audrey; Oravetz, Daniel J.; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Peacock, John A.; Petitjean, Patrick; Pieri, Matthew M.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Raichoor, Anand; Reid, Beth; Rich, James; Ridl, Jethro; Rodriguez-Torres, Sergio; Carnero Rosell, Aurelio; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Salvato, Mara; Sayres, Conor; Schneider, Donald P.; Schlegel, David J.; Seljak, Uros; Seo, Hee-Jong; Sesar, Branimir; Shandera, Sarah; Shu, Yiping; Slosar, Anže; Sobreira, Flavia; Streblyanska, Alina; Suzuki, Nao; Taylor, Donna; Tao, Charling; Tinker, Jeremy L.; Tojeiro, Rita; Vargas-Magaña, Mariana; Wang, Yuting; Weaver, Benjamin A.; Weinberg, David H.; White, Martin; Wood-Vasey, W. M.; Yeche, Christophe; Zhai, Zhongxu; Zhao, Cheng; Zhao, Gong-bo; Zheng, Zheng; Ben Zhu, Guangtun; Zou, Hu

    2016-02-01

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1 these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and

  19. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    DOE PAGES

    Kyle S. Dawson

    2016-02-04

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered bymore » BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance dA(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of dA(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on dA(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of dA(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density

  20. The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Overview and early data

    SciTech Connect

    Dawson, Kyle S.

    2016-02-04

    The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. Observations will be simultaneous with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. eBOSS will use four different tracers to measure the distance-redshift relation with baryon acoustic oscillations (BAO). Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z=0.72, we project that eBOSS will yield measurements of $d_A(z)$ to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z>0.6 sample of BOSS galaxies. With ~195,000 new emission line galaxy redshifts, we expect BAO measurements of $d_A(z)$ to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z= 0.87. A sample of more than 500,000 spectroscopically-confirmed quasars will provide the first BAO distance measurements over the redshift range 0.92.1; these new data will enhance the precision of $d_A(z)$ and H(z) by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non-Gaussianity in the primordial density field, and new constraints on the summed mass of all neutrino species. Furthermore, we provide an overview of the cosmological goals, spectroscopic target sample, demonstration of spectral quality from early data, and projected cosmological constraints from eBOSS.