Science.gov

Sample records for 21ne production rates

  1. Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Stevens, Lauren; McDonough, William F.; Mukhopadhyay, Sujoy; Peterson, R. J.

    2017-01-01

    Accurate understanding of the subsurface production rate of the radionuclide 39Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, 21Ne , and 39Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, 21Ne , and 39Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of 107-1010 α particles are produced in one kilogram of rock per year (order of 1-103 kg-1 s-1); the number of produced neutrons is lower by ∼ 6 orders of magnitude, 21Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of 39Ar. Our calculation yields a nucleogenic 21Ne /4He production ratio of (4.6 ± 0.6) ×10-8 in Continental Crust and (4.2 ± 0.5) ×10-8 in Oceanic Crust and Depleted Mantle. Calculated 39Ar production rates span a great range from 29 ± 9 atoms kg-rock-1 yr-1 in the K-Th-U-enriched Upper Continental Crust to (2.6 ± 0.8) × 10-4 atoms kg-rock-1 yr-1 in Depleted Upper Mantle. Nucleogenic 39Ar production exceeds the cosmogenic production below ∼700 m depth and thus, affects radiometric ages of groundwater. The 39Ar chronometer, which fills in a gap between 3H and 14C , is particularly important given the need to tap deep reservoirs of ancient drinking water.

  2. A High Sensitive Atomic Co-magnetometer for Rotation Rate Measurement Based on K-Rb-21Ne

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Zou, Sheng; Quan, Wei; Lu, Yan; Ding, Ming; Fang, Jiancheng

    2016-05-01

    Atomic co-magnetometers use two spin ensembles occupying the same volume in glass vapor cells to suppress their sensitivity to magnetic field noise and leave them sensitive to rotation rate, anomalous fields, etc. Due to the small gyromagnetic ratio of the 21 Ne atom, an atomic co-magnetometer based on 21Ne is very suitable for rotation rate measurement. Thus, we focus on and report a co-magnetometer for rotation rate measurement based on K-Rb-21Ne. We have developed a rotating co-magnetometer which is calibrated by the rotation of the earth. All the optics in the co-magnetometer have been encased in a bell jar in which the air is pumped away to suppress the air density fluctuation noise. MnZn ferrite is also utilized in the inner most magnetic field shielding system to suppress the magnetic field noise. We have reached rotation rate sensitivity of 2.1 * 10-8 rad/ s / sqrt(Hz) or equivalent magnetic field noise level of 1.4 fT / sqrt(Hz) . The K-Rb-21Ne co-magnetometer has many potential applications for precision measurements, including spin dependent force detecting, Electric Dipole Moment measurement and fundamental symmetry test.

  3. Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26Al, 36Cl, 3He, and 21Ne)

    NASA Astrophysics Data System (ADS)

    Pavićević, M. K.; Cvetković, V.; Niedermann, S.; Pejović, V.; Amthauer, G.; Boev, B.; Bosch, F.; Aničin, I.; Henning, W. F.

    2016-02-01

    This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ˜165 m/Ma. The samples from four locations (L-8 CD, L1b/R, L1c/R, and L-4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo-depths for the ore body Centralni Deo from 4.3 Ma to the present are 250-290 and 750-790 m, respectively, whereas the upper limit of paleo-depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo-depth values allow estimating the relative contributions of 205Pb derived from pp-neutrino and fast cosmic-ray muons, respectively, which is an important prerequisite for the LOREX experiment.

  4. Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides ((26)Al, (36)Cl, (3)He, and (21)Ne).

    PubMed

    Pavićević, M K; Cvetković, V; Niedermann, S; Pejović, V; Amthauer, G; Boev, B; Bosch, F; Aničin, I; Henning, W F

    2016-02-01

    This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive ((26)Al and (36)Cl) and stable ((3)He and (21)Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying (26)Al, (36)Cl, and (21)Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ∼165 m/Ma. The samples from four locations (L-8 CD, L1b/R, L1c/R, and L-4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo-depths for the ore body Centralni Deo from 4.3 Ma to the present are 250-290 and 750-790 m, respectively, whereas the upper limit of paleo-depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo-depth values allow estimating the relative contributions of (205)Pb derived from pp-neutrino and fast cosmic-ray muons, respectively, which is an important prerequisite for the LOREX experiment.

  5. Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26 Al, 36 Cl, 3 He, and 21 Ne)

    PubMed Central

    Cvetković, V.; Niedermann, S.; Pejović, V.; Amthauer, G.; Boev, B.; Bosch, F.; Aničin, I.; Henning, W. F.

    2016-01-01

    Abstract This paper focuses on constraining the erosion rate in the area of the Allchar Sb‐As‐Tl‐Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long‐term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to ∼165 m/Ma. The samples from four locations (L‐8 CD, L1b/R, L1c/R, and L‐4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo‐depths for the ore body Centralni Deo from 4.3 Ma to the present are 250–290 and 750–790 m, respectively, whereas the upper limit of paleo‐depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo‐depth values allow estimating the relative contributions of 205Pb derived from pp‐neutrino and fast cosmic‐ray muons, respectively, which is an important prerequisite for the LOREX experiment. PMID:27587984

  6. Reconstructing the cosmogenic 21Ne inventory of Neogene sedimentary sequences

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Sinclair, Hugh; McCann, Louise

    2016-04-01

    The cosmogenic radionuclides, in particular 10Be, have found use in modern sediments as a way of determining the erosion rate of river catchments. Cosmogenic 21Ne in quartz is easier and faster to measure than 10Be and has the potential to record erosion rates back 10s million years. However the routine use of cosmogenic 21Ne in quartz sand is hampered by ubiquitous nucleogenic 21Ne. When the eroding lithology can be identified it is possible to measure the nucleogenic in samples that are shielded from cosmic rays and correct for it in exposed bedrock [1]. However, identifying the lithologies that contributes quartz sand in large river catchments, and determining precise nucleogenic contributions is more problematic. The North and South Platte rivers drain early Prototerozoic lithologies of the Laramie and Front Ranges in the high Rockies of Wyoming. They have deposited several km of coarse clastic fluvial deposits on the Great Plains of Nebraska and Colorado up to 200 km from the mountain front. Quartz from shielded samples of granite and gneiss - the dominant quartz-bearing rocks - has high concentrations of nucleogenic 21Ne (60-140 e6 atoms/g). The 21Ne concentration in modern sand from the river (n=10) overlaps that measured in the shielded granite and gneiss. The sand data rarely lie on the air-spallation mixing line in the Ne three isotope plot indicating that it is dominantly derived from the granite and gneiss and has no resolvable cosmogenic 21Ne. Building on previous studies of cosmogenic 21Ne in pebbles [2] we have started a programme of analysis of pebbles derived from the Medicine Bow quartzite that are abundant throughout the Cenozoic alluvial sequence. Nucleogenic 21Ne in shielded quartzite is lower than granites (3-7 e6 atoms/g, n=4) and the data tend to lie on the air-spallation mixing line. All pebbles (n=14) from modern sediments analysed so far contain 2-80 times more excess 21Ne than the highest shielded quartzite suggesting that cosmogenic 21

  7. Atmospheric 21Ne abundance determined by the Helix-MC Plus mass spectrometer

    NASA Astrophysics Data System (ADS)

    Honda, M.; Zhang, X.; Phillips, D.; Hamilton, D.; Deerberg, M.; Schwieters, J. B.

    2014-12-01

    Analyses of noble gas isotopes by multi-collector, high resolution mass spectrometry have the potential to revolutionise applications in the cosmo-geo-sciences. The Helix-MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is equipped with unique high mass resolution collectors [mass resolution (MR): ~1,800 and mass resolving power (MRP): ~8,000], including fixed axial (Ax), adjustable high mass (H2) and adjustable low mass (L2) detectors. The high mass resolution of the L2, Ax and H2 collectors permits complete separation of 20Ne (measured on L2 detector) from doubly charged interfering 40Ar (required MR of 1,777), 1H19F (MR = 1450), 1H218O (MR = 894) and partial separation of the 21Ne peak (on Ax detector) from interfering 20Ne1H (MR = 3,271), and 22Ne (on H2 detector) from interfering doubly charged CO2 (MR = 6,231). Because of the high MRP of ~8,000, 21Ne can be measured, essentially without interference from 20Ne1H, by setting the magnet position on a 20Ne1H interference-free position. This capability provides an important opportunity to re-evaluate the 21Ne abundance in the atmosphere. Our analyses demonstrate that 20Ne1H contributes ~4% to atmospheric 21Ne measurements, with the corresponding production ratio of 20Ne1H to 20Ne being ~1E-4. We calculate a new atmospheric 21Ne/20Ne ratio of 0.00287 relative to an atmospheric 22Ne/20Ne ratio of 0.102; this new value is distinctly lower than the current IUPAC recommended 21Ne/20Ne value of 0.00298. There are several significant implications ensuing from the newly determined atmospheric 21Ne abundance. For example, in the area of Earth sciences the most critical issue relates to cosmogenic 21Ne surface exposure ages, which involve the calculation of 21Ne concentrations from excess 21Ne, relative to the atmospheric 21Ne/20Ne ratio. For young samples, where cosmogenic 21Ne contents are small and the 21Ne/20Ne ratio is close to the atmospheric value, the revised value could

  8. Direct measurement of neon production rates by (α,n) reactions in minerals

    NASA Astrophysics Data System (ADS)

    Cox, Stephen E.; Farley, Kenneth A.; Cherniak, Daniele J.

    2015-01-01

    The production of nucleogenic neon from alpha particle capture by 18O and 19F offers a potential chronometer sensitive to temperatures higher than the more widely used (U-Th)/He chronometer. The accuracy depends on the cross sections and the calculated stopping power for alpha particles in the mineral being studied. Published 18O(α,n)21Ne production rates are in poor agreement and were calculated from contradictory cross sections, and therefore demand experimental verification. Similarly, the stopping powers for alpha particles are calculated from SRIM (Stopping Range of Ions in Matter software) based on a limited experimental dataset. To address these issues we used a particle accelerator to implant alpha particles at precisely known energies into slabs of synthetic quartz (SiO2) and barium tungstate (BaWO4) to measure 21Ne production from capture by 18O. Within experimental uncertainties the observed 21Ne production rates compare favorably to our predictions using published cross sections and stopping powers, indicating that ages calculated using these quantities are accurate at the ∼3% level. In addition, we measured the 22Ne/21Ne ratio and (U-Th)/He and (U-Th)/Ne ages of Durango fluorapatite, which is an important model system for this work because it contains both oxygen and fluorine. Finally, we present 21Ne/4He production rate ratios for a variety of minerals of geochemical interest along with software for calculating neon production rates and (U-Th)/Ne ages.

  9. Fluvial terrace dating using in situ cosmogenic {sup 21}Ne

    SciTech Connect

    Sexton, E.; Caffee, M.

    1994-12-01

    Through the analysis of cosmic-ray produced radio-genic and stable nuclide concentrations, specifically {sup 21}Ne, we hope to date certain geomorphic features located along the tributaries of the Colorado River in the Eastern Grand Canyon and the Rainbow Plateau located in Utah. During the Quaternary, the Colorado River system was fed by glacial melting and run-off from the Wind River and Colorado Mountain Ranges. Past periods of aggradation allowed the emplacement of terrace features from debris flow activity. By dating such features we can further constrain the timing of key events such as river down cutting, terrace genesis/exposure age, and rates of surface erosion. Knowing the age and elevation of each terrace we can determine an average rate of down cutting of this river system. This, in turn, will offer information regarding alpine glaciation which is a sensitive indicator of global climate change. Studying the relative concentrations of these isotopic species in surface rocks can be useful in researching glacial periodicity and the relationship between solar activity and climate.

  10. Age and stability of sublimation till over buried glacier ice, inferred from 21Ne measurements, Ong Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Bibby, T.; Putkonen, J.; Morgan, D. J.; Balco, G.

    2014-12-01

    Ong Valley, in the Central Transantarctic Mountains, contains three distinct glacial drifts deposited by past advances of the Argosy glacier into the valley. Massive ice occurs below two of the till deposits. Potentially, such buried ice under shallow regolith cover could provide access to past climate and biological records more easily than deep ice coring. We measured cosmic-ray produced 21Ne in these tills as a means of constraining the age and stability of the three drifts, as well as the ice below them. We collected samples in vertical profiles from two hand-dug sections through each drift. The pits from two drifts overlying buried ice extended to the buried ice surface. The hypothesis that these are sublimation tills implies that 21Ne concentrations are a function of i) any inheritance from prior exposure; ii) the age since emplacement of the ice and till; iii) the sublimation rate of the ice; and iv) the surface erosion rate of the till. 21Ne concentrations in the youngest drift are ca. 10 M atoms/g and invariant with depth, indicating that they are predominantly due to inheritance, and provide only a weak maximum age constraint of ca. 0.1 Mya. The two older drifts have surface 21Ne concentrations of 200-250 M atoms/ g and depth concentration profiles consistent with a sublimation till origin. Given that 21Ne concentrations in the deepest samples in each of the two older drifts provide an upper limit on the inherited 21Ne concentration, these imply minimum ages of 1 Mya for the middle drift and 1.6 Mya for the oldest. This implies a 1 Mya minimum age for the ice underlying the middle drift.

  11. Understanding complex exposure history of Mount Hampton, West Antarctica using cosmogenic 3He, 21Ne and 10Be in olivine

    NASA Astrophysics Data System (ADS)

    Carracedo, Ana; Rodes, Angel; Stuart, Finlay; Smellie, John

    2016-04-01

    Combining stable and radioactive cosmogenic nuclides is an established tool for revealing the complexities of long-term landscape development. To date most studies have concentrated on 21Ne and 10Be in quartz. We have combined different chemical protocols for extraction of cosmogenic 10Be from olivine, and measured concentrations in olivine from lherzolite xenoliths from the peak of Mount Hampton (~3,200 m), an 11 Ma shield volcano on the West Antarctic rift flank. We combine this data with cosmogenic 3He (and 21Ne) in the olivines in order to unravel the long-term environmental history of the region. The mean 3He/21Ne ratio (1.98 ± 0.22) is consistent with the theoretical value and previous determinations. 10Be/3He ratios (0.012 to 0.018) are significantly lower than the instantaneous production ratio (~0.045). The data are consistent with 1-3 Ma of burial. The altitude of the volcano rules out over-topping of the peak by the West Antarctic Ice Sheet only possible burial could be generated by the growth of an ice cap although this contradicts the absence of evidence for ice cover. The 3He-10Be data can also be generated during episodic erosion of the volcanic ash over the last few million years. The data requires a minimum depth of 1 to 2.5 m for the samples during a minimum age of 5 Ma and maximum long-term erosion rate of ~0.5 m/Ma with at least one erosive episode reflecting short-term erosion rate of ~7 m/Ma that would have brought the samples into the surface during the last ~350 ka. Erosion in this type of landscape could be related to interglacial periods where cryostatic erosion can occur generating an increase in the erosion rate. This study shows that episodic erosion can produce stable-radioactive cosmogenic isotope systematics that are similar to those generated by exposure-burial cycles.

  12. {sup 17}O({alpha},{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne for the weak s process

    SciTech Connect

    Best, A.; Goerres, J.; Beard, M.; Couder, M.; Boer, R. de; Falahat, S.; Gueray, R. T.; Kontos, A.; Kratz, K.-L.; LeBlanc, P. J.; Li, Q.; O'Brien, S.; Oezkan, N.; Pignatari, M.; Sonnabend, K.; Talwar, R.; Tan, W.; Uberseder, E.; Wiescher, M.

    2012-11-20

    The ratio of the reaction rates of the competing channels {sup 17}O({alpha}{gamma}){sup 21}Ne and {sup 17}O({alpha},n){sup 20}Ne determines the efficiency of {sup 16}O as a neutron poison in the s process in low metallicity rotating stars. It has a large impact on the element production, either producing elements to the mass range of A=90 in case of a significant poisoning effect or extending the mass range up to the region of A=150 if the {gamma} channel is of negligible strength. We present an improved study of the reaction {sup 17}O({alpha},n){sup 20}Ne, including an independent measurement of the {sup 17}O({alpha},n{sub 1}){sup 20}Ne channel. A simultaneous R-Matrix fit to both the n{sub 0} and the n{sub 1} channels has been performed. New reaction rates, including recent data on the {sup 17}O({alpha},{gamma}){sup 21}Ne reaction, have been calculated and used as input for stellar network calculations and their impact on the s process in rotating massive stars is discussed.

  13. Cosmogenic Nuclides 10Be-21Ne Burial Dating of Middle Miocene Sedimentary Formation of the Hongliu Valley in Southern Ningxia Basin: A Case of Isotopic Geochronology Study for the Cenozoic Sedimentary Strata

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Zhang, Huiping; Wang, Weitao; Pang, Jianzhang; Zheng, Dewen

    2016-04-01

    Chronology studies for the Cenozoic sedimentary strata based on the magnetostratigraphy cannot afford the unique chronological sequences in the absence of absolute ages from biostratigraphy or volcanic ash chronology. In situ-produced cosmogenic nuclides provide a powerful tool for the sediment dating based on the time-dependent concentration ratio of two nuclides, which are produced in the same mineral but with different half-lives. Thereinto,10Be-26Al is the most widely used nuclide pairs, of which the available dating range spans the Plio-Pleistocene. But the coupling of 10Be with the stable nuclide 21Ne would significantly improve the burial dating range up to the middle Miocene, which is promising in revolutionizing the chronology study for the Late Cenozoic terrestrial sedimentary sequences. We have applied 10Be-21Ne pair for dating the middle Miocene sediments of the Hongliu Valley in southern Ningxia basin. Two major features of the sediments are involved in our study: (1) sediments originated from the steady erosion of the source area, and (2) the burial depth of our sample after deposition is time dependent due to the gradual accumulation of sediments into basin. The post-burial nuclide production is estimated to be less than 3%, including the contribution by muon interactions, of the total nuclide concentrations measured in our sample. Our 10Be-21Ne analysis demonstrates the age of the burial sample is 12.4(+0.6/-0.4) Ma, and the erosion rate at the source area is 0.26±0.01 cm ka-1. The sample's burial age is consistent with the age constraint set by the Hongliugou Formation (16.7-5.4 Ma) which we collected the sample in. Vertebrate fossils of Platybelodon tongxinensis with an age between 12 and 15 Ma exhumated along with our sample further verifies the reliability of our dating results for the middle Miocene sediments.This study has shown the improved age range of cosmogenic-nuclide burial dating method by incorporating the stable nuclide 21Ne, and has

  14. Pressure broadening and shift of K D1 and D2 lines in the presence of 3He and 21Ne

    NASA Astrophysics Data System (ADS)

    Li, Rujie; Li, Yang; Jiang, Liwei; Quan, Wei; Ding, Ming; Fang, Jiancheng

    2016-06-01

    Due to the collisions with alkali-metal atoms, the buffer gases used in spin-exchange optical pumping systems induce a broadening of spectral profiles and a shift in the resonance frequency. Here we report the pressure broadening and shift rates of K D 1 and D 2 lines in the presence of 21Ne for the first time and values for 3He have been reinvestigated by means of laser absorption spectroscopy. We have also examined the temperature dependence of these collisional effects in a range of 435-458 K. A comparison for the broadening and shift rates to those of other isotopes, 4He and 20Ne, is presented.

  15. Test of Lorentz Invariance with a RB-21NE Comagnetometer at the South Pole

    NASA Astrophysics Data System (ADS)

    Smiciklas, M. A.; Romalis, M. V.

    2014-01-01

    Atomic spin comagnetometers are among the most sensitive devices for testing Lorentz symmetry of fermions. In Princeton, we have used our rotating comagnetometer to set the most stringent limits on CPT-odd and CPT-even Lorentz violating effects in neutrons. However, gyroscopic pickup of the Earth's rotation represents a significant systematic effect limiting sensitivity. To suppress this systematic, we have installed a Rb-21Ne comagnetometer at the Amundsen-Scott South Pole Station with data collection being performed over the course of the austral winter.

  16. Isotopic Fractionation of 20Ne, 21Ne, and 22Ne in a Simulated Thermal Gradient

    NASA Astrophysics Data System (ADS)

    Jester, B.; Dominguez, G.

    2014-12-01

    Computer simulations allow for the analysis of the thermodynamic properties of systems which are difficult or impossible to do experimentally. Isotopic fractionation in thermal gradients is an example of a system which is not fully understood but could provide background for understanding variations in fractionations like those observed for noble gases in terrestrial and extraterrestrial material. Using a recently developed molecular dynamics simulation focused on the accuracy of the simulated physics, the isotopic fractionation of Neon in a thermal gradient was analyzed in order to provide a correlation between the fractionation and the experimental system's properties. Various ratios of isotopes 20Ne, 21Ne, and 22Ne were simulated in a thermal gradient ranging from 218 K to 233 K for a variety of time scales. Data was collected for various configurations including box sizes on the order of 1 nm to 100 μm. The simulated thermal conductivity was determined and compared with known values. The analysis indicates that the dimensions of the box heavily influence the magnitude of the isotopic fractionation in the thermal gradient.

  17. Morphogenetic evolution of the Têt river valley (eastern Pyrenees) using 10Be/21Ne cosmogenic burial dating

    NASA Astrophysics Data System (ADS)

    Sartégou, Amandine; Blard, Pierre-Henri; Braucher, Régis; Bourlès, Didier L.; Calvet, Marc; Zimmermann, Laurent; Tibari, Bouchaïb; Hez, Gabriel; Gunnell, Yanni; Aumaitre, Georges; Keddadouche, Karim

    2016-04-01

    The rates and chronologies of valley incision are closely modulated by the tectonic uplift of active mountain ranges and were controlled by repeated climate changes during the Quaternary. The continental collision between the Iberian and Eurasian plates induced a double vergence orogen, the Pyrenees, which has been considered as a mature mountain range in spite of significant seismicity (e.g. Chevrot et al., 2011) and evidence of neotectonics (e.g. Goula et al., 1999). Nevertheless, recent studies indicate that the range may have never reached a steady state (Ford et al., in press). One option for resolving this controversy is to quantify the incision rates since the Miocene by reconstructing the vertical movement of geometric markers such as fluvial terraces. However, the few available ages from the Pyrenean terrace systems do not exceed the middle Pleistocene. Thus, to enlarge the time span of this dataset, we studied alluvium-filled horizontal epiphreatic passages in limestone karstic networks. Such landforms are used as substitutes of fluvial terraces because they represent former valley floors (e.g. Palmer, 2007; Audra et al., 2013). They record the transient position of former local base levels during the process of valley deepening. The Têt river valley (southern Pyrenees) was studied near the Villefranche-de-Conflent limestone gorge where 8 cave levels have been recognized over a vertical height of 600 meters. Given that 26Al/10Be cosmogenic burial dating in this setting was limited to the last ~5 Ma (Calvet et al., 2015), here we used the cosmogenic 10Be/21Ne method in order to restore a more complete chronology of valley incision (e.g. Balco & Shuster, 2009; McPhilipps et al., 2016). Burial age results for alluvial deposits from 12 caves document incision rates since the Langhian (~14 Ma). Preliminary results indicate a history of valley deepening in successive stages. The data show a regular incision rate of 70-80 mm/a from the Langhian to the Messinian

  18. The Search for Meterorites with Complex Exposure Histories Amoung Ordinary Chondrites with Low 3HE/21NE Ratios

    SciTech Connect

    Welton, K C; Nishiizumi, K; Caffee, M W

    2001-04-30

    In calculating cosmic-ray exposure ages of meteorites it is generally assumed that the meteoroids were expelled from a shielded position within their parent body and then experienced a single stage exposure before colliding with Earth. The combination of noble gas and radionuclide measurements in several large meteorites, such as Jilin and Bur Ghelaui, have revealed complex exposure histories: i.e. an initial exposure on the surface of an asteroid (or within meter-sized meteoroid), followed by a second exposure as a smaller object. In fact, orbital dynamics calculations predicted that at least 30% of the meteorites arriving on Earth experienced two- or multiple-stage exposure histories [1]. More recently, after the recognition that the Yarkovsky effect plays an important role in delivering meteorites from the asteroid belt to Earth-crossing orbits, it was confirmed that complex exposure histories should be common [2]. Nevertheless, despite the ability to measure a wide range of radionuclides with accelerator mass spectrometry (AMS), only a few meteorites with complex exposure histories have been identified [e.g. 3,4]. The question is whether the relatively paucity of complex exposure histories is real or have we simply overlooked complex-exposure histories. In this work we focus on meteorites with low {sup 3}He/{sup 21}Ne ratios, since it is known that most meteorites with complex exposure histories have relatively low {sup 3}He/{sup 21}Ne ratios, i.e. the {sup 3}He/{sup 21}Ne ratio is below the ''Bern-line''. Several hypotheses have been suggested for these low {sup 3}He/{sup 21}Ne ratios, including solar heating in low-perihelion orbits, shock-related diffusion of He during the collision that ejected the meteoroid, or an artifact of high shielding conditions [4]. The first two hypotheses seem to be supported by low radiogenic {sup 4}He concentrations in samples with low {sup 3}He, whereas Monte Carlo calculations have shown that some of the low {sup 3}He/{sup 21

  19. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  20. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... § 250.1632 Production rates. Each sulphur deposit shall be produced at rates that will provide...

  1. Cosmogenic Noble Gases and Their Production Rates in Eucrites, Diogenites, and Howardites: Common Asteroid Break-up Events 38 Ma, 21 Ma, and 6 MA Ago

    NASA Astrophysics Data System (ADS)

    Eugster, O.; Michel, Th.

    1993-07-01

    It is likely that the eucrites and their associates, the howardites and diogenites, sample the surface and shallow interior of a single parent body, possibly 4 Vesta (cf. [1] and [2]). A break-up event that reaches deep enough may, thus, eject asteroidal fragments representing meteorites from all three classes. In this work we present a comprehensive investigation of the exposure age clusters for howardites, eucrites, and diogenites (HEDs). Cosmic-ray exposure ages critically depend on the production rates for cosmic-ray produced nuclei. For eucrites shielding independent production rates for ^21Ne and ^38Ar have been determined previously [3,4]. We now present production rates of ^3He, ^21Ne, ^33Ar, ^78Kr, ^83Kr, and ^126Xe for eucrites, howardites, and diogenites as a function of shielding, where appropriate, and of target element abundances as derived on the basis of ^81Kr-Kr ages. E.g., for ^21Ne we obtain: P(sub)21 (EUC) = 8.43 P^1(sub)21 [16.1 (^22Ne/^21Ne)(sub)c - 10.3]^-1, P(sub)21 (HOW) = 6.16 P^1(sub)21 [18.1 (^22Ne/^21Ne)(sub)c - 14.1]^-1, P(sub)21 (DIO) = 4.81 P^1(sub)21 [25.7 (^22Ne/^21Ne)(sub)c - 23.7]^-1, where P^1(sub)21 = 1.63 [Mg] + 0.6 [Al] + 0.32 [Si] + 0.22 [S] + 0.07 [Ca] + 0.021 [Fe + Ni] as given by [3]. (Elemental abundance [x] in weight %, P(sub)21 in 10^10 cm^3 STP/g, Ma). Average cosmic-ray exposure ages were derived from as many nuclei as possible for 14 HEDs analyzed by us (see also [5,6]) and for those compiled by [7]. Two major exposure age clusters at 21 and 38 Ma are represented in all three meteorite classes (Fig. 1). In the cluster at 21 +- 4 Ma are 12 out of 39 eucrites, 6 out of 14 howardites, and 7out of 12 diogenites. In the cluster at 38 +- 8 Ma are 6 eucrites, 5 howardites, and 4 diogenites. A third common break-up event at 5 +- 1 Ma is indicated by the remaining diogenite, three eucrites, and one howardite. Schultz [8] found major clusters for eucrites at 13, 21, 26, and 40 Ma for howardites around 10 and 24 Ma, and for

  2. 30 CFR 250.1632 - Production rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Production rates. 250.1632 Section 250.1632 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1632 Production rates. Each...

  3. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer

    PubMed Central

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-01-01

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-21Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth’s rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz−1/2@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10−8 rad s−1 Hz−1/2@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm. PMID:27830744

  4. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-(21)Ne co-magnetometer.

    PubMed

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-11-10

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-(21)Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth's rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz(-1/2)@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10(-8) rad s(-1) Hz(-1/2)@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm.

  5. Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Quan, Wei; Zou, Sheng; Lu, Yan; Duan, Lihong; Li, Yang; Zhang, Hong; Ding, Ming; Fang, Jiancheng

    2016-11-01

    Atomic co-magnetometers can be utilized for high-precision angular velocity sensing or fundamental physics tests. The sensitivity of a co-magnetometer determines the angle random walk of an angular velocity sensor and the detection limit for a fundamental physics test. A high-sensitivity K-Rb-21Ne co-magnetometer, which is utilized for angular velocity sensing, is presented in this paper. A new type of spin relaxation of Rb atom spins, which can broaden the zero-field magnetic resonance lines of the co-magnetometer, is discovered. Further studies show that the spin relaxation of Rb atoms is caused by a high Rb electron magnetization field. With this discovery, the total relaxation rate of Rb atoms is optimized to improve the sensitivity of the co-magnetometer. Moreover, its sensitivity is optimized by suppressing various noises. Especially, to suppress laser-related noises, the co-magnetometer is designed such that the sensitive axis of the co-magnetometer can be fixed to the direction in which the projection input of the earth’s rotation is 0. This is called a rotating co-magnetometer. A magnetic field sensitivity of 1.0 fT/Hz‑1/2@5 Hz, which is equal to an angular velocity sensitivity of 2.1 × 10‑8 rad s‑1 Hz‑1/2@5 Hz, is demonstrated using a spherical vapour cell with a diameter of 14 mm.

  6. Effect of seeding rate on organic production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased demand for organic rice (Oryza sativa L.) has incentivized producer conversion from conventional to organically-managed rice production in the U.S. Little is known on the impacts of seeding rate on organic rice production. A completely randomized factorial design with four replications was...

  7. Rate of nova production in the Galaxy

    SciTech Connect

    Liller, W.; Mayer, B.

    1987-07-01

    The ongoing PROBLICOM program in the Southern Hemisphere now makes it possible to derive a reliable value for the overall production rate of Galactic novae. The results, 73 + or - 24/y, indicates that the Galaxy outproduces M 31 by a factor of two or three. It is estimated that the rate of supernova ejecta is one and a half orders of magnitude greater than that of novae in the Galaxy. 15 references.

  8. Towards a Model for Protein Production Rates

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Schmittmann, B.; Zia, R. K. P.

    2007-07-01

    In the process of translation, ribosomes read the genetic code on an mRNA and assemble the corresponding polypeptide chain. The ribosomes perform discrete directed motion which is well modeled by a totally asymmetric simple exclusion process (TASEP) with open boundaries. Using Monte Carlo simulations and a simple mean-field theory, we discuss the effect of one or two "bottlenecks" (i.e., slow codons) on the production rate of the final protein. Confirming and extending previous work by Chou and Lakatos, we find that the location and spacing of the slow codons can affect the production rate quite dramatically. In particular, we observe a novel "edge" effect, i.e., an interaction of a single slow codon with the system boundary. We focus in detail on ribosome density profiles and provide a simple explanation for the length scale which controls the range of these interactions.

  9. ATMS Snowfall Rate Product and Its Applications

    NASA Astrophysics Data System (ADS)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.

    2015-12-01

    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  10. Maximum entropy production rate in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schrödinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible, well

  11. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ10Be, 26Al and 21Ne in sediment of the Po river catchment

    NASA Astrophysics Data System (ADS)

    Wittmann, Hella; Malusà, Marco G.; Resentini, Alberto; Garzanti, Eduardo; Niedermann, Samuel

    2016-10-01

    We analyze the source-to-sink variations of in situ10Be, 26Al and 21Ne concentrations in modern sediment of the Po river catchment, from Alpine, Apennine, floodplain, and delta samples, in order to investigate how the cosmogenic record of orogenic erosion is transmitted across a fast-subsiding foreland basin. The in situ10Be concentrations in the analyzed samples range from ∼ 0.8 ×104 at /gQTZ to ∼ 6.5 ×104 at /gQTZ. The 10Be-derived denudation rates range from 0.1 to 1.5 mm/yr in the Alpine source areas and from 0.3 to 0.5 mm/yr in the Apenninic source areas. The highest 10Be-derived denudation rates are found in the western Central Alps (1.5 mm/yr). From these data, we constrain a sediment flux leaving the Alpine and the Apenninic source areas (>27 Mt/yr and ca. 5 Mt/yr, respectively) that is notably higher than the estimates of sediment export provided by gauging (∼10 Mt/yr at the Po delta). We observe a high variability in 10Be concentrations and 10Be-derived denudation rates in the source areas. In the Po Plain, little variability is observed, and at the same time, the area-weighed 10Be concentration of (2.29 ± 1.57) ×104 at /gQTZ (±1 SD of the dataset) from both the Alps and the Apennines is poorly modified (by tributary input) in sediment of the Po Plain ((2.68 ± 0.78 , ± 1 SD) ×104 at /gQTZ). The buffering effect of the Po floodplain largely removes scatter in 10Be signals. We test for several potential perturbations of the cosmogenic nuclide record during source to sink transfer in the Po basin. We find that sediment trapping in deep glacial lakes or behind dams does not significantly change the 10Be-mountain record. For example, similar 10Be concentrations are measured upstream and downstream of the postglacial Lake Maggiore, suggesting that denudation rates prior to lake formation were similar to today's. On the scale of the entire basin, the 10Be concentration of basins with major dams is similar to those without major dams. A potential

  12. An ETAS model with varying productivity rates

    NASA Astrophysics Data System (ADS)

    Harte, D. S.

    2014-07-01

    We present an epidemic type aftershock sequenc (ETAS) model where the offspring rates vary both spatially and temporally. This is achieved by distinguishing between those space-time volumes where the interpoint space and time distances are small, and those where they are considerably larger. We also question the nature of the background component in the ETAS model. Is it simply a temporal boundary correction (t = 0) or does it represent an additional tectonic process not described by the aftershock component? The form of these stochastic models should not be considered to be fixed. As we accumulate larger and better earthquake catalogues, GPS data, strain rates, etc., we have the ability to ask more complex questions about the nature of the process. By fitting modified models consistent with such questions, we should gain a better insight into the earthquake process. Hence, we consider a sequence of incrementally modified ETAS type models rather than `the' ETAS model.

  13. The global joule heat production rate and the AE index

    NASA Technical Reports Server (NTRS)

    Wei, S.; Ahn, B.-H.; Akasofu, S.-I.

    1985-01-01

    The degree of accuracy with which the AE index may be used as a measure of the joule heat production rate is evaluated for a typical substorm event on March 18, 1978, by estimating the global joule heat production rate as a function of time on the basis of data obtained from the IMS's six meridian chains. It is found that, although the AE index is statistically linearly related to the global joule heat production rate, caution is required when one assumes that details of AE index time variations during individual events are representative of those of the joule heat production rate.

  14. Radiolytic hydrogen production from process vessels in HB line - production rates compared to evolution rates and discussion of LASL reviews

    SciTech Connect

    Bibler, N.E.

    1992-11-12

    Hydrogen production from radiolysis of aqueous solutions can create a safety hazard since hydrogen is flammable. At times this production can be significant, especially in HB line where nitric acid solutions containing high concentrations of Pu-238, an intense alpha emitter, are processed. The hydrogen production rates from these solutions are necessary for safety analyses of these process systems. The methods and conclusions of hydrogen production rate tests are provided in this report.

  15. Graduation Rates and Accountability: Regressions versus Production Frontiers

    ERIC Educational Resources Information Center

    Archibald, Robert B.; Feldman, David H.

    2008-01-01

    This paper suggests an alternative to the standard practice of measuring the graduation rate performance using regression analysis. The alternative is production frontier analysis. Production frontier analysis is appealing because it compares an institution's graduation rate to the best performance instead of the average performance. The paper…

  16. Regulation of primary productivity rate in the equatorial Pacific

    SciTech Connect

    Barber, R.T. ); Chavez, F.P. )

    1991-12-01

    Analysis of the Chl-specific rate of primary productivity (P{sup B}) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific In the western Pacific where there is a gradient in 60-m (NO{sub 3}) from 0 to {approximately}12 {mu}M, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 {mu}M, the productivity rate is independent of nutrient concentration and limited to {approximately}36 mg C(mg Chl){sup {minus}1} d{sup {minus}1}, or a mean euphotic zone C-specific growth rate ({mu}) of 0.47 d{sup {minus}1}. However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl){sup {minus}1} d{sup {minus}1} and {mu} = 0.57 d{sup {minus}1}, very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region.

  17. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    SciTech Connect

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping; Min, Chul Hee; Testa, Mauro; Winey, Brian; Normandin, Marc D.; Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas; El Fakhri, Georges

    2015-06-01

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.

  18. The effect of direct positron production on relativistic feedback rates

    NASA Astrophysics Data System (ADS)

    Vodopiyanov, I. B.; Dwyer, J. R.; Lucia, R. J.; Cramer, E. S.; Arabshahi, S.; Rassoul, H.

    2013-12-01

    Relativistic feedback produces a self-sustaining runaway electron discharge via the production of backward propagating positrons and back-scattered x-rays. To date, only positrons created from pair-production by gamma-rays interacting with the air have been considered. In contrast, direct pair-production involves the creation of electron-positron pairs directly from the interaction of energetic runaway electrons with nuclei, and so it does not require the generation of bremsstrahlung gamma-rays. For high electric fields, where the runaway electron avalanche length scales are short, pair-production involving bremsstrahlung gamma-rays makes a smaller contribution to the total relativistic feedback rates than at lower fields, since both the bremsstrahlung interaction and the pair-production need to occur over a short length. On the other hand, for high fields, because direct positron production only involves one interaction, it may make a significant contribution to relativistic feedback rates in some cases. In this poster, we shall present the direct positron production cross-sections and calculate the effects on the relativistic feedback rates due to this process.

  19. Predicting the production rates of cosmogenic nuclides in extraterrestrial matter

    SciTech Connect

    Reedy, R.C.

    1987-01-01

    The production rates of nuclides made by the galactic and solar cosmic rays are important in the interpretations of measurements made with lunar samples, meteorites, and cosmic spherules. Production rates of cosmogenic nuclides have been predicted by a variety of methods that are reviewed in this paper, ranging from systematic studies of one or a group of meteorites to purely theoretical calculations. Production rates can vary with the chemical composition and the preatmospheric depth of the sample and with the size and shape of the object. While the production systematics for cosmogenic nuclides are fairly well known, our ability to predict their production rates can be improved, with a corresponding increase in the scientific return. Additional detailed studies of cosmogenic nuclides in extraterrestrial objects are needed, especially for fairly small and very large objects. Nuclides made in simulation experiments and cross sections for many major nuclear reactions should be measured. Such studies are especially needed for the long-lived radionuclides that have only recently become readily measurable by accelerator mass spectrometry. 34 refs., 5 figs.

  20. Refinement of the Air Force Systems Command Production Rate Model

    DTIC Science & Technology

    1989-09-01

    the recommended modified formulations. The relationship between production rate and production ratio has a definite influence on the model’s ability to...1984 7 36 21.954 370.00 1985 8 48 21.017 412.00 A- 3 Table A.2.8 F-15E Cost/Quantity Data Fiscal Year Lot Quntit Recurring Unit Cost LPP 1986 1 60

  1. Wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.

  2. RADIOLYTIC GAS PRODUCTION RATES OF POLYMERS EXPOSED TO TRITIUM GAS

    SciTech Connect

    Clark, E.

    2013-08-31

    Data from previous reports on studies of polymers exposed to tritium gas is further analyzed to estimate rates of radiolytic gas production. Also, graphs of gas release during tritium exposure from ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon®), and Vespel® polyimide are re-plotted as moles of gas as a function of time, which is consistent with a later study of tritium effects on various formulations of the elastomer ethylene-propylene-diene monomer (EPDM). These gas production rate estimates may be useful while considering using these polymers in tritium processing systems. These rates are valid at least for the longest exposure times for each material, two years for UHMW-PE, PTFE, and Vespel®, and fourteen months for filled and unfilled EPDM. Note that the production “rate” for Vespel® is a quantity of H{sub 2} produced during a single exposure to tritium, independent of length of time. The larger production rate per unit mass for unfilled EPDM results from the lack of filler- the carbon black in filled EPDM does not produce H{sub 2} or HT. This is one aspect of how inert fillers reduce the effects of ionizing radiation on polymers.

  3. Proceedings of a Workshop on Cosmogenic Nuclide Production Rates

    NASA Technical Reports Server (NTRS)

    Englert, Peter A. J. (Editor); Reedy, Robert C. (Editor); Michel, Rolf (Editor)

    1989-01-01

    Abstracts of reports from the proceedings are presented. The presentations were divided into discussion topics. The following general topic areas were used: (1) measured cosmogenic noble gas and radionuclide production rates in meteorite and planetary surface samples; (2) cross-section measurements and simulation experiments; and (3) interpretation of sample studies and simulation experiments.

  4. Drill-in fluid reduces formation damage, increases production rates

    SciTech Connect

    Hands, N.; Kowbel, K.; Nouris, R.

    1998-07-13

    A sodium formate drill-in fluid system reduced formation damage, resulting in better-than-expected production rates for an off-shore Dutch development well. Programmed to optimize production capacity and reservoir drainage from a Rotliegend sandstone gas discovery, the 5-7/8-in. subhorizontal production interval was drilled and completed barefoot with a unique, rheologically engineered sodium formate drill-in fluid system. The new system, consisting of a sodium formate (NaCOOH) brine as the base fluid and properly sized calcium carbonate as the formation-bridging agent, was selected on the basis of its well-documented record in reducing solids impairment and formation damage in similar sandstone structures in Germany. The system was engineered around the low-shear-rate viscosity (LSRV) concept, designed to provide exceptional rheological properties. After describing the drilling program, the paper gives results on the drilling and completion.

  5. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Washabaugh, Pearce C.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  6. 5 CFR 532.253 - Special rates or rate ranges for leader, supervisory, and production facilitating positions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Special rates or rate ranges for leader....253 Special rates or rate ranges for leader, supervisory, and production facilitating positions. (a... shall establish special rates for leader, supervisory, and production facilitating positions,...

  7. Automated Production of High Rep Rate Foam Targets

    NASA Astrophysics Data System (ADS)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  8. Developing ratings for food products: lessons learned from media rating systems.

    PubMed

    Kunkel, Dale; McKinley, Christopher

    2007-01-01

    Children regularly consume low-nutrient, high-calorie food that is not consistent with a healthful diet, contributing to an increasing epidemic of overweight and obesity. Among the multiple causes of this problem is the food industry's emphasis on marketing calorie-dense food products to children. The Institute of Medicine (IOM) has recommended that industry adopt a uniform system of simplified food ratings to convey the nutritional qualities of food in a manner that is understandable and appealing to children and youth. This report analyzes the need for such a system in a food marketing environment that increasingly identifies healthful products for the consumer in inconsistent fashion. It considers evidence regarding current usage of food labeling and draws parallels with media rating systems in discussing the prospects for a uniform food rating system that would accomplish the IOM's objective.

  9. Light dose versus rate of delivery: implications for macroalgal productivity.

    PubMed

    Desmond, Matthew J; Pritchard, Daniel W; Hepburn, Christopher D

    2017-04-07

    The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.

  10. Production rate calculations for a secondary beam facility

    SciTech Connect

    Jiang, C.L.; Back, B.B.; Rehm, K.E.

    1995-08-01

    In order to select the most cost-effective method for the production of secondary ion beams, yield calculations for a variety of primary beams were performed ranging in mass from protons to {sup 18}O with energies of 100-200 MeV/u. For comparison, production yields for 600-1000 MeV protons were also calculated. For light ion-(A < {sup 4}He) induced reactions at energies above 50 MeV/u the LAHET code was used while the low energy calculations were performed with LPACE. Heavy-ion-induced production rates were calculated with the ISAPACE program. The results of these codes were checked against each other and wherever possible a comparison with experimental data was performed. These comparisons extended to very exotic reaction channels, such as the production of {sup 100}Sn from {sup 112}Sn and {sup 124}Xe induced fragmentation reactions. These comparisons indicate that the codes are able to predict production rates to within one order of magnitude.

  11. Entropy production rate as a constraint for collisionless fluid closures

    SciTech Connect

    Fleurence, E.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Grandgirard, V.; Ottaviani, M.

    2006-11-30

    A novel method is proposed to construct collisionless fluid closures accounting for some kinetic properties. The first dropped fluid moment is assumed to be a linear function of the lower order ones. Optimizing the agreement between the fluid and kinetic entropy production rates is used to constrain the coefficients of the linear development. This procedure is applied to a reduced version of the interchange instability. The closure, involving the absolute value of the wave vector, is non-local in real space. In this case, the linear instability thresholds are the same, and the linear growth rates exhibit similar characteristics. Such a method is applicable to other models and classes of instabilities.

  12. Production rates of cosmogenic nuclides in stony meteorites

    SciTech Connect

    Divadeenam, M.; Gabriel, T.A.; Lazareth, O.W.; Spergel, M.S.; Ward, T.E.

    1989-01-01

    Monte Carlo calculations of /sup 26/Al and /sup 53/Mn production due to spallation induced by cosmogenic protons in model meteorite composition similar to L Chondrite has yielded predictions which are consistent with the observed decay rates in L Chondrite stony meteorites. The calculated /sup 26/Al production rate (54 dpm/kg) in a 1 m diameter meteorite is within 1/2 S.D. of the mean (49 +- 11 dpm/kg) taken from 100 bulk determinations in L Chondrite samples compiled in Nishiizumi (1987). Similarly calculated average value for /sup 53/Mn (223 dpm/kg) is consistent with one S.D. off the mean in the widely scattered /sup 53/Mn data (362 +- 113 dpm/kg) compiled by Nishiizumi (1987). 9 refs.

  13. Measurements of in situ chemical ozone (oxidant) production rates

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William

    2013-04-01

    Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model

  14. 5 CFR 532.253 - Special rates or rate ranges for leader, supervisory, and production facilitating positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Special rates or rate ranges for leader....253 Special rates or rate ranges for leader, supervisory, and production facilitating positions. (a) When special rates or rate ranges are established for nonsupervisory positions, a lead agency...

  15. Photochemical free radical production rates in the eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Dister, Brian; Zafiriou, Oliver C.

    1993-02-01

    Potential photochemical production rates of total (NO-scavengeable) free radicals were surveyed underway (> 900 points) in the eastern Caribbean and Orinoco delta in spring and fall 1988. These data document seasonal trends and large-scale (˜ 10-1000 km) variability in the pools of sunlight-generated reactive transients, which probably mediate a major portion of marine photoredox transformations. Radical production potential was detectable in all waters and was reasonably quantifiable at rates above 0.25 nmol L-1 min-1 sun-1. Radical production rates varied from ˜ 0.1-0.5 nmol L-1 min-1 of full-sun illumination in "blue water" to > 60 nmol L-1 min-1 in some estuarine waters in the high-flow season. Qualitatively, spatiotemporal potential rate distributions strikingly resembled that of "chlorophyll" (a riverine-influence tracer of uncertain specificity) in 1979-1981 CZCS images of the region [Müller-Karger et al., 1988] at all scales. Basin-scale occurrence of greatly enhanced rates in fall compared to spring is attributed to terrestrial chromophore inputs, primarily from the Orinoco River, any contributions from Amazon water and nutrient-stimulus effects could not be resolved. A major part of the functionally photoreactive colored organic matter (COM) involved in radical formation clearly mixes without massive loss out into high-salinity waters, although humic acids may flocculate in estuaries. A similar conclusion applies over smaller scales for COM as measured optically [Blough et al., this issue]. Furthermore, optical absorption and radical production rates were positively correlated in the estuarine region in fall. These cruises demonstrated that photochemical techniques are now adequate to treat terrestrial photochemical chromophore inputs as an estuarine mixing problem on a large scale, though the ancillary data base does not currently support such an analysis in this region. Eastern Caribbean waters are not markedly more reactive at comparable salinities

  16. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Boyd, S.; Delwiche, M. E.; Reed, D. W.

