Science.gov

Sample records for 22q phenotypic overlap

  1. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    SciTech Connect

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J.

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  2. Interstitial duplication of proximal 22q: phenotypic overlap with cat eye syndrome.

    PubMed

    Knoll, J H; Asamoah, A; Pletcher, B A; Wagstaff, J

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome.

  3. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  4. Subtle familial translocation t(11;22)(q24.2;q13.33) resulting in Jacobsen syndrome and distal trisomy 22q13.3: further details of genotype-phenotype maps.

    PubMed

    Jamsheer, Aleksander; Smyk, Marta; Wierzba, Jolanta; Kołowska, Jolanta; Woźniak, Anna; Skołozdrzy, Joanna; Fischer, Maria; Latos-Bieleńska, Anna

    2008-01-01

    We report on 3 kindred patients with terminal 11q monosomy and distal 22q trisomy involving the SHANK3 gene, resulting from a subtle familial translocation t(11;22)(q24.2;q13.33). The patients presented with the characteristic symptoms of Jacobsen syndrome (JBS), including: mental retardation, short stature, and craniofacial dysmorphism in all 3 cases; cardiac defects in 2 cases; and thrombocytopenia, brain abnormality, eye coloboma, recurrent infections, cryptorchidism and toe anomalies in single cases. The oldest patient also had Hashimoto disease and diabetes mellitus type 2. So far, these 2 conditions have not been reported in adult patients with JBS. Features typical for distal 22q trisomy in our patients include muscular hypotonia and prenatal failure to thrive, seen in 2 and 1 cases, respectively. We also present a family member with 11q24.2-qter trisomy and 22q13.33-qter monosomy, whose clinical phenotype is partially overlapping with several dysmorphic features of JBS. In addition, multiple pregnancy losses and infantile deaths occurred in this family, suggesting that these chromosomal imbalances may produce a lethal phenotype. FISH with a panel of BAC probes determined the accurate sizes of the deletion 11q (9.9 Mb) and trisomy 22q (0.8 Mb). To date, only 5 cases of submicroscopic 22q13.3-qter trisomy have been reported. A detailed clinical description of our patients, along with a precise cytogenetic designation of chromosomal breakpoints, allow further refinement of genotype-phenotype correlation for distal imbalances in 11q and 22q.

  5. Patient with a 22q11.2 deletion with no overlap of the minimal DiGeorge syndrome critical region (MDGCR).

    PubMed

    McQuade, L; Christodoulou, J; Budarf, M; Sachdev, R; Wilson, M; Emanuel, B; Colley, A

    1999-09-03

    The apparent lack of genotype/phenotype correlation in patients with the DiGeorge anomaly and velocardiofacial syndrome (DGA/VCFS; the "22q11 deletion syndrome") indicates a complex genetic condition. Most cases, whatever the phenotype, have a 1.5-3 Mb chromosomal deletion that includes the minimal DiGeorge critical region (MDGCR). Another potential critical region on 22q11 has been suggested based on two patients with distal deletions outside the MDGCR. We report on a patient with a VCFS phenotype who has a deletion, mapped by short tandem repeat polymorphic loci and fluorescence in situ hybridization analysis, distal to and not overlapping the MDGCR. This patient is deleted for several genes, including the T-box 1 gene (TBX1; a transcription regulator expressed early in embryogenesis) and catechol-O-methyltransferase (COMT; involved in neurotransmitter metabolism). We discuss the role these two genes may play in the clinical phenotype of the patient.

  6. A Case of 22q11 Deletion Syndrome (22q11DS) with a Panayiotopoulos Epileptic Pattern: Are Additional Copy-Number Variations a Possible Second Hit in Modulating the 22q11DS Phenotype?

    PubMed Central

    Bertini, Veronica; Valetto, Angelo; Azzarà, Alessia; Legitimo, Annalisa; Saggese, Giuseppe; Consolini, Rita; Orsini, Alessandro; Bonuccelli, Alice

    2017-01-01

    22q11 deletion syndrome” (22q11DS) is a rare genetic syndrome, in which most patients share the same deletion, but their clinical features may vary a great deal. The genetic mechanisms underlying the variable expressivity and reduced penetrance of 22q11DS still have to be fully elucidated. Epilepsy has been reported in about 15.2% of the patients; however, few studies have focused on this topic, and in most cases, a detailed epileptic profile is missing. Since only a minority of patients experience epileptic seizures, 22q11deletion can be considered a predisposing factor, which is not sufficient “per se” to cause epilepsy; to date, no candidate gene for epilepsy has been identified in the deleted region. We report on a 6-year-old girl with 22q11DS presenting a form of epilepsy that can be classified as “Panayiotopoulos syndrome.” Array CGH revealed an additional microduplication of 172 kb in 2q37, harboring three genes. One of these, DGKD (diacylglycerol kinase delta), is interrupted by the distal breakpoint of the duplication. DGKD encodes a cytoplasmic enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. This is an important second messenger in a pathway of lipid signaling that has been implicated in epilepsy and other neurological diseases. Disruption of DGKD by a t(X;2) has been previously reported in a patient with epilepsy. The 2q37 microduplication was inherited from her mother, who never experienced epileptic seizures, thus this imbalance is not “per se” sufficient to cause epilepsy. It can be hypothesized that the epileptic phenotype is provoked by the simultaneous presence of 22q11.2 deletion and 2q37 duplication. It has been shown that rare additional copy-number variations (CNVs) outside the 22q11.2 region may modulate the risk of congenital heart defects. It is possible that also for the epileptic phenotype, the additional CNVs may represent an important modifying factor underlying the variable expressivity and

  7. Expanding the phenotype of 22q11 deletion syndrome: the MURCS association.

    PubMed

    Uliana, Vera; Giordano, Nicola; Caselli, Rossella; Papa, Filomena Tiziana; Ariani, Francesca; Marcocci, Claudio; Gianetti, Elena; Martini, Giuseppe; Papakostas, Panagiotis; Rollo, Fabio; Meloni, Ilaria; Mari, Francesca; Priolo, Manuela; Renieri, Alessandra; Nuti, Ranuccio

    2008-01-01

    The MURCS association [Müllerian Duct aplasia or hypoplasia (M), unilateral renal agenesis (UR) and cervicothoracic somite dysplasia (CS)] manifests itself as Müllerian Duct aplasia or hypoplasia, unilateral renal agenesis and cervicothoracic somite dysplasia. We report on a 22-year-old woman with bicornuate uterus, right renal agenesis, C2-C3 vertebral fusion (MURCS association) and 22q11.2 deletion. Angio-MRI revealed the aberrant origin of arch arteries. Hashimoto thyroiditis, micropolycystic ovaries with a dermoid cyst in the right ovary and mild osteoporosis were also diagnosed. Accurate revision of radiographs enabled us also to identify thoracolumbar and lumbosacral vertebral-differentiation defects. Audiometry and echocardiogram were normal. Bone densitometry showed osteoporosis. As per our evaluation, the patient had short stature, obesity (BMI 30.7) and facial features suggestive of the 22q11 deletion syndrome. Multiplex ligation-dependent probe amplification analysis showed a de-novo 22q11.2 deletion confirmed by array-comparative genomic hybridization analysis. We discuss whether this is a casual association or whether it is an additional syndrome owing to the well known phenotype extensive variability of the 22q11 deletion syndrome.

  8. Cognitive, Behavioural and Psychiatric Phenotype in 22q11.2 Deletion Syndrome

    PubMed Central

    Philip, Nicole

    2011-01-01

    22q11.2 Deletion syndrome has become an important model for understanding the pathophysiology of neurodevelopmental conditions, particularly schizophrenia which develops in about 20–25% of individuals with a chromosome 22q11.2 microdeletion. From the initial discovery of the syndrome, associated developmental delays made it clear that changes in brain development were a key part of the expression. Once patients were followed through childhood into adult years, further neurobehavioural phenotypes became apparent, including a changing cognitive profile, anxiety disorders and seizure diathesis. The variability of expression is as wide as for the myriad physical features associated with the syndrome, with the addition of evolving phenotype over the developmental trajectory. Notably, variability appears unrelated to length of the associated deletion. Several mouse models of the deletion have been engineered and are beginning to reveal potential molecular mechanisms for the cognitive and behavioural phenotypes observable in animals. Both animal and human studies hold great promise for further discoveries relevant to neurodevelopment and associated cognitive, behavioural and psychiatric disorders. PMID:21573985

  9. Behavioral and Psychiatric Phenotypes in 22q11.2 Deletion Syndrome

    PubMed Central

    Tang, Kerri L; Antshel, Kevin M; Fremont, Wanda P.

    2015-01-01

    22q11.2DS is a chromosomal microdeletion that affects approximately 40–50 genes, and impacts various organs and systems throughout the body. Detection is typically achieved by fluorescence in-situ hybridization following diagnosis of one of the major features of the deletion or via chromosomal microarray or non-invasive prenatal testing. The physical phenotype can include congenital heart defects, palatal and pharyngeal anomalies, hypocalcemia/hypoparathyroidism, skeletal abnormalities, and cranial/brain anomalies, although prevalence rates of all of these features are variable. Cognitive function is impaired to some degree in most individuals, with prevalence rates of greater than 90% for motor/speech delays and learning disabilities. Attention, executive function, working memory, visual spatial abilities, motor skills, and social cognition/social skills are affected. The deletion is also associated with an increased risk for behavioral disorders and psychiatric illness. The early onset of psychiatric symptoms common to 22q11.2DS disrupts the development and quality of life of individuals with the syndrome, and is also a potential risk factor for later development of a psychotic disorder. This review discusses prevalence, phenotypic features, and management of psychiatric disorders commonly diagnosed in children and adolescents with 22q11.2DS, including autism spectrum disorders, attention deficit/hyperactivity disorder, anxiety disorders, mood disorders, and schizophrenia/psychotic disorders. Guidelines for the clinical assessment and management of psychiatric disorders in youth with this syndrome are provided, as are treatment guidelines for the use of psychiatric medications. PMID:26372046

  10. Evaluation of Potential Modifiers of the Palatal Phenotype in the 22q11.2 Deletion Syndrome

    PubMed Central

    Driscoll, Deborah A.; Boland, Torrey; Emanuel, Beverly S.; Kirschner, Richard E.; LaRossa, Don; Manson, Jeanne; McDonald-McGinn, Donna; Randall, Peter; Solot, Cynthia; Zackai, Elaine; Mitchell, Laura E.

    2010-01-01

    Objective To evaluate potential modifiers of the palatal phenotype in individuals with the 22q11.2 deletion syndrome. Design Data from 356 subjects enrolled in a study of the 22q11.2 deletion syndrome were used to evaluate potential modifiers of the palatal phenotype. Specifically, subjects with and without velopharyngeal inadequacy and/or structural malformations of the palate were compared with respect to gender, race, and genotype for variants of seven genes that may influence palatal development. Methods The chi-square test or Fisher exact test was used to evaluate the association between palatal phenotype and each potential modifier. Odds ratios and their associated 95% confidence intervals were used to measure the magnitude of the association between palatal phenotype, subject gender and race, and each of the bi-allelic variants. Results The palatal phenotype observed in individuals with the 22q11.2 deletion syndrome was significantly associated with both gender and race. In addition, there was tentative evidence that the palatal phenotype may be influenced by variation within the gene that encodes methionine synthase. Conclusions Variation in the palatal phenotype observed between individuals with the 22q11.2 deletion syndrome may be related to personal characteristics such as gender and race as well as variation within genes that reside outside of the 22q11.2 region. PMID:16854201

  11. 22q11.2 duplication syndrome: two new familial cases with some overlapping features with DiGeorge/velocardiofacial syndromes.

    PubMed

    Portnoï, Marie-France; Lebas, Fanny; Gruchy, Nicolas; Ardalan, Azarnouche; Biran-Mucignat, Valérie; Malan, Valérie; Finkel, Lina; Roger, Gilles; Ducrocq, Sarah; Gold, Francis; Taillemite, Jean-Louis; Marlin, Sandrine

    2005-08-15

    Twenty-one patients, including our two cases, with variable clinical phenotype, ranging from mild learning disability to severe congenital malformations or overlapping features with DiGeorge/velocardiofacial syndromes (DG/VCFS), have been shown to have a chromosome duplication 22q11 of the region that is deleted in patients with DG/VCFS. The reported cases have been identified primarily by interphase FISH and could have escaped identification and been missed by routine cytogenetic analysis. Here we report on two inherited cases, referred to us, to rule out 22q11 microdeletion diagnosis of VCFS. The first patient was a 2-month-old girl, who presented with cleft palate, minor dysmorphic features including short palpebral fissures, widely spaced eyes, long fingers, and hearing loss. Her affected mother had mild mental retardation and learning disabilities. The second patient was a 7(1/2)-year-old boy with velopharyngeal insufficiency and mild developmental delay. He had a left preauricular tag, bifida uvula, bilateral fifth finger clinodactyly, and bilateral cryptorchidism. His facial features appeared mildly dysmorphic with hypertelorism, large nose, and micro/retrognathia. The affected father had mild mental retardation and had similar facial features. FISH analysis of interphase cells showed three TUPLE1-probe signals with two chromosome-specific identification probes in each cell. FISH analysis did not show the duplication on the initial testing of metaphase chromosomes. On review, band q11.2 was brighter on one chromosome 22 in some metaphase spreads. The paucity of reported cases of 22q11.2 microduplication likely reflects a combination of phenotypic diversity and the difficulty of diagnosis by FISH analysis on metaphase spreads. These findings illustrate the importance of scanning interphase nuclei when performing FISH analysis for any of the genomic disorders.

  12. Evaluation of Potential Modifiers of the Cardiac Phenotype in the 22q11.2 Deletion Syndrome

    PubMed Central

    Goldmuntz, Elizabeth; Driscoll, Deborah A.; Emanuel, Beverly S.; McDonald-McGinn, Donna; Mei, Minghua; Zackai, Elaine; Mitchell, Laura E.

    2010-01-01

    BACKGROUND The phenotype associated with deletion of the 22q11.2 chromosomal region is highly variable, yet little is known about the source of this variability. Cardiovascular anomalies, including tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, perimembranous ventricular septal defects, and aortic arch anomalies, occur in approximately 75% of individuals with a 22q11.2 deletion. METHODS Data from 343 subjects enrolled in a study of the 22q11.2 deletion syndrome were used to evaluate potential modifiers of the cardiac phenotype in this disorder. Subjects with and without cardiac malformations, and subjects with and without aortic arch anomalies were compared with respect to sex and race. In addition, in the subset of subjects from whom a DNA sample was available, genotypes for variants of four genes that are involved in the folate-homocysteine metabolic pathway and that have been implicated as risk factors for other birth defects were compared. Five variants in four genes were genotyped by heteroduplex or restriction digest assays. The chi-square or Fisher’s exact test was used to evaluate the association between the cardiac phenotype and each potential modifier. RESULTS The cardiac phenotype observed in individuals with a 22q11.2 deletion was not significantly associated with either sex or race. The genetic variants that were evaluated also did not appear to be associated with the cardiovascular phenotype. CONCLUSIONS Variation in the cardiac phenotype observed between individuals with a 22q11.2 deletion does not appear to be related to sex, race, or five sequence variants in four folate-related genes that are located outside of the 22q11.2 region. PMID:18770859

  13. A candidate gene approach to identify modifiers of the palatal phenotype in 22q11.2 deletion syndrome patients

    PubMed Central

    Widdershoven, Josine C.C.; Bowser, Mark; Sheridan, Molly B.; McDonald-McGinn, Donna M.; Zackai, Elaine H.; Solot, Cynthia B.; Kirschner, Richard E.; Beemer, Frits A.; Morrow, Bernice E.; Devoto, Marcella; Emanuel, Beverly S.

    2014-01-01

    Objective Palatal anomalies are one of the identifying features of 22q11.2 deletion syndrome (22q11.2DS) affecting about one third of patients. To identify genetic variants that increase the risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide human SNP array 6.0. Methods Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft, submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control and association analyses were conducted using the software package PLINK. Results Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%), 38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value ≤0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the SNPs remained significant after correcting for multiple testing. Conclusions Although these results are promising, analysis of additional samples will be required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies in 22q11.2DS patients. PMID:23121717

  14. Histone Modifier Genes Alter Conotruncal Heart Phenotypes in 22q11.2 Deletion Syndrome.

    PubMed

    Guo, Tingwei; Chung, Jonathan H; Wang, Tao; McDonald-McGinn, Donna M; Kates, Wendy R; Hawuła, Wanda; Coleman, Karlene; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E

    2015-12-03

    We performed whole exome sequence (WES) to identify genetic modifiers on 184 individuals with 22q11.2 deletion syndrome (22q11DS), of whom 89 case subjects had severe congenital heart disease (CHD) and 95 control subjects had normal hearts. Three genes including JMJD1C (jumonji domain containing 1C), RREB1 (Ras responsive element binding protein 1), and SEC24C (SEC24 family member C) had rare (MAF < 0.001) predicted deleterious single-nucleotide variations (rdSNVs) in seven case subjects and no control subjects (p = 0.005; Fisher exact and permutation tests). Because JMJD1C and RREB1 are involved in chromatin modification, we investigated other histone modification genes. Eighteen case subjects (20%) had rdSNVs in four genes (JMJD1C, RREB1, MINA, KDM7A) all involved in demethylation of histones (H3K9, H3K27). Overall, rdSNVs were enriched in histone modifier genes that activate transcription (Fisher exact p = 0.0004, permutations, p = 0.0003, OR = 5.16); however, rdSNVs in control subjects were not enriched. This implicates histone modification genes as influencing risk for CHD in presence of the deletion.

  15. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    ERIC Educational Resources Information Center

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  16. [Catch-22? Wide variety of phenotypes associated with the chromosome 22q11 deletion syndrome in two patients].

    PubMed

    Till, Ágnes; Hadzsiev, Kinga; Lőcsei-Fekete, Anett; Czakó, Márta; Duga, Balázs; Melegh, Béla

    2015-11-08

    The chromosome 22q11 deletion syndrome may present with a variety of phenotypes. Its symptoms generally include a characteristic facial dysmorphisms and multiplex developmental disorders. Fluorescence in situ hybridization is the current method of choice for the diagnosis if typical multiple defects and/or symptoms are present. The authors present the history of two patients who were followed-up for minor anomalies and various developmental disorders for several years in the genetic counseling office of the authors, but definitive diagnosis was not established. However, when DNA samples of the two patients were recently tested with array comparative genome hybridization, a diagnostic method which has already been used in their institute for several years, the results indicated deletion of the 11.2 region on the long arm of chromosome 22 in both patients. The authors draw attention to the incidence and wide phenotypic spectrum of the chromosome 22q11 deletion syndrome, and show that its identification can be aided with the novel molecular cytogenetic method available in their laboratory.

  17. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion.

    PubMed

    Voelckel, Marie-Antoinette; Girardot, Lydie; Giusiano, Bernard; Levy, Nicolas; Philip, Nicole

    2004-01-01

    Microdeletion at the 22q11 locus is characterised by a high clinical variability. Congenital heart defects (CHD) are the most life-threatening manifestations of the syndrome and affect approximately 50% of patients carrying the deleted chromosome 22. The causes of this phenotype variability remain unknown although several hypotheses have been raised. It has been suggested that allelic variations at the haploid locus could modify the phenotypic expression. Regarding this hypothesis, TBX1 was thought to be a major candidate to the cardiac phenotype or its severity in patients carrying the 22q11 microdeletion. A mutational screening was performed in this gene, in a series of 39 deleted patients, with and without CHD. The results indicate that mutations in TBX1 are not likely to be involved in the cardiac phenotype observed in del22q11 patients.

  18. Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11.

    PubMed

    Funke, B; Edelmann, L; McCain, N; Pandita, R K; Ferreira, J; Merscher, S; Zohouri, M; Cannizzaro, L; Shanske, A; Morrow, B E

    1999-03-01

    Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.

  19. Phenotypic variability in Waardenburg syndrome resulting from a 22q12.3-q13.1 microdeletion involving SOX10.

    PubMed

    Jelena, Brezo; Christina, Lam; Eric, Vilain; Fabiola, Quintero-Rivera

    2014-06-01

    Waardenburg syndrome (WS) is a neurocristopathy characterized by pigmentation abnormalities of the skin, hair, and iris, as well as sensorineural hearing loss. Contiguous gene deletions encompassing SOX10 are rare, which limits conclusions about genotype-phenotype correlation regarding patient prognosis and management. This study adds to the existing body of knowledge by characterizing a 2.4 Mb deletion [arr[hg19] 22q12.3-q13.1 (36467502-38878207)x1] encompassing SOX10 and 53 additional RefSeq genes in a 15-year-old female with atypical WS. The patient presented with developmental delay, profound bilateral sensorineural hearing loss, heterochromia iridis, hypotonia, and bilateral finger contractures. Published genomic and phenotypic profiles of patients with SOX10-encompassing deletions point toward several plausible candidate gene that could account for the considerable clinical heterogeneity. These studies suggest the existence of modifiers among the co-deleted, dosage-sensitive genes (e.g., MYH9) and among genes whose effect may depend on the unmasking of recessive mutations (e.g., PLA2G6). Finally, we highlight evidence illustrating extensive interconnectivity of SOX10-hypothesizing that haploinsufficiency of SOX10 may "unmask" subtler effects on expression or epistasis associated with variants in SOX10 targets (e.g., DHH), in its partners (e.g., PAX3, EGR2), and in genes with functional overlap (e.g., SOX8, SOX9).

  20. Prevalence of microdeletion 22q11 in patients with hypernasal speech due to velopharyngeal insufficiency: Expanded phenotype and clinical comparison to nondeletion

    SciTech Connect

    Siegel-Bartelt, J.; Cytrynbaum, C.; Witzel, M.A.; Teshima, I.E.

    1994-09-01

    Microdeletion 22q11.2 has been reported as a frequent ethiology of both velocardiofacial (VCF) and DiGeorge syndromes. We have studied the prevalence of microdeletion 22q11 in a group of patients ascertained through a Speech and Language clinic presenting with (1) velopharyngeal insufficiency (VPI) and (2) difficultly in school. Growth parameters were measured, and facies were scored for features of VCF. Microdeletions were detected at locus D22S75 by FISH with probe N25 (Oncor), and at 22q11.2 with high resolution banding analysis (HRB). One child with typical VCF facies was considered to have a deletion at 22q11 with HRB, but is not deleted with N25, indicating that N25 may not detect all deletion patients. An additional 8/30 children tested to date were deleted with the N25 probe. Heart defects were present in only 2/8 deletion patients: VSD/ASD and PS/AS. One N25 deletion patient was atypica; he has a tall, lanky habitus (height = 90%), and facies not characteristic of CVF. As expected, there is a trend to lower head size, smaller ear size, and more typical facies in deletion patients; however, four of the nondeletion patients also had a clinical diagnosis of VCF. Medially displaced carotid arteries were present in both groups, which is therefore not a diagnostic feature of microdeletion 22q11. Our findings indicate that the microdeletion 22q11 is frequent (26% in this series) in a population with VPI, even when not selected for typical facies. We believe this series supports the view that microdeletion 22q11 has a broader clinical phenotype than previously recognized.

  1. Whole genome sequencing and integrative genomic analysis approach on two 22q11.2 deletion syndrome family trios for genotype to phenotype correlations

    PubMed Central

    Chung, Jonathan H.; Cai, Jinlu; Suskin, Barrie G.; Zhang, Zhengdong; Coleman, Karlene

    2015-01-01

    The 22q11.2 deletion syndrome (22q11DS) affects 1:4000 live births and presents with highly variable phenotype expressivity. In this study, we developed an analytical approach utilizing whole genome sequencing and integrative analysis to discover genetic modifiers. Our pipeline combined available tools in order to prioritize rare, predicted deleterious, coding and non-coding single nucleotide variants (SNVs) and insertion/deletions (INDELs) from whole genome sequencing (WGS). We sequenced two unrelated probands with 22q11DS, with contrasting clinical findings, and their unaffected parents. Proband P1 had cognitive impairment, psychotic episodes, anxiety, and tetralogy of Fallot (TOF); while proband P2 had juvenile rheumatoid arthritis but no other major clinical findings. In P1, we identified common variants in COMT and PRODH on 22q11.2 as well as rare potentially deleterious DNA variants in other behavioral/neurocognitive genes. We also identified a de novo SNV in ADNP2 (NM_014913.3:c.2243G>C), encoding a neuroprotective protein that may be involved in behavioral disorders. In P2, we identified a novel non-synonymous SNV in ZFPM2 (NM_012082.3:c.1576C>T), a known causative gene for TOF, which may act as a protective variant downstream of TBX1, haploinsufficiency of which is responsible for congenital heart disease in individuals with 22q11DS. PMID:25981510

  2. Whole-Genome Sequencing and Integrative Genomic Analysis Approach on Two 22q11.2 Deletion Syndrome Family Trios for Genotype to Phenotype Correlations.

    PubMed

    Chung, Jonathan H; Cai, Jinlu; Suskin, Barrie G; Zhang, Zhengdong; Coleman, Karlene; Morrow, Bernice E

    2015-08-01

    The 22q11.2 deletion syndrome (22q11DS) affects 1:4,000 live births and presents with highly variable phenotype expressivity. In this study, we developed an analytical approach utilizing whole-genome sequencing (WGS) and integrative analysis to discover genetic modifiers. Our pipeline combined available tools in order to prioritize rare, predicted deleterious, coding and noncoding single-nucleotide variants (SNVs), and insertion/deletions from WGS. We sequenced two unrelated probands with 22q11DS, with contrasting clinical findings, and their unaffected parents. Proband P1 had cognitive impairment, psychotic episodes, anxiety, and tetralogy of Fallot (TOF), whereas proband P2 had juvenile rheumatoid arthritis but no other major clinical findings. In P1, we identified common variants in COMT and PRODH on 22q11.2 as well as rare potentially deleterious DNA variants in other behavioral/neurocognitive genes. We also identified a de novo SNV in ADNP2 (NM_014913.3:c.2243G>C), encoding a neuroprotective protein that may be involved in behavioral disorders. In P2, we identified a novel nonsynonymous SNV in ZFPM2 (NM_012082.3:c.1576C>T), a known causative gene for TOF, which may act as a protective variant downstream of TBX1, haploinsufficiency of which is responsible for congenital heart disease in individuals with 22q11DS.

  3. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  4. Genomic disorders on 22q11.

    PubMed

    McDermid, Heather E; Morrow, Bernice E

    2002-05-01

    The 22q11 region is involved in chromosomal rearrangements that lead to altered gene dosage, resulting in genomic disorders that are characterized by mental retardation and/or congenital malformations. Three such disorders-cat-eye syndrome (CES), der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS)-are associated with four, three, and one dose, respectively, of parts of 22q11. The critical region for CES lies centromeric to the deletion region of VCFS/DGS, although, in some cases, the extra material in CES extends across the VCFS/DGS region. The der(22) syndrome region overlaps both the CES region and the VCFS/DGS region. Molecular approaches have revealed a set of common chromosome breakpoints that are shared between the three disorders, implicating specific mechanisms that cause these rearrangements. Most VCFS/DGS and CES rearrangements are likely to occur by homologous recombination events between blocks of low-copy repeats (e.g., LCR22), whereas nonhomologous recombination mechanisms lead to the constitutional t(11;22) translocation. Meiotic nondisjunction events in carriers of the t(11;22) translocation can then lead to offspring with der(22) syndrome. The molecular basis of the clinical phenotype of these genomic disorders has also begun to be addressed. Analysis of both the genomic sequence for the 22q11 interval and the orthologous regions in the mouse has identified >24 genes that are shared between VCFS/DGS and der(22) syndrome and has identified 14 putative genes that are shared between CES and der(22) syndrome. The ability to manipulate the mouse genome aids in the identification of candidate genes in these three syndromes. Research on genomic disorders on 22q11 will continue to expand our knowledge of the mechanisms of chromosomal rearrangements and the molecular basis of their phenotypic consequences.

  5. Mother-Child Interaction as a Window to a Unique Social Phenotype in 22q11.2 Deletion Syndrome and in Williams Syndrome

    ERIC Educational Resources Information Center

    Weisman, Omri; Feldman, Ruth; Burg-Malki, Merav; Keren, Miri; Geva, Ronny; Diesendruck, Gil; Gothelf, Doron

    2015-01-01

    Mother-child interactions in 22q11.2 Deletion syndrome (22q11.2DS) and Williams syndrome (WS) were coded for maternal sensitivity/intrusiveness, child's expression of affect, levels of engagement, and dyadic reciprocity. WS children were found to express more positive emotions towards their mothers compared to 22q11.2DS children and those with…

  6. Probing genetic overlap among complex human phenotypes.

    PubMed

    Rzhetsky, Andrey; Wajngurt, David; Park, Naeun; Zheng, Tian

    2007-07-10

    Geneticists and epidemiologists often observe that certain hereditary disorders cooccur in individual patients significantly more (or significantly less) frequently than expected, suggesting there is a genetic variation that predisposes its bearer to multiple disorders, or that protects against some disorders while predisposing to others. We suggest that, by using a large number of phenotypic observations about multiple disorders and an appropriate statistical model, we can infer genetic overlaps between phenotypes. Our proof-of-concept analysis of 1.5 million patient records and 161 disorders indicates that disease phenotypes form a highly connected network of strong pairwise correlations. Our modeling approach, under appropriate assumptions, allows us to estimate from these correlations the size of putative genetic overlaps. For example, we suggest that autism, bipolar disorder, and schizophrenia share significant genetic overlaps. Our disease network hypothesis can be immediately exploited in the design of genetic mapping approaches that involve joint linkage or association analyses of multiple seemingly disparate phenotypes.

  7. A Fryns syndrome-like phenotype with mosaic t(1;22)(q12;p12) chromosomal translocation.

    PubMed

    Ahmed, Atif A; Gilbert-Barness, Enid

    2004-04-01

    We report a case of Fryns syndrome-like phenotype with chromosomal translocation. Not all such cases have chromosomal abnormalities hence we suggest that this condition is associated with genetic heterogeneity and variable clinical manifestations.

  8. Overt cleft palate phenotype and TBX1 genotype correlations in velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome patients.