    2004-12-01

    Much of the methane in natural gas hydrates in marine sediments is made by methanogens. Current models used to predict hydrate distribution and concentration in these sediments require estimates of microbial methane production rates. However, accurate estimates are difficult to achieve because of the bias introduced by sampling and because methanogen activities in these sediments are low and not easily detected. To derive useful methane production rates for marine sediments we have measured the methanogen biomass in samples taken from different depths in Hydrate Ridge (HR) sediments off the coast of Oregon and, separately, the minimal rates of activity for a methanogen in a laboratory reactor. For methanogen biomass, we used a polymerase chain reaction assay in real time to target the methanogen-specific mcr gene. Using this method we found that a majority of the samples collected from boreholes at HR show no evidence of methanogens (detection limit: less than 100 methanogens per g of sediment). Most of the samples with detectable numbers of methanogens were from shallow sediments (less than 10 meters below seafloor [mbsf]) although a few samples with apparently high numbers of methanogens (greater than 10,000 methanogens per g) were from as deep as 230 mbsf and were associated with notable geological features (e.g., the bottom-simulating reflector and an ash-bearing zone with high fluid movement). Laboratory studies with Methanoculleus submarinus (isolated from a hydrate zone at the Nankai Trough) maintained in a biomass recycle reactor showed that when this methanogen is merely surviving, as is likely the case in deep marine sediments, it produces approximately 0.06 fmol methane per cell per day. This is far lower than rates reported for methanogens in other environments. By combining this estimate of specific methanogenic rates and an extrapolation from the numbers of methanogens at selected depths in the sediment column at HR sites we have derived a maximum

  17. Zymomonas mobilis mutants with an increased rate of alcohol production

    SciTech Connect

    Osman, Y.A.; Ingram, L.O.

    1987-07-01

    Two new derivatives of Zymomonas mobilis CP4 were isolated from enrichment cultures after 18 months of serial transfer. These new strains were selected for the ability to grow and produce ethanol rapidly on transfer into fresh broth containing ethanol and allyl alcohol. Ethanol production by these strains was examined in batch fermentations under three sets of conditions. Both new derivatives were found to be superior to the parent strain CP4 with respect to the speed and completeness of glucose conversion to ethanol. The best of these, strain YO2, produced 9.5% ethanol (by weight; 11.9% by volume) after 17.4 h compared with 31.8 h for the parent strain CP4. The addition of 1 mM magnesium sulfate improved ethanol production in all three strains. Two factors contributed to the decrease in fermentation time required by the mutants: more rapid growth with minimal lag on subculturing and the retention of higher rates of ethanol production as fermentation proceeded. Alcohol dehydrogenase isozymes were altered in both new strains and no longer catalyzed the oxidation of allyl alcohol into the toxic product acrolein. This loss of allyl alcohol-oxidizing capacity is proposed as a primary factor contributing to increased allyl alcohol resistance, although it is likely that other mutations affecting glycolysis also contribute to the improvement in ethanol production.

  18. Universal scaling of production rates across mammalian lineages.

    PubMed

    Hamilton, Marcus J; Davidson, Ana D; Sibly, Richard M; Brown, James H

    2011-02-22

    Over many millions of years of independent evolution, placental, marsupial and monotreme mammals have diverged conspicuously in physiology, life history and reproductive ecology. The differences in life histories are particularly striking. Compared with placentals, marsupials exhibit shorter pregnancy, smaller size of offspring at birth and longer period of lactation in the pouch. Monotremes also exhibit short pregnancy, but incubate embryos in eggs, followed by a long period of post-hatching lactation. Using a large sample of mammalian species, we show that, remarkably, despite their very different life histories, the scaling of production rates is statistically indistinguishable across mammalian lineages. Apparently all mammals are subject to the same fundamental metabolic constraints on productivity, because they share similar body designs, vascular systems and costs of producing new tissue.

  19. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.

  20. Universal scaling of production rates across mammalian lineages

    PubMed Central

    Hamilton, Marcus J.; Davidson, Ana D.; Sibly, Richard M.; Brown, James H.

    2011-01-01

    Over many millions of years of independent evolution, placental, marsupial and monotreme mammals have diverged conspicuously in physiology, life history and reproductive ecology. The differences in life histories are particularly striking. Compared with placentals, marsupials exhibit shorter pregnancy, smaller size of offspring at birth and longer period of lactation in the pouch. Monotremes also exhibit short pregnancy, but incubate embryos in eggs, followed by a long period of post-hatching lactation. Using a large sample of mammalian species, we show that, remarkably, despite their very different life histories, the scaling of production rates is statistically indistinguishable across mammalian lineages. Apparently all mammals are subject to the same fundamental metabolic constraints on productivity, because they share similar body designs, vascular systems and costs of producing new tissue. PMID:20798111

  1. Forest turnover rates follow global and regional patterns of productivity

    USGS Publications Warehouse

    Stephenson, N.L.; van Mantgem, P.J.

    2005-01-01

    Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics. ??2005 Blackwell Publishing Ltd/CNRS.

  2. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  3. The Production Rate and Employment of Ph.D. Astronomers

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2007-05-01

    As in many sciences, the production rate of new Ph.D. astronomers is decoupled from the global demand for trained scientists. As noted by Thronson (1991, PASP, 103, 90), overproduction appears to be built into the system, making the mathematical formulation of surplus astronomer production similar to that for industrial pollution models -- an unintended side effect of the process. Following Harris (1994, ASP Conf., 57, 12), I document the production of Ph.D. astronomers from 1990 to 2005 using the online Dissertation Abstracts database. To monitor the changing patterns of employment, I examine the number of postdoctoral, tenure-track, and other jobs advertised in the AAS Job Register during this same period. Although the current situation is clearly unsustainable, it was much worse a decade ago with nearly 7 new Ph.D. astronomers in 1995 for every new tenure-track job. While the number of new permanent positions steadily increased throughout the late 1990's, the number of new Ph.D. recipients gradually declined. After the turn of the century, the production of new astronomers leveled off, but new postdoctoral positions grew dramatically. There has also been recent growth in the number of non-tenure-track lecturer, research, and support positions. This is just one example of a larger cultural shift to temporary employment that is happening throughout society -- it is not unique to astronomy.

  4. Pair production rates in mildly relativistic, magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1984-01-01

    Electron-positron pairs may be produced by either one or two photons in the presence of a strong magnetic field. In magnetized plasmas with temperatures kT approximately sq mc, both of these processes may be important and could be competitive. The rates of one-photon and two-photon pair production by photons with Maxwellian, thermal bremsstrahlung, thermal synchrotron and power law spectra are calculated as a function of temperature or power law index and field strength. This allows a comparison of the two rates and a determination of the conditions under which each process may be a significant source of pairs in astrophysical plasmas. It is found that for photon densities n(gamma) or = 10 to the 25th power/cu cm and magnetic field strengths B or = 10 to the 12th power G, one-photon pair production dominates at kT approximately sq mc for a Maxwellian, at kT approximately 2 sq mc for a thermal bremsstrahlung spectrum, at all temperatures for a thermal synchrotron spectrum, and for power law spectra with indices s approximately 4.

  5. Buyer-vendor coordination for fixed lifetime product with quantity discount under finite production rate

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghong; Luo, Jianwen; Duan, Yongrui

    2016-03-01

    Buyer-vendor coordination has been widely addressed; however, the fixed lifetime of the product is seldom considered. In this paper, we study the coordination of an integrated production-inventory system with quantity discount for a fixed lifetime product under finite production rate and deterministic demand. We first derive the buyer's ordering policy and the vendor's production batch size in decentralised and centralised systems. We then compare the two systems and show the non-coordination of the ordering policies and the production batch sizes. To improve the supply chain efficiency, we propose quantity discount contract and prove that the contract can coordinate the buyer-vendor supply chain. Finally, we present analytically tractable solutions and give a numerical example to illustrate the benefits of the proposed quantity discount strategy.

  6. Substrate inhibition and control for high rate biogas production

    SciTech Connect

    Shin, H.S.

    1982-01-01

    This research addresses a critical aspect of the technical feasibility of biogas recovery with poultry manure using anaerobic digestion, namely, inhibition and toxicity factors limiting methane generation under high rate conditions. The research was designed to identify the limiting factors and to examine alternative pretreatment and in situ control methods for the anaerobic digestion of poultry manure as an energy producing system. Biogas production was indicated by the daily gas volume produced per unit digester capacity. Enhanced biogas generation from the anaerobic digester systems using poultry manure was studied in laboratory- and pilot-scale digester operations. It was found that ammonia nitrogen concentration above 4000 mg/l was inhibitory to biogas production. Pretreatment of the manure by elutriation was effective for decreasing inhibitory/toxic conditions. Increased gas production resulted without an indication of serious inhibition by increased volatile acids, indicating a limitation of available carbon sources. For poultry manure digestion, the optimum pH range was 7.1 to 7.6. Annual costs for pretreatment/biogas systems for 10,000, 30,000 and 50,000 birds were estimated and compared with annual surplus energy produced. The economic break-even point was achieved in digesters for greater than 30,000 birds. Capital cost of the digester system was estimated to be $18,300 with annual costs around $4000. It is anticipated that the digester system could be economically applied to smaller farms as energy costs increase.

  7. Calculation of in-target production rates for radioactive isotope beam production at TRIUMF

    NASA Astrophysics Data System (ADS)

    Garcia, Fatima; Andreoiu, Corina; Kunz, Peter; Laxdal, Aurelia

    2016-09-01

    Rare Isotope Beam (RIB) facilities around the world, such as TRIUMF, work towards development of new target materials to generate exotic species. Access to these rare radioactive isotopes is key for applications in nuclear medicine, astrophysics and fundamental nuclear science. To better understand production from these and other materials, we have built a computer simulation of the RIB targets used at the TRIUMF Isotope Separation and ACceleration (ISAC) facility, to support new target material development. Built at Simon Fraser University, the simulation runs in the GEANT4 nuclear transport toolkit, and can simulate the production rate of isotopes from a given set of beam and target characteristics. The simulation models the bombardment of a production target by an incident high-energy proton beam and calculates isotope in-target production rates different nuclear reactions. Results from the simulation will be presented, along with an evaluation of various nuclear reaction models and a experimentally determined RIB yields at the ISAC Yield Station.

  8. Production rates of terrestrial in-situ-produced cosmogenic nuclides

    SciTech Connect

    Reedy, R.C.; Tuniz, C.; Fink, D.

    1993-12-31

    Production rates of cosmogenic nuclides made in situ in terrestrial samples and how they are applied to the interpretation of measured radionuclide concentrations were discussed at a one-day Workshop held 2 October 1993 in Sydney, Australia. The status of terrestrial in-situ studies using the long-lived radionuclides {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, and {sup 41}Ca and of various modeling and related studies were presented. The relative uncertainties in the various factors that go into the interpretation of these terrestrial in-situ cosmogenic nuclides were discussed. The magnitudes of the errors for these factors were estimated and none dominated the final uncertainty.

  9. Changes in atmospheric composition inferred from ionospheric production rates

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1974-01-01

    Changes in the total electron content of the ionosphere near sunrise are used to determine the integrated production rate in the ionosphere (Q) from 1965 to 1971 at latitudes of 34S, 20N, and 34N. The observed regular semiannual variation in Q through a range of 1:3:1 is interpreted as an increase in the ratio O/N2 (relative densities) near the equinoxes. It follows that there is a worldwide semiannual variation in atmospheric composition, with the above ratio maximum just after the equinoxes. There is a large seasonal variation in the Northern hemisphere with a maximum in mid-summer. This effect is absent in the Southern hemisphere. At all times except solar maximum in the Northern hemisphere there is a global asymmetry. The ratio O/N2 is about three times as large in the Northern hemisphere. The overall mechanism appears to be N2 absorption.

  10. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-05-01

    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.

  11. 78 FR 39784 - International Product Change-Priority Mail International Regional Rate Boxes-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Product Change--Priority Mail International Regional Rate Boxes--Non-Published Rates AGENCY: Postal... with the Postal Regulatory Commission to add Priority Mail International Regional Rate Boxes--Non... the Postal Regulatory Commission: (1) A request to add Priority Mail International Regional Rate...

  12. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000...

  13. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER11JY11.007 ER11JY11.008...

  14. Recent developments in cosmogenic nuclide production rate scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2013-12-01

    A new cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) enables identification and quantification of the biases in previously published models (Lifton, N., Sato, T., Dunai, T., in review, Earth and Planet. Sci. Lett.). Scaling predictions derived from the new model (termed LSD) suggest two potential sources of bias in the previous models: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. In addition, the particle flux spectra generated by the LSD model allow one to generate nuclide-specific scaling factors that reflect the influences of the flux energy distribution and the relevant excitation functions (probability of nuclide production in a given nuclear reaction as a function of energy). Resulting scaling factors indicate 3He shows the strongest positive deviation from the flux-based scaling, while 14C exhibits a negative deviation. These results are consistent with previous studies showing an increasing 3He/10Be ratio with altitude in the Himalayas, but with a much lower magnitude for the effect. Furthermore, the new model provides a flexible framework for exploring the implications of future advances in model inputs. For example, the effects of recently updated paleomagnetic models (e.g. Korte et al., 2011, Earth and Planet Sci. Lett. 312, 497-505) on scaling predictions will also be presented.

  15. Global bioenergy capacity as constrained by observed biospheric productivity rates

    NASA Astrophysics Data System (ADS)

    Smith, W. K.; Zhao, M.; Running, S. W.

    2011-12-01

    Virtually all global energy forecasts include an expectation that bioenergy will be a substantial energy source for the future. Multiple current estimates of global bioenergy potential (GBP) range from 500-1,500 EJ yr-1 or 100-300% of 2009 global primary energy consumption (GPEC09), suggesting bioenergy could conceivably replace fossil fuels entirely. However, these estimates are based on extrapolation of plot-level production rates which largely neglect complex global climatic and land-use constraints. We estimated GBP using satellite-derived, observed global primary productivity data from 2000-2006, which integrates global climate data and detects seasonal vegetation dynamics. Land-use constraints were then applied to account for current crop and forestry harvest requirements, human-controlled pasturelands, remote regions, and nature conservation areas. We show GBP is limited to 52-248 EJ yr-1 or 10-49% of GPEC09, a range lower than many current GBP estimates by a factor of four. Even attaining the low-end of this range requires utilization of all harvest residues over 31 million km2 (Mkm2), while the high-end requires additional harvest over 41 Mkm2, an area roughly three times current global cropland extent. Although, exploitation of pasture and remote land could significantly contribute to GBP, the availability of these land areas remains controversial due to critical concerns regarding indirect land-use change and carbon debt. Future energy policy is of unparalleled importance to humanity, and our results are critical in estimating quantitative limitations on the overall potential for global bioenergy production.

  16. Synechococcus production and grazing loss rates in nearshore tropical waters.

    PubMed

    Heng, Pei Li; Lim, Joon Hai; Lee, Choon Weng

    2017-03-01

    Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3-2.3 × 10(5) cell ml(-1)) was always higher than at Port Klang (0.3-7.1 × 10(4) cell ml(-1)) (p < 0.001). μ ranged up to 0.98 day(-1) (0.51 ± 0.29 day(-1)), while g ranged from 0.02 to 0.31 day(-1) (0.15 ± 0.07 day(-1)) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day(-1) (0.29-0.82 day(-1)) and 0.31 ± 0.14 day(-1) (0.13-0.63 day(-1)), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi - 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.

  17. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Supervisor limit my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a producing well completion, or set a Maximum Efficient Rate (MER) for a...

  18. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL... my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a producing well completion, or set a Maximum Efficient Rate (MER) for a reservoir, or...

  19. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL... my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a producing well completion, or set a Maximum Efficient Rate (MER) for a reservoir, or...

  20. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources MINERALS MANAGEMENT SERVICE... reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a producing well completion, or set a Maximum Efficient Rate (MER) for a reservoir, or both, if the...

  1. 30 CFR 250.1159 - May the Regional Supervisor limit my well or reservoir production rates?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reservoir production rates? 250.1159 Section 250.1159 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL... my well or reservoir production rates? (a) The Regional Supervisor may set a Maximum Production Rate (MPR) for a producing well completion, or set a Maximum Efficient Rate (MER) for a reservoir, or...

  2. Analysis of two production inventory systems with buffer, retrials and different production rates

    NASA Astrophysics Data System (ADS)

    Jose, K. P.; Nair, Salini S.

    2017-02-01

    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β . However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  3. Cortisol production rates measured by liquid chromatography/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Yergey, A.L. )

    1990-04-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references.

  4. Decline and depletion rates of oil production: a comprehensive investigation.

    PubMed

    Höök, Mikael; Davidsson, Simon; Johansson, Sheshti; Tang, Xu

    2014-01-13

    Two of the most fundamental concepts in the current debate about future oil supply are oilfield decline rates and depletion rates. These concepts are related, but not identical. This paper clarifies the definitions of these concepts, summarizes the underlying theory and empirically estimates decline and depletion rates for different categories of oilfield. A database of 880 post-peak fields is analysed to determine typical depletion levels, depletion rates and decline rates. This demonstrates that the size of oilfields has a significant influence on decline and depletion rates, with generally high values for small fields and comparatively low values for larger fields. These empirical findings have important implications for oil supply forecasting.

  5. Determination of optimal lot size and production rate for multi-production channels with limited capacity

    NASA Astrophysics Data System (ADS)

    Huang, Yeu-Shiang; Wang, Ruei-Pei; Ho, Jyh-Wen

    2015-07-01

    Due to the constantly changing business environment, producers often have to deal with customers by adopting different procurement policies. That is, manufacturers confront not only predictable and regular orders, but also unpredictable and irregular orders. In this study, from the perspective of upstream manufacturers, both regular and irregular orders are considered in coping with the situation in which an uncertain demand is faced by the manufacturer, and a capacity confirming mechanism is used to examine such demand. If the demand is less than or equal to the capacity of the ordinary production channel, the general supply channel is utilised to fully account for the manufacturing process, but if the demand is greater than the capacity of the ordinary production channel, the contingency production channel would be activated along with the ordinary channel to satisfy the upcoming high demand. Besides, the reproductive property of the probability distribution is employed to represent the order quantity of the two types of demand. Accordingly, the optimal production rates and lot sizes for both channels are derived to provide managers with insights for further production planning.

  6. 78 FR 70633 - Change in Rates and Classes of General Applicability for Competitive Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Service Change in Rates and Classes of General Applicability for Competitive Products; Notice #0;#0... SERVICE Change in Rates and Classes of General Applicability for Competitive Products AGENCY: Postal Service. ACTION: Notice of a change in rates of general applicability for competitive products....

  7. INTERWELL CONNECTIVITY AND DIAGNOSIS USING CORRELATION OF PRODUCTION AND INJECTION RATE DATA IN HYDROCARBON PRODUCTION

    SciTech Connect

    Jerry L. Jensen; Larry W. Lake; Thang D. Bui; Ali Al-Yousef; Pablo Gentil

    2004-08-01

    This report details much of the progress on inferring interwell communication from well rate fluctuations. The goal of the project was to investigate the feasibility of inferring reservoir properties through weights derived from correlations between injection and production rates. We have focused on and accomplished the following items: (1) We have identified two possible causes for the source of negative weights. These are colinearity between injectors, and nonstationarity of be production data. (2) Colinearity has been addressed through ridge regression. Though there is much to be done here, such regression represents a trade-off between a minimum variance estimator and a biased estimator. (3) We have applied the ridge regression and the original Albertoni procedure to field data from the Magnus field. (4) The entire procedure (with several options) has been codified as a spreadsheet add-in. (5) Finally, we have begun, and report on, an extension of the method to predicting oil rates. Successful completion of these items will constitute the bulk of the final year's report.

  8. Enhanced capture rate for haze defects in production wafer inspection

    NASA Astrophysics Data System (ADS)

    Auerbach, Ditza; Shulman, Adi; Rozentsvige, Moshe

    2010-03-01

    Photomask degradation via haze defect formation is an increasing troublesome yield problem in the semiconductor fab. Wafer inspection is often utilized to detect haze defects due to the fact that it can be a bi-product of process control wafer inspection; furthermore, the detection of the haze on the wafer is effectively enhanced due to the multitude of distinct fields being scanned. In this paper, we demonstrate a novel application for enhancing the wafer inspection tool's sensitivity to haze defects even further. In particular, we present results of bright field wafer inspection using the on several photo layers suffering from haze defects. One way in which the enhanced sensitivity can be achieved in inspection tools is by using a double scan of the wafer: one regular scan with the normal recipe and another high sensitivity scan from which only the repeater defects are extracted (the non-repeater defects consist largely of noise which is difficult to filter). Our solution essentially combines the double scan into a single high sensitivity scan whose processing is carried out along two parallel routes (see Fig. 1). Along one route, potential defects follow the standard recipe thresholds to produce a defect map at the nominal sensitivity. Along the alternate route, potential defects are used to extract only field repeater defects which are identified using an optimal repeater algorithm that eliminates "false repeaters". At the end of the scan, the two defect maps are merged into one with optical scan images available for all the merged defects. It is important to note, that there is no throughput hit; in addition, the repeater sensitivity is increased relative to a double scan, due to a novel runtime algorithm implementation whose memory requirements are minimized, thus enabling to search a much larger number of potential defects for repeaters. We evaluated the new application on photo wafers which consisted of both random and haze defects. The evaluation procedure

  9. Optimal Spray Application Rates for Ornamental Nursery Liner Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray deposition and coverage at different application rates for nursery liners of different sizes were investigated to determine the optimal spray application rates. Experiments were conducted on two and three-year old red maple liners. A traditional hydraulic sprayer with vertical booms was used t...

  10. Radio-frequency wave enhanced runaway production rate

    SciTech Connect

    Chan, V.S.; McClain, F.W.

    1983-06-01

    Enhancement of runaway electron production (over that of an Ohmic discharge) can be achieved by the addition of radio-frequency waves. This effect is studied analytically and numerically using a two-dimensional Fokker--Planck quasilinear equation.

  11. The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol

    DTIC Science & Technology

    2007-10-01

    atmospheric degradation mechanism. The observed products and their formation yields were: cyclohexanone (0.55 0.06), hexanedial (0.32 0.15), 3...COL, tridecane, and decane were obtained from Aldrich with a purity of 99%. Pentanal (99%) and cyclohexanone (99%) were purchased through Ultra... Cyclohexanone (CON) was the only OH COL re- action product observed during the initial kinetic ex- periments. Its presence was also detected later using

  12. Survey of Productivity Rates Used for Highway Construction

    DTIC Science & Technology

    1988-01-01

    changes are offered. Also included in this paper are discussions concerning the importance of productivity in the construction industry , and the...SUPPLEMENTAL BIBLIOGRAPHY. .-.......... 149 Vg • 1 iv V, LIST OF FIGURES ’ Figure 1.. 1986 Productivity Increases For Various U.S. Industries . . .. . ........ 6...1.2 Project Participants .... .......... 8 1.3 Reasons For Nonproductive Time In The • Construction Industry ..... .......... 9 3.1a UF Survey

  13. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    SciTech Connect

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Dan Weber; Ximing Liang; T.F. Edgar; Nazli Demiroren; Danial Kaviani

    2007-03-31

    This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A revised

  14. r-process Lanthanide Production and Heating Rates in Kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-01

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka & Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Ye ≳ 0.22-0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Ye, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Ye, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  15. r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE

    SciTech Connect

    Lippuner, Jonas; Roberts, Luke F.

    2015-12-20

    r-process nucleosynthesis in material ejected during neutron star mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients depend on the composition of the ejecta, which determines the local heating rate from nuclear decays and the opacity. Kasen et al. and Tanaka and Hotokezaka pointed out that lanthanides can drastically increase the opacity in these outflows. We use the new general-purpose nuclear reaction network SkyNet to carry out a parameter study of r-process nucleosynthesis for a range of initial electron fractions Y{sub e}, initial specific entropies s, and expansion timescales τ. We find that the ejecta is lanthanide-free for Y{sub e} ≳ 0.22−0.30, depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Y{sub e} lead to reduced heating rates, due to individual nuclides dominating the heating. We calculate approximate light curves with a simplified gray radiative transport scheme. The light curves peak at about a day (week) in the lanthanide-free (-rich) cases. The heating rate does not change much as the ejecta becomes lanthanide-free with increasing Y{sub e}, but the light-curve peak becomes about an order of magnitude brighter because it peaks much earlier when the heating rate is larger. We also provide parametric fits for the heating rates between 0.1 and 100 days, and we provide a simple fit in Y{sub e}, s, and τ to estimate whether or not the ejecta is lanthanide-rich.

  16. High rate of methane leakage from natural gas production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Natural gas production is growing as the United States seeks domestic sources of relatively clean energy. Natural gas combustion produces less carbon dioxide emissions than coal or oil for the amount of energy produced. However, one source of concern is that some natural gas leaks to the atmosphere from the extraction point, releasing methane, a potent greenhouse gas.

  17. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  18. Effects of culture (China vs. US) and task on perceived hazard: Evidence from product ratings, label ratings, and product to label matching.

    PubMed

    Lesch, Mary F; Rau, Pei-Luen Patrick; Choi, YoonSun

    2016-01-01

    In the current study, 44 Chinese and 40 US college students rated their perceived hazard in response to warning labels and products and attempted to match products with warning labels communicating the same level of hazard. Chinese participants tended to provide lower ratings of hazard in response to labels, but hazard perceived in response to products did not significantly differ as a function of culture. When asked to match a product with a warning label, Chinese participants' hazard perceptions appeared to be better calibrated, than did US participants', across products and labels. The results are interpreted in terms of constructivist theory which suggests that risk perceptions vary depending on the "frame of mind" evoked by the environment/context. Designers of warnings must be sensitive to the fact that product users' cognitive representations develop within a culture and that risk perceptions will vary based on the context in which they are derived.

  19. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing.

    PubMed

    Cheng, Shaoan; Logan, Bruce E

    2011-02-01

    Practical applications of microbial electrolysis cells (MECs) require high hydrogen production rates and a compact reactor. These goals can be achieved by reducing electrode spacing but high surface area anodes are needed. The brush anode MEC with electrode spacing of 2 cm had a higher hydrogen production rate and energy efficiency than an MEC with a flat cathode and a 1-cm electrode spacing. The maximum hydrogen production rate with a 2 cm electrode spacing was 17.8 m(3)/m(3)d at an applied voltage of E(ap)=1 V. Reducing electrode spacing increased hydrogen production rates at the lower applied voltages, but not at the higher (>0.6 V) applied voltages. These results demonstrate that reducing electrode spacing can increase hydrogen production rate, but that the closest electrode spacing do not necessarily produce the highest possible hydrogen production rates.

  20. Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

    SciTech Connect

    Jerry L. Jensen; Larry W. Lake; Ali Al-Yousef; Pablo Gentil; Nazli Demiroren

    2005-05-31

    This report details progress on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project is to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Jensen et al. (2005) and Yousef et al. (2005), and herein referred to as the ''capacitance model'', produces two quantities, {lambda} and {tau}, for each injector-producer well pair. We have focused on the following items: (1) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (2) Optimization of waterflood injection rates using the capacitance model and a power law relationship for watercut to maximize economic return. Initial tests using simulated data and a range of oil prices show the approach is working. (3) Spectral analysis of injection and production data to estimate interwell connectivity and to assess the effects of near-wellbore gas on the results. Development of methods and analysis are ongoing. (4) Investigation of methods to increase the robustness of the capacitance method. These methods include revising the solution method to simultaneously estimate {lambda} and {tau} for each well pair. This approach allows for further constraints to be imposed during the computation, such as limiting {tau} to a range of values defined by the sampling interval and duration of the field data. This work is proceeding. Further work on this project includes the following: (1) Refinement and testing of the waterflood

  1. Kinetic modeling of hydrogen production rate by photoautotrophic cyanobacterium A. variabilis ATCC 29413 as a function of both CO2 concentration and oxygen production rate.

    PubMed

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Mohamed, Abdul Rahman; Shamsuddin, Abdul Halim

    2017-02-07

    Hydrogen production by cyanobacteria could be one of the promising energy resources in the future. However, there is very limited information regarding the kinetic modeling of hydrogen production by cyanobacteria available in the literature. To provide an in-depth understanding of the biological system involved during the process, the Haldane's noncompetitive inhibition equation has been modified to determine the specific hydrogen production rate (HPR) as a function of both dissolved CO2 concentration (CTOT) and oxygen production rate (OPR). The highest HPR of 15 [Formula: see text] was found at xCO2 of 5% vol/vol and the rate consequently decreased when the CTOT and OPR were 0.015 k mol m(-3) and 0.55 mL h(-1), respectively. The model provided a fairly good estimation of the HPR with respect to the experimental data collected.

  2. Cosmogenic Ne-21 Production Rates in H-Chondrites Based on Cl-36 - Ar-36 Ages

    NASA Technical Reports Server (NTRS)

    Leya, I.; Graf, Th.; Nishiizumi, K.; Guenther, D.; Wieler, R.

    2000-01-01

    We measured Ne-21 production rates in 14 H-chondrites in good agreement with model calculations. The production rates are based on Ne-21 concentrations measured on bulk samples or the non-magnetic fraction and Cl-36 - Ar-36 ages determined from the metal phase.

  3. Correlation of gene expression and protein production rate - a system wide study

    PubMed Central

    2011-01-01

    Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR). PMID:22185473

  4. The Effect of Humic Substances on the Production Rate of Alkyl Nitrates in Seawater

    NASA Astrophysics Data System (ADS)

    Heiss, E. M.; Dahl, E. E.

    2008-12-01

    Alkyl nitrates are produced photochemically in seawater by the reaction of organic peroxy radicals and nitric oxide (ROO + NO). Dissolved organic matter (DOM) is a source of organic peroxy radicals in seawater, but it is unclear as to which fraction of DOM is important for alkyl nitrate formation. Dissolved humics may be important to alkyl nitrate production. The production rates of C1-C3 alkyl nitrates were observed in 0.2 μm filtered open ocean seawater as a function of nitrite concentration. The net production rates of methyl, ethyl, isopropyl, and n-propyl nitrate increased with increasing nitrite concentrations. Suwannee River humics were added to seawater samples and the net production rates of alkyl nitrates were determined. The production rate of ethyl nitrate increased at nitrite concentrations above 20 μM nitrite by a factor of ~5 with the addition of humic substances. The addition of humic substances to the water samples also resulted in an increase in the ratio of isopropyl nitrate production to ethyl nitrate production by a factor of ~3 compared to nitrite only additions. The ratio of isopropyl to ethyl nitrate production with additional humics is also greater than production rates determined using open ocean water in previous studies. The ratios of methyl nitrate and n-propyl nitrate production to ethyl nitrate production did not change significantly. The minimal change in alkyl nitrate production rates at nitrite concentrations below 20 μM indicates that NO may be the limiting reactant in this particular water sample. The effect of the humics at high nitrite concentrations shows that organic peroxy radicals are an important reactant in the production of alkyl nitrates. The difference between production rate patterns with the addition of humics compared to the nitrite only incubations indicate that humics are not the only source of organic peroxy radicals affecting open ocean water alkyl nitrate formation.

  5. Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors.

    PubMed

    San Pedro, A; González-López, C V; Acién, F G; Molina-Grima, E

    2014-10-01

    This work studied outdoor pilot scale production of Nannochloropsis gaditana in tubular photobioreactors. The growth and biomass composition of the strain were studied under different culture strategies: continuous-mode (varying nutrient supply and dilution rate) and two-stage cultures aiming lipid enhancement. Besides, parameters such as irradiance, specific nitrate input and dilution rate were used to obtain models predicting growth, lipid and fatty acids production rates. The range of optimum dilution rate was 0.31-0.351/day with maximum biomass, lipid and fatty acids productivities of 590, 110 and 66.8 mg/l day, respectively. Nitrate limitation led to an increase in lipid and fatty acids contents (from 20.5% to 38.0% and from 16.9% to 23.5%, respectively). Two-stage culture strategy provided similar fatty acids productivities (56.4 mg/l day) but the neutral lipids content was doubled.

  6. Effective helium burning rates and the production of the neutrino nuclei.

    PubMed

    Austin, Sam M; West, Christopher; Heger, Alexander

    2014-03-21

    Effective values for the key helium burning reaction rates, triple-α and (12)C(α, γ)(16)O, are obtained by adjusting their strengths so as to obtain the best match with the solar abundance pattern of isotopes uniquely or predominately made in core-collapse supernovae. These effective rates are then used to determine the production of the neutrino isotopes. The use of effective rates considerably reduces the uncertainties in the production factors arising from uncertainties in the helium burning rates, and improves our ability to use the production of B11 to constrain the neutrino emission from supernovae.

  7. 40 CFR Table I-3 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing...

  8. 40 CFR Table I-3 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for...

  9. 40 CFR Table I-4 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... Factors(1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for...

  10. Exact solutions for the entropy production rate of several irreversible processes.

    PubMed

    Ross, John; Vlad, Marcel O

    2005-11-24

    We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.

  11. Titan-like exoplanets: Variations in geometric albedo and effective transit height with haze production rate

    NASA Astrophysics Data System (ADS)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-09-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 μm). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 μm, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  12. Titan-Like Exoplanets: Variations in Geometric Albedo and Effective Transit Height with Haze Production Rate

    NASA Technical Reports Server (NTRS)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-01-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 microns). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 microns, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  13. Measurements of radon exhalation rate in NORM used as consumer products in Japan.

    PubMed

    Iwaoka, Kazuki; Hosoda, Masahiro; Yajima, Kazuaki; Tokonami, Shinji

    2017-01-25

    Twenty-five beauty products known to contain natural radionuclides were collected, and their (222)Rn mass exhalation rates were measured. The effective doses to workers due to (222)Rn exhaled from these products were estimated. The (222)Rn mass exhalation rates of these products were below 177 μBq kg(-1) s(-1) and were almost identical to those of natural rocks in Japan. The maximum effective dose of (222)Rn exhaled from these products was 71 μSv y(-1).

  14. Rapid rates of soil production in the western Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.; Almond, P. C.; Eger, A.; Stone, J. O.; Malcolm, B.; Montgomery, D. R.

    2012-12-01

    Quantifying rates of soil production is necessary for determining the relative magnitude of the processes that drive the evolution of mountain topography and for assessing proposed links among tectonic uplift, erosion, weathering, and global biogeochemical cycles. However, little is known about the role soil production plays in the denudation of rapidly uplifting mountains. We addressed this problem by sampling soil and river sediment from five catchments in the rapidly uplifting and high rainfall portion of the western Southern Alps, New Zealand. Soils were sampled from ridgetops with subalpine forest and dense alpine shrubland vegetation. Results from 11 measurements of in situ-produced 10Be in soils from three catchments show that rock is rapidly converted to soil, with the highest measured rate approaching 2 mm yr-1. Soil production rates at two of the ridgetops decline exponentially as soil depth increases, consistent with previously proposed soil production functions. The third site exhibits an ambiguous soil production rate-depth relationship. The y-intercepts, or maximum predicted soil production rate where the soil depth is equal to zero, at the sites with well-defined soil production functions are 7-9 times greater than those in other tectonically-active mountains and 1-2 orders of magnitude greater than values from drier and more tectonically-quiescent landscapes, indicating that rock can be converted to soil at substantially higher rates than previously recognized. The maximum predicted soil production rate values are 1.5 to 2.5 times lower than watershed-scale denudation rates inferred from in situ 10Be concentrations in stream sediment, indicating that soil production rates approach, but do not reach catchment-averaged values, which also reflect denudation by bedrock landslides. Ongoing work on additional samples will lead to a refinement of the soil production functions and provide rates for two additional sites. In-progress measurement of zirconium

  15. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  16. Variability in root production, phenology, and turnover rate among 12 temperate tree species.

    PubMed

    McCormack, M Luke; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2014-08-01

    The timing of fine root production and turnover strongly influences both the seasonal potential for soil resource acquisition among competing root systems and the plant fluxes of root carbon into soil pools. However, basic patterns and variability in the rates and timing or fine root production and turnover are generally unknown among perennial plants species. We address this shortfall using a heuristic model relating root phenology to turnover together with three years of minirhizotron observations of root dynamics in 12 temperate tree species grown in a common garden. We specifically investigated how the amount and the timing of root production differ among species and how they impact estimates of fine root turnover. Across the 12 species, there was wide variation in the timing of root production with some species producing a single root flush in early summer and others producing roots either more uniformly over the growing season or in multiple pulses. Additionally, the pattern and timing of root production appeared to be consistent across years for some species but varied in others. Root turnover rate was related to total root production (P < 0.001) as species with greater root production typically had faster root turnover rates. We also found that, within species, annual root production varied up to a threefold increase between years, which led to large interannual differences in turnover rate. Results from the heuristic model indicated that shifting the pattern or timing of root production can impact estimates of root turnover rates for root populations with life spans less than one year while estimates of root turnover rate for longer lived roots were unaffected by changes in root phenology. Overall, we suggest that more detailed observations of root phenology and production will improve fidelity of root turnover estimates. Future efforts should link patterns of root phenology and production with whole-plant life history traits and variation in annual and

  17. Production Rates of Cosmogenic Nuclides in the Knyahinya L-Chondrite

    NASA Technical Reports Server (NTRS)

    Kim, K. J.; Reedy, R. C.

    2004-01-01

    The production rates of spallogenic radionuclides and stable isotopes in the L-chondrite Knyahinya were investigated using the MCNPX code. Numerous cosmogenic nuclides had been measured in many Knyahinya samples. The pre-atmospheric size and sample locations of Knyahinya are well known, thus Knyahinya is a good test case for cosmogenic-nuclide production-rate calculations. Our calculated profiles were compared to the measurements to determine effective proton fluxes.

  18. Assessing the Impact of Low Rate Initial Production on Army Missile System Procurement

    DTIC Science & Technology

    1994-03-01

    is not presently configured as a "fire and forget" weapon. The system utilizes semiactive laser or radar guidance against heavily armored vehicles at...Low Rate Initial Production (LRIP) has upon Army missile system development. It focuses on: (1) regulatory guidance on the use of LRIP in the...Low Rate Initial Production (LRIP) has upon Army missile system development. It focuses on: (1) regulatory guidance on the use of LRIP in the

  19. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.

    PubMed

    Law, Yingyu; Ni, Bing-Jie; Lant, Paul; Yuan, Zhiguo

    2012-06-15

    The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB.

  20. Systematic analysis of astrophysical S-factors and thermonuclear reaction rates

    SciTech Connect

    Katsuma, M.

    2008-05-12

    The astrophysical S-factors of the {sup 13}C({alpha},n){sup 16}O, {sup 17}O({alpha},n){sup 20}Ne, {sup 21}Ne({alpha},n){sup 24}Mg and {sup 25}Mg({alpha},n){sup 28}Si reactions are analyzed with DWBA. The gross structures of the experimental data are reproduced by the DWBA calculations. The resulting reaction rates are compared with those in the CF88 and NACRE compilations.

  1. Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae.

    PubMed

    Kocharin, Kanokarn; Nielsen, Jens

    2013-03-21

    Production of the biopolymer polyhydroxybutyrate (PHB) in Saccharomyces cerevisiae starts at the end of exponential phase particularly when the specific growth rate is decreased due to the depletion of glucose in the medium. The specific growth rate and the type of carbon source (fermentable/non-fermentable) have been known to influence the cell physiology and hence affect the fermentability of S. cerevisiae. The production of PHB utilizes cytosolic acetyl-CoA as a precursor and the S. cerevisiae employed in this study is therefore a strain with the enhanced cytosolic acetyl-CoA supply. Growth and PHB production at different specific growth rates were evaluated on glucose, ethanol and a mixture of glucose and ethanol as carbon source. Ethanol as carbon source yielded a higher PHB production compared to glucose since it can be directly used for cytosolic acetyl-CoA production and hence serves as a precursor for PHB production. However, this carbon source results in lower biomass yield and hence it was found that to ensure both biomass formation and PHB production a mixture of glucose and ethanol was optimal, and this resulted in the highest volumetric productivity of PHB, 8.23 mg/L · h-1, at a dilution rate of 0.1 h-1.

  2. Phenotypic engineering of sperm-production rate confirms evolutionary predictions of sperm competition theory

    PubMed Central

    Sekii, Kiyono; Vizoso, Dita B.; Kuales, Georg; De Mulder, Katrien; Ladurner, Peter; Schärer, Lukas

    2013-01-01

    Sperm production is a key male reproductive trait and an important parameter in sperm competition theory. Under sperm competition, paternity success is predicted to depend strongly on male allocation to sperm production. Furthermore, because sperm production is inherently costly, individuals should economize in sperm expenditure, and conditional adjustment of the copulation frequency according to their sperm availability may be expected. However, experimental studies showing effects of sperm production on mating behaviour and paternity success have so far been scarce, mainly because sperm production is difficult to manipulate directly in animals. Here, we used phenotypic engineering to manipulate sperm-production rate, by employing dose-dependent RNA interference (RNAi) of a spermatogenesis-specific gene, macbol1, in the free-living flatworm Macrostomum lignano. We demonstrate (i) that our novel dose-dependent RNAi approach allows us to induce high variability in sperm-production rate; (ii) that a reduced sperm-production rate is associated with a decreased copulation frequency, suggesting conditional adjustment of mating behaviour; and (iii) that both sperm production and copulation frequency are important determinants of paternity success in a competitive situation, as predicted by sperm competition theory. Our study clearly documents the potential of phenotypic engineering via dose-dependent RNAi to test quantitative predictions of evolutionary theory. PMID:23446521

  3. Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Creamer, Courtney; Baisden, W. Troy; Farrell, Mark; Fallon, Stewart

    2017-01-01

    Devising agricultural management schemes that enhance food security and soil carbon levels is a high priority for many nations. However, the coupling between agricultural productivity, soil carbon stocks and organic matter turnover rates is still unclear. Archived soil samples from four decades of a long-term crop rotation trial were analyzed for soil organic matter (SOM) cycling-relevant properties: C and N content, bulk composition by nuclear magnetic resonance (NMR) spectroscopy, amino sugar content, short-term C bioavailability assays, and long-term C turnover rates by modeling the incorporation of the bomb spike in atmospheric 14C into the soil. After > 40 years under consistent management, topsoil carbon stocks ranged from 14 to 33 Mg C ha-1 and were linearly related to the mean productivity of each treatment. Measurements of SOM composition demonstrated increasing amounts of plant- and microbially derived SOM along the productivity gradient. Under two modeling scenarios, radiocarbon data indicated overall SOM turnover time decreased from 40 to 13 years with increasing productivity - twice the rate of decline predicted from simple steady-state models or static three-pool decay rates of measured C pool distributions. Similarly, the half-life of synthetic root exudates decreased from 30.4 to 21.5 h with increasing productivity, indicating accelerated microbial activity. These findings suggest that there is a direct feedback between accelerated biological activity, carbon cycling rates and rates of carbon stabilization with important implications for how SOM dynamics are represented in models.

  4. Enhanced sophorolipid production by feeding-rate-controlled fed-batch culture.

    PubMed

    Kim, Young-Bum; Yun, Hyun Shik; Kim, Eun-Ki

    2009-12-01

    To develop the easier control method for fed-batch culture of sophorolipid production, we chose rapeseed oil as the most productive oil and compared their productivities in relation to different concentrations of glucose. The optimal concentration of glucose was 30 g/L for sophorolipid production. A fed-batch method was conducted using Candida bombicola ATCC 22214 with rapeseed oil as a secondary substrate. The feeding rate of rapeseed oil was dependent on pH and was calculated by the consumption rate of NaOH and rapeseed oil. The glucose concentration was constantly maintained between 30 and 40 g/L. As a result, we have produced a crude sophorolipid up to 365 g/L for 8 days through a feeding-rate-controlled fed-batch process.

  5. On the increase in rate of heat production caused by stretch in frog's skeletal muscle

    PubMed Central

    Clinch, N. F.

    1968-01-01

    1. The increase in rate of heat production caused by stretch in the unstimulated frog's sartorius (stretch response) has been measured using a conventional thermopile technique. 2. The rate of heat production was found constant between l0 (the distance in vivo between the tendons when the legs were in a straight line) and 1·2 l0, and rose rapidly above this length to reach 3-5 times the basal rate at 1·3 l0. Stretching to greater lengths appeared to damage the muscles. 3. The stretch response is increased by several substances which increase the duration of the active state. 4. Unlike the rate of heat production at l0, the stretch response is increased by procaine; while the presence of CO2 greatly reduces it. 5. Evidence is presented supporting the hypothesis that the stretch response is associated with the appearance of tension in the sarcolemma. ImagesFig. 2 PMID:5652883

  6. Production and Recoil Loss of Cosmogenic Nuclides in Presolar Grains

    NASA Astrophysics Data System (ADS)

    Trappitsch, Reto; Leya, Ingo

    2016-05-01

    Presolar grains are small particles that condensed in the vicinity of dying stars. Some of these grains survived the voyage through the interstellar medium (ISM) and were incorporated into meteorite parent bodies at the formation of the Solar System. An important question is when these stellar processes happened, i.e., how long presolar grains were drifting through the ISM. While conventional radiometric dating of such small grains is very difficult, presolar grains are irradiated with galactic cosmic rays (GCRs) in the ISM, which induce the production of cosmogenic nuclides. This opens the possibility to determine cosmic-ray exposure (CRE) ages, i.e., how long presolar grains were irradiated in the ISM. Here, we present a new model for the production and loss of cosmogenic 3He, 6,7Li, and 21,22Ne in presolar SiC grains. The cosmogenic production rates are calculated using a state-of-the-art nuclear cross-section database and a GCR spectrum in the ISM consistent with recent Voyager data. Our findings are that previously measured 3He and 21Ne CRE ages agree within the (sometimes large) 2σ uncertainties and that the CRE ages for most presolar grains are smaller than the predicted survival times. The obtained results are relatively robust since interferences from implanted low-energy GCRs into the presolar SiC grains and/or from cosmogenic production within the meteoroid can be neglected.

  7. Causes and implications of the correlation between forest productivity and tree mortality rates

    USGS Publications Warehouse

    Stephenson, Nathan L.; van Mantgem, Philip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F.

    2011-01-01

    For only one of these four mechanisms, competition, can high mortality rates be considered to be a relatively direct consequence of high NPP. The remaining mechanisms force us to adopt a different view of causality, in which tree growth rates and probability of mortality can vary with at least a degree of independence along productivity gradients. In many cases, rather than being a direct cause of high mortality rates, NPP may remain high in spite of high mortality rates. The independent influence of plant enemies and other factors helps explain why forest biomass can show little correlation, or even negative correlation, with forest NPP.

  8. HCHO Activity Gauges Ozone Production and Aerosol Production Rates in Both Urban and Far-Downwind Atmospheres

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Ren, X.; Brune, W. H.; Fried, A.; Schwab, J.; Shetter, R. E.

    2008-12-01

    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production in a set of of expanding investigations starting from modestly smoggy Eastern North America (by NASA aircraft, INTEX, July 2004) to rather polluted Flushing, NYC (Queens College, CAPTEX, July, 2001). In both rural and very polluted situations, we find that a simple "contour graph" parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and jrads [HCHO]: Po(O3) = c (jrads [HCHO])a [NO]b. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product jrads [HCHO] gauges the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], Mechanisms suggest that ozone production due to RO2 is proportional to the HO2 process, hence we may capture all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources, so that HCHO is never too far away from an evolving steady state with VOC reactivity. Are there other, simple, near-terminal oxidized VOC's which help gauge ozone production and aerosol particle formation? Regarding particles, we report on suggestive relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol. Since jrads [HCHO] provides a reactive-flux rate, we may understand distant-plume particle production in a more quantitative manner. Additionally, we report on a statistical search in the nearer field for relationships between glyoxals (important penultimate aromatic and isoprene reaction products) with ozone and aerosol production, looking for VOC's that might be most implicated, e.g., aromatics and biogenics. Note that all three of our variables jrads, [HCHO], and [NO] are relatively easily measured in widespread air pollution networks, and all are

  9. The drainage of the Baltic Ice Lake and a new Scandinavian reference 10Be production rate

    NASA Astrophysics Data System (ADS)

    Stroeven, Arjen P.; Heyman, Jakob; Fabel, Derek; Björck, Svante; Caffee, Marc W.; Fredin, Ola; Harbor, Jonathan M.

    2015-04-01

    An important constraint on the reliability of cosmogenic nuclide exposure dating is the derivation of tightly controlled production rates. We present a new dataset for 10Be production rate calibration from Mount Billingen, southern Sweden, the site of the final drainage of the Baltic Ice Lake, an event dated to 11,620 ± 100 cal yr BP. Nine samples of flood-scoured bedrock surfaces and depositional boulders and cobbles unambiguously connected to the drainage event yield a reference 10Be production rate of 4.09 ± 0.22 atoms g-1 yr-1 for the CRONUS Lm scaling and 3.93 ± 0.21 atoms g-1 yr-1 for the LSD general spallation scaling. We also recalibrate the reference 10Be production rates for four sites in Norway and combine these with the Billingen results to derive a tightly clustered Scandinavian reference 10Be production rate of 4.12 ± 0.10 (4.12 ± 0.25 for altitude scaling) atoms g-1 yr-1 for the Lm scaling scheme and 3.96 ± 0.10 (3.96 ± 0.24 for altitude scaling) atoms g-1 yr-1 for the LSD scaling scheme.

  10. Reduced metabolic rate and oxygen radicals production in stored insect sperm.

    PubMed

    Ribou, Anne-Cécile; Reinhardt, Klaus

    2012-06-07

    Females of internally fertilizing species can significantly extend sperm lifespan and functionality during sperm storage. The mechanisms for such delayed cellular senescence remain unknown. Here, we apply current hypotheses of cellular senescence developed for diploid cells to sperm cells, and empirically test opposing predictions on the relationship between sperm metabolic rate and oxygen radical production in an insect model, the cricket Gryllus bimaculatus. Using time-resolved microfluorimetry, we found a negative correlation between metabolic rate (proportion of protein-bound NAD[P]H) and in situ intracellular oxygen radicals production in freshly ejaculated sperm. In contrast, sperm stored by females for periods of 1 h to 26 days showed a positive correlation between metabolic rate and oxygen radicals production. At the same time, stored sperm showed a 37 per cent reduced metabolic rate, and 42 per cent reduced reactive oxygen species (ROS) production, compared with freshly ejaculated sperm. Rank differences between males in ROS production and metabolic rate observed in ejaculated sperm did not predict rank differences in stored sperm. Our method of simultaneously measuring ROS production and metabolic rate of the same sample has the advantage of providing data that are independent of sperm density and any extracellular antioxidants that are proteins. Our method also excludes effects owing to accumulated hydrogen peroxide. Our results unify aspects of competing theories of cellular ageing and suggest that reducing metabolic rate may be an important means of extending stored sperm lifespan and functionality in crickets. Our data also provide a possible explanation for why traits of ejaculates sampled from the male may be rather poor predictors of paternity in sexual selection studies and likelihood of pregnancy in reproductive medicine.

  11. Feeding, egg production, and respiration rate of pteropods Limacina in Arctic seas

    NASA Astrophysics Data System (ADS)

    Pasternak, A. F.; Drits, A. V.; Flint, M. V.

    2017-01-01

    The feeding, egg production, and respiration rate of the dominant pteropod Limacina helicina have been studied in Russia's Arctic seas. The sinking rates of fecal pellets and dead individuals have been measured to estimate their role in vertical carbon flux. As has been shown, the rate of ecophysiological processes taking place in the pteropods is higher than that of copepods, the main consumers of phytoplankton. The gut pigment content in Limacina (3084 ng ind-1 as a maximum) was two orders of magnitude higher than in copepods. The egg production rate in Limacina even without feeding reached 4000 eggs ind-1 versus 350-450 egg ind-1 typical of the dominant copepods even with excess food. A close correlation between the pteropod feeding rate and individual body weight was observed for Limacina rather than a correlation with food concentration. The experimentally estimated sinking rate of Limacina fecal pellets was 270 m day-1, higher than for most copepods. The sinking rate of dead pteropods reaches 2000 m day-1. According to the literature, discarded mucous feeding nets sink at a rate of 80 to 1080 m day-1. Evidently, pteropods play a significant role in biogeochemical cycles by accelerating sedimentation. High rates of all studied processes suggest that Limacina are an important component of plankton communities and play the most important role in trophodynamics at sites of their accumulation.

  12. Quantifying VOC-Reaction Tracers, Ozone Production, and Continuing Aerosol Production Rates in Urban and Far-Downwind Atmospheres

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert; Ren, X.; Brune, W.; Fried, A.; Schwab, J.

    2008-01-01

    We have found a surprisingly informative decomposition of the complex question of smoggy ozone production (basically, [HO2] in a more locally determined field of [NO]) in the process of linked investigations of modestly smoggy Eastern North America (by NASA aircraft, July 2004) and rather polluted Flushing, NYC (Queens College, July, 2001). In both rural and very polluted situations, we find that a simple contour graph parameterization of the local principal ozone production rate can be estimated using only the variables [NO] and j(sub rads) [HCHO]: Po(O3) = c (j(sub rads) [HCHO])(sup a) [HCHO](sup b). Here j(sub rads) is the photolysis of HCHO to radicals, presumably capturing many harder-UV photolytic processes and the principle ozone production is that due to HO2; mechanisms suggest that ozone production due to RO2 is closely correlated, often suggesting a limited range of different proportionality factors. The method immediately suggests a local interpretation for concepts of VOC limitation and NOx limitation. We believe that the product j(sub rads) [HCHO] guages the oxidation rate of observed VOC mixtures in a way that also provides [HO2] useful for the principle ozone production rate k [HO2] [NO], and indeed, all ozone chemical production. The success of the method suggests that dominant urban primary-HCHO sources may transition to secondary plume-HCHO sources in a convenient way. Are there other, simple, near-terminal oxidized VOC's which help guage ozone production and aerosol particle formation? Regarding particles, we report on, to the extent NASA Research resources allow, on appealing relationships between far-downwind (Atlantic PBL) HCHO and very fine aerosol (including sulfate. Since j(sub rads) [HCHO] provides a time-scale, we may understand distant-plume particle production in a more quantitative manner. Additionally we report on a statistical search in the nearer field for relationships between glyoxals (important near-terminal aromatic and isoprene

  13. Rates of hydroxyl radical production from transition metals and quinones in a surrogate lung fluid

    PubMed Central

    Charrier, Jessica G.; Anastasio, Cort

    2016-01-01

    Hydroxyl radical (.OH) is the most reactive, and perhaps most detrimental to health, of the reactive oxygen species. .OH production in lungs following inhalation of particulate matter (PM) can result from redox-active chemicals, including iron and copper, but the relative importance of these species is unknown. This work investigates .OH production from iron, copper, and quinones, both individually and in mixtures at atmospherically relevant concentrations. Iron, copper and three of the four quinones (1,2-naphthoquinone, phenanthrenequinone and 1,4-naphthoquinone) produce .OH. Mixtures of copper or quinones with iron synergistically produce .OH at a rate 20 - 130% higher than the sum of the rates of the individual redox-active species. We developed a regression equation from 20 mixtures to predict the rate of .OH production from the particle composition. For typical PM compositions, iron and copper account for most .OH production, while quinones are a minor source, although they can contribute if present at very high concentrations. This work shows that Cu contributes significantly to .OH production in ambient PM; other work has shown that Cu appears to be the primary driver of HOOH production and dithiothreitol (DTT) loss in ambient PM extracts. Taken together, these results indicate that copper appears to be the most important individual contributor to direct oxidant production from inhaled PM. PMID:26153923

  14. Measurement of broiler litter production rates and nutrient content using recycled litter.

    PubMed

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  15. Relation of rate of urine production to oxygen tension in small-for-gestational-age fetuses.

    PubMed

    Nicolaides, K H; Peters, M T; Vyas, S; Rabinowitz, R; Rosen, D J; Campbell, S

    1990-02-01

    Hourly fetal urine production rate was determined by real-time ultrasonography immediately before cordocentesis for blood gas analysis in 27 small-for-gestational-age fetuses at 20 to 37 weeks' gestation; in 14 cases there was associated oligohydramnios. The values were compared with those of 101 appropriate-for-gestational-age fetuses. The hourly fetal urine production rate was significantly lower in the small-for-gestational-age fetuses than in the appropriate-for-gestational-age fetuses. Furthermore, there was a significant correlation between the degree of decrease in urine production and both the degree of fetal hypoxemia and the degree of fetal smallness. There was no significant difference between the oligohydramnios and nonoligohydramnios groups in either the degree of decrease in urine production or the degree of fetal hypoxemia.

  16. Simulation of the production rates of cosmogenic nuclides on the Moon based on Geant4

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Xiaoping; Dong, Wudong; Ren, Zhongzhou; Dong, Tiekuang; Xu, Aoao

    2017-02-01

    A numerical simulation model is built to simulate the production of cosmogenic nuclides based on Geant4 (GEometry ANd Tracking). Some modifications have been made for cross sections in Geant4 using the experimental data or the other proper model and the contributions of all secondary particles caused by cosmic rays are included in our simulation model. Our simulation results suggest a substantial contribution of the secondary charged pions to the production rates of 10Be and 14C, as high as 21.04% for 10Be and 21.36% for 14C, respectively. Within one set of self-consistent parameters, the simulation results of the production rates of the cosmogenic nuclides, 53Mn, 36Cl, 41Ca, 26Al, 10Be, and 14C, agree well with the measured data from Apollo 15 drill core. This model provides users a validated approach to study the production of cosmogenic nuclides on the planet surface and in the meteorites.

  17. Cosmic-ray-produced stable nuclides: various production rates and their implications

    SciTech Connect

    Reedy, R.C.

    1981-06-15

    The rates for a number of reactions producing certain stable nuclides, such as /sup 3/He and /sup 4/He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The /sup 130/Ba(n,p) reaction cannot account for the undercalculation of /sup 130/Xe production rates. Calculated production rates of /sup 15/N, /sup 13/C, and /sup 2/H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of /sup 86/Kr, /sup 134/Xe, and /sup 136/Xe, especially in samples with long exposures to cosmic-ray particles.

  18. Mass-Specific Metabolic Rate Influences Sperm Performance through Energy Production in Mammals.

    PubMed

    Tourmente, Maximiliano; Roldan, Eduardo R S

    2015-01-01

    Mass-specific metabolic rate, the rate at which organisms consume energy per gram of body weight, is negatively associated with body size in metazoans. As a consequence, small species have higher cellular metabolic rates and are able to process resources at a faster rate than large species. Since mass-specific metabolic rate has been shown to constrain evolution of sperm traits, and most of the metabolic activity of sperm cells relates to ATP production for sperm motility, we hypothesized that mass-specific metabolic rate could influence sperm energetic metabolism at the cellular level if sperm cells maintain the metabolic rate of organisms that generate them. We compared data on sperm straight-line velocity, mass-specific metabolic rate, and sperm ATP content from 40 mammalian species and found that the mass-specific metabolic rate positively influences sperm swimming velocity by (a) an indirect effect of sperm as the result of an increased sperm length, and (b) a direct effect independent of sperm length. In addition, our analyses show that species with higher mass-specific metabolic rate have higher ATP content per sperm and higher concentration of ATP per μm of sperm length, which are positively associated with sperm velocity. In conclusion, our results suggest that species with high mass-specific metabolic rate have been able to evolve both long and fast sperm. Moreover, independently of its effect on the production of larger sperm, the mass-specific metabolic rate is able to influence sperm velocity by increasing sperm ATP content in mammals.

  19. Production rate of second KK gauge bosons in UED models at LHC

    SciTech Connect

    Matsumoto, Shigeki; Sato, Joe; Yamanaka, Masato; Senami, Masato

    2009-04-17

    We calculate the production rates of the second KK photons and the second KK Z bosons at the LHC in a framework of universal extra dimension models. In the hadron collider experiment, it can be difficult to distinguish the signal of KK particles in universal extra dimension models from that of unknown heavy particles in TeV scale new models. For the discrimination, the second KK gauge bosons play an important role. Thus we calculate the production rates of the second KK gauge bosons at the LHC including all significant processes, and discuss the feasibility to confirm universal extra dimension models at the LHC.

  20. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  1. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  2. The kinematic and microphysical control of lightning rate, extent, and NOX production

    NASA Astrophysics Data System (ADS)

    Carey, Lawrence D.; Koshak, William; Peterson, Harold; Mecikalski, Retha M.

    2016-07-01

    This study investigates the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOX = NO + NO2) via lightning (LNOX), such as flash rate, type, and extent. The NASA Lightning Nitrogen Oxides Model (LNOM) is applied to lightning observations following multicell thunderstorms through their lifecycle in a Lagrangian sense over Northern Alabama on 21 May 2012 during the Deep Convective Clouds and Chemistry (DC3) experiment. LNOM provides estimates of flash rate, type, channel length distributions, channel segment altitude distributions (SADs), and LNOX production profiles. The LNOM-derived lightning characteristics and LNOX production are compared to the evolution of radar-inferred updraft and precipitation properties. Intercloud, intracloud (IC) flash SAD comprises a significant fraction of the total (IC + cloud-to-ground [CG]) SAD, while increased CG flash SAD at altitudes >6 km occurs after the simultaneous peaks in several thunderstorm properties (i.e., total [IC + CG] and IC flash rate, graupel volume/mass, convective updraft volume, and maximum updraft speed). At heights <6 km, the CG LNOX production dominates the column-integrated total LNOX production. Unlike the SAD, total LNOX production consists of a more equal contribution from IC and CG flashes for heights >6 km. Graupel volume/mass, updraft volume, and maximum updraft speed are all well correlated to the total flash rate (correlation coefficient, ρ ≥ 0.8) but are less correlated to total flash extent (ρ ≥ 0.6) and total LNOX production (ρ ≥ 0.5). Although LNOM transforms lightning observations into LNOX production values, these values are estimates and are subject to further independent validation.

  3. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W. )

    1992-02-01

    Measurements of forward multi-jet production rates in deep-inelastic muon-proton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, [ital y][sub [ital cut

  4. Model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides

    SciTech Connect

    Reedy, R.C.

    1984-01-01

    A model is presented for the differential fluxes of galactic-cosmic-ray (GCR) particles with energies above 1 MeV inside any spherical stony meteorite as a function of the meteorite's radius and the sample's depth. This model is based on the Reedy-Arnold equations for the energy-dependent fluxes of GCR particles in the moon and is an extension of flux parameters that were derived for several meteorites of various sizes. This flux is used to calculate the production rates of many cosmogenic nuclides as a function of radius and depth. The peak production rates for most nuclides made by the reactions of energetic GCR particles occur near the centers of meteorites with radii of 40 to 70 g cm/sup -2/. Although the model has some limitations, it reproduces well the basic trends for the depth-dependent production of cosmogenic nuclides in stony meteorites of various radii. These production profiles agree fairly well with measurements of cosmogenic nuclides in meteorites. Some of these production profiles are different than those calculated by others. The chemical dependence of the production rates for several nuclides varies with size and depth. 25 references, 8 figures.

  5. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  6. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  7. Al-26-production rates and Mn-53/Al-26 production rate ratios in nonantarctic chondrites and their application to bombardment histories

    NASA Astrophysics Data System (ADS)

    Herpers, U.; Englert, P.

    1983-11-01

    The long-lived spallogenic radionuclides Al-26 and Mn-53 were systematically studied in a large number of nonantarctic meteorites by nondestructive gamma-gamma-coincidence technique and neutron activation, respectively. From the Al-26-activities normalized to the main target element, silicon, an average production rate of 298 + or - 55 (dpm/kg Si/equ/) was derived. Baed on 15 chondrites with exposure ages equal to or greater than 12,000,000 a and depth profiles of Dhurmsala and Keyes, an average production rate ratio (Mn-53/Al-26)(prod) = 1.48 + or - 0.15 (dpm/kg Fe / dpm/kg Si/equ/) was calculated, which seems to be depth-independent for meteorites with preatmospheric radii R less than 35 cm. Mn-53/Al-26-radiation ages for 29 stones with short exposure ages were determined. A comparison of the results with the respective Mn-53 and Ne-21-exposure ages generally shows a good agreement. The cosmic ray bombardment age scale covered by this method is the range for T(rad) from 1,000,000 to 10,000,000 a.

  8. Linear extension rates and gross carbonate production of Acropora cervicornis at Coral Gardens, Belize.

    NASA Astrophysics Data System (ADS)

    Peeling, E.; Greer, L.; Lescinsky, H.; Humston, R.; Wirth, K. R.; Baums, I. B.; Curran, A.

    2014-12-01

    Branching Acropora coral species have fast growth and carbonate production rates, and thus have functioned as important reef-building species throughout the Pleistocene and Holocene. Recently, net carbonate production (kg CaCO3 m-2 year-1) has been recognized as an important measure of reef health, especially when monitoring endangered species, such as Acropora cervicornis. This study examines carbonate production in a thriving population of A. cervicornis at the Coral Gardens reef in Belize. Photographic surveys were conducted along five transects of A. cervicornis-dominated reefs from 2011-2014. Matching photographs from 2013 and 2014 were scaled to 1 m2 and compared to calculate 84 individual A. cervicornis linear extension rates across the reef. Linear extension rates averaged 12.4 cm/yr and were as high as 17 cm/yr in some areas of the reef. Carbonate production was calculated two ways. The first followed the standard procedure of multiplying percent live coral cover, by the linear extension rate and skeletal density. The second used the number of live coral tips per square meter in place of percent live coral multiplied by the average cross-sectional area of the branches. The standard method yielded a carbonate production rate of 113 kg CaCO3 m-2 year-1 for the reef, and the tip method yielded a rate of 6 kg m-2 year-1. We suggest that the tip method is a more accurate measure of production, because A. cervicornis grows primarily from the live tips, with only limited radial growth and resheeting over dead skeleton. While this method omits the contributions of radial growth and resheeting, and is therefore somewhat of an underestimate, our future work will quantify these aspects of growth in a more complete carbonate budget. Still, our estimate suggests a carbonate production rate per unit area of A. cervicornis that is on par with other Caribbean coral species, rather than two orders of magnitude higher as reported by Perry et al (2013). Although gross coral

  9. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  10. In-situ Measurements of Ozone Production Rates and Comparisons to Model-derived Production Rates During the Houston, TX and Denver, CO DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Baier, B. C.; Brune, W. H.; Miller, D. O.; Lefer, B. L.

    2015-12-01

    Tropospheric ozone (O3) is a secondary pollutant that has harmful effects on human and plant life. The climate and urban emissions in Houston, TX and Denver, CO can be conducive for significant ozone production and thus, high ozone events. Tighter government strategies for ozone mitigation have been proposed, which involve reducing the current EPA eight-hour ozone standard from 75 ppb to 65-70 ppb. These strategies rely on the reduction of ozone precursors in order to decrease the ozone production rate, P(O3). The changes in the ozone concentration at a certain location are dependent upon P(O3), so decreasing P(O3) can decrease ozone levels provided that it has not been transported from other areas. Air quality models test reduction strategies before they are implemented, locate ozone sources, and predict ozone episodes. Traditionally, P(O3) has been calculated by models. However, large uncertainties in model emissions inventories, chemical mechanisms, and meteorology can reduce confidence in this approach. A new instrument, the Measurement of Ozone Production Sensor (MOPS) directly measures P(O3) and can provide an alternate approach to determining P(O3). An updated version of the Penn State MOPS (MOPSv2.0) was deployed to Houston, TX and Denver, CO as a part of NASA's DISCOVER-AQ field campaign in the summers of 2013 and 2014, respectively. We present MOPS directly-measured P(O3) rates from these areas, as well as comparisons to zero-dimensional and three-dimensional modeled P(O3) using the RACM2 and MCMv2.2 mechanisms. These comparisons demonstrate the potential of the MOPS to test and evaluate model-derived P(O3), to advance the understanding of model chemical mechanisms, and to improve predictions of high ozone events.

  11. Ethylene production and its effect on storage respiration rate in wounded and unwounded sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylene is produced by all seed plants and stimulates respiration in most plant tissues and organs. To understand how this plant hormone may affect postharvest sugarbeet root respiration, a series of experiments were conducted to determine (1) the rate of ethylene production in wounded and unwound...

  12. Investigation of OxProduction Rates in the Mexico City Metropolitan Area during MILAGRO

    NASA Astrophysics Data System (ADS)

    Dusanter, S.; Molina, L. T.; Stevens, P. S.

    2009-12-01

    Understanding the oxidative capacity of the atmosphere and the formation of secondary pollutants are important issues in atmospheric chemistry. For instance, the photochemical production of tropospheric ozone (O3) is of particular interest due to its detrimental effects on both human health and agricultural ecosystems. A detailed characterization of tropospheric O3 production rates will help in the development of effective control strategies. The 2006 Mexico City Metropolitan Area field campaign (MCMA-2006) was one of four components of MILAGRO (Megacity Initiative: Local And Global Research Observations) intended to collect information on the impact of megacity emissions on local, regional and global scales. In this presentation, rates of production of Ox (Ox = O3 + NO2) species during MCMA-2006 at the supersite T0 (Instituto Mexicano del Petroleo) will be presented using different approaches based on measured and modeled concentrations of ROx (OH + HO2 + RO2) radicals. In addition, we will examine both the reactivity of OH and the contribution of specific peroxy radicals to the oxidation rate of NO to estimate the contribution of groups of VOCs (alkanes, alkenes, aromatics, oxygenated and biogenic VOCs) to the total production rate of Ox species.

  13. The effect of soil moisture on nitrous oxide production rates in large enclosed ecosystems

    NASA Astrophysics Data System (ADS)

    van Haren, J.; Colodner, D.; Lin, G.; Murthy, R.

    2001-12-01

    On land, nitrous oxide (N2O) is mainly produced in soils by bacterial processes such as nitrification and denitrification. Once in the atmosphere N2O contributes to the greenhouse effect and stratospheric ozone destruction. Nitrification and denitrification are strongly dependent on soil moisture content, amongst other soil parameters. At Biosphere 2 Center we have begun to test the utility of meso-scale closed systems for understanding the relationship between soil properties and trace gas production at larger scales. We investigated the relationship between soil moisture content and soil N2O efflux in two large experimental closed systems (Tropical Rainforest (TR) and Intensive Forestry (IF) Mesocosms) at Biosphere 2 Center. N2O was measured every hour with an automated GC system. The daily N2O production rate was calculated as the rate of increase of N2O during the daytime, when the mesocosm was materially closed. We furthermore measured N2O and nitrate concentrations in the soil, as well as nitrate and N2O production rates in local areas. In the Rainforest Mesocosm, we found a very reproducible relationship between soil moisture content and N2O efflux, including the transient spikes in production rate upon wetting. In the Forestry Mesocosm the relation between soil moisture and N2O efflux was less clearcut.

  14. 76 FR 396 - Product Change-Priority Mail-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Change--Priority Mail--Non-Published Rates AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: Postal... Mail Classification Schedule's Competitive Products List pursuant to 39 U.S.C. 3642 and 3632(b)(3... Postal Regulatory Commission a Request of the United States Postal Service Concerning Priority...

  15. Development of variable-rate precision spraying systems for tree crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive pesticides are often applied to target and non-target areas in orchards and nurseries, resulting in greater production costs, worker exposure to unnecessary pesticide risks, and adverse contamination of the environment. To improve spray application efficiency, two types of variable-rate pr...

  16. 78 FR 41129 - Market Test of Experimental Product - International Merchandise Return Service-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Market Test of Experimental Product -- International Merchandise Return Service--Non-Published Rates AGENCY: U.S. Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service hereby gives notice of a market test...

  17. Reduced rates and alternatives to methyl bromide for snapdragon production in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field trial was conducted to evaluate soil solarization, Midas™ (iodomethane:chloropicrin 50:50, Arysta LifeScience Corp., Cary, NC) and different rates and formulations of methyl bromide under standard and metalized films for the production of snapdragon (Antirrhinum majus) in Martin County, Flor...

  18. Neutron capture production rates of cosmogenic 60Co, 59Ni and 36Cl in stony meteorites

    NASA Technical Reports Server (NTRS)

    Spergel, M. S.; Reedy, R. C.; Lazareth, O. W.; Levy, P. W.

    1986-01-01

    Results for neutron flux calculations in stony meteoroids (of various radii and compositions) and production rates for Cl-36, Ni-59, and Co-60 are reported. The Ni-59/Co-60 ratio is nearly constant with depth in most meteorites: this effect is consistent with the neutron flux and capture cross section properties. The shape of the neutron flux energy spectrum, varies little with depth in a meteorite. The size of the parent meteorite can be determined from one of its fragments, using the Ni-59/Co-60 ratios, if the parent meteorite was less than 75 g/cm(2) in radius. If the parent meteorite was larger, a lower limit on the size of the parent meteorite can be determined from a fragment. In C3 chondrites this is not possible. In stony meteorites with R less than 50 g/cm(2) the calculated Co-60 production rates (mass less than 4 kg), are below 1 atom/min g-Co. The highest Co-60 production rates occur in stony meteorites with radius about 250 g/cm(2) (1.4 m across). In meteorites with radii greater than 400 g/cm(2), the maximum Co-60 production rate occurs at a depth of about 175 g/cm(2) in L-chondrite, 125 g/cm(2) in C3 chrondrite, and 190 g/cm(2) in aubrites.

  19. The Effects of Different Sets of Disclosure Instructions on Subject Productivity and Rated Satisfaction.

    ERIC Educational Resources Information Center

    Berger, Sheldon Norman

    1978-01-01

    Investigated the effects of different sets of instructions (feeling disclosure, logical disclosure, placebo control, and control) to discuss personal concerns on subject productivity and subject satisfaction ratings. Analyses indicated the instructional manipulation was effective in producing different kinds and amounts of talk by condition.…

  20. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  1. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    PubMed

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  2. Aftershock decay, productivity, and stress rates in Hawaii: Indicators of temperature and stress from magma sources

    USGS Publications Warehouse

    Klein, Fred W.; Wright, Tom; Nakata, Jennifer

    2006-01-01

    We examined dozens of aftershock sequences in Hawaii in terms of Gutenberg-Richter and modified Omori law parameters. We studied p, the rate of aftershock decay; Ap, the aftershock productivity, defined as the observed divided by the expected number of aftershocks; and c, the time delay when aftershock rates begin to fall. We found that for earthquakes shallower than 20 km, p values >1.2 are near active magma centers. We associate this high decay rate with higher temperatures and faster stress relaxation near magma reservoirs. Deep earthquakes near Kilauea's inferred magma transport path show a range of p values, suggesting the absence of a large, deep magma reservoir. Aftershock productivity is >4.0 for flank earthquakes known to be triggered by intrusions but is normal (0.25 to 4.0) for isolated main shocks. We infer that continuing, post-main shock stress from the intrusion adds to the main shock's stress step and causes higher Ap. High Ap in other zones suggests less obvious intrusions and pulsing magma pressure near Kilauea's feeding conduit. We calculate stress rates and stress rate changes from pre-main shock and aftershock rates. Stress rate increased after many intrusions but decreased after large M7–8 earthquakes. Stress rates are highest in the seismically active volcano flanks and lowest in areas far from volcanic centers. We found sequences triggered by intrusions tend to have high Ap, high (>0.10 day) c values, a stress rate increase, and sometimes a peak in aftershock rate hours after the main shock. We interpret these values as indicating continuing intrusive stress after the main shock.

  3. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus.

    PubMed

    Heflin, L E; Gibbs, V K; Jones, W T; Makowsky, R; Lawrence, A L; Watts, S A

    2013-09-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07-0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 -3.19 g, P < 0.0001, R(2) = 0.5801) and dry matter production efficiency (ranging from 25.2-180.5%, P = 0.0003, R(2) = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability.

  4. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Heflin, L.E.; Gibbs, V.K.; Jones, W.T.; Makowsky, R.; Lawrence, A.L.; Watts, S.A.

    2014-01-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07–0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 −3.19 g, P < 0.0001, R2 = 0.5801) and dry matter production efficiency (ranging from 25.2–180.5%, P = 0.0003, R2 = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability. PMID:25435593

  5. Follicle recruitment determines IVF productivity rate via the number of embryos frozen and subsequent transfers.

    PubMed

    Stanger, James D; Yovich, John L

    2013-09-01

    IVF productivity rate is an index defined as the sum of all live births from either fresh or frozen embryo transfers arising from a single oocyte collection. This retrospective analysis over 9 continuous years used this index to understand the potential impact on pregnancy rates of milder stimulation regimens with associated reduced egg numbers. The productivity rate per collection increased in a linear and significant rate as more oocytes were recovered, more embryos frozen and more frozen embryo transfers contributed to pregnancy. This observation was true for women aged <35 years and less so for women aged 35-39 years but not for women aged 40 years and older. The contribution of frozen embryo transfer to the productivity rate rose in a linear manner, reaching over 40% of all live births with nine oocytes. The number of live births per oocyte, pronuclear embryos and thawed embryos decreased significantly but the number of live births per embryo transferred (fresh or frozen) rose with rising oocyte numbers, reflecting increasing opportunity for embryo selection. This study suggests that optimal benefits with minimal risks are gained from a model that includes both fresh and frozen transfers under stimulation generating between 8 and 12 eggs.

  6. A computer program for estimating fish population sizes and annual production rates

    SciTech Connect

    Railsback, S.F.; Holcomb, B.D.; Ryon, M.G.

    1989-10-01

    This report documents a program that estimates fish population sizes and annual production rates in small streams from multiple-pass sampling data. A maximum weighted likelihood method is used to estimate population sizes (Carle and Strub, 1978), and a size-frequency method is used to estimate production (Garman and Waters, 1983). The program performs the following steps: (1) reads in the data and performs error checking; (2) where required, uses length-weight regression to fill in missing weights; (3) assigns length classes to the fish; (4) for each date, species, and length class, estimates the population size and its variance; (5) for each date and species, estimates the total population size and its variance; and (6) for each species, estimates the annual production rate and its variance between sampling dates selected by the user. If data from only date are used, only populations are estimated. 9 refs.

  7. Improvement on droplet production rate of ultrasonic - nebulizer in spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Demen, Tuti Aryati; Men, Liu Kin; Maulana, Dwindra Wilham; Hidayat, Darmawan; Joni, I. Made

    2013-09-01

    Atomization is an important part in Spray Pyrolysis (SP) process which is applied to synthesize submicron or nano sized particles or to deposit thin film. Ultrasonic Nebulizer (UN) is usually use in SP due to its homogeneous droplets production with size between 1-5 μm. The drawback of the UN is low droplets production rate. In this research, we successfully developed a Digital Ultrasonic Nebulizer (DUN) with high droplets production rate using two ultrasonic traducers with applied frequency of 2.4 MHz. The result of DUN atomization was improved 4-6 fold compare to the conventional UN. The DUN also has an additional digital features such as pushbutton, LCD and microcontroller which is allow to set duration and applied voltage.

  8. Chlorine-36 Production Rate Calibration by the CRONUS-Earth Project

    NASA Astrophysics Data System (ADS)

    Phillips, F. M.; Marrero, S.; Stone, J. O.; Lifton, N. A.

    2012-12-01

    Among the cosmogenic nuclides commonly used for Quaternary geochronology and geomorphology (36Cl, 10Be, 26Al, 3He, and 14C), the production rate of 36Cl has proved particularly difficult to calibrate because of the multiple nuclear reactions that lead to its production (3 major reactions and 5 minor ones). Achieving a consensus on the production constants for 36Cl has therefore been a major emphasis of the NSF-funded Cosmic Ray Produced Nuclide Systematics on Earth (CRONUS-Earth) Project. The most suitable for 36Cl calibration of the sites sampled by CRONUS-Earth proved to be ignimbrites from Younger Dryas-correlative moraines near the Quelccaya Ice Cap in Peru, basalts from the similar-aged Tabernacle Hill flow in Utah, and granodiorite boulders on a similar-aged moraine at Baboon Lakes in the Sierra Nevada, California. Production rates were estimated by minimizing 36Cl concentration residuals, with production scaled between the sites using the recently developed Lifton-Sato formulation. The scaling parameters employed were cut-off rigidity of 0 GV, solar modulation parameter of 587.4 MV, and air pressure of 1013.25 hPa; production-rate parameters obtained using this scaling approach are not directly comparable to those previously estimated using alternative scaling methods. This approach yielded sea-level high-latitude production rates of 55±2 atoms 36Cl (g Ca)-1 yr-1, 157±5 atoms 36Cl (g K)-1 yr-1, and 704±140 neutrons (g air)-1 yr-1. The results from the minimization did not meet tests for statistical significance and therefore the parameter-rate uncertainties could not be determined directly from the calibration data set. An independent secondary data set consisting of 82 samples from 16 localities and compiled from 7 separate published studies was therefore employed for this purpose. Average deviations of calculated 36Cl ages from independently determined ages increased from about 10% for samples where 36Cl production was nearly all from spallation

  9. Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate.

    PubMed

    Ding, Xinghong; Xia, Liming

    2006-06-01

    The effects of different aeration conditions on xylitol production from corncob hemicellulose hydrolysate by Candida sp. ZU04 were investigated. Batch fermentations were carried out in a 3.7-L fermentor at 30 degrees C, pH 5.5, and agitation of 300 rpm. It was found that the two-phase aeration process was more effective than the one-phase aeration process in xylitol production. In the first 24 h of the aerobic phase, a high aeration rate was applied, glucose was soon consumed, and biomass increased quickly. In the second fermentation phase, aeration rate was reduced and an improved xylitol yield was obtained. The maximum xylitol yield (0.76 g/g) was obtained with an aeration rate of 1.5 vvm (KLa of 37 h-1) for the first 24 h and 0.3 vvm (KLa of 6 h-1) from 24 to 96 h.

  10. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y[sub cut], in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W [approx equal] 20 GeV. Sensitivities of the jet rate measurements to the low x (x [approx equal] 0.02) gluon content of the nucleon and the evolution of [alpha][sub s], are studied.

  11. Multi-jet production rates in deep-inelastic muon-proton scattering

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1992-10-01

    Measurements of forward multi-jet production rates in deep-inelastic muonproton scattering are presented. Data were taken with a 490 GeV muon beam incident on a hydrogen target. Jets were defined using the JADE jet finding algorithm. The measured rates are presented as function of W, the hadronic center-of-mass energy and the jet resolution parameter, y{sub cut}, in energies up to W=33 GeV. Good agreement is found in comparisons with predictions of the QCD-inspired Lund Monte Carlo models. Non-perturbative QCD production mechanisms, inside the Lund Model, can not reproduce the results for energies greater than W {approx_equal} 20 GeV. Sensitivities of the jet rate measurements to the low x (x {approx_equal} 0.02) gluon content of the nucleon and the evolution of {alpha}{sub s}, are studied.

  12. Experimental productivity rate optimization of rare earth element separation through preparative solid phase extraction chromatography.

    PubMed

    Knutson, Hans-Kristian; Max-Hansen, Mark; Jönsson, Christian; Borg, Niklas; Nilsson, Bernt

    2014-06-27

    Separating individual rare earth elements from a complex mixture with several elements is difficult and this is emphasized for the middle elements: Samarium, Europium and Gadolinium. In this study we have accomplished an overloaded one-step separation of these rare earth elements through preparative ion-exchange high-performance liquid chromatography with an bis (2-ethylhexyl) phosphoric acid impregnated column and nitric acid as eluent. An inductively coupled plasma mass spectrometry unit was used for post column element detection. The main focus was to optimize the productivity rate, subject to a yield requirement of 80% and a purity requirement of 99% for each element, by varying the flow rate and batch load size. The optimal productivity rate in this study was 1.32kgSamarium/(hmcolumn(3)), 0.38kgEuropium/(hmcolumn(3)) and 0.81kgGadolinium/(hmcolumn(3)).

  13. Performance of Fast Repetition Rate fluorometry based estimates of primary productivity in coastal waters

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Suggett, D. J.; Cherukuru, N.; Ralph, P. J.; Doblin, M. A.

    2014-11-01

    Capturing the variability of primary productivity in highly dynamic coastal ecosystems remains a major challenge to marine scientists. To test the suitability of Fast Repetition Rate fluorometry (FRRf) for rapid assessment of primary productivity in estuarine and coastal locations, we conducted a series of paired analyses estimating 14C carbon fixation and primary productivity from electron transport rates with a Fast Repetition Rate fluorometer MkII, from waters on the Australian east coast. Samples were collected from two locations with contrasting optical properties and we compared the relative magnitude of photosynthetic traits, such as the maximum rate of photosynthesis (Pmax), light utilisation efficiency (α) and minimum saturating irradiance (EK) estimated using both methods. In the case of FRRf, we applied recent algorithm developments that enabled electron transport rates to be determined free from the need for assumed constants, as in most previous studies. Differences in the concentration and relative proportion of optically active substances at the two locations were evident in the contrasting attenuation of PAR (400-700 nm), blue (431 nm), green (531 nm) and red (669 nm) wavelengths. FRRF-derived estimates of photosynthetic parameters were positively correlated with independent estimates of 14C carbon fixation (Pmax: n = 19, R2 = 0.66; α: n = 21, R2 = 0.77; EK: n = 19, R2 = 0.45; all p < 0.05), however primary productivity was frequently underestimated by the FRRf method. Up to 81% of the variation in the relationship between FRRf and 14C estimates was explained by the presence of pico-cyanobacteria and chlorophyll-a biomass, and the proportion of photoprotective pigments, that appeared to be linked to turbidity. We discuss the potential importance of cyanobacteria in influencing the underestimations of FRRf productivity and steps to overcome this potential limitation.

  14. In vitro O 2 fluxes compared with 14C production and other rate terms during the JGOFS Equatorial Pacific experiment

    NASA Astrophysics Data System (ADS)

    Bender, Michael; Orchardo, Joe; Dickson, Mary-Lynn; Barber, Richard; Lindley, Steven

    1999-04-01

    We report rates of gross and net O 2 production measured in vitro during JGOFS cruises in the equatorial Pacific in spring and fall, 1992. We scale O 2 productivities to net and gross C production. We then compare the calculated rates with 14C production and with new/export production measured by various techniques. 14C productivities in samples incubated for 24 h are about 45% of gross carbon production rates calculated from gross O 2 production. The difference is compatible with expected rates of the Mehler reaction, photorespiration, excretion, and community mitochondrial respiration. 14C production rates are similar to net carbon production rates in the upper half of the euphotic zone. At lower irradiances, where net C production can be zero or less, 14C productivities lie between net community production and gross primary production. Net carbon production rates in vitro are a factor of =4-20 times greater than estimates from drifting sediment trap and tracer transport studies. This difference probably reflects anomalous accumulation of POC in bottles because of the exclusion of grazers.

  15. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  16. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production.

  17. Volumetric flow rate comparisons for water and product on pasteurization systems.

    PubMed

    Schlesser, J E; Stroup, W H; McKinstry, J A

    1994-04-01

    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system.

  18. Depth-dependence of the production rate of in-situ 14-C in quartz

    NASA Astrophysics Data System (ADS)

    Lupker, Maarten; Hippe, Kristina; Kober, Florian; Wacker, Lukas; Braucher, Régis; Bourlès, Didier; Vidal Romani, Juan; Wieler, Rainer

    2013-04-01

    Terrestrial cosmogenic nuclides provide a means to document and quantify the rates of changes of the landscape at the Earth's surface and have therefore received an increasing attention over the past decade. The short lived in-situ produced 14-C has recently emerged as a complement to other longer lived cosmogenic nuclides such as 10-Be or 26-Al. The short half-life (5730 yr) of 14-C makes it suitable to investigate surface processes such as denudation rates or sediment residence times on ka scales. The wide application of in-situ 14-C for quantitative studies is however bound to the proper calibration of its production mechanisms and rates. As other cosmogenic nuclides, 14-C is produced at the Earth's surface by nuclear reactions with incoming neutrons and muons. The production rate of 14-C has been determined for quartz exposed at the surface where neutrons dominate the overall production [1]. At depth, however, the muon production pathway starts to dominate, because the mean attenuation length of muons is considerably longer than that of neutrons. So far, the muon derived in-situ 14-C production rate is solely based on theoretical and experimental work [2] that has not been tested on natural objects. We measured the 14-C concentration in quartz along the Leymon High core (42.065 N, 7.014 E - alt: 1277 m; Northwestern Spain) using the ETH 14-C extraction line [3] and the MICADAS gas source AMS [4]. This core has been drilled down to 20 m in a quartz dyke and has already been used to refine the depth-dependent production rate of 10-Be and 26-Al [5]. Our results on 14 samples of this core spanning a depth range from 1 to 1545 cm allow us to estimate the muogenic contribution to the overall 14-C concentrations measured along the core. This data set yields a local surface muon production rate of 3.9 (+3.1, -0.6) at.g-1.yr-1, which translates into a surface Sea Level High Latitude muon production rate of 2.2 (+1.8, -0.4) at.g-1.yr-1. This is ca. 17 % of the SLHL

  19. Inventory model with two rates of production for deteriorating items with permissible delay in payments

    NASA Astrophysics Data System (ADS)

    Roy, Ajanta; Samanta, G. P.

    2011-08-01

    Goyal (1985) ['Economic Order Quantity Under Conditions of Permissible Delay in Payments', Journal of Operational research Society, 36, 35-38] assumed that unit selling price and unit purchasing price are equal. But in real-life the scenario is different. The purpose of this article is to reflect the real life problem by allowing unit selling price and purchasing price to be unequal. Our model is a continuous production control inventory model for deteriorating items in which two different rates of production are available. The results are illustrated with the help of a numerical example. We discuss the sensitivity of the solution together with the changes of the values of the parameters associated with the model. Our model may be applicable in many manufacturing planning situations where management practices for deterioration are stringent; e.g. the two-production rate will be more profitable than the one-production rate in the manufacture of cold, asthma and allergy medicine. Our proposed model might be applicable to develop a prototype advance planning system for those manufacturers to integrate the management science techniques into commercial planning.

  20. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece

    SciTech Connect

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We studied pharmaceutical and chemical waste production in a Greek hospital. Black-Right-Pointing-Pointer Pharmaceutical waste comprised 3.9% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total pharmaceutical waste was 12.4 {+-} 3.90 g/patient/d. Black-Right-Pointing-Pointer Chemical waste comprised 1.8% w/w of total hazardous medical waste. Black-Right-Pointing-Pointer Unit production rate for total chemical waste was 5.8 {+-} 2.2 g/patient/d. - Abstract: The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and 'other'. Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste

  1. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production

    PubMed Central

    Aledo, Juan Carlos

    2014-01-01

    The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects. PMID:24955029

  2. The trend of production rates with heliocentric distance for comet P/Halley

    NASA Astrophysics Data System (ADS)

    Fink, U.

    1994-03-01

    Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r-1.0 with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.

  3. Rate of production, dissolution and accumulation of biogenic solids in the ocean

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  4. Rate of production, dissolution and accumulation of biogenic solids in the ocean.

    PubMed

    Arrhenius, G

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  5. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways.

    PubMed

    Kim, Eui-Jin; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival

    2016-11-02

    Hydrogen production by water splitting energized by biomass sugars is one of the most promising technologies for distributed green H2 production. Direct H2 generation from NADPH, catalysed by an NADPH-dependent, soluble [NiFe]-hydrogenase (SH1) is thermodynamically unfavourable, resulting in slow volumetric productivity. We designed the biomimetic electron transport chain from NADPH to H2 by the introduction of an oxygen-insensitive electron mediator benzyl viologen (BV) and an enzyme (NADPH rubredoxin oxidoreductase, NROR), catalysing electron transport between NADPH and BV. The H2 generation rates using this biomimetic chain increased by approximately five-fold compared to those catalysed only by SH1. The peak volumetric H2 productivity via the in vitro enzymatic pathway comprised of hyperthermophilic glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase, NROR, and SH1 was 310 mmol H2 /L h(-1) , the highest rate yet reported. The concept of biomimetic electron transport chains could be applied to both in vitro and in vivo H2 production biosystems and artificial photosynthesis.

  6. Penetration of hydrogen peroxide and degradation rate of different bleaching products.

    PubMed

    Marson, F C; Gonçalves, R S; Silva, C O; Cintra, L T Â; Pascotto, R C; Santos, P H Dos; Briso, A L F

    2015-01-01

    This study's aim was to evaluate the degradation rate of hydrogen peroxide (H2O2) and to quantify its penetration in tooth structure, considering the residence time of bleaching products on the dental enamel. For this study, bovine teeth were randomly divided according to the bleaching product received: Opalescence Xtra Boost 38%, White Gold Office 35%, Whiteness HP Blue 35%, Whiteness HP Maxx 35%, and Lase Peroxide Sensy 35%. To analyze the degradation of H2O2, the titration of bleaching agents with potassium permanganate was used, while the penetration of H2O2 was measured via spectrophotometric analysis of the acetate buffer solution, collected from the artificial pulp chamber. The analyses were performed immediately as well as 15 minutes, 30 minutes, and 45 minutes after product application. The data of degradation rate of H2O2 were submitted to analysis of variance (ANOVA) and Tukey tests, while ANOVA and Fisher tests were used for the quantification of H2O2, at the 5% level. The results showed that all products significantly reduced the concentration of H2O2 activates at the end of 45 minutes. It was also verified that the penetration of H2O2 was enhanced by increasing the residence time of the product on the tooth surface. It was concluded that the bleaching gels retained substantial concentrations of H2O2 after 45 minutes of application, and penetration of H2O2 in the dental structure is time-dependent.

  7. Sea-ice algal primary production and nitrogen uptake rates off East Antarctica

    NASA Astrophysics Data System (ADS)

    Roukaerts, Arnout; Cavagna, Anne-Julie; Fripiat, François; Lannuzel, Delphine; Meiners, Klaus M.; Dehairs, Frank

    2016-09-01

    Antarctic pack ice comprises about 90% of the sea ice in the southern hemisphere and plays an important structuring role in Antarctic marine ecosystems, yet measurements of ice algal primary production and nitrogen uptake rates remain scarce. During the early austral spring of 2012, measurements for primary production rates and uptake of two nitrogen substrates (nitrate and ammonium) were conducted at 5 stations in the East Antarctic pack ice (63-66°S, 115-125°E). Carbon uptake was low (3.52 mg C m-2 d-1) but a trend of increased production was observed towards the end of the voyage suggesting pre-bloom conditions. Significant snow covers reaching, up to 0.8 m, induced strong light limitation. Two different regimes were observed in the ice with primarily nitrate based 'new' production (f-ratio: 0.80-0.95) at the bottom of the ice cover, due to nutrient-replete conditions at the ice-water interface, and common for pre-bloom conditions. In the sea-ice interior, POC:PN ratios (20-70) and higher POC:Chl a ratios suggested the presence of large amounts of detrital material trapped in the ice and here ammonium was the prevailing nitrogen substrate. This suggests that most primary production in the sea-ice interior was regenerated and supported by a microbial food web, recycling detritus.

  8. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  9. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    PubMed

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells.

  10. Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements.

    PubMed

    Velimirovic, Milica; Carniato, Luca; Simons, Queenie; Schoups, Gerrit; Seuntjens, Piet; Bastiaens, Leen

    2014-04-15

    In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate.

  11. Oxygen production/consumption rates in the upper layer of the northwestern subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Tsubono, K.; Suga, T.; Sukigara, C.; Kobayashi, T.; Hosoda, S.