    PubMed

    Herman, Sean B; Guo, Tingwei; McGinn, Donna M McDonald; Blonska, Anna; Shanske, Alan L; Bassett, Anne S; Chow, Eva W C; Bowser, Mark; Sheridan, Molly; Beemer, Frits; Devriendt, Koen; Swillen, Ann; Breckpot, Jeroen; Digilio, M Cristina; Marino, Bruno; Dallapiccola, Bruno; Carpenter, Courtney; Zheng, Xin; Johnson, Jacob; Chung, Jonathan; Higgins, Anne Marie; Philip, Nicole; Simon, Tony; Coleman, Karlene; Heine-Suner, Damian; Rosell, Jordi; Kates, Wendy; Devoto, Marcella; Zackai, Elaine; Wang, Tao; Shprintzen, Robert; Emanuel, Beverly S; Morrow, Bernice E

    2012-11-01

    Velo-cardio-facial syndrome/DiGeorge syndrome, also known as 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome, with an estimated incidence of 1/2,000-1/4,000 live births. Approximately 9-11% of patients with this disorder have an overt cleft palate (CP), but the genetic factors responsible for CP in the 22q11DS subset are unknown. The TBX1 gene, a member of the T-box transcription factor gene family, lies within the 22q11.2 region that is hemizygous in patients with 22q11DS. Inactivation of one allele of Tbx1 in the mouse does not result in CP, but inactivation of both alleles does. Based on these data, we hypothesized that DNA variants in the remaining allele of TBX1 may confer risk to CP in patients with 22q11DS. To test the hypothesis, we evaluated TBX1 exon sequencing (n = 360) and genotyping data (n = 737) with respect to presence (n = 54) or absence (n = 683) of CP in patients with 22q11DS. Two upstream SNPs (rs4819835 and rs5748410) showed individual evidence for association but they were not significant after correction for multiple testing. Associations were not identified between DNA variants and haplotypes in 22q11DS patients with CP. Overall, this study indicates that common DNA variants in TBX1 may be nominally causative for CP in patients with 22q11DS. This raises the possibility that genes elsewhere on the remaining allele of 22q11.2 or in the genome could be relevant.

  9. Transient congenital hypoparathyroidism: resolution and recurrence in chromosome 22q11 deletion.

    PubMed

    Greig, F; Paul, E; DiMartino-Nardi, J; Saenger, P

    1996-04-01

    Transient congenital hypoparathyroidism (TCHP), with spontaneous resolution in infancy and subsequent recurrence in childhood, has not been associated with a specific cause. We report three patients with TCHP, initially with severe but transient neonatal hypocalcemia. During childhood, recurrence of hypoparathyroidism and recognition of phenotypic features suggested a diagnosis of velocardiofacial syndrome (VCFS). Features specific for the DiGeorge syndrome, with known clinical and genetic overlap with VCFS, were not present except for hypoparathyroidism. Genetic analysis confirmed chromosome 22q11 deletion in each patient. TCHP may be the earliest specific finding in 22q11 deletion/VCFS subgroup, with other diagnostic features emerging in later childhood. Infants with resolved TCHP need continued observation of parathyroid sufficiency, genetic analysis, and examination for anomalies associated with chromosome 22q11 deletion.

  10. 22q11.2 deletion syndrome

    PubMed Central

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  11. Partial trisomy due to a de novo duplication 22q11.1-22q13.1: a cat-eye syndrome variant with brain anomalies.

    PubMed

    Karcaaltincaba, D; Ceylaner, S; Ceylaner, G; Dalkilic, S; Karli-Oguz, K; Kandemir, O

    2010-01-01

    We report a case of partial trisomy 22q with de novo duplication of chromosomal region 22q11.1-22q13.1, also confirmed by microarray comparative genomic hybridization (Array-CGH) analysis. The fetus had interhemispheric cyst and corpus callosum agenesis diagnosed by MRI which has not been reported in the literature. This novel phenotype differs from the reported cat eye syndromes by the absence of heart defects and the presence of brain anomalies.

  12. Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11.2: report of five families with a review of the literature.

    PubMed

    Leana-Cox, J; Pangkanon, S; Eanet, K R; Curtin, M S; Wulfsberg, E A

    1996-11-11

    The DiGeorge (DG), velocardiofacial (VCF), and conotruncal anomaly-face (CTAF) syndromes were originally described as distinct disorders, although overlapping phenotypes have been recognized. It is now clear that all three syndromes result from apparently similar or identical 22q11.2 deletions, suggesting that they represent phenotypic variability of a single genetic syndrome. We report on 12 individuals in five families with del(22)(q11.2) by fluorescent in situ hybridization, and define the frequency of phenotypic abnormalities in those cases and in 70 individuals from 27 del(22)(q11.2) families from the literature. Common manifestations include mental impairment (97%), abnormal face (93%), cardiac malformations (68%), thymic (64%) and parathyroid (63%) abnormalities, and cleft palate or velopharyngeal insufficiency (48%). Familial DG, VCF, and CTAF syndromes due to del(22) (q11.2) show significant inter- and intrafamilial clinical variability consistent with the hypothesis that a single gene or group of tightly linked genes is the common cause of these syndromes. Up to 25% of 22q deletions are inherited, indicating that parents of affected children warrant molecular cytogenetic evaluation. We propose use of the compound term "DiGeorge/velocardiofacial (DG/VCF) syndrome" in referring to this condition, as it calls attention to the phenotypic spectrum using historically familiar names.

  13. Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11.2: Report of five families with a review of the literature

    SciTech Connect

    Leana-Cox, J.; Pangkanon, Suthipong; Eanet, K.R.

    1996-11-11

    The DiGeorge (DG), velocardiofacial (VCF), and conotruncal anomaly-face (CTAF) syndromes were originally described as distinct disorders, although overlapping phenotypes have been recognized. It is now clear that all three syndromes result from apparently similar or identical 22q11.2 deletions, suggesting that they represent phenotypic variability of a single genetic syndrome. We report on 12 individuals in five families with del(22)(q11.2) by fluorescent in situ hybridization, and define the frequency of phenotypic abnormalities in those cases and in 70 individuals from 27 del(22)(q11.2) families from the literature. Common manifestations include mental impairment (97%), abnormal face (93%), cardiac malformations (681%), thymic (64%) and parathyroid (63%) abnormalities, and cleft palate or velopharyngeal insufficiency (48%). Familial DG, VCF, and CTAF syndromes due to del(22)(q11.2) show significant inter- and intrafamilial clinical variability consistent with the hypothesis that a single gene or group of tightly linked genes is the common cause of these syndromes. Up to 25% of 22q deletions are inherited, indicating that parents of affected children warrant molecular cytogenetic evaluation. We propose use of the compound term {open_quotes}DiGeorge/velocardiofacial (DGNCF) syndrome{close_quotes} in referring to this condition, as it calls attention to the phenotypic spectrum using historically familiar names. 41 refs., 2 figs., 2 tabs.

  14. Clinical Features of 78 Adults With 22q11 Deletion Syndrome

    PubMed Central

    Bassett, Anne S.; Chow, Eva W.C.; Husted, Janice; Weksberg, Rosanna; Caluseriu, Oana; Webb, Gary D.; Gatzoulis, Michael A.

    2011-01-01

    22q11 Deletion Syndrome (22q11DS) is a common microdeletion syndrome with multisystem expression. Phenotypic features vary with age, ascertainment, and assessment. We systematically assessed 78 adults (36 M, 42 F; mean age 31.5, SD 10.5 years) with a 22q11.2 deletion ascertained through an adult congenital cardiac clinic (n = 35), psychiatric-related sources (n = 39), or as affected parents of subjects (n = 4). We recorded the lifetime prevalence of features requiring attention, with 95% confidence intervals (CI) not overlapping zero. Subtle learning difficulties, hypernasality and facial gestalt were not included. We investigated ascertainment effects using non-overlapping subgroups ascertained with tetralogy of Fallot (n = 31) or schizophrenia (n = 31). Forty-three features met inclusion criteria and were present in 5% or more patients, including several of later onset (e.g., hypothyroidism, cholelithiasis). Number of features per patient (median 9, range 3–22) correlated with hospitalizations (P=0.0002) and, when congenital features were excluded, with age (P=0.02). Adjusting for ascertainment, 25.8% (95% CI, 9.5–42.1%) of patients had cardiac anomalies and 22.6% (95% CI, 7.0–38.2%) had schizophrenia. Ascertainment subgroups were otherwise similar in median number and prevalence of features. Non-characteristic features are common in 22q11DS. Adjusting for ascertainment effects is important. Many treatable conditions may be anticipated and features may accumulate over time. The results have implications for clinical assessment and management, genetic counseling and research into pathophysiological mechanisms. PMID:16208694

  15. An atypical 0.8 Mb inherited duplication of 22q11.2 associated with psychomotor impairment.

    PubMed

    Pebrel-Richard, Céline; Kemeny, Stéphan; Gouas, Laetitia; Eymard-Pierre, Eléonore; Blanc, Nathalie; Francannet, Christine; Tchirkov, Andreï; Goumy, Carole; Vago, Philippe

    2012-11-01

    Microduplications 22q11.2 have been recently characterized as a new genomic duplication syndrome showing an extremely variable phenotype ranging from normal or mild learning disability to multiple congenital defects and sharing some overlapping features with DiGeorge/velocardiofacial syndrome (DGS/VCFS), including heart defects, urogenital abnormalities and velopharyngeal insufficiency. We present an atypical and inherited 0.8-Mb duplication at 22q11.2, in the distal segment of the DGS/VCFS syndrome typically deleted region (TDR), in a 3-year-old boy with motor delay, language disorders and mild facial phenotype. This 22q11.2 microduplication was identified by MLPA, designed to detect recurrent microdeletions and microduplications of chromosomal regions frequently involved in mental retardation syndromes and was further characterized by aCGH. The duplicated region encompasses 14 genes, excluding TBX1 but including CRKL, ZNF74, PIK4CA, SNAP29 and PCQAP known to contribute to several aspects of the DGS/VCFS phenotype. To the best of our knowledge, only one case of an isolated duplication in the distal segment of the TDR between chromosome 22-specific low-copy repeats B (LCR22-B) and D (LCR22-D) has been published, but the present report is the first one with a detailed description of physical and developmental features in a patient carrying this kind of atypical 22q11.2 duplication. This case illustrates the importance of reporting unusual 22q11.2 duplications to further evaluate the incidence of these rearrangements in the general population and to improve genotype-phenotype correlations and genetic counseling.

  16. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    ERIC Educational Resources Information Center

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  17. Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: patterning, proliferation, and mitochondrial functions of 22q11 genes.

    PubMed

    Meechan, D W; Maynard, T M; Tucker, E S; LaMantia, A-S

    2011-05-01

    DiGeorge, or 22q11 deletion syndrome (22q11DS), the most common survivable human genetic deletion disorder, is caused by deletion of a minimum of 32 contiguous genes on human chromosome 22, and presumably results from diminished dosage of one, some, or all of these genes--particularly during development. Nevertheless, the normal functions of 22q11 genes in the embryo or neonate, and their contribution to developmental pathogenesis that must underlie 22q11DS are not well understood. Our data suggests that a substantial number of 22q11 genes act specifically and in concert to mediate early morphogenetic interactions and subsequent cellular differentiation at phenotypically compromised sites--the limbs, heart, face and forebrain. When dosage of a broad set of these genes is diminished, early morphogenesis is altered, and initial 22q11DS phenotypes are established. Thereafter, functionally similar subsets of 22q11 genes--especially those that influence the cell cycle or mitochondrial function--remain expressed, particularly in the developing cerebral cortex, to regulate neurogenesis and synaptic development. When dosage of these genes is diminished, numbers, placement and connectivity of neurons and circuits essential for normal behavior may be disrupted. Such disruptions likely contribute to vulnerability for schizophrenia, autism, or attention deficit/hyperactivity disorder seen in most 22q11DS patients.

  18. Developmental Trajectories in 22q11.2 Deletion

    PubMed Central

    Swillen, Ann; McDonald-McGinn, Donna M.

    2016-01-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS), a neurogenetic condition, is the most common microdeletion syndrome affecting 1 in 2,000–4,000 live births and involving haploinsufficiency of ∼50 genes resulting in a multisystem disorder. Phenotypic expression is highly variable and ranges from severe life-threatening conditions to only a few associated features. Most common medical problems include: congenital heart disease, in particular conotruncal anomalies; palatal abnormalities, most frequently velopharyngeal incompetence (VPI); immunodeficiency; hypocalcemia due to hypoparathyroidism; genitourinary anomalies; severe feeding/gastrointestinal differences; and subtle dysmorphic facial features. The neurocognitive profile is also highly variable, both between individuals and during the course of development. From infancy onward, motor delays (often with hypotonia) and speech/language deficits are commonly observed. During the preschool and primary school ages, learning difficulties are very common. The majority of patients with 22q11.2DS have an intellectual level that falls in the borderline range (IQ 70–84), and about one-third have mild to moderate intellectual disability. More severe levels of intellectual disability are uncommon in children and adolescents but are more frequent in adults. Individuals with 22q11.2DS are at an increased risk for developing several psychiatric disorders including attention deficit with hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety and mood disorders, and psychotic disorders and schizophrenia. In this review, we will focus on the developmental phenotypic transitions regarding cognitive development in 22q11.2DS from early preschool to adulthood, and on the changing behavioral/psychiatric phenotype across age, on a background of frequently complex medical conditions. PMID:25989227

  19. Developmental trajectories in 22q11.2 deletion.

    PubMed

    Swillen, Ann; McDonald-McGinn, Donna

    2015-06-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS), a neurogenetic condition, is the most common microdeletion syndrome affecting 1 in 2,000-4,000 live births and involving haploinsufficiency of ∼50 genes resulting in a multisystem disorder. Phenotypic expression is highly variable and ranges from severe life-threatening conditions to only a few associated features. Most common medical problems include: congenital heart disease, in particular conotruncal anomalies; palatal abnormalities, most frequently velopharyngeal incompetence (VPI); immunodeficiency; hypocalcemia due to hypoparathyroidism; genitourinary anomalies; severe feeding/gastrointestinal differences; and subtle dysmorphic facial features. The neurocognitive profile is also highly variable, both between individuals and during the course of development. From infancy onward, motor delays (often with hypotonia) and speech/language deficits are commonly observed. During the preschool and primary school ages, learning difficulties are very common. The majority of patients with 22q11.2DS have an intellectual level that falls in the borderline range (IQ 70-84), and about one-third have mild to moderate intellectual disability. More severe levels of intellectual disability are uncommon in children and adolescents but are more frequent in adults. Individuals with 22q11.2DS are at an increased risk for developing several psychiatric disorders including attention deficit with hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety and mood disorders, and psychotic disorders and schizophrenia. In this review, we will focus on the developmental phenotypic transitions regarding cognitive development in 22q11.2DS from early preschool to adulthood, and on the changing behavioral/psychiatric phenotype across age, on a background of frequently complex medical conditions.

  20. Diminished dosage of 22q11 genes disrupts neurogenesis and cortical development in a mouse model of 22q11 deletion/DiGeorge syndrome.

    PubMed

    Meechan, Daniel W; Tucker, Eric S; Maynard, Thomas M; LaMantia, Anthony-Samuel

    2009-09-22

    The 22q11 deletion (or DiGeorge) syndrome (22q11DS), the result of a 1.5- to 3-megabase hemizygous deletion on human chromosome 22, results in dramatically increased susceptibility for "diseases of cortical connectivity" thought to arise during development, including schizophrenia and autism. We show that diminished dosage of the genes deleted in the 1.5-megabase 22q11 minimal critical deleted region in a mouse model of 22q11DS specifically compromises neurogenesis and subsequent differentiation in the cerebral cortex. Proliferation of basal, but not apical, progenitors is disrupted, and subsequently, the frequency of layer 2/3, but not layer 5/6, projection neurons is altered. This change is paralleled by aberrant distribution of parvalbumin-labeled interneurons in upper and lower cortical layers. Deletion of Tbx1 or Prodh (22q11 genes independently associated with 22q11DS phenotypes) does not similarly disrupt basal progenitors. However, expression analysis implicates additional 22q11 genes that are selectively expressed in cortical precursors. Thus, diminished 22q11 gene dosage disrupts cortical neurogenesis and interneuron migration. Such developmental disruption may alter cortical circuitry and establish vulnerability for developmental disorders, including schizophrenia and autism.

  1. 22q11.2 Deletions in Patients with Conotruncal Defects: Data from 1610 Consecutive Cases

    PubMed Central

    Peyvandi, Shabnam; Lupo, Philip J; Garbarini, Jennifer; Woyciechowski, Stacy; Edman, Sharon; Emanuel, Beverly S; Mitchell, Laura; Goldmuntz, Elizabeth

    2013-01-01

    Background The 22q11.2 deletion syndrome is characterized by multiple congenital anomalies including conotruncal cardiac defects. Identifying the patient with a 22q11.2 deletion (22q11del) can be challenging because many extracardiac features become apparent later in life. We sought to better define the cardiac phenotype associated with a 22q11del to help direct genetic testing. Methods 1,610 patients with conotruncal defects were sequentially tested for a 22q11del. Counts and frequencies for primary lesions and cardiac features were tabulated for those with and without a 22q11del. Logistic regression models investigated cardiac features that predicted deletion status in tetralogy of Fallot (TOF). Results Deletion frequency varied by primary anatomic phenotype. Regardless of the cardiac diagnosis, a concurrent aortic arch anomaly (AAA) was strongly associated with deletion status (OR 5.07, 95% CI: 3.66–7.04). In the TOF subset, the strongest predictor of deletion status was an AAA (OR 3.14, 95% CI: 1.87–5.27, p <0.001), followed by pulmonary valve atresia (OR 2.03, 95% CI: 1.02–4.02, p= 0.04). Among those with double outlet right ventricle and transposition of the great arteries, only those with an AAA had a 22q11del. However, five percent of patients with an isolated conoventricular ventricular septal defect and normal aortic arch anatomy had a 22q11del, while no one with an IAA-A had a 22q11del. Conclusion A subset of patients with conotruncal defects are at risk for a 22q11del. A concurrent AAA increases the risk regardless of the intracardiac anatomy. These findings help direct genetic screening for the 22q11.2 deletion syndrome in the cardiac patient. PMID:23604262

  2. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome

    PubMed Central

    Mlynarski, Elisabeth E.; Xie, Michael; Taylor, Deanne; Sheridan, Molly B.; Guo, Tingwei; Racedo, Silvia E.; McDonald-McGinn, Donna M.; Chow, Eva W. C.; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J.; Roberts, Amy E.; Piotrowicz, Małgorzata; Bearden, Carrie E.; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R.; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Goldmuntz, Elizabeth; Bassett, Anne S.; Morrow, Bernice E.

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60–75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients. PMID:26742502

  3. A novel, single nucleotide polymorphism-based assay to detect 22q11 deletions.

    PubMed

    Funke, Birgit H; Brown, Alison C; Ramoni, Marco F; Regan, Maura E; Baglieri, Chris; Finn, Christine T; Babcock, Melanie; Shprintzen, Robert J; Morrow, Bernice E; Kucherlapati, Raju

    2007-01-01

    Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.

  4. Multitasking Abilities in Adolescents With 22q11.2 Deletion Syndrome: Results From an Experimental Ecological Paradigm.

    PubMed

    Schneider, Maude; Eliez, Stephan; Birr, Julie; Menghetti, Sarah; Debbané, Martin; Van der Linden, Martial

    2016-03-01

    The 22q11.2 deletion syndrome (22q11.2DS) is associated with cognitive and functional impairments and increased risk for schizophrenia. We characterized multitasking abilities of adolescents with 22q11.2DS using an experimental naturalistic setting and examined whether multitasking impairments were associated with real-world functioning and negative symptoms. Thirty-nine adolescents (19 with 22q11.2DS and 20 controls) underwent the Multitasking Evaluation for Adolescents. Real-world functioning and clinical symptoms were assessed in participants with 22q11.2DS. Adolescents with 22q11.2DS performed poorly in the multitasking evaluation. Our data also suggest that multitasking abilities are related to adaptive functioning in the practical domain and negative symptoms. This study shows that adolescents with 22q11.2DS are characterized by multitasking impairments, which may be relevant for several aspects of the clinical phenotype.

  5. Generalized Epilepsy and Myoclonic Seizures in 22q11.2 Deletion Syndrome

    PubMed Central

    Strehlow, Vincent; Swinkels, Marielle E.M.; Thomas, Rhys H.; Rapps, Nora; Syrbe, Steffen; Dorn, Thomas; Lemke, Johannes R.

    2016-01-01

    Prompted by the observations of juvenile myoclonic epilepsy (JME) in 22q11.2 deletion syndrome (22q11DS) and recurrent copy number variants in genetic generalized epilepsy (GGE), we searched for further evidence supporting a possible correlation of 22q11DS with GGE and with myoclonic seizures. Through routine diagnostics, we identified 3 novel individuals with the seemingly uncommon combination of 22q11DS and JME. We subsequently screened the literature for reports focussing on the epilepsy phenotype in 22q11DS. We additionally screened a database of 173 22q11DS patients and identified a fourth individual with JME as well as 2 additional cases with GGE. We describe 6 novel and 22 published cases with co-occurrence of 22q11DS and GGE. In many patients, GGE was associated with myoclonic seizures allowing for a diagnosis of JME in at least 6 individuals. Seventeen of the 173 22q11DS cases (10%) had a diagnosis of either focal or generalized epilepsy. In these cases, focal epilepsy could often be attributed to syndrome-associated hypocalcaemia, cerebral bleeds, or structural brain anomalies. However, the cause of GGE remained unclear. In this study, we describe and review 28 individuals with 22q11DS and GGE (especially JME), showing that both disorders frequently co-occur. Compared to the reported prevalence of 15-21%, in our case series only 10% of 22q11DS individuals were found to have epilepsy, often GGE. Since 22q11.2 does not contain convincing GGE candidate genes, we discuss the possibility of an aetiological correlation through a possibly disturbed interaction with the GABAB receptor. PMID:27781034

  6. A catalog of hemizygous variation in 127 22q11 deletion patients

    PubMed Central

    Hestand, Matthew S; Nowakowska, Beata A; Vergaelen, Elfi; Van Houdt, Jeroen; Dehaspe, Luc; Suhl, Joshua A; Del-Favero, Jurgen; Mortier, Geert; Zackai, Elaine; Swillen, Ann; Devriendt, Koenraad; Gur, Raquel E; McDonald-McGinn, Donna M; Warren, Stephen T; Emanuel, Beverly S; Vermeesch, Joris R

    2016-01-01

    The 22q11.2 deletion syndrome is the most common microdeletion disorder, with wide phenotypic variability. To investigate variation within the non-deleted allele we performed targeted resequencing of the 22q11.2 region for 127 patients, identifying multiple deletion sizes, including two deletions with atypical breakpoints. We cataloged ~12,000 hemizygous variant positions, of which 84% were previously annotated. Within the coding regions 95 non-synonymous variants, three stop gains, and two frameshift insertions were identified, some of which we speculate could contribute to atypical phenotypes. We also catalog tolerability of 22q11 gene mutations based on related autosomal recessive disorders in man, embryonic lethality in mice, cross-species conservation and observations that some genes harbor more or less variants than expected. This extensive catalog of hemizygous variants will serve as a blueprint for future experiments to correlate 22q11DS variation with phenotype. PMID:27274857

  7. Deletion mapping of 22q11 in CATCH22 syndrome: Identification of a second critical region

    SciTech Connect

    Kurahashi, Hiroki; Nakayama, Takahiro; Nishisho, Isamu

    1996-06-01

    The deletion at 22q11.2 implicates a variety of congenital anomaly syndromes, for which the acronym CATCH22 has been proposed . Most patients with these syndromes share the common large deletion spanning 1-2 Mb, while the phenotypic variability of the patients does not seem to correlate with the extent of the deletions. On the basis of the deletions of rare cases with unbalanced translocation, the shortest region of overlap (SRO) had been identified in the most-centromeric region of the common large deletion. One patient (ADU) has been reported to carry a balanced translocation with the breakpoint located in the SRO. Recently, three transcripts were identified at or very close to the ADU breakpoint (ADUBP), making them strong candidates for CATCH22 syndrome. Here, we describe one patient with a unique deletion at 22q11.2 revealed by quantitative hybridization and/or FISH with six DNA markers in the common large deletion. The patient was dizygous at loci within the SRO and hemizygous only at the most-telomeric locus in the common large deletion. This finding suggests that there must be another critical region in the common large deletion besides the breakpoint of the ADU and that haploinsufficiency of genes in this deletion may also play a major role in CATCH22 pathogenesis. 15 refs., 3 figs.

  8. Cat eye syndrome chromosome breakpoint clustering: identification of two intervals also associated with 22q11 deletion syndrome breakpoints.

    PubMed

    McTaggart, K E; Budarf, M L; Driscoll, D A; Emanuel, B S; Ferreira, P; McDermid, H E

    1998-01-01

    The supernumerary cat eye syndrome (CES) chromosome is dicentric, containing two copies of 22pter-->q11.2. We have found that the duplication breakpoints are clustered in two intervals. The more proximal, most common interval is the 450-650 kb region between D22S427 and D22S36, which corresponds to the proximal deletion breakpoint interval found in the 22q11 deletion syndrome (DiGeorge/velocardiofacial syndrome). The more distal duplication breakpoint interval falls between CRKL and D22S112, which overlaps with the common distal deletion interval of the 22q11 deletion syndrome. We have therefore classified CES chromosomes into two types based on the location of the two breakpoints required to generate them. The smaller type I CES chromosomes are symmetrical, with both breakpoints located within the proximal interval. The larger type II CES chromosomes are either asymmetrical, with one breakpoint located in each of the two intervals, or symmetrical, with both breakpoints located in the distal interval. The co-localization of the breakpoints of these different syndromes, plus the presence of low-copy repeats adjacent to each interval, suggests the existence of several specific regions of chromosomal instability in 22q11.2 which are involved in the production of both deletions and duplications. Since the phenotype associated with the larger duplication does not appear to be more severe than that of the smaller duplication, determination of the type of CES chromosome does not currently have prognostic value.

  9. The effect of hypocalcemia in early childhood on autism-related social and communication skills in patients with 22q11 deletion syndrome.

    PubMed

    Muldoon, Meghan; Ousley, Opal Y; Kobrynski, Lisa J; Patel, Sheena; Oster, Matthew E; Fernandez-Carriba, Samuel; Cubells, Joseph F; Coleman, Karlene; Pearce, Bradley D

    2015-09-01

    22q11 deletion syndrome (22qDS), also known as DiGeorge syndrome, is a copy number variant disorder that has a diverse clinical presentation including hypocalcaemia, learning disabilities, and psychiatric disorders. Many patients with 22q11DS present with signs that overlap with autism spectrum disorder (ASD) yet the possible physiological mechanisms that link 22q11DS with ASD are unknown. We hypothesized that early childhood hypocalcemia influences the neurobehavioral phenotype of 22q11DS. Drawing on a longitudinal cohort of 22q11DS patients, we abstracted albumin-adjusted serum calcium levels from 151 participants ranging in age from newborn to 19.5 years (mean 2.5 years). We then examined a subset of 20 infants and toddlers from this group for the association between the lowest calcium level on record and scores on the Communication and Symbolic Behavior Scales-Developmental Profile Infant-Toddler Checklist (CSBS-DP ITC). The mean (SD) age at calcium testing was 6.2 (8.5) months, whereas the mean (SD) age at the CSBS-DP ITC assessment was 14.7 (3.8) months. Lower calcium was associated with significantly greater impairment in the CSBS-DP ITC Social (p < 0.05), Speech (p < 0.01), and Symbolic domains (p < 0.05), in regression models adjusted for sex, age at blood draw, and age at the psychological assessment. Nevertheless, these findings are limited by the small sample size of children with combined data on calcium and CSBS-DP ITC, and hence will require replication in a larger cohort with longitudinal assessments. Considering the role of calcium regulation in neurodevelopment and neuroplasticity, low calcium during early brain development could be a risk factor for adverse neurobehavioral outcomes.

  10. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome

    PubMed Central

    Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  11. Craniosynostosis and radial ray defect: a rare presentation of 22q11.2 deletion syndrome.

    PubMed

    Rojnueangnit, Kitiwan; Robin, Nathaniel H

    2013-08-01

    A newborn with bilateral coronal craniosynostosis, hypoplastic thumbs, imperforate anus, and prenatal growth restriction was evaluated and given the clinical diagnosis of Baller-Gerold syndrome (BGS). While confirmatory testing of RECQL4 was pending, the infant developed unexplained hypocalcemia, prompting testing for a 22q11.2 deletion. Subsequently, the infant was found to have a 22q11.2 deletion, and was negative for an RECQL4 mutation. We therefore conclude that 22q11.2 deletion syndrome can present with findings resembling the BGS phenotype.

  12. A cytological-physical map of 22q11

    SciTech Connect

    Lindsay, E.A.; Rizzu, P.; Gaddini, L.

    1994-09-01

    Our laboratory is involved in the construction of a cytological-physical map of 22q11 and isolation of expressed sequences from the region involved in DiGeorge syndrome (DGS) and Velo-Cardio-Facial syndrome (VCFS). One of the goals of the mapping is an understanding of the molecular mechanisms which generate the 22q11 microdeletions observed with high frequency in DGS and VCFS. Our of over 60 deleted patients studied in our laboratory, all but one were deleted for two loci approximately 1-2 Mb apart. There is evidence from patients with balanced and unbalanced translocations that deletion of the whole region is not necessary for determination of the clinical phenotype. Therefore, it is possible that deletion breakpoints occur as a consequence of structural characteristics of the DNA that predispose to rearrangements. A striking characteristic of the 22q11 region is the abundance of low copy repeat sequences. It is reasonable to think that recombination between these repeats may lead to microdeletions. However, a direct demonstration of such mechanism is not available yet. The presence of repeats makes standard physical mapping techniques based on hybridization or STS mapping often difficult to interpret. For example, we have found clones positive for the same STS that are located in different positions within 22q11. For this reason we have used high resolution cytological mapping as a supporting technique for map validation. We present the current status map which includes known polymorphic and non-polymorphic loci, newly isolated clones and chromosomal deletion breakpoints. The map extends from the loci D22S9/D22S24 to TOP1P2. Extended chromatin hybridization experiments visually demonstrate the presence of at least two repeat islands flanking (or at) the region where chromosomal breakpoints of the commonly deleted region occur.

  13. Deletion 22q13.3 syndrome.

    PubMed

    Phelan, Mary C

    2008-05-27

    The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (CGH) is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy). Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements. Individuals with

  14. Neuromotor deficits in children with the 22q11 deletion syndrome.

    PubMed

    Sobin, Christina; Monk, Samantha H; Kiley-Brabeck, Karen; Khuri, Jananne; Karayiorgou, Maria

    2006-12-01

    The 22q11 chromosomal deletion syndrome (22q11DS) is associated with a heterogeneous physical phenotype, neurocognitive deficits, and increased risk of later psychiatric illness. Sporadic clinical reports suggested motor differences, but quantitative studies of movement in children with 22q11DS are rare. If present in a majority of affected school-age children, characterization of neuromotor deficits may prove to be critical for intervention, neurocognitive test interpretation, and understanding etiology. We administered the Movement Assessment Battery for Children to 72 children ages 4.3 to 16.1, including 49 children confirmed positive for the 22q11 deletion and 23 control siblings. We predicted a higher frequency of global and domain impairment in manual dexterity, eye-hand coordination, and balance among affected children. Ninety-four percent of affected children had marked neuromotor deficits, and group scores differed broadly for both global and subarea measures. Secondary analyses showed no impairment differences between younger and older children with 22q11DS, and longitudinal trajectories for 12 affected children suggested stability of deficits over 3-year intervals. Neuromotor deficits in children with 22q11DS occur early in development, continue throughout the school-age years, should be considered in the interpretation of motor-based achievement and IQ tests, and require targeted and ongoing remediation throughout childhood and adolescence. Further studies examining the specificity of motor impairment to 22q11DS are needed.