    2010-12-01

    The cycling of nutrients in the subtropical gyre is crucial in sustaining primary production and the biological pump. Recently it has been proposed that subtropical mode water (STMW) and its subduction processes play a major role in sustaining nutrient distribution in the permanent pycnocline in the subtropical gyres and also facilitating nutrient supply to the euphotic zone. It is not easy, however, to describe temporal evolution of nutrients themselves associated with those processes over a few months to a year or so. As an alternative approach, we examine temporal evolution of dissolved oxygen, which increases or decreases associated with the nutrient utilization by primary production or its production by remineralization. We analyze time-series data of dissolved oxygen obtained by profiling floats drifting over several months to a year in the upper layer of the northwestern subtropical North Pacific. The purpose of this study is to document the temporal variation of dissolved oxygen in STMW and its adjacent layers, to estimate oxygen production/consumption rates at each vertical level, and to discuss their implication in nutrient cycle. The dissolved oxygen in the subsurface layer centered at 50-70 m continuously increased over a few months after the formation of the seasonal pycnocline, resulting in a distinctive shallow oxygen maximum (SOM). Since the SOM is insulated from the atmosphere, the net increase in its oxygen concentration must be attributable to biological oxygen production. On the other hand, a continuous decrease in dissolved oxygen over several months is observed in the layer below 100 m probably due to biological consumption. The estimation of the oxygen production/consumption rates is done by applying the least square method for the time series of dissolved oxygen either at each depth or each isopycnal surface. The Net Community Production (NCP) is estimated for the depth range of 0-100m, where the remarkable oxygen increase occurs. The

  12. A Scalable Method for Extracting Soiling Rates from PV Production Data

    SciTech Connect

    Deceglie, Michael G.; Muller, Matthew; Defreitas, Zoe; Kurtz, Sarah

    2016-11-21

    We present a method for analyzing time series production data from photovoltaic systems to extract the rate at which energy yield is affected by the accumulation of dust, dirt, and other forms of soiling. We describe an approach that is based on prevailing methods which consider the change in energy production during dry periods. The method described here builds upon these methods by considering a statistical sample of soiling intervals from each site under consideration. The method enables straightforward application to a large number of sites with minimal parameterization of data-filtering requirements. Furthermore, it enables statistical confidence intervals and comparisons between sites.

  13. Development and field deployment of an instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.

    2015-12-01

    Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone

  14. Scalable Method for Extracting Soiling Rates from PV Production Data: Preprint

    SciTech Connect

    Deceglie, Michael G.; Muller, Matthew; Kurtz, Sarah; Defreitas, Zoe

    2016-06-21

    We present a method for analyzing time series production data from photovoltaic systems to extract the rate at which energy yield is affected by the accumulation of dust, dirt, and other forms of soiling. We describe an approach that is based on prevailing methods which consider the change in energy production during dry periods. The method described here builds upon these methods by considering a statistical sample of soiling intervals from each site under consideration. The method enables straightforward application to a large number of sites with minimal parameterization of data-filtering requirements. Furthermore, it enables statistical confidence intervals and comparisons between sites.

  15. Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems.

    PubMed

    Macdonald, K A; Penno, J W; Lancaster, J A S; Roche, J R

    2008-05-01

    Ninety-four cows were randomly allocated to 1 of 5 stocking rates (2.2, 2.7, 3.1, 3.7, and 4.3 cows/ha) in a completely randomized design for 3 years. Herds were seasonal calving, with only minor differences in grazing management to optimize the profitability of each stocking rate (SR). Pasture production and quality data, milk and milk component data, and reproduction data were collected, averaged for SR treatment, and linear and quadratic contrasts on SR were evaluated. In addition, the Wilmink exponential model (y(t) = a + b x e((-0.05t) )+ c x t) was fitted to milk yield within lactation, and the parameters were averaged by SR treatment and analyzed as above. The median variation explained by the function for individual lactations was 84%. The amount of pasture grown tended to increase, and the quality of the pasture on offer increased linearly with increasing SR, reducing some of the negative impact of SR on the availability of pasture per cow. Milk production per cow declined linearly with increasing SR, although there was a tendency for most production variables to decline quadratically, with the negative effect of SR declining with increasing SR. The effect on milk production per cow was primarily because of a lower peak milk yield and a greater post-peak decline (less persistent milk profile), although a decline in lactation length with increasing SR was responsible for 24% of the effect of SR on milk yield. Milk production per hectare increased linearly with increasing SR, and there was only a small difference (approximately 3%/cow per ha) in the efficiency of converting feed dry matter into milk energy. Stocking rate did not affect reproductive success. The data are consistent with the need for a more robust measure of SR than cows per hectare because farms will differ in the genetic merit of their cows and in the potential to produce pasture. We introduce the concept of a comparative SR, whereby the carrying capacity of the farm is defined by the BW of

  16. Experimental investigation of particle dissolution rates in aqueous solutions for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jianu, O. A.; Wang, Z.; Rosen, M. A.; Naterer, G. F.

    2016-10-01

    Results of reaction kinetics studies of chemical processes related to materials integration of the thermochemical copper-chlorine cycle for hydrogen production are reported. The reaction rate of solid cuprous chloride (CuCl) in liquid hydrochloric acid is investigated experimentally for various acid concentrations. A rate constant—a function of constituent concentrations—describes how quickly the reactants are converted into products in satisfying the activation energy to enable the reaction to move forward. In this paper, the change in area of a solid CuCl particle is examined, rather than concentration in previous studies. New predictive models are developed to describe the characteristics of the chemical reaction in terms of its transition states and reaction mechanisms.

  17. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Heusser, G.

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  18. The exposure history of Jilin and production rates of cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Heusser, G.

    1986-01-01

    Jilin, the largest known story meteorite, is a very suitable object for studying the systematics of cosmic ray produced nuclides in stony meteorites. Its well established two stage exposure history even permits to gain information about two different irradiation geometries (2pi and 4pi). All stable and long-lived cosmogenic nuclides measured in Jilin so far correlate well with each other. An example is shown where the Al-26 activities are plotted vs. the spallogenic Ne-21 concentration. These records of cosmic-ray interaction in Jilin can be used both to determine the history of the target and to study the nature of production rate profiles. This is unavoidably a bootstrap process, involving studying one with assumption about the other. Production rate equations are presented and discussed.

  19. Development of a portable instrument to measure ozone production rates in the troposphere

    NASA Astrophysics Data System (ADS)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  20. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2016-10-26

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.

  1. Measurement of HOxproduction rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (•OH and HO2 •) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOxproduction rate in indoor air caused by radon decay. Average HOxproduction rate was found to be (4.31±0.07) x 105 HOx• per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx•)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx•] formed from the radiolysis procedure. This G value implies that HOx• produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOxproduction rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for •OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial •OH produced from the photolysis of O3/H2O.

  2. Masses, lifetimes and production rates of Ξ- and Ξbar+ at LEP 1

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Niss, P.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2006-08-01

    Measurements of the Ξ- and Ξbar+ masses, mass differences, lifetimes and lifetime differences are presented. The Ξbar+ sample used is much larger than those used previously for such measurements. In addition, the Ξ production rates in Z → bbbar and Z → qqbar events are compared and the position ξ∗ of the maximum of the ξ distribution in Z → qqbar events is measured.

  3. Masses, lifetimes and production rates of Ξ and Ξ at LEP 1

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Niss, P.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2006-08-01

    Measurements of the Ξ and Ξ masses, mass differences, lifetimes and lifetime differences are presented. The Ξ sample used is much larger than those used previously for such measurements. In addition, the Ξ production rates in Z→bb¯ and Z→qq¯ events are compared and the position ξ of the maximum of the ξ distribution in Z→qq¯ events is measured.

  4. Meta-analysis of the impact of stocking rate on the productivity of pasture-based milk production systems.

    PubMed

    McCarthy, B; Delaby, L; Pierce, K M; Journot, F; Horan, B

    2011-04-01

    The objective of this study is to quantify the milk production response per cow and per hectare (ha) for an incremental stocking rate (SR) change, based on a meta-analysis of published research papers. Suitable experiments for inclusion in the database required a comparison of at least two SRs under the same experimental conditions in addition to details on experimental length and milk production results per cow and per ha. Each additional increased SR treatment was also described in terms of the relative milk production change per cow and per ha compared to the lower base SR (b_SR). A database containing 109 experiments of various lengths with 131 comparisons of SR was sub-divided into Type I experiments (common experimental lengths) and Type II experiments (variable experimental lengths). Actual and proportional changes in milk production according to SR change were analysed using linear mixed model procedures with study included as a random effect in the model. Low residual standard errors indicated a good precision of the predictive equations with the exception of proportional change in milk production per cow. For all milk yield variables analysed, the results illustrate that while production per cow is reduced, a strong positive relationship exists between SR and milk production per ha. An SR increase of one cow/ha resulted in a decrease in daily milk yield per cow of 7.4% and 8.7% for Type I and Type II data, respectively, whereas milk yield per ha increased by 20.1% and 19.6%, respectively. Within the Type II data set, a one cow/ha increase in SR also resulted in a 15.1% reduction in lactation length (equivalent to 42 days). The low predictability of proportional change in milk production per cow according to the classical SR definition of cows per ha over a defined period suggests that SR may be more appropriately defined in terms of the change in available feed offered per animal within each treatment.

  5. The Kinematic and Microphysical Control of Lightning Rate, Extent and NOX Production

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Peterson, Harold; Matthee, Retha; Bain, A. Lamont

    2014-01-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to quantify the relationship between storm physics, lightning characteristics and the production of nitrogen oxides via lightning (LNOx). The focus of this study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern LNOx production, such as flash rate, type and extent across Alabama during DC3. Prior studies have demonstrated that lightning flash rate and type is correlated to kinematic and microphysical properties in the mixed-phase region of thunderstorms such as updraft volume and graupel mass. More study is required to generalize these relationships in a wide variety of storm modes and meteorological conditions. Less is known about the co-evolving relationship between storm physics, morphology and three-dimensional flash extent, despite its importance for LNOx production. To address this conceptual gap, the NASA Lightning Nitrogen Oxides Model (LNOM) is applied to North Alabama Lightning Mapping Array (NALMA) and Vaisala National Lightning Detection Network(TM) (NLDN) observations following ordinary convective cells through their lifecycle. LNOM provides estimates of flash rate, flash type, channel length distributions, lightning segment altitude distributions (SADs) and lightning NOx production profiles. For this study, LNOM is applied in a Lagrangian sense to multicell thunderstorms over Northern Alabama on two days during DC3 (21 May and 11 June 2012) in which aircraft observations of NOx are available for comparison. The LNOM lightning characteristics and LNOX production estimates are compared to the evolution of updraft and precipitation properties inferred from dual-Doppler and polarimetric radar analyses applied to observations from a nearby radar network, including the UAH Advanced Radar for Meteorological and Operational Research (ARMOR). Given complex multicell evolution, particular attention is paid to storm morphology, cell

  6. Direct Measurement of the Unimolecular Decay Rate of Criegee Intermediates to OH Products

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Fang, Yi; Klippenstein, Stephen; McCoy, Anne; Lester, Marsha

    Ozonolysis of alkenes is an important non-photolytic source of OH radicals in the troposphere. The production of OH radicals proceeds though formation and unimolecular decay of Criegee intermediates such as syn-CH3CHOO and (CH3)2COO. These alkyl-substituted Criegee intermediates can undergo a 1,4-H transfer reaction to form an energized vinyl hydroperoxide species, which breaks apart to OH and vinoxy products. Recently, this laboratory used IR excitation in the C-H stretch overtone region to initiate the unimolecular decay of syn-CH3CHOO and (CH3)2COO Criegee intermediates, leading to OH formation. Here, direct time-domain measurements are performed to observe the rate of appearance of OH products under collision-free conditions utilizing UV laser-induced fluorescence for detection. The experimental rates are in excellent agreement with statistical RRKM calculations using barrier heights predicted from high-level electronic structure calculations. Accurate determination of the rates and barrier heights for unimolecular decay of Criegee intermediates is essential for modeling the kinetics of alkene ozonolysis reactions, a significant OH radical source in atmospheric chemistry, as well as the steady-state concentration of Criegee intermediates in the atmosphere. This research was supported through the National Science Foundation under grant CHE-1362835.

  7. High rate production of hydrogen/methane from various substrates and wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2004-01-01

    To treat soluble and solid wastes and recover energy from them, high rate methane fermentation, especially using the UASB (upflow anaerobic sludge blanket) reactor, and hydrogen fermentation using various microorganisms and microbial consortia have been investigated intensively in Japan. In this chapter, recent works on high rate methane fermentation in Japan are reviewed, focusing on: 1) basic studies into the applicability of the UASB reactor for various substrates such as propionate, lactate, ethanol, glucose and phenol; 2) its applications to unfeasible conditions, such as lipid and protein containing wastes, low temperature and high salt-containing wastes; 3) progress made in the field of advanced UASB reactors, and; 4) research into methane fermentation from solid wastes, such as from cellulosic materials, municipal sewage sludge, and mud sediments. Following this, although hydrogen fermentation with photosynthetic microorganisms or anaerobic bacteria was researched, for this review we have focused on fermentative hydrogen production using strictly or facultative anaerobes and microbial consortia in Japan, since high rate production of hydrogen-methane via a two-stage process was judged to be more attractive for biological hydrogen production and wastewater treatments.

  8. Critical behavior of entropy production and learning rate: Ising model with an oscillating field

    NASA Astrophysics Data System (ADS)

    Zhang, Yirui; Barato, Andre C.

    2016-11-01

    We study the critical behavior of the entropy production of the Ising model subject to a magnetic field that oscillates in time. The mean-field model displays a phase transition that can be either first or second-order, depending on the amplitude of the field and on the frequency of oscillation. Within this approximation the entropy production rate is shown to have a discontinuity when the transition is first-order and to be continuous, with a jump in its first derivative, if the transition is second-order. In two dimensions, we find with numerical simulations that the critical behavior of the entropy production rate is the same, independent of the frequency and amplitude of the field. Its first derivative has a logarithmic divergence at the critical point. This result is in agreement with the lack of a first-order phase transition in two dimensions. We analyze a model with a field that changes at stochastic time-intervals between two values. This model allows for an informational theoretic interpretation, with the system as a sensor that follows the external field. We calculate numerically a lower bound on the learning rate, which quantifies how much information the system obtains about the field. Its first derivative with respect to temperature is found to have a jump at the critical point.

  9. Estimating long-term exposure levels in process-type industries using production rates.

    PubMed

    Kalliokoski, P

    1990-06-01

    Exposure to toluene in two publication rotogravure plants was investigated to examine how accurately long-term exposure can be estimated on the basis of production rate. Toluene consumption was used as the measure of production rate. Continuous area monitoring was used to find a correlation between production rate and airborne level of toluene. Workers' exposure levels were first estimated by combining data on toluene concentrations in various monitoring sites with data supplied by the workers on the time spent in these areas. These calculated exposure levels were found to correlate well with the actual exposure levels obtained by breathing zone sampling. There was also a fairly high correlation between the concentration of toluene in front of the press and the consumption of toluene if the process conditions remained stable. It was, however, necessary to investigate this association separately for the situations where the degree of enclosure of the press or number of emission sources were unusual or when the workers stayed in the control rooms, which were separated from the other pressroom areas. A reasonably high correlation between the variables of the main interest, that is, the calculated toluene exposures and the consumption of toluene, was found in one of the plants investigated, whereas this correlation was low in the other plant. Even though this kind of estimation procedure does not always lead to accurate exposure levels, it helps in understanding how those are affected by the process parameters.

  10. The effect of temperature and effluent recycle rate on hydrogen production by undefined bacterial granules.

    PubMed

    Ngoma, L; Masilela, P; Obazu, F; Gray, V M

    2011-10-01

    Biohydrogen production in an anaerobic fluidized granular bed bioreactor was strongly dependent on temperature and effluent recycle rates. At 45 °C as the effluent recycle rate was increased from 1.3 to 3.5 L/min, the total H₂ output for the bioreactor increased from 10.6 to 43.2 L/h. Volumetric H(2) productivity also increased from 2.1 to 8.7 L H₂/L/h. At 70°C as the effluent recycle was increased from 1.3 to 3.5 L/min, the total H₂ output for the bioreactor increased from 13.8 to 73.8L/h. At 70 °C volumetric H(2) productivities increased from 2.8 to 14.8L H₂/L/h as the effluent recycle rate was increased from 1.3 to 3.5 L/min. At 45 °C % H₂ was 45% and reached 67% at 70 °C. Maximum hydrogen yields at 45 °C were 1.24 and 2.2 mol H₂/mol glucose at 70 °C.

  11. Effect of growth rate on plasmid DNA production and metabolic performance of engineered Escherichia coli strains.

    PubMed

    Wunderlich, Martin; Taymaz-Nikerel, Hilal; Gosset, Guillermo; Ramírez, Octavio T; Lara, Alvaro R

    2014-03-01

    Two engineered Escherichia coli strains, designated VH33 and VH34, were compared to their parent strain W3110 in chemostat mode during plasmid DNA (pDNA) production. In strain VH33 the glucose uptake system was modified with the aim of reducing overflow metabolism. The strain VH34 has an additional deletion of the pyruvate kinase A gene (pykA) to increase pDNA formation. pDNA formation rates as well as kinetic and stoichiometric parameters were investigated in dependence of the growth rate within a range from 0.02 to 0.25 h(-1). Differences between strains were found in terms of the biomass yields on nitrogen and oxygen, as well as on the cell maintenance coefficients. The deletion of pykA led to a significantly increased pDNA yield and productivity. At an optimal growth rate of 0.20 h(-1) it was nearly 60% higher than that of W3110 and VH33. Metabolic fluxes calculated by metabolite balance analysis showed differences mainly in reactions catalyzed by pyruvate kinase and glucose 6-phosphate dehydrogenase. The obtained data are useful for the design of cultivation schemes for pDNA production by E. coli.

  12. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  13. Effects of allometry, productivity and lifestyle on rates and limits of body size evolution

    PubMed Central

    Okie, Jordan G.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Saarinen, Juha J.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Sibly, Richard M.

    2013-01-01

    Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity. PMID:23760865

  14. Herschel/SPIRE observations of water production rates and ortho-to-para ratios in comets★

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas G.; Rawlings, Jonathan M. C.; Swinyard, Bruce M.

    2017-04-01

    This paper presents Herschel/SPIRE (Spectral and Photometric Imaging Receiver) spectroscopic observations of several fundamental rotational ortho- and para-water transitions seen in three Jupiter-family comets and one Oort-cloud comet. Radiative transfer models that include excitation by collisions with neutrals and electrons, and by solar infrared radiation, were used to produce synthetic emission line profiles originating in the cometary coma. Ortho-to-para ratios (OPRs) were determined and used to derived water production rates for all comets. Comparisons are made with the water production rates derived using an OPR of 3. The OPR of three of the comets in this study is much lower than the statistical equilibrium value of 3; however they agree with observations of comets 1P/Halley and C/2001 A2 (LINEAR), and the protoplanetary disc TW Hydrae. These results provide evidence suggesting that OPR variation is caused by post-sublimation gas-phase nuclear-spin conversion processes. The water production rates of all comets agree with previous work and, in general, decrease with increasing nucleocentric offset. This could be due to a temperature profile, additional water source or OPR variation in the comae, or model inaccuracies.

  15. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate

    SciTech Connect

    Silva, S.S.; Ribeiro, J.D.; Felipe, M.G.A.; Vitolo, M.

    1997-12-31

    Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed by Candida guilliermondii FTI 20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L {center_dot} h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (K{sub L}a 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications. 20 refs., 2 figs.

  16. Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation.

    PubMed

    Kandilian, Razmig; Pruvost, Jérémy; Legrand, Jack; Pilon, Laurent

    2014-07-01

    This study aims to understand the role of light transfer in triglyceride fatty-acid (TG-FA) cell content and productivity from microalgae during nitrogen starvation. Large amounts of TG-FA can be produced via nitrogen starvation of microalgae in photobioreactors exposed to intense light. First, spectral absorption and scattering cross-sections of N. oculata were measured at different times during nitrogen starvation. They were used to relate the mean volumetric rate of energy absorption (MVREA) per unit mass of microalgae to the TG-FA productivity and cell content. TG-FA productivity correlated with the MVREA and reached a maximum for MVREA of 13 μmol hν/gs. This indicated that TG-FA synthesis was limited by the photon absorption rate in the PBR. A minimum MVREA of 13 μmol hν/gs was also necessary at the onset of nitrogen starvation to trigger large accumulation of TG-FA in cells. These results will be instrumental in defining protocols for TG-FA production in scaled-up photobioreactors.

  17. Egg production rates of two common copepods in the Barents Sea in summer

    NASA Astrophysics Data System (ADS)

    Dvoretsky, Vladimir G.; Dvoretsky, Alexander G.

    2014-09-01

    Small copepod species play important roles in the pelagic food webs of the Arctic Ocean, linking primary producers to higher trophic levels. The egg production rates (EPs) and weight-specific egg production rates (SEPs) of two common copepods, Acartia longiremis and Temora longicornis, were studied under experimental conditions in Dalnezelenetskaya Bay (southern Barents Sea) during summer. The average EP and SEP at 5-10 °C were 4.7 ± 0.4 eggs female-1 day-1 and 0.025 ± 0.002 day-1, respectively, for A. longiremis and 13.1 ± 0.9 eggs female-1 day-1 and 0.075 ± 0.006 day-1, respectively, for T. longicornis. EP and SEP were significantly higher at 10°C than at 5°C for both species. The mean egg diameter correlated positively and significantly with female prosome length (PL) in each species. SEP of T. longicornis correlated negatively and significantly with PL. Daily EP and SEP were similar to rates recorded for other Acartia and Temora species in temperate and warm regions. The influence of environmental factors (temperature, salinity, and phytoplankton concentration) on EP of both species is discussed. We conclude that temperature is the main factor determining the reproduction rate and timing in A. longiremis and T. longicornis in the Barents Sea.

  18. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    PubMed

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough.

  19. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production.

  20. An Exploration of Methods for Rating Children’s Productions of Sibilant Fricatives

    PubMed Central

    Munson, Benjamin; Carlson, Kari Urberg

    2015-01-01

    This paper examines three methods for providing ratings of within-category detail in children’s productions of /s/ and /ʃ/. A group of listeners (n=61) participated in a rating task in which a forced-choice phoneme identification task was followed by one of three measures of phoneme goodness: visual analog scaling, direct magnitude estimation, or a Likert scale judgment. All three types of ratings were similarly correlated with sounds’ acoustic characteristics. Visual analog scaling and Likert scale judgments had higher intra-rater reliability than did direct magnitude estimation. Moreover, both of them elicited a wider range of judgments than did direct magnitude estimation. Based on our evaluation, Likert scale judgments and visual analog scaling are equally useful tasks for eliciting within-category judgments. Of these two, visual analog scaling may be preferable because it allows for more distinct levels of response. PMID:27158499

  1. α-Terpineol reactions with the nitrate radical: Rate constant and gas-phase products

    NASA Astrophysics Data System (ADS)

    Jones, Brian T.; Ham, Jason E.

    The bimolecular rate constant of k rad +α-terpineol (16 ± 4) × 10 -12 cm 3 molecule -1 s -1 was measured using the relative rate technique for the reaction of the nitrate radical (NO 3rad ) with α-terpineol (2-(4-methyl-1-cyclohex-3-enyl)propan-2-ol) at 297 ± 3 K and 1 atmosphere total pressure. To more clearly define part of α-terpineol's indoor environment degradation mechanism, the products of α-terpineol + NO 3rad reaction were investigated. The identified reaction products were: acetone, glyoxal (HC( dbnd O)C( dbnd O)H), and methylglyoxal (CH 3C( dbnd O)C( dbnd O)H). The use of derivatizing agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and N, O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) were used to propose the other major reaction products: 6-hydroxyhept-5-en-2-one, 4-(1-hydroxy-1-methylethyl)-1-methyl-2-oxocyclohexyl nitrate, 5-(1-hydroxy-1-methylethyl)-2-oxocyclohexyl nitrate, 1-formyl-5-hydroxy-4-(hydroxymethyl)-1,5-dimethylhexyl nitrate, and 1,4-diformyl-5-hydroxy-1,5-dimethylhexyl nitrate. The elucidation of these products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible α-terpineol + NO 3rad reaction mechanisms based on previously published volatile organic compound + NO 3rad gas-phase mechanisms. The additional gas-phase products (2,6,6-trimethyltetrahydro-2 H-pyran-2,5-dicarbaldehyde and 2,2-dimethylcyclohexane-1,4-dicarbaldehyde) are proposed to be the result of cyclization through a reaction intermediate.

  2. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Jones, David R.; Karl, David M.; Laws, Edward A.

    1996-10-01

    In field work conducted at 26°N, 155°W, in the North Pacific subtropical gyre, phytoplankton growth rates μp estimated from 14C labeling of chlorophyll a (chl a) averaged approximately one doubling per day in the euphotic zone (0-150 m). Microbial (microalgal plus heterotrophic bacterial) growth rates μm calculated from the incorporation of 3H-adenine into DNA were comparable to or exceeded phytoplankton growth rates at most depths in the euphotic zone. Photosynthetic rates averaged 727 mg C m -2 day -1 Phytoplankton carbon biomass, calculated from 14C labeling of chl a, averaged 7.2 mg m -3 in the euphotic zone. Vertical profiles of particulate DNA and ATP suggested that no more than 15% of particulate DNA was associated with actively growing cells. Heterotrophic bacterial carbon biomass was estimated from a two-year average at station ALOHA (22°45'N, 158°W) of flow cytometric counts of unpigmented, bacteria-size particles which bound DAPI on the assumption that 15% of the particles were actively growing cells and that heterotrophic bacterial cells contained 20 fg C cell -1 The heterotrophic bacterial carbon so calculated averaged 1.1 mg m -3 in the euphotic zone. Heterotrophic bacterial production was estimated to be 164 mg C m -2 day -1 or 23% of the calculated photosynthetic rate. Estimated heterotrophic bacterial growth rates averaged 0.97 day -1 in the euphotic zone and reached 4.7 day - at a depth of 20 m. Most heterotrophic bacterial production occurred in the upper 40 m of the euphotic zone, suggesting that direct excretion by phytoplankton, perhaps due to photorespiration or ultraviolet light effects, was a significant source of dissolved organic carbon for the bacteria.

  3. Alpha-decay branching ratios of near-threshold states in 19Ne and the astrophysical rate of 15O(α,γ)19Ne

    NASA Astrophysics Data System (ADS)

    Davids, B.; van den Berg, A. M.; Dendooven, P.; Fleurot, F.; Hunyadi, M.; de Huu, M. A.; Rehm, K. E.; Segel, R. E.; Siemssen, R. H.; Wilschut, H. W.; Wörtche, H. J.; Wuosmaa, A. H.

    2003-05-01

    The 15O(α, γ)19Ne reaction is one of two routes for breakout from the hot CNO cycles into the rp process in accreting neutron stars. Its astrophysical rate depends critically on the decay properties of excited states in 19Ne lying just above the 15O + α threshold. We have measured the α-decay branching ratios for these states using the p(21Ne,t)19Ne reaction at 43 MeV/u.

  4. 40 CFR Table I-12 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (300 mm and 450 mm...

  5. 40 CFR Table I-11 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for Semiconductor Manufacturing for... (Bijk) for Semiconductor Manufacturing for Use With the Stack Test Method (150 mm and 200 mm...

  6. 40 CFR Table I-7 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for PV Manufacturing I Table I-7 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-7 Table...

  7. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table...

  8. 40 CFR Table I-5 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for MEMS Manufacturing I Table I-5 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table...

  9. 40 CFR Table I-6 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates(Bijk) for LCD Manufacturing I Table I-6 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-6 Table...

  10. 40 CFR Table I-7 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for PV Manufacturing I Table I-7 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-7 Table...

  11. 40 CFR Table I-6 to Subpart I of... - Default Emission Factors (1-Uij) for Gas Utilization Rates (Uij) and By-Product Formation Rates...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Utilization Rates (Uij) and By-Product Formation Rates (Bijk) for LCD Manufacturing I Table I-6 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-6 Table...

  12. Quantification of Viral and Prokaryotic Production Rates in Benthic Ecosystems: A Methods Comparison

    PubMed Central

    Rastelli, Eugenio; Dell’Anno, Antonio; Corinaldesi, Cinzia; Middelboe, Mathias; Noble, Rachel T.; Danovaro, Roberto

    2016-01-01

    Viruses profoundly influence benthic marine ecosystems by infecting and subsequently killing their prokaryotic hosts, thereby impacting the cycling of carbon and nutrients. Previously conducted studies, based on different methodologies, have provided widely differing estimates of the relevance of viruses on benthic prokaryotes. There has been no attempt so far to compare these independent approaches, including contextual comparisons among different approaches for sample manipulation (i.e., dilution or not of the sediments during incubations), between methods based on epifluorescence microscopy (EFM) or radiotracers, and between the use of different radiotracers. Therefore, it has been difficult to identify the most suitable methodologies and protocols to be used as standard approaches for the quantification of viral infections of prokaryotes. Here, we compared for the first time different methods for determining viral and prokaryotic production rates in marine sediments collected at two benthic sites, differing in depth and environmental conditions. We used a highly replicated experimental design, testing the potential biases associated to the incubation of sediments as diluted or undiluted. In parallel, we also compared EFM counts with the 3H-thymidine incubations for the determination of viral production rates, and the use of 3H-thymidine versus 3H-leucine radiotracers for the determination of prokaryotic production. We show here that, independent from sediment dilution, EFM-based values of viral production ranged from 1.4 to 4.6 × 107 viruses g-1 h-1, and were similar but overall less variable compared to those obtained by the 3H-thymidine method (0.3 to 9.0 × 107 viruses g-1h-1). In addition, the prokaryotic production rates were not affected by sediment dilution, and the use of different radiotracers provided very consistent estimates (10.3–35.1 and 9.3–34.6 ngC g-1h-1 using the 3H-thymidine or 3H-leucine method, respectively). These results indicated

  13. Controls and rates of acid production in commercial-scale sulfur blocks.

    PubMed

    Birkham, T K; Hendry, M J; Barbour, S L; Lawrence, J R

    2010-01-01

    Acidic drainage (pH 0.4-1.0) from oxidizing elemental sulfur (S(0)) blocks is an environmental concern in regions where S(0) is stockpiled. In this study, the locations, controls, and rates of H(2)SO(4) production in commercial-scale S(0) blocks ( approximately 1-2 x 10(6) m(3)) in northern Alberta, Canada, were estimated. In situ modeling of O(2) concentrations ([O(2)]) suggest that 70 to >97% of the annual H(2)SO(4) production occurs in the upper 1 m of the blocks where temperatures increase to >15 degrees C during the summer. Laboratory experiments show that S(0) oxidation rates are sensitive to temperature (Q(10) = 4.3) and dependent on the activity of autotrophic S(0)-oxidizing microbes. The annual efflux of SO(4) in drainage water from a S(0) block (5.5 x 10(5) kg) was within the estimated range of SO(4) production within the block (2.7 x 10(5) to 1.2 x 10(6) kg), suggesting that H(2)SO(4) production and removal rates were approximately equal during the study period. The low mean relative humidity within the block (68%; SD = 17%; n = 21) was attributed to osmotic suction from elevated H(2)SO(4) concentrations and suggests a mean in situ pH of approximately -2.1. The low pH of drainage waters was attributed to the mixing of fresh infiltrating water and low-pH in situ water. Heat generation during S(0) oxidation was an important factor in maintaining elevated temperatures (mean, 11.1 degrees C) within the block. The implications of this research are relevant globally because construction methods and the physical properties of S(0) blocks are similar worldwide.

  14. Gas Generation Rates as an Indicator for the Long Term Stability of Radioactive Waste Products

    SciTech Connect

    Steyer, S.; Brennecke, P.; Bandt, G.; Kroger, H.

    2007-07-01

    Pursuant to the 'Act on the Peaceful Utilization of Atomic Energy and the Protection against its Hazards' (Atomic Energy Act) the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz, BfS) is legally responsible for the construction and operation of federal facilities for the disposal of radioactive waste. Within the scope of this responsibility, particular due to par. 74(1) Ordinance on Radiation Protection, BfS defines all safety-related requirements on waste packages envisaged for disposal, establishes guidelines for the conditioning of radioactive waste and approves the fulfillment of the waste acceptance requirements within the radioactive waste quality control system. BfS also provides criteria to enable the assessment of methods for the treatment and packaging of radioactive waste to produce waste packages suitable for disposal according to par. 74(2) Ordinance on Radiation Protection. Due to the present non-availability of a repository in Germany, quality control measures for all types of radioactive waste products are carried out prior to interim storage with respect to the future disposal. As a result BfS approves the demonstrated properties of the radioactive waste packages and confirms the fulfillment of the respective requirements. After several years of storage the properties of waste packages might have changed. By proving, that such changes have no significant impact on the quality of the waste product, the effort of requalification could be minimized. Therefore, data on the long-term behavior of radioactive waste products need to be acquired and indicators to prove the long-term stability have to be quantified. Preferably, such indicators can be determined easily with non-destructive methods, even for legacy waste packages. A promising parameter is the gas generation rate. The relationship between gas generation rate and long term stability is presented as first result of an ongoing study on behalf of BfS. Permissible gas

  15. Phosphine resistance, respiration rate and fitness consequences in stored-product insects.

    PubMed

    Pimentel, Marco Aurélio G; Faroni, Lêda Rita D'A; Tótola, Marcos R; Guedes, Raul Narciso C

    2007-09-01

    Resistance to fumigants has been frequently reported in insect pests of stored products and is one of the obstacles in controlling these pests. The authors studied phosphine resistance and its physiological basis in adult insects of 12 populations of Tribolium castaneum (Herbst) (Tenebrionidae), ten populations of Rhyzopertha dominica (F.) (Bostrichidae) and eight populations of Oryzaephilus surinamensis L. (Silvanidae) from Brazil, and the possible existence of fitness costs associated with phosphine resistance in the absence of this fumigant. The bioassays for the detection of phosphine resistance followed the FAO standard method. The production of carbon dioxide and the instantaneous rate of population increase (r(i)) of each population of each species were correlated with their resistance ratios at the LC(50). The resistance ratio at LC(50) in T. castaneum ranged from 1.0- to 186.2-fold, in R. dominica from 2.0- to 71.0-fold and in O. surinamensis from 1.9- to 32.2-fold. Ten populations of T. castaneum, nine populations of R. dominica and seven populations of O. surinamensis were resistant to phosphine. In all three species there was significant association (P < 0.05) between respiration rate and phosphine resistance. The populations with lower carbon dioxide production showed a higher resistance ratio, suggesting that the lower respiration rate is the physiological basis of phosphine resistance by reducing the fumigant uptake in the resistant insects. Conversely, populations with higher r(i) showed lower resistance ratios, which could indicate a lower rate of reproduction of the resistant populations compared with susceptible populations. Thus, management strategies based on the interruption of phosphine fumigation may result in reestablishment of susceptibility, and shows good potential for more effective management of phosphine-resistant populations.

  16. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  17. Technologies that affect the weaning rate in beef cattle production systems.

    PubMed

    Dill, Matheus Dhein; Pereira, Gabriel Ribas; Costa, João Batista Gonçalves; Canellas, Leonardo Canali; Peripolli, Vanessa; Neto, José Braccini; Sant'Anna, Danilo Menezes; McManus, Concepta; Barcellos, Júlio Otávio Jardim

    2015-10-01

    We investigated the differences between weaning rates and technologies adopted by farmers in cow-calf production systems in Rio Grande do Sul State, Brazil. Interviews were carried out with 73 farmers about 48 technologies that could affect reproductive performance. Data were analyzed by multivariate analysis using a non-hierarchical cluster method. The level of significance was set at P < 0.05. Three distinct clusters of farmers were created (R (2) = 0.90), named as low (LWR), intermediate (IWR), and high (HWR) weaning rate, with 100, 91, and 96 % of the farmers identified within their respective groups and average weaning rates of 59, 72, and 83 %, respectively. IWR and HWR farmers used more improved natural pasture, fixed-time artificial insemination, selection for birth weight, and proteinated salt compared to LWR. HWR farmers used more stocking rate control, and IWR farmers used more ultrasound to evaluate reproductive performance compared to the LWR group. IWR and HWR adopted more technologies related to nutrition and reproductive aspects of the herd in comparison to LWR. We concluded that farmers with higher technology use on farm had higher weaning rates which could be used to benefit less efficient farmers.

  18. Language-independent talker-specificity in first-language and second-language speech production by bilingual talkers: L1 speaking rate predicts L2 speaking rate.

    PubMed

    Bradlow, Ann R; Kim, Midam; Blasingame, Michael

    2017-02-01

    Second-language (L2) speech is consistently slower than first-language (L1) speech, and L1 speaking rate varies within- and across-talkers depending on many individual, situational, linguistic, and sociolinguistic factors. It is asked whether speaking rate is also determined by a language-independent talker-specific trait such that, across a group of bilinguals, L1 speaking rate significantly predicts L2 speaking rate. Two measurements of speaking rate were automatically extracted from recordings of read and spontaneous speech by English monolinguals (n = 27) and bilinguals from ten L1 backgrounds (n = 86): speech rate (syllables/second), and articulation rate (syllables/second excluding silent pauses). Replicating prior work, L2 speaking rates were significantly slower than L1 speaking rates both across-groups (monolinguals' L1 English vs bilinguals' L2 English), and across L1 and L2 within bilinguals. Critically, within the bilingual group, L1 speaking rate significantly predicted L2 speaking rate, suggesting that a significant portion of inter-talker variation in L2 speech is derived from inter-talker variation in L1 speech, and that individual variability in L2 spoken language production may be best understood within the context of individual variability in L1 spoken language production.

  19. Heart Rate Variability in Association with Frequent Use of Household Sprays and Scented Products in SAPALDIA

    PubMed Central

    Adam, Martin; Schaffner, Emmanuel; Barthélémy, Jean-Claude; Carballo, David; Gaspoz, Jean-Michel; Rochat, Thierry; Schindler, Christian; Schwartz, Joel; Zock, Jan-Paul; Künzli, Nino; Probst-Hensch, Nicole; Team, SAPALDIA

    2012-01-01

    Background: Household cleaning products are associated with adverse respiratory health outcomes, but the cardiovascular health effects are largely unknown. Objective: We determined if long-term use of household sprays and scented products at home was associated with reduced heart rate variability (HRV), a marker of autonomic cardiac dysfunction. Methods: We recorded 24-hr electrocardiograms in a cross-sectional survey of 581 Swiss adults, ≥ 50 years of age, who answered a detailed questionnaire regarding their use of household cleaning products in their homes. The adjusted average percent changes in standard deviation of all normal-to-normal intervals in 24 hr (24-hr SDNN) and total power (TP) were estimated in multiple linear regression in association with frequency [< 1, 1–3, or 4–7 days/week, unexposed (reference)] of using cleaning sprays, air freshening sprays, and scented products. Results: Decreases in 24-hr SDNN and TP were observed with frequent use of all product types, but the strongest reductions were associated with air freshening sprays. Compared with unexposed participants, we found that using air freshening sprays 4–7 days/week was associated with 11% [95% confidence interval (CI): –20%, –2%] and 29% (95% CI: –46%, –8%) decreases in 24-hr SDNN and TP, respectively. Inverse associations of 24-SDNN and TP with increased use of cleaning sprays, air freshening sprays, and scented products were observed mainly in participants with obstructive lung disease (p < 0.05 for interactions). Conclusions: In predominantly older adult women, long-term frequent use of household spray and scented products was associated with reduced HRV, which suggests an increased risk of cardiovascular health hazards. People with preexisting pulmonary conditions may be more susceptible. PMID:22538298

  20. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  1. Composition and production rate of pharmaceutical and chemical waste from Xanthi General Hospital in Greece.

    PubMed

    Voudrias, Evangelos; Goudakou, Lambrini; Kermenidou, Marianthi; Softa, Aikaterini

    2012-07-01

    The objective of this work was to determine the composition and production rates of pharmaceutical and chemical waste produced by Xanthi General Hospital in Greece (XGH). This information is important to design and cost management systems for pharmaceutical and chemical waste, for safety and health considerations and for assessing environmental impact. A total of 233 kg pharmaceutical and 110 kg chemical waste was collected, manually separated and weighed over a period of five working weeks. The total production of pharmaceutical waste comprised 3.9% w/w of the total hazardous medical waste produced by the hospital. Total pharmaceutical waste was classified in three categories, vial waste comprising 51.1%, syringe waste with 11.4% and intravenous therapy (IV) waste with 37.5% w/w of the total. Vial pharmaceutical waste only was further classified in six major categories: antibiotics, digestive system drugs, analgesics, hormones, circulatory system drugs and "other". Production data below are presented as average (standard deviation in parenthesis). The unit production rates for total pharmaceutical waste for the hospital were 12.4 (3.90) g/patient/d and 24.6 (7.48) g/bed/d. The respective unit production rates were: (1) for vial waste 6.4 (1.6) g/patient/d and 13 (2.6) g/bed/d, (2) for syringe waste 1.4 (0.4) g/patient/d and 2.8 (0.8) g/bed/d and (3) for IV waste 4.6 (3.0) g/patient/d and 9.2 (5.9) g/bed/d. Total chemical waste was classified in four categories, chemical reagents comprising 18.2%, solvents with 52.3%, dyes and tracers with 18.2% and solid waste with 11.4% w/w of the total. The total production of chemical waste comprised 1.8% w/w of the total hazardous medical waste produced by the hospital. Thus, the sum of pharmaceutical and chemical waste was 5.7% w/w of the total hazardous medical waste produced by the hospital. The unit production rates for total chemical waste for the hospital were 5.8 (2.2) g/patient/d and 1.1 (0.4) g/exam/d. The respective

  2. Cosmogenic Cl-36 production rates in meteorites and the lunar surface

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Kubik, P. W.; Elmore, D.; Reedy, R. C.

    1989-01-01

    Activity vs. depth profiles of cosmic ray produced Cl-36 were measured in metal from two cores each in the St. Severin and Jilin chondrites and in lunar core 15008. Production of Cl-36 in these samples range from high-energy reactions with Fe and Ni to low-energy reactions with Ca and K and possibly neutron-capture reactions with Cl-36. The cross sections used in the Reedy-Arnold model for neutron-induced reactions were adjusted to get production rates that fit the measured Cl-36 activities in St. Severin metal and in the lunar soil of core 15008. The Cl-36 in metal from St. Severin has a fairly flat activity-vs-depth profile, unlike most other cosmogenic nuclides in bulk samples from St. Severin, which increase in concentration with depth. In metal from Jilin, a decrease in Cl-36 was observed near its center. The length of Jilin's most recent cosmic-ray exposure was approximately 0.5 My. Lunar core 15008 has an excess in Cl-36 of about 4 dpm/kg near its surface that was produced by solar-proton-induced reactions. The calculated production rates are consistent with these measured trends in 15008.

  3. Cosmogenic /sup 36/Cl production rates in meteorites and the lunar surface

    SciTech Connect

    Nishiizumi, K.; Kubik, P.W.; Elmore, D.; Reedy, R.C.; Arnold, J.R.

    1988-01-01

    Activity-versus-depth profiles of cosmic-ray-produced /sup 36/Cl were measured in metal from two cores each in the St. Severin and Jilin chondrites and in lunar core 15008. Production of /sup 36/Cl in these samples range from high-energy reactions with Fe and Ni to low-energy reactions with Ca and K and possibly neutron-capture reactions with /sup 35/Cl. The cross sections used in the Reedy-Arnold model for neutron-induced reactions were adjusted to get production rates that fit the measured /sup 36/Cl activities in St. Severin metal and in the lunar soil of core 15008. The /sup 36/Cl in metal from St. Severin has a fairly flat activity-versus-depth profile, unlike most other cosmogenic nuclides in bulk samples from St. Severin, which increase in concentration with depth. In metal from Jilin, a decrease in /sup 36/Cl was observed near its center. The length of Jilin's most recent cosmic-ray exposure was /approximately/0.5 My. Lunar core 15008 has an excess in /sup 36/Cl of about 4 dpm/kg near its surface that was produced by solar-proton-induced reactions. The calculated production rates are consistent with these measured trends in 15008. 39 refs., 4 figs., 3 tabs.

  4. Direct Measurements of the Local Ozone Production Rate in the Pollution Outflow from a Megacity

    NASA Astrophysics Data System (ADS)

    Crilley, L.; Kramer, L. J.; Woodward-Massey, R.; Cryer, D. R.; Whalley, L. K.; Heard, D. E.; Reeves, C.; Forster, G.; Oram, D.; Bandy, B.; Reed, C.; Lee, J. D.; Bloss, W.

    2015-12-01

    Tropospheric ozone (O3) is major secondary air pollutant that is formed in the atmosphere through the complex oxidation of volatile organic carbon compounds (VOCs) in the presence of nitrogen oxides (NOx) and sunlight. In order to effectively implement control measures to reduce O3 levels, it is necessary to understand the chemical processes that in part govern O3 concentration, and to disaggregate local chemical O3 production from transport. To address this issue, a major field campaign was organised at the Weybourne Atmospheric Observatory (WAO), a coastal site in the UK that is regularly within the pollution outflow from London and Western Europe. As part of this campaign, a novel approach to directly measure in situ the rate of local O3 production was employed along with a range of instrumentation to measure concentrations of different radical species as well as with detailed VOC and NOx speciation. We will present preliminary findings from a major O3 pollution event (~120 ppb) that occurred during the campaign as a case study for investigating the contributing factors influencing O3 formation at a NOx limited site. Direct measurements of local chemical O3 production rates are compared with those inferred from a range of indirect approaches.

  5. Exposure of human megakaryocytes to high shear rates accelerates platelet production.

    PubMed

    Dunois-Lardé, Claire; Capron, Claude; Fichelson, Serge; Bauer, Thomas; Cramer-Bordé, Elisabeth; Baruch, Dominique

    2009-08-27

    Platelets originate from megakaryocytes (MKs) by cytoplasmic elongation into proplatelets. Direct platelet release is not seen in bone marrow hematopoietic islands. It was suggested that proplatelet fragmentation into platelets can occur intravascularly, yet evidence of its dependence on hydrodynamic forces is missing. Therefore, we investigated whether platelet production from MKs could be up-regulated by circulatory forces. Human mature MKs were perfused at a high shear rate on von Willebrand factor. Cells were observed in real time by videomicroscopy, and by confocal and electron microscopy after fixation. Dramatic cellular modifications followed exposure to high shear rates: 30% to 45% adherent MKs were converted into proplatelets and released platelets within 20 minutes, contrary to static conditions that required several hours, often without platelet release. Tubulin was present in elongated proplatelets and platelets, thus ruling out membrane tethers. By using inhibitors, we demonstrated the fundamental roles of microtubule assembly and MK receptor GPIb. Secretory granules were present along the proplatelet shafts and in shed platelets, as shown by P-selectin labeling. Platelets generated in vitro were functional since they responded to thrombin by P-selectin expression and cytoskeletal reorganization. In conclusion, MK exposure to high shear rates promotes platelet production via GPIb, depending on microtubule assembly and elongation.

  6. Species production and heat release rates in two-layered natural gas fires

    SciTech Connect

    Zukoski, E.E.; Morehart, J.H.; Kubota, T.; Toner, S.J. )

    1991-02-01

    A fire burning in an enclosure with restricted ventilation will result in the accumulation of a layer of warm products of combustion mixed with entrained air adjacent to the ceiling. For many conditions, the depth of this layer will extend to occupy a significant fraction of the volume of the room. Eventually, the interface between this vitiated ceiling layer and the uncontaminated environment below will position itself so that a large portion of the combustion processes occur in this vitiated layer. A description is given of experimental work concerning the rates of formation of product species and heat release in a turbulent, buoyant natural gas diffusion flame burning in this two-layered configuration. The enclosure was modeled by placing a hood above a burner so that it accumulated the plume gases, and the unsteady development of the ceiling layer was modeled by the direct addition of air into the upper portion of the hood. Measurements of the composition of these gases allowed the computation of stoichiometries and heat release rates. These investigations showed that the species produced in the flame depend primarily on the stoichiometry of the gases present in the ceiling layer and weakly on the temperature of the layer, but are independent of the fuel pair ratio of the mass transported into the layer by the plume. Heat release rates in the fires were compared to a theoretical limit based on a stoichiometric reaction of fuel and air with excess components left unchanged by the combustion.

  7. Seasonal predator removal relative to hatch rate of duck nests in waterfowl production areas

    USGS Publications Warehouse

    Sargeant, A.B.; Sovada, M.A.; Shaffer, T.L.

    1995-01-01

    These authors report that hatch rates of duck nests were related to removal of predators from waterfowl production areas. Cost effectiveness of such efforts is questioned. The prairie pothole region (PPR) is the primary breeding ground of several species of North American ducks (Bellrose 1980). Much habitat of breeding ducks in the PPR has been destroyed or degraded by intensive agriculture (e.g., Kiel et al. 1972, Bellrose 1980, Sugden and Beyersbergen 1984, Boyd 1985), resulting in high predation rates on duck nests (Sargeant and Raveling 1992). Because of predation, hatch rate (HR) of duck nests in Waterfowl Production Areas (WPA's) in the PPR is often less than the 15-20% suggested for stability of populations of the 5 most common species of dabbling ducks (e.g., Cowardin et al. 1985, Greenwood 1986, Klett et al. 1988, Greenwood et al. 1990). Managers seek ways to reduce depredations of duck clutches in WPA's, but little information is available concerning effects of predator removal. We evaluated seasonal (spring and early summer) removal of predators from WPA's in Minnesota and North Dakota. Our objectives were to compare HR in uplands of WPA's with and without predators removed and to determine functional aspects of conducting predator removal.

  8. Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.

    PubMed

    Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie

    2015-01-02

    Aseptic-Ultra-High-Temperature (UHT) products are manufactured to be free of microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage. Two important phases within the process are widely recognised as critical in controlling microbial contamination: the sterilisation steps and the following aseptic steps. Of the microbial hazards, the pathogen spore formers Clostridium botulinum and Bacillus cereus are deemed the most pertinent to be controlled. In addition, due to a relatively high thermal resistance, Geobacillus stearothermophilus spores are considered a concern for spoilage of low acid aseptic-UHT products. A probabilistic exposure assessment model has been developed in order to assess the aseptic-UHT product failure rate associated with these three bacteria. It was a Modular Process Risk Model, based on nine modules. They described: i) the microbial contamination introduced by the raw materials, either from the product (i.e. milk, cocoa and dextrose powders and water) or the packaging (i.e. bottle and sealing component), ii) the sterilisation processes, of either the product or the packaging material, iii) the possible recontamination during subsequent processing of both product and packaging. The Sterility Failure Rate (SFR) was defined as the sum of bottles contaminated for each batch, divided by the total number of bottles produced per process line run (10(6) batches simulated per process line). The SFR associated with the three bacteria was estimated at the last step of the process (i.e. after Module 9) but also after each module, allowing for the identification of modules, and responsible contamination pathways, with higher or lower intermediate SFR. The model contained 42 controlled settings associated with factory environment, process line or product formulation, and more than 55 probabilistic inputs corresponding to inputs with variability

  9. Calibration of cosmogenic 3He and 10Be production rates in the High Tropics

    NASA Astrophysics Data System (ADS)

    Blard, Pierre-Henri; Martin, Léo; Lavé, Jérôme; Charreau, Julien; Condom, Thomas; Lupker, Maarten; Braucher, Régis; Bourlès, Didier

    2014-05-01

    It is critical to refine both the accuracy and the precision of the in situ cosmogenic dating tool, especially for establishing reliable glacial chronologies that can be compared to other paleoclimatic records. Recent cross-calibrations of cosmogenic 3He in pyroxene and 10Be in quartz [1, 2] showed that, both at low (1300 m) and high elevation (4850 m), the 3He/10Be production ratio was probably ~40% higher than the value of ~23 initially defined in the 90's. This recent update is consistent with the last independent determinations of the sea level high latitude production rates of 10Be and 3He, that are about 4 and 125 at.g-1.yr-1, respectively [e.g. 3, 4]. However, major questions remain about these production rates at high elevation, notably because existing calibration sites for both 3He and 10Be are scarce above 2000 m. It is thus crucial to produce new high precision calibration data at high elevation. Here we report cosmogenic 10Be data from boulders sampled on a glacial fan located at 3800 m in the Central Altiplano (Bolivia), whose age is independently constrained by stratigraphic correlations and radiocarbon dating at ca. 16 ka. These data can be used to calibrate the production rate of 10Be at high elevation, in the Tropics. After scaling to sea level and high latitude, these data yield a sea level high latitude P10 ranging from 3.8 to 4.2 at.g-1.yr-1, depending on the used scaling scheme. These new calibration data are in good agreement with recent absolute and cross-calibration of 3He in pyroxenes and 10Be in quartz, from dacitic moraines located at 4850 m in the Southern Altiplano (22° S, Tropical Andes) [2,5]. The so-obtained 3He/10Be production ratio of 33.3±0.9 (1σ) combined with an absolute 3He production rate locally calibrated in the Central Altiplano, at 3800 m, indeed yielded a sea level high latitude P10 ranging from 3.7±0.2 to 4.1±0.2 at.g-1.yr-1, depending on the scaling scheme [2,5]. These values are also consistent with the 10Be

  10. The Water Production Rate of Comet 2009 P1 (Garradd) throughout the 2011-2012 Apparition

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Mäkinen, J. T. T.; Bertaux, J.; Quémerais, E.; Ferron, S.

    2012-10-01

    The all-sky hydrogen Lyman-alpha camera, SWAN (Solar Wind Anisotropies), on the SOlar and Heliospheric Observatory (SOHO) satellite made observations of the hydrogen coma of comet 2009 P1 (Garradd) throughout its apparition from August 15, 2011 through April 6, 2012. SOHO has been operating in a halo orbit around the Earth-Sun L1 Lagrange point since its launch in late 1995. Most water vapor produced by the comet is ultimately photodissociated into two H atoms and one O atom producing a huge atomic hydrogen coma that is routinely observed in the daily full-sky SWAN images in comets of sufficient brightness. Water production rates were calculated from 117 images over 8 months of the apparition using our time-resolved model (Mäkinen & Combi, 2005, Icarus 177, 217), yielding about 1 observation every 2 days on the average. The activity during much of the pre-perihelion leg was dominated by likely seasonal variability rather than a consistent increasing trend with decreasing heliocentric distance and varied between 1 and 3 x 1029 s-1. A single peak value for the water production rate (4 x 1029 s-1) was found on November 3, 2011, 50 days before perihelion. On the other hand during the post-perihelion leg the production rate decreased rather consistently from 2 x 1029 s-1at perihelion, approximately as r-4.6, where r is the heliocentric distance. The overall shape of the variation with time over the apparition shows many of the same general features as the visual light curve of Yoshida (http://www.aerith.net/comet/catalog/index-T-earth.html). SOHO is an international cooperative mission between ESA and NASA. Support from grant NNX11AH50G from the NASA Planetary Astronomy Program is also acknowledged.

  11. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions.

  12. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Richards, Bryce; Willoughby, Nik

    2012-12-01

    The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.

  13. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites.

  14. Long-range Cooper pair splitter with high entanglement production rate

    PubMed Central

    Chen, Wei; Shi, D. N.; Xing, D. Y.

    2015-01-01

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal. PMID:25556521

  15. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    PubMed

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  16. Comparison of water production rates from UV spectroscopy and visual magnitudes for some recent comets

    NASA Technical Reports Server (NTRS)

    Roettger, E. E.; Feldman, P. D.; A'Hearn, M. F.; Festou, M. C.

    1990-01-01

    IUE data on the UV and visible coma emissions of the comets Bradfield, P/Tempel 2, Wilson, and P/Halley, are presently compared with the visual lightcurves from magnitudes reported in the IAU circulars to consider the temporal evolution of these comets. While the water-production rates obtainable from visual magnitudes on the basis of Newburn's (1984) method are consistent with OH-derived rates to first order, they are sometimes either displaced or unable to exhibit the same pre/postperihelion asymmetry. The best agreement is obtained for the relatively dust-free Comet P/Tempel 2. IUE Fine Error Sensor lightcurves are generally in agreement with curves based on total visual magnitude.

  17. FST-technologies for high rep-rate production of HiPER scale cryogenic targets

    NASA Astrophysics Data System (ADS)

    Aleksandrova, I. V.; Belolipetskiy, A. A.; Kalabuhov, V. A.; Koresheva, E. R.; Koshelev, E. L.; Kutergin, A. I.; Nikitenko, A. I.; Osipov, I. E.; Panina, L. V.; Safronov, A. I.; Timasheva, T. P.; Timofeev, I. D.; Usachev, G. S.; Chtcherbakov, V. I.; Tolley, M.; Edwards, C.; Spindloe, C.

    2011-06-01

    The target factory of an Inertial Fusion Energy (IFE) power plant (or reactor) must supply the targets with a rate of 1-10 Hz including their injection and transport through the chamber. HiPER is a proposed European High Power laser Energy Research facility dedicated to demonstrate the feasibility of laser driven fusion for IFE reactor. The work of HiPER facility requires formation & delivery of cryogenic free-standing targets with a rate of more than 1 Hz. To meet these requirements, an approach to fuel layering based on conduction cooling of a batch of moving spherical targets has been developed at the Lebedev Physical Institute (LPI). The approach demands to use free-standing targets in each production step: fuel filling, fuel layering, target characterization and injection. In this report, the expert results on the development of a specialized layering module prototype for a high reprate FST formation of HiPER cryogenic targets are presented.

  18. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For...

  19. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For...

  20. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For...

  1. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For...

  2. 19 CFR 132.17 - Export certificate for sugar-containing products subject to tariff-rate quota.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Export certificate for sugar-containing products subject to tariff-rate quota. 132.17 Section 132.17 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... certificate for sugar-containing products subject to tariff-rate quota. (a) Requirement. For...

  3. Entanglement Entropy and Mutual Information Production Rates in Acoustic Black Holes

    SciTech Connect

    Giovanazzi, Stefano

    2011-01-07

    A method to investigate acoustic Hawking radiation is proposed, where entanglement entropy and mutual information are measured from the fluctuations of the number of particles. The rate of entropy radiated per one-dimensional (1D) channel is given by S={kappa}/12, where {kappa} is the sound acceleration on the sonic horizon. This entropy production is accompanied by a corresponding formation of mutual information to ensure the overall conservation of information. The predictions are confirmed using an ab initio analytical approach in transonic flows of 1D degenerate ideal Fermi fluids.

  4. Entanglement entropy and mutual information production rates in acoustic black holes.

    PubMed

    Giovanazzi, Stefano

    2011-01-07

    A method to investigate acoustic Hawking radiation is proposed, where entanglement entropy and mutual information are measured from the fluctuations of the number of particles. The rate of entropy radiated per one-dimensional (1D) channel is given by S=κ/12, where κ is the sound acceleration on the sonic horizon. This entropy production is accompanied by a corresponding formation of mutual information to ensure the overall conservation of information. The predictions are confirmed using an ab initio analytical approach in transonic flows of 1D degenerate ideal Fermi fluids.

  5. Cosmic ray production rates of Be-10 and Al-26 in quartz from glacially polished rocks

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Kohl, C. P.; Winterer, E. L.; Klein, J.; Middleton, R.

    1989-01-01

    The concentrations of Be-10 and Al-26 in quartz crystals extracted from glacially polished granitic surfaces from the Sierra Nevada range are studied. These surfaces are identified with the glacial advance during the Tioga period about 11,000 yr ago. The measurements yield the most accurate estimates to date for the absolute production rates of three nuclides in SiO2 due to cosmic ray nucleons and muons for geomagnetic latitudes 43.8-44.6 N and altitudes 2.1-3.6 km.

  6. Gas-phase ozonolysis of β-ocimene: Temperature dependent rate coefficients and product distribution

    NASA Astrophysics Data System (ADS)

    Gaona-Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2016-12-01

    Rate coefficients for the reaction of β-ocimene with O3 molecules have been determined over the temperature range 288-311 K at 750 Torr total pressure of nitrogen using the relative rate technique. The investigations were performed in a large volume reaction vessel using long-path in-situ Fourier transformed infrared (FTIR) spectroscopy to monitor the reactants and products. A value of k(β-ocimene + O3) = (3.74 ± 0.92) × 10-16 cm3 molecule-1 s-1 has been obtained for the reaction at 298 K. The temperature dependence of the reaction is best described by the Arrhenius expression k = (1.94 ± 0.02) × 10-14 exp [(-1181 ± 51)/T] cm3 molecule-1 s-1. In addition, a product study has been carried out at 298 K in 750 Torr of synthetic air and the following products with yields in molar % were observed: formaldehyde (36 ± 2), acetone (15 ± 1), methylglyoxal (9.5 ± 0.4) and hydroxyacetone (19 ± 1). The formation of formaldehyde can be explained by the addition of O3 to the C1sbnd C2 double bond of the β-ocimene. Addition of O3 to the C6sbnd C7 double bond leads to the formation of acetone and the CH3C·(OO·)CH3 biradical, which can through isomerization/stabilization form methylglyoxal (hydroperoxide channel) and hydroxyacetone. The formed products will contribute to the formation of PAN and derivatives in polluted environments and also the oxidation capacity of the atmosphere.

  7. Determination of in Situ Rates of Methane Production and Oxidation From Terrestrial Wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, J. K.; Schrag, D. P.

    2005-12-01

    Wetlands are responsible for over 70% of non-anthropogenic methane emissions. We present a method, using the δ13C of CO2 in pore water, to obtain the in situ rates of methanogenesis occurring beneath the wetland surface. This method allows us to distinguish methanogenesis from methane oxidation during escape, both of which contribute to the net methane flux. The δ13C of CO2(aq) - the dominant form of DIC in acidic natural waters - reflects the processes occurring at that location modified by transport of gas from surrounding depths. Methane production and oxidation are imprinted in the δ13C signature of the aqueous CO2 with heaviest values at depth resulting from the fractionation associated with methane production. We measured δ13C profiles with depth along with CO2 and CH4 concentrations from Sallie's Fen in Barrington, NH. Although the δ13C profiles varied considerably between locations and seasons, the logarithmic shape of the curves showed that methane production was restricted below a certain depth in the sediment - sometimes as shallow as 30 cm. Using a one-dimensional diffusion-reaction model, we are able to estimate rates of methane oxidation and successfully reproduce features present in the data's seasonal cycle. Features of the data not reproducible by the model indicate the importance of alternate gas transport routes such as ebullition and plant-mediated transport. The model also provides evidence for low-level oxygen availability during the winter-spring transition and narrow zones of very high productivity at depths of 60-70cm during the winter. We suggest that this method provides insight directly into the processes that determine methane fluxes from natural wetlands and has great potential for improving our understanding of the biogeochemistry of these systems.

  8. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  9. Assessing Sub-Antarctic Zone primary productivity from fast repetition rate fluorometry

    NASA Astrophysics Data System (ADS)

    Cheah, Wee; McMinn, Andrew; Griffiths, F. Brian; Westwood, Karen J.; Wright, Simon W.; Molina, Ernesto; Webb, Jason P.; van den Enden, Rick

    2011-11-01

    In situ primary productivity (PP) in the Sub-Antarctic Zone (SAZ) and the Polar Frontal Zone (PFZ) south of Australia was estimated using fast repetition rate fluorometry (FRRF). FRRF-derived PP at Process station 3 (P3) southeast of Tasmania (46°S, 153°E) were higher than P1 in the southwest of Tasmania (46°S, 140°E) and P2 in the Polar Frontal Zone (54°S, 146°E). The FRRF-derived PP rates were well correlated with 14C-uptake rates from one-hour incubations ( r2=0.85, slope=1.23±0.05, p<0.01, n=85) but the relationship between both methods differed vertically and spatially. There was a linear relationship between FRRF-based PP and 14C-based PP under light-limited conditions in deeper waters. Under light-saturated conditions near the surface (0-45 m), the relationship was less clear. This was likely associated with the effects of physiological processes such as cyclic electron flow and the Mehler reaction, which are stimulated at high irradiance. Our results indicate that FRRF can be used to estimate photosynthesis rates in the SAZ and PFZ but to derive an accurate estimation of C-fixation requires a detailed understanding of the physiological properties of the cells and their response to oceanographic parameters under different environmental conditions.

  10. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    NASA Astrophysics Data System (ADS)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for

  11. Nitrogen Source and Rate Management Improve Maize Productivity of Smallholders under Semiarid Climates

    PubMed Central

    Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra

    2016-01-01

    Nitrogen is one of the most important factor affecting maize (Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha−1) on umber of rows ear−1 (NOR ear−1), number of seeds row−1 (NOS row−1), number of seeds ear−1 (NOS ear−1), number of ears per 100 plants (NOEP 100 plants−1), grain yield plant−1, stover yield (kg ha−1), and shelling percentage (%) of maize genotypes “Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025).” The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha−1). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha−1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha−1 was found more beneficial over 120 kg N ha−1 (recommended N rate) in terms of greater productivity and growers income. PMID:27965685

  12. Hydrogen Production Using Nickel Electrocatalysts with Pendant Amines: Ligand Effects on Rates and Overpotentials

    SciTech Connect

    Wiese, Stefan; Kilgore, Uriah J.; Ho, Ming-Hsun; Raugei, Simone; DuBois, Daniel L.; Bullock, R. Morris; Helm, Monte L.

    2013-11-01

    A Ni-based electrocatalyst for H2 production, [Ni(8PPh2NC6H4Br)2](BF4)2, featuring eight-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-bromo-phenyl-3,7-triphenyl-1-aza-3,7-diphosphacycloheptane (8PPh2NC6H4Br) has been synthesized and characterized. X-ray diffraction studies reveal that the cation of [Ni(8PPh2NC6H4Br)2(CH3CN)](BF4)2 has a distorted trigonal bipyramidal geometry. In CH3CN [Ni(8PPh2NC6H4Br)2]2+ is an electrocatalyst for reduction of protons, and it has a maximum turnover frequency for H2 production of 800 s-1 with a 700 mV overpotential (at Ecat/2) when using [(DMF)H]OTf as the acid. Addition of H2O to acidic CH3CN solutions of [Ni(8PPh2NC6H4Br)2]2+ results in an increase of the turnover frequency for H2 production to a maximum of 3,300 s-1 with an overpotential of 760 mV at Ecat/2. Computational studies carried out on [Ni(8PPh2NC6H4Br)2]2+ indicate the observed catalytic rate is limited by formation of non-productive protonated isomers, diverting active catalyst from the catalytic cycle. The results of this research show that proton delivery from the exogenous acid to the correct position on the proton relay of the metal complex is essential for fast H2 production. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. 75 FR 42605 - Increase in Tax Rates on Tobacco Products and Cigarette Papers and Tubes; Floor Stocks Tax on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Products and Cigarette Papers and Tubes; Floor Stocks Tax on Certain Tobacco Products, Cigarette Papers, and Cigarette Tubes; and Changes to Basis for Denial, Suspension, or Revocation of Permits AGENCY... rates on tobacco products and cigarette papers and tubes, the floor stocks tax provisions of the...

  14. Comet 73P/Schwassmann-Wachmann 3: O(1D) and H2O Production Rates

    NASA Astrophysics Data System (ADS)

    Hall, Tanya L.; Mierkiewicz, E. J.; Haffner, L. M.; Roesler, F. L.; Harris, W. M.

    2006-12-01

    In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made the closest approach (0.075 AU) to the Earth of a short period comet in more than 75 years. During the comet's 1995/1996 apparition it split into several fragments and, as of March 2006, SW3 was in eight major pieces. From May 1, 2006 through May 6, 2006 we performed a series of [OI] and NH2 (near 6300 Å) observations of the two brightest fragments, SW3-B and SW3-C, using the dual-etalon Fabry-Perot spectrometer that comprises the Wisconsin H-alpha Mapper (WHAM). At the time of our observations the Doppler shift of the comet was within a few km/s of the spectral resolving limit of WHAM (12 km/s), and great care was needed to isolate the blended cometary [OI] emission from the bright terrestrial [OI] emission line. In this poster we will discuss our analysis procedure and our preliminary total O(1D) production rates. Given the photodissociation of H2O and OH as sources of O(1D), we will also present an estimate of the H2O production rates for fragments SW3-B and SW3-C based on our WHAM O(1D) observations. This work was supported by the National Science Foundation's REU program and the Department of Defense's ASSURE program through NSF Award AST-0453442

  15. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.

  16. Calculations of cosmogenic nuclide production rates in the Earth's atmosphere and their inventories

    NASA Technical Reports Server (NTRS)

    Obrien, K.

    1986-01-01

    The production rates of cosmogenic isotopes in the Earth's atmosphere and their resulting terrestrial abundances have been calculated, taking into account both geomagnetic and solar-modulatory effects. The local interstellar flux was assumed to be that of Garcia-Munoz, et al. Solar modulation was accounted for using the heliocentric potential model and expressed in terms of the Deep River neutron monitor count rates. The geomagnetic field was presented by vertical cutoffs calculated by Shea and Smart and the non-vertical cutoffs calculated using ANGRI. The local interstellar particle flux was first modulated using the heliocentric potential field. The modulated cosmic-ray fluxes reaching the earth's orbit then interacted with the geomagnetic field as though it were a high-pass filter. The interaction of the cosmic radiation with the Earth's atmosphere was calculated utilizing the Bolztmann transport equation. Spallation cross sections for isotope production were calculated using the formalism of Silberberg and Tsao and other cross sections were taken from standard sources. Inventories were calculated by accounting from the variation in solar modulation and geomagnetic field strength with time. Results for many isotope, including C-14, Be-7 and Be-10 are in generally good agreement with existing data. The C-14 inventory, for instance, amounts to 1.75/sq cm(e)/s, in excellent agreement with direct estimates.

  17. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  18. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply.

    PubMed

    Mercado, Lina M; Patiño, Sandra; Domingues, Tomas F; Fyllas, Nikolaos M; Weedon, Graham P; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L; Aragão, Luiz E O C; Malhi, Yadvinder; Dolman, A J; Restrepo-Coupe, Natalia; Saleska, Scott R; Baker, Timothy R; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-11-27

    The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.

  19. 19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Calculation of ad valorem subsidy rate and... Countervailable Subsidies § 351.525 Calculation of ad valorem subsidy rate and attribution of subsidy to a product. (a) Calculation of ad valorem subsidy rate. The Secretary will calculate an ad valorem subsidy...

  20. 19 CFR 351.525 - Calculation of ad valorem subsidy rate and attribution of subsidy to a product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Calculation of ad valorem subsidy rate and... Countervailable Subsidies § 351.525 Calculation of ad valorem subsidy rate and attribution of subsidy to a product. (a) Calculation of ad valorem subsidy rate. The Secretary will calculate an ad valorem subsidy...

  1. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2017-04-01

    Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (<3 ng cm-3 y-1). Turnover times of brGDGTs in the surface horizon ranged between 8 and 41 years in the incubations initiated under oxic conditions, in contrast to 123-742 years in anoxic incubations. As brGDGTs were actively produced during both anoxic incubations and those exposed to oxygen, we conclude that their source organisms are likely facultative aerobic heterotrophs that are particularly active in the peat acrotelm. Production rates of bacterial fatty acids (ca. 2 μg cm-3 y-1) were roughly two orders of magnitude higher than those of brGDGTs, suggesting that brGDGT producers are a minor constituent of the microbial community or that brGDGTs are a small component of the microbial cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two

  2. Composition and production rate of medical waste from a small producer in Greece.

    PubMed

    Graikos, Anastasios; Voudrias, Evangelos; Papazachariou, Athanasios; Iosifidis, Nikolaos; Kalpakidou, Maria

    2010-01-01

    The objective of this work was to determine the composition and production rate of medical waste from the health care facility of social insurance institute, a small waste producer in Xanthi, Greece. Specifically, produced medical waste from the clinical pathology (medical microbiology) laboratory, the X-ray laboratory and the surgery and injection therapy departments of the health facility was monitored for six working weeks. A total of 240 kg medical solid waste was manually separated and weighed and 330 L of liquid medical waste was measured and classified. The hazardous waste fraction (%w/w) of the medical solid waste was 91.6% for the clinical pathology laboratory, 12.9% for the X-ray laboratory, 24.2% for the surgery departments and 17.6% for the injection therapy department. The infectious waste fraction (%w/w) of the hazardous medical solid waste was 75.6% for the clinical pathology laboratory, 0% for the X-ray laboratory, 100% for the surgery departments and 75.6% for the injection therapy department. The total hazardous medical solid waste production rate was 64+/-15 g/patient/d for the clinical pathology laboratory, 7.2+/-1.6 g/patient/d for the X-ray laboratory, 8.3+/-5.1 g/patient/d for the surgery departments and 24+/-9 g/patient/d for the injection therapy department. Liquid waste was produced by the clinical pathology laboratory (infectious-and-toxic) and the X-ray laboratory (toxic). The production rate for the clinical pathology laboratory was 0.03+/-0.003 L/patient/d and for the X-ray laboratory was 0.06+/-0.006 L/patient/d. Due to the small amount produced, it was suggested that the most suitable management scheme would be to transport the hazardous medical waste, after source-separation, to the Prefectural Hospital of Xanthi to be treated with the hospital waste. Assuming this data is representative of other small medical facilities, medical waste production can be estimated for such facilities distributed around Greece.

  3. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  4. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes

    NASA Astrophysics Data System (ADS)

    Lifton, Nathaniel; Sato, Tatsuhiko; Dunai, Tibor J.

    2014-01-01

    Several models have been proposed for scaling in situ cosmogenic nuclide production rates from the relatively few sites where they have been measured to other sites of interest. Two main types of models are recognized: (1) those based on data from nuclear disintegrations in photographic emulsions combined with various neutron detectors, and (2) those based largely on neutron monitor data. However, stubborn discrepancies between these model types have led to frequent confusion when calculating surface exposure ages from production rates derived from the models. To help resolve these discrepancies and identify the sources of potential biases in each model, we have developed a new scaling model based on analytical approximations to modeled fluxes of the main atmospheric cosmic-ray particles responsible for in situ cosmogenic nuclide production. Both the analytical formulations and the Monte Carlo model fluxes on which they are based agree well with measured atmospheric fluxes of neutrons, protons, and muons, indicating they can serve as a robust estimate of the atmospheric cosmic-ray flux based on first principles. We are also using updated records for quantifying temporal and spatial variability in geomagnetic and solar modulation effects on the fluxes. A key advantage of this new model (herein termed LSD) over previous Monte Carlo models of cosmogenic nuclide production is that it allows for faster estimation of scaling factors based on time-varying geomagnetic and solar inputs. Comparing scaling predictions derived from the LSD model with those of previously published models suggest potential sources of bias in the latter can be largely attributed to two factors: different energy responses of the secondary neutron detectors used in developing the models, and different geomagnetic parameterizations. Given that the LSD model generates flux spectra for each cosmic-ray particle of interest, it is also relatively straightforward to generate nuclide-specific scaling

  5. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect

    Refunjol, B.T.; Lake, L.W.

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  6. Effects of organic loading rate on biogas production from macroalgae: Performance and microbial community structure.

    PubMed

    Sun, Meng-Ting; Fan, Xiao-Lei; Zhao, Xiao-Xian; Fu, Shan-Fei; He, Shuai; Manasa, M R K; Guo, Rong-Bo

    2017-03-15

    Macroalgae biomass has been considered as a promising feedstock for biogas production. In order to improve the efficiency of anaerobic digestion (AD) of macroalgae, semi-continuous fermentation was conducted to examine the effects of organic loading rate (OLR) on biogas production from Macrocystis pyrifer. Results showed that, under OLRs of 1.37, 2.74, 4.12 and 6.85kgVSsubstrate/(m(3)·d), the average unit biogas yields were 438.9, 477.3, 480.1 and 188.7mL/(gVSsubstrated), respectively. It indicated that biogas production was promoted by the increased OLR in an appropriate range while inhibited by the OLR beyond the appropriate range. The investigation on physical-chemical parameters revealed that unfavorable VFAs concentration, pH and salinity might be the main causes for system failure due to the overrange OLR, while the total phenols failed to reach the inhibitory concentration. Microbial community analysis demonstrated that several bacterial and archaeal phyla altered with increase in OLR apparently.

  7. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR.

    PubMed

    Pakarinen, O; Kaparaju, P; Rintala, J

    2011-10-01

    The possibility of shifting a methanogenic process for hydrogen production by changing the process parameters viz., organic loading rate (OLR) and hydraulic retention time (HRT) was evaluated. At first, two parallel semi-continuously fed continuously stirred tank reactors (CSTR) were operated as methanogenic reactors (M1 and M2) for 78 days. Results showed that a methane yield of 198-218 L/kg volatile solids fed (VS(fed)) was obtained when fed with grass silage at an OLR of 2 kgVS/m³/d and HRT of 30 days. After 78 days of operation, hydrogen production was induced in M2 by increasing the OLR from 2 to 10 kgVS/m³/d and shortening the HRT from 30 to 6 days. The highest H₂ yield of 42 L/kgVS(fed) was obtained with a maximum H₂ content of 24%. The present results thus demonstrate that methanogenic process can be shifted towards hydrogen production by increasing the OLR and decreasing HRT.

  8. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO2 addition (biomass productivity of 26.2gTSSm(-2)d(-1) and a lipid productivity of 6.0glipidsm(-2)d(-1)) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge.

  9. Increasing flux rate to shorten leaching period and ramp-up production

    NASA Astrophysics Data System (ADS)

    Ngantung, Billy; Agustin, Riska; Ravi'i

    2017-01-01

    J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.

  10. E-beam treatment of trichloroethylene-air mixtures: Products and rates

    NASA Astrophysics Data System (ADS)

    Mill, Theodore; Su, Minggong; David Yao, C. C.; Matthews, Stephen M.; Wang, Francis T. S.

    1997-09-01

    Electron beam (E-beam) treatment of 3000 ppmv trichloroethylene (TCE) vapor in dry and wet air led to rapid, nearly quantitative, conversion of TCE to dichloroacetyl chloride, plus small amounts of phosgene. Higher E-beam doses, up to 110 kGy, led to oxidation of the initial products to CO, CO 2, HCl and Cl 2. The results parallel results found for photo- and Cl-atom initiated oxidation of TCE vapor, and are accounted for by an efficient Cl-atom chain oxidation. Lack of effect of 28,000 ppmv water vapor (90% RH) on rates or products reflects a very high efficiency for the Cl-atom chain oxidation and the very slow reaction of vapor phase water with acyl halides. Irradiation experiments conducted with TCE dissolved in aerated and deaerated water at 10 and 300 ppm showed marked differences in radiolytic products from those found in the vapor phase. A preliminary cost estimate indicates that E-beam treatment of TCE vapor is very competitive with conventional activated carbon treatment and catalytic oxidation.

  11. Scattering rates for leptogenesis: Damping of lepton flavour coherence and production of singlet neutrinos

    NASA Astrophysics Data System (ADS)

    Garbrecht, Björn; Glowna, Frank; Schwaller, Pedro

    2013-12-01

    Using the Closed Time Path (CTP) approach, we perform a systematic leading order calculation of the relaxation rate of flavour correlations of left-handed Standard Model leptons. This quantity is of pivotal relevance for flavoured leptogenesis in the Early Universe, and we find it to be 5.19×10-3T at T=107 GeV and 4.83×10-3T at T=1013 GeV, in substantial agreement with estimates used in previous phenomenological analyses. These values apply to the Standard Model with a Higgs-boson mass of 125 GeV. The dependence of the numerical coefficient on the temperature T is due to the renormalisation group running. The leading linear and logarithmic dependencies of the flavour relaxation rate on the gauge and top-quark couplings are extracted, such that the results presented in this work can readily be applied to extensions of the Standard Model. We also derive the production rate of light (compared to the temperature) sterile right-handed neutrinos, a calculation that relies on the same methods. We confirm most details of earlier results, but find a substantially larger contribution from the t-channel exchange of fermions.

  12. Effects of irregular cerebrospinal fluid production rate in human brain ventricular system

    NASA Astrophysics Data System (ADS)

    Hadzri, Edi Azali; Shamsudin, Amir Hamzah; Osman, Kahar; Abdul Kadir, Mohammed Rafiq; Aziz, Azian Abd

    2012-06-01

    Hydrocephalus is an abnormal accumulation of fluid in the ventricles and cavities in the brain. It occurs when the cerebrospinal fluid (CSF) flow or absorption is blocked or when excessive CSF is secreted. The excessive accumulation of CSF results in an abnormal widening of the ventricles. This widening creates potentially harmful pressure on the tissues of the brain. In this study, flow analysis of CSF was conducted on a three-dimensional model of the third ventricle and aqueduct of Sylvius, derived from MRI scans. CSF was modeled as Newtonian Fluid and its flow through the region of interest (ROI) was done using EFD. Lab software. Different steady flow rates through the Foramen of Monro, classified by normal and hydrocephalus cases, were modeled to investigate its effects. The results show that, for normal and hydrocephalus cases, the pressure drop of CSF flow across the third ventricle was observed to be linearly proportionally to the production rate increment. In conclusion, flow rates that cause pressure drop of 5 Pa was found to be the threshold for the initial sign of hydrocephalus.

  13. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  14. Impact of ambient odors on food intake, saliva production and appetite ratings.

    PubMed

    Proserpio, Cristina; de Graaf, Cees; Laureati, Monica; Pagliarini, Ella; Boesveldt, Sanne

    2017-03-01

    The aim of this study was to investigate the effect of ambient odor exposure on appetite, salivation and food intake. 32 normal-weight young women (age: 21.4±5.3year; BMI: 21.7±1.9kg/m(2)) attended five test sessions in a non-satiated state. Each participant was exposed to ambient odors (chocolate, beef, melon and cucumber), in a detectable but mild concentration, and to a control condition (no-odor exposure). During each condition, at different time points, participants rated appetite for 15 food products, and saliva was collected. After approximately 30min, ad libitum intake was measured providing a food (chocolate rice, high-energy dense product) that was congruent with one of the odors they were exposed to. A significant odor effect on food intake (p=0.034) and salivation (p=0.017) was found. Exposure to odors signaling high-energy dense products increased food intake (243.97±22.84g) compared to control condition (206.94±24.93g; p=0.03). Consistently, salivation was increased significantly during chocolate and beef exposure (mean: 0.494±0.050g) compared to control condition (0.417±0.05g; p=0.006). Even though odor exposure did not induce specific appetite for congruent products (p=0.634), appetite scores were significantly higher during odor exposure (p<0.0001) compared to the no-odor control condition and increased significantly over time (p=0.010). Exposure to food odors seems to drive behavioral and physiological responses involved in eating behavior, specifically for odors and foods that are high in energy density. This could have implications for steering food intake and ultimately influencing the nutritional status of people.

  15. Investigating statistical techniques to infer interwell connectivity from production and injection rate fluctuations

    NASA Astrophysics Data System (ADS)

    Al-Yousef, Ali Abdallah

    Reservoir characterization is one of the most important factors in successful reservoir management. In water injection projects, a knowledge of reservoir heterogeneities and discontinuities is particularly important to maximize oil recovery. This research project presents a new technique to quantify communication between injection and production wells in a reservoir based on temporal fluctuations in rates. The technique combines a nonlinear signal processing model and multiple linear regression (MLR) to provide information about permeability trends and the presence of flow barriers. The method was tested in synthetic fields using rates generated by a numerical simulator and then applied to producing fields in Argentina, the North Sea, Texas, and Wyoming. Results indicate that the model coefficients (weights) between wells are consistent with the known geology and relative location between wells; they are independent of injection/production rates. The developed procedure provides parameters (time constants) that explicitly indicate the attenuation and time lag between injector and producer pairs. The new procedure allows for a better insight into the well-to-well connectivities for the fields than MLR. Complex geological conditions are often not easily identified using the weights and time constants values individually. However, combining both sets of parameters in certain representations enhances the inference about the geological features. The applications of the new representations to numerically simulated fields and then to real fields indicate that these representations are capable of identifying whether the connectivity of an injector-producer well pair is through fractures, a high-permeability layer, or through partially completed wells. The technique may produce negative weights for some well pairs. Because there is no physical explanation in waterfloods for negative weights, these are also investigated. The negative weights have at least three causes

  16. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  17. Local Entropy Production Rates in a Polymer Electrolyte Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Siemer, Marc; Marquardt, Tobias; Valadez Huerta, Gerardo; Kabelac, Stephan

    2017-01-01

    A modeling study on a polymer electrolyte membrane fuel cell by means of non-equilibrium thermodynamics is presented. The developed model considers a one-dimensional cell in steady-state operation. The temperature, concentration and electric potential profiles are calculated for every domain of the cell. While the gas diffusion and the catalyst layers are calculated with established classical modeling approaches, the transport processes in the membrane are calculated with the phenomenological equations as dictated by the non-equilibrium thermodynamics. This approach is especially instructive for the membrane as the coupled transport mechanisms are dominant. The needed phenomenological coefficients are approximated on the base of conventional transport coefficients. Knowing the fluxes and their intrinsic corresponding forces, the local entropy production rate is calculated. Accordingly, the different loss mechanisms can be detected and quantified, which is important for cell and stack optimization.

  18. Combined Results on b-Hadron Production Rates and Decay Properties

    SciTech Connect

    Su, Dong

    2002-09-11

    Combined results on b-hadron lifetimes, b-hadron production rates, B{sub d}{sup 0}-{bar B}{sub d}{sup 0} and B{sub s}{sup 0}-{bar B}{sub s}{sup 0} oscillations, the decay width difference between the mass eigenstates of the B{sub s}{sup 0}-{bar B}{sub s}{sup 0} system, the average number of c and {bar c} quarks in b-hadron decays, and searches for CP violation in the B{sub d}{sup 0}-{bar B}{sub d}{sup 0} system are presented. They have been obtained from published and preliminary measurements available in Summer 2000 from the ALEPH, CDF, DELPHI, L3, OPAL and SLD Collaborations. These results have been used to determine the parameters of the CKM unitarity triangle.

  19. Combined results on b-hadron production rates, lifetimes, oscillations and semileptonic decays

    SciTech Connect

    WIllocq, stephane

    2000-08-02

    Combined results on b-hadron lifetimes, b-hadron production rates B{sub d}{sup 0}--Anti-B{sub d}{sup 0} and B{sub s}{sup 0}--Anti-B{sub s}{sup 0} oscillations, the decay width difference between the mass eigenstates of the B{sub s}{sup 0}--Anti-B{sub s}{sup 0} system, and the values of the CKM matrix elements {vert_bar}V{sub cb}{vert_bar} and {vert_bar}V{sub ub}{vert_bar} are obtained from published and preliminary measurements available in Summer 99 from the ALEPH, CDF, DELPHI, L3, OPAL and SLD Collaborations.

  20. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel.

  1. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  2. Expressed transcripts associated with high rates of egg production in chicken ovarian follicles.

    PubMed

    Yang, K T; Lin, C Y; Huang, H L; Liou, J S; Chien, C Y; Wu, C P; Huang, C W; Ou, B R; Chen, C F; Lee, Y P; Lin, E C; Tang, P C; Lee, W C; Ding, S T; Cheng, W T K; Huang, M C

    2008-02-01

    The purpose of this study was to characterize differentially expressed transcripts associated with varying rates of egg production in Taiwan country chickens. Ovarian follicles were isolated from two strains of chicken which showed low (B) or high (L2) rates of egg production, then processed for RNA extraction and cDNA library construction. Three thousand and eight forty clones were randomly selected from the cDNA library and amplified by PCR, then used in microarray analysis. Differentially expressed transcripts (P<0.05, log(2)> or = 1.75) were sequenced, and aligned using GenBank. This analysis revealed 20 non-redundant sequences which corresponded to known transcripts. Eight transcripts were expressed at a higher level in ovarian tissue prepared from chicken strain B, and 12 transcripts were expressed at a higher level in L2 birds. These differential patterns of expression were confirmed by semi-quantitative RT-PCR. We show that transcripts of cyclin B2 (cycB2), ferritin heavy polypeptide 1 (FTH1), Gag-Pol polyprotein, thymosin beta4 (TB4) and elongation factor 1 alpha1 (EEF1A1) were enriched in B strain ovarian follicles. In contrast, thioredoxin (TXN), acetyl-CoA dehydrogenase long chain (ACADL), inhibitor of growth family member 4 (ING4) and annexin II (ANXA2) were expressed in at higher levels in the L2 strain. We suggest that our approach may lead to the isolation of effective molecular markers that can be used in selection programs in Taiwan country chickens.

  3. Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Krishna, K. S.

    2015-02-01

    The Ninetyeast Ridge, a linear trace of the Kerguelen hot spot in the Indian Ocean, was emplaced on a rapidly drifting Indian plate. Magma production rates along the ridge track are computed using gravity-derived excess crustal thickness data. The production rates change between 2 and 15 m3/s over timescales of 3-16 Myr. Major variations in magma production rates are primarily associated with significant changes in the Indian plate velocity with low-production phases linked to high plate velocity periods. The lowest magma production rate (2 m3/s) at 62 Ma is associated with the rapid northward drift of Indian plate under the influence of the Reunion mantle plume. The contemporaneous slowing of the African plate coincides with increase in magma production rate along the Walvis Ridge in the Atlantic Ocean. The present study suggests that variations in the Indian plate motion and frequent ridge jumps have a major role in controlling the magma production, particularly on long-period cycles (~16 Myr). Short-period variations (~5 Myr) in magma productions may be associated with intrinsic changes in the plume, possibly due to the presence of solitary waves in the plume conduit.

  4. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  5. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  6. Product release is rate-limiting for catalytic processing by the Dengue virus protease

    PubMed Central

    Shannon, A. E.; Pedroso, M. M.; Chappell, K. J.; Watterson, D.; Liebscher, S.; Kok, W. M.; Fairlie, D. P.; Schenk, G.; Young, P. R.

    2016-01-01

    Dengue Virus (DENV) is the most prevalent global arbovirus, yet despite an increasing burden to health care there are currently no therapeutics available to treat infection. A potential target for antiviral drugs is the two-component viral protease NS2B-NS3pro, which is essential for viral replication. Interactions between the two components have been investigated here by probing the effect on the rate of enzyme catalysis of key mutations in a mobile loop within NS2B that is located at the interface of the two components. Steady-state kinetic assays indicated that the mutations greatly affect catalytic turnover. However, single turnover and fluorescence experiments have revealed that the mutations predominantly affect product release rather than substrate binding. Fluorescence analysis also indicated that the addition of substrate triggers a near-irreversible change in the enzyme conformation that activates the catalytic centre. Based on this mechanistic insight, we propose that residues within the mobile loop of NS2B control product release and present a new target for design of potent Dengue NS2B-NS3 protease inhibitors. PMID:27897196

  7. Effect of the organic loading rate on biogas composition in continuous fermentative hydrogen production.

    PubMed

    Spagni, Alessandro; Casu, Stefania; Farina, Roberto

    2010-10-01

    Some systems did not select for hydrogen-producing microorganisms and an unexpected growth of hydrogenotrophic methanogens was observed, although the reactors were operated under well-defined operating conditions that could result in biohydrogen production. The aim of this study was to evaluate the effect of the organic loading rate (OLR) on the hydrogen and methane composition of the biogas produced in dark fermentative processes. The study was carried out using an upflow anaerobic sludge blanket (UASB) reactor in order to evaluate the OLR effect in systems with sludge retention. During continuous operation, the UASB reactor showed the slow development of methanogenic activity, related to the applied OLR. The results demonstrate that operating an UASB reactor at pH 5.5 is not enough to prevent the acclimation of methanogens to the acidic pH and therefore long-term biohydrogen production cannot be achieved. Moreover, this study demonstrates that OLR also has an effect on the biogas composition, where the higher the OLR the greater the biogas H2 content.

  8. Composition and production rate of dental solid waste and associated management practices in Hamadan, Iran.

    PubMed

    Nabizadeh, Ramin; Koolivand, Ali; Jafari, Ahmad Jonidi; Yunesian, Massoud; Omrani, Gasemali

    2012-06-01

    The objective of this study was to identify the components, composition and production rate of dental solid waste and associated management practices in dental offices in Hamadan. A total of 28 offices, including ten general dentist offices, eight specialist dentist offices, five practical dentist offices and five denture maker offices were selected in a random way. Three samples from each selected type were taken and the waste was manually separated into 74 sub-fractions and each sub-fraction was weighed. The results showed that the total annual dental waste production in dental offices was 41947.43 kg. Domestic type, potentially infectious, chemical and pharmaceutical and toxic waste constituted 71.15, 21.40, 7.26 and 0.18%, respectively of this amount. Only seven fractions including gypsum, latex gloves, nylon, dental impression material, used medicine ampoules, saliva-contaminated paper towels and saliva ejectors constituted about 80% of the waste. It was also indicated that there were no effective activity for waste minimization, separation, reuse and recycling in dental offices and the management of sharps, potentially infectious waste and other hazardous waste was poor.

  9. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    USGS Publications Warehouse

    Siegel, D.I.; Chanton, J.P.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O.

    2001-01-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11% (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70% in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ~ 17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  10. Wastewater treatment high rate algal pond biomass for bio-crude oil production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2017-01-01

    This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150-300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1-24.9wt% and 37.5-38.9kJ/g, respectively. The bio-crudes were comprised of 71-72.4wt% carbon, 0.9-4.8wt% nitrogen, 8.7-9.8wt% hydrogen and 12-15.7wt% oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5-26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0-9.3wt% gas and 44.8-85.5wt% solid residue (12.2-18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.

  11. Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification.

    PubMed Central

    Lange, C C; Wackett, L P

    1997-01-01

    Toluene dioxygenase from Pseudomonas putida F1 has been studied extensively with aromatic substrates. The present work examined the toluene dioxygenase-catalyzed oxidation of various halogenated ethenes, propenes, butenes and nonhalogenated cis-2-pentene, an isomeric mix of 2-hexenes, cis-2-heptene, and cis-2-octene as substrates for toluene dioxygenase. Enzyme specific activities were determined for the more water-soluble C2 to C5 compounds and ranged from <4 to 52 nmol per min per mg of protein. Trichloroethene was oxidized at a rate of 33 nmol per min per mg of protein. Products from enzyme reactions were identified by gas chromatography-mass spectrometry. Proton and carbon nuclear magnetic resonance spectroscopy of compounds from whole-cell incubation confirmed the identity of products. Substrates lacking a halogen substituent on sp2 carbon atoms were dioxygenated, while those with halogen and one or more unsubstituted allylic methyl groups were monooxygenated to yield allylic alcohols. 2,3-Dichloro-1-propene, containing both a halogenated double bond and a halogenated allylic methyl group, underwent monooxygenation with allylic rearrangement to yield an isomeric mixture of cis- and trans-2,3-dichloro-2-propene-1-ol. PMID:9190800

  12. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  13. Rapid Production of Bose-Einstein Condensates at a 1 Hz Rate

    NASA Astrophysics Data System (ADS)

    Farkas, Daniel; Ramirez-Serrano, Jaime; Salim, Evan

    2013-05-01

    The speed at which Bose-Einstein condensates (BECs) can be produced is a key metric for the performance of ultracold-atom inertial sensors, gravimeters, and magnetometers, where production cycle time of ultracold atoms determines sensor bandwidth. Here, we demonstrate production of 87Rb BECs at rates exceeding 1 Hz. Not only can we create a BEC from a hot vapor in less than one second, but we can continuously repeat the process for several cycles. Such speeds are possible because of the short evaporation times that result when atoms are confined in tight traps. In our case, we magnetically trap atoms with an atom chip that seals the top of one of ColdQuanta's RuBECi®vacuum cells. With RF evaporative cooling sequences as short as 450 ms, we attain nearly pure condensates of 2 × 104 atoms. In the future, the apparatus described here will be integrated into a portable system that houses all of the components needed to produce BECs (e.g. lasers, vacuum, electronics, imaging, etc.) in a volume less than 0.3 m3. This work was supported by the Office of Naval Research (SBIR contract N00014-10-C-0282).

  14. Cryogenic Treatment of Production Components in High-Wear Rate Wells

    SciTech Connect

    Milliken, M.

    2002-04-29

    Deep Cryogenic Tempering (DCT) is a specialized process whereby the molecular structure of a material is ''re-trained'' through cooling to -300 F and then heating to +175-1100 F. Cryocon, Inc. (hereafter referred to as Cryocon) and RMOTC entered an agreement to test the process on oilfield production components, including rod pumps, rods, couplings, and tubing. Three Shannon Formation wells were selected (TD about 500 ft) based on their proclivity for high component wear rates. Phase 1 of the test involved operation for a nominal 120 calendar day period with standard, non-treated components. In Phase 2, treated components were installed and operated for another nominal 120 calendar day period. Different cryogenic treatment profiles were used for components in each well. Rod pumps (two treated and one untreated) were not changed between test phases. One well was operated in pumped-off condition, resulting in abnormal wear and disqualification from the test. Testing shows that cryogenic treatment reduced wear of rods, couplers, and pump barrels. Testing of production tubing produced mixed results.