  15. No evidence for parental imprinting of mouse 22q11 gene orthologs.

    PubMed

    Maynard, Thomas M; Meechan, Daniel W; Heindel, Clifford C; Peters, Amanda Z; Hamer, Robert M; Lieberman, Jeffrey A; LaMantia, Anthony-Samuel

    2006-08-01

    Non-Mendelian factors may influence central nervous system (CNS) phenotypes in patients with 22q11 Deletion Syndrome (22q11DS, also known as DiGeorge or Velocardiofacial Syndrome), and similar mechanisms may operate in mice carrying a deletion of one or more 22q11 gene orthologs. Accordingly, we examined the influence of parent of origin on expression of 25 murine 22q11 orthologs in the developing and mature CNS using single nucleotide polymorphism (SNP)-based analysis in interspecific crosses and quantification of mRNA in a murine model of 22q11DS. We found no evidence for absolute genomic imprinting or silencing. All 25 genes are biallelically expressed in the developing and adult brains. Furthermore, if more subtle forms of allelic biasing are present, they are very small in magnitude and most likely beyond the resolution of currently available quantitative approaches. Given the high degree of similarity of human 22q11 and the orthologous region of mmChr16, genomic imprinting most likely cannot explain apparent parent-of-origin effects in 22q11DS.

  16. Clinical and molecular cytogenetic studies of an unrecognised 22q11.2 deletion in three families

    PubMed Central

    HUANG, LINHUAN; XIE, YINGJUN; ZHOU, YI; LUO, YANMIN; HUANG, XUAN; XU, ZHE; CAI, DANLEI; FANG, QUN

    2015-01-01

    The phenotypic variability associated with 22q11.2 deletion syndrome (22q11.2DS) is well known. In the present study, the cases of three unrelated adult patients with chromosome 22q11.2DS and nearly normal features are described, along with their reproductive histories. Chromosomal analysis with fluorescent in situ hybridisation and genomic DNA analysis by microarrays were performed, as well as a clinical examination. The three patients were found to possess an identical breakpoint deletion at 22q11.2 by high-density whole-genome single nucleotide polymorphism microarray analysis. The patients had histories of two foetuses/infants with congenital heart defects. The underlying aetiology for the discordance in the phenotype in these patients is discussed. These observations provide additional data useful for patient counselling and guidelines for 22q11.2 clinical screening. PMID:25667635

  17. [Scoliosis in children with chromosome 22q11.2 deletion syndrome].

    PubMed

    Colo, Dino; Kruyt, Mayo C; Timmers-Raaijmaakers, Brigitte C M S; Castelein, René M

    2012-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is a term used to describe a syndrome that consists of several clinical phenotypes, for example the DiGeorge syndrome, velocardiofacial syndrome and conotruncal anomaly face syndrome. These phenotypes share a common cause, i.e. deletion of a part of chromosome 22. An important clinical manifestation of this condition is scoliosis, which is estimated to occur in 15-50% of patients. We present three cases of children with scoliosis detected in early childhood. Two children were treated surgically because of progression of the deformity; in the third child surgery is being postponed as long as possible to allow further growth. We advise that every patient with 22q11DS should be screened for scoliosis. Furthermore, genetic counselling is required in all cases of scoliosis combined with distinct phenotypical characteristics.

  18. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome

    PubMed Central

    Nilsson, Simon RO.; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A.; Kent, Brianne A.; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W.; Saksida, Lisa M.; Stensbøl, Tine B.; Tricklebank, Mark D.; Didriksen, Michael; Bussey, Timothy J.

    2016-01-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus – within the current protocols – the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional “hits” being required for phenotypic expression. PMID:27507786

  19. Genetics Home Reference: 22q11.2 deletion syndrome

    MedlinePlus

    ... Home Health Conditions 22q11.2 deletion syndrome 22q11.2 deletion syndrome Enable Javascript to view the expand/ ... Download PDF Open All Close All Description 22q11.2 deletion syndrome (which is also known by several ...

  20. Genetics Home Reference: 22q11.2 duplication

    MedlinePlus

    ... Genetics Home Health Conditions 22q11.2 duplication 22q11.2 duplication Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description 22q11.2 duplication is a condition caused by an extra ...

  1. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome*

    PubMed Central

    Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J.; Song, Gyu; Giulivi, Cecilia

    2015-01-01

    The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5–3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. PMID:26221035

  2. Molecular Definition of the 22q11 Deletions in Velo-Cardio-Facial Syndrome

    PubMed Central

    Morrow, Bernice; Goldberg, Rosalie; Carlson, Christine; Gupta, Ruchira Das; Sirotkin, Howard; Collins, John; Dunham, Ian; O'Donnell, Hilary; Scambler, Peter; Shprintzen, Robert; Kucherlapati, Raju

    1995-01-01

    Velo-cardio-facial syndrome (VCFS) is a common genetic disorder among individuals with cleft palate and is associated with hemizygous deletions in human chromosome 22q11. Toward the molecular definition of the deletions, we constructed a physical map of 22q11 in the form of overlapping YACs. The physical map covers >9 cM of genetic distance, estimated to span 5 Mb of DNA, and contains a total of 64 markers. Eleven highly polymorphic short tandem-repeat polymorphic (STRP) markers were placed on the physical map, and 10 of these were unambiguously ordered. The 11 polymorphic markers were used to type the DNA from a total of 61 VCFS patients and 49 unaffected relatives. Comparison of levels of heterozygosity of these markers in VCFS patients and their unaffected relatives revealed that four of these markers are commonly hemizygous among VCFS patients. To confirm these results and to define further the breakpoints in VCFS patients, 15 VCFS individuals and their unaffected parents were genotyped for the 11 STRP markers. Haplotypes generated from this study revealed that 82% of the patients have deletions that can be defined by the STRP markers. The results revealed that all patients who have a deletion share a common proximal breakpoint, while there are two distinct distal breakpoints. Markers D22S941 and D22S944 appear to be consistently hemizygous in patients with deletions. Both of these markers are located on a single nonchimeric YAC that is 400 kb long. The results also show that the parental origin of the deleted chromosome does not have any effect on the phenotypic manifestation ImagesFigure 2Figure 3 PMID:7762562

  3. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    PubMed Central

    Squarcione, Chiara; Torti, Maria Chiara; Di Fabio, Fabio; Biondi, Massimo

    2013-01-01

    The 22q11.2 deletion syndrome (22q11DS) is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q) 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. PMID:24353423

  4. Absolute pitch exhibits phenotypic and genetic overlap with synesthesia.

    PubMed

    Gregersen, Peter K; Kowalsky, Elena; Lee, Annette; Baron-Cohen, Simon; Fisher, Simon E; Asher, Julian E; Ballard, David; Freudenberg, Jan; Li, Wentian

    2013-05-15

    Absolute pitch (AP) and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in an individual. Here we systematically evaluate the occurrence of synesthesia in a population of 768 subjects with documented AP. Out of these 768 subjects, 151 (20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects, using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with AP and 36 multiplex families with synesthesia. We observed a peak NPL LOD = 4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2, using a dominant model. These data establish the close phenotypic and genetic relationship between AP and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.

  5. Are 22q11.2 distal deletions associated with math difficulties?

    PubMed

    Carvalho, Maria Raquel Santos; Vianna, Gabrielle; Oliveira, Lívia de Fátima Silva; Costa, Annelise Julio; Pinheiro-Chagas, Pedro; Sturzenecker, Rosane; Zen, Paulo Ricardo Gazzola; Rosa, Rafael Fabiano Machado; de Aguiar, Marcos José Burle; Haase, Vitor Geraldi

    2014-09-01

    Approximately 6% of school-aged children have math difficulties (MD). A neurogenetic etiology has been suggested due to the presence of MD in some genetic syndromes such as 22q11.2DS. However, the contribution of 22q11.2DS to the MD phenotype has not yet been investigated. This is the first population-based study measuring the frequency of 22q11.2DS among school children with MD. Children (1,564) were identified in the schools through a screening test for language and math. Of these children, 152 (82 with MD and 70 controls) were selected for intelligence, general neuropsychological, and math cognitive assessments and for 22q11.2 microdeletion screening using MLPA. One child in the MD group had a 22q11.2 deletion spanning the LCR22-4 to LCR22-5 interval. This child was an 11-year-old girl with subtle anomalies, normal intelligence, MD attributable to number sense deficit, and difficulties in social interactions. Only 19 patients have been reported with this deletion. Upon reviewing these reports, we were able to characterize a new syndrome, 22q11.2 DS (LCR22-4 to LCR22-5), characterized by prematurity; pre- and postnatal growth restriction; apparent hypotelorism, short/upslanting palpebral fissures; hypoplastic nasal alae; pointed chin and nose; posteriorly rotated ears; congenital heart defects; skeletal abnormalities; developmental delay, particularly compromising the speech; learning disability (including MD, in one child); intellectual disability; and behavioral problems. These results suggest that 22q11.2 DS (LCR22-4 to LCR22-5) may be one of the genetic causes of MD.

  6. Hypoparathyroidism as the major manifestation in two patients with 22q11 deletions

    SciTech Connect

    Scire, G.; Bonaiuto, F.; Galasso, C.; Boscherini, B.; Dallapiccola, B.; Mingarelli, R.; Iannetti, P.

    1994-10-01

    We report on two adolescents with 22q11 deletion. Their main clinical manifestation was chronic symptomatic hypocalcemia secondary to hypoparathyroidism, together with seizures and cerebral calcifications. Neither congenital cardiac abnormality nor T cell deficiency were detected. The phenotypic manifestations of the observed patients were consistent with velo-cardiofacial syndrome (VCFS). A microdeletion of chromosome region 22q11 has been demonstrated in approximately 90% of DiGeorge syndrome (DGS) patients and in 75% of VCFS patients; the association of the deletion with a wide spectrum of clinical findings suggests the existence of a contiguous gene syndrome. The presence of certain traits of DGS/VCFS should lead to investigations of parathtroid function and molecular analysis of the 22q11 region hybridization studies. 10 refs., 5 figs., 2 tabs.

  7. Neural tube defects and atypical deletion on 22q11.2.

    PubMed

    Leoni, Chiara; Stevenson, David A; Geiersbach, Katherine B; Paxton, Christian N; Krock, Bryan L; Mao, Rong; Rope, Alan F

    2014-11-01

    The 22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion disorder. Most of the patients show the common 3 Mb deletion but proximal 1.5 Mb deletion and unusual deletions located outside the common deleted region, have been detected particularly with the advance of comparative cytogenomic microarray technologies. The individuals reported in the literature with unusual deletions involving the 22q11 region, showed milder facial phenotypes, decreased incidence of cardiac anomalies, and intellectual disability. We describe two sibs with an atypical 0.8 Mb microdeletion of chromosome 22q11 who both showed myelomeningocele and mild facial dysmorphisms. The association between neural tube defect and the clinical diagnosis of Di George anomaly/velocardiofacial syndrome is well documented in the literature, but not all cases had molecular studies to determine breakpoint regions. This report helps to narrow a potential critical region for neural tube defects associated with 22q11 deletions.

  8. Prodromal and autistic symptoms in schizotypal personality disorder and 22q11.2 deletion syndrome.

    PubMed

    Esterberg, Michelle L; Ousley, Opal Y; Cubells, Joseph F; Walker, Elaine F

    2013-02-01

    Despite clear diagnostic distinctions, schizophrenia and autism share symptoms on several dimensions. Recent research has suggested the two disorders overlap in etiology, particularly with respect to inherited and noninherited genetic factors. Studying the relationship between psychotic-like and autistic-like symptoms in risk groups such as 22q11 deletion syndrome (22q11DS) and schizotypal personality disorder (SPD) has the potential to shed light on such etiologic factors; thus, the current study examined prodromal symptoms and autistic features in samples of 22q11DS and SPD subjects using standardized diagnostic measures, including the Structured Interview for Prodromal Symptoms (SIPS) and the Autism Diagnostic Inventory-Revised (ADI-R). Results showed that SPD subjects manifested significantly more severe childhood and current social as well as stereotypic autistic features, as well as more severe positive prodromal symptoms. The two groups did not differ on negative, disorganized, or general prodromal symptoms, but were distinguishable based on correlations between prodromal and autistic features; the relationships between childhood autistic features and current prodromal symptoms were stronger for the SPD group. The results suggest that childhood autistic features are less continuous with subsequent prodromal signs in 22q11DS patients relative to those with SPD, and the findings highlight the importance of studying the overlap in diagnostic phenomenology in groups at risk for developing psychosis and/or autism.

  9. Intrinsic Connectivity Network-Based Classification and Detection of Psychotic Symptoms in Youth With 22q11.2 Deletions.

    PubMed

    Schreiner, Matthew; Forsyth, Jennifer K; Karlsgodt, Katherine H; Anderson, Ariana E; Hirsh, Nurit; Kushan, Leila; Uddin, Lucina Q; Mattiacio, Leah; Coman, Ioana L; Kates, Wendy R; Bearden, Carrie E

    2017-04-05

    22q11.2 Deletion syndrome (22q11DS) is a genetic disorder associated with numerous phenotypic consequences and is one of the greatest known risk factors for psychosis. We investigated intrinsic-connectivity-networks (ICNs) as potential biomarkers for patient and psychosis-risk status in 2 independent cohorts, UCLA (33 22q11DS-participants, 33 demographically matched controls), and Syracuse (28 22q11DS, 28 controls). After assessing group connectivity differences, ICNs from the UCLA cohort were used to train classifiers to distinguish cases from controls, and to predict psychosis risk status within 22q11DS; classifiers were subsequently tested on the Syracuse cohort. In both cohorts we observed significant hypoconnectivity in 22q11DS relative to controls within anterior cingulate (ACC)/precuneus, executive, default mode (DMN), posterior DMN, and salience networks. Of 12 ICN-derived classifiers tested in the Syracuse replication-cohort, the ACC/precuneus, DMN, and posterior DMN classifiers accurately distinguished between 22q11DS and controls. Within 22q11DS subjects, connectivity alterations within 4 networks predicted psychosis risk status for a given individual in both cohorts: the ACC/precuneus, DMN, left executive, and salience networks. Widespread within-network-hypoconnectivity in large-scale networks implicated in higher-order cognition may be a defining characteristic of 22q11DS during adolescence and early adulthood; furthermore, loss of coherence within these networks may be a valuable biomarker for individual prediction of psychosis-risk in 22q11DS.

  10. High-density single nucleotide polymorphism array analysis in patients with germline deletions of 22q11.2 and malignant rhabdoid tumor.

    PubMed

    Jackson, Eric M; Shaikh, Tamim H; Gururangan, Sridharan; Jones, Marilyn C; Malkin, David; Nikkel, Sarah M; Zuppan, Craig W; Wainwright, Luanne M; Zhang, Fan; Biegel, Jaclyn A

    2007-09-01

    Malignant rhabdoid tumors are highly aggressive neoplasms found primarily in infants and young children. The majority of rhabdoid tumors arise as a result of homozygous inactivating deletions or mutations of the INI1 gene located in chromosome band 22q11.2. Germline mutations of INI1 predispose to the development of rhabdoid tumors of the brain, kidney and extra-renal tissues, consistent with its function as a tumor suppressor gene. We now describe five patients with germline deletions in chromosome band 22q11.2 that included the INI1 gene locus, leading to the development of rhabdoid tumors. Two patients had phenotypic findings that were suggestive but not diagnostic for DiGeorge/Velocardiofacial syndrome (DGS/VCFS). The other three infants had highly aggressive disease with multiple tumors at the time of presentation. The extent of the deletions was determined by fluorescence in situ hybridization and high-density oligonucleotide based single nucleotide polymorphism arrays. The deletions in the two patients with features of DGS/VCFS were distal to the region typically deleted in patients with this genetic disorder. The three infants with multiple primary tumors had smaller but overlapping deletions, primarily involving INI1. The data suggest that the mechanisms underlying the deletions in these patients may be similar to those that lead to DGS/VCFS, as they also appear to be mediated by related, low copy repeats (LCRs) in 22q11.2. These are the first reported cases in which an association has been established between recurrent, interstitial deletions mediated by LCRs in 22q11.2 and a predisposition to cancer.

  11. Single nucleotide polymorphism discovery in TBX1 in individuals with and without 22q11.2 deletion syndrome

    PubMed Central

    Heike, Carrie L.; Starr, Jacqueline R.; Rieder, Mark J.; Cunningham, Michael L.; Edwards, Karen L.; Stanaway, Ian; Crawford, Dana C.

    2015-01-01

    BACKGROUND Children with 22q11.2 deletion syndrome (22q11.2DS) have a wide range of clinical features. TBX1 has been proposed as a candidate gene for some of the features in this condition. Polymorphisms in the non-deleted TBX1, which may affect the function of the sole TBX1 gene in individuals with the 22q11.2DS, may be a key to understanding the phenotypic variability among individuals with a shared deletion. Comprehensive single nucleotide polymorphism (SNP) discovery by resequencing candidate genes can identify genetic variants that influence a given phenotype. The purpose of this study was to further characterize the sequence variability in TBX1 by identifying all common SNPs in this gene. METHODS We resequenced TBX1 in 29 children with a documented 22q11.2 deletion and 95 non-deleted, healthy individuals. We estimated allele frequencies, performed tagSNP selection, and inferred haplotypes. We also compared SNP frequencies between 22q11.2DS and control samples. RESULTS We identified 355 biallelic markers among the 190 chromosomes resequenced in the control panel. The vast majority of the markers identified were SNPs (n=331), and the remainder indels (n=24). We did not identify SNPs or indels in the cis- regulatory element (FOX–binding site) upstream of TBX1. In children with 22q11.2DS we detected 187 biallelic markers, six of which were indels. Four of the seven coding SNPs identified in the controls were identified in children with 22q11.2DS. CONCLUSIONS This comprehensive SNP discovery data can be used to select SNPs to genotype for future association studies assessing the role of TBX1 and phenotypic variability in individuals with 22q11.2DS. PMID:19645056

  12. 22q11.2 Deletion Syndrome: Laboratory Diagnosis and TBX1 and FGF8 Mutation Screening

    PubMed Central

    Sgardioli, Ilária C.; Vieira, Társis P.; Simioni, Milena; Monteiro, Fabíola P.; Gil-da-Silva-Lopes, Vera L.

    2015-01-01

    Velocardiofacial syndrome is one of the recognized forms of chromosome 22q11.2 deletion syndrome (22q11.2 DS) and has an incidence of 1 of 4,000 to 1 of 6,000 births. Nevertheless, the 22q11 deletion is not found in several patients with a 22q11.2 DS phenotype. In this situation, other chromosomal aberrations and/or mutations in the T-box 1 transcription factor C (TBX1) gene have been detected in some patients. A similar phenotype to that of the 22q11.2 DS has been reported in animal models with mutations in fibroblast growth factor 8 (Fgf8) gene. To date, FGF8 mutations have not been investigated in humans. We tested a strategy to perform laboratory testing to reduce costs in the investigation of patients presenting with the 22q11.2 DS phenotype. A total of 109 individuals with clinical suspicion were investigated using GTG-banding karyotype, fluorescence in situ hybridization, and/or multiplex ligation-dependent probe amplification. A conclusive diagnosis was achieved in 33 of 109 (30.2%) cases. In addition, mutations in the coding regions of TBX1 and FGF8 genes were investigated in selected cases where 22q11.2 deletion had been excluded, and no pathogenic mutations were detected in both genes. This study presents a strategy for molecular genetic characterization of patients presenting with the 22q11.2 DS using different laboratory techniques. This strategy could be useful in different countries, according to local resources. Also, to our knowledge, this is the first investigation of FGF8 gene in humans with this clinical suspicion. PMID:27617111

  13. Genomic findings in patients with clinical suspicion of 22q11.2 deletion syndrome.

    PubMed

    Koczkowska, Magdalena; Wierzba, Jolanta; Śmigiel, Robert; Sąsiadek, Maria; Cabała, Magdalena; Ślężak, Ryszard; Iliszko, Mariola; Kardaś, Iwona; Limon, Janusz; Lipska-Ziętkiewicz, Beata S

    2017-02-01

    Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ∼40 % phenotypic 22q11.2 deletion subjects.

  14. Congenital keratoglobus with blue sclera in two siblings with overlapping Marshall/Stickler phenotype.

    PubMed

    Imamoglu, Serhat; Kaya, Vedat; Imamoglu, Ebru Yalin; Gok, Kemran

    2016-11-01

    We aimed to describe congenital keratoglobus with blue sclera in two siblings with overlapping Marshall/Stickler phenotype. Two sisters (ages four and six) with bilateral high astigmatism were evaluated by slit-lamp microscopy. Corneal topography and pachymetry maps were also obtained. Slit-lamp examination revealed that both corneas were globular in shape with peripheral corneal thinning. Pachymetry maps showed diffuse corneal thinning. Two siblings had in common the features of keratoglobus, blue sclera, atypical face, hearing loss, and hypermobile joints. We tentatively diagnosed the sisters as having an overlapping Marshall-Stickler phenotype based on clinical and radiological findings. Marshall-Stickler syndrome may exist in the differential diagnosis of keratoglobus with blue sclera.

  15. Congenital keratoglobus with blue sclera in two siblings with overlapping Marshall/Stickler phenotype

    PubMed Central

    Imamoglu, Serhat; Kaya, Vedat; Imamoglu, Ebru Yalin; Gok, Kemran

    2016-01-01

    We aimed to describe congenital keratoglobus with blue sclera in two siblings with overlapping Marshall/Stickler phenotype. Two sisters (ages four and six) with bilateral high astigmatism were evaluated by slit-lamp microscopy. Corneal topography and pachymetry maps were also obtained. Slit-lamp examination revealed that both corneas were globular in shape with peripheral corneal thinning. Pachymetry maps showed diffuse corneal thinning. Two siblings had in common the features of keratoglobus, blue sclera, atypical face, hearing loss, and hypermobile joints. We tentatively diagnosed the sisters as having an overlapping Marshall-Stickler phenotype based on clinical and radiological findings. Marshall-Stickler syndrome may exist in the differential diagnosis of keratoglobus with blue sclera. PMID:27958215

  16. What`s in a name? Chromosome 22q abnormalities and the DiGeorge, velocardiofacial and conotruncal anomalies face syndromes

    SciTech Connect

    Wulfsberg, E.A.; Leana-Cox, J.; Neri, G.

    1996-11-11

    The recent advances in our understanding of the phenotype associated with deletion of the DiGeorge Chromosome Region (DGCR) at 22q11.2 are in many ways analogous to the fable about the blind men and the elephant. Originally described as three distinct phenotypes (DiGeorge (DG) syndrome, velocardiofacial (VCF) syndrome, and the conotruncal anomalies face (CTAF) syndrome), it is now clear that there is only a single broad and variable phenotype associated with deletion of the DGCR. As in the fable, distinguished clinicians approached this phenotypic {open_quotes}elephant{close_quotes} from different perspectives and provided three separate, although overlapping descriptions. Our analogy to this fable is not to imply some {open_quotes}blindness{close_quotes} on the part of these clinicians, but rather to point out the well-known difficulty in delineating the indistinct phenotypic boundaries of a syndrome until a genetic or biochemical marker for the condition is available. The recent availability of a fluorescent in situ hybridization (FISH) probe to detect deletion of the DGCR now allows delineation of the broad phenotype of our {open_quotes}elephant{close_quotes} which spans from lethal DG phenotypes through the intermediate VCF and CTAF phenotypes to the newly recognized {open_quotes}mild{close_quotes} phenotype consisting of only developmental delays and subtle facial abnormalities. 33 refs.

  17. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    PubMed

    Gong, Xiaohong; Jiang, Yu-Wu; Zhang, Xin; An, Yu; Zhang, Jun; Wu, Ye; Wang, Jingmin; Sun, Yangfei; Liu, Yanyan; Gao, Xuewu; Shen, Yiping; Wu, Xiru; Qiu, Zilong; Jin, Li; Wu, Bai-Lin; Wang, Hongyan

    2012-01-01

    Intellectual disability (ID) is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC) test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%), while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT) or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  18. De novo direct duplication of chromosome segment 22q11.2-q13.1

    SciTech Connect

    Fujimoto, Atsuko; Lin, Ming S.

    1996-03-29

    Lindsay et al. [1995] reported a case of de novo duplication of the segment 22q11-q12. Molecular cytogenetics studies showed that the segment includes the regions responsible for the {open_quotes}cat eye,{close_quotes} DiGeorge, and velo-cardio-facial syndrome, and extends distal to the breakpoint cluster region. The phenotype was milder than that of complete trisomy 22 and der(22)t(11;22) (q23;q11) syndrome and was similar in type and severity to that of {open_quotes}cat eye{close_quotes} syndrome (CES). They suggested that trisomy of gene(s) responsible for the CES might have a predominant phenotypic effect over other genes present in the region duplicated in their patient. 3 refs., 2 figs.

  19. Velo-cardio-facial syndrome: Frequency and textent of 22q11 deletions

    SciTech Connect

    Lindsay, E.A.; Goldberg, R.; Jurecic, V.

    1995-07-03

    Velo-cardio-facial (VCFS) or Shprintzen syndrome is associated with deletions in a region of chromosome 22q11.2 also deleted in DiGeorge anomaly and some forms of congenital heart disease. Due to the variability of phenotype, the evaluation of the incidence of deletions has been hampered by uncertainty of diagnosis. In this study, 54 patients were diagnosed with VCFS by a single group of clinicians using homogeneous clinical criteria independent of the deletion status. Cell lines of these patients were established and the deletion status evaluated for three loci within the commonly deleted region at 22q11.2 using fluorescence in situ hybridization (FISH). In 81% of the patients all three loci were hemizygous. In one patient we observed a smaller interstitial deletion than that defined by the three loci. The phenotype of this patient was not different from that observed in patients with larger deletions. 22 refs., 2 figs., 1 tab.

  20. Isolation of a gene expressed during early embryogenesis from the region of 22q11 commonly deleted in DiGeorge syndrome.

    PubMed

    Halford, S; Wilson, D I; Daw, S C; Roberts, C; Wadey, R; Kamath, S; Wickremasinghe, A; Burn, J; Goodship, J; Mattei, M G

    1993-10-01

    DiGeorge syndrome (DGS) is one of several syndromes associated with deletions within the proximal long-arm of chromosome 22. The region of chromosome 22q11 responsible for the haploinsufficiency syndromes (the DiGeorge Critical Region or DGCR) has been mapped using RFLPs, quantitative Southern blotting and FISH. Similar deletions are seen in the velo-cardio-facial syndrome (VCFS) and familial congenital heart defects. It is not known whether the phenotypic spectrum is the result of the hemizygosity of one gene or whether it is a consequence of contiguous genes being deleted. However, the majority of patients have a large (> = 2Mb deletion). In this paper we report the isolation of a gene, lab name T10, encoding a serine/threonine rich protein of unknown function which maps to the commonly deleted region of chromosome 22q11. Studies in the mouse indicate that it maps to MMU16 and is expressed during early embryogenesis. Although not mapping within the shortest region of overlap for DGS/VCFS, and therefore not the major gene involved in DGS, the expression pattern suggests that this gene may be involved in modifying the haploinsufficient phenotype of hemizygous patients.

  1. Immunologic reconstitution in 22q deletion (DiGeorge) syndrome.

    PubMed

    McGhee, Sean A; Lloret, Maria Garcia; Stiehm, E Richard

    2009-01-01

    Adoptive transfer of mature T cells (ATMTC) through bone marrow (BM) transplantation, first attempted over 20 years ago, has recently emerged as a successful therapy for complete 22q deletion syndrome (22qDS). This provides a potential option to thymic transplantation (TT) for immune reconstitution in 22qDS. Compared to thymic transplant, ATMTC is an easier procedure to accomplish and is available at more centers. However, there are differences in the nature of the T-cell reconstitution that results. Predictably, more naïve T cells and recent thymic emigrants are present in patients treated with thymus transplant. There are no significant differences in mortality between the two procedures, but the number of patients is too limited to conclude that the procedures are equally effective. Adoptive transfer should be pursued as a reasonable treatment for 22qDS patients requiring immune reconstitution when thymus transplant is not available.

  2. Autistic disorder and 22q11.2 duplication.

    PubMed

    Mukaddes, Nahit Motavalli; Herguner, Sabri

    2007-01-01

    Although several reports have described the co-occurrence of autism in subjects with chromosome 22 abnormalities including trisomy 22, translocation 20/22, 22q11.2 deletion, ring chromosome 22, and 22q13.3 deletion, there is no report with 22q11.2 duplication. We report a 9-year-old girl, referred to our department for her behavioural problems and language delay. She was diagnosed with autistic disorder according to DSM-IV criteria. Because of her dysmorphic characteristics comprising narrow face, narrow forehead, mandibular prognathism, synophrys, and operated cleft palate and cardiac problems, she had gone under cytogenetic analysis. Although she was ascertained as suspected velocardiofacial syndrome (VCFS), the duplication of 22q11.2 was detected by interphase fluorescence in situ hybridization. Previous reports on the psychiatric aspects of 22q11.2 duplication have shown the existence of hyperactivity, learning disability, speech problems, and aggressive behaviours but not autism. Moreover, the lack of reports of co-occurrence of autism and 22q11.2 duplication may be related to paucity as a result of technical problems.

  3. Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes.

    PubMed

    Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2017-03-01

    The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.

  4. Phenotypic overlapping of trisomy 12p and Pallister-Killian syndrome.

    PubMed

    Inage, Eisuke; Suzuki, Mitsuyoshi; Minowa, Kei; Akimoto, Nahoko; Hisata, Ken; Shoji, Hiromichi; Okumura, Akihisa; Shimojima, Keiko; Shimizu, Toshiaki; Yamamoto, Toshiyuki

    2010-01-01

    Trisomy of 12p is a rare chromosomal abnormality, which sometimes coexists with other chromosomal anomalies. We report on a patient with a supernumerary chromosome involving chromosomes 12 and 14, which was confirmed by array-comparative genomic hybridization (aCGH). He had developmental delay and dysmorphic features overlapped with those of Pallister-Killian syndrome, which is derived from an isodicentric chromosome 12. The microblepharon identified in our patient is a characteristic feature of 12p trisomy. Further patients are needed to establish the phenotypic difference between trisomy 12p and Pallister-Killian syndrome.

  5. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    PubMed Central

    Grassi, Marcília S.; Jacob, Cristina M. A.; Kulikowski, Leslie D.; Pastorino, Antonio C.; Dutra, Roberta L.; Miura, Nana; Jatene, Marcelo B.; Pegler, Stephanie P.; Kim, Chong A.; Carneiro-Sampaio, Magda

    2014-01-01

    Background To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS) in patients with congenital heart disease (CHD). Objective To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. Methods The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months) at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18) and/or MLPA (n = 42), in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. Results CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%). Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60%) and/or elongated nose (53.3%), narrow palpebral fissure (50%), dysplastic, overfolded ears (48.3%), thin lips (41.6%), elongated fingers (38.3%) and short stature (36.6%). Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH) level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM) in two other patients. Conclusion Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients. PMID:25317860

  6. Elusive Identities and Overlapping Phenotypes of Proangiogenic Myeloid Cells in Tumors

    PubMed Central

    Coffelt, Seth B.; Lewis, Claire E.; Naldini, Luigi; Brown, J. Martin; Ferrara, Napoleone; De Palma, Michele

    2010-01-01

    It is now established that bone marrow–derived myeloid cells regulate tumor angiogenesis. This was originally inferred from studies of human tumor biopsies in which a positive correlation was seen between the number of tumor-infiltrating myeloid cells, such as macrophages and neutrophils, and tumor microvessel density. However, unequivocal evidence was only provided once mouse models were used to examine the effects on tumor angiogenesis by genetically or pharmacologically targeting myeloid cells. Since then, identifying the exact myeloid cell types involved in this process has proved challenging because of myeloid cell heterogeneity and the expression of overlapping phenotypic markers in tumors. As a result, investigators often simply refer to them now as “bone marrow–derived myeloid cells.” Here we review the findings of various attempts to phenotype the myeloid cells involved and discuss the therapeutic implications of correctly identifying—and thus being able to target—this proangiogenic force in tumors. PMID:20167863

  7. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors.

    PubMed

    Coffelt, Seth B; Lewis, Claire E; Naldini, Luigi; Brown, J Martin; Ferrara, Napoleone; De Palma, Michele

    2010-04-01

    It is now established that bone marrow-derived myeloid cells regulate tumor angiogenesis. This was originally inferred from studies of human tumor biopsies in which a positive correlation was seen between the number of tumor-infiltrating myeloid cells, such as macrophages and neutrophils, and tumor microvessel density. However, unequivocal evidence was only provided once mouse models were used to examine the effects on tumor angiogenesis by genetically or pharmacologically targeting myeloid cells. Since then, identifying the exact myeloid cell types involved in this process has proved challenging because of myeloid cell heterogeneity and the expression of overlapping phenotypic markers in tumors. As a result, investigators often simply refer to them now as "bone marrow-derived myeloid cells." Here we review the findings of various attempts to phenotype the myeloid cells involved and discuss the therapeutic implications of correctly identifying-and thus being able to target-this proangiogenic force in tumors.

  8. Is Child Intelligence Associated with Parent and Sibling Intelligence in Individuals with Developmental Disorders? An Investigation in Youth with 22q11.2 Deletion (Velo-Cardio-Facial) Syndrome

    PubMed Central

    Olszewski, Amy K.; Radoeva, Petya D.; Fremont, Wanda; Kates, Wendy R.; Antshel, Kevin M.

    2014-01-01

    Children with 22q11.2 deletion syndrome (22q11DS), a copy-number variation (CNV) genetic disorder, demonstrate a great deal of variability in IQ scores and are at particular risk for cognitive difficulties, with up to 45% experiencing intellectual disability. This study explored the IQ relationship between individuals with 22q11DS, their parents and their siblings. Participants included individuals with 22q11DS, unaffected siblings and community controls, who participated in a longitudinal study of 22q11DS. Significant associations between proband and relative (parent, sibling) IQ scores were found. Results suggest that the cognitive functioning of first-degree relatives could be a useful marker of general genetic background and/or environmental effects, and can explain some of the large phenotypic variability in 22q11DS. These findings underscore the importance of including siblings and parents in studies of 22q11DS whenever possible. PMID:25244692

  9. 22q11 Deletion Syndrome: A Genetic Subtype of Schizophrenia

    PubMed Central

    Bassett, Anne S.; Chow, Eva W.C.

    2012-01-01

    Schizophrenia is likely to be caused by several susceptibility genes and may have environmental factors that interact with susceptibility genes and/or nongenetic causes. Recent evidence supports the likelihood that 22q11 Deletion Syndrome (22qDS) represents an identifiable genetic subtype of schizophrenia. 22qDS is an under-recognized genetic syndrome associated with microdeletions on chromosome 22 and a variable expression that often includes mild congenital dysmorphic features, hypernasal speech, and learning difficulties. Initial evidence indicates that a minority of patients with schizophrenia (~2%) may have 22qDS and that prevalence may be somewhat higher in subpopulations with developmental delay. This paper proposes clinical criteria (including facial features, learning disabilities, hypernasal speech, congenital heart defects and other congenital anomalies) to aid in identifying patients with schizophrenia who may have this subtype and outlines features that may increase the index of suspicion for this syndrome. Although no specific causal gene or genes have yet been identified in the deletion region, 22qDS may represent a more homogeneous subtype of schizophrenia. This subtype may serve as a model for neurodevelopmental origins of schizophrenia that could aid in delineating etiologic and pathogenetic mechanisms. PMID:10509171

  10. Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps.

    PubMed

    Mõttus, René; Marioni, Riccardo; Deary, Ian J

    2017-02-01

    Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities.

  11. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia.

    PubMed

    Wooderchak-Donahue, Whitney L; McDonald, Jamie; O'Fallon, Brendan; Upton, Paul D; Li, Wei; Roman, Beth L; Young, Sarah; Plant, Parker; Fülöp, Gyula T; Langa, Carmen; Morrell, Nicholas W; Botella, Luisa M; Bernabeu, Carmelo; Stevenson, David A; Runo, James R; Bayrak-Toydemir, Pinar

    2013-09-05

    Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-β) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT.

  12. Juvenile rheumatoid arthritis and del(22q11) syndrome: a non-random association.

    PubMed Central

    Verloes, A; Curry, C; Jamar, M; Herens, C; O'Lague, P; Marks, J; Sarda, P; Blanchet, P

    1998-01-01

    Del(22q11) is a common microdeletion syndrome with an extremely variable phenotype. Besides classical manifestations, such as velocardiofacial (Shprintzen) or DiGeorge syndromes, del(22q11) syndrome may be associated with unusual but probably causally related anomalies that expand its phenotype and complicate its recognition. We report here three children with the deletion and a chronic, erosive polyarthritis resembling idiopathic cases of juvenile rheumatoid arthritis (JRA). Patient 1, born in 1983, initially presented with developmental delay, facial dysmorphism, velopharyngeal insufficiency, and severe gastro-oesophageal reflux requiring G tube feeding. From the age of 3 years, he developed JRA, which resulted in severe restrictive joint disease, osteopenia, and platyspondyly. Patient 2, born in 1976, had tetralogy of Fallot and peripheral pulmonary artery stenosis. She developed slowly, had mild dysmorphic facial features, an abnormal voice, and borderline intelligence. JRA was diagnosed at the age of 5 years. The disorder followed a subacute course, with relatively mild inflammatory phenomena, but an extremely severe skeletal involvement with major osteopenia, restrictive joint disease (bilateral hip replacement), and almost complete osteolysis of the carpal and tarsal bones with phalangeal synostoses, leading to major motor impairment and confinement to a wheelchair. Patient 3, born in 1990, has VSD, right embryo-toxon, bifid uvula, and facial dysmorphism. She developed JRA at the age of 1 year. She is not mentally retarded but has major speech delay secondary to congenital deafness inherited from her mother. In the three patients, a del(22q11) was shown by FISH analysis. These observations, and five other recently published cases, indicate that a JRA-like syndrome is a component of the del(22q11) spectrum. The deletion may be overlooked in those children with severe, chronic inflammatory disorder. Images PMID:9832043

  13. Emotion Regulation and Development in Children with Autism and 22q13 Deletion Syndrome: Evidence for Group Differences

    ERIC Educational Resources Information Center

    Glaser, Sarah E.; Shaw, Steven R.

    2011-01-01

    Emotion regulation (ER) abilities and developmental differences were investigated among 19 children with autism and 18 children with 22q13 Deletion Syndrome (a rare chromosomal disorder with certain autistic symptoms). The purpose of this study was to examine the phenotypic similarities between the two disorders. ER was measured by the Temperament…

  14. The Neural Correlates of Non-Spatial Working Memory in Velocardiofacial Syndrome (22q11.2 Deletion Syndrome)

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Krauss, Beth R.; AbdulSabur, Nuria; Colgan, Deirdre; Antshel, Kevin M.; Higgins, Anne Marie; Shprintzen, Robert J.

    2007-01-01

    Velocardiofacial syndrome (VCFS), also known as 22q11.2 deletion syndrome, is a neurogenetic disorder that is associated with both learning disabilities and a consistent neuropsychological phenotype, including deficits in executive function, visuospatial perception, and working memory. Anatomic imaging studies have identified significant…

  15. Genetic Dosage Compensation in a Family with Velo-cardio-facial/DiGeorge/22q11.2 Deletion Syndrome

    PubMed Central

    Alkalay, Avishai A.; Guo, Tingwei; Montagna, Cristina; Digilio, M. Cristina; Marino, Bruno; Dallapiccola, Bruno; Morrow, Bernice

    2014-01-01

    Cytogenetic studies of a male child carrying the 22q11.2 deletion common in patients with velo-cardio-facial/DiGeorge syndrome revealed an unexpected rearrangement of the 22q11.2 region in his normal appearing mother. The mother carries a 3 Mb deletion on one copy and a reciprocal, similar sized duplication on the other copy of chromosome 22q11.2 as revealed by fluorescence in situ hybridization and array comparative genome hybridization analysis. The most parsimonious mechanism for the rearrangement is a mitotic non-allelic homologous recombination event in a cell in the early embryo soon after fertilization. The normal phenotype of the mother can be explained by the theory of genetic dosage compensation. This is the second documented case of such an event for this or any genomic disorder. This finding helps to reinforce this phenomenon in a human model, and has significant implications for genetic counseling of future children. PMID:21337693

  16. Chromosome 22q12.1 microdeletions: confirmation of the MN1 gene as a candidate gene for cleft palate

    PubMed Central

    Breckpot, Jeroen; Anderlid, Britt-Marie; Alanay, Yasemin; Blyth, Moira; Brahimi, Afane; Duban-Bedu, Bénédicte; Gozé, Odile; Firth, Helen; Yakicier, Mustafa Cengiz; Hens, Greet; Rayyan, Maissa; Legius, Eric; Vermeesch, Joris Robert; Devriendt, Koen

    2016-01-01

    We report on seven novel patients with a submicroscopic 22q12 deletion. The common phenotype constitutes a contiguous gene deletion syndrome on chromosome 22q12.1q12.2, featuring NF2-related schwannoma of the vestibular nerve, corpus callosum agenesis and palatal defects. Combining our results with the literature, eight patients are recorded with palatal defects in association with haploinsufficiency of 22q12.1, including the MN1 gene. These observations, together with the mouse expression data and the finding of craniofacial malformations including cleft palate in a Mn1-knockout mouse model, suggest that this gene is a candidate gene for cleft palate in humans. PMID:25944382

  17. Understanding the Role of Tbx1 as a Candidate Gene for 22q11.2 Deletion Syndrome

    PubMed Central

    Gao, Shan; Li, Xiao; Amendt, Brad A.

    2013-01-01

    22q11.2 deletion syndrome (22q11.2DS) is caused by a commonly occurring microdeletion on chromosome 22. Clinical findings include cardiac malformations, thymic and parathyroid hypoplasia, craniofacial dysmorphisms, and dental defects. These phenotypes are due mainly to abnormal development of the pharyngeal apparatus. Targeted deletion studies in mice and analysis of naturally occurring mutations in humans have implicated Tbx1 as a candidate gene for 22q11.2DS. Tbx1 belongs to an evolutionarily conserved T-box family of transcription factors, whose expression is precisely regulated during embryogenesis, and it appears to regulate the proliferation and differentiation of various progenitor cells during organogenesis. In this review, we discuss the mechanisms of Tbx1 during development of the heart, thymus and parathyroid glands, as well as during formation of the palate, teeth, and other craniofacial features. PMID:23996541

  18. Idiopathic thromobocytopenic purpura in two mothers of children with DiGeorge sequence: A new component manifestation of deletion 22q11?

    SciTech Connect

    Levy, A.; Philip, N.; Michel, G.

    1997-04-14

    The phenotypic spectrum caused by the microdeletion of chromosome 22q11 region is known to be variable. Nearly all patients with DiGeorge sequence (DGS) and approximately 60% of patients with velocardiofacial syndrome exhibit the deletion. Recent papers have reported various congenital defects in patients with 22q11 deletions. Conversely, some patients have minimal clinical expression. Ten to 25% of parents of patients with DGS exhibit the deletion and are nearly asymptomatic. Two female patients carrying a 22q11 microdeletion and presenting with idiopathic thrombocytopenic purpura are reported. Both had children with typical manifestations of DGS. 12 refs., 4 figs., 1 tab.

  19. Converging levels of analysis on a genomic hotspot for psychosis: Insights from 22q11.2 Deletion Syndrome

    PubMed Central

    Schreiner, Matthew J.; Lazaro, Maria T.; Jalbrzikowski, Maria; Bearden, Carrie E.

    2012-01-01

    Schizophrenia is a devastating neurodevelopmental disorder that, despite extensive research, still poses a considerable challenge to attempts to unravel its heterogeneity, and the complex biochemical mechanisms by which it arises. While the majority of cases are of unknown etiology, accumulating evidence suggests that rare genetic mutations, such as 22q11.2 Deletion Syndrome (22qDS), can play a significant role in predisposition to the illness. Up to 25% of individuals with 22qDS eventually develop schizophrenia; conversely, this deletion is estimated to account for 1–2% of schizophrenia cases overall. This locus of Chromosome 22q11.2 contains genes that encode for proteins and enzymes involved in regulating neurotransmission, neuronal development, myelination, micro RNA processing, and posttranslational protein modifications. As a consequence of the deletion, affected individuals exhibit cognitive dysfunction, structural and functional brain abnormalities, and neurodevelopmental anomalies that parallel many of the phenotypic characteristics of schizophrenia. As an illustration of the value of rare, highly penetrant genetic subtypes for elucidating pathological mechanisms of complex neuropsychiatric disorders, we provide here an overview of the cellular, network, and systems-level anomalies found in 22qDS, and review the intriguing evidence for this disorder’s association with schizophrenia. This article is part of a Special Issue entitled ‘Neurodevelopmental Disorders’. PMID:23098994

  20. Decreased DGCR8 Expression and miRNA Dysregulation in Individuals with 22q11.2 Deletion Syndrome

    PubMed Central

    Sellier, Chantal; Hwang, Vicki J.; Dandekar, Ravi; Durbin-Johnson, Blythe; Charlet-Berguerand, Nicolas; Ander, Bradley P.; Sharp, Frank R.; Angkustsiri, Kathleen; Simon, Tony J.; Tassone, Flora

    2014-01-01

    Deletion of the 1.5–3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70–80%), hypocalcemia (20–60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS. PMID:25084529

  1. Genetic Counseling for the 22q11.2 Deletion

    ERIC Educational Resources Information Center

    McDonald-McGinn, Donna M.; Zackai, Elaine H.

    2008-01-01

    Because of advances in palliative medical care, children with the 22q11.2 deletion syndrome are surviving into adulthood. An increase in reproductive fitness will likely follow necessitating enhanced access to genetic counseling for these patients and their families. Primary care physicians/obstetric practitioners are in a unique position to…

  2. Minimum prevalence of chromosome 22q11 deletions

    SciTech Connect

    Wilson, D.I.; Cross, I.E.; Burn, J.

    1994-09-01

    Submicroscopic deletions from within chromosome 22q11 are associated with DiGeorge (DGS), velocardiofacial (VCFS) and conotruncal anomaly syndromes and isolated congenital heart defects. In 1993 our pediatric cardiologists clinically referred all children in whom a chromosome 22q11 deletion was suspected for fluorescent in situ hybridization studies using probes from the DGS critical region. 10 affected individuals have been identified to date from the children born in 1993 in the Northern Region served exclusively by our center. A further case, the subsequent pregnancy in one of these families was affected and terminated on the basis of a major heart malformation. In the years 1988-92, for which we have complete ascertainment, there were 1009 heart defects among 191,700 births (mean 202 per annum). Thus we estimate that chromosome 22q11 deletions were the cause of at least 5% of congenital heart disease. As not all children with chromosome 22q11 deletions have a heart defect, this gives an estimated minimum prevalence of 1/4000 live births.

  3. Towards earlier diagnosis of 22q11 deletions

    PubMed Central

    Tobias, E; Morrison, N; Whiteford, M; Tolmie, J

    1999-01-01

    Over a 7 year period, 551 patients were investigated for the presence of a chromosome 22q11 deletion by fluorescence in situ hybridisation. Analysis of the presenting features of the 67 individuals with this chromosome deletion permitted us to devise guidelines to facilitate early diagnosis.

 PMID:10569971

  4. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome

    PubMed Central

    Karpinski, Beverly A.; Maynard, Thomas M.; Fralish, Matthew S.; Nuwayhid, Samer; Zohn, Irene E.; Moody, Sally A.; LaMantia, Anthony-S.

    2014-01-01

    ABSTRACT We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS. PMID:24357327

  5. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome.

    PubMed

    Karpinski, Beverly A; Maynard, Thomas M; Fralish, Matthew S; Nuwayhid, Samer; Zohn, Irene E; Moody, Sally A; LaMantia, Anthony-S

    2014-02-01

    We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia--debilitating feeding, swallowing and nutrition difficulties from birth onward--within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  6. Revisiting genotype-phenotype overlap in neurogenetics: triplet-repeat expansions mimicking spastic paraplegias.

    PubMed

    Bettencourt, Conceição; Quintáns, Beatriz; Ros, Raquel; Ampuero, Israel; Yáñez, Zuleima; Pascual, Samuel Ignacio; de Yébenes, Justo García; Sobrido, María-Jesús

    2012-09-01

    Hereditary spastic paraplegias (HSPs) constitute a heterogeneous group of neurological disorders, characterized primarily by progressive spasticity and weakness of the lower limbs. HSPs are caused by mutations in multiple genes (at least 48 loci and 28 causative genes). The clinical spectrum of HSPs is wide and important differences have been reported between patients with distinct mutations in the same gene, or even between different family members bearing the same mutation. Many patients with HSP present clinical deficits related to the involvement of neuronal systems other than corticospinal tracts, namely, peripheral nerves, sensory, or cerebellar pathways. These cases may be difficult to differentiate from other neurological diseases (e.g., hereditary ataxias), also genetically and clinically heterogeneous. As an illustration of how overlapping this genotype-phenotype relationship is, and the difficulties that it brings upon the development of neurogenetic algorithms and databases, we review the main clinical and genetic features of HSPs, and summarize reports on cases of triplet-repeat spinocerebellar ataxias that can mimic HSP phenotypes. This complex scenario makes the necessity of high-quality, curated mutation databases even more urgent, in order to develop adequate diagnostic guidelines, correct interpretation of genetic testing, and appropriate genetic counseling.

  7. Divergent Patterns of Social Cognition Performance in Autism and 22q11.2 Deletion Syndrome (22q11DS)

    ERIC Educational Resources Information Center

    McCabe, Kathryn L.; Melville, Jessica L.; Rich, Dominique; Strutt, Paul A.; Cooper, Gavin; Loughland, Carmel M.; Schall, Ulrich; Campbell, Linda E.

    2013-01-01

    Individuals with developmental disorders frequently report a range of social cognition deficits including difficulties identifying facial displays of emotion. This study examined the specificity of face emotion processing deficits in adolescents with either autism or 22q11DS compared to typically developing (TD) controls. Two tasks (face emotion…

  8. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development

    PubMed Central

    Meechan, Daniel W.; Maynard, Thomas M.; Fernandez, Alejandra; Karpinski, Beverly A.; Rothblat, Lawrence A.; LaMantia, Anthony S.

    2015-01-01

    Understanding the developmental etiology of autistic spectrum disorders, attention deficit/hyperactivity disorder and schizophrenia remains a major challenge for establishing new diagnostic and therapeutic approaches to these common, difficult-to-treat diseases that compromise neural circuits in the cerebral cortex. One aspect of this challenge is the breadth and overlap of ASD, ADHD, and SCZ deficits; another is the complexity of mutations associated with each, and a third is the difficulty of analyzing disrupted development in at-risk or affected human fetuses. The identification of distinct genetic syndromes that include behavioral deficits similar to those in ASD, ADHC and SCZ provides a critical starting point for meeting this challenge. We summarize clinical and behavioral impairments in children and adults with one such genetic syndrome, the 22q11.2 Deletion Syndrome, routinely called 22q11DS, caused by micro-deletions of between 1.5 and 3.0 MB on human chromosome 22. Among many syndromic features, including cardiovascular and craniofacial anomalies, 22q11DS patients have a high incidence of brain structural, functional, and behavioral deficits that reflect cerebral cortical dysfunction and fall within the spectrum that defines ASD, ADHD, and SCZ. We show that developmental pathogenesis underlying this apparent genetic “model” syndrome in patients can be defined and analyzed mechanistically using genomically accurate mouse models of the deletion that causes 22q11DS. We conclude that “modeling a model”, in this case 22q11DS as a model for idiopathic ASD, ADHD and SCZ, as well as other behavioral disorders like anxiety frequently seen in 22q11DS patients, in genetically engineered mice provides a foundation for understanding the causes and improving diagnosis and therapy for these disorders of cortical circuit development. PMID:25866365

  9. Evidence for a chromosome 22q susceptibility locus for some schizophrenics

    SciTech Connect

    Pulver, A.E.; Wolyniec, P.; Nestadt, G.

    1994-09-01

    Recent reports from linkage studies suggests that in some families there may be a gene associated with schizophrenia on chromosome 22q. Given the probable heterogeneity of schizophrenia, further exploration of this region was undertaken. The region was examined for candidate genes and diseases reported to have some psychiatric manifestations. Studies were initiated to examine the the potential phenotypic and molecular similarity between schizophrenia and velo-cardio-facial syndrome (VCFS), a syndrome associated with an interstitial deletion of 22q11.2. Phenotypic expression: (1) psychiatric evaluations of VCFS patients and their relatives found a high rate of DSM III-R schizophrenia in the patients and of psychotic illness in their 2nd and 3rd degree relatives. (2) 160 schizophrenic patients from the Maryland Epidemiology Sample (MES) were evaluated for the presence of typical facies seen in VCFS. Rating a 5-point scale, {open_quotes}5{close_quotes} being most likely, 15 (9.4%) were rated {open_quotes}5{close_quotes} and 27 (16.9%) were rated {open_quotes}4{close_quotes} for the VCFS-like facial features. Molecular characteristics: fluorescent in situ hybridization methods (FISH) identified 3 schizophrenics among 60 in the MES with the microdeletion of probe sc11.lab commonly deleted in VCFS subjects. This work provides a model for the mapping of complex phenotypes such schizophrenia using both genetic and epidemiological methods.

  10. VEGFA polymorphisms and cardiovascular anomalies in 22q11 microdeletion syndrome: a case-control and family-based study.

    PubMed

    Calderón, Juan Francisco; Puga, Alonso R; Guzmán, M Luisa; Astete, Carmen Paz; Arriaza, Marta; Aracena, Mariana; Aravena, Teresa; Sanz, Patricia; Repetto, Gabriela M

    2009-01-01

    Microdeletion 22q11 in humans causes velocardiofacial and DiGeorge syndromes. Most patients share a common 3Mb deletion, but the clinical manifestations are very heterogeneous. Congenital heart disease is present in 50-80% of patients and is a significant cause of morbidity and mortality. The phenotypic variability suggests the presence of modifiers. Polymorphisms in the VEGFA gene, coding for the vascular endothelial growth factor A, have been associated with non-syndromic congenital heart disease, as well as with the presence of cardiovascular anomalies in patients with microdeletion 22q11. We evaluated the association of VEGFA polymorphisms c.-2578C>A (rs699947), c.-1154G>A (rs1570360) and c.-634C>G (rs2010963) with congenital heart disease in Chilean patients with microdeletion 22q11. The study was performed using case-control and family-based association designs. We evaluated 122 patients with microdeletion 22q11 and known anatomy of the heart and great vessels, and their parents. Half the patients had congenital heart disease. We obtained no evidence of association by either method of analysis. Our results provide further evidence of the incomplete penetrance of the cardiovascular phenotype of microdeletion 22ql 1, but do not support association between VEGFA promoter polymorphisms and the presence of congenital heart disease in Chilean patients with this syndrome.

  11. A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    PubMed Central

    Fernández, Luis; Nevado, Julián; Santos, Fernando; Heine-Suñer, Damià; Martinez-Glez, Victor; García-Miñaur, Sixto; Palomo, Rebeca; Delicado, Alicia; Pajares, Isidora López; Palomares, María; García-Guereta, Luis; Valverde, Eva; Hawkins, Federico; Lapunzina, Pablo

    2009-01-01

    Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors. PMID

  12. Genotype–phenotype relationship in three cases with overlapping 19p13.12 microdeletions

    PubMed Central

    Bonaglia, Maria C; Marelli, Susan; Novara, Francesca; Commodaro, Simona; Borgatti, Renato; Minardo, Grazia; Memo, Luigi; Mangold, Elisabeth; Beri, Silvana; Zucca, Claudio; Brambilla, Daniele; Molteni, Massimo; Giorda, Roberto; Weber, Ruthild G; Zuffardi, Orsetta

    2010-01-01

    We describe the detailed clinical and molecular characterization of three patients (aged 7, 84/12 and 31 years) with overlapping microdeletions in 19p13.12, extending to 19p13.13 in two cases. The patients share the following clinical features with a recently reported 10-year-old girl with a 19p13.12 microdeletion: mental retardation (MR), psychomotor and language delay, hearing impairment, brachycephaly, anteverted nares and ear malformations. All patients share a 359-kb deleted region in 19p13.12 harboring six genes (LPHN1, DDX39, CD97, PKN1, PTGER1 and GIPC1), several of which may be MR candidates because of their function and expression pattern. LPHN1 and PKN1 are the most appealing; LPHN1 for its interaction with Shank family proteins, and PKN1 because it is involved in a variety of functions in neurons, including cytoskeletal organization. Haploinsufficiency of GIPC1 may contribute to hearing impairment for its interaction with myosin VI. A behavioral phenotype was observed in all three patients; it was characterized by overactive disorder associated with MR and stereotyped movements (ICD10) in one patient and hyperactivity in the other two. As Ptger1-null mice show behavioral inhibition and impulsive aggression with defective social interaction, PTGER1 haploinsufficiency may be responsible for the behavioral traits observed in these patients. PMID:20648052

  13. Secondary Immunologic Consequences in Chromosome 22q11.2 Deletion Syndrome (DiGeorge Syndrome/Velocardiofacial Syndrome)

    PubMed Central

    Zemble, R.; Prak, E. Luning; McDonald, K.; McDonald-McGinn, D.; Zackai, E.; Sullivan, K.

    2010-01-01

    Clinical evidence suggests that patients with Chromosome 22q11.2 deletion (Ch22q11.2D) have an increased prevalence of atopic and autoimmune disease and this has been without explanation. We hypothesized that the increase in atopy was due to homeostatic proliferation of T cells leading to a Th2 skew. We performed intracellular cytokine staining to define Th1/Th2 phenotypes in toddlers (early homeostatic proliferation) and adults (post homeostatic proliferation) with this syndrome. To attempt to understand the predisposition to autoimmunity we performed immunophenotyping analyses to define Th17 cells and B cell subsets. Adult Ch22q11.2D patients had a higher percentage of IL-4+CD4+ T cells than controls. Th17 cells were no different in patients and controls. In addition, adult Ch22q11.2D syndrome patients had significantly lower switched memory B cells, suggesting a dysregulated B cell compartment. These studies demonstrate that the decrement in T cell production has secondary consequences in the immune system, which could mold the patients’ clinical picture. PMID:20472505

  14. Confirmation that the conotruncal anomaly face syndrome is associated with a deletion within 22q11.2

    SciTech Connect

    Matsuoka, Rumiko; Takao, Atsuyoshi; Kimura, Misa; Kondo, Chisato; Ando, Masahiko; Momma, Kazuo; Imamura, Shin-ichiro; Joh-o, Kunitaka; Ikeda, Kazuo; Nishibatake, Makoto

    1994-11-15

    The so-called {open_quotes}conotruncal anomaly face syndrome{close_quotes} (CTAFS) is characterized by a peculiar facial appearance associated with congenital heart disease (CHD), especially cardiac outflow tract defects such as tetralogy of Fallot (TOF), double outlet ring ventricle (DORV), and truncus arteriosus (TAC). CTAFS and the DiGeorge anomaly (DGA) have many similar phenotypic characteristics, suggesting that they share a common cause. In many cases DGA is known to be associated with monosomy for a region of chromosome 22q11.2. Fifty CTAFS patients and 10 DGA patients, 11 parents couples and 10 mothers of CTAFS patients, and 3 parents couples and 2 mothers of DGA patients were examined by fluorescent in situ hybridization (FISH) using the N25 (D22S75) DGCR probe (Oncor). Monosomy for a region of 22q11.2 was found in 42 CTAFS, 9 DGA, 4 mothers, and 1 father who had CTAF without CHD. The remaining 8 CTAFS patients, 1 DGA patient and 1 mother who had questionable CTAF without CHD, showed no such chromosome abnormality. For the control, 60 patients who had CHD without CTAF or other know malformation syndromes were examined and had no deletion of 22q11.2. Therefore, we conclude that CTAFS is a part of the CATCH 22 syndrome; cardiac defects, abnormal faces, thymic hypoplasia, cleft palate, and hypocalcemia (CATCH) resulting from 22q11.2 deletions. 20 refs., 3 figs., 2 tabs.

  15. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome).

    PubMed

    Zemble, R; Luning Prak, E; McDonald, K; McDonald-McGinn, D; Zackai, E; Sullivan, K

    2010-09-01

    Clinical evidence suggests that patients with Chromosome 22q11.2 deletion (Ch22q11.2D) have an increased prevalence of atopic and autoimmune disease and this has been without explanation. We hypothesized that the increase in atopy was due to homeostatic proliferation of T cells leading to a Th2 skew. We performed intracellular cytokine staining to define Th1/Th2 phenotypes in toddlers (early homeostatic proliferation) and adults (post homeostatic proliferation) with this syndrome. To attempt to understand the predisposition to autoimmunity we performed immunophenotyping analyses to define Th17 cells and B cell subsets. Adult Ch22q11.2D patients had a higher percentage of IL-4+CD4+ T cells than controls. Th17 cells were no different in patients and controls. In addition, adult Ch22q11.2D syndrome patients had significantly lower switched memory B cells, suggesting a dysregulated B cell compartment. These studies demonstrate that the decrement in T cell production has secondary consequences in the immune system, which could mold the patients' clinical picture.