  15. Methyl Chavicol: Characterization of its Biogenic Emission Rate, Abundance, and Oxidation Products in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J.; Kuster, W.; Degouw, J.; Cahill, T. M.; Holzinger, R.

    2008-12-01

    We report quantitative measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments: gas chromatograph with mass spectrometer detector (GC-MS), proton transfer reaction mass spectrometer (PTR-MS), and thermal desorption aerosol GC-MS (TAG). Previously identified as a potential bark beetle disruptant, methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light and temperature dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68 % of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μ gCg-1h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many species. We propose this newly- characterized biogenic compound should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  16. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  17. Non-UV light influences the degradation rate of crop protection products.

    PubMed

    Davies, Lawrence O; Bramke, Irene; France, Emma; Marshall, Samantha; Oliver, Robin; Nichols, Carol; Schäfer, Hendrik; Bending, Gary D

    2013-08-06

    Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism.

  18. Effect of intermediate compounds and products on wet oxidation and biodegradation rates of pharmaceutical compounds.

    PubMed

    Collado, Sergio; Laca, Adriana; Diaz, Mario

    2013-06-01

    Kinetics of pure compounds in batch agitated reactors are useful data to clarify the characteristics of a given reaction, but they frequently do not provide the required information to design industrial mixed continuous processes because in this case the final and intermediate products interact with the reaction of interest, due to backmixing effects. Simultaneously, the presence and transformations of other compounds, frequent in industrial wastewater treatments, adds more complexity to these types of interactions, whose effect can be different, favorable or unfavorable, for chemical or biological reactions. In this work, batch laboratory reactor data were obtained for the wet oxidation and biodegradation of four phenolic compounds present in a pharmaceutical wastewater and then compared with those collected from industrial continuous stirred tank reactors. For wet oxidation, batch laboratory degradation rates were significantly lower than those found in industrial continuous stirred operation. This behavior was explained by a different distribution of intermediate compounds in lab and industrial treatments, caused by the degree of backmixing and the synergistic effects between phenolic compounds (matrix effects). On the other hand, the specific utilization rates during aerobic biodegradation in the continuous industrial operation were lower than those measured in the laboratory, due to the simultaneous presence of the four pollutants in the industrial process (matrix effects) increasing the inhibitory effects of these compounds and its intermediates.

  19. Right-handed neutrino production rate at T > 160 GeV

    SciTech Connect

    Ghisoiu, I.; Laine, M. E-mail: laine@itp.unibe.ch

    2014-12-01

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ∼ 2/3) in relativistic (M ∼ πT) and non-relativistic regimes (M >> πT), and up to LO in an ultrarelativistic regime (M ∼< gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1 ↔ 2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around (M ∼ g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  20. Right-handed neutrino production rate at T>160 GeV

    SciTech Connect

    Ghisoiu, I.; Laine, M.

    2014-12-16

    The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g∼2/3) in relativistic (M∼πT) and non-relativistic regimes (M≫πT), and up to LO in an ultrarelativistic regime (M≲gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160 GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M∼g{sup 1/2}T in which our interpolation is phenomenological and a more precise study would be welcome.

  1. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  2. Boulder Distributions at Legacy Landing Sites: Assessing Regolith Production Rates and Landing Site Hazards

    NASA Technical Reports Server (NTRS)

    Watkins, R. N.; Jolliff, B. L.; Lawrence, S. J.; Hayne, P. O.; Ghent, R. R.

    2017-01-01

    Understanding how the distribution of boulders on the lunar surface changes over time is key to understanding small-scale erosion processes and the rate at which rocks become regolith. Boulders degrade over time, primarily as a result of micrometeorite bombardment so their residence time at the surface can inform the rate at which rocks become regolith or become buried within regolith. Because of the gradual degradation of exposed boulders, we expect that the boulder population around an impact crater will decrease as crater age increases. Boulder distributions around craters of varying ages are needed to understand regolith production rates, and Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images provide one of the best tools for conducting these studies. Using NAC images to assess how the distribution of boulders varies as a function of crater age provides key constraints for boulder erosion processes. Boulders also represent a potential hazard that must be addressed in the planning of future lunar landings. A boulder under a landing leg can contribute to deck tilt, and boulders can damage spacecraft during landing. Using orbital data to characterize boulder populations at locations where landers have safely touched down (Apollo, Luna, Surveyor, Chang'e-3) provides validation for landed mission hazard avoidance planning. Additionally, counting boulders at legacy landing sites is useful because: 1) LROC has extensive coverage of these sites at high resolutions (approximately 0.5 meters per pixel). 2) Returned samples from craters at these sites have been radiometrically dated, allowing assessment of how boulder distributions vary as a function of crater age. 3) Surface photos at these sites can be used to correlate with remote sensing measurements.

  3. Comparing Time-Dependent Geomagnetic and Atmospheric Effects on Cosmogenic Nuclide Production Rate Scaling

    NASA Astrophysics Data System (ADS)

    Lifton, N. A.

    2014-12-01

    A recently published cosmogenic nuclide production rate scaling model based on analytical fits to Monte Carlo simulations of atmospheric cosmic ray flux spectra (both of which agree well with measured spectra) (Lifton et al., 2014, Earth Planet. Sci. Lett. 386, 149-160: termed the LSD model) provides two main advantages over previous scaling models: identification and quantification of potential sources of bias in the earlier models, and the ability to generate nuclide-specific scaling factors easily for a wide range of input parameters. The new model also provides a flexible framework for exploring the implications of advances in model inputs. In this work, the scaling implications of two recent time-dependent spherical harmonic geomagnetic models spanning the Holocene will be explored. Korte and Constable (2011, Phys. Earth Planet. Int. 188, 247-259) and Korte et al. (2011, Earth Planet. Sci. Lett. 312, 497-505) recently updated earlier spherical harmonic paleomagnetic models used by Lifton et al. (2014) with paleomagnetic measurements from sediment cores in addition to archeomagnetic and volcanic data. These updated models offer improved accuracy over the previous versions, in part to due to increased temporal and spatial data coverage. With the new models as input, trajectory-traced estimates of effective vertical cutoff rigidity (RC- the standard method for ordering cosmic ray data) yield significantly different time-integrated scaling predictions when compared to the earlier models. These results will be compared to scaling predictions using another recent time-dependent spherical harmonic model of the Holocene geomagnetic field by Pavón-Carrasco et al. (2014, Earth Planet. Sci. Lett. 388, 98-109), based solely on archeomagnetic and volcanic paleomagnetic data, but extending to 14 ka. In addition, the potential effects of time-dependent atmospheric models on LSD scaling predictions will be presented. Given the typical dominance of altitudinal over

  4. Investigation of the Photochemistry in Saturn's Ring Shadowed Atmosphere: Production Rates of Key Atmospheric Molecules

    NASA Astrophysics Data System (ADS)

    Edgington, S. G.; Atreya, S. K.; Wilson, E. H.; Baines, K. H.; West, R. A.; Bjoraker, G. L.; Fletcher, L.

    2011-12-01

    Cassini has been orbiting Saturn for well over seven years. During this epoch, the ring shadow has changed from shading a large portion of the northern hemisphere to shading a small region just south of the equator and is continuing southward. At Saturn Orbit Insertion (July 1, 2004), the ring plane was inclined by ~24 degrees relative to the Sun-Saturn vector. The projection of the B-ring onto Saturn reached as far as 40N along the central meridian (~52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N (~58N at the terminator). The net result, is that the intensity of both ultraviolet and visible sunlight penetrating into any particular northern/southern latitude will vary depending on Saturn's tilt relative to the Sun and the optical thickness of each ring system. Previous work [1] looked at the variation of the solar flux as a function of solar inclination, i.e. season (see Figure 1). The current work looks at the impact of the oscillating ring shadow on the photodissociation and production rates of key molecules in Saturn's stratosphere and upper troposphere over time. Beginning with methane, the impact on production and loss rates of the long-lived photochemical hydrocarbons leading to haze formation are examined at several latitudes over a Saturn year. We also look at the impacts on phosphine abundance, a disequilibrium species whose presence in the upper troposphere is a tracer of convection processes in the deep atmosphere. Comparison to the corresponding photodissociation rates for a clear atmosphere and the effect of dynamical mixing will be presented. [1] Edgington,S.G., et al., 2006. Adaptation of a 2-D Photochemical Model to Improve Our Understanding of Saturn's Atmosphere. B.A.A.S., 38, 499 (#11.23). The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Revised Production Rates for Na-22 and Mn-54 in Meteorites Using Cross Sections Measured for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Kim, K. J.; Reedy, R. C.

    2004-01-01

    The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.

  6. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol.

    PubMed

    Li, Xin; Zhang, Guangming; Jiang, Lan; Shi, Xuesong; Zhang, Kaihu; Rong, Wenlong; Duan, Ji'an; Lu, Yongfeng

    2015-02-23

    This paper proposes an efficient approach for production-rate enhancement and size reduction of silicon nanoparticles produced by femtosecond (fs) double-pulse ablation of silicon in ethanol. Compared with a single pulse, the production rate is ~2.6 times higher and the mean size of the NPs is reduced by ~1/5 with a delay of 2 ps. The abnormal enhancement in the production rate is obtained at pulse delays Δt > 200 fs. The production-rate enhancement is mainly attributed to high photon absorption efficiency. It is caused by an increase in localized transient electron density, which results from the first sub-pulse ionization of ethanol molecules before the second sub-pulse arrives. The phase-change mechanism at a critical point might reduce nanoparticle size.

  7. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows.

    PubMed

    Hatew, B; Podesta, S C; Van Laar, H; Pellikaan, W F; Ellis, J L; Dijkstra, J; Bannink, A

    2015-01-01

    The objective of this study was to investigate the effects of starch varying in rate of fermentation and level of inclusion in the diet in exchange for fiber on methane (CH4) production of dairy cows. Forty Holstein-Friesian lactating dairy cows of which 16 were rumen cannulated were grouped in 10 blocks of 4 cows each. Cows received diets consisting of 60% grass silage and 40% concentrate (dry matter basis). Cows within block were randomly assigned to 1 of 4 different diets composed of concentrates that varied in rate of starch fermentation [slowly (S) vs. rapidly (R) rumen fermentable; native vs. gelatinized corn grain] and level of starch (low vs. high; 270 vs. 530g/kg of concentrate dry matter). Results of rumen in situ incubations confirmed that the fractional rate of degradation of starch was higher for R than S starch. Effective rumen degradability of organic matter was higher for high than low starch and also higher for R than S starch. Increased level of starch, but not starch fermentability, decreased dry matter intake and daily CH4 production. Milk yield (mean 24.0±1.02kg/d), milk fat content (mean 5.05±0.16%), and milk protein content (mean 3.64±0.05%) did not differ between diets. Methane expressed per kilogram of fat- and protein-corrected milk, per kilogram of dry matter intake, or as a fraction of gross energy intake did not differ between diets. Methane expressed per kilogram of estimated rumen-fermentable organic matter (eRFOM) was higher for S than R starch-based diets (47.4 vs. 42.6g/kg of eRFOM) and for low than high starch-based diets (46.9 vs. 43.1g/kg of eRFOM). Apparent total-tract digestibility of neutral detergent fiber and crude protein were not affected by diets, but starch digestibility was higher for diets based on R starch (97.2%) compared with S starch (95.5%). Both total volatile fatty acid concentration (109.2 vs. 97.5mM) and propionate proportion (16.5 vs. 15.8mol/100mol) were higher for R starch- compared with S starch

  8. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon)

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Marechal, Jean-Christophe; Riotte, Jean; Boeglin, Jean-Loup; Bedimo Bedimo, Jean-Pierre; Ndam Ngoupayou, Jules Remy; Nyeck, Brunot; Robain, Henri; Sekhar, M.; Audry, Stéphane; Viers, Jérôme

    2012-12-01

    are exported from the lateritic regolith and maybe due to the dissolution of kaolinite crystals. Compared to the other immobile elements (Zr, Hf, Nb and Th), Ti is significantly exported. Among redox-sensitive elements (Fe, V, Cr, Mn, Ce), only Ce and Mn are exported out of the hillside system. The other elements (Fe, V, Cr) are likely able to be mobilized but over a short distance only. Rb, Sr, Ba, Ni, Cu, Zn are affected by export processes. LREE and Y are exported but in very low amounts (in the range from μmol/ha/yr to mmol/ha/yr) while HREE and U are exported in negligible quantities. A first attempt is carried out to compare the mature ridge top profile from Nsimi SEW with the immature ridge top weathering profile from the Mule Hole SEW (South India), developed on similar granodioritic basement, in order to get deeper insight into (i) the contemporary saprolite production rates and (ii) the combined effect of precipitation (in terms of Mean Annual Rainfall, MAR) and evapotranspiration on the aggressiveness of the draining solutions. Considering (i) the contemporary Na flux as representative of the dissolution of plagioclase crystals and conservative during saprolitization processes and (ii) steady state of the inter-annual recharge (R) over a 10 years period, the current saprolite production rates (σr) are of 22 mm/kyr for Mule Hole SEW and 2 mm/kyr for Nsimi SEW, respectively. Even with a very low R/MAR ratio (0.04) compared to Nsimi, the chemical weathering at Mule Hole is active and related to the groundwater exports. At Mule Hole, plagioclase crystals are still present in the saprolite and the soil cover leading to a diffuse weathering front. The high Nsimi R/MAR ratio (0.2) allows the solution to be still aggressive with respect to the plagioclase and other weatherable minerals at the bedrock interface resulting in their complete breakdown in a few centimetres (sharp weathering front) leading to a mature saprolite. For the Nsimi SEW, if we consider (i

  9. 75 FR 73861 - Change in Rates and Classes of General Applicability for Competitive Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... product to cover its attributable costs (39 U.S.C. 3633(a)(2)) and should result in competitive products... competitive products to contribute a minimum of 5.5 percent to the Postal Service's institutional...

  10. The production of cosmogenic nuclides by GCR-particles for 2 pi exposure geometries

    NASA Astrophysics Data System (ADS)

    Leya, I.; Neumann, S.; Wieler, R.; Michel, R.

    2001-11-01

    We present a purely physical model for the calculation of depth dependent production rates in 2 pi exposure geometries by galactic cosmic rays (GCR). Besides the spectra of primary and secondary particles and the excitation functions of the underlying nuclear reactions, the model is based on the integral number of GCR particles in the lunar orbit. We derived this value from adjusting modeled depth profiles for 10Be, 26Al, and 53Mn to measured data from the Apollo 15 drill core. The J0,GCR-value of 4.54 cm-2 s-1 and the solar modulation parameter of M = 490 MeV determined this way for 1 AU is in reasonable agreement with the J0,GCR-value derived recently for the meteoroid orbits (Leya et al., 2000b). We also show that the mean GCR proton spectrum in the lunar orbit has not changed substantially over about the last 10 Myr. For the major target elements we present depth dependent production rates for 10Be, 14C, 26Al, 36Cl and 53Mn, as well as for the rare gas isotopes 20,21,22Ne. In addition we present production rates for 36,38Ar from Fe and Ni. The new results are consistent with the data for stony meteoroids presented recently by our group (Leya et al., 2000b), but for the rare gas isotopes the new production rates sometimes differ significantly from earlier estimates. The applicability of the 22Ne/21Ne ratio as a shielding parameter is also discussed.

  11. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  12. Quantifying melt production and degassing rate at mid-ocean ridges from global mantle convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Black, Benjamin; Zhong, Shijie; Manga, Michael; Rudolph, Maxwell L.; Olson, Peter

    2016-07-01

    The Earth's surface volcanism exerts first-order controls on the composition of the atmosphere and the climate. On Earth, the majority of surface volcanism occurs at mid-ocean ridges. In this study, based on the dependence of melt fraction on temperature, pressure, and composition, we compute melt production and degassing rate at mid-ocean ridges from three-dimensional global mantle convection models with plate motion history as the surface velocity boundary condition. By incorporating melting in global mantle convection models, we connect deep mantle convection to surface volcanism, with deep and shallow mantle processes internally consistent. We compare two methods to compute melt production: a tracer method and an Eulerian method. Our results show that melt production at mid-ocean ridges is mainly controlled by surface plate motion history, and that changes in plate tectonic motion, including plate reorganizations, may lead to significant deviation of melt production from the expected scaling with seafloor production rate. We also find a good correlation between melt production and degassing rate beneath mid-ocean ridges. The calculated global melt production and CO2 degassing rate at mid-ocean ridges varies by as much as a factor of 3 over the past 200 Myr. We show that mid-ocean ridge melt production and degassing rate would be much larger in the Cretaceous, and reached maximum values at ˜150-120 Ma. Our results raise the possibility that warmer climate in the Cretaceous could be due in part to high magmatic productivity and correspondingly high outgassing rates at mid-ocean ridges during that time.

  13. Determination of water vapor transmission rate (WVTR) of HDPE bottles for pharmaceutical products.

    PubMed

    Chen, Yisheng; Li, Yanxia

    2008-06-24

    The objective of this study was to investigate the effects of experimental conditions for measuring the water vapor transmission rate (WVTR) of high-density polyethylene (HDPE) bottles using a steady-state sorption method. Bottles were filled with desiccant, closed with caps and heat induction sealed, and then stored in stability chambers at controlled temperature and relative humidity. Weight gain of the bottles was determined every 1 or 2 weeks until a linear weight gain profile was obtained. WVTR of the bottles was determined from the slope of the linear portion of the weight gain versus time profile. The effects of desiccants and temperature/humidity were studied. Results show that, with a sufficient amount of anhydrous calcium chloride in bottles, a negligibly low and sufficiently constant headspace humidity is maintained, and a steady-state permeation rate is achieved. For all 8 sizes of bottles used in this study, steady-state was achieved in 1 or 2 weeks after the experiment was started. This method provided reproducible WVTR data for HDPE bottles. Apparent moisture permeability of all 8 sizes of bottles was (2.3+/-0.3)x10(-7), (2.6+/-0.2)x10(-7), and (3.4+/-0.2)x10(-7)cm(2)/s at 25 degrees C, 30 degrees C, 40 degrees C, respectively. Moisture permeability determined from the current study was similar to data reported in the literature, indicating that the steady-state weight gain method can be used to obtain reliable WVTR of containers for pharmaceutical products.

  14. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  15. Analysis of the radial potential structure and neutron production rate in the spherical inertial electrostatic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Ramzanpour, M. A.; Pahlavani, M. R.

    2017-01-01

    The radial dependent potential and neutron production rate in spherical inertial electrostatic confinement fusion (IECF) devices is investigated. The electrostatic potential is determined by solving the Poisson equation for various deuteron and electron distribution functions. The fusion reaction rates are determined using energy distribution function. Also, dependence of potential structure and neutron production rate on some important parameters as the ion and electron convergence, working pressure, kinetic energy of the secondary electrons emitted from the cathode and the fraction of secondary electrons drawn inside the cathode are studied. Total produced neutrons as a function of input power at different working conditions are also obtained.

  16. Metabolomic and Metagenomic Analysis of Two Crude Oil Production Pipelines Experiencing Differential Rates of Corrosion

    PubMed Central

    Bonifay, Vincent; Wawrik, Boris; Sunner, Jan; Snodgrass, Emily C.; Aydin, Egemen; Duncan, Kathleen E.; Callaghan, Amy V.; Oldham, Athenia; Liengen, Turid; Beech, Iwona

    2017-01-01

    Corrosion processes in two North Sea oil production pipelines were studied by analyzing pig envelope samples via metagenomic and metabolomic techniques. Both production systems have similar physico-chemical properties and injection waters are treated with nitrate, but one pipeline experiences severe corrosion and the other does not. Early and late pigging material was collected to gain insight into the potential causes for differential corrosion rates. Metabolites were extracted and analyzed via ultra-high performance liquid chromatography/high-resolution mass spectrometry with electrospray ionization (ESI) in both positive and negative ion modes. Metabolites were analyzed by comparison with standards indicative of aerobic and anaerobic hydrocarbon metabolism and by comparison to predicted masses for KEGG metabolites. Microbial community structure was analyzed via 16S rRNA gene qPCR, sequencing of 16S PCR products, and MySeq Illumina shotgun sequencing of community DNA. Metagenomic data were used to reconstruct the full length 16S rRNA genes and genomes of dominant microorganisms. Sequence data were also interrogated via KEGG annotation and for the presence of genes related to terminal electron accepting (TEA) processes as well as aerobic and anaerobic hydrocarbon degradation. Significant and distinct differences were observed when comparing the ‘high corrosion’ (HC) and the ‘low corrosion’ (LC) pipeline systems, especially with respect to the TEA utilization potential. The HC samples were dominated by sulfate-reducing bacteria (SRB) and archaea known for their ability to utilize simple carbon substrates, whereas LC samples were dominated by pseudomonads with the genetic potential for denitrification and aerobic hydrocarbon degradation. The frequency of aerobic hydrocarbon degradation genes was low in the HC system, and anaerobic hydrocarbon degradation genes were not detected in either pipeline. This is in contrast with metabolite analysis, which

  17. Progress in quantifying rates and product ratios of microbial denitrification using stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Buchen, Caroline; Giesemann, Anette; Lewicka-Szczebak, Dominika; Rohe, Lena; Flessa, Heinz

    2015-04-01

    and reduction and identifying N2O formation by processes other than bacterial denitrification is achieved. References: Rohe, L., Anderson, T.-H., Braker, G., Flessa, H., Giesemann, A., Lewicka-Szczebak, D, Wrage-Mönnig, N., Well, R. (2014) Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid communications in mass spectrometry, 28, 1893-1903. Lewicka-Szczebak D, Well R, Köster JR, Fuß R, Senbayram M, Dittert K, Flessa H (2014) Experimental determinations of isotopic fractionation factors associated with N2O production and reduction during denitrification in soils. Geochim Cosmochim Acta 134:55-73 Lewicka-Szczebak D, Well R, Bol R, Gregory AS, Matthews GP, Misselbrook TH, Whalley WR, Cardenas L M (2015) Isotope fractionation factors controlling isotopocule signatures of soil-emitted N2O produced by denitrification processes of various rates. Rapid Comm Mass Spectrometry 29:269-282

  18. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  19. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

  20. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry

    SciTech Connect

    Esteban, N.V.; Loughlin, T.; Yergey, A.L.; Zawadzki, J.K.; Booth, J.D.; Winterer, J.C.; Loriaux, D.L. )

    1991-01-01

    Growth retardation as well as the development of Cushingoid features in adrenally insufficient patients treated with the currently accepted replacement dose of cortisol (33-41 mumol/day.m2; 12-15 mg/m2.day) prompted us to reevaluate the cortisol production rate (FPR) in normal subjects and patients with Cushing's syndrome, using a recently developed thermospray liquid chromatography-mass spectrometry method. The stable isotope (9,12,12-2H3)cortisol was infused continuously for 31 h at about 5% of the anticipated FPR. Blood samples were obtained at 20-min intervals for 24 h, spun, and pooled in 4-h groups. Tracer dilution in plasma was determined by liquid chromatography/mass spectrometry. The method was validated with controlled infusions in 6 patients with adrenal insufficiency. Results from 12 normal volunteers revealed a FPR of 27.3 +/- 7.5 mumol/day (9.9 +/- 2.7 mg/day) or 15.7 mumol/day.m2; 5.7 mg/m2. day. A previously unreported circadian variation in FPR was observed. Patients with Cushing's syndrome demonstrated unequivocal elevation of FPR and cortisol concentration correlated during each sample period in normal volunteers, indicating that cortisol secretion, rather than metabolism, is mainly responsible for changes in plasma cortisol. Our data suggest that the FPR in normal subjects may be lower than previously believed.

  1. Entropy production rate in a flux-driven self-organizing system

    SciTech Connect

    Kawazura, Y.; Yoshida, Z.

    2010-12-15

    Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The 'minimum EPR principle' is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of 'maximum EPR states'. Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Z. Yoshida and S. M. Mahajan, Phys. Plasmas 15, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the determinant of the operating point, and may take either minimum or maximum values depending on how the system is driven.

  2. Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.; Balsiger, H.; Geiss, J.; Goldstein, B. E.; Kettmann, G.

    1990-01-01

    The ion composition measurements in the ionosphere of Comet Halley by the ion mass spectrometer (IMS) experiment on the Giotto spacecraft are used to estimate the relative abundance of HCN. From a comparison of the normalized number density of ions with mass-to-charge (M/q) ratio of 28 AMU/e with steady-state photochemical models, it can be determined that the production rate of HCN directly from the central nucleus is Q(HCN) is less than about 0.0002 Q(H2O) at the time of Giotto encounter. The related photochemical- model calculations also indicate that Q(NH3)/Q(H2O) at the time of Giotto encounter. The related photo-chemical model calculations also indicate that Q(HN3)/Q(H2O) equals about 0.005, in agreement with recent determination from ground-based observations. The estimated value of Q(HCN) is lower than the relative abundance of Q(HCN)/Q(H2O) of about 0.001, as derived from radio observations of the 88.6 GHz emission of the J = 1 - 0 transition of HCN. The difference may be the result of time variations of the coma composition and dynamics, as well as other model-dependent effects.

  3. Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism.

    PubMed Central

    Wackett, L P; Shames, S L; Venditti, C P; Walsh, C T

    1987-01-01

    Carbon-phosphorus bond cleavage activity, found in bacteria that utilize alkyl- and phenylphosphonic acids, has not yet been obtained in a cell-free system. Given this constraint, a systematic examination of in vivo C-P lyase activity has been conducted to develop insight into the C-P cleavage reaction. Six bacterial strains were obtained by enrichment culture, identified, and characterized with respect to their phosphonic acid substrate specificity. One isolate, Agrobacterium radiobacter, was shown to cleave the carbon-phosphorus bond of a wide range of substrates, including fosfomycin, glyphosate, and dialkyl phosphinic acids. Furthermore, this organism processed vinyl-, propenyl-, and propynylphosphonic acids, a previously uninvestigated group, to ethylene, propene, and propyne, respectively. A determination of product stoichiometries revealed that both C-P bonds of dimethylphosphinic acid are cleaved quantitatively to methane and, furthermore, that the extent of C-P bond cleavage correlated linearly with the specific growth rate for a range of substrates. The broad substrate specificity of Agrobacterium C-P lyase and the comprehensive characterization of the in vivo activity make this an attractive system for further biochemical and mechanistic experiments. In addition, the failure to observe the activity in a group of gram-positive bacteria holds open the possibility that a periplasmic component may be required for in vivo expression of C-P lyase activity. PMID:3804975

  4. Optimum poultry litter rates for maximum profit vs. yield in cotton production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...

  5. The Hydroxyl Radical Reaction Rate Constant and Products of Dimethyl Succinate

    DTIC Science & Technology

    2008-03-01

    reaction. Formic acid is believed to be a degradation product of the primary product, methyl glyoxylate (MG, CH3OC(=O)C(=O)H). Product formation...O)OH)) at a yield of only vi 2.17 ± 0.25%. Extensive efforts were used to identify other primary products but none were measured. Formic acid ...initiating the OH + DMS reaction. Formic acid is believed to be a degradation product of the primary product, methyl glyoxylate (MG, CH3OC(=O)C(=O)H

  6. The Gas Production Rate and Coma Structure of Comet C/1995 01 (Hale-Bopp)

    NASA Technical Reports Server (NTRS)

    Morgenthaler, Jeffrey P.; Harris, Walter M.; Roesler, Frederick L.; Scherb, Frank; Anderson, Christopher M.; Doane, Nathaniel E.; Oliversen, Ronald J.

    2002-01-01

    The University of Wisconsin-Madison and NASA-Goddard conducted a comprehensive multi-wavelength observing campaign of coma emissions from comet Hale-Bopp, including OH 3080 A, [O I] 6300 A, H2O(+) 6158 A, H Balmer-alpha 6563 A, NH2 6330 A, [C I] 9850 A CN 3879 A, C2 5141 A, C3 4062 A, C I 1657 A, and the UV and optical continua. In this work, we concentrate on the results of the H2O daughter studies. Our wide-field OH 3080 A measured flux agrees with other, similar observations and the expected value calculated from published water production rates using standard H2O and OH photochemistry. However, the total [O I] 6300 A flux determined spectroscopically over a similar field-of-view was a factor of 3 - 4 higher than expected. Narrow-band [O I] images show this excess came from beyond the H2O scale length, suggesting either a previously unknown source of [O I] or an error in the standard OH + upsilon to O((sup I)D) + H branching ratio. The Hale-Bopp OH and [O I] distributions, both of which were imaged to cometocentric distances greater than 1 x 10(exp 6) km, were more spatially extended than those of comet Halley (after correcting for brightness differences), suggesting a higher bulk outflow velocity. Evidence of the driving mechanism for this outflow is found in the H(alpha) line profile, which was narrower than in comet Halley (though likely because of opacity effects, not as narrow as predicted by Monte-Carlo models). This is consistent with greater collisional coupling between the suprathermal H photodissociation products and Hale-Bopp's dense coma. Presumably because of mass loading of the solar wind by ions and ions by the neutrals, the measured acceleration of H2O(+) down the ion tail was much smaller than in comet Halley. Tailward extensions in the azimuthal distributions of OH 3080 A, [O I], and [C I], as well as a Doppler asymmetry in the [O I] line profile, suggest ion-neutral coupling. While the tailward extension in the OH can be explained by increased

  7. Primary Productivity Rates at Station ALOHA Determined by 18O Labeling and the Triple Isotope Composition of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Juranek, L. W.; Quay, P. D.; Karl, D. M.

    2002-12-01

    Although knowledge of accurate Primary Productivity (PPr) rates is essential to the understanding of ocean carbon cycling, the standard method of determining ocean productivity, 14C labeling, often yields uncertain results. Typically, 14C-derived PPr rates fall ambiguously between gross and net productivity because the method is sensitive to recycling of a relatively small POC pool. Bottle incubations using labeled oxygen produced from 18O-enriched water have shown promise in giving a more consistent measure of gross productivity, since the pool of dissolved oxygen is less sensitive to recycling than POC. Typically this method gives gross PPr rates that are 2-3 times 14C-derived rates. Recently Luz and Barkan (2001) have pioneered a new technique to determine PPr rates using the triple isotope composition of dissolved oxygen as an in situ tracer. This relies on the observation that a signature of mass-independent fractionation originating in the stratosphere and imparted to the surface ocean by air-sea exchange is diminished by biological oxygen production. In February 2002 we measured gross productivity using both the 18O-labeling and triple isotope in situ methods at Hawaii Ocean Time-Series station ALOHA in the N. Pacific subtropical gyre. We found the in situ oxygen isotope method yielded double the 14C-derived PPr rates while 18O bottle incubations yielded similar rates as 14C. In addition, comparison of in situ isotope measurements with the biological oxygen saturation state indicate that community respiration is approximately equal to gross photosynthesis in the upper 60 m while from 80-200 m respiration exceeds photosynthesis by at most 10 %. We will present these results along with new results from upcoming measurements at station ALOHA.

  8. Viral decay and viral production rates in continental-shelf and deep-sea sediments of the Mediterranean Sea.

    PubMed

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Magagnini, Mirko; Danovaro, Roberto

    2010-05-01

    Here, for the first time, we have carried out synoptic measurements of viral production and decay rates in continental-shelf and deep-sea sediments of the Mediterranean Sea to explore the viral balance. The net viral production and decay rates (1.1-61.2 and 0.6-13.5 x 10(7) viruses g(-1) h(-1), respectively) were significantly correlated, and were also related to prokaryotic heterotrophic production. The addition of enzymes increased the decay rates in the surface sediments, but not in the subsurface sediments. Both the viral production and the decay rates decreased significantly in the deeper sediment layers, while the virus-to-prokaryote abundance ratio increased, suggesting a high preservation of viruses in the subsurface sediments. Viral decay did not balance viral production at any of the sites investigated, accounting on average for c. 32% of the gross viral production in the marine sediments. We estimate that the carbon (C) released by viral decay contributed 6-23% to the total C released by the viral shunt. Because only c. 2% of the viruses produced can infect other prokaryotes, the majority is not subjected to direct lysis and potentially remains as a food source for benthic consumers. The results reported here suggest that viral decay can play an important role in biogeochemical cycles and benthic trophodynamics.

  9. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  10. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  11. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria.

    PubMed

    Taher, Edris; Chandran, Kartik

    2013-04-02

    The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH(4)) to methanol (CH3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH(4) to CH(3)OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH(3)OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH(4) to CH(3)OH conversion obtained during this study was 0.82 mg CH(3)OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH(4) oxidation to CH(3)OH by AOB was inhibited by NH(3) (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH(3)OH, itself. Further, oxidation of CH(4) to CH(3)OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH(2)OH) as an electron donor. Therefore, a potential optimum design for promoting CH(4) to CH(3)OH oxidation by AOB could involve supplying NH(3) (needed to maintain AMO activity) uncoupled from the supply of NH(2)OH and CH(4). Partial oxidation of CH(4)-containing gases to CH3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH(3) OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N(2), using an internally produced organic electron donor.

  12. Regulating emotions uniquely modifies reaction time, rate of force production, and accuracy of a goal-directed motor action.

    PubMed

    Beatty, Garrett F; Fawver, Bradley; Hancock, Gabriella M; Janelle, Christopher M

    2014-02-01

    We investigated how emotion regulation (ER) strategies influence the execution of a memory guided, ballistic pinch grip. Participants (N=33) employed ER strategies (expressive suppression, emotional expression, and attentional deployment) while viewing emotional stimuli (IAPS images). Upon stimulus offset, participants produced a targeted pinch force aimed at 10% of their maximum voluntary contraction. Performance measures included reaction time (RT), rate of force production, and performance accuracy. As hypothesized, attentional deployment resulted in the slowest RT, largest rate of force production, and poorest performance accuracy. In contrast, expressive suppression reduced the rate of force production and increased performance accuracy relative to emotional expression and attentional deployment. Findings provide evidence that emotion regulation strategies uniquely influence human movement. Future work should further delineate the interacting role that emotion regulation strategies have in modulating both affective experience and motor performance.

  13. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition

    PubMed Central

    Ha, Sun-Yong; Lee, Yeonjung; Kim, Min-Seob; Kumar, K. Suresh; Shin, Kyung-Hoon

    2015-01-01

    After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month); thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs) was calculated using 13C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR) usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides) reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM) showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH) production rate during October, i.e., 83.83 ± 10.47 fgC·L−1·h−1. The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum); a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L−1·h−1, was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae). PMID:26561820

  14. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition.

    PubMed

    Ha, Sun-Yong; Lee, Yeonjung; Kim, Min-Seob; Kumar, K Suresh; Shin, Kyung-Hoon

    2015-11-06

    After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month); thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs) was calculated using (13)C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR) usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides) reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM) showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH) production rate during October, i.e., 83.83 ± 10.47 fgC·L(-1)·h(-1). The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum); a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L(-1)·h(-1), was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae).

  15. An Investigation of the Effect of Production Rate Variation on Direct Labor Requirements for Missile Production Programs.

    DTIC Science & Technology

    1980-06-01

    Model Coefficient Variability Modelo B0 as0 1 A81 a Model Reduced Full (%) Reduced Full (%) 2 1 1775 1882 6 -.20 -.19 -5 -.04 2 1863 1890 1.4...b for Production Program Stretchouts," National Manage- ment Journal, Spring 1969, pp . 25-41. 9. Large, Joseph P., Karl Hoffmayer, and Frank

  16. Estimates of rates and errors for measurements of direct-. gamma. and direct-. gamma. + jet production by polarized protons at RHIC

    SciTech Connect

    Beddo, M.E.; Spinka, H.; Underwood, D.G.

    1992-08-14

    Studies of inclusive direct-{gamma} production by pp interactions at RHIC energies were performed. Rates and the associated uncertainties on spin-spin observables for this process were computed for the planned PHENIX and STAR detectors at energies between {radical}s = 50 and 500 GeV. Also, rates were computed for direct-{gamma} + jet production for the STAR detector. The goal was to study the gluon spin distribution functions with such measurements. Recommendations concerning the electromagnetic calorimeter design and the need for an endcap calorimeter for STAR are made.

  17. High acceptor production rate in electron-irradiated n-type GaAs: Impact on defect models

    NASA Astrophysics Data System (ADS)

    Look, D. C.

    1987-09-01

    Defect production rates have been studied in electron-irradiated GaAs by temperature-dependent Hall-effect (TDH) measurements. The TDH results agree well with deep level transient spectroscopy (DLTS) results for the well-known electron traps E1, E2, and E3, but conclusively demonstrate a much higher production rate (4±1 cm-1) of acceptors below E3 than the total of all other DLTS traps. These findings strongly affect current defect models, and, e.g., are consistent with the existence of Ga sublattice damage, not seen before.

  18. Two-stage high-rate biogas (H2 and CH4) production from food waste using anaerobic mixed microflora

    NASA Astrophysics Data System (ADS)

    Xu, K.; Lee, D.; Kobayashi, T.; Ebie, Y.; Li, Y.; Inamori, Y.

    2010-12-01

    To achieve the high-rate H2 and CH4 production from food waste using fermentative anaerobic microflora, the effects of carbonate-alkalinity in the recirculated digestion sludge on continuous two-stage fermentation were investigated. Higher H2 production rate of 2.9 L-H2/L/day was achieved at the recycle ratio of 1.0 in an alkalinity range of 9000 to 10000 mg-CaCO3/L. The maximum CH4 production rate was stably maintained at the range of 1.85 to 1.88 L-CH4/L/day without alkalinity change. Carbonate alkalinity in digestion sludge could reduce the H2 partial pressure in the headspace of the fermentation reactors, and improve a biogas production capacity in the two-stage fermentation process. The average volatile solids degradation rate in the overall process increased as the digestion sludge recycle increased from 0.5 to 1.0. These results show that the alkalinity in recycle of the digestion sludge is crucial factor in determining biogas (H2 and CH4) production capacity and reducing the total solids.

  19. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  20. Complex exposure histories for meteorites with "short" exposure ages

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.; Vogt, S.; Albrecht, A.; Xue, S.; Fink, D.; Klein, J.; Middleton, R.; Weber, H. W.; Schultz, L.

    1997-05-01

    We report measurements of 26Al and 10Be activities in nine ordinary chondrites and of the light noble gas concentrations and 36Cl and 41Ca activities in subsets of those meteorites. All but Murray have low 21Ne concentrations (<1.0 (10-8 cm3 STP/g), and have previously been used to estimate 21Ne production rates. Ladder Creek, Murchison, Sena, and Timochin have inventories of cosmogenic radionuclides compatible with a single stage of irradiation and give 21Ne production rates consistent with the standard L-chondrite value of ~0.33 ( 10-8 cm3 STP/g-My. In contrast, Cullison, Guenie, Shaw, and Tsarev experienced complex irradiation histories. They and several other meteorites with low nominal exposure ages also have lower 3He/21Ne ratios than expected based on their 22Ne/21Ne ratios. A general association between low 21Ne contents and 3He losses suggests that meteorites with short lifetimes often occupy orbits with small perihelia. Meteorites with low 21Ne contents, one-stage exposure histories, and losses of cosmogenic 3He are rare, however. Possible explanations for the scarcity are 1) statistical; 2) that it is harder for more deeply buried proto-meteoroids to lose gas in a liberating collision; and 3) that it is harder to insert more deeply buried proto-meteoroids directly into orbits with small perihelia.

  1. The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss

    PubMed Central

    Cruz de Carvalho, Ricardo; Catalá, Myriam; Marques da Silva, Jorge; Branquinho, Cristina; Barreno, Eva

    2012-01-01

    Background and Aims The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage. Methods Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate. The production of hydrogen peroxide was also quantified and its cellular location was assessed. Key Results The rehydration of slowly dried cells was associated with lower ROS production, thereby reducing the amount of cellular damage and increasing cell survival. A high oxygen consumption burst accompanied the initial stages of rehydration, perhaps due to the burst of ROS production. Conclusions A slow dehydration rate may induce cell protection mechanisms that serve to limit ROS production and reduce the oxidative burst, decreasing the number of damaged and dead cells due upon rehydration. PMID:22875812

  2. Production and perception of Persian geminate stops at three speaking rates

    NASA Astrophysics Data System (ADS)

    Hansen, Benjamin B.

    2004-05-01

    An experiment was designed to determine whether the geminate/singleton category distinction is maintained at fast speaking rates in Persian. Three speakers of Tehrani Persian read test words containing [t,t:,d,d:] in carrier sentences at three speaking rates. The categories do not overlap within a given speaking rate, but the fastest geminates do overlap the normal-rate singletons, implying that the listener must take speaking rate into account in order to perceive the category distinction. The ratio of the consonant closure to the preceding vowel (C/V) is not a useful rate-independent parameter for describing the geminate/singleton boundary in Persian since in Persian the vowel preceding a geminate is slightly longer. However, it was found that the marginal consonant closure (above a minimum closure of about 20 ms) maintains a fixed proportion of the average syllable duration, regardless of rate. This fixed proportion is distinct for geminates and singletons, and so may be used as a single rate-independent parameter for defining the category distinction. Perception tests on natural sentences showed that the distinction is perceptible at each of the three speaking rates. The perceptual response to manipulation of the closure durations indicated that, besides duration, additional cues to the distinction are present.

  3. Displacement rate dependence of irradiation creep as predicted by the production bias model

    SciTech Connect

    Woo, C.H.

    1996-04-01

    Recently, it has been shown that the non-swelling component of irradiation creep of austenitic stainless steels is relatively independent of temperature but is sensitive to the displacement rate. An earlier model of Lewthwaite and Mosedale anticipated the sensitivity of displacement rate and attributed it to the flux sensitivity of point defect recombination. The point-defect recombination process does not yield the observed temperature dependence, however, although it does predict an inverse dependence of the creep rate on the square root of the displacement rate that was experimentally observed at relatively low temperatures.

  4. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  5. Butanol productivity enhancers in wheat straw hydrolyzate: employing potential of enhanced reaction rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Butanol production by fermentation is gaining momentum due to increased prices of fossil fuels. This biofuel is a major product of acetone-butanol-ethanol (ABE) fermentation that can be produced from hydrolyzed agricultural residues and/or corn. A control glucose (60 g/L) based batch fermentation us...

  6. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  7. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  8. Optimizing the Compatibility between Rating Scales and Measures of Productive Second Language Competence

    ERIC Educational Resources Information Center

    Weaver, Christopher

    2011-01-01

    This study presents a systematic investigation concerning the performance of different rating scales used in the English section of a university entrance examination to assess 1,287 Japanese test takers' ability to write a third-person introduction speech. Although the rating scales did not conform to all of the expectations of the Rasch model,…

  9. Optimizing the compatibility between rating scales and measures of productive second language competence.

    PubMed

    Weaver, Christopher

    2011-01-01

    This study presents a systematic investigation concerning the performance of different rating scales used in the English section of a university entrance examination to assess 1,287 Japanese test takers' ability to write a third-person introduction speech. Although the rating scales did not conform to all of the expectations of the Rasch model, they successfully defined a meaningful continuum of English communicative competence. In some cases, the expectations of the Rasch model needed to be weighed against the specific assessment needs of the university entrance examination. This investigation also found that the degree of compatibility between the number of points allotted to the different rating scales and the various requirements of an introduction speech played a considerable role in determining the extent to which the different rating scales conformed to the expectations of the Rasch model. Compatibility thus becomes an important factor to consider for optimal rating scale performance.

  10. Gene regulation of UDP-galactose synthesis and transport: Potential rate limiting processes in initiation of milk production in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactose synthesis is believed to be rate-limiting for milk production. However, understanding the molecular events controlling lactose synthesis in humans is still rudimentary. We have utilized our established model of the RNA isolated from breast milk fat globule from 7 healthy exclusively breastfe...

  11. The Influence of New Product Characteristics on Rate of Adoption: Increasing Student Comprehension with the "Bidding for Buyers" Game

    ERIC Educational Resources Information Center

    Vander Schee, Brian A.

    2012-01-01

    The five characteristics that influence new product rate of adoption are routinely covered in the Principles of Marketing course. Any particular marketing concept such as relative advantage, compatibility, complexity, divisibility, and communicability may not capture interest or engagement among students who take the course as a graduation…

  12. Stereoselective Microbial Transformation of Triadimefon to Triadimenol in Soils: Varying Production Rates of Triadimenol Stereoisomers Could Impact Risk Assessment

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed over several months under aerobic conditions in 3 different soil types to observe rates and products of transformation as well as enantiomer fractions of parent and pr...

  13. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  14. Revised Calculations of the Production Rates for Co Isotopes in Meteorites Using New Cross Sections for Neutron-induced Reactions

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.; Brooks, F. D.; Buffler, A.; Allie, M. S.; Herbert, M. S.; Nchodu, M. R.; Makupula, S.; Ullmann, J.; Reedy, R. C.; Jones, D. T. L.

    2002-01-01

    New cross section measurements for reactions induced by neutrons with energies greater than 70 MeV are used to calculate the production rates for cobalt isotopes in meteorites and these new calculations are compared to previous estimates. Additional information is contained in the original extended abstract.

  15. ESTIMATION OF THE RATE OF VOC EMISSIONS FROM SOLVENT-BASED INDOOR COATING MATERIALS BASED ON PRODUCT FORMULATION

    EPA Science Inventory

    Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with ...

  16. Acquired Apraxia of Speech: The Effects of Repeated Practice and Rate/Rhythm Control Treatments on Sound Production Accuracy

    ERIC Educational Resources Information Center

    Wambaugh, Julie L.; Nessler, Christina; Cameron, Rosalea; Mauszycki, Shannon C.

    2012-01-01

    Purpose: This investigation was designed to elucidate the effects of repeated practice treatment on sound production accuracy in individuals with apraxia of speech (AOS) and aphasia. A secondary purpose was to determine if the addition of rate/rhythm control to treatment provided further benefits beyond those achieved with repeated practice.…

  17. The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings.

    PubMed

    Lan, Li; Lian, Zhiwei; Pan, Li

    2010-12-01

    Productivity bears a close relationship to the indoor environmental quality (IEQ), but how to evaluate office worker's productivity remains to be a challenge for ergonomists. In this study, the effect of indoor air temperature (17 °C, 21 °C, and 28 °C) on productivity was investigated with 21 volunteered participants in the laboratory experiment. Participants performed computerized neurobehavioral tests during exposure in the lab; their physiological parameters including heart rate variation (HRV) and electroencephalograph (EEG) were also measured. Several subjective rating scales were used to tap participant's emotion, well-being, motivation and the workload imposed by tasks. It was found that the warm discomfort negatively affected participants' well-being and increased the ratio of low frequency (LF) to high frequency (HF) of HRV. In the moderately uncomfortable environment, the workload imposed by tasks increased and participants had to exert more effort to maintain their performance and they also had lower motivation to do work. The results indicate that thermal discomfort caused by high or low air temperature had negative influence on office workers' productivity and the subjective rating scales were useful supplements of neurobehavioral performance measures when evaluating the effects of IEQ on productivity.

  18. Correction of in situ cosmogenic nuclide production rates for geomagnetic field intensity variations during the past 800,000 years

    NASA Astrophysics Data System (ADS)

    Masarik, Jozef; Frank, Martin; Schäfer, Jörg M.; Wieler, Rainer

    2001-09-01

    We present integrated relative production rates for cosmogenic nuclides in rock surfaces, which take into account reported variations of the geomagnetic field intensity during the past 800,000 yr. The calculations are based on the model simulating cosmic ray particle interactions with the Earth's atmosphere given by Masarik and Beer ["Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere," J. Geophys. Res. 104(D10), 12099-12111, 1999]. Corrections are nearly independent on altitude between sea level and at least 5000 m. The correction factors are essentially identical for all stable and radioactive cosmogenic nuclides with half-lives longer than a few hundred thousand years. At the equator, integrated production rates for exposure ages between ˜40,000 to 800,000 yr are 10 to 12% higher than the present-day values, whereas at latitudes >40°, geomagnetic field intensity variations have hardly influenced in situ cosmogenic nuclide production. Correction factors for in situ 14C production rates differ from those of longer-lived nuclides. They are always smaller than ˜2% because the magnetic field intensity remained rather constant during the past ˜10 kyr, when the major fraction of the 14C extant today was produced.

  19. Solvent and viscosity effects on the rate-limiting product release step of glucoamylase during maltose hydrolysis.

    PubMed

    Sierks, M R; Sico, C; Zaw, M

    1997-01-01

    Release of product from the active site is the rate-limiting step in a number of enzymatic reactions, including maltose hydrolysis by glucoamylase (GA). With GA, an enzymatic conformational change has been associated with the product release step. Solvent characteristics such as viscosity can strongly influence protein conformational changes. Here we show that the rate-limiting step of GA has a rather complex dependence on solvent characteristics. Seven different cosolvents were added to the GA/maltose reaction solution. Five of the cosolvents, all having an ethylene glycol base, resulted in an increase in activity at low concentration of cosolvent and variable decreases in activity at higher concentrations. The increase in enzyme activity was dependent on polymer length of the cosolvent; the longer the polymer, the lower the concentration needed. The maximum increase in catalytic activity at 45 degrees C (40-45%) was obtained with the three longest polymers (degree of polymerization from 200 to 8000). A further increase in activity to 60-65% was obtained at 60 degrees C. The linear relationship between ln(kcat) and (viscosity)2 obtained with all the cosolvents provides further evidence that product release is the rate-limiting step in the GA catalytic mechanism. A substantial increase in the turnover rate of GA by addition of relatively small amounts of a cosolvent has potential applications for the food industry where high-fructose corn syrup (HFCS) is one of the primary products produced with GA. Since maltodextrin hydrolysis by GA is by far the slowest step in the production of HFCS, increasing the catalytic rate of GA can substantially reduce the process time.

  20. The effect of direct electron-positron pair production on relativistic feedback rates

    NASA Astrophysics Data System (ADS)

    Vodopiyanov, I. B.; Dwyer, J. R.; Cramer, E. S.; Lucia, R. J.; Rassoul, H. K.

    2015-01-01

    Runaway electron avalanches developing in thunderclouds in high electric field become self-sustaining due to relativistic feedback via the production of backward propagating positrons and backscattered X-rays. To date, only positrons created from pair production by gamma rays interacting with the air have been considered. In contrast, direct electron-positron pair production, also known as "trident process," occurs from the interaction of energetic runaway electrons with atomic nuclei, and so it does not require the generation of a gamma ray mediator. The positrons produced in this process contribute to relativistic feedback and become especially important when the feedback factor value approaches unity. Then the steady state flux of runaway electrons increases significantly. In certain cases, when the strong electrostatic field forms in a narrow area, the direct positrons become one of processes dominating relativistic feedback. Calculations of the direct positron production contribution to relativistic feedback are presented for different electric field configurations.

  1. Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin

    SciTech Connect

    F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  2. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin.

    PubMed

    Colwell, F S; Boyd, S; Delwiche, M E; Reed, D W; Phelps, T J; Newby, D T

    2008-06-01

    Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

  3. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  4. Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary

    NASA Astrophysics Data System (ADS)

    Kangale, Akshay; Krishna Kumar, S.; Arshad Naeem, Mohd; Williams, Mark; Tiwari, M. K.

    2016-10-01

    With the massive growth of the internet, product reviews increasingly serve as an important source of information for customers to make choices online. Customers depend on these reviews to understand users' experience, and manufacturers rely on this user-generated content to capture user sentiments about their product. Therefore, it is in the best interest of both customers and manufacturers to have a portal where they can read a complete comprehensive summary of these reviews in minimum time. With this in mind, we arrived at our first objective which is to generate a feature-based review-summary. Our second objective is to develop a predictive model to know the next week's product sales based on numerical review ratings and textual features embedded in the reviews. When it comes to product features, every user has different priorities for different features. To capture this aspect of decision-making, we have designed a new mechanism to generate a numerical rating for every feature of the product individually. The data have been collected from a well-known commercial website for two different products. The validation of the model is carried out using a crowd-sourcing technique.

  5. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  6. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  7. Estimation of fine-root production using rates of diameter-dependent root mortality, decomposition and thickening in forests.

    PubMed

    Van Do, Tran; Osawa, Akira; Sato, Tamotsu

    2016-04-01

    Current studies indicate that fine roots of different diameter classes show different rates of decomposition. This study developed a new method to estimate fine-root production by considering the difference in the production of fine roots of two size classes, fine roots thinner than 1 mm and those between 1 and 2 mm, and their corresponding rates of decomposition. A litter bag experiment was used to estimate the decomposition rates, while the sequential soil core technique was used to identify mass values of live roots and dead roots at a given period of observation. The continuous inflow method was applied to estimate the amount of root decomposition, mortality and production with a framework of two diameter classes of fine roots and for quantification of the amount of mass transfer from the thicker fine-root class to the coarser root category (>2 mm). The results indicated that the estimate of fine-root production was greater when two size classes of fine roots were distinguished. Using a framework of two size classes developed in this study resulted in 21.3% higher fine-root production than a method that did not recognize fine-root size classes or mass transfer to the category of coarse roots. In addition, using shorter collection intervals led to higher production estimates than longer intervals. The production estimate with a 1-month interval was 21.4% higher than that with a 6-month interval. We consider that the use of the sequential soil core technique with continuous inflow estimate method by differentiating size classes of fine roots is likely to minimize the underestimation of the parameters of fine-root dynamics by accounting for decomposition and mortality of fine roots more appropriately.

  8. THE LONG-TERM DECAY IN PRODUCTION RATES FOLLOWING THE EXTREME OUTBURST OF COMET 17P/HOLMES

    SciTech Connect

    Schleicher, David G.

    2009-10-15

    Numerous sets of narrowband filter photometry were obtained of Comet 17P/Holmes from Lowell Observatory during the interval of 2007 November 1 to 2008 March 5. Observations began 8 days following its extreme outburst, at which time the derived water production rate, based on OH measurements, was 5 x 10{sup 29} molecule s{sup -1} and the derived proxy of dust production, A({theta})f{rho}, was about 5 x 10{sup 5} cm. Relative production rates for the other gas species, CN, C{sub 2}, C{sub 3}, and NH, are consistent with 'typical' composition (based on our update to the classifications by A'Hearn et al.). An exponential decay in the logarithm of measured production rates as a function of time was observed for all species, with each species dropping by factors of about 200-500 after 125 days. All gas species exhibited clear trends with aperture size, and these trends are consistent with larger apertures having a greater proportion of older material that was released when production rates were higher. Much larger aperture trends were measured for the dust, most likely because the dust grains have smaller outflow velocities and longer lifetimes than the gas species; therefore, a greater proportion of older, i.e., higher production dust is contained within a given aperture. By extrapolating to a sufficiently small aperture size, we derive near-instantaneous water and dust production rates throughout the interval of observation, and also estimate values immediately following the outburst. The finite lifetime of the gas species requires that much higher ice vaporization rates were taking place throughout the observation interval than occurred prior to the outburst, likely due to the continued release of icy grains from the nucleus. The relatively small aperture trends for the gas species also imply that the bulk of fresh, excess volatiles are confined to the nucleus and near-nucleus regime, rather than being associated with the outburst ejecta cloud. A minimum of about 0

  9. Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers

    SciTech Connect

    Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis; Federspiel, Cliff; Liu, Gang; Lahiff, Maureen

    2002-01-01

    In previous studies, increased ventilation rates and reduced indoor carbon dioxide concentrations have been associated with improvements in health at work and increased performance in work-related tasks. Very few studies have assessed whether ventilation rates influence performance of real work. This paper describes part one of a two-part analysis from a productivity study performed in a call center operated by a health maintenance organization. Outside air ventilation rates were manipulated, indoor air temperatures, humidities, and carbon dioxide concentrations were monitored, and worker performance data for advice nurses, with 30-minute resolution, were analyzed via multivariate linear regression to look for an association of performance with building ventilation rate, or with indoor carbon dioxide concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate experienced during the study (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence suggesting performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO{sub 2} concentrations exceeding outdoor concentrations by less than 75 ppm.

  10. Slow infusion rate of doxorubicin induces higher pro-inflammatory cytokine production.

    PubMed

    Tien, Chin-Chieh; Peng, Yi-Chi; Yang, Fwu-Lin; Subeq, Yi-Maun; Lee, Ru-Ping

    2016-11-01

    Different infusion rates of doxorubicin (DOX) have been used for treating human malignancies. Organ toxicity after DOX infusion is a major issue in treatment disruption. However, whether different DOX infusion rates induce different toxicity is still unknown. In this study, we examined the toxicity effects of different DOX infusion rates in the early phase of organ toxicity. Thirty-six rats were randomly divided into 5-, 15-, and 30-min infusion rate groups. A single dose of DOX (8.3 mg/kg, I.V.) was administered at different infusion rates. Blood samples were collected from the femoral artery at 1, 3, 6, 9, 12, 18, 24, 36, and 48 h after DOX administration. The blood cell count and blood biochemistry were analyzed. The liver, kidney, and heart were removed for pathological examinations after the rats were sacrificed. Our findings show that the 30-min group had higher injury markers in the liver (glutamic oxaloacetic transaminase and glutamic pyruvic transaminase), kidneys (blood urea nitrogen and creatinine), and heart (creatine phosphokinase-MB and lactate dehydrogenase), and had higher tumor necrosis factor-alpha and interleukin 6 levels than did the other groups. The 30-min group also had more severe damage according to the pathological examinations. In conclusion, slower infusion of DOX induced a higher inflammatory response and greater organ damage.

  11. Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Cullen, John J.; Lewis, Marlon R.; Davis, Curtiss O.; Barber, Richard T.

    1992-01-01

    Macronutrients persist in the surface layer of the equatorial Pacific because the production of phytoplankton is limited; the nature of this limitation has yet to be resolved. Measurements of photosynthesis as a function of irradiance (P-I) provide information on the control of primary productivity, a question of great biogeochemical importance. Accordingly, P-I was measured in the equatorial Pacific along 150 deg W, during February-March 1988. Diel variability of P-I showed a pattern consistent with nocturnal vertical mixing in the upper 20 m followed by diurnal stratification, causing photoinhibition near the surface at midday. Otherwise, the distribution of photosynthetic parameters with depth and the stability of P-I during simulated in situ incubations over 2 days demonstrated that photoadaptation was nearly complete at the time of sampling: photoadaptation had not been effectively countered by upwelling or vertical mixing. Measurements of P-I and chlorophyll during manipulations of trace elements showed that simple precautions to minimize contamination were sufficient to obtain valid rate measurements and that the specific growth rates of phytoplankton were fairly high in situ, a minimum of 0.6/d. Diel variability of beam attenuation also indicated high specific growth rates of phytoplankton and a strong coupling of production with grazing. It appears that grazing is the proximate control on the standing crop of phytoplankton. Nonetheless, the supply of a trace nutrient such as iron might ultimately regulate productivity by influencing species composition and food-web structure.

  12. First-principles computation of electron transfer and reaction rate at a perovskite cathode for hydrogen production.

    PubMed

    Liu, C T; Chu, J F; Lin, C K; Hong, C W

    2017-03-22

    The focus of this research is on the electron transfer and its reaction rate at the perovskite cathode of a photoelectrochemical cell for hydrogen production. By employing the density functional theory (DFT), the electron density, projected density of states (PDOS), electron distribution and electron transfer path between [Fe-Fe] hydrogenase and the perovskite cathode can be obtained. Simulation results show that the perovskite cathode is better than traditional cathodes for hydrogen production. Before transmission to the [Fe-Fe] hydrogenase, electron clouds mainly aggregate at the periphery of amine molecules. Simulations also show that the key to hydrogen production at the perovskite structure lies in the organic molecules. Electrons are transferred to the hydrocarbon structural chain before reaching the Fe atoms. The Rice, Ramsperger, Kassel and Marcus (RRKM) theory was used to predict the reaction rates at different temperatures. It was found that the reaction rates are in good agreement with the experimental results. This research provides more physical insight into the electron transfer mechanism during the hydrogen production process.

  13. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  14. Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar

    2017-01-01

    An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.

  15. Export production fluctuations in the eastern equatorial Pacific during the Pliocene-Pleistocene: Reconstruction using barite accumulation rates

    NASA Astrophysics Data System (ADS)

    Ma, Zhongwu; Ravelo, Ana Christina; Liu, Zhonghui; Zhou, Liping; Paytan, Adina

    2015-11-01

    Export production is an important component of the carbon cycle, modulating the climate system by transferring CO2 from the atmosphere to the deep ocean via the biological pump. Here we use barite accumulation rates to reconstruct export production in the eastern equatorial Pacific over the past 4.3 Ma. We find that export production fluctuated considerably on multiple time scales. Export production was on average higher (51 g C m-2 yr-1) during the Pliocene than the Pleistocene (40 g C m-2 yr-1), decreasing between 3 and 1 Ma (from more than 60 to 20 g C m-2 yr-1) followed by an increase over the last million years. These trends likely reflect basin-scale changes in nutrient inventory and ocean circulation. Our record reveals decoupling between export production and temperatures on these long (million years) time scale. On orbital time scales, export production was generally higher during cold periods (glacial maxima) between 4.3 and 1.1 Ma. This could be due to stronger wind stress and higher upwelling rates during glacial periods. A shift in the timing of maximum export production to deglaciations is seen in the last ~1.1 million years. Results from this study suggest that, in the eastern equatorial Pacific, mechanisms that affect nutrient supply and/or ecosystem structure and in turn carbon export on orbital time scales differ from those operating on longer time scales and that processes linking export production and climate-modulated oceanic conditions changed about 1.1 million years ago. These observations should be accounted for in climate models to ensure better predictions of future climate change.

  16. THE NEOWISE-DISCOVERED COMET POPULATION AND THE CO + CO{sub 2} PRODUCTION RATES

    SciTech Connect

    Bauer, James M.; Stevenson, Rachel; Kramer, Emily; Mainzer, A. K.; Masiero, Joseph R.; Weissman, Paul R.; Nugent, Carrie R.; Sonnett, Sarah; Grav, Tommy; Fernández, Yan R.; Cutri, Roc M.; Dailey, John W.; Masci, Frank J.; Blair, Nathan; Lucas, Andrew; Meech, Karen J.; Walker, Russel; Lisse, C. M.; McMillan, Robert S.; Wright, Edward L.; Collaboration: WISE and NEOWISE Teams

    2015-12-01

    The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO{sub 2} production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 μm band excess. We find a possible relation between dust and CO + CO{sub 2} production, as well as possible differences in the sizes of long and short period comet nuclei.

  17. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures†

    PubMed Central

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; Hsu-Kim, Heileen

    2016-01-01

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHg using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production. PMID:26211614

  18. Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese.

    PubMed

    Oeffner, S P; Qu, Y; Just, J; Quezada, N; Ramsing, E; Keller, M; Cherian, G; Goddick, L; Bobe, G

    2013-02-01

    Health and nutrition professionals advise consumers to limit consumption of saturated fatty acids and increase the consumption of foods rich in n-3 fatty acids. Researchers have previously reported that feeding extruded flaxseed, which is high in C18:3n-3, improves the fatty acid profile of milk and dairy products to less saturated fatty acids and to more C18:3n-3. Fat concentrations in milk and butter decreased when cows were fed higher concentrations of extruded flaxseed. The objective of this study was to determine the optimal rate of flaxseed supplementation for improving the fatty acid profile without decreasing production characteristics of milk and dairy products. By using a double 5 × 5 Latin square design, 10 mid- to late-lactation Holstein cows were fed extruded (0, 0.91, 1.81, and 2.72 kg/d) and ground (1.81 kg/d) flaxseed as a top dressing for 2-wk periods each. At the end of each 2-wk treatment period, milk and serum samples were taken. Milk was subsequently manufactured into butter and fresh Mozzarella cheese. Increasing supplementation rates of extruded flaxseed improved the fatty acid profile of milk, butter, and cheese gradually to less saturated and atherogenic fatty acids and to more C18:3n-3 by increasing concentrations of C18:3n-3 in serum. The less saturated fatty acid profile was associated with decreased hardness and adhesiveness of refrigerated butter, which likely cause improved spreadability. Supplementation rates of extruded flaxseed did not affect dry matter intake of the total mixed ration, milk composition, and production of milk, butter, or cheese. Flaxseed processing did not affect production, fatty acid profile of milk, or texture of butter and cheese. Feeding up to 2.72 kg/d of extruded flaxseed to mid- to late-lactation Holstein cows may improve nutritional and functional properties of milk fat without compromising production parameters.

  19. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures.

    PubMed

    Kucharzyk, Katarzyna H; Deshusses, Marc A; Porter, Kaitlyn A; Hsu-Kim, Heileen

    2015-09-01

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHg using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production.

  20. Gas-phase chemistry of (alpha-terpineol with ozone and OH radical: rate constants and products.

    PubMed

    Wells, J R

    2005-09-15

    A bimolecular rate constant, kOH+alpha-terpineol, of (1.9 +/- 0.5) x 10(-10) cm3 molecule(-1) s(-1) was measured using gas chromatography/mass spectrometry and the relative rate technique for the reaction of the hydroxyl radical (OH) with alpha-terpineol (1-methyl-4-isopropyl-1-cyclohexen-8-ol) at (297 +/- 3) K and 1 atm total pressure. Additionally, a bimolecular rate constant, kO3+alpha-terpineol, of (3.0 +/- 0.2) x 10(-16) cm3 molecule(-1) s(-1) was measured by monitoring the first order decrease in ozone concentration as a function of excess alpha-terpineol. To better understand alpha-terpineol's gas-phase transformation in the indoor environment, the products of the alpha-terpineol + OH and alpha-terpineol + 03 reactions were also investigated. The positively identified alpha-terpineol/OH reaction products were acetone, ethanedial (glyoxal, HC(=O)C(=O)H), and 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The positively identified alpha-terpineol/O3 reaction product was 2-oxopropanal (methyl glyoxal, CH3C(=O)C(=O)H). The use of derivatizing agents O-(2,3,4,5,6-pentalfluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) clearly indicated that several other reaction products were formed. The elucidation of these other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible alpha-terpineol/OH and alpha-terpineol/O3 reaction mechanisms based on previously published volatile organic compound/ OH and volatile organic compound/O3 gas-phase reaction mechanisms.

  1. Using variable rate irrigation to determine optimal irrigation schedule for aerobic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all U.S. rice is produced with flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require timely irrigation. A field study was conducted at the University of Missouri Fisher Delta Resear...

  2. Evaluation of optical sensing and variable nitrogen rate application in Louisiana sugarcane production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) is the most limiting nutrient and considered the biggest expense among fertilizer inputs in sugarcane production. A need-based N application can be implemented with the use of optical sensor technology allowing acquisition of sugarcane N status in the absence of soil and plant tissue te...

  3. Production of H2 at Fast Rates Using a Nickel Electrocatalyst in Water/Acetonitrile Solutions

    SciTech Connect

    Hoffert, Wesley A.; Roberts, John A.; Bullock, R. Morris; Helm, Monte L.

    2013-09-14

    Efficient production of molecular hydrogen for storage of energy from renewable sources is crucial for the development of wind and solar power. Hydrogenase enzymes in nature catalyze H2 production using earth-abundant metals (iron and nickel) using precise delivery of protons to the metal center. Here we report a synthetic nickel complex containing proton relays, [Ni(PPh2NC6H4OH2)2](BF4)2 (PPh2NC6H4OH2 = 1,5-bis(p-hydroxyphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane), that catalyzes the production of H2 in an aqueous environment with turnover frequencies of 750-170,000 s-1 at directly measured overpotentials of 310-470 mV. The remarkable performance of this catalyst in aqueous environments exceeds the requirements necessary for molecular catalytic production of H2 by energy derived from photovoltaic solar cells. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  4. Selfing rate in an alfalfa seed production field pollinated with leafcutter bees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Self-pollination or “selfing” in autotetraploid alfalfa (Medicago sativa L.) (2n = 4x = 32) leads to severe inbreeding depression. Investigating selfing in alfalfa seed production may allow mitigation strategy development against potential negative impacts of selfing on varietal performance. Using m...

  5. Institutional Productivity Ratings and Publishing Trends in Nine Literacy Journals: 1972-2012

    ERIC Educational Resources Information Center

    Rosborough, Alessandro; Miner, Amy Baird; Wilcox, Brad; Morrison, Timothy G.

    2015-01-01

    This study examined the productivity of faculty members who published in nine leading literacy professional journals from 1972-2012. Those universities with the greatest number of articles written by literacy faculty members are listed. This listing was also adjusted according to number of literacy faculty members at each institution, resulting in…

  6. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d‑1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  7. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  8. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  9. The effect of hyperosmolality on the rate of heat production of quiescent trabeculae isolated from the rat heart

    PubMed Central

    1996-01-01

    We have measured the rate of heat production of isolated, quiescent, right ventricular trabeculae of the rat under isosmotic and hyperosmotic conditions, using a microcalorimetric technique. In parallel experiments, we measured force production and intracellular calcium concentration ([Ca2+]i). The rate of resting heat production under isosmotic conditions (mean +/- SEM, n = 32) was 100 +/- 7 mW (g dry wt)-1; it increased sigmoidally with osmolality, reaching a peak that was about four times the isosmotic value at about twice normal osmotic pressure. The hyperosmotic thermal response was: (a) abolished by anoxia, (b) attenuated by procaine, (c) insensitive to verapamil, ouabain, and external calcium concentration, and (d) absent in chemically skinned trabeculae bathed in low-Ca2+ "relaxing solution." Active force production was inhibited at all osmolalities above isosmotic. Passive (tonic) force increased to, at most, 15% of the peak active force developed under isosmotic conditions while [Ca2+]i increased, at most, 30% above its isosmotic value. We infer that hyperosmotic stimulation of resting cardiac heat production reflects, in large part, greatly increased activity of the sarcoplasmic reticular Ca2+ ATPase in the face of increased efflux via a procaine-inhibitable Ca(2+)-release channel. PMID:8972388

  10. Effects of beak trimming and restraint on heart rate, food intake, body weight and egg production in hens.

    PubMed

    Glatz, P C

    1987-12-01

    1. Heart rate (measured on restrained hens in two experiments) was used as an indicator of short term fear and pain responses of light and heavy strains of hens subjected to beak trimming. 2. In the first experiment 3 mm of the upper and lower mandibles was trimmed, while in the second 0, 2, 4, 6 and 8 mm of upper and lower mandibles were removed. 3. Production responses to beak trimming were measured after trimming, for 4 weeks in experiment 1 and for 10 weeks in experiment 2. 4. In the first experiment the recovery of beak trimmed hens to normal heart rate took significantly longer than that of control hens subjected only to catching and restraint, suggesting that there was short term pain associated with beak trimming. 5. The heavier strain took about 4 min longer to return to a normal heart rate than the lighter strain, indicating a strain difference in responsiveness to beak trimming. 6. Trimming the hens' beak by 3 mm had no significant effect on rate of lay or body weight, but their mean egg weight was depressed and food intake took 9 to 10 d to recover to pre-trimming values. 7. In the second experiment a plateau was reached in recovery time of the heart rate once 4 mm of beak was removed. Removal of 4, 6 and 8 mm of beak depressed normal feeding and resulted in variable effects on production and body weight.

  11. The Influence of Photolysis Rate Constants in Ozone Production for the Paso del Norte Region

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Fitzgerald, Rosa

    2012-03-01

    In this research work we are focusing on understanding the relationship between photolysis rates and the photochemical ozone changes observed in the Paso del Norte region. The city of El Paso, Texas together with Ciudad Juarez, Mexico, forms the largest contiguous bi-national metropolitan area. This region suffers year-round ozone pollution events, and a better understanding is needed to mitigate them. Previous studies have found that ambient ozone concentrations tend to be higher on weekends rather than on weekdays, this phenomenon being referred to, as the ``weekend effect.'' If the ozone standard is exceeded more frequently on weekends, then this phenomenon must be considered in the design of ozone control strategies. In this work we investigate some of the most representative weekend ozone episodes at El Paso, TX, during the years 2009, 2010 and 2011 using the ozone photolysis rates. In this research the TUV radiative-transfer model is used to calculate the local photolysis rates and a UV MFRSR instrument is used to obtain experimental parameters. Seasonal variations and the weekday-weekend effect is studied. The results of this research will help to understand the underlying behavior of the photolysis rate constants when different atmospheric conditions are present.

  12. Submission Rates among African-American Faculty: The Forgotten Side of Publication Productivity.

    ERIC Educational Resources Information Center

    Schiele, Jerome H.

    1995-01-01

    A study of 264 full-time African American social work faculty explored effects of gender, degree level, rank, tenure, and program type on manuscript submission to journals. Most manuscripts were submitted by a minority of subjects, about half were accepted, and high submission rates correlated with being male and having a doctorate. (Author/MSE)

  13. Effects of nitrogen rate and application method on early production and fruit quality in highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to examine the effects of nitrogen (N) rate and method of N fertilizer application on growth, yield, and fruit quality in highbush blueberry (Vaccinium corymbosum L.) during the first 4 years after planting in south-coastal BC. Nitrogen was applied at 0-150% of current pr...

  14. Heliocentric distance dependencies of the C2 lifetime and C2 parent production rate in comet P/Brorsen-Metcalf (1989o)

    NASA Technical Reports Server (NTRS)

    Lazzarin, M.; Tozzi, Giau Paolo; Barbieri, C.; Festou, Michel C.

    1992-01-01

    Comet P/Brorsen-Metcalf (1989o) has been extensively observed in the visible and in the ultraviolet during its latest apparition of summer 1989. In this paper we report a preliminary determination of the C2 production rates and lifetimes and we compare those rates to the H2O production rates obtained from UV data.

  15. Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins.

    PubMed

    Takshak, Anjneya; Kunwar, Ambarish

    2016-05-01

    Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team.

  16. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule.

  17. Adverse Impacts of Furlough Programs on Employee Work Rate and Organizational Productivity

    DTIC Science & Technology

    2014-04-01

    day and, potentially, least productive. This phenomenon is a human cultural reaction to the progression of a workweek that has been confirmed by...makers to the diversity of critical issues and factors involved in any DoD fur- lough program, particularly if it affects the acquisition community...Management Professional (PMP), a Fellow of the Institute of Industrial Engineers, and of the Nigerian Academy of Engineering. He holds a BS in

  18. Production and release rate of (37)Ar from the UT TRIGA Mark-II research reactor.

    PubMed

    Johnson, Christine; Biegalski, Steven R; Artnak, Edward J; Moll, Ethan; Haas, Derek A; Lowrey, Justin D; Aalseth, Craig E; Seifert, Allen; Mace, Emily K; Woods, Vincent T; Humble, Paul

    2017-02-01

    Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of (37)Ar, (41)Ar, and (133)Xe present. The measured ratio of (37)Ar/(41)Ar and historical records of (41)Ar releases were then utilized to estimate an annual average release rate of (37)Ar from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release (37)Ar in concentrations measurable by currently proposed OSI detection equipment.

  19. Temperature and strain rate effects on the piezoelectric charge production of PZT 95/5

    NASA Astrophysics Data System (ADS)

    Khan, Amnah S.; Proud, William G.

    2017-01-01

    To develop a better understanding of the piezoelectric ceramic lead zirconate titanate (PZT) 95/5, parameters including varying temperatures, porosities and strain rates have been studied. The effects on the charge output and fracture of poled PZT samples of different porosities have been investigated with compressive strain rates (10-4 - 10+3 s-1) using quasi-static loading equipment, drop-weight towers and Split Hopkinson Pressure Bars (SHPBs). The cylindrical specimens were of 4.4 mm diameter, thickness 0.8 - 4.4 mm, and density 7.3 - 8.3 g cm-3. The temperature range of -20 °C to +80 °C was achieved using purpose-built environmental chambers. The resulting stress-strain relationships are compared; all the samples ultimately displayed a brittle response at failure [1].

  20. Estimating the carbon sequestration capacity of shale formations using methane production rates.

    PubMed

    Tao, Zhiyuan; Clarens, Andres

    2013-10-01

    Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces. Here, a computational method is proposed for estimating the CO2 sequestration capacity of a fractured shale formation and it is applied to the Marcellus shale in the eastern United States. The model is based on historical and projected CH4 production along with published data and models for CH4/CO2 sorption equilibria and kinetics. The results suggest that the Marcellus shale alone could store between 10.4 and 18.4 Gt of CO2 between now and 2030, which represents more than 50% of total U.S. CO2 emissions from stationary sources over the same period. Other shale formations with comparable pressure-temperature conditions, such as Haynesville and Barnett, could provide significant additional storage capacity. The mass transfer kinetic results indicate that injection of CO2 would proceed several times faster than production of CH4. Additional considerations not included in this model could either reinforce (e.g., leveraging of existing extraction and monitoring infrastructure) or undermine (e.g., leakage or seismicity potential) this approach, but the sequestration capacity estimated here supports continued exploration into this pathway for producing carbon neutral energy.

  1. Determination of the effect of brand and product identification on consumer palatability ratings of ground beef patties.

    PubMed

    Wilfong, A K; McKillip, K V; Gonzalez, J M; Houser, T A; Unruh, J A; Boyle, E A E; O'Quinn, T G

    2016-11-01

    The objective of this study was to determine the effect of brand and product identification on consumer palatability ratings of ground beef patties. Six treatments were used in the study: 90/10 Certified Angus Beef (CAB) ground sirloin, 90/10 ground beef, 80/20 CAB ground chuck, 80/20 ground chuck, 80/20 ground beef, and 73/27 CAB ground beef. Ground beef was processed into 151.2-g patties using a patty former with 2 consecutively formed patties assigned to blind consumer testing and the following 2 assigned to informed testing. Following cooking to 74°C, patties were cut into quarters and served to consumers. Consumers ( = 112) evaluated samples in 2 rounds for tenderness, juiciness, flavor liking, texture liking, and overall liking. Each trait was also rated as either acceptable or unacceptable. In the first round of testing, samples were blind evaluated, with no information about the treatments provided to consumers, but in the second round, product type and brand were disclosed prior to sample evaluation. Additionally, texture profile and shear force analyses were performed on patties from each treatment. Few differences were observed for palatability traits during blind consumer testing; however, during informed testing, 90/10 CAB ground sirloin was rated greatest ( < 0.05) for all palatability traits other than juiciness. Also, 90/10 CAB ground sirloin had increased ( < 0.05; (consumer informed score - consumer blind score)/consumer blind score) ratings for tenderness (17.4%), juiciness (36.5%), flavor liking (23.3%), texture liking (18.2%), and overall liking (24.7%) due to brand disclosure. Increased ( < 0.05) ratings were found for CAB products for multiple traits due to treatment disclosure, whereas the only non-CAB-branded product that received increased ( < 0.05) ratings during informed testing was 90/10 ground beef for tenderness and juiciness. Texture results indicated that decreased fat level increased hardness, cohesiveness, gumminess, and

  2. The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

    NASA Astrophysics Data System (ADS)

    Öteyaka, Mustafa Ö.; Özel, Emre; Yıldırım, M. Mustafa

    2011-12-01

    Nowadays, nanofiber made of polymers becomes popular on biomaterials research. One of the main reasons to need of nanofiber size is to mimic extracellular matrix (ECM) that play a critical role in proliferation, cell motility and intercellular signaling in vascular graft replacement. In this study polyurethane (PU) is electrospuned for 1 hour to create a scaffold under different conditions. The average diameter of the electrospun nanofibers was determined by analyzing the SEM images using imageJ analysis program. For this purpose, a 3×3 general full factorial in completely randomized design using three levels of two factors; power (W = 20, 22 and 25 Watts) and feeding rate (V = 1.00, 1.25 and 1.50 ml/h) was used to evaluate the response pattern and to determine the combined effect of independent variables. Three replicates were performed. The collected data were analyzed by using ANOVA test. Using α = 0.05, the main effects for power (W) and feeding rate (V) and the power (W)*feeding rate (V) interaction are statistically significant. Based on the statistical results of the experiment, we recommend for finer fiber 22 W and 1.00 ml/h and for less beads a 20 W and 1.50 ml/h to made PU scaffold. SEM analysis confirms a formation of random nanofiber mats.

  3. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products.

    PubMed

    Fleming, Aaron M; Alshykhly, Omar; Zhu, Judy; Muller, James G; Burrows, Cynthia J

    2015-06-15

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design.

  4. Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Mickle, R.

    1975-01-01

    A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

  5. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans.

    PubMed

    Vaillancourt, David E; Mayka, Mary A; Thulborn, Keith R; Corcos, Daniel M

    2004-09-01

    The basal ganglia, motor cortex, and cerebellum have been implicated as a circuit that codes for movement velocity. Since movement velocity covaries with the magnitude of force exerted and previous studies have shown that similar regions scale in activation for velocity and force, the scaling of neuronal activity with movement velocity could be due to the force exerted. The present study implemented a parametric functional magnetic resonance imaging (fMRI) design to determine which brain regions directly scale with the rate of change of force production, independent of the magnitude of force exerted. Nine healthy adults produced force with their right middle finger and thumb at 25% of their maximal voluntary contraction across four conditions: (1) fast pulse, (2) fast hold, (3) medium hold, and (4) slow hold. There were three primary findings: (i) the activation volume in multiple regions increased with the duration of the force contraction, (ii) only the activation volume in the bilateral internal globus pallidus and left subthalamic nucleus parametrically scaled with the rate of change of force production, and (iii) there was an inverse relation between the activation volume in the subthalamic nucleus and internal globus pallidus with the rate of change of force production. The current findings are the first to have used neuroimaging techniques in humans to segregate the functional anatomy of the internal globus pallidus from external globus pallidus, distinguish functional activation in the globus pallidus from the putamen, and demonstrate task-dependent scaling in the subthalamic nucleus and internal globus pallidus. We conclude that fast, ballistic force production is preprogrammed, requiring a small metabolic demand from the basal ganglia. In contrast, movements that require the internal regulation of the rate of change of force are associated with increased metabolic demand from the subthalamic nucleus and internal segment of the globus pallidus.

  6. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).

    PubMed

    Ferraz, Antônio Djalma Nunes; Zaiat, Marcelo; Gupta, Medhavi; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George

    2014-07-01

    This study assesses the impact of organic loading rate on biohydrogen production from glucose in an up-flow anaerobic packed bed reactor (UAnPBR). Two mesophilic UAPBRs (UAnPBR1 and 2) were tested at organic loading rates (OLRs) ranging from 6.5 to 51.4 g COD L(-1)d(-1). To overcome biomass washout, design modifications were made in the UAnPBR2 to include a settling zone to capture the detached biomass. The design modifications in UAnPBR2 increased the average hydrogen yield from 0.98 to 2.0 mol-H2 mol(-1)-glucose at an OLR of 25.7 g COD L(-1)d(-1). Although, a maximum hydrogen production rate of 23.4 ± 0.9 L H2 L(-1)d(-1) was achieved in the UAnPBR2 at an OLR of 51.4 g COD L(-1)d(-1), the hydrogen yield dropped by 50% to around 1 mol-H2 mol(-1)-glucose. The microbiological analysis (PCR/DGGE) showed that the biohydrogen production was due to the presence of the hydrogen and volatile acid producers such as Clostridium beijerinckii, Clostridium butyricum, Megasphaera elsdenii and Propionispira arboris.

  7. Dynamic Linkages between Denitrification Functional Genes/Enzymes and Biogeochemical Reaction Rates of Nitrate and Its Reduction Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Shi, L.; Qian, W.; Gao, Y.; Liu, Y.; Liu, C.

    2015-12-01

    Denitrification is a respiratory process in which oxidized nitrogen compounds are used as alternative electron acceptors for energy production when oxygen is limited. Denitrification is an important process that not only accounts for the significant loss of nitrogen fertilizers from soils but also leads to NO, N2O and CO2 emissions, which are important greenhouse gas species. In this study, denitrification was investigated in Columbia River sediments, focusing on the dynamic linkages between functional genes/enzymes and biogeochemical reaction rates of nitrate and its reduction products. NO3-, NO2- and N2O were assayed in different incubation time. DNA was extracted from the sediments and functional genes were quantified as a function of time during the denitrification. Functional enzymes were extracted from the sediments and measured using a newly developed, targeted protein method. The biogeochemical, functional gene, and enzyme data were collectively used to establish the dynamic correlation of functional genes/enzymes and biogeochemical reaction rates. The results provide fundamental insights regarding the dynamic regulation of functional genes and enzymes in the processes of denitrification and greenhouse gas production, and also provide experimental data critical for the development of biogeochemical reaction models that incorporate genome-scale insights and describe macroscopic biogeochemical reaction rates in ecosystems.

  8. Patterns of cosmogenic radionuclide production rates in the heliosphere and problems of solar modulation on a long time scale

    NASA Astrophysics Data System (ADS)

    Ustinova, G. K.

    2016-11-01

    The results of long-term studies of cosmogenic radionuclide production rates along the orbits of 39 chondrites that fell to the Earth between 1959 and 2013 are presented. They constitute a long series of homogeneous data, a statistical smoothing of which demonstrate some general patterns of the distribution and variations of Galactic cosmic rays (GCRs) with energy >100 MeV in the inner (<5 AU) heliosphere. A correlation analysis of the production rates of radionuclides with different half-lives suggests that the solar GCR modulation mechanism is constant over at least 1 million years. The role of stochastic factors in the polarity reversal of the general solar magnetic field for the phases of maximum solar activity has been revealed. The subtle sensitivity of the 54Mn production rate in the Chelyabinsk chondrite to the short-term closure of the heliosphere for positively charged particles over 14 months between June 2012 and July 2013 is used as an example to show the high resolution of the method of using cosmogenic radionuclides in meteorites as natural GCR detectors.

  9. Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability.

    PubMed

    Seeley, T D; Mikheyev, A S; Pagano, G J

    2000-09-01

    For more than 50 years, investigators of the honey bee's waggle dance have reported that richer food sources seem to elicit longer-lasting and livelier dances than do poorer sources. However, no one had measured both dance duration and liveliness as a function of food-source profitability. Using video analysis, we found that nectar foragers adjust both the duration (D) and the rate (R) of waggle-run production, thereby tuning the number of waggle runs produced per foraging trip (W, where W= DR) as a function of food-source profitability. Both duration and rate of waggle-run production increase with rising food-source profitability. Moreover, we found that a dancing bee adjusts the rate of waggle-run production (R) in relation to food-source profitability by adjusting the mean duration of the return-phase portion of her dance circuits. This finding raises the possibility that bees can use return-phase duration as an index of food-source profitability. Finally, dances having different levels of liveliness have different mean durations of the return phase, indicating that dance liveliness can be quantified in terms of the time interval between consecutive waggle runs.

  10. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).

    PubMed

    Xie, Yanjiao; Wang, Yin; Singhal, Vidhi; Giammar, Daniel E

    2010-02-01

    Lead(IV) oxide is a corrosion product that can develop on lead pipes and affect lead concentrations in drinking water. Continuously stirred flow-though reactors were used to quantify the dissolution rates of plattnerite (beta-PbO(2)) at different pH values and dissolved inorganic carbon (DIC) concentrations. Organic pH buffers were not used, because several were found to be reductants for PbO(2) that accelerated its dissolution. Most plattnerite dissolution rates were on the order of 10(-10) mol/min-m(2). The rate of dissolution increased with decreasing pH and with increasing DIC. The effect of DIC is consistent with a reductive dissolution mechanism that involves the reduction of Pb(IV) to Pb(II) at the plattnerite surface followed by the formation of soluble Pb(II)-carbonate complexes that accelerate Pb(II) release from the surface. Under the experimental conditions, dissolved lead concentrations were controlled by the dissolution rate of plattnerite and not by its equilibrium solubility. A dissolution rate model was developed and can be used to predict dissolution rates of plattnerite as a function of pH and DIC.

  11. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose.

    PubMed

    Hernot, David C; Boileau, Thomas W; Bauer, Laura L; Middelbos, Ingmar S; Murphy, Michael R; Swanson, Kelly S; Fahey, George C

    2009-02-25

    It is of interest to benefit from the positive intestinal health outcomes of prebiotic consumption but with minimal gas production. This study examined gas production potential, fermentation profile, and microbial modulation properties of several types of oligosaccharides. Substrates studied included short-chain, medium-chain, and long-chain fructooligosaccharides, oligofructose-enriched inulin, galactooligosaccharide, and polydextrose. Each substrate was fermented in vitro using human fecal inoculum, and fermentation characteristics were quantified at 0, 4, 8, and 12 h. Gas and short-chain fatty acid (SCFA) production data showed that short-chain oligosaccharides were more rapidly fermented and produced more SCFA and gas than substrates with greater degrees of polymerization. Lactobacilli increased similarly among substrates. Short-chain oligosaccharides fermentation resulted in the greatest increase in bifidobacteria concentrations. Mixing short- and long-chain oligosaccharides attenuated short-chain oligosaccharide fermentation rate and extent. This study provides new information on the fermentation characteristics of some oligosaccharides used in human nutrition.

  12. Gradient Perception of Children’s Productions of /s/ and /θ/:A Comparative Study of Rating Methods

    PubMed Central

    Schellinger, Sarah K.; Munson, Benjamin; Edwards, Jan

    2016-01-01

    Past studies have shown incontrovertible evidence for the existence of covert contrasts in children’s speech, that is, differences between target productions that are nonetheless transcribed with the same phonetic symbol. Moreover, there is evidence that these are relevant to forming prognoses and tracking progress in children with speech sound disorder. A challenge remains to find the most efficient and reliable methods for assessing covert contrasts. This study investigates how readily listeners can identify covert contrasts in children’s speech when using a continuous rating scale in the form of a visual analog scale (VAS) to denote children’s productions. Individual listeners’ VAS responses were found to correlate statistically significantly with a variety of continuous measures of children’s production accuracy, including judgments of binary accuracy pooled over a large set of listeners. These findings reinforce the growing body of evidence that VAS judgments are potentially useful clinical measures of covert contrast. PMID:27552446

  13. A model-based evaluation of sedimentary reconstructions of 10Be production rates

    NASA Astrophysics Data System (ADS)

    Carney, Lewis; Plancherel, Yves; Khatiwala, Samar; Henderson, Gideon

    2016-04-01

    Atmospheric production of 10Be is small when solar activity and, therefore, solar magnetic field and total solar irradiance are strong. Variations in solar activity affect climate and the production of other climate-relevant isotopes, such as 14C. Solar activity is thus an important variable to constrain. Since 10Be production is clearly related to solar activity and the cycle of beryllium is simpler than that of carbon, 10Be records in ice cores have been used to reconstruct total solar irradiance variability. Unfortunately, 10Be records in ice cores are not only affected by variations in atmospheric production, but are also modulated by changes in wind patterns since spatiotemporal atmospheric 10Be gradients are quite large. In that context, sedimentary 10Be records from the abyssal ocean could be of great interest: since the residence time of 10Be in the ocean is thought to be comparable to the overturning time-scale of the ocean, spatial 10Be gradients may be relatively weaker than those in the atmosphere. Under these conditions, regional oceanic variability should only weakly affect the distribution of 10Be in the ocean and local sedimentary 10Be records are expected to represent the global average 10Be production better than 10Be measured in ice cores. We here show results from a global ocean model of 10Be that we use to investigate the spatial variability of simulated sedimentary 10Be records and test the sensitivity of the 10Be sedimentary flux to uncertainties in the circulation field and in the particle chemistry of beryllium. Our ocean model is based on the Transport Matrix method. The surface 10Be input fluxes are taken from atmospheric model simulations. Our model experiments, constrained by available dissolved 10Be data, show that there exist regions in the ocean where the sedimentary 10Be flux is relatively insensitive to changes in input patterns and magnitudes, assumed particle chemistry and flux patterns, and ocean circulation. We submit that

  14. Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates

    PubMed Central

    Clarkson, Chris

    2016-01-01

    The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135

  15. The influence of broiler activity, growth rate, and litter on carbon dioxide balances for the determination of ventilation flow rates in broiler production.

    PubMed

    Calvet, S; Estellés, F; Cambra-López, M; Torres, A G; Van den Weghe, H F A

    2011-11-01

    Carbon dioxide balances are useful in determining ventilation rates in livestock buildings. These balances need an accurate estimation of the CO(2) produced by animals and their litter to determine the ventilation flows. To estimate the daily variation in ventilation flow, it is necessary to precisely know the daily variation pattern of CO(2) production, which mainly depends on animal activity. The objective of this study was to explore the applicability of CO(2) balances for determining ventilation flows in broiler buildings. More specifically, this work aimed to quantify the amount of CO(2) produced by the litter, as well as the amount of CO(2) produced by the broilers, as a function of productive parameters, and to analyze the influence of broiler activity on CO(2) emissions. Gas concentrations and ventilation flows were simultaneously measured in 3 trials, with 1 under experimental conditions and the other 2 in a commercial broiler farm. In the experimental assay, broiler activity was also determined. At the end of the experimental trial, on the day after the removal of the broilers, the litter accounted for 20% of the total CO(2) produced, and the broilers produced 3.71 L/h of CO(2) per kg of metabolic weight. On the commercial farm, CO(2) production was the same for the 2 cycles (2.60 L/h per kg of metabolic weight, P > 0.05). However, substantial differences were found between CO(2) and broiler activity patterns after changes in light status. A regression model was used to explain these differences (R(2) = 0.52). Carbon dioxide increased with bird activity, being on average 3.02 L/h per kg of metabolic weight for inactive birds and 4.73 L/h per kg of metabolic weight when bird activity was highest. Overall, CO(2) balances are robust tools for determining the daily average ventilation flows in broiler farms. These balances could also be applied at more frequent intervals, but in this case, particular care is necessary after light status changes because of

  16. A New Process for Hot Metal Production at Low Fuel Rate - Phase 1 Feasibility Study

    SciTech Connect

    Dr. Wei-Kao Lu

    2006-02-01

    The project is part of the continuing effort by the North American steel industry to develop a coal-based, cokeless process for hot metal production. The objective of Phase 1 is to determine the feasibility of designing and constructing a pilot scale facility with the capacity of 42,000 mtpy of direct reduced iron (DRI) with 95% metallization. The primary effort is performed by Bricmont, Inc., an international engineering firm, under the supervision of McMaster University. The study focused on the Paired Straight Hearth furnace concept developed previously by McMaster University, The American Iron and Steel Institute and the US Department of Energy.

  17. Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Bingna; Xu, Zhen; Gao, Chao

    2016-01-01

    The output of graphene nanoscrolls (GNSs) has been greatly enhanced to the gram-level by using an improved spray-freeze-drying method without damaging the high transforming efficiency (>92%). The lowest bulk density of GNS foam reaches 0.10 mg cm-3. Due to the unique morphology and high specific surface area (386.4 m2 g-1), the specific capacitances of the GNSs (90-100 F g-1 at 1 A g-1) are all superior to those of multiwalled carbon nanotubes meanwhile maintaining excellent rate capabilities (60-80% retention at 50 A g-1). For the first time, all-graphene-based films (AGFs) are fabricated via the intercalation of GNSs into graphene layers. The AGF exhibits a capacitance of 166.8 F g-1 at 1 A g-1 and rate capability (83.9% retention at 50 A g-1) better than those of pure reduced graphene oxide (RGO) films and carbon nanotubes/graphene hybrid films (CGFs).The output of graphene nanoscrolls (GNSs) has been greatly enhanced to the gram-level by using an improved spray-freeze-drying method without damaging the high transforming efficiency (>92%). The lowest bulk density of GNS foam reaches 0.10 mg cm-3. Due to the unique morphology and high specific surface area (386.4 m2 g-1), the specific capacitances of the GNSs (90-100 F g-1 at 1 A g-1) are all superior to those of multiwalled carbon nanotubes meanwhile maintaining excellent rate capabilities (60-80% retention at 50 A g-1). For the first time, all-graphene-based films (AGFs) are fabricated via the intercalation of GNSs into graphene layers. The AGF exhibits a capacitance of 166.8 F g-1 at 1 A g-1 and rate capability (83.9% retention at 50 A g-1) better than those of pure reduced graphene oxide (RGO) films and carbon nanotubes/graphene hybrid films (CGFs). Electronic supplementary information (ESI) available: SEM image for GNS transformation efficiency assessment, images for GNS density modeling and calculation, tables for GNS specific capacitance and retention, figures and tables for AGF, CGF and RGO

  18. Ca-41 in iron falls, Grant and Estherville - Production rates and related exposure age calculations

    NASA Technical Reports Server (NTRS)

    Fink, D.; Klein, J.; Middleton, R.; Vogt, S.; Herzog, G. F.