  16. Speech and hearing in adults with 22q11.2 deletion syndrome.

    PubMed

    Persson, Christina; Friman, Vanda; Óskarsdóttir, Sólveig; Jönsson, Radi

    2012-12-01

    The purpose of the study was to investigate the prevalence of velopharyngeal impairment, compensatory articulation, reduced intelligibility, and to rate the general impression of speech in adults with 22q11.2 deletion syndrome. The second purpose was to study the prevalence and type of hearing impairment in these adults. A referred, consecutive series of 24 adults with confirmed 22q11.2 deletion, 16 female and 8 males, with a mean age of 25 years (19-38 years) was included in the study. A blind assessment of speech by three experienced speech-language pathologists was performed. Sixteen (66%) patients had a mild to severe velopharyngeal impairment. The most prevalent symptoms of velopharygeal impairment were hypernasality and audible nasal airflow. The mean nasalance score was 33% (6-66%). Only two patients had disordered articulation; one of these had glottal articulation. A mean of 96% (88-100%) of single words were rated to be intelligible. To achieve these results half of the patients previously had velopharyngeal flap surgery. Forty-one percent (9/22) had mild-moderate hearing impairment; three had sensorineural type, four conductive and two had a mixed type. In conclusion the majority of the patients had no articulation errors and good intelligibility; while one-third still had moderate to severe problems with velopharyngeal impairment. Around 40% still had some hearing impairment, in most cases with a mild to moderate conductive component. Thus, a high prevalence of speech and hearing problems seems to be a part of the phenotype in adults with 22q11.2DS.

  17. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients.

    PubMed Central

    Carlson, C; Sirotkin, H; Pandita, R; Goldberg, R; McKie, J; Wadey, R; Patanjali, S R; Weissman, S M; Anyane-Yeboa, K; Warburton, D; Scambler, P; Shprintzen, R; Kucherlapati, R; Morrow, B E

    1997-01-01

    Velo-cardio-facial syndrome (VCFS) is a relatively common developmental disorder characterized by craniofacial anomalies and conotruncal heart defects. Many VCFS patients have hemizygous deletions for a part of 22q11, suggesting that haploinsufficiency in this region is responsible for its etiology. Because most cases of VCFS are sporadic, portions of 22q11 may be prone to rearrangement. To understand the molecular basis for chromosomal deletions, we defined the extent of the deletion, by genotyping 151 VCFS patients and performing haplotype analysis on 105, using 15 consecutive polymorphic markers in 22q11. We found that 83% had a deletion and >90% of these had a similar approximately 3 Mb deletion, suggesting that sequences flanking the common breakpoints are susceptible to rearrangement. We found no correlation between the presence or size of the deletion and the phenotype. To further define the chromosomal breakpoints among the VCFS patients, we developed somatic hybrid cell lines from a set of VCFS patients. An 11-kb resolution physical map of a 1,080-kb region that includes deletion breakpoints was constructed, incorporating genes and expressed sequence tags (ESTs) isolated by the hybridization selection method. The ordered markers were used to examine the two separated copies of chromosome 22 in the somatic hybrid cell lines. In some cases, we were able to map the chromosome breakpoints within a single cosmid. A 480-kb critical region for VCFS has been delineated, including the genes for GSCL, CTP, CLTD, HIRA, and TMVCF, as well as a number of novel ordered ESTs. PMID:9326327

  18. Autosomal dominant {open_quotes}Opitz{close_quotes} GBBB syndrome due to a 22q11.2 deletion

    SciTech Connect

    McDonald-McGinn, D.M.; Emanuel, B.S.; Zackai, E.H.

    1996-08-23

    The classification of Opitz GBBB syndrome has been associated with the deletion of the DiGeorge chromosome region on human chromosome 22q11.2. The broad phenotype involved in this deletion syndrome has been referred to as the DiGeorge/velocardiofacial syndrome. The clinical description of the patient will influence the diagnosis of the syndrome. More cooperation between the clinicians and the molecular researchers is necessary in order to locate the gene(s) for these disorders. 11 refs.

  19. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    ERIC Educational Resources Information Center

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  20. Intelligence and visual motor integration in 5-year-old children with 22q11-deletion syndrome.

    PubMed

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to these skills are reported in children with 22q11DS, weak VMI skills may contribute to the lower than average IQ scores commonly reported. To investigate if the correlation of VMI and IQ score was mainly influenced by problems with visual perception skills (VP), motor coordination skills (MC) or difficulties with the integration of both skills (VMI), a subgroup (n = 28) was also administered the Beery VMI supplemental developmental tests. Due to the narrow age range of this study, we were also able to provide an insight into the neurocognitive phenotype of 5-year olds with 22q11DS and the influence of gender, heart disease and origin of deletion on this phenotype. Results show a mean full scale IQ (FSIQ) = 73.0 (SD 10.4) and mean VMI = 86.2 (SD 8.4). A significant correlation between FSIQ and VMI was found (r = .45, p = .000), with most variation (26%) explained in the performance IQ score ((PIQ), r = .51, p = .000). VP correlated significantly with FSIQ (r = .44, p = .01) and PIQ (r = .49, p = .004). MC was not significantly correlated with IQ (FSIQ, r = .21, p = .15; PIQ, r = .28, p = .07), suggesting that problems with motor coordination do not influence results on IQ-tests in a significant way at this age. Girls scored significantly higher on FSIQ and PIQ than boys; cardiac anomalies were not predictive of FSIQ or VMI scores. The results of this study suggest a characteristic neurocognitive phenotype for 5-year olds with 22q11DS. Deficiencies in visual perception and/or processing are negatively correlated with IQ scores, whereas deficiencies in motor skills do not have a relevant negative impact at this age. These findings

  1. Atypical neuropsychological profile in a boy with 22q11.2 Deletion Syndrome.

    PubMed

    Stiers, Peter; Swillen, Ann; De Smedt, Bert; Lagae, Lieven; Devriendt, Koen; D'Agostino, Emiliano; Sunaert, Stefan; Fryns, Andjean-Pierre

    2005-02-01

    In this article the general and specific cognitive impairments of the boy R.H. with a de novo deletion 22q11.2 are described. His full-scale IQ was 73, and he obtained only slightly better verbal than non-verbal subtest scores. Neuropsychological assessment revealed specific impairments in perceptual categorization of objects presented suboptimal, matching of unfamiliar faces, and verbal learning and memory. In contrast, he performed in accordance with his intelligence level on other visual perceptual tasks, on non-verbal learning and memory tasks, and on attention tasks. Voxel-wise statistical comparison of a high-resolution T1-weighted magnetic resonance image of R.H's brain with similar images obtained from 14 normal control children revealed as major abnormalities a reduction of the right inferior parietal and superior occipital lobe, and a bilateral reduction of deep white matter behind the inferior frontal gyrus. These cognitive impairments and MRI abnormalities are not commonly described in 22q11.2 Deletion Syndrome and may indicate a larger heterogeneity in the neurocognitive phenotype than currently evidenced. At least in this boy the microdeletion seems to have interfered with the development and functioning of particular neural subsystems, while the structure and functioning of other subsystems was left intact.

  2. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome.

    PubMed

    Ben-Shachar, Shay; Ou, Zhishuo; Shaw, Chad A; Belmont, John W; Patel, Millan S; Hummel, Marybeth; Amato, Stephen; Tartaglia, Nicole; Berg, Jonathan; Sutton, V Reid; Lalani, Seema R; Chinault, A Craig; Cheung, Sau W; Lupski, James R; Patel, Ankita

    2008-01-01

    Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent approximately 3 Mb deletion or a smaller, less common, approximately 1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the approximately 3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a approximately 1.4 Mb or approximately 2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.

  3. Tandem configurations of variably duplicated segments of 22q11.2 confirmed by fiber-FISH analysis.

    PubMed

    Shimojima, Keiko; Okamoto, Nobuhiko; Inazu, Tetsuya; Yamamoto, Toshiyuki

    2011-11-01

    22q11.2 duplication syndrome has recently been established as a new syndrome manifesting broad clinical phenotypes including mental retardation. It is reciprocal to DiGeorge (DGS)/velo-cardio-facial syndrome (VCFS), in which the same portion of the chromosome is hemizygously deleted. Deletions and duplications of the 22q11.2 region are facilitated by the low-copy repeats (LCRs) flanking this region. In this study, we aimed to identify the directions of the duplicated segments of 22q11.2 to better understand the mechanism of chromosomal duplication. To achieve this aim, we accumulated samples from four patients with 22q11.2 duplications. One of the patients had an atypically small (741 kb) duplication of 22q11.2. The centromeric end of the breakpoint was on LCR22A, but the telomeric end was between LCR22A and B. Therefore, the duplicated segment did not include T-box 1 gene (TBX1), the gene primarily responsible for the DGS/VCFS. As this duplication was shared by the patient's healthy mother, this appears to be a benign copy-number variation rather than a disease-causing alteration. The other three patients showed 3.0 or 4.0 Mb duplications flanked by LCRs. The directions of the duplicated segments were investigated by fiber-fluorescence in situ hybridization analysis. All samples showed tandem configurations. These results support the hypothesized mechanism of non-allelic homologous recombination with flanking LCRs and add additional evidence that many interstitial duplications are aligned as tandem configurations.

  4. Confirmation that the velo-cardio-facial syndrome is associated with haplo-insufficiency of genes at chromosome 22q11.

    PubMed

    Kelly, D; Goldberg, R; Wilson, D; Lindsay, E; Carey, A; Goodship, J; Burn, J; Cross, I; Shprintzen, R J; Scambler, P J

    1993-02-01

    The velo-cardio-facial syndrome (VCFS) and DiGeorge sequence (DGS) have many similar phenotypic characteristics, suggesting that in some cases they share a common cause. DGS is known to be associated with monosomy for a region of chromosome 22q11, and DNA probes have been shown to detect these deletions even in patients with apparently normal chromosomes. Twelve patients with VCFS were examined and monosomy for a region of 22q11 was found in all patients. The DNA probes used in this study could not distinguish the VCFS locus and the DGS locus, indicating that the genes involved in these haploinsufficiencies are closely linked, and may be identical. The phenotypic variation of expression in VCFS and DGS may indicate that patients without the full spectrum of VCFS abnormalities but with some manifestations of the disorder may also have 22q11 deletions.

  5. Disrupted anatomic networks in the 22q11.2 deletion syndrome.

    PubMed

    Schmitt, J Eric; Yi, James; Calkins, Monica E; Ruparel, Kosha; Roalf, David R; Cassidy, Amy; Souders, Margaret C; Satterthwaite, Theodore D; McDonald-McGinn, Donna M; Zackai, Elaine H; Gur, Ruben C; Emanuel, Beverly S; Gur, Raquel E

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorder with an increased risk of psychosis. Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and 370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of interest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in 22q11DS using other neuroimaging methodologies.

  6. Refining the 22q11.2 deletion breakpoints in DiGeorge syndrome by aCGH.

    PubMed

    Bittel, D C; Yu, S; Newkirk, H; Kibiryeva, N; Holt, A; Butler, M G; Cooley, L D

    2009-01-01

    Hemizygous deletions of the chromosome 22q11.2 region result in the 22q11.2 deletion syndrome also referred to as DiGeorge, Velocardiofacial or Shprintzen syndromes. The phenotype is variable but commonly includes conotruncal cardiac defects, palatal abnormalities, learning and behavioral problems, immune deficiency, and facial anomalies. Four distinct highly homologous blocks of low copy number repeat sequences (LCRs) flank the deletion region. Mispairing of LCRs during meiosis with unequal meiotic exchange is assumed to cause the recurrent and consistent deletions. The proximal LCR is reportedly located at 22q11.2 from 17.037 to 17.083 Mb while the distal LCR is located from 19.835 to 19.880 Mb. Although the chromosome breakpoints are thought to localize to the LCRs, the positions of the breakpoints have been investigated in only a few individuals. Therefore, we used high resolution oligonucleotide-based 244K microarray comparative genomic hybridization (aCGH) to resolve the breakpoints in a cohort of 20 subjects with known 22q11.2 deletions. We also investigated copy number variation (CNV) in the rest of the genome. The 22q11.2 breaks occurred on either side of the LCR in our subjects, although more commonly on the distal side of the reported proximal LCR. The proximal breakpoints in our subjects spanned the region from 17.036 to 17.398 Mb. This region includes the genes DGCR6 (DiGeorge syndrome critical region protein 6) and PRODH (proline dehydrogenase 1), along with three open reading frames that may encode proteins of unknown function. The distal breakpoints spanned the region from 19.788 to 20.122 Mb. This region includes the genes GGT2 (gamma-glutamyltransferase-like protein 2), HIC2 (hypermethylated in cancer 2), and multiple transcripts of unknown function. The genes in these two breakpoint regions are variably hemizygous depending on the location of the breakpoints. Our 20 subjects had 254 CNVs throughout the genome, 94 duplications and 160 deletions

  7. The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology

    PubMed Central

    Leite, Ana Julia Cunha; Pinto, Irene Plaza; Cunha, Damiana Mirian da Cruz e; Ribeiro, Cristiano Luiz; da Silva, Claudio Carlos; da Cruz, Aparecido Divino; Minasi, Lysa Bernardes

    2016-01-01

    The chromosome 22q11.2 region has long been implicated in genomic diseases. Some genomic regions exhibit numerous low copy repeats with high identity in which they provide increased genomic instability and mediate deletions and duplications in many disorders. DiGeorge Syndrome is the most common deletion syndrome and reciprocal duplications could be occurring in half of the frequency of microdeletions. We described five patients with phenotypic variability that carries deletions or reciprocal duplications at 22q11.2 detected by Chromosomal Microarray Analysis. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had clinical indication to global developmental delay and a normal karyotype. We observed in our study three microdeletions and two microduplications in 22q11.2 region with variable intervals containing known genes and unstudied transcripts as well as the LCRs that are often flanking and within this genomic rearrangement. The identification of these variants is of particular interest because it may provide insight into genes or genomic regions that are crucial for specific phenotypic manifestations and are useful to assist in the quest for understanding the mechanisms subjacent to genomic deletions and duplications. PMID:27123452

  8. Microduplication 22q11.2: a description of the clinical, developmental and behavioral characteristics during childhood.

    PubMed

    Van Campenhout, S; Devriendt, K; Breckpot, J; Frijns, J-P; Peeters, H; Van Buggenhout, G; Van Esch, H; Maes, B; Swillen, A

    2012-01-01

    Microduplication 22q11.2 is a recently discovered genomic disorder. So far, targeted research on the cognitive and behavioral characteristics of individuals with this microduplication is limited. Therefore, 11 Flemish children (3-13 years old) with a microduplication 22q 1.2 were investigated in order to describe their clinical, developmental and behavioral characteristics. We measured their general intelligence, visual-motor capacities, attention, behavioral problems and characteristics of autism. In addition, there was an interview with the parents on developmental history and we reviewed available information from other specialists. The results show that the cognitive and behavioral phenotype of the children with microduplication 22q.11.2 is very wide and heterogeneous. Some of the children have a cognitively nearly normal development whereas others are more severely affected. All children had some degree of developmental delay and some of them have an intellectual disability. The most common clinical features include congenital malformations such as heart defects and cleft lip, feeding problems, hearing impairment and facial dysmorphism. The most common non-medical problems are learning difficulties, motor impairment, attention deficits, social problems and behavioral problems. There is no correlation between the size of the duplication and the phenotype.

  9. The Identification of Microdeletion and Reciprocal Microduplication in 22q11.2 Using High-Resolution CMA Technology.

    PubMed

    Leite, Ana Julia Cunha; Pinto, Irene Plaza; Cunha, Damiana Mirian da Cruz E; Ribeiro, Cristiano Luiz; da Silva, Claudio Carlos; da Cruz, Aparecido Divino; Minasi, Lysa Bernardes

    2016-01-01

    The chromosome 22q11.2 region has long been implicated in genomic diseases. Some genomic regions exhibit numerous low copy repeats with high identity in which they provide increased genomic instability and mediate deletions and duplications in many disorders. DiGeorge Syndrome is the most common deletion syndrome and reciprocal duplications could be occurring in half of the frequency of microdeletions. We described five patients with phenotypic variability that carries deletions or reciprocal duplications at 22q11.2 detected by Chromosomal Microarray Analysis. The CytoScan HD technology was used to detect changes in the genome copy number variation of patients who had clinical indication to global developmental delay and a normal karyotype. We observed in our study three microdeletions and two microduplications in 22q11.2 region with variable intervals containing known genes and unstudied transcripts as well as the LCRs that are often flanking and within this genomic rearrangement. The identification of these variants is of particular interest because it may provide insight into genes or genomic regions that are crucial for specific phenotypic manifestations and are useful to assist in the quest for understanding the mechanisms subjacent to genomic deletions and duplications.

  10. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome: a study in male mice

    PubMed Central

    Didriksen, Michael; Fejgin, Kim; Nilsson, Simon R.O.; Birknow, Michelle R.; Grayton, Hannah M.; Larsen, Peter H.; Lauridsen, Jes B.; Nielsen, Vibeke; Celada, Pau; Santana, Noemi; Kallunki, Pekka; Christensen, Kenneth V.; Werge, Thomas M.; Stensbøl, Tine B.; Egebjerg, Jan; Gastambide, Francois; Artigas, Francesc; Bastlund, Jesper F.; Nielsen, Jacob

    2017-01-01

    Background The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods We present a new mouse model (Df(h22q11)/+) of the deletion syndrome (22q11.2DS) and report on, to our knowledge, the most comprehensive study undertaken to date in 22q11.2DS models. The study was conducted in male mice. Results We found elevated postpubertal N-methyl-d-aspartate (NMDA) receptor antagonist–induced hyperlocomotion, age-independent prepulse inhibition (PPI) deficits and increased acoustic startle response (ASR). The PPI deficit and increased ASR were resistant to antipsychotic treatment. The PPI deficit was not a consequence of impaired hearing measured by auditory brain stem responses. The Df(h22q11)/+ mice also displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice in a wide range of other behavioural and biochemical assays. Limitations The 22q11.2 microdeletion has incomplete penetrance in humans, and the severity of disease depends on the complete genetic makeup in concert with environmental factors. In order to obtain more marked phenotypes reflecting the severe conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. Conclusion The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders associated with the 22q11DS. PMID:27391101

  11. Behavioral abnormalities are common and severe in patients with distal 22q11.2 microdeletions and microduplications

    PubMed Central

    Lindgren, Valerie; McRae, Anne; Dineen, Richard; Saulsberry, Alexandria; Hoganson, George; Schrift, Michael

    2015-01-01

    We describe six individuals with microdeletions and microduplications in the distal 22q11.2 region detected by microarray. Five of the abnormalities have breakpoints in the low-copy repeats (LCR) in this region and one patient has an atypical rearrangement. Two of the six patients with abnormalities in the region between LCR22 D–E have hearing loss, which has previously been reported only once in association with these abnormalities. We especially note the behavioral/neuropsychiatric problems, including the severity and early onset, in patients with distal 22q11.2 rearrangements. Our patients add to the genotype–phenotype correlations which are still being generated for these chromosomal anomalies. PMID:26247050

  12. Toriello-Carey syndrome with a 6Mb interstitial deletion at 22q12 detected by array CGH.

    PubMed

    Said, Edith; Cuschieri, Alfred; Vermeesch, Joris; Fryns, Jean Pierre

    2011-06-01

    Toriello-Carey syndrome is a rare multiple congenital anomaly syndrome comprising agenesis of the corpus callosum, telecanthus, short palpebral fissures, abnormal ears, Pierre Robin sequence, and cardiac anomaly. Autosomal recessive inheritance has been hypothesized and chromosome abnormalities have been reported. The present case is a girl with agenesis of the corpus callosum, a large cleft palate, telecanthus, hypertelorism, atrial septal defect, ventricular septal defect, and patent ductus arteriosus. A routine karyotype and fluorescence in situ hybridization subtelomeric analysis were normal. Array comparative genomic hybridization (CGH) identified a de novo 6 Mb interstitial deletion at 22q12.1→22q12.2. These findings support recent findings of chromosomal abnormalities in patients with the Toriello-Carey phenotype. We suggest that the clinical features described in some cases with Toriello-Carey syndrome might be due to cryptic chromosomal rearrangements and that array CGH should be considered in any case presenting with clinical features of Toriello-Carey.

  13. Oculo-auriculo-vertebral spectrum, cat eye, and distal 22q11 microdeletion syndromes: a unique double rearrangement.

    PubMed

    Torti, Erin E; Braddock, Stephen R; Bernreuter, Kristen; Batanian, Jacqueline R

    2013-08-01

    An array-CGH on 19-year-old male showed a proximal 1.11 Mb duplication and a distal 1.7 Mb deletion of 22q11.2 regions flanking the Velocardiofacial/DiGeorge syndrome region that remained intact. FISH analyses revealed both abnormalities to be on the same homolog 22. This double rearrangement lead to the co-existence of two syndromes: Cat eye and distal 22q11.2 microdeletion syndromes with a rare associated phenotype of oculo-auriculo-vertebral spectrum (OAVS). A review of the literature indicates that this is the second report of a proximal duplication and the fifth report of a distal deletion and OAVS suggestive of a possible OAVS candidate gene in this region.

  14. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    SciTech Connect

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L.

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  15. Association between Inflammatory Infiltrates and Isolated Monosomy 22/del(22q) in Meningiomas

    PubMed Central

    Domingues, Patrícia Henriques; Teodósio, Cristina; Otero, Álvaro; Sousa, Pablo; Ortiz, Javier; Macias, María del Carmen García; Gonçalves, Jesús María; Nieto, Ana Belén; Lopes, María Celeste; de Oliveira, Catarina

    2013-01-01

    Meningiomas contain highly variable levels of infiltrating tissue macrophages (TiMa) and other immune cells. In this study we investigated the potential association between the number and immunophenotype of inflammatory and other immune cells infiltrating the tumor as evaluated by multiparameter flow cytometry, and the clinico-biological, cytogenetic and gene expression profile (GEP) of 75 meningioma patients. Overall, our results showed a close association between the amount and cellular composition of the inflammatory and other immune cell infiltrates and the cytogenetic profile of the tumors. Notably, tumors with isolated monosomy 22/del(22q) showed greater numbers of TiMa, NK cells and (recently)-activated CD69+ lymphocytes versus meningiomas with diploid and complex karyotypes. In addition, in the former cytogenetic subgroup of meningiomas, tumor-infiltrating TiMa also showed a more activated and functionally mature phenotype, as reflected by a greater fraction of CD69+, CD63+, CD16+ and CD33+ cells. GEP at the mRNA level showed a unique GEP among meningiomas with an isolated monosomy 22/del(22q) versus all other cases, which consisted of increased expression of genes involved in inflammatory/immune response, associated with an M1 TiMa phenotype. Altogether, these results suggest that loss of expression of specific genes coded in chromosome 22 (e.g. MIF) is closely associated with an increased homing and potentially also anti-tumoral effect of TiMa, which could contribute to explain the better outcome of this specific good-prognosis cytogenetic subgroup of meningiomas. PMID:24098347

  16. Submicroscopic deletions at 22q11.2: Variability of the clinical picture and delineation of a commonly deleted region

    SciTech Connect

    Lindsay, E.A.; Shaffer, L.G.; Greenberg, F.

    1995-03-27

    DiGeorge anomaly (DGA) and velo-cardio-facial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies from those with more classic phenotypes. We have used fluorescence in situ hybridization (FISH) to assess the deletion status of 85 individuals referred to us for molecular analysis, with a wide range of DGA-like or VCFS-like clinical features. The test probe used was the cosmid sc11.1, which detects two loci about 2 Mb apart in 22q11.2. Twenty-four patients carried the deletion. Of the deleted patients, most had classic DGA or VCFS phenotypes, but 6 deleted patients had mild phenotypes, including 2 with minor facial anomalies and velopharyngeal incompetence as the only presenting signs. Despite the great phenotypic variability among the deleted patients, none had a deletion smaller than the 2-Mb region defined by sc11.1. Smaller deletions were not detected in patients with particularly suggestive phenotypes who were not deleted for sc11.1, even when tested with two other probes from the DGA/VCFS region. 24 refs., 2 figs., 2 tabs.

  17. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    PubMed

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  18. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome

    SciTech Connect

    Carey, A.H.; Kelly, D.; Halford, S.; Wadey, R.; Williamson, R.; Scambler, P.J. ); Wilson, D.; Goodship, J.; Burn, J. ); Paul, T. )

    1992-11-01

    It is well established that DiGeorge syndrome (DGS) may be associated with monosomy of 22q11-pter. More recently, DNA probes have been used to detect hemizygosity for this region in patients with no visible karyotypic abnormality. However, DGS has also been described in cases where the cytogenetic abnormality does not involve 22q11; for instance, four cases of 10p- have been reported. In this study the authors have prospectively analyzed patients, but using DNA markers from 22q11, to assess the frequency of 22q11 rearrangements in DGS. Twenty-one of 22 cases had demonstrable hemizygosity for 22q11. Cytogenetic analysis had identified interstitial deletion in 6 of 16 cases tested; in 6 other cases no karyotype was available. When these results are combined with those of previous studies, 33 of 35 DGS patients had chromosome 22q11 deletions detectable by DNA probes. 22 refs., 6 figs., 1 tab.

  19. Classical Noonan syndrome is not associated with deletions of 22q11

    SciTech Connect

    Robin, N.H.; Sellinger, B.; McDonald-McGinn, D.

    1995-03-13

    Deletions of 22q11 cause DiGeorge sequence (DGS), velo-cardio-facial syndrome (VCFS), conotruncal anomaly face syndrome, and some isolated conotruncal heart anomalies. Demonstration of a 22q11 deletion in a patient with manifestations of DGS and Noonan syndrome (NS) has raised the question of whether NS is another of the chromosome 22 microdeletion syndromes. This prompted us to evaluate a cohort of patients with NS for evidence of 22q11 deletions. Five of 6 NS propositi studied in our laboratory with marker N25 (D22S75) did not have a 22q11 deletion. A 2-month-old infant with several findings suggestive of NS did have a 22q11 deletion, suggesting that a small number of 22q11 deletion propositi may present with a NS-like picture. However, most cases of NS must have another cause. 10 refs., 1 fig.

  20. Genetic dosage compensation in a family with velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome.

    PubMed

    Alkalay, Avishai A; Guo, Tingwei; Montagna, Cristina; Digilio, M Cristina; Dallapiccola, Bruno; Marino, Bruno; Morrow, Bernice

    2011-03-01

    Cytogenetic studies of a male child carrying the 22q11.2 deletion common in patients with velo-cardio-facial/DiGeorge syndrome showed an unexpected rearrangement of the 22q11.2 region in his normal appearing mother. The mother carried a 3 Mb deletion on one copy and a reciprocal, similar sized duplication on the other copy of chromosome 22q11.2 as shown by fluorescence in situ hybridization and array comparative genome hybridization analyses. The most parsimonious mechanism for the rearrangement is a mitotic non-allelic homologous recombination event in a cell in the early embryo soon after fertilization. The normal phenotype of the mother can be explained by the theory of genetic dosage compensation. This is the second documented case of such an event for this or any genomic disorder. This finding helps to reinforce this phenomenon in a human model, and has significant implications for recurrence risks for the dose-compensated mother.

  1. Upper limb malformations in chromosome 22q11 deletions

    SciTech Connect

    Shalev, S.A.; Dar, H.; Barel, H.; Borochowitz, Z.

    1996-03-29

    We read with interest the report of Cormier-Daire et al. in a recent issue of the journal, describing upper limb malformations in DiGeorge syndrome. We observed a family with this group of rare clinical expression of chromosome 22q11 deletions. The proposita was examined in our clinic when she was 4 years old. She was mildly mentally retarded. Clinical evaluation showed normal growth, long thin nose with squared tip, nasal speech, and abundant scalp hair and no cardiac anomalies. The girl was accompanied by her mother. Facial similarities were noted between the two. The mother reported to be treated with oral calcium due to hypoparathyroidism, diagnosed several years ago. Clinical evaluation showed wide flat face, short stature, mild mental retardation, slight hypertelorism, peculiar nose similar to her daughter`s, and nasal speech. No cardiac anomalies were found. Recently, a brother was born. Clinical examination documented large ventriculo-septal defect, retrognathia, narrow palpebral fissures, and long thin nose with squared tip. 1 ref.

  2. Partial tetrasomy of chromosome 22q11.1 resulting from a supernumerary isodicentric marker chromosome in a boy with cat-eye syndrome.

    PubMed

    Ko, Jung Min; Kim, Jun Bum; Pai, Ki Soo; Yun, Jun-No; Park, Sang-Jin

    2010-12-01

    The 22q11 region has been implicated in chromosomal rearrangements that result in altered gene dosage, leading to three different congenital malformation syndromes: DiGeorge syndrome, cat-eye syndrome (CES), and der(22) syndrome. Although DiGeorge syndrome is a common genomic disorder on 22q11, CES is quite rare, and there has been no report of Korean CES cases with molecular cytogenetic confirmation. In this study, we present the phenotypic and genetic characteristics of a 3-month-old boy with CES. Clinical findings included micropthalmia, multiple colobomata, and renal and genital anomalies. Cytogenetic analyses showed the presence of a supernumerary marker chromosome, which was identified as a bisatellited and isodicentric chromosome derived from an acrocentric chromosome. The results of array comparative genomic hybridization and fluorescence in situ hybridization studies confirmed the karyotype as 47,XY,+mar.ish idic(22)(q11.1) (D22S43+).arr 22q11.1(15,500,000-15,900,000)x4, resulting in a partial tetrasomy of 22q11.1. To the best of our knowledge, this is the first report in Korea of CES confirmed by cytogenetic and molecular cytogenetic analyses.

  3. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion

    PubMed Central

    Toyoshima, M; Akamatsu, W; Okada, Y; Ohnishi, T; Balan, S; Hisano, Y; Iwayama, Y; Toyota, T; Matsumoto, T; Itasaka, N; Sugiyama, S; Tanaka, M; Yano, M; Dean, B; Okano, H; Yoshikawa, T

    2016-01-01

    Given the complexity and heterogeneity of the genomic architecture underlying schizophrenia, molecular analyses of these patients with defined and large effect-size genomic defects could provide valuable clues. We established human-induced pluripotent stem cells from two schizophrenia patients with the 22q11.2 deletion (two cell lines from each subject, total of four cell lines) and three controls (total of four cell lines). Neurosphere size, neural differentiation efficiency, neurite outgrowth, cellular migration and the neurogenic-to-gliogenic competence ratio were significantly reduced in patient-derived cells. As an underlying mechanism, we focused on the role of DGCR8, a key gene for microRNA (miRNA) processing and mapped in the deleted region. In mice, Dgcr8 hetero-knockout is known to show a similar phenotype of reduced neurosphere size (Ouchi et al., 2013). The miRNA profiling detected reduced expression levels of miRNAs belonging to miR-17/92 cluster and miR-106a/b in the patient-derived neurospheres. Those miRNAs are reported to target p38α, and conformingly the levels of p38α were upregulated in the patient-derived cells. p38α is known to drive gliogenic differentiation. The inhibition of p38 activity by SB203580 in patient-derived neurospheres partially restored neurogenic competence. Furthermore, we detected elevated expression of GFAP, a gliogenic (astrocyte) marker, in postmortem brains from schizophrenia patients without the 22q11.2 deletion, whereas inflammation markers (IL1B and IL6) remained unchanged. In contrast, a neuronal marker, MAP2 expressions were decreased in schizophrenia brains. These results suggest that a dysregulated balance of neurogenic-to-gliogenic competence may underlie neurodevelopmental disorders such as schizophrenia. PMID:27801899

  4. Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome

    PubMed Central

    Mlynarski, Elisabeth E.; Sheridan, Molly B.; Xie, Michael; Guo, Tingwei; Racedo, Silvia E.; McDonald-McGinn, Donna M.; Gai, Xiaowu; Chow, Eva W.C.; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno; Philip, Nicole; Simon, Tony J.; Roberts, Amy E.; Piotrowicz, Małgorzata; Bearden, Carrie E.; Eliez, Stephan; Gothelf, Doron; Coleman, Karlene; Kates, Wendy R.; Devoto, Marcella; Zackai, Elaine; Heine-Suñer, Damian; Shaikh, Tamim H.; Bassett, Anne S.; Goldmuntz, Elizabeth; Morrow, Bernice E.; Emanuel, Beverly S.

    2015-01-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10−3, two-tailed Fisher’s exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10−2, two-tailed Fisher’s exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10−4, two-tailed Fisher’s exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS. PMID:25892112

  5. Molecular analysis of DiGeorge Syndrome-related translocation breakpoints in 22q11.2

    SciTech Connect

    Chieffo, C.; Barnoski, B.L.; Emanuel, B.S.

    1994-09-01

    22q11 demonstrates a high frequency of disease-specific rearrangements. Several of the rearrangements are associated with developmental abnormalities such as DiGeorge Syndrome (DGS), Velocardiofacial Syndrome (VCFS), Cat Eye Syndrome (CES) and Supernumerary der(22)t(11;22) Syndrome. DGS and VCFS involve deletions of 22q11.2 resulting from unbalanced translocations or microdeletions. In contrast, CES and Supernumerary der(22)t(11;22) Syndrome result from duplications of this region via inter- or intra- chromosomal exchange. Although the molecular mechanism giving rise to these rearrangements has yet to be elucidated, the presence of known 22q11 repetitive elements are likely to be involved. GM5878 is a 46,XY,t(10;22) cell line from a balanced translocation carrier father of an unbalanced DGS patient. GM0980 is a cell line from a patient with features of DGS/VCFS with an unbalanced karyotype. Using FISH cosmids, we have localized these translocation breakpoints near pH160b (D22S66) which maps to the center of the DiGeorge chromosomal region (DGCR). To further localize the breakpoint of GM5878, overlapping cosmids spanning this region were used as probes for FISH. Use of additional overlapping cosmids allowed the sublocalization of the breakpoint to a 10kb region. A 4.8 kb BglII fragment predicted to cross the breakpoint was isolated. When this fragment was used as a probe to normal and GM5878 DNA, novel bands were detected in GM5878 DNA digested with EcoRI and BglII. Similar analysis of the GM0980 breakpoint is being pursued. Full molecular characterization of these translocations is in progress using inverse PCR to clone the junctional fragments for sequencing. Detailed analysis of the region may reveal molecular features which make this a rearrangement prone area of the genome and help elucidate its relationship to human cytogenetic disease.

  6. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    PubMed

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  7. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis.

    PubMed

    Shaikh, T H; Kurahashi, H; Saitta, S C; O'Hare, A M; Hu, P; Roe, B A; Driscoll, D A; McDonald-McGinn, D M; Zackai, E H; Budarf, M L; Emanuel, B S

    2000-03-01

    The 22q11.2 deletion syndrome, which includes DiGeorge and velocardiofacial syndromes (DGS/VCFS), is the most common microdeletion syndrome. The majority of deleted patients share a common 3 Mb hemizygous deletion of 22q11.2. The remaining patients include those who have smaller deletions that are nested within the 3 Mb typically deleted region (TDR) and a few with rare deletions that have no overlap with the TDR. The identification of chromosome 22-specific duplicated sequences or low copy repeats (LCRs) near the end-points of the 3 Mb TDR has led to the hypothesis that they mediate deletions of 22q11.2. The entire 3 Mb TDR has been sequenced, permitting detailed investigation of the LCRs and their involvement in the 22q11.2 deletions. Sequence analysis has identified four LCRs within the 3 Mb TDR. Although the LCRs differ in content and organization of shared modules, those modules that are common between them share 97-98% sequence identity with one another. By fluorescence in situ hybridization (FISH) analysis, the end-points of four variant 22q11.2 deletions appear to localize to the LCRs. Pulsed-field gel electrophoresis and Southern hybridization have been used to identify rearranged junction fragments from three variant deletions. Analysis of junction fragments by PCR and sequencing of the PCR products implicate the LCRs directly in the formation of 22q11.2 deletions. The evolutionary origin of the duplications on chromosome 22 has been assessed by FISH analysis of non-human primates. Multiple signals in Old World monkeys suggest that the duplication events may have occurred at least 20-25 million years ago.

  8. Partial trisomy 22 (q11.2-q13.1) as a result of duplication and pericentric inversion.

    PubMed Central

    Prasher, V P; Roberts, E; Norman, A; Butler, A C; Krishnan, V H; McMullan, D J

    1995-01-01

    A case of a 27 year old male with a duplication of part of the long arm of chromosome 22 (22q11.2-q13.1) together with a pericentric inversion of the same chromosome is reported. Particular phenotypic features of note include absence of speech, persistent self-injury, lack of daily living skills, colobomata, and very poor vision. Similarities between this case and other case reports of duplications of the long arm of chromosome 22 are discussed. Images PMID:7643363

  9. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    ERIC Educational Resources Information Center

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…

  10. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    ERIC Educational Resources Information Center

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  11. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic…

  12. Domain Specific Attentional Impairments in Children with Chromosome 22Q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of…

  13. Core Neuropsychological Characteristics of Children and Adolescents with 22q11.2 Deletion

    ERIC Educational Resources Information Center

    Jacobson, C.; Shearer, J.; Habel, A.; Kane, F.; Tsakanikos, E.; Kravariti, E.

    2010-01-01

    Background: The 22q11.2 deletion syndrome (22qDS) confers high risk for intellectual disability and neuropsychological/academic impairment, although a minority of patients show average intelligence. Intellectual heterogeneity and the high prevalence of psychiatric diagnoses in earlier studies may have obscured the prototypical neuropsychological…

  14. Supporting Children with Genetic Syndromes in the Classroom: The Example of 22q Deletion Syndrome

    ERIC Educational Resources Information Center

    Reilly, Colin; Stedman, Lindsey

    2013-01-01

    An increasing number of children are likely to have a known genetic cause for their special educational needs. One such genetic condition is 22q11.2 deletion syndrome (22qDS), a genetic syndrome associated with early speech and language difficulties, global and specific cognitive impairments, difficulties with attention and difficulties with…

  15. Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome

    PubMed Central

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-01-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639

  16. Movement disorders and other motor abnormalities in adults with 22q11.2 deletion syndrome.

    PubMed

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse A M J; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-03-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice.

  17. Dubowitz Syndrome Is a Complex Comprised of Multiple, Genetically Distinct and Phenotypically Overlapping Disorders

    PubMed Central

    Stewart, Douglas R.; Pemov, Alexander; Johnston, Jennifer J.; Sapp, Julie C.; Yeager, Meredith; He, Ji; Boland, Joseph F.; Burdett, Laurie; Brown, Christina; Gatti, Richard A.; Alter, Blanche P.; Biesecker, Leslie G.; Savage, Sharon A.

    2014-01-01

    Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister) and an unpublished patient (Patient 3). Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T) that predicts p.Arg814X (MAF:0.0002) and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463–65,963,102, hg18), which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of phenotypically

  18. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders.

    PubMed

    Bacon, Claire; Rappold, Gudrun A

    2012-11-01

    Rare disruptions of FOXP2 have been strongly implicated in deficits in language development. Research over the past decade has suggested a role in the formation of underlying neural circuits required for speech. Until recently no evidence existed to suggest that the closely related FOXP1 gene played a role in neurodevelopmental processes. However, in the last few years, novel rare disruptions in FOXP1 have been reported in multiple cases of cognitive dysfunction, including intellectual disability and autism spectrum disorder, together with language impairment. As FOXP1 and FOXP2 form heterodimers for transcriptional regulation, one may assume that they co-operate in common neurodevelopmental pathways through the co-regulation of common targets. Here we compare the phenotypic consequences of FOXP1 and FOXP2 impairment, drawing on well-known studies from the past as well as recent exciting findings and consider what these tell us regarding the functions of these two genes in neural development.

  19. Noonan like appearance and familial deletion of the 22q11 Shprintzen-DiGeorge critical region

    SciTech Connect

    Piussan, C.; Mathieu, M.; Boudailliez, B.

    1994-09-01

    Shprintzen velocardiofacial syndrome (VCFS) and reported cases of autosomal dominant DiGeorge sequence (DGS) both belong to a heterogeneous developmental field defect due to the familial segregation of a 22q11 deletion. Two sisters present with mental retardation, dysmorphia and multiple congenital anomalies. The eldest has a Noonan-like appearance; short stature, short webbed neck, low posterior hairline, widely spaced nipples, hemivertebrae, speech disability and mild hypoparathyroidism. Her younger sister has prominent eyes, floppy ears, pulmonary valvular stenosis, hypoplastic right kidney, left multicystic kidney, hypoparathyroidism and renal failure causing death at age 3. Their retarded mother has a typical Shprintzen phenotype and no hypoparathyroidism. A deletion of the critical DiGeorge-Shprintzen conotruncal malformation region was found by FISH in the mother and her Noonan-like daughter. In the mother`s family exist 3 cleft palates, an imperforate anus, a stillbirth and one infant died at age 3 months because of heart malformation. To our knowledge, another case of Noonan-like appearance in a DG patient affected with monosomy 22q11 has been reported in 1992 by Wilson et al. Whether resulting from the hemizygosity of a gene or from the deletion of contiguous genes, the wide DGS-VCFS spectrum encompasses quite variable phenotypes, discordant for palatal and conotruncal defects as well as for hypoparathyroidism, dysmorphic features and multiple congenital anomalies. Physical mapping of both the large 22q11 region commonly lost and the smallest deletion sufficient to produce DGS has been done and may account for the broadening spectrum, the variable expression and the frequently delayed diagnosis of this syndrome.

  20. A 7 Mb duplication at 22q13 in a girl with bipolar disorder and hippocampal malformation.

    PubMed

    Pramparo, Tiziano; de Gregori, Manuela; Gimelli, Stefania; Ciccone, Roberto; Frondizi, Domenico; Liehr, Thomas; Pellacani, Simona; Masi, Gabriele; Brovedani, Paola; Zuffardi, Orsetta; Guerrini, Renzo

    2008-07-01

    We identified a duplication of 22q13.1-q13.2 in a 10-year-old girl and demonstrated that this duplication was the recombinant product of a maternal intrachromosomal insertion. Phenotypic characteristics included prominent forehead, small low-set ears, hypertelorism, epicanthal folds, small palpebral fissures, short philtrum, and syndactyly. MRI of the brain revealed high signal abnormalities in the periventricular white matter, a hypoplastic corpus callosum, under-rotated hippocampus on the left and atrophic hippocampus on the right. Since age 5, the child's behavior has shown cyclic maniacal episodes with severely disorganized mood and behavior. Psychiatric and cognitive assessment led to a diagnosis of bipolar disorder not otherwise specified, manic episodes, attention deficit hyperactivity disorder and moderate mental retardation. Array-CGH revealed an interstitial duplication of 6.9 Mb at chromosome 22q: dup(22)(q13.1q13.2). FISH using BAC clones confirmed the array-CGH results and demonstrated that the duplication was inverted. G-banding analysis in the proposita's mother revealed a banding pattern suggestive of an intrachromosomal insertion, as demonstrated by dual-color FISH with BACs that were duplicated in the proposita and multicolor-banding (MCB) based on microdissection derived region-specific libraries for chromosome 22. Our findings suggest that in both seemingly de novo deletions and duplications, the parent transmitting the imbalance should be investigated for possible balanced rearrangements. This report reinforces previous evidence that chromosome imbalances, and thus gene dosage effects, may be at the basis of some psychiatric disorders. Stringent correlations between submicroscopic imbalances, specific behavioral phenotypes and brain imaging will possibly help in dissecting complex behavioral traits.

  1. A rare case of trisomy 11q23.3-11q25 and trisomy 22q11.1-22q11.21.

    PubMed

    Zou, P-S; Li, H-F; Chen, L-S; Ma, M; Chen, X-H; Xue, D; Cao, D-H

    2016-05-09

    Partial duplication of the long arm of chromosome 11 and the partial trisomy of 22q are uncommon karyotypic abnormalities. Here, we report the case of a 6-year-old girl who showed partial trisomy of 11q and 22q, as a result of a maternal balanced reciprocal translocation (11;22), and exhibited dysmorphic features, severe intellectual disability, brain malformations, and speech delay related to this unique chromosomal abnormality. Array comparative genomic hybridization (array CGH) revealed a gain in copy number on the long arm of chromosome 11, spanning at least 18.22 Mb. Additionally, there was a gain in copy number on the long arm of chromosome 22, spanning at least 3.46 Mb. FISH analysis using a chromosome 11 short arm telomere probe (11p14.2), a chromosome 11 long arm telomere probe (11q24.3), and a chromosome 22 long arm telomere probe (22q13.33) confirmed the origin of the marker chromosome. It has been confirmed by the State Key Laboratory of Medical Genetics of China that this is the first reported instance of the karyotype 47,XX, +der(22)t(11;22)(q23.3;q11.1)mat in the world. Our study reports an additional case that can be used to further characterize and delineate the clinical ramifications of partial trisomy of 11q and 22q.

  2. CATCH 22 syndrome: report of 7 infants with follow-up data and review of the recent advancements in the genetic knowledge of the locus 22q11.

    PubMed

    Sergi, C; Serpi, M; Müller-Navia, J; Schnabel, P A; Hagl, S; Otto, H F; Ulmer, H E

    1999-06-01

    CATCH 22 is a medical acronym for Cardiac defects, Abnormal facies, Thymic hypoplasia, Cleft palate, and Hypocalcemia, and a variable deletion on chromosome 22. The deletion within the chromosome region of 22q11 may occur in patients with three well-described dysmorphologic+ cardiological syndromes: DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), and conotruncal anomaly face syndrome (CTAFS). We report in detail seven infants with a deletion of the locus 22q11 showing overlapping clinical features of DGS and CTAFS with complex congenital heart defects (double outlet right ventricle, atresia or stenosis of the pulmonary valve, atrial and ventricular septal defects, patent ductus arteriosus, tetralogy of Fallot, major aortopulmonary collateral arteries, arcus aortae dexter, and persistence of the left superior vena cava). A homograft was implanted between the right ventricle and the main stem of the pulmonary artery in 2 patients, while a balloon valvuloplastic of the pulmonary valve was performed in one patient only. Pulmonary hemorrhage, acute hypoxia, and Aspergillus pneumonia were the complications. Death occurred in three out of seven patients. Recent advancements in the genetic knowledge of the locus 22q11 are described. Since the locus 22q11 is highly heterogeneous, the CATCH 22 acronym should be used and temporarily the old eponyms should be abandoned waiting for the identification of the different genes.

  3. CD161(+) Tconv and CD161(+) Treg Share a Transcriptional and Functional Phenotype despite Limited Overlap in TCRβ Repertoire.

    PubMed

    Duurland, Chantal L; Brown, Chrysothemis C; O'Shaughnessy, Ryan F L; Wedderburn, Lucy R

    2017-01-01

    Human regulatory T cells (Treg) are important in immune regulation, but can also show plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies an effector-like Treg population. Here, we determined how CD161(+) Treg relate to CD161(+) conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional signature between CD161(+) Tconv and CD161(+) Treg, which is associated with T helper (Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing receptors. Upon retinoic acid (RA) exposure, CD161(+) T cells were more enriched for CCR9(+) and integrin α4(+)β7(+) cells than CD161(-) T cells. In addition, CD161(+) Tconv and CD161(+) Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161(+) and CD161(-) Treg from the inflamed site were suppressive in vitro. CD161(+) T cells from the site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather than during synovial inflammation. TCRβ repertoires of CD161(+) and CD161(-) Tconv and Treg from blood showed limited overlap whereas there was clear overlap between CD161(+) and CD161(-) Tconv, and CD161(+) and CD161(-) Treg from the inflamed site suggesting that the inflamed environment may alter CD161 levels, potentially contributing to disease pathogenesis.

  4. CD161+ Tconv and CD161+ Treg Share a Transcriptional and Functional Phenotype despite Limited Overlap in TCRβ Repertoire

    PubMed Central

    Duurland, Chantal L.; Brown, Chrysothemis C.; O’Shaughnessy, Ryan F. L.; Wedderburn, Lucy R.

    2017-01-01

    Human regulatory T cells (Treg) are important in immune regulation, but can also show plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies an effector-like Treg population. Here, we determined how CD161+ Treg relate to CD161+ conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional signature between CD161+ Tconv and CD161+ Treg, which is associated with T helper (Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing receptors. Upon retinoic acid (RA) exposure, CD161+ T cells were more enriched for CCR9+ and integrin α4+β7+ cells than CD161− T cells. In addition, CD161+ Tconv and CD161+ Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161+ and CD161− Treg from the inflamed site were suppressive in vitro. CD161+ T cells from the site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather than during synovial inflammation. TCRβ repertoires of CD161+ and CD161− Tconv and Treg from blood showed limited overlap whereas there was clear overlap between CD161+ and CD161− Tconv, and CD161+ and CD161− Treg from the inflamed site suggesting that the inflamed environment may alter CD161 levels, potentially contributing to disease pathogenesis. PMID:28321213

  5. The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy

    PubMed Central

    Andeen, Nicole K.; Nguyen, Tri Q.; Steegh, Floor; Hudkins, Kelly L.; Najafian, Behzad; Alpers, Charles E.

    2015-01-01

    Reversal of diabetic nephropathy (DN) has been achieved in humans and mice, but only rarely and under special circumstances. Since progression of DN is related to podocyte loss, reversal of DN requires restoration of podocytes. Here we identified and quantified potential glomerular progenitor cells that could be a source for restored podocytes. DN was identified in 31 human renal biopsy cases and separated into morphologically early or advanced lesions. Markers of podocytes (WT-1, p57), parietal epithelial cells (claudin-1) and cell proliferation (Ki-67) were identified by immunohistochemistry. Podocyte density was progressively reduced with DN. Cells marking as podocytes (p57) were present infrequently on Bowman's capsule in controls, but significantly increased in histologically early DN. Ki-67 expressing cells were identified on the glomerular tuft and Bowman's capsule in DN, but rarely in controls. Cells marking as PECs were present on the glomerular tuft, particularly in morphologically advanced DN. These findings show evidence of phenotypic plasticity in podocyte and PEC populations and are consistent with studies in the BTBR ob/ob murine model in which reversibility of DN occurs with podocytes potentially regenerating from PEC precursors. Thus, our findings support, but do not prove, that podocytes may regenerate from PEC progenitors in human DN. If so, progression of DN may represent a modifiable net balance between podocyte loss and regeneration. PMID:26376129

  6. Prevalence of 22q11.2 microdeletion syndrome in Iranian patients with cleft palate

    PubMed Central

    Nouri, Narges; Memarzadeh, Mehrdad; Salehi, Mansoor; Nouri, Nayereh; Meamar, Rokhsareh; Behnam, Mahdiyeh; Derakhshandeh, Fatemeh; Kashkoolinejad, Tahereh; Abdali, Hossein

    2016-01-01

    Background: 22q11.2 microdeletion syndrome is the most common multiple genetic disorder associated with learning disabilities, developmental delays, immune deficiency, hypocalcemia, and cleft palate. Finding some valid criteria for screening of 22q11.2 deletion syndromes in infants would be very helpful in early diagnosis and treatment. Materials and Methods: Since 69% of individuals with 22q11.2 deletion have a palatal abnormality, we studied the prevalence of 22q11.2 deletion syndrome in 378 Iranian patients during a 5-year period, including 291 patients affected with cleft palate only without cleft lip (CPO) and 87 patients affected with velopharyngeal incompetence (VPI) and/or submucous cleft palate (SMCP). DNA copy number was analyzed with multiplex ligation-dependent probe amplification (MLPA) technique. Results: In our study, 15/378 (3.97%) patients with palatal anomalies showed 22q11.2 deletion. Interestingly, this prevalence between syndromic patients was 15/104 (14.42%). Conclusion: It seems that SMCP or VPI, in addition to one or more another features of 22q11.2 deletions, especially developmental delay, may be good criteria for molecular investigation of 22q11.2 region. PMID:28217639

  7. Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients with Cornelia de Lange-overlapping phenotype.

    PubMed

    Parenti, I; Gervasini, C; Pozojevic, J; Graul-Neumann, L; Azzollini, J; Braunholz, D; Watrin, E; Wendt, K S; Cereda, A; Cittaro, D; Gillessen-Kaesbach, G; Lazarevic, D; Mariani, M; Russo, S; Werner, R; Krawitz, P; Larizza, L; Selicorni, A; Kaiser, F J

    2016-01-01

    Cornelia de Lange syndrome (CdLS) and KBG syndrome are two distinct developmental pathologies sharing common features such as intellectual disability, psychomotor delay, and some craniofacial and limb abnormalities. Mutations in one of the five genes NIPBL, SMC1A, SMC3, HDAC8 or RAD21, were identified in at least 70% of the patients with CdLS. Consequently, additional causative genes, either unknown or responsible of partially merging entities, possibly account for the remaining 30% of the patients. In contrast, KBG has only been associated with mutations in ANKRD11. By exome sequencing we could identify heterozygous loss-of-function mutations in ANKRD11 in two patients with the clinical diagnosis of CdLS. Both patients show features reminiscent of CdLS such as characteristic facies as well as a small head circumference which is not described for KBG syndrome. Patient A, who carries the mutation in a mosaic state, is a 4-year-old girl with features reminiscent of CdLS. Patient B, a 15-year-old boy, shows a complex phenotype which resembled CdLS during infancy, but has developed to a more KBG overlapping phenotype during childhood. These findings point out the importance of screening ANKRD11 in young CdLS patients who were found to be negative for mutations in the five known CdLS genes.

  8. Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT and ARVCF developmentally affects incentive learning and working memory in mice.

    PubMed

    Suzuki, Go; Harper, Kathryn M; Hiramoto, Takeshi; Funke, Birgit; Lee, MoonSook; Kang, Gina; Buell, Mahalah; Geyer, Mark A; Kucherlapati, Raju; Morrow, Bernice; Männistö, Pekka T; Agatsuma, Soh; Hiroi, Noboru

    2009-10-15

    Duplication of human chromosome 22q11.2 is associated with elevated rates of mental retardation, autism and many other behavioral phenotypes. However, because duplications cover 1.5-6 Mb, the precise manner in which segments of 22q11.2 causally affect behavior is not known in humans. We have now determined the developmental impact of over-expression of an approximately 190 kb segment of human 22q11.2, which includes the genes TXNRD2, COMT and ARVCF, on behaviors in bacterial artificial chromosome (BAC) transgenic (TG) mice. BAC TG mice and wild-type (WT) mice were tested for their cognitive capacities, affect- and stress-related behaviors and motor activity at 1 and 2 months of age. An enzymatic assay determined the impact of BAC over-expression on the activity level of COMT. BAC TG mice approached a rewarded goal faster (i.e. incentive learning), but were impaired in delayed rewarded alternation during development. In contrast, BAC TG and WT mice were indistinguishable in rewarded alternation without delays, spontaneous alternation, prepulse inhibition, social interaction, anxiety-, stress- and fear-related behaviors and motor activity. Compared with WT mice, BAC TG mice had an approximately 2-fold higher level of COMT activity in the prefrontal cortex, striatum and hippocampus. These data suggest that over-expression of this 22q11.2 segment enhances incentive learning and impairs the prolonged maintenance of working memory, but has no apparent effect on working memory per se, affect- and stress-related behaviors or motor capacity. High copy numbers of this 22q11.2 segment might contribute to a highly selective set of phenotypes in learning and cognition during development.

  9. A rare association of interrupted aortic arch type C and microdeletion 22q11.2.

    PubMed

    Cuturilo, Goran; Drakulic, Danijela; Stevanovic, Milena; Jovanovic, Ida; Djukic, Milan; Miletic-Grkovic, Slobodanka; Atanaskovic-Markovic, Marina

    2008-10-01

    Microdeletion 22q11.2 is associated with a variety of findings, and the most common are cardiac defects. It is very frequently associated with interrupted aortic arch (IAA) type B and very rarely with type A and type C. Here we report the first case of IAA type C associated with 22q11.2 deletion in Serbia and, to the best of our knowledge, the fourth case described worldwide so far. By this report we would like to point out that all patients with IAA type C who have additional features specific for 22q11.2 microdeletion syndrome should be screened for the presence of this deletion.

  10. Follow-up report of potential linkage for schizophrenia on chromosome 22q: Part 3

    SciTech Connect

    1995-04-24

    The previously published results of a random search of the genome for susceptibility loci for schizophrenia showed a {open_quotes}hot spot{close_quotes} region on chromosome 22 (22q12-q13.1). We now have a sample of 57 families being genotyped and have completed analysis of 495 markers throughout the genome. From the results, no region of 22q can be excluded in our families, and the most likely region may be 22q11-q12. 4 refs., 1 tab.

  11. DiGeorge syndrome/velocardiofacial syndrome: the chromosome 22q11.2 deletion syndrome.

    PubMed

    Sullivan, Kathleen E

    2007-01-01

    Chromosome 22q11.2 deletion (CH22qD) syndrome is also known as DiGeorge syndrome or velocardiofacial syndrome. This deletion syndrome is extremely common with nearly one in 4000 children being affected. Recent advances and a holistic approach to patients have improved the care and well-being of these patients. This review will summarize advances in understanding the health needs and immune system of patients with CH22qD syndrome. Patients will most often need interventions directed at maximizing function for many organ systems but can ultimately have a high level of functioning.

  12. Investigation of TBX1 gene deletion in Iranian children with 22q11.2 deletion syndrome: correlation with conotruncal heart defects

    PubMed Central

    Ganji, Hamid; Salehi, Mansoor; Sedghi, Maryam; Abdali, Hossein; Nouri, Nayereh; Sadri, Leyli; Hosseinzadeh, Majid; Vakili, Bahareh; Lotfi, Mahdi

    2013-01-01

    Background DiGeorge syndrome (DGS) is the result of a microdeletion in chromosome 22q11.2 in over 90% of cases. DGS is the second most frequent syndrome after Down syndrome and has an incidence of 1/4000 births. Unequal crossover between low-copy repeats, on the proximal part of the long arm of chromosome 22, usually results in a 3 Mb deletion in one of the chromosome 22 and a reciprocal and similarly sized duplication on the other one. Several studies have indicated that TBX1 (T-box 1) haploinsufficiency is responsible for many of the phenotypic traits of 22q11.2 deletion syndrome. Conotruncal heart defects (CTDs) are present in 75–85% of patients with 22q11.2 deletion syndrome in Western countries. Methods Among 78 patients fulfilling the criteria for DGS diagnosed by the fluorescence in situ hybridisation test, 24 had 22q11.2 deletion. Screening for TBX1 gene deletion was performed by multiplex ligation-dependent probe amplification (MLPA). Results Our results revealed that of 24 patients with TBX1 gene deletion, 12 had CTDs while 12 did not show any heart defects. Conclusions Our findings indicate that other genes or gene interactions may play a role in penetrance or the severity of heart disease among patients with DGS. PMID:27326128

  13. Numerical magnitude processing impairments in genetic syndromes: a cross-syndrome comparison of Turner and 22q11.2 deletion syndromes.

    PubMed

    Brankaer, Carmen; Ghesquière, Pol; De Wel, Anke; Swillen, Ann; De Smedt, Bert

    2016-10-17

    Cross-syndrome comparisons offer an important window onto understanding heterogeneity in mathematical learning disabilities or dyscalculia. The present study therefore investigated symbolic numerical magnitude processing in two genetic syndromes that are both characterized by mathematical learning disabilities: Turner syndrome and 22q11.2 deletion syndrome (22q11DS). We further verified whether the phenotypic outcomes of these syndromes emerged from the same or different cognitive processes and therefore examined whether numerical impairments were related to working memory deficits, often observed in these syndromes. Participants were 24 girls with Turner syndrome, 25 children with 22q11DS and 48 well-matched typically developing control children. All children completed a symbolic numerical magnitude comparison task and four additional working memory tasks. Both groups of children with genetic syndromes showed similar impairments in symbolic numerical magnitude processing compared to typically developing controls. Importantly, in Turner syndrome, group differences in symbolic numerical magnitude processing disappeared when their difficulties in visual-spatial working memory were taken into account. In contrast, the difficulties in 22q11DS were not explained by poor visual-spatial working memory. These data suggest that different factors underlie the symbolic numerical magnitude processing impairments in both patient groups with mathematical learning disabilities and highlight the value of cross-syndrome comparisons for understanding different pathways to mathematical learning disabilities or dyscalculia.

  14. Hemifacial microsomia in cat-eye syndrome: 22q11.1-q11.21 as candidate loci for facial symmetry.

    PubMed

    Quintero-Rivera, Fabiola; Martinez-Agosto, Julian A

    2013-08-01

    Cat-Eye syndrome (CES), (OMIM 115470) also known as chromosome 22 partial tetrasomy or inverted duplicated 22q11, was first reported by Haab [1879] based on the primary features of eye coloboma and anal atresia. However, >60% of the patients lack these primary features. Here, we present a 9-month-old female who at birth was noted to have multiple defects, including facial asymmetry with asymmetric retrognathia, bilateral mandibular hypoplasia, branchial cleft sinus, right-sided muscular torticollis, esotropia, and an atretic right ear canal with low-to-moderate sensorineural hearing loss, bilateral preauricular ear tag/pits, and two skin tags on her left cheek. There were no signs of any colobomas or anal atresia. Hemifacial microsomia (HFM) was suspected clinically. Chromosome studies and FISH identified an extra marker originated from 22q11 consistent with CES, and this was confirmed by aCGH. This report expands the phenotypic variability of CES and includes partial tetrasomy of 22q11.1-q11.21 in the differential diagnosis of HFM. In addition, our case as well as the previous association of 22q11.2 deletions and duplications with facial asymmetry and features of HFM, supports the hypothesis that this chromosome region harbors genes important in the regulation of body plan symmetry, and in particular facial harmony.

  15. Identification of Proximal and Distal 22q11.2 Microduplications among Patients with Cleft Lip and/or Palate: A Novel Inherited Atypical 0.6 Mb Duplication

    PubMed Central

    Sedghi, Maryam; Abdali, Hossein; Memarzadeh, Mehrdad; Salehi, Mansoor; Nouri, Narges; Hosseinzadeh, Majid; Nouri, Nayereh

    2015-01-01

    Misalignments of low-copy repeats (LCRs) located in chromosome 22, particularly band 22q11.2, predispose to rearrangements. A variety of phenotypic features are associated with 22q11.2 microduplication syndrome which makes it challenging for the genetic counselors to recommend appropriate genetic assessment and counseling for the patients. In this study, multiplex ligation probe dependent amplification (MLPA) analysis was performed on 378 patients with cleft lip and/or palate to characterize rearrangements in patients suspected of 22q11.2 microduplication and microdeletion syndromes. Of 378 cases, 15 were diagnosed with a microdeletion with various sizes and 3 with duplications. For the first time in this study an atypical 0.6 Mb duplication is reported. Illustration of the phenotypes associated with the microduplications increases the knowledge of phenotypes reported in the literature. PMID:26640714

  16. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1.