    1991-01-01

    Results are presented of the first phase of a Ca-41 cosmogenic studies program aimed at establishing baseline concentrations and trends in selected meteorites and the use of Ca-41 in estimating exposure ages and preatmospheric meteorite radii. The average Ca-41 saturation activity recorded in four small iron falls is 24 +/-1 dpm/kg. This finding, together with measurements at the center and surface of the large iron Grant, indicates that production of Ca-41 from spallation on iron is weakly dependent on shielding to depths as large as 250 g/sq cm. The (K-41)-Ca-41 exposure age of Grant is estimated at 330 +/-50 My, and an upper limit to its terrestrial age of 43 +/-15 ky. A comparison of the Ca-41 contents of stony and metallic material separated from the mesosiderite Estherville identifies low-energy neutron capture on native Ca as a second important channel of production. It is found that the Ca-41 signal in the stone phase from three meteorites correlates with their size, and that the inferred low-energy neutron fluxes vary by a factor of at least 20.

  19. Productive responses of breeding Cashmere goats and their kids to different stocking rates on improved upland pastures.

    PubMed

    Celaya, R; Moreno-Gonzalo, J; López López, C; Ferreira, L M M; García, U; Ferre, I; Osoro, K

    2016-03-01

    Although goat meat production could be an option for diversification in improved upland pastures in northern Spain, precise information on the optimal grazing management to enhance goat performance and maximize production per unit land area is lacking. The objective of this study was to compare the effects of 3 stocking rates, high stocking rate (HSR; 20 goats/ha), medium stocking rate (MSR; 15 goats/ha), and low stocking rate (LSR; 10 goats/ha), on gastrointestinal (GI) nematode infections and productive responses of Cashmere goats grazing such pastures. Treatments were replicated twice on 6 paddocks sown with and and with a high presence of the native grass . The experiment lasted 3 grazing seasons (from spring to autumn). Pastures were sampled for sward height and botanical and proximate composition. Body weight and BCS changes of goats were monitored and GI nematode infections were assessed by fecal egg counts (FEC). The established treatments resulted in lower mean sward height in the HSR than in the MSR and LSR (9.6, 11.5, and 14.4 cm, respectively; < 0.001). Pasture botanical composition and nutritive quality did not differ between treatments. The mean FEC of does across the 3 grazing seasons were greater ( < 0.05) in the HSR than in the LSR. spp., , and were the most prevalent nematode species identified in coprocultures. Does showed more favorable ( < 0.001) BW and BCS changes in the LSR than in the MSR and HSR (-14, -30, and -52 g/d and -0.1, -0.3, and -0.7 BCS units [scale 1 to 5], respectively). Greater ( < 0.001) kids' BW gains were observed in the LSR and MSR (average 94 g/d) compared with the HSR (70 g/d). Inversely, kid output per unit land area was greater in the HSR than in the MSR and LSR (320, 258, and 192 kg∙ha∙yr, respectively; < 0.001), whereas daily kids' BW gains per hectare were greater ( < 0.001) in the HSR and MSR (average 1.37 kg∙d∙ha) compared with the LSR (0.98 kg∙d∙ha). A medium stocking rate of 15 goats/ha could

  20. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.

  1. Effects of primary recoil energy on the production rate of mobile defects during elevated temperature irradiation

    SciTech Connect

    Okamoto, P.R.; Rehn, L.E.; Averback, R.S.

    1984-11-01

    Radiation-induced segregation rates in a Ni-12.7 at.% Si alloy have been measured as a function of temperature using ions of various masses and energies. An analysis of the segregation kinetics using a simple analytical model yielded the relative efficiency of each of the ions for producing mobile defects directly from ratios of their measured segregation rates. In this paper, we also show that the relative efficiencies can also be determined from measured shifts in the peak segregation temperature. Both methods yield a strong decrease in efficiency with increasing ion mass. The reduction in efficiency for the heavior ions was found to be significantly larger than that measured at very low temperatures by resistivity techniques. The latter are often used as a basis for correlating damage structures produced at elevated temperatures. Differences between the low and high temperature measurements indicate that relative efficiencies determined from segregation measurements are more reliable for correlating microstructural changes that are produced in different irradiation environments at high temperatures.

  2. Rate constant measurements for the overall reaction of OH + 1-butanol → products from 900 to 1200 K.

    PubMed

    Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2012-03-15

    The rate constant for the overall reaction OH + 1-butanol → products was determined in the temperature range 900 to 1200 K from measurements of OH concentration time histories in reflected shock wave experiments of tert-butyl hydroperoxide (TBHP) as a fast source of OH radicals with 1-butanol in excess. Narrow-linewidth laser absorption was employed for the quantitative OH concentration measurement. A detailed kinetic mechanism was constructed that includes updated rate constants for 1-butanol and TBHP kinetics that influence the near-first-order OH concentration decay under the present experimental conditions, and this mechanism was used to facilitate the rate constant determination. The current work improves upon previous experimental studies of the title rate constant by utilizing a rigorously generated kinetic model to describe secondary reactions. Additionally, the current work extends the temperature range of experimental data in the literature for the title reaction under combustion-relevant conditions, presenting the first measurements from 900 to 1000 K. Over the entire temperature range studied, the overall rate constant can be expressed in Arrhenius form as 3.24 × 10(-10) exp(-2505/T [K]) cm(3) molecule(-1) s(-1). The influence of secondary reactions on the overall OH decay rate is discussed, and a detailed uncertainty analysis is performed yielding an overall uncertainty in the measured rate constant of ±20% at 1197 K and ±23% at 925 K. The results are compared with previous experimental and theoretical studies on the rate constant for the title reaction and reasonable agreement is found when the earlier experimental data were reinterpreted.

  3. In-Situ Cosmogenic 36Cl Production Rate Calibration from Basaltic Flows of Mount Etna (Sicily, 38° N)

    NASA Astrophysics Data System (ADS)

    Schimmelpfennig, I.; Benedetti, L.; Pik, R.; Burnard, P.; Blard, P. H.; Bourles, D.

    2007-12-01

    One of the CRONUS-EU goals is to provide high quality calibration sites from independently dated surfaces. Several previous studies have been conducted on 36Cl production rate calibration (e.g. Stone et al. 1996, Phillips et al. 2001), which, however, used different protocols and yielded 36Cl production rates with up to 40% discrepancies. The objectives of this study are 1- to understand the source of these discrepancies and 2- to calibrate 36Cl production rates from its target elements Ca and K. As a first step we focused on testing the chemical protocol by performing a sequential 36Cl extraction experiment on whole rock grains and Ca-rich plagioclase from the same sample. The sample was collected at Mt. Etna on a pahoehoe flow, which has a K-Ar fossil exposure time of (10±3) kyr. Cosmogenic 3He was also precisely measured within cogenetic olivine phenocrysts of this sample (Blard et al. 2005) and yields an exposure time of (10.4±1.5) kyr. Both, total Cl and 36Cl concentrations from the first dissolution steps are high, 5800 ppm (whole rock) and 450 ppm (plagioclase) Cl, and 107 - 106 atoms 36Cl/g of rock dissolved. After about 20% dissolution of the plagioclase sample, Cl is almost completely removed (1-3ppm) and 36Cl concentrations reach a plateau value of 2*105 atoms/g of rock. Using the Stone et al. (1996) and Evans et al. (1997) 36Cl production rates for the target elements Ca and K, respectively, this plateau concentration yields an exposure age which is in excellent agreement with K-Ar dating and cosmogenic 3He ages. On the contrary, in the whole rock sample total Cl concentrations remain high (>330ppm) resulting in a considerable 36Cl production from capture of low-energy neutrons by 35Cl, an additional and still not well-constrained 36Cl production mechanism. The resulting exposure ages from the whole rock are 35-45% higher than the independent 3He ages. For 36Cl production rate calibration from Ca, we will use separated Ca-rich plagioclase from various

  4. Decalactone production by Yarrowia lipolytica under increased O2 transfer rates.

    PubMed

    Aguedo, M; Gomes, N; Garcia, E Escamilla; Waché, Y; Mota, M; Teixeira, J A; Belo, I

    2005-10-01

    Yarrowia lipolytica converts methyl ricinoleate to gamma-decalactone, a high-value fruity aroma compound. The highest amount of 3-hydroxy-gamma-decalactone produced by the yeast (263 mg l(-1)) occurred by increasing the k(L)a up to 120 h(-1) at atmospheric pressure; above it, its concentration decreased, suggesting a predominance of the activity of 3-hydroxyacyl-CoA dehydrogenase. Cultures were grown under high-pressure, i.e., under increased O(2) solubility, but, although growth was accelerated, gamma-decalactone production decreased. However, by applying 0.5 MPa during growth and biotransformation gave increased concentrations of dec-2-en-4-olide and dec-3-en-4-olide (70 mg l(-1)).

  5. Influence of hydrologic loading rate on phosphorus retention and ecosystem productivity in created wetlands. Final report

    SciTech Connect

    Mitsch, W.J.; Cronk, J.K.

    1995-01-01

    Four 2- to 3-ha constructed freshwater riparian wetlands in Lake County, Illinois, were subjected to two hydrologic regimes of pumped river water to simulate nonpoint source pollution. The experimental wetlands at the Des Plaines River Wetland Demonstration Project were designed to develop and test wetland design principles, construction methods, and management programs needed to create and maintain wetlands for the purposes of water quality management, flood control, and fish and wildlife habitat. High-flow wetlands (HFW) with short retention times received 34 to 38 cm of river water per week, and low-flow wetlands (LFW) with high retention times received 10 to 15 cm per week. This report summarizes research results for phosphorus dynamics and retention, macrophyte development, periphyton productivity, and overall water column metabolism through 1992. All of these functions were hypothesized to be related to hydrologic conditions.

  6. Effect on air quality and flow rate of fresh water production in humidification and dehumidification system

    NASA Astrophysics Data System (ADS)

    Rajasekar, K.; Pugazhenthi, R.; Selvaraju, A.; Manikandan, T.; Saravanan, R.

    2017-03-01

    Water is the vital need of any living organisms of the world when water fails, functions of nature cease the world. The water scarcity is one of the major problems to be faced by the developing world, which indicates a critical need to develop inexpensive small-scale desalination technologies. The cost of the desalination process takes more, so the world expecting the desalination plants with minimum operating cost, so the utilization of renewable energy source is a preferable one. This research article provides a glimpse of an overview of the humidification-dehumidification (HDH) based desalination method which uses the solar energy. The HDH based desalination method monitored and evaluated the performance parameters, i.e. mass flow rates of water and air.

  7. Pickled egg production: effect of brine acetic acid concentration and packing conditions on acidification rate.

    PubMed

    Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I

    2014-05-01

    U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.

  8. New historical records and relationships among 14C production rates, abundance and color of low latitude auroras and sunspot abundance

    NASA Astrophysics Data System (ADS)

    Abbott, Dallas; Juhl, Robert

    2016-12-01

    Incursions of high-energy particles from space, specifically solar energetic particles and galactic cosmic rays, have significant effects on the Earth, including disruption of the Earth's magnetic field, generation of electric fields strong enough to damage electronic devices as well as the production of auroras at low-latitudes, within 45° of the magnetic equator. We examine the relationships among 14C production, auroral abundance, auroral color and sunspot abundance using existing data supplemented by a new dataset. The new dataset, based on Chinese and Korean records from A.D. 1100-1700, includes 46 new or revised records of sunspots and 279 records of low-latitude auroras. Low-latitude auroras are predominantly red (66%, 835 events) with lesser proportions of white (20%, 253 events) and black auroras (6%, 67 events). All other auroral colors (green, yellow, multicolored, blue and purple) aggregate to a total of 100 events (8%). Overall, white auroras are more frequent during times of higher 14C production. We use two empirical methods of evaluating the flux of high-energy particles: modeled peaks and lows in 14C production and peaks and lows in the 14C calibration curve. We find that comparison to modeled 14C production gives significant results. White auroras are significantly more abundant (98% probability) at times of high production of 14C. Red auroras are somewhat more abundant (88% probability) at times of low production of 14C. The abundances of black, multicolored, green, yellow, and blue auroras between times of low and high 14C production are not significantly different. Violet/purple auroras are significantly more abundant (98% probability) at times of low 14C production. The positive correlation of violet/purple auroras with times of low14C production rate and the lack of correlation of blue auroras with times of high14C production is surprising, for this portion of the visible spectrum contains strong emission lines and some lines with high

  9. Skeletonema cf. costatum biogenic silica production rate determinated by PDMPO method

    NASA Astrophysics Data System (ADS)

    Zhang, Guicheng; Leng, Xiaoyun; Feng, Yuanyuan; Li, Xia; Sun, Jun

    2017-04-01

    Diatoms are the only ecological phytoplankton that require silicic acid for growth. They are also the dominant contributor of ocean's total primary productivity. Generation and circulation with silica walls, which the siliceous organisms form, is an important component of the marine biological pump. It is crucial to the study of the operational mechanisms of biological pump with different sea areas. Moreover, it is the key link to the study of global silicon cycle. This paper introduces the basic mechanism of the formation of diatom silica walls and a new way of researching silicic acid metabolism, namely the 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)- methoxy)phenyl)oxazole (PDMPO) dyeing method. Under a fluorescence microscope after excitation with bright green fluorescence, it can combine with silicic acid to form a complex into the Si deposition within diatom cells. The advantage of this method is that it can monitor the metabolism of silicate after adding PDMPO. For experimentation and sample collection in each of the specified time points, samples were determinated through the unutilized silicic acid, silica dissoluble intracellular and Si deposition within diatom cells, not only using hot alkaline digestions method but also PDMPO dyeing method. Results showed a good linear relationship between PDMPO fluorescent value and biogenic silica concentration. It was also indicated that PDMPO had no deleterious impact on Skeletonema cf. costatum growth for 34 h and was useful for tracking newly-deposited biogenic silica in diatoms' frustules.

  10. Smelting furnace melt zone wall modification to cope higher production rate operation

    NASA Astrophysics Data System (ADS)

    Prayoga, Antonius

    2017-01-01

    PT Smelting adopted the Mitsubishi Continuous Technology for its copper smelter plant which has been operating since 1998. Through a series of expansion projects, the plant annual production capacity increased gradually from 200,000 to 300,000 tons of copper. There were no significant modification works for smelter plant to reach the 50% additional capacity. It was mostly achieved by intensifying the furnaces operation by increasing oxygen content in the furnaces blowing-air. Intensive smelting furnace operation has caused shorter campaign life of some furnace refractory, especially the melt zone wall on the furnace outlet side. During each furnace relining, which is done once in every two years, severe wall erosion was found. The worst condition occurred in year 2007 when the smelting furnace experienced a melt leak through the eroded wall beneath the bath-line coolers. During the 2008 furnace relining, a modification was performed by installing vertical coolers behind the melt zone wall The additional vertical coolers were installed during the 2012 furnace relining to extend the coverage area. The modification improved melt zone wall healthiness significantly by keeping them safely within the two-year campaign life. Recently a modeling study was done to estimate the influences of molten waves on furnace wall erosion. The study was aimed to predict the impact of blowing parameters such as blowing air velocity, on the melt wave character and wall erosion.

  11. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Bristow, L. A.; Callbeck, C. M.; Larsen, M.; Altabet, M. A.; Dekaezemacker, J.; Forth, M.; Gauns, M.; Glud, R. N.; Kuypers, M. M. M.; Lavik, G.; Milucka, J.; Naqvi, S. W. A.; Pratihary, A.; Revsbech, N. P.; Thamdrup, B.; Treusch, A. H.; Canfield, D. E.

    2017-01-01

    A third or more of the fixed nitrogen lost from the oceans as N2 is removed by anaerobic microbial processes in open ocean oxygen minimum zones. These zones have expanded over the past decades, and further anthropogenically induced expansion could accelerate nitrogen loss. However, in the Bay of Bengal there has been no indication of nitrogen loss, although oxygen levels are below the detection level of conventional methods (1 to 2 μM). Here we quantify the abundance of microbial genes associated with N2 production, measure nitrogen transformations in incubations of sampled seawater with isotopically labelled nitrogen compounds and analyse geochemical signatures of these processes in the water column. We find that the Bay of Bengal supports denitrifier and anammox microbial populations, mediating low, but significant N loss. Yet, unlike other oxygen minimum zones, our measurements using a highly sensitive oxygen sensor demonstrate that the Bay of Bengal has persistent concentrations of oxygen in the 10 to 200 nM range. We propose that this oxygen supports nitrite oxidation, thereby restricting the nitrite available for anammox or denitrification. If these traces of oxygen were removed, nitrogen loss in the Bay of Bengal oxygen minimum zone waters could accelerate to global significance.

  12. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    PubMed

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller.

  13. Eutrophication and the rate of denitrification and N/sub 2/O production in coastal marine sediments

    SciTech Connect

    Seitzinger, S.P.; Nixon, S.W.

    1985-11-01

    Large (13 m/sup 3/, 5 m deep) microcosms with coupled pelagic and benthic components were used to measure the effect of nutrient loading and eutrophication in coastal marine ecosystems on the rates of benthic denitrification (N/sub 2/) and N/sub 2/O production. After 3 months or daily nutrient addition, average denitrification rates ranged from about 300 ..mu..mol N m/sup -2/ h/sup -1/ in the sediments of the control microcosm to 880 in the most enriched microcosm, which received 65 times the nutrient input of the control. Increases in the production of N/sub 2/O were more dramatic and increased by a factor of about 100, from 0.56 ..mu..mol N m/sup -2/ h/sup -1/ in the control to 51 in the most enriched microcosm. Although there was a clear increase in the denitrification rate in the more eutrophic systems, the amount of fixed nitrogen removed was a constant or progressively smaller fraction of the nitrogen input. Even in the most enriched microcosm, at least 16% of the N input was removed by denitrification.

  14. Insecticidal efficacy of abamectin against three stored-product insect pests: influence of dose rate, temperature, commodity, and exposure interval.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Vayias, Basileios J; Mihail, Spyridon B; Tomanović, Zeljko

    2009-06-01

    The insecticidal efficacy of abamectin against adults of Rhyzopertha dominica (F.), Sitophilus oryzae (L.), and Tribolium confusum Jacquelin du Val was assessed under laboratory conditions. The efficacy of abamectin was assessed on two commodities (wheat, Triticum aestivum L. and maize, Zea mays L.) and two temperatures (25 and 30 degrees C). The dose rates used were 0.01, 0.1, 0.5, and 1 ppm. Mortality of the exposed adults in the treated grains was measured after 7, 14 and 21 d (= days), whereas progeny production was assessed 60 d later. Increase of dose rate, exposure interval, and temperature enhanced the efficacy of abamectin. Noticeable mortality was noted for all species after 21 d of exposure, although for S. oryzae, mortality was very high even at 7 d. For dose rates higher than 0.5 ppm, the efficacy of abamectin was higher in maize than in wheat against all species tested. Finally, progeny production was measured for all three species on commodities treated with 0.01 and 0.1 ppm of abamectin.

  15. Influence of specific growth rate on biomass yield, productivity, and compostion of Candida utilis in batch and continuous culture.

    PubMed

    Paredes-López, O; Camargo-Rubio, E; Ornelas-Vale, A

    1976-04-01

    Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.

  16. Effects of oxytocin, machine stripping and milking rate on production loss of cows milked once a day.

    PubMed

    Carruthers, V R; Davis, S R; Copeman, P J

    1993-02-01

    The effect of treatments designed to improve the efficiency of milk removal and minimize loss of production in cows milked once a day (OAD) was assessed in short-term trials involving Friesian and Jersey cows. Trial 1 involved 80 cows and compared twice a day (TAD) milking with OAD milking with the administration of 20 i.u. of oxytocin (OX), OAD milking with udder massage before and during milking (OS) and no treatment during OAD milking (OC). The OX and OS groups had increased yields of milk and milk solids when treatments were applied, though yields were not restored to previous TAD levels. The percentage increase shown by OX cows was greater than that of OS cows for fat yield. The level of residual milk in the udder after milking was lower for the OX group than for the OAD and TAD controls. In Trial 2, 12 cows were subjected to fast or slow rates of milking OAD in each of two periods. Losses in milk, fat and protein yields averaged 9.1, 9.9 and 1.0% respectively. Increased rate of milking reduced milking time and time to let-down but did not affect response to OAD milking. The results showed that treatments that increased the evacuation of the udder during milking and decreased the level of residual milk reduced losses in production that occur on OAD milking. Increasing the rate of milking was ineffective in reducing losses on OAD milking.

  17. Influence of specific growth rate on biomass yield, productivity, and compostion of Candida utilis in batch and continuous culture.

    PubMed Central

    Paredes-López, O; Camargo-Rubio, E; Ornelas-Vale, A

    1976-01-01

    Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher. PMID:5055

  18. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism.

    PubMed Central

    Silva, J E; Matthews, P S

    1984-01-01

    calculated production rate of T3 in nanograms per gram per hour by the Cx was 0.96 and 0.89 by the Cm, which on a per organ basis equals 15 and 2%, respectively, of the extrathyroidal production rate as assessed in the body pool exchanging with plasma. Several conclusions can be drawn: Production of T3 by developing brain is a very active process in agreement with the need of thyroid hormones during this period. (b) The brain-plasma exchange of T3 is slow compared with that of L or R. (c) This, along with the active local production, explains the predominant role of the latter as a source of T3 for the brain. (d) In hypothyroidism, the Cx is protected by an increase in the efficiency of T4 to T3 conversion and a prolong residence time of T3 in the tissue, whereas the Cm is protected only by the latter. Because of the large fraction of the T3 produced locally and the active turnover rate of T3 in the brain, reductions in T3 removal rate are of utmost importance for T3 homeostasis in these tissues. Images PMID:6470136

  19. Dilepton production rate in a hot and magnetized quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Sadooghi, N.; Taghinavaz, F.

    2017-01-01

    The differential multiplicity of dileptons in a hot and magnetized quark-gluon plasma, ΔB ≡ dNB /d4 xd4 q, is derived from first principles. The constant magnetic field B is assumed to be aligned in a fixed spatial direction. It is shown that the anisotropy induced by the B field is mainly reflected in the general structure of photon spectral density function. This is related to the imaginary part of the vacuum polarization tensor, Im [Πμν ] , which is derived in a first order perturbative approximation. As expected, the final analytical expression for ΔB includes a trace over the product of a photonic part, Im [Πμν ] , and a leptonic part, Lμν. It is shown that ΔB consists of two parts, ΔB∥ and ΔB⊥ , arising from the components (μ , ν) =(∥ , ∥) and (μ , ν) =(⊥ , ⊥) of Im [Πμν ] and Lμν. Here, the transverse and longitudinal directions are defined with respect to the direction of the B field. Combining ΔB∥ and ΔB⊥, a novel anisotropy factor νB is introduced. Using the final analytical expression of ΔB, the possible interplay between the temperature T and the magnetic field strength eB on the ratio ΔB /Δ0 and νB is numerically studied. Here, Δ0 is the Born approximated dilepton multiplicity in the absence of external magnetic fields. It is, in particular, shown that for each fixed T and B, in the vicinity of certain threshold energies of virtual photons, ΔB ≫Δ0 and ΔB⊥ ≫ ΔB∥ . The latter anisotropy may be interpreted as one of the microscopic sources of the macroscopic anisotropies, reflecting themselves, e.g., in the elliptic asymmetry factor v2 of dileptons.

  20. The effect of alpha-interferon on bone marrow megakaryocytes and platelet production rate in essential thrombocythemia

    SciTech Connect

    Wadenvik, H.; Kutti, J.; Ridell, B.; Revesz, P.; Jacobsson, S.; Magnusson, B.; Westin, J.; Vilen, L. )

    1991-05-15

    In 10 patients with previously untreated essential thrombocythemia (ET), by using {sup 111}In-labeled platelets and megakaryocyte morphometry, the relation between platelet production rate and bone marrow megakaryocytes was evaluated before and during alpha-2b-interferon (IFN) therapy. A highly significant decrease in platelet count occurred during IFN therapy; the platelet counts, at baseline and after 2 and 6 months of IFN therapy, were 1,102 +/- 345 x 10(9)/L, 524 +/- 169 x 10(9)/L (P less than .0001), and 476 +/- 139 x 10(9)/L (P less than .0001), respectively. The decrement in platelet count was mainly a result of diminished platelet production rate, which at baseline and after 2 and 6 months of IFN therapy was 89 +/- 30 x 10(10) platelets/d, 53 +/- 18 x 10(10) platelets/d (P = .0033), and 45 +/- 20 x 10(10) platelets/d (P less than .0001), respectively. Also, a slight shortening of platelet mean life-span (MLS) was observed in response to IFN treatment; platelet MLS was 7.96 +/- 0.69 days at baseline and 6.68 +/- 1.30 days (P = .012) after 6 months of IFN therapy. IFN induced a significant decrease in bone marrow megakaryocyte volume; both megakaryocyte nuclear and cytoplasmatic volumes were affected. The mean megakaryocyte volume was 372 +/- 126 x 10(2) pL/microL at baseline and 278 +/- 147 x 10(2) pL/microL (P = .049) after 6 months of IFN therapy. However, the number of megakaryocytes did not show any significant change in response to IFN. It is concluded that alpha-IFN reduces platelet production rate and the peripheral platelet count in ET mainly through an anti-proliferative action on the megakaryocytes and to a considerably lesser degree by a shortening of platelet MLS.

  1. Quasiclassical trajectory study of the F + H 2 system. Rate constants, kinetic isotope effects and energy partitioning among reaction products

    NASA Astrophysics Data System (ADS)

    Rosenman, Efrat; Persky, Avigdor

    1995-06-01

    Quasiclassical trajectory calculations were carried out for the reactions F + H 2, F + D 2, and F + HD, using two potential energy surfaces T5A and 6SEC. The results which include rate constants and kinetic isotope effects as a function of temperature, isotopic branching ratios for F + HD as a function off collision energy and the energy partitioning and vibrational state distributions of the products at room temperature, are compared with experimental data. For most of the quantities under study, the results for the 6SEC surface are in qualitative agreement with experiment, as opposed to the results for the T5A surface. The conclusions from the present study concerning the quality of the 6SEC surface are consistent with the conclusions of Aoiz et al. which are based mainly on calculations of vibrationally state resolved differential cross sections and vibrational distributions of products, for specific collision energies.

  2. Defect criticality index (DCI): a new methodology to significantly improve DOI sampling rate in a 45nm production environment

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiyuki; Yamada, Yasuyuki; Kaga, Yasuhiro; Yamazaki, Yuuichiro; Aoki, Masami; Tsui, David; Young, Chris; Chang, Ellis

    2008-03-01

    Increasing inspection sensitivity may be necessary for capturing the smaller defects of interest (DOI) dictated by reduced minimum design features. Unfortunately, higher inspection sensitivity can result in a greater percentage of non-DOI or nuisance defect types during inline monitoring in a mass production environment. Due to the time and effort required, review sampling is usually limited to 50 to 100 defects per wafer. Determining how to select and identify critical defect types under very low sampling rate conditions, so that more yield-relevant defect Paretos can be created after SEM review, has become very important. By associating GDS clip (design layout) information with every defect, and including defect attributes such as size and brightness, a new methodology called Defect Criticality Index (DCI) has demonstrated improved DOI sampling rates.

  3. Increased biohydrogen yields, volatile fatty acid production and substrate utilisation rates via the electrodialysis of a continually fed sucrose fermenter.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Mulder, Martijn J J; Premier, Giuliano; Dinsdale, Richard; Guwy, Alan

    2017-04-01

    Electrodialysis (ED) removed volatile fatty acids (VFAs) from a continually-fed, hydrogen-producing fermenter. Simultaneously, electrochemical removal and adsorption removed gaseous H2 and CO2, respectively. Removing VFAs via ED in this novel process increased H2 yields by a factor of 3.75 from 0.24molH2mol(-1)hexose to 0.90molH2mol(-1)hexose. VFA production and substrate utilisation rates were consistent with the hypothesis that end product inhibition arrests H2 production. The methodology facilitated the recovery of 37g of VFAs, and 30L H2 that was more than 99% pure, both of which are valuable, energy dense chemicals. Typically, short hydraulic and solid retention times, and depressed pH levels are used to suppress methanogenesis, but this limits H2 production. To produce H2 from real world, low grade biomass containing complex carbohydrates, longer hydraulic retention times (HRTs) are required. The proposed system increased H2 yields via increased substrate utilisation over longer HRTs.

  4. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse.

    PubMed

    López-Escobar, Luis A; Martínez-Hernández, Sergio; Corte-Cano, Grisel; Méndez-Contreras, Juan M

    2014-01-01

    The influence of the increase of the organic loading rate (OLR) on methane production in a continuous stirred-tank reactor (CSTR) from physicochemical sludge generated in a poultry slaughterhouse was evaluated. Total solid (TS) to obtain OLR of 1, 5, 10 and 15 g VS L(-1) day(-1), with hydraulic retention times of 29, 6, 6 and 4, respectively, were conditioned. The results showed a decrease in pH levels and an increase in the theoretical volatile fatty acids (VFA). While the yield of methane production decreased from 0.48 to 0.10 LCH4/g VSremoved, respectively, the OLR-10 managed on average 38% removal of volatile solids (VS) and a yield biogas production of 0.81 Lbiogas g(-1) VSremoved and 1.35 L day(-1). This suggests that the OLR increases in an anaerobic system from physicochemical sludge only inhibits the methanogenic metabolism, because there is still substrate consumption and biogas production.

  5. Preweaning productivity of suckling goats and sheep in Guadeloupe (FWI) under intensive reproductive rate and grazing management.

    PubMed

    Ortega-Jimenez, E; Alexandre, G; Arquet, R; Mahieu, M; Xandé, A

    2005-02-01

    In Guadeloupe, small ruminants are reared for meat production under pasture conditions. Intensive rotative grazing systems (irrigated, fertilized and high-stocked tropical pastures) allow satisfactory levels of production but generate high post-grazing residues. Experiments were designed to control these. A system in which residuals were mown (RM) was tested in comparison to the control system (residuals remained, RR). The same design was carried out over two years with Creole goats and Martinik sheep. An accelerated reproductive rate (3 parturitions over 2 years) was carried out. Systems were compared at three parturition seasons per year (dry, intermediate and rainy seasons). Each group was composed of 20 goats (36.0+/-2.5 kg) or 20 ewes (46.8+/-2.4 kg). The systems exhibited high levels of productivity in both species compared to other results in the tropics: more than 50 and 30 offspring born alive per hectare and per reproductive season for the goat and ewe flocks, respectively. The annual production at birth was 110 kg kids/ha per year and 133 kg lambs/ha per year (i.e. 21% more). Corresponding values at weaning were 630 kg kids/ha per year and 785 kg lambs/ha per year (i.e. 25% more). The RM system produced 10% more than the RR system in Creole goats, while it produced 35% more in Martinik sheep. Seasonal effects and other factors of variation are discussed.

  6. Formulation and solution of the delayed gamma dose rate problem using the concept of effective delayed gamma production cross section

    SciTech Connect

    Liew, S.L.; Ku, L.P.

    1989-06-01

    With appropriate approximations, the delayed gamma dose rate problem can be formulated in terms of the effective delayed gamma production cross section. The coupled neutron-delayed-gamma transport equations then take the same form as the coupled neutron-prompt-gamma transport equations and they can, therefore, be solved directly in the same manner. This eliminates the need for the tedious and error prone flux coupling step in conventional calculations. Mathematical formulation and solution algorithms are derived. The advantages of this method are illustrated by an example of its application in the solution of a practical design problem. 62 refs., 10 figs., 1 tab.

  7. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates

    NASA Astrophysics Data System (ADS)

    Damialis, Athanasios; Mohammad, Aqilah B.; Halley, John M.; Gange, Alan C.

    2015-09-01

    Very little is known about the impact of climate change on fungi and especially on spore production. Fungal spores can be allergenic, thus being important for human health. The aim of this study was to investigate how climate change influences the responsive ability of fungi by simulating differing environmental regimes. Fungal species with high spore allergenic potential and atmospheric abundance were grown and experimentally examined under a variety of temperatures and different nutrient availability. Each represented the average decadal air temperature of the 1980s, 1990s and 2000s in the UK, along with an Intergovernmental Panel on Climate Change (IPCC) climate change scenario for 2100. All tests were run on six fungal species: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Cladosporium cladosporioides, Cladosporium oxysporum and Epicoccum purpurascens. Mycelium growth rate and spore production were examined on each single species and competitive capacity among species combinations in pairs. All fungal species grew faster at higher temperatures, and this was more pronounced for the temperature projection in 2100. Most species grew faster when there was lower nutrient availability. Exceptions were the species with the highest growth rate ( E. purpurascens) and with the highest competition capacity ( A. alternata). Most species (except for E. purpurascens) produced more spores in the richer nutrient medium but fewer as temperature increased. C. cladosporioides was an exception, exponentially increasing its spore production in the temperature of the 2100 scenario. Regarding competitive capacity, no species displayed any significant alterations within the environmental range checked. It is suggested that in future climates, fungi will display dramatic growth responses, with faster mycelium growth and lower spore production, with questions risen on relevant allergen potential.

  8. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic

  9. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency.

    PubMed

    McCarthy, B; Delaby, L; Pierce, K M; McCarthy, J; Fleming, C; Brennan, A; Horan, B

    2016-05-01

    The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait

  10. Observed Global Historical Changes in Soil Decomposition Rates (1900-2011) and Plant Production (1981-2011)

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Smith, W. K.; Derner, J. D.; Del Grosso, S.; Chen, M.; Silver, W. L.

    2015-12-01

    This paper presents a unique analysis of changes in global soil decomposition rates from 1900 to 2011, determine which climatic factors have caused the observed historical changes in soil decay rates, and compares changes in soil decay rates with observed changes in plant production from 1981 to 2011. This analysis allows us to determine the impact of climatic changes from 1981 to 2011 on soil carbon (C) sequestration. We use observed global monthly global Climatic Research Unit (CRU) weather data from 1900 to 2011 (0.5° x 0.5° spatial scale) to calculate annual changes in the climatic decomposition index (CDI), an analog for soil decay rates. The CRU data was also used to calculate annual changes in precipitation, mean annual temperature, potential evapotranspiration and actual evapotranspiration (AET) rates at the 0.5° x 0.5° spatial scale. Annual changes in plant production (NPP) at the global scale were calculated using global satellite derived Normalized Difference Vegetation Index (NDVI) data sets. At the global scale CDI showed little change from 1900 to 1980 but increased by 4% from 1980 to 2011. CDI increased by more than 10% in tundra and boreal forest systems from 1980 to 2011 (< 4% for all other biomes). Changes in CDI are well correlated to changes in AET rates (r2 > 0.8) with a 2 to 4% increase in AET for most biomes (no change for dry grassland and desert biomes). NPP increased by > 6% for tundra, boreal forest and temperate forest from 1980 to 2011 with latitudinal average changes in NPP and CDI following similar patterns (greatest increases in the +40° to +75° latitudes). Global patterns in NPP are well correlated to AET and CDI (r2 > 0.8) but have different patterns (linear for AET and curvilinear for CDI). Latitudinal averaged ratio of NPP:CDI is correlated to Harmonized World Soil Database soil C levels (r = 0.67). Statistically significant trends (1980-2011) in NPP:CDI suggest increases in soil C for the boreal forest and temperate dry

  11. Erosion rates, stochasticity, and abiotic vs. biotic bedrock to soil production mechanisms in the Oregon Coast Range

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Roering, J. J.

    2010-12-01

    On hillslopes, abiotic and biotic processes advance conversion of bedrock to soil, accelerate exposure of newly created soil to weathering processes, and facilitate sediment transport. Despite recent gains in characterizing soil production laws in steady state landscapes, little empirical data exists on spatial variability in production styles or the relative importance of biotic and abiotic controls on bedrock to soil conversion on soil-mantled slopes. In settings subject to stochastic ‘macro’ disturbances, such as tree growth and turnover, local topography vs. soil-depth relationships provide limited insight into soil production mechanisms. Here we present soil depth data and observations on production mechanisms from hillslopes with slow, intermediate, and fast erosion rates (inferred by hilltop convexity or curvature). Due to the stochastic nature of soil production, we characterize the spatial pattern of soil depth over a broad ridgeline area assuming that the erosion rate does not vary significantly across the ridge. To test our hypothesis that bedrock to soil conversion is variable due to stochastic production mechanisms in rapidly eroding terrain and less variable in slower eroding catchments, we dug over 60 pits and quantified depth to bedrock and abiotic weathering mechanisms. Conjointly, we hypothesize that a number of factors control bedrock to soil conversion including: a) bedrock fracture-controlled tree spacing in very thin soils, b) presence or absence of pit and mound topography, c) root-bedrock interactions, and d) diverse abiotic physical weathering mechanisms. To quantify potential controls on variability, we measured: a) location and size of old growth Pseudotsuga menziesii (Douglas fir) stumps, b) rooting depths, and c) clast dimension ratios (to distinguish between weathering mechanisms). We find a negative correlation between average soil depth and hillslope convexity, while the coefficient of variation increases with increasing

  12. Screening for disorders of pyruvate metabolism by measuring the ratio of the rates of lactate production and pyruvate decarboxylation in cultured skin fibroblasts.

    PubMed

    Kuroda, Y; Kawakami, I; Kobashi, H; Naito, E; Ito, M; Saijo, T; Yokota, I; Takeda, E

    1991-05-31

    We assayed the rates of lactate production from [1-14C]pyruvate and decarboxylation of [1-14C]pyruvate in cultured skin fibroblasts from 8 patients with disorders of pyruvate metabolism and 16 control subjects. The disorders of pyruvate metabolism could be more readily detected by measuring the ratio between the rates of lactate production and pyruvate decarboxylation by cultured skin fibroblasts than by measuring either the rate in isolation.

  13. Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants.

    PubMed

    Jørgensen, Thomas R; Nielsen, Kristian F; Arentshorst, Mark; Park, Joohae; van den Hondel, Cees A; Frisvad, Jens C; Ram, Arthur F

    2011-08-01

    Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (ΔfwnA, scl-1, and scl-2 mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B(2), B(4), and B(6) were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation. fwnA encodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production are fwnA dependent. The scl-1 and scl-2 strains are two UV mutants generated in the ΔfwnA background that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of the scl-1 and scl-2 strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic

  14. Symbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis

    PubMed Central

    Margarita, Valentina; Rappelli, Paola; Dessì, Daniele; Pintus, Gianfranco; Hirt, Robert P.; Fiori, Pier L.

    2016-01-01

    The symbiosis between the parasitic protist Trichomonas vaginalis and the opportunistic bacterium Mycoplasma hominis is the only one currently described involving two obligate human mucosal symbionts with pathogenic capabilities that can cause independent diseases in the same anatomical site: the lower urogenital tract. Although several aspects of this intriguing microbial partnership have been investigated, many questions on the influence of this symbiosis on the parasite pathobiology still remain unanswered. Here, we examined with in vitro cultures how M. hominis could influence the pathobiology of T. vaginalis by investigating the influence of M. hominis on parasite replication rate, haemolytic activity and ATP production. By comparing isogenic mycoplasma-free T. vaginalis and parasites stably associated with M. hominis we could demonstrate that the latter show a higher replication rate, increased haemolytic activity and are able to produce larger amounts of ATP. In addition, we demonstrated in a T. vaginalis-macrophage co-culture system that M. hominis could modulate an aspect of the innate immuno-response to T. vaginalis infections by influencing the production of nitric oxide (NO) by human macrophages, with the parasite-bacteria symbiosis outcompeting the human cells for the key substrate arginine. These results support a model in which the symbiosis between T. vaginalis and M. hominis influences host-microbes interactions to the benefit of both microbial partners during infections and to the detriment of their host. PMID:27379081

  15. A kinetic study of egg production, fecal egg output, and the rate of proglottid shedding in Hymenolepis nana.

    PubMed

    Kumazawa, H

    1992-06-01

    To estimate the rate of shedding of the proglottids during normal development of Hymenolepis nana in mice, 2 parameters, i.e., egg production and fecal egg output, have been determined. Changes in the number of eggs/proglottid along the length of the worm showed that, not only in vitro but also in vivo, a considerable number of eggs is discharged in situ while the proglottids are still attached to the worm. The in situ egg discharge, however, accounts only for a small fraction of the eggs appearing in the feces, and it can be neglected in the estimation of the shedding of proglottids. In H. nana the larva rotates 90 degrees in the egg during its development. This seems to occur in a short period, quite in concert within each proglottid. The transition point (the proglottid where 50% of the eggs have begun rotating) can be a useful landmark to estimate the rate of proglottid shedding. Egg numbers at the transition points approximate the genuine egg production, because in situ egg discharge mostly occurs only after the proglottids have passed the transition point. The 3 processes, i.e., the rotation of the larva in the egg, the in situ egg discharge, and the shedding of proglottids, usually occur in an orderly way. However, on day 20 of infection, just before the worms are lost (or destrobilated), shedding of proglottids seems to be inhibited, whereas the other processes are apparently normal.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Water production rates of recent comets (2014-2015) by SOHO/SWAN and the SOHO/SWAN survey

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Mäkinen, J. Teemu T.; Bertaux, Jean-Loup; Quemerais, Eric; Ferron, Stephane; Wright, Courtney

    2015-08-01

    The all-sky hydrogen Lyman-alpha camera, SWAN (Solar Wind Anisotropies), on the SOlar and Heliospheric Observatory (SOHO) satellite makes observations of the hydrogen coma of comets. Most water vapor produced by comets is ultimately photodissociated into two H atoms and one O atom producing a huge atomic hydrogen coma that is routinely observed in the daily full-sky SWAN images in comets of sufficient brightness. Water production rates are calculated using our time-resolved model (Mäkinen & Combi, 2005, Icarus 177, 217), typically yielding about 1 observation every 2 days on the average. Here we describe the progress in analysis of observations of comets observed during 2014-2015 and those selected from the archive for analysis. These include comets C/2012 K1 (PanSTARRS), C/2013 V5, (Oukaimeden), C/2014 Q2 (Lovejoy) and 15P/Finlay. A status report on the entire SOHO/SWAN archive of water production rates in comets will also be given. SOHO is an international cooperative mission between ESA and NASA. Support from grants NNX11AH50G from the NASA Planetary Astronomy Program and NNX13AQ66G from the NASA Planetary Mission Data Analysis Program are gratefully acknowledged as is support from CNRS, CNES, and the Finnish Meteorological Institute (FMI).

  17. Water production rates of recent comets (2015) by SOHO/SWAN and the SOHO/SWAN survey

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Mäkinen, J. T. T.; Bertaux, Jean-Loup; Quémerais, Eric; Ferron, Stéphane

    2015-11-01

    The all-sky hydrogen Lyman-alpha camera, SWAN (Solar Wind Anisotropies), on the SOlar and Heliospheric Observatory (SOHO) satellite makes observations of the hydrogen coma of comets. Most water molecules produced by comets are ultimately photodissociated into two H atoms and one O atom producing a huge atomic hydrogen coma that is routinely observed in the daily full-sky SWAN images in comets of sufficient brightness. Water production rates are calculated using our time-resolved model (Mäkinen & Combi, 2005, Icarus 177, 217), typically yielding about 1 observation every 2 days on the average for each comet. Here we describe the progress in analysis of observations of comets observed in 2015 and those selected from the archive for analysis. These include comets C/2013 US10 (Catalina), C/2014 Q1 (PanSTARRS), and possibly 67P/Churyumov-Gerasimenko. A status update on the entire SOHO/SWAN archive of water production rates in comets will also be given. SOHO is an international cooperative mission between ESA and NASA. Support from grants NNX11AH50G from the NASA Planetary Astronomy Program and NNX13AQ66G from the NASA Planetary Mission Data Analysis Program are gratefully acknowledged, as is support from CNRS, CNES, and the Finnish Meteorological Institute (FMI).

  18. Symbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis.

    PubMed

    Margarita, Valentina; Rappelli, Paola; Dessì, Daniele; Pintus, Gianfranco; Hirt, Robert P; Fiori, Pier L

    2016-01-01

    The symbiosis between the parasitic protist Trichomonas vaginalis and the opportunistic bacterium Mycoplasma hominis is the only one currently described involving two obligate human mucosal symbionts with pathogenic capabilities that can cause independent diseases in the same anatomical site: the lower urogenital tract. Although several aspects of this intriguing microbial partnership have been investigated, many questions on the influence of this symbiosis on the parasite pathobiology still remain unanswered. Here, we examined with in vitro cultures how M. hominis could influence the pathobiology of T. vaginalis by investigating the influence of M. hominis on parasite replication rate, haemolytic activity and ATP production. By comparing isogenic mycoplasma-free T. vaginalis and parasites stably associated with M. hominis we could demonstrate that the latter show a higher replication rate, increased haemolytic activity and are able to produce larger amounts of ATP. In addition, we demonstrated in a T. vaginalis-macrophage co-culture system that M. hominis could modulate an aspect of the innate immuno-response to T. vaginalis infections by influencing the production of nitric oxide (NO) by human macrophages, with the parasite-bacteria symbiosis outcompeting the human cells for the key substrate arginine. These results support a model in which the symbiosis between T. vaginalis and M. hominis influences host-microbes interactions to the benefit of both microbial partners during infections and to the detriment of their host.

  19. Metridia pacifica in Dabob Bay, Washington: The diatom effect and the discrepancy between high abundance and low egg production rates

    NASA Astrophysics Data System (ADS)

    Halsband-Lenk, Claudia

    2005-11-01

    Information on life cycle strategies and reproductive parameters of Metridia pacifica is scarce, despite its importance in the zooplankton of the subarctic Pacific. In many regions it occurs in high abundance, but reproductive rates, when reported, are usually low. This discrepancy was studied in Dabob Bay, Washington, USA, in the context of an investigation of the effect of diatom blooms on the reproductive success of copepod grazers. In situ egg production rates of M. pacifica were measured in spring and mid-summer with standard methods (multi-wells) and a new incubation chamber (spawning towers) that separates the spawning female from its eggs and allows the eggs to develop undisturbed. Many females did not produce eggs, possibly due to a high fraction of immature individuals. Egg production rates were variable, but clutch sizes were higher in spawning towers, and estimates of female egg cannibalism revealed that females consume many eggs shortly after their release. Thus, a separation of females and eggs is mandatory for accurate measurements of M. pacifica egg production rates. The maximum clutch sizes recorded in our study were comparable to measurements for other calanoids. However, unviable eggs were a large fraction of those spawned, independent of incubation method, especially in late winter and early spring. In order to assess whether the diatom effect may be responsible for low viability of embryos and nauplii, we also measured in situ grazing. Adult females were omnivorous, but they ingested some diatoms that rank among the strongest anti-mitotic toxin producers known so far. Although M. pacifica’s vertical migration behavior suggests opportunistic feeding on abundant food during their short stay in the phytoplankton-rich surface, they often ignored the food items that contributed most to microplankton carbon concentrations. Thus, their feeding strategy remains ambiguous. Due to severe reproductive failure early in the season, recruitment was

  20. Metabolism of citric acid production by Aspergillus niger: model definition, steady-state analysis and constrained optimization of citric acid production rate.

    PubMed

    Alvarez-Vasquez, F; González-Alcón, C; Torres, N V

    2000-10-05

    In an attempt to provide a rational basis for the optimization of citric acid production by A. niger, we developed a mathematical model of the metabolism of this filamentous fungus when in conditions of citric acid accumulation. The present model is based in a previous one, but extended with the inclusion of new metabolic processes and updated with currently available kinetic data. Among the different alternatives to represent the system behavior we have chosen the S-system representation within power-law formalism. This type of representation allows us to verify not only the ability of the model to exhibit a stable steady state of the integrated system but also the robustness and quality of the representation. The model analysis is shown to be self-consistent, with a stable steady state, and in good agreement with experimental evidence. Moreover, the model representation is sufficiently robust, as indicated by sensitivity and steady-state and dynamic analyses. From the steady-state results we concluded that the range of accuracy of the S-system representation is wide enough to model realistic deviations from the nominal steady state. The dynamic analysis indicated a reasonable response time, which provided further indication that the model is adequate. The extensive assessment of the reliability and quality of the model put us in a position to address questions of optimization