    PubMed

    Papangeli, Irinna; Scambler, Peter

    2013-01-01

    Hemizygous deletion of 22q11 affects approximately 1:4000 live births and may give rise to many different malformations but classically results in a constellation of phenotypes that receive a diagnosis of DiGeorge syndrome or velocardiofacial syndrome. Particularly affected are the heart and great vessels, the endocrine glands of the neck, the face, the soft palate, and cognitive development. Although up to 50 genes may be deleted, it is haploinsufficiency of the transcription factor TBX1 that is thought to make the greatest contribution to the disorder. Mouse embryos are exquisitely sensitive to varying levels of Tbx1 mRNA, and Tbx1 is required in all three germ layers of the embryonic pharyngeal region for normal development. TBX1 controls cell proliferation and affects cellular differentiation in a cell autonomous fashion, but it also directs non-cell autonomous effects, most notably in the signaling between pharyngeal surface ectoderm and the rostral neural crest. TBX1 interacts with several signaling pathways, including fibroblast growth factor, retinoic acid, CTNNB1 (formerly known as β-catenin), and bone morphogenetic protein (BMP), and may regulate pathways by both DNA-binding and non-binding activity. In addition to the structural abnormalities seen in 22q11 deletion syndrome (DS) and Tbx1 mutant mouse models, patients reaching adolescence and adulthood have a predisposition to psychiatric illness. Whether this has a developmental basis and, if so, which genes are involved is an ongoing strand of research. Thus, knowledge of the genetic and developmental mechanisms underlying 22q11DS has the potential to inform about common disease as well as developmental defect.

  17. Practical guidelines for managing adults with 22q11.2 deletion syndrome

    PubMed Central

    Fung, Wai Lun Alan; Butcher, Nancy J.; Costain, Gregory; Andrade, Danielle M.; Boot, Erik; Chow, Eva W.C.; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony E.; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; van Amelsvoort, Therese; McDonald-McGinn, Donna M.; Bassett, Anne S.

    2015-01-01

    22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities. PMID:25569435

  18. Exclusion of 22q11 deletion in Noonan syndrome with Tetralogy of Fallot

    SciTech Connect

    Digilio, M.C.; Marino, B.; Giannotti, A.; Dallapiccola, B. |

    1996-04-24

    We read with interest the report of Robin et al. [1995] published in recent issue of the Journal. The authors described 6 patients with Noonan syndrome (NS) who underwent molecular evaluation for submicroscopic deletion of chromosome band 22q11. None of those patients presented with conotruncal heart defects. Evidence for 22q11 hemizygosity was demonstrated in only one patient. This patient had NS-like manifestations without clinical manifestations of DiGeorge (DG) or velo-cardio-facial (VCF) syndromes. The molecular results obtained in the other 5 patients led the authors to conclude that classical NS is not due to del(22)(q11), even if some patients with del(22)(q11) may present NS-like manifestations. 12 refs., 1 tab.

  19. 22q11 deletion syndrome and forensic research: can we go there?

    PubMed

    Harris, Victoria

    2005-01-01

    Chromosome 22q11 deletion syndrome (22q11DS) encompasses velocardiofacial syndrome (VCFS), DiGeorge syndrome (DGS), and conotruncal anomaly face syndrome (CTAFS). The disorder may represent the interface between genetics and brain-behavior relationships. As there is a strong relationship between the genetic syndrome and schizophrenia, individuals with the disorder are likely to be disproportionately represented in the criminal justice system. The purpose of this article is to review the 22q11DS in the context of forensic research. The existing literature regarding the syndrome and its relationship to schizophrenia is reviewed. A study design is presented to determine the prevalence of the syndrome in correctional facilities compared with expected community prevalence rates. Finally, a brief history of genetic research in correctional facilities is reviewed as a potential model to determine the feasibility of research involving 22q11DS.

  20. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions.

    PubMed

    Bonnet, D; Cormier-Daire, V; Kachaner, J; Szezepanski, I; Souillard, P; Sidi, D; Munnich, A; Lyonnet, S

    1997-01-20

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19) within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion.

  1. Social Impairments in Chromosome 22q11.2 Deletion Syndrome (22q11.2DS): Autism Spectrum Disorder or a Different Endophenotype?

    ERIC Educational Resources Information Center

    Angkustsiri, Kathleen; Goodlin-Jones, Beth; Deprey, Lesley; Brahmbhatt, Khyati; Harris, Susan; Simon, Tony J.

    2014-01-01

    High prevalence of autism spectrum disorders (ASD) has been reported in 22q11.2DS, although this has been based solely on parent report measures. This study describes the presence of ASD using a procedure more similar to that used in clinical practice by incorporating history (Social Communication Questionnaire) AND a standardized observation…

  2. Is the autosomal dominant Opitz GBBB syndrome part of the DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11.2?

    SciTech Connect

    Wulfsberg, E.A.

    1996-08-23

    The classification of Opitz GBBB syndrome has been associated with the deletion of the DiGeorge chromosome region on human chromosome 22q11.2. The broad phenotype involved in this deletion syndrome is usually referred to as the DiGeorge/velocardiofacial syndrome. The clinical description of the patient will influence the diagnosis of the syndrome. More exact descriptions are necessary in order to locate the gene(s) for these disorders. 13 refs.

  3. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    ERIC Educational Resources Information Center

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  4. Prevalence and Nature of Hearing Loss in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Van Eynde, Charlotte; Swillen, Ann; Lambeens, Elien; Verhaert, Nicolas; Desloovere, Christian; Luts, Heleen; Vander Poorten, Vincent; Devriendt, Koenraad; Hens, Greet

    2016-01-01

    Purpose: The purpose of this study was to clarify the prevalence, type, severity, and age-dependency of hearing loss in 22q11.2 deletion syndrome. Method: Extensive audiological measurements were conducted in 40 persons with proven 22q11.2 deletion (aged 6-36 years). Besides air and bone conduction thresholds in the frequency range between 0.125…

  5. Production of White Colonies on CHROMagar Candida Medium by Members of the Candida glabrata Clade and Other Species with Overlapping Phenotypic Traits▿

    PubMed Central

    Bishop, Justin A.; Chase, Nancy; Lee, Richard; Kurtzman, Cletus P.; Merz, William G.

    2008-01-01

    We hypothesized that species of the Candida glabrata clade and species with phenotypic traits that overlap those of C. glabrata would produce white colonies on CHROMagar Candida medium. Of 154 isolates (seven species) tested, C. bracarensis, C. nivariensis, C. norvegensis, C. glabrata, and C. inconspicua produced white colonies; the Pichia fermentans group and C. krusei did not. Many of these species are difficult to identify phenotypically; white colonies may signal the need for the use of molecular approaches. PMID:18685009

  6. Maladaptive Conflict Monitoring as Evidence for Executive Dysfunction in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Bish, Joel P.; Ferrante, Samantha M.; McDonald-McGinn, Donna; Zackai, Elaine; Simon, Tony J.

    2005-01-01

    Using an adaptation of the Attentional Networks Test, we investigated aspects of executive control in children with chromosome 22q11.2 deletion syndrome (DS22q11.2), a common but not well understood disorder that produces non-verbal cognitive deficits and a marked incidence of psychopathology. The data revealed that children with DS22q11.2…

  7. Eye Gaze During Face Processing in Children and Adolescents with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Glaser, Bronwyn; Debbane, Martin; Ottet, Marie-Christine; Vuilleumier, Patrik; Zesiger, Pascal; Antonarakis, Stylianos E.; Eliez, Stephan

    2010-01-01

    Objective: The 22q11.2 deletion syndrome (22q11DS) is a neurogenetic syndrome with high risk for the development of psychiatric disorder. There is interest in identifying reliable markers for measuring and monitoring socio-emotional impairments in 22q11DS during development. The current study investigated eye gaze as a potential marker during a…

  8. Failure to detect the 22q11.2 duplication syndrome rearrangement among patients with schizophrenia

    PubMed Central

    Brunet, Anna; Armengol, Lluís; Pelaez, Trini; Guillamat, Roser; Vallès, Vicenç; Gabau, Elisabeth; Estivill, Xavier; Guitart, Miriam

    2008-01-01

    Chromosome aberrations have long been studied in an effort to identify susceptibility genes for schizophrenia. Chromosome 22q11.2 microdeletion is associated with DiGeorge and Velocardiofacial syndromes (DG/VCF) and provides the most convincing evidence of an association between molecular cytogenetic abnormality and schizophrenia. In addition, this region is one of the best replicated linkage findings for schizophrenia. Recently, the reciprocal microduplication on 22q11.2 has been reported as a new syndrome. Preliminary data indicates that individuals with these duplications also suffer from neuropsychiatric disorders. In this study we have investigated the appropriateness of testing schizophrenia patients for the 22q11.2 microduplication. We used multiplex ligation-dependent probe amplification (MLPA) to measure copy number changes on the 22q11.2 region in a sample of 190 patients with schizophrenia. Our results corroborate the prevalence of the 22q11.2 microdeletion in patients with schizophrenia and clinical features of DG/VCFS and do not suggest an association between 22q11.2 microduplication and schizophrenia. PMID:18284679

  9. VEGF: a modifier of the del22q11 (DiGeorge) syndrome?

    PubMed

    Stalmans, Ingeborg; Lambrechts, Diether; De Smet, Frederik; Jansen, Sandra; Wang, Jian; Maity, Sunit; Kneer, Paige; von der Ohe, Maren; Swillen, Ann; Maes, Christa; Gewillig, Marc; Molin, Daniel G M; Hellings, Peter; Boetel, Thurid; Haardt, Maartin; Compernolle, Veerle; Dewerchin, Mieke; Plaisance, Stephane; Vlietinck, Robert; Emanuel, Beverly; Gittenberger-de Groot, Adriana C; Scambler, Peter; Morrow, Bernice; Driscol, Deborah A; Moons, Lieve; Esguerra, Camila V; Carmeliet, Geert; Behn-Krappa, Annett; Devriendt, Koen; Collen, Désiré; Conway, Simon J; Carmeliet, Peter

    2003-02-01

    Hemizygous deletion of chromosome 22q11 (del22q11) causes thymic, parathyroid, craniofacial and life-threatening cardiovascular birth defects in 1 in 4,000 infants. The del22q11 syndrome is likely caused by haploinsufficiency of TBX1, but its variable expressivity indicates the involvement of additional modifiers. Here, we report that absence of the Vegf164 isoform caused birth defects in mice, reminiscent of those found in del22q11 patients. The close correlation of birth and vascular defects indicated that vascular dysgenesis may pathogenetically contribute to the birth defects. Vegf interacted with Tbx1, as Tbx1 expression was reduced in Vegf164-deficient embryos and knocked-down vegf levels enhanced the pharyngeal arch artery defects induced by tbx1 knockdown in zebrafish. Moreover, initial evidence suggested that a VEGF promoter haplotype was associated with an increased risk for cardiovascular birth defects in del22q11 individuals. These genetic data in mouse, fish and human indicate that VEGF is a modifier of cardiovascular birth defects in the del22q11 syndrome.

  10. Malformations of the middle and inner ear on CT imaging in 22q11 deletion syndrome.

    PubMed

    Loos, Elke; Verhaert, Nicolas; Willaert, Annelore; Devriendt, Koenraad; Swillen, Ann; Hermans, Robert; Op de Beeck, Katya; Hens, Greet

    2016-11-01

    The 22q11 deletion syndrome (22q11DS), the most frequent microdeletion syndrome in humans, presents with a large variety of abnormalities. A common abnormality is hearing impairment. The exact pathophysiological explanation of the observed hearing loss remains largely unknown. The aim of this study was to analyze the middle and inner ear malformations as seen on computer tomographic imaging in patients with 22q11DS. We retrospectively reviewed the charts of 11 22q11DS patients who had undergone a CT of the temporal bone in the past. Of the 22 examined ears, two showed an abnormal malleus and incus, 10 presented with a dense stapes superstructure, and three ears had an abnormal orientation of the stapes. With regard to the inner ear, 12 ears showed an incomplete partition type II with a normal vestibular aqueduct. In four ears the vestibule and lateral semicircular canal were composed of a single cavity, in 14 ears the vestibule was too wide, and three ears had a broadened lateral semicircular canal. These findings suggest that malformations of the stapes, cochlea, vestibule, and lateral semicircular canal are frequent in 22q11DS. To our knowledge, the current study involves the largest case series describing middle and inner ear malformations in 22q11DS. © 2016 Wiley Periodicals, Inc.

  11. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    PubMed

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (P<0.001), although the detection of the 22q11 microdeletion was not significantly different between the two groups (P=0.583). In addition, all fetuses with the 22q11 microdeletion occurred de novo. In conclusion, genetic factors are important in the etiology of CHD. Where fetuses present with cardiac defects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  12. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    SciTech Connect

    Ravnan, J.B.; Golabi, M.; Lebo, R.V.

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  13. Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome.

    PubMed

    Zöller, Daniela; Schaer, Marie; Scariati, Elisa; Padula, Maria Carmela; Eliez, Stephan; Van De Ville, Dimitri

    2017-04-01

    Although often ignored in fMRI studies, moment-to-moment variability of blood oxygenation level dependent (BOLD) signals reveals important information about brain function. Indeed, higher brain signal variability has been associated with better cognitive performance in young adults compared to children and elderly adults. Functional connectivity, a very common approach in resting-state fMRI analysis, is scaled for variance. Thus, alterations might be confounded or driven by BOLD signal variance alterations. Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurodevelopmental disorder that is associated with a vast cognitive and clinical phenotype. To date, several resting-state fMRI studies reported altered functional connectivity in 22q11.2DS, however BOLD signal variance has not yet been analyzed. Here, we employed PLS correlation analysis to reveal multivariate patterns of diagnosis-related alterations and age-relationship throughout the cortex of 50 patients between 9 and 25 years old and 50 healthy controls in the same age range. To address how functional connectivity in the default mode network is influenced by BOLD signal fluctuations, we conducted the same analysis on seed-to-voxel connectivity of the posterior cingulate cortex (PCC) and compared resulting brain patterns. BOLD signal variance was lower mainly in regions of the default mode network and in the dorsolateral prefrontal cortex, but higher in large parts of the temporal lobes. In those regions, BOLD signal variance was correlated with age in healthy controls, but not in patients, suggesting deviant developmental trajectories from child- to adulthood. Positive connectivity of the PCC within the default mode network as well as negative connectivity towards the frontoparietal network were weaker in patients with 22q11.2DS. We furthermore showed that lower functional connectivity of the PCC was not driven by higher BOLD signal variability. Our results confirm the strong implication of BOLD

  14. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region.

    PubMed

    Heisterkamp, N; Mulder, M P; Langeveld, A; ten Hoeve, J; Wang, Z; Roe, B A; Groffen, J

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 55 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for teh human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge syndrome and velocardio-facial syndrome may contribute to the mental deficiency seen in the patients.

  15. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging.

    PubMed

    Villalon-Reina, Julio; Jahanshad, Neda; Beaton, Elliott; Toga, Arthur W; Thompson, Paul M; Simon, Tony J

    2013-11-01

    Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.

  16. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging

    PubMed Central

    Villalon, Julio; Jahanshad, Neda; Beaton, Elliott; Toga, Arthur W.; Thompson, Paul M.; Simon, Tony J.

    2014-01-01

    Children with chromosome 22q11.2 Deletion Syndrome (22q11.2DS), Fragile X Syndrome (FXS), or Turner Syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14 years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders. PMID:23602925

  17. Production of White Colonies on CHROMagar Candida(TM) by Members of the Candida glabrata Clade and Other Species with Overlapping Phenotypic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that species of the Candida glabrata clade and species with phenotypic traits overlapping with C. glabrata would produce white colonies on CHROMagar Candida. Of 154 isolates (seven species) tested, C. bracarensis, C. nivariensis, C. norvegensis, C. glabrata, and C. inconspicua produ...

  18. Evans syndrome and antibody deficiency: an atypical presentation of chromosome 22q11.2 deletion syndrome

    PubMed Central

    Colarusso, Gloria; Gambineri, Eleonora; Lapi, Elisabetta; Casini, Tommaso; Tucci, Fabio; Lippi, Francesca; Azzari, Chiara

    2010-01-01

    We report a case of an 8-year-old male patient with Evans syndrome and severe hypogammaglobulinemia, subsequently in whom the 22q11.2 deletion syndrome (22q11.2 DS) was diagnosed. No other clinical sign of 22q11.2 DS was present with the exception of slight facial dysmorphism. The case is of particular interest because it suggests the need to research chromosome 22q11.2 deletion in patients who present with autoimmune cytopenia and peculiar facial abnormalities, which could be an atypical presentation of an incomplete form of 22q11.2 DS. PMID:21589826

  19. Evans syndrome and antibody deficiency: an atypical presentation of chromosome 22q11.2 deletion syndrome.

    PubMed

    Colarusso, Gloria; Gambineri, Eleonora; Lapi, Elisabetta; Casini, Tommaso; Tucci, Fabio; Lippi, Francesca; Azzari, Chiara

    2010-09-06

    We report a case of an 8-year-old male patient with Evans syndrome and severe hypogammaglobulinemia, subsequently in whom the 22q11.2 deletion syndrome (22q11.2 DS) was diagnosed. No other clinical sign of 22q11.2 DS was present with the exception of slight facial dysmorphism. The case is of particular interest because it suggests the need to research chromosome 22q11.2 deletion in patients who present with autoimmune cytopenia and peculiar facial abnormalities, which could be an atypical presentation of an incomplete form of 22q11.2 DS.

  20. Predisposition for breast cancer in carriers of constitutional translocation 11q; 22q

    SciTech Connect

    Lindblom, A.; Dumanski, J.; White, I.; Nordenskjoeld, M.; Larsson, C.; Sandelin, K.; Iselius, L. )

    1994-05-01

    A translocation between the long arms of chromosomes 11 and 22, t(11;22)(q23;q11), is the most frequent constitutional reciprocal translocation in man. This chromosome abnormality has not previously been reported to be associated with an increased risk for neoplasia. The observation of one patient with a constitutional translocation t(11q;22q) and breast cancer prompted study of the relationship between these two conditions. The incidence of breast cancer was determined in carriers of t(11q;22q). The karyotypes were determined by QFQ-banding, and the breakpoints were then further characterized by fluorescent in situ hybridization. Eight families with a total of 22 balanced carriers were found. In five of these families there was one case of breast cancer each. In another family a case of an unknown malignancy was reported in one member. No other malignancies were found among these patients. The number of breast cancer cases were significantly higher than expected among the translocation carriers (P<.0001). The chromosomal breakpoints showed the same localization with the markers used, in the seven families studied. The association of constitutional translocation t(11q;22q) and breast cancer identifies a subset of patients with a highly increased risk for breast cancer who would benefit from counseling and screening. It also suggests the involvement of genes on 11q and/or 22q, in the tumorigenesis of breast cancer. 36 refs., 2 figs.

  1. Sprengel anomaly in deletion 22q11.2 (DiGeorge/Velo-Cardio-Facial) syndrome.

    PubMed

    Radio, Francesca Clementina; Digilio, Maria Cristina; Capolino, Rossella; Dentici, Maria Lisa; Unolt, Marta; Alesi, Viola; Novelli, Antonio; Marino, Bruno; Dallapiccola, Bruno

    2016-03-01

    Sprengel anomaly (SA) is a rare skeletal defect characterized by uni- or bi-lateral elevation of the scapula. This anomaly is often isolated, although it can occur in association with other defects, including cervical spine malformations, cleft palate, and facial anomalies. Neural crest migration anomalies have been involved in the etiology of SA. Since the same embryological pathway accounts for some of the clinical features of deletion 22q11.2 syndrome (del22q11.2; DiGeorge/Velo-Cardio-Facial syndrome), we investigated the occurrence of SA in a consecutive series of 235 del22q11.2 patients aged more than 2 years, undergoing a complete clinical and orthopedic assessment of the dorsal and thoracic skeleton. In the present series, two patients were diagnosed with true SA. Present results and published reports suggest that scapular involvement including SA occurs in 1-2% of del22q11.2 individuals. Accordingly, this anomaly should be investigated as one of the possible skeletal findings of del22q11.2 syndrome, while this diagnosis should be excluded in patients presenting with SA associated with other defects.

  2. Jacobsen syndrome due to an unbalanced translocation between 11q23 and 22q11.2 identified at age 40 years.

    PubMed

    Takahashi, Ikuko; Takahashi, Tsutomu; Sawada, Kenichi; Shimojima, Keiko; Yamamoto, Toshiyuki

    2012-01-01

    A woman with psychomotor developmental delay, congenital glaucoma, and distinctive facial features, and a short neck was diagnosed with Jacobsen syndrome (JBS) at age 40 years. A previously reported balanced translocation between chromosome 11 and 22 instead showed an unbalanced translocation by a microarray-based comparative hybridization analysis with the final karyotype of 46,XX,der(11)t(11;22)(q23.3;q11.21),del(22)(q11.21) dn. The breakpoint of chromosome 11 was determined to be at TECTA and not near the apolipoprotein gene cluster site or the fragile site (FRA11B), which are commonly seen in patients with t(11;22) and patients with typical 11q deletions, respectively. Although the phenotypic features of the patient, including psychomotor developmental delay, distinctive features, and mild thrombocytopenia, were consistent with JBS, congenital glaucoma, which is an uncommon finding of JBS, was the most prominent condition during her natural history.

  3. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease.

    PubMed

    Falah, Nadia; Posey, Jennifer E; Thorson, Willa; Benke, Paul; Tekin, Mustafa; Tarshish, Brocha; Lupski, James R; Harel, Tamar

    2017-04-01

    Diagnosis of genetic syndromes may be difficult when specific components of a disorder manifest at a later age. We present a follow up of a previous report [Seeherunvong et al., (2004); AJMGA 127: 149-151], of an individual with 22q duplication and sex-reversal syndrome. The subject's phenotype evolved to include peripheral and central demyelination, Waardenburg syndrome type IV, and Hirschsprung disease (PCWH; MIM 609136). DNA microarray analysis defined the duplication at 22q11.2q13, including SOX10. Sequencing of the coding region of SOX10 did not reveal any mutations. Our data suggest that SOX10 duplication can cause disorders of sex development and PCWH, supporting the hypothesis that SOX10 toxic gain of function rather than dominant negative activity underlies PCWH.

  4. Severe craniosynostosis in an infant with deletion 22q11.2 syndrome.

    PubMed

    Al-Hertani, W; Hastings, V A; McGowan-Jordan, J; Hurteau, J; Graham, Gail E

    2013-01-01

    We report a male infant with 22q11.2 deletion syndrome and very severe multi-sutural craniosynostosis associated with increased intracranial pressure, marked displacement of brain structures, and extensive erosion of the skull. While uni- or bi-sultural craniosynostosis is a recognized (though relatively uncommon) feature of 22q11 deletion syndrome, a severe multi-sutural presentation of this nature has never been reported. SNP Microarray was otherwise normal and the patient did not have common mutations in FGFR2, FGFR3, or TWIST associated with craniosynostosis. While markedly variable expressivity is an acknowledged feature of deletion 22q11 syndrome, herein we also consider and discuss the possibility that this infant may have been additionally affected with an undiagnosed single gene disorder.

  5. PCR assay for screening patients at risk for 22q11.2 deletion.

    PubMed

    Driscoll, D A; Emanuel, B S; Mitchell, L E; Budarf, M L

    1997-01-01

    Deletions of 22q11.2 have been detected in the majority of patients with DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes by either cytogenetic analysis, fluorescence in situ hybridization (FISH), or Southern blot hybridization. However, these techniques may not be the most efficient or cost-effective means of screening large numbers of "at-risk" patients. Therefore, we developed a PCR assay to assess a patient's likelihood of having a 22q11.2 deletion based on homozygosity at consecutive markers in the DiGeorge chromosomal region. The sensitivity and specificity of PCR screening were evaluated in a cohort of cardiac patients. We conclude that a PCR-based assay is a reliable and efficient means of identifying which patients are at greatest risk for a 22q11.2 deletion and should have FISH studies to confirm their deletion status.

  6. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    PubMed

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation.

  7. Prenatal diagnosis by FISH of a 22q11 deletion in two families.

    PubMed Central

    Portnoï, M F; Joyé, N; Gonzales, M; Demczuk, S; Fermont, L; Gaillard, G; Bercau, G; Morlier, G; Taillemite, J L

    1998-01-01

    We report on prenatal diagnosis by FISH of a sporadic 22q11 deletion associated with DiGeorge syndrome (DGS) in two fetuses after an obstetric ultrasonographic examination detected cardiac anomalies, an interrupted aortic arch in case 1 and tetralogy of Fallot in case 2. The parents decided to terminate the pregnancies. At necropsy, fetal examination showed characteristic facial dysmorphism associated with congenital malformations, confirming full DGS in both fetuses. In addition to the 22q11 deletion, trisomy X was found in the second fetus and a reciprocal balanced translocation t(11;22) (q23;q11) was found in the clinically normal father of case 1. These findings highlight the importance of performing traditional cytogenetic analysis and FISH in pregnancies with a high risk of having a deletion. Images PMID:9507401

  8. Distal 22q11.2 microduplication encompassing the BCR gene.

    PubMed

    Descartes, Maria; Franklin, Judy; Diaz de Ståhl, Teresita; Piotrowski, Arkadiusz; Bruder, Carl E G; Dumanski, Jan P; Carroll, Andrew J; Mikhail, Fady M

    2008-12-01

    Chromosome 22 band q11.2 has been recognized to be highly susceptible to subtle microdeletions and microduplications, which have been attributed to the presence of several large segmental duplications; also known as low copy repeats (LCRs). These LCRs function as mediators of non-allelic homologous recombination (NAHR), which results in these chromosomal rearrangements as a result of unequal crossover. The four centromeric LCRs at proximal 22q11.2 have been previously implicated in recurrent chromosomal rearrangements including the DiGeorge/Velocardiofacial syndrome (DG/VCFs) microdeletion and its reciprocal microduplication. Recently, we and others have demonstrated that the four telomeric LCRs at distal 22q11.2 are causally implicated in a newly recognized recurrent distal 22q11.2 microdeletion syndrome in the region immediately telomeric to the DG/VCFs typically deleted region. Here we report on the clinical, cytogenetic, and array CGH studies of a 4.5-year-old girl with history of failure to thrive, developmental delay (DD), and relative macrocephaly. She carries a paternally inherited approximately 2.1 Mb microduplication at distal 22q11.2, which spans approximately 34 annotated genes, and is flanked by two of the four telomeric 22q11.2 LCRs. We conclude that the four telomeric LCRs at distal 22q11.2 can mediate both deletions and duplications in this genomic region. Both deletions and duplication of this region present with subtle clinical features including mild to moderate mental retardation, DD, and mild dysmorphic features.

  9. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    PubMed Central

    Jalbrzikowski, Maria; Villalon-Reina, Julio E.; Karlsgodt, Katherine H.; Senturk, Damla; Chow, Carolyn; Thompson, Paul M.; Bearden, Carrie E.

    2014-01-01

    22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk. PMID

  10. [An attempt to identify 22q11.2 microdeletions in samples of the Hungarian schizophrenia DNA bank by multiplex ligation-based probe amplification (MLPA): literature review, methodology and results].

    PubMed

    Klein, Izabella; Szocs, Katalin; Vincze, Katalin; Benkovits, Judit; Somogyi, Szilvia; Herman, Levente; Rethelyi, Janos M

    2016-12-01

    Schizophrenia is a severe debilitating psychiatric disorder, with a typical onset in adolescence or early adulthood. This condition is characterized by heterogeneous symptoms (hallucinations, delusions, disorganized behaviour, affective flattening, and social isolation) and a life-time prevalence of 0.5-1.2%. In spite of the efforts to uncover the etiology of the disorder, its pathogenesis and neurobiological background are poorly understood. Given the high heritability in schizophrenia, genetic research remains an important area of focus. Besides the common variations of low penetrance - single nucleotid polymorphisms (SNPs) -, rare variants, mainly copy number variations (CNVs) play a role in the genetic architecture of the disorder. The most frequent CNV associated with schizophrenia is the hemizygous deletion of the 22q11.2 region. According to previous research this genetic variant occurs in 1% of the patients and conversely, 25% of the carriers of the 22q11.2 microdeletion will develop schizophrenia. The 22q11.2 deletion syndrome (22Q11DS, velocardiofacial (VCFS) syndrome, DiGeorge-syndrome) is usually a childhood diagnosis. Its prevalence is 1:2000-4000 considering all births. Patients can demonstrate heart developmental disorders, craniofacial (elongated face, hypertelorism), immunological (thymus-hypoplasia), endocrinological (hypocalcaemia) abnormalities, and neurodevelopmental alterations, but only a proportion will have these abnormalities due to incomplete penetrance. The variable symptoms complicate the recognition of the syndrome in the day to day medical practice. 25% of the known 22Q11DS patients develop schizophrenia but the risk of neuropsychiatric problems, like autism, ADHD and childhood conduct disorder is also increased, while early onset Parkinson's disease in also more frequent in adults. The schizophrenia phenotype is not distinguishable at the moment in patients with or without the 22q11 deletion. But emerging evidence suggests that early

  11. Acute Dystonia in a Patient with 22q11.2 Deletion Syndrome

    PubMed Central

    Kontoangelos, Konstantinos; Maillis, Antonis; Maltezou, Maria; Tsiori, Sofia; Papageorgiou, Charalambos C.

    2015-01-01

    The 22q11.2 deletion syndrome (di George syndrome) is one of the most prevalent genetic disorders. The clinical features of the syndrome are distinct facial appearance, velopharyngeal insufficiency, conotruncal heart disease, parathyroid and immune dysfunction; however, little is known about possible neurodegenerative diseases. We describe the case of an 18-year old patient suffering from 22q11.2 deletion syndrome. Since adolescence, he presented with behavioral disorders, recommended treatment with 2 mg aloperidin and he presented cervical dystonia and emergence of torticollis and trunk dystonia. Antipsychotic medications either accelerate or reveal dystonic symptoms. PMID:26605035

  12. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes.

    PubMed

    Kobrynski, Lisa J; Sullivan, Kathleen E

    2007-10-20

    Velocardiofacial syndrome, DiGeorge syndrome, and some other clinical syndromes have in common a high frequency of hemizygous deletions of chromosome 22q11.2. This deletion syndrome is very common, affecting nearly one in 3000 children. Here, we focus on recent advances in cardiac assessment, speech, immunology, and pathophysiology of velocardiofacial syndrome. The complex medical care of patients needs a multidisciplinary approach, and every patient has his own unique clinical features that need a tailored approach. Patients with chromosome 22q11.2 deletion syndrome might have high level of functioning, but most often need interventions to improve the function of many organ systems.

  13. Chromosome 22q11.2 deletion in a boy with Opitz (G/BBB) syndrome

    SciTech Connect

    Fryburg, J.S.; Lin, K.Y.; Golden, W.L.

    1996-03-29

    This report is on a 14-month-old boy with manifestations of Opitz (G/BBB) syndrome in whom a 22q11.2 deletion was found. Deletion analysis was requested because of some findings in this patient reminiscent of velocardiofacial (VCF) syndrome. The extent of aspiration and of respiratory symptoms in this child is not usually seen in VCF syndrome. Opitz syndrome maps to at least two loci, one on Xp, the other on 22q11.2. 12 refs., 2 figs.

  14. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology.

    PubMed

    Sanders, Ashley F P; Hobbs, Diana A; Stephenson, David D; Laird, Robert D; Beaton, Elliott A

    2017-04-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial working memory impairments in 20 children with 22q11.2DS and 32 typically developing (TD) children ages 7 to 16. Children with 22q11.2DS demonstrated poorer working memory, reduced post-stress respiratory sinus arrhythmia recovery, and overall increased levels of cortisol in comparison to TD children. Anxiety, but not physiological stress responsivity, mediated the relationship between 22q11.2DS diagnosis and visuospatial working memory impairment. Findings indicate that anxiety exacerbates impaired working memory in children with 22q11.2DS.

  15. Polymorphism in a human chromosome-specific interstitial telomere-like sequence at 22q11.2.

    PubMed

    Samassekou, O; Yan, J

    2011-01-01

    Interstitial telomeric sequences (ITSs) are common in human. We previously reported the presence of an ITS at 22q11.2 which is in the vicinity of the genomically unstable region involved in 22q11 rearrangements. Recently, we studied the molecular status of the ITS 22q11.2 in the normal population. The amplification of an ITS at 22q11.2 showed different patterns ranging from 1-4 kb, confirming the highly polymorphic nature of this sequence. The linkage analysis of the ITS at 22q11.2 in members of 10 different families demonstrated a strong relation between offspring and parents. In contrast, the study of a DiGeorge case and his 2 parents revealed the presence of a novel allele probably inherited from the father. These results open an avenue for the use of this sequence as an allelic marker, and its implication in 22q11.2-related pathogenesis.

  16. Phenotypic expansion of the supernumerary derivative (22) chromosome syndrome: VACTERL and Hirschsprung's disease.

    PubMed

    Prieto, Juan C; Garcia, Nilda M; Elder, Frederick F; Zinn, Andrew R; Baker, Linda A

    2007-11-01

    Phenotypically healthy carriers of the balanced 11;22 translocation, the most frequent non-Robertsonian constitutional translocation known in human beings, are at risk of having a progeny with supernumerary derivative (22)t(11;22) syndrome [der(22) syndrome]. We present the cases of 2 male patients with supernumerary der(22) syndrome [47,XY,+der(22)t(11;22)(q23;q11.2)mat], yielding partial trisomy for 22pter-q11 and 11q23-qter. These cases expand the phenotype of the der(22) syndrome, with the first case highlighting the phenotypic overlap of VACTERL and the second adding Hirschsprung's disease and intestinal malrotation to the list of associated anorectal anomalies. Because der(22) syndrome and cat eye syndrome (partial tetrasomy of 22q11) share a similar region of extra dosage on 22q11 and both typically manifest an anorectal phenotype, a dosage-sensitive gene for anorectal anomalies may be present in this locus.

  17. [Analysis of microdeletions in 22q11 in Colombian patients with congenital heart disease].

    PubMed

    Salazar, Marleny; Villalba, Guiovanny; Mateus, Heidi; Villegas, Victoria; Fonseca, Dora; Núñez, Federico; Caicedo, Víctor; Pachón, Sonia; Bernal, Jaime E

    2011-12-01

    Cardiac defects are the most frequent congenital malformations, with an incidence estimated between 4 and 12 per 1000 newborns. Their etiology is multifactorial and might be attributed to genetic predispositions and environmental factors. Since 1990 these types of pathologies have been associated with 22q11 microdeletion. In this study, the frequency of microdeletion 22q11 was determined in 61 patients with non-syndromic congenital heart disease. DNA was extracted from peripheral blood and TUPLE1 and STR D10S2198 genes were amplified by multiplex PCR and visualized in agarose gels. Gene content was quantified by densitometry. Three patients were found with microdeletion 22q11, representing a 4.9% frequency. This microdeletion was associated with two cases of Tetralogy of Fallot and a third case with atrial septal defect (ASD). In conclusion, the frequency for microdeletion 22q11 in the population analyzed was 4.9%. The cases that presented Teratology of Fallot had a frequency for this microdeletion of 7.4% and for ASD of 11.1%.

  18. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    ERIC Educational Resources Information Center

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  19. Association of tetralogy of Fallot with a distinct region of del22q11.2.

    PubMed

    Kessler-Icekson, Gania; Birk, Einat; Weintraub, Ari Y; Barhum, Yael; Kotlyar, Violetta; Schlesinger, Hadassa; Rockah, Rivka; Vidne, Bernardo A; Frisch, Amos

    2002-02-01

    Congenital heart defects (CHDs) appear in greater frequency among relatives of patients and in individuals with DiGeorge syndrome (DGS) or velo-cardio-facial syndrome (VCFS). A majority of these patients and part of the apparently nonsyndromic CHD patients with conotruncal defects manifest hemizygous deletions within chromosome 22q11.2 (del22q11). We tested myocardial tissues of 31 CHD patients, 21 with tetralogy of Fallot (TOF) and 10 with a double-chamber right ventricle (DCRV). DNA isolated from tissues removed at corrective surgery was analyzed for homo- or heterozygosity of nine polymorphic short tandem repeat (STR) markers along the 22q11.2 region. DNA from the blood of 45 healthy individuals represented the general population. Ten of the 21 TOF patients (48%) showed homozygosity for three or more consecutive markers, indicating deletions of various sizes. No such indication was found for DCRV patients. Heterozygosity for markers D22S1648, D22S941, and D22S944 was lower in the TOF group than in normal controls, defining a minimal critical region (MCR) for the deletion. Our findings support an association between TOF and hemizygosity in 22q11.2, suggesting a distinct region, between markers D22S1638 and COMT, that may harbor TOF susceptibility genes.

  20. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions

    SciTech Connect

    Bonnet, D.; Cormier-Daire, V.; Munnich, A.; Lyonnet, S.

    1997-01-20

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19) within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion. 10 refs., 1 fig., 1 tab.

  1. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion

    PubMed Central

    2014-01-01

    Background TBX1 and CRKL haploinsufficiency is thought to cause the cardiac phenotype of the 22q11.2 deletion syndrome. However, few unequivocal mutations of TBX1 and CRKL have been discovered in isolated conotrucal heart defects (CTDs) patients. The aim of the study was to screen the mutation of TBX1 and CRKL in isolated CTDs Chinese patients without 22q11.2 deletion and identify the pathomechanism of the missense mutations. Methods We enrolled 199 non-22q11.2 deletion patients with CTDs and 139 unrelated healthy controls. Gene sequencing were performed for all of them. The functional data of mutations were obtained by in vitro transfection and luciferase experiments and computer modelling. Results Screening of the TBX1 coding sequence identified a de novo missense mutation (c.385G → A; p.E129K) and a known polymorphism (c.928G → A; p.G310S). In vitro experiments demonstrate that the TBX1E129K variant almost lost transactivation activity. The TBX1G310S variant seems to affect the interaction of TBX1 with other factors. Computer molecular dynamics simulations showed the de novo missense mutation is likely to affect TBX1-DNA interaction. No mutation of CRKL gene was found. Conclusions These observations suggest that the TBX1 loss-of-function mutation may be involved in the pathogenesis of isolated CTDs. This is the first human missense mutation showing that TBX1 is a candidate causing isolated CTDs in Chinese patients without 22q11.2 deletion. PMID:24998776

  2. Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome).

    PubMed

    Pierdominici, M; Mazzetta, F; Caprini, E; Marziali, M; Digilio, M C; Marino, B; Aiuti, A; Amati, F; Russo, G; Novelli, G; Pandolfi, F; Luzi, G; Giovannetti, A

    2003-05-01

    Chromosome 22q11.2 deletion (del22q11.2) syndrome (DiGeorge syndrome/velocardiofacial syndrome) is a common syndrome typically consisting of congenital heart disease, hypoparathyroidism, developmental delay and immunodeficiency. Although a broad range of immunologic defects have been described in these patients, limited information is currently available on the diversity of the T-cell receptor (TCR) variable beta (BV) chain repertoire. The TCRBV repertoires of nine patients with del22q11.2 syndrome were determined by flow cytometry, fragment size analysis of the third complementarity determining region (CDR3 spectratyping) and sequencing of V(D)J regions. The rate of thymic output and the phenotype and function of peripheral T cells were also studied. Expanded TCRBV families were detected by flow cytometry in both CD4+ and CD8+ T cells. A decreased diversity of TCR repertoires was also demonstrated by CDR3 spectratyping, showing altered CDR3 profiles in the majority of TCRBV families investigated. The oligoclonal nature of abnormal peaks detected by CDR3 spectratyping was confirmed by the sequence analysis of the V(D)J regions. Thymic output, evaluated by measuring TCR rearrangement excision circles (TRECs), was significantly decreased in comparison with age-matched controls. Finally, a significant up-regulation in the percentage, but not in the absolute count, of activated CD4+ T cells (CD95+, CCR5+, HLA-DR+), IFN-gamma - and IL-2-expressing T cells was detected. These findings suggest that the diversity of CD4 and CD8 TCRBV repertoires is decreased in patients with del22q11.2 syndrome, possibly as a result of either impaired thymic function and/or increased T-cell activation.

  3. Characterization and mutation analysis of goosecoid-like (GSCL), a homeodomain-containing gene that maps to the critical region for VCFS/DGS on 22q11.

    PubMed

    Funke, B; Saint-Jore, B; Puech, A; Sirotkin, H; Edelmann, L; Carlson, C; Raft, S; Pandita, R K; Kucherlapati, R; Skoultchi, A; Morrow, B E

    1997-12-15

    Velocardiofacial syndrome (VCFS) is a developmental disorder characterized by conotruncal heart defects, craniofacial anomalies, and learning disabilities. VCFS is phenotypically related to DiGeorge syndrome (DGS) and both syndromes are associated with hemizygous 22q11 deletions. Because many of the tissues and structures affected in VCFS/DGS derive from the pharyngeal arches of the developing embryo, it is believed that haploinsufficiency of a gene(s) involved in embryonic development may be responsible for its etiology. A homeodomain-containing gene, Goosecoidlike (GSCL), has been recently described, and it resides in the critical region for VCFS/DGS on 22q11. GSCL is related to the Goosecoid gene (GSC) in both sequence of the homeodomain and genomic organization. Gsc in the mouse is expressed during early and midembryogenesis and is required for craniofacial rib, and limb development. The chick homolog of GSCL, termed GSX, is expressed during early chick embryogenesis. We detected GSCL expression in human embryos and biphasic expression in mouse embryos. It is possible that the vertebrate GSCL gene is also required for embryonic development. Due to its location in the critical region on 22q11, GSCL is an excellent candidate gene for VCFS/DGS. The vertebrate GSC protein has the same DNA binding specificity as the Drosophila morphogen, bicoid. Upon examination of the putative GSCL promoter, we found three sequence elements with an exact match to the reverse complement of the bicoid DNA recognition motif, suggesting that GSC, or possibly GSCL itself, regulates the transcription of GSCL. Sequence analysis of the putative promoter and the coding region of GSCL was performed on the DNA template from 17 VCFS patients who did not have a detectable 22q11 deletion to identify mutations. We did not detect a mutation in this set of VCFS patients. A polymorphism was detected in codon 47 of exon 1.

  4. Velopharyngeal Anatomy in 22q11.2 Deletion Syndrome: A Three-Dimensional Cephalometric Analysis

    PubMed Central

    Ruotolo, Rachel A.; Veitia, Nestor A.; Corbin, Aaron; McDonough, Joseph; Solot, Cynthia B.; McDonald-McGinn, Donna; Zackai, Elaine H.; Emanuel, Beverly S.; Cnaan, Avital; LaRossa, Don; Arens, Raanan; Kirschner, Richard E.

    2010-01-01

    Objective 22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal dysfunction (VPD). Magnetic resonance imaging (MRI) is a promising method for noninvasive, three-dimensional (3D) assessment of velopharyngeal (VP) anatomy. The purpose of this study was to assess VP structure in patients with 22q11.2 deletion syndrome by using 3D MRI analysis. Design This was a retrospective analysis of magnetic resonance images obtained in patients with VPD associated with a 22q11.2 deletion compared with a normal control group. Setting This study was conducted at The Children’s Hospital of Philadelphia, a pediatric tertiary care center. Patients, Participants The study group consisted of 5 children between the ages of 2.9 and 7.9 years, with 22q11.2 deletion syndrome confirmed by fluorescence in situ hybridization analysis. All had VPD confirmed by nasendoscopy or videofluoroscopy. The control population consisted of 123 unaffected patients who underwent MRI for reasons other than VP assessment. Interventions Axial and sagittal T1- and T2-weighted magnetic resonance images with 3-mm slice thickness were obtained from the orbit to the larynx in all patients by using a 1.5T Siemens Visions system. Outcome Measures Linear, angular, and volumetric measurements of VP structures were obtained from the magnetic resonance images with VIDA image- processing software. Results The study group demonstrated greater anterior and posterior cranial base and atlanto-dental angles. They also demonstrated greater pharyngeal cavity volume and width and lesser tonsillar and adenoid volumes. Conclusion Patients with a 22q11.2 deletion demonstrate significant alterations in VP anatomy that may contribute to VPD. PMID:16854203

  5. Platybasia in 22q11.2 Deletion Syndrome Is Not Correlated with Speech Resonance

    PubMed Central

    Kon, Moshe; Mink van der Molen, Aebele B

    2014-01-01

    Background An abnormally obtuse cranial base angle, also known as platybasia, is a common finding in patients with 22q11.2 deletion syndrome (22q11DS). Platybasia increases the depth of the velopharynx and is therefore postulated to contribute to velopharyngeal dysfunction. Our objective was to determine the clinical significance of platybasia in 22q11DS by exploring the relationship between cranial base angles and speech resonance. Methods In this retrospective chart review at a tertiary hospital, 24 children (age, 4.0-13.1 years) with 22q11.2DS underwent speech assessments and lateral cephalograms, which allowed for the measurement of the cranial base angles. Results One patient (4%) had hyponasal resonance, 8 (33%) had normal resonance, 10 (42%) had hypernasal resonance on vowels only, and 5 (21%) had hypernasal resonance on both vowels and consonants. The mean cranial base angle was 136.5° (standard deviation, 5.3°; range, 122.3-144.8°). The Kruskal-Wallis test showed no significant relationship between the resonance ratings and cranial base angles (P=0.242). Cranial base angles and speech ratings were not correlated (Spearman correlation=0.321, P=0.126). The group with hypernasal resonance had a significantly more obtuse mean cranial base angle (138° vs. 134°, P=0.049) but did not have a greater prevalence of platybasia (73% vs. 56%, P=0.412). Conclusions In this retrospective chart review of patients with 22q11DS, cranial base angles were not correlated with speech resonance. The clinical significance of platybasia remains unknown. PMID:25075355

  6. Otologic and audiologic findings in 22q11.2 deletion syndrome.

    PubMed

    Verheij, E; Kist, A L; Mink van der Molen, A B; Stegeman, I; van Zanten, G A; Grolman, W; Thomeer, H G X M

    2017-02-01

    Hearing loss is frequently present in the 22q11.2 deletion syndrome. Our aim was to describe the audiologic and otologic features of patients with 22q11.2 deletion syndrome. We conducted a retrospective cohort study in a single tertiary referral center. We reviewed medical files of all patients with 22q11.2 deletion syndrome who visited an otolaryngologist, plastic surgeon or speech therapist, for audiologic or otologic features. Hearing loss was defined as a pure tone average (of 0.5, 1, 2, and 4 kHz) of >20 decibel hearing level. Audiograms were available for 102 of 199 included patients, out of which 163 ears were measured in the required frquencies (0.5-4 kHz). Median age at time of most recent audiogram was 7 years (range 3-29 years). In 62 out of 163 ears (38%), hearing loss was present. Most ears had conductive hearing loss (n = 58) and 4 ears had mixed hearing loss. The severity of hearing loss was most frequently mild (pure tone average of ≤40 decibel hearing level). In 22.5% of ears, otitis media with effusion was observed at time of most recent audiogram. Age was not related to mean air conduction hearing thresholds or to otitis media with effusion (p = 0.43 and p = 0.11, respectively). In conclusion, hearing loss and otitis media are frequently present in patients with 22q11.2 deletion syndrome. Moreover, our results suggest that children with 22q11.2 deletion syndrome remain susceptible for otitis media as they age.

  7. Ultra high risk status and transition to psychosis in 22q11.2 deletion syndrome

    PubMed Central

    Schneider, Maude; Armando, Marco; Pontillo, Maria; Vicari, Stefano; Debbané, Martin; Schultze‐Lutter, Frauke; Eliez, Stephan

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS) is characterized by high rates of psychotic symptoms and schizophrenia, making this condition a promising human model for studying risk factors for psychosis. We explored the predictive value of ultra high risk (UHR) criteria in a sample of patients with 22q11DS. We also examined the additional contribution of socio‐demographic, clinical and cognitive variables to predict transition to psychosis within a mean interval of 32.5 ± 17.6 months after initial assessment. Eighty‐nine participants with 22q11DS (age range: 8‐30 years; mean 16.1 ± 4.7) were assessed using the Structured Interview for Psychosis‐Risk Syndromes. Information on Axis I diagnoses, internalizing and externalizing symptoms, level of functioning and IQ was also collected. At baseline, 22 (24.7%) participants met UHR criteria. Compared to those without a UHR condition, they had a significantly lower functioning, more frequent anxiety disorders, and more severe psychopathology. Transition rate to psychosis was 27.3% in UHR and 4.5% in non‐UHR participants. Cox regression analyses revealed that UHR status significantly predicted conversion to psychosis. Baseline level of functioning was the only other additional predictor. This is the first study investigating the predictive value of UHR criteria in 22q11DS. It indicates that the clinical path leading to psychosis is broadly comparable to that observed in other clinical high‐risk samples. Nevertheless, the relatively high transition rate in non‐UHR individuals suggests that other risk markers should be explored in this population. The role of low functioning as a predictor of transition to psychosis should also be investigated more in depth. PMID:27717277

  8. Cognitive behavioral therapy in 22q11.2 microdeletion with psychotic symptoms: What do we learn from schizophrenia?

    PubMed

    Demily, Caroline; Franck, Nicolas

    2016-11-01

    The 22q11.2 deletion syndrome (22q11.2DS) is one of the most common microdeletion syndromes, with a widely underestimated prevalence between 1 per 2000 and 1 per 6000. Since childhood, patients with 22q11.2DS are described as having difficulties to initiate and maintain peer relationships. This lack of social skills has been linked to attention deficits/hyperactivity disorder, anxiety and depression. A high incidence of psychosis and positive symptoms is observed in patients with 22q11.2DS and remains correlated with poor social functioning, anxiety and depressive symptoms. Because 22q11.2DS and schizophrenia share several major clinical features, 22q11.2DS is sometimes considered as a genetic model for schizophrenia. Surprisingly, almost no study suggests the use of cognitive and behavioral therapy (CBT) in this indication. We reviewed what should be learned from schizophrenia to develop specific intervention for 22q11.2DS. In our opinion, the first step of CBT approach in 22q11.2DS with psychotic symptoms is to identify precisely which tools can be used among the already available ones. Cognitive behavioral therapy (CBT) targets integrated disorders, i.e. reasoning biases and behavior disorders. In 22q11.2DS, CBT-targeted behavior disorders may take the form of social avoidance and withdrawal or, in the contrary, a more unusual disinhibition and aggressiveness. In our experience, other negative symptoms observed in 22q11.2DS, such as motivation deficit or anhedonia, may also be reduced by CBT. Controlled trials have been studying the benefits of CBT in schizophrenia and several meta-analyses proved its effectiveness. Therefore, it is legitimate to propose this tool in 22q11.2DS, considering symptoms similarities. Overall, CBT is the most effective psychosocial intervention on psychotic symptoms and remains a relevant complement to pharmacological treatments such as antipsychotics.

  9. Memory in Intellectually Matched Groups of Young Participants with 22q11.2 Deletion Syndrome and Those with Schizophrenia

    ERIC Educational Resources Information Center

    Kravariti, Eugenia; Jacobson, Clare; Morris, Robin; Frangou, Sophia; Murray, Robin M.; Tsakanikos, Elias; Habel, Alex; Shearer, Jo

    2010-01-01

    The 22q11.2 deletion syndrome (22qDS) and schizophrenia have genetic and neuropsychological similarities, but are likely to differ in memory profile. Confirming differences in memory function between the two disorders, and identifying their genetic determinants, can help to define genetic subtypes in both syndromes, identify genetic risk factors…

  10. The 22Q11.2 Deletion in Children: High Rate of Autistic Disorders and Early Onset of Psychotic Symptoms

    ERIC Educational Resources Information Center

    Vorstman, Jacob A. S.; Morcus, Monique E. J.; Duijff, Sasja N.; Klaassen, Petra W. J.; Heineman-de, Josien A.; Beemer, Frits A.; Swaab, Hanna; Kahn, Rene S.; van Engeland, Herman

    2006-01-01

    Objective: To examine psychopathology and influence of intelligence level on psychiatric symptoms in children with the 22q11.2 deletion syndrome (22q11DS). Method: Sixty patients, ages 9 through 18 years, were evaluated. Assessments followed standard protocols, including structured and semistructured interviews of parents, videotaped psychiatric…

  11. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  12. Social Skills and Associated Psychopathology in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Interventions

    ERIC Educational Resources Information Center

    Shashi, V.; Veerapandiyan, A.; Schoch, K.; Kwapil, T.; Keshavan, M.; Ip, E.; Hooper, S.

    2012-01-01

    Background: Although distinctive neuropsychological impairments have been delineated in children with chromosome 22q11 deletion syndrome (22q11DS), social skills and social cognition remain less well-characterised. Objective: To examine social skills and social cognition and their relationship with neuropsychological function/behaviour and…

  13. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills

    ERIC Educational Resources Information Center

    Sumner, Emma; Leonard, Hayley C.; Hill, Elisabeth L.

    2016-01-01

    Motor and social difficulties are often found in children with an autism spectrum disorder (ASD) and with developmental coordination disorder (DCD), to varying degrees. This study investigated the extent of overlap of these problems in children aged 7-10 years who had a diagnosis of either ASD or DCD, compared to typically-developing controls.…

  14. Physical mapping of the NF2/meningioma region on human chromosome 22q12

    SciTech Connect

    Ruttledge, M.H.; Xie, Y.G.; Han, F.Y.; Janson, M.; Fransson, I.; Werelius, B. ); Giovannini, M.; Evans, G. ); Delattre, O.; Thomas, G. )

    1994-01-01

    Loss of genetic information from chromosome 22 has been implicated in the development of neurofibromatosis type 2, meningioma, and several other neoplasia. Molecular studies indicate that genes within chromosomal band 22q12 may be involved in tumorigenesis. The authors have mapped 29 loci into 16 groups in this region, using pulsed-field gel electrophoresis, fluorescence in situ suppression hybridization, and somatic cell hybrid mapping. The region spans more than 5 Mb of genomic DNA and contains the genes for neurofibromatosis type 2 and meningioma. The order of loci presented here provides the framework for the fine mapping of this region using cosmids and yeast artificial chromosomes, and it facilitates the speedy cloning of novel genes from 22q12. 51 refs., 4 figs.

  15. VISUOSPATIAL AND NUMERICAL COGNITIVE DEFICITS IN CHILDREN WITH CHROMOSOME 22Q11.2 DELETION SYNDROME

    PubMed Central

    Simon, Tony J.; Bearden, Carrie E.; Mc-Ginn, Donna McDonald; Zackai, Elaine

    2015-01-01

    This article presents some of the earliest evidence of visuospatial and numerical cognitive deficits in children with the chromosome 22q11.2 deletion syndrome; a common but ill-understood genetic disorder resulting in medical complications, cognitive impairment, and brain morphologic changes. Relative to a group of typically developing controls, deleted children performed more poorly on tests of visual attentional orienting, visual enumeration and relative numerical magnitude judgment. Results showed that performance deficits in children with the deletion could not be explained by a global deficit in psychomotor speed. Instead, our findings are supportive of the hypothesis that visuospatial and numerical deficits in children with the chromosome 22q11.2 deletion are due, at least in part, to posterior parietal dysfunction. PMID:15714897

  16. Reproductive Health Issues for Adults with a Common Genomic Disorder: 22q11.2 Deletion Syndrome

    PubMed Central

    Chan, Chrystal; Costain, Gregory; Ogura, Lucas; Silversides, Candice K.; Chow, Eva W.C.

    2015-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. Survival to reproductive age and beyond is now the norm. Several manifestations of this syndrome, such as congenital cardiac disease and neuropsychiatric disorders, may increase risk for adverse pregnancy outcomes in the general population. However, there are limited data on reproductive health in 22q11.2DS. We performed a retrospective chart review for 158 adults with 22q11.2DS (75 male, 83 female; mean age 34.3 years) and extracted key variables relevant to pregnancy and reproductive health. We present four illustrative cases as brief vignettes. There were 25 adults (21>age 35 years; 21 female) with a history of one or more pregnancies. Outcomes for women with 22q11.2DS, compared with expectations for the general population, showed a significantly elevated prevalence of small for gestational age liveborn offspring (p<0.001), associated mainly with infants with 22q11.2DS. Stillbirths also showed elevated prevalence (p<0.05). Not all observed adverse events appeared to be attributable to transmission of the 22q11.2 deletion. Recurring issues relevant to reproductive health in 22q11.2DS included the potential impact of maternal morbidities, inadequate social support, unsafe sexual practices, and delayed diagnosis of 22q11.2DS and/or lack of genetic counseling. These preliminary results emphasize the importance of early diagnosis and long term follow-up that could help facilitate genetic counseling for men and women with 22q11.2DS. We propose initial recommendations for pre-conception management, educational strategies, pre-natal planning, and preparation for possible high-risk pregnancy and/or delivery. PMID:25579115

  17. Linkage and Association Analyses of Schizophrenia with Genetic Variations on Chromosome 22q11 in Koreans

    PubMed Central

    Yoon, Se Chang; Jang, Yong Lee; Kim, Jong-Won; Cho, Eun-Young; Park, Dong Yeon; Hong, Kyung Sue

    2016-01-01

    Objective Chromosome 22q11 has been implicated as a susceptibility locus of schizophrenia. It also contains various candidate genes for which evidence of association with schizophrenia has been reported. To determine whether genetic variations in chromosome 22q11 are associated with schizophrenia in Koreans, we performed a linkage analysis and case-control association study. Methods Three microsatellite markers within a region of 4.35 Mb on 22q11 were genotyped for 47 multiplex schizophrenia families, and a non-parametric linkage analysis was applied. The association analysis was done with 227 unrelated patients and 292 normal controls. For 39 single nucleotide polymorphisms (SNPs) spanning a 1.4 Mb region (33 kb interval) containing four candidate schizophrenia genes (DGCR, COMT, PRODH and ZDHHC8), allele frequencies were estimated in pooled DNA samples. Results No significant linkage was found at any of the three microsatellite markers in single and multi-point analyses. Five SNPs showed suggestive evidence of association (p<0.05) and two more SNPs showed a trend for association (p<0.1) in pooled DNA association analysis. Individual genotyping was performed for those seven SNPs and four more intragenic SNPs. In this second analysis, all of the 11 SNPs individually genotyped did not show significant association. Conclusion The present study suggests that genetic variations on chromosome 22q11 may not play a major role in Korean schizophrenia patients. Inadequate sample size, densities of genetic markers and differences between location of genetic markers of linkage and association can contribute to an explanation of the negative results of this study. PMID:27909454

  18. Functional analysis of polymorphisms in the promoter regions of genes on 22q11.

    PubMed

    Hoogendoorn, Bastiaan; Coleman, Sharon L; Guy, Carol A; Smith, S Kaye; O'Donovan, Michael C; Buckland, Paul R

    2004-07-01

    Segmental aneusomy, which includes chromosome 22 deletion syndrome (del(22)(q11.2q11.2)), has been associated with DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), conotruncal anomaly face (CAF) syndrome, cat-eye syndrome (CES), der(22) syndrome, and duplication of the del(22)(q11.2q11.2) syndrome's typically deleted region. Adults with del(22)(q11.2q11.2) may develop psychiatric illnesses, including schizophrenia, schizoaffective disorder, and bipolar disorder, suggesting that lower gene dosage leads to a predisposition to these illnesses. In a bid to identify important regulatory polymorphisms (SNPs) that may emulate changes in gene dosage of the genes within the common deletion, we have analyzed the promoter region of 47 genes (44 of which encode a protein with known function) encoding proteins in and around 22q11 for sequence variants. A total of 33 of the promoters contained polymorphisms. Of those, 25 were cloned into a reporter gene vector, pGL3. The relative ability of each promoter haplotype to promote transcription of the luciferase gene was tested in each of two human cell lines (HEK293t and TE671), using a cotransfected CMV-SPAP plasmid as an internal control. Five genes (PRODH, DGCR14, GSTT2, SERPIND1, and a gene tentatively called DKFZP434P211) showed activity differences between haplotypes of greater than 1.5-fold. Of those, PRODH, which encodes proline dehydrogenase, has previously been highlighted in relation to schizophrenia, and the functional promoter polymorphism reported here may be involved in pathogenic mechanisms.

  19. Antibody deficiency and autoimmunity in 22q11.2 deletion syndrome

    PubMed Central

    Gennery, A; Barge, D; O'Sullivan, J; Flood, T; Abinun, M; Cant, A

    2002-01-01

    Background: Although severe T cell immunodeficiency in DiGeorge anomaly is rare, previous studies of humoral function in these patients have found no antibody abnormalities but have not examined the response to polysaccharide antigens. Isolated cases of autoimmunity have been reported. Several patients with 22q11.2 deletion attending our immunology clinic suffered recurrent sinopulmonary infection or autoimmune phenomena. Aims: To investigate humoral immunodeficiency, particularly pneumococcal polysaccharide antibody deficiency, and autoimmune phenomena in a cohort of patients with 22q11.2 deletion. Methods: A history of severe or recurrent infection and autoimmune symptoms were noted. Lymphocyte subsets, immunoglobulins, IgG subclasses, specific vaccine antibodies, and autoantibodies were measured. Subjects were vaccinated with appropriate antigens as indicated. Results: Of 32 patients identified, 26 (81%) had severe or recurrent infection, of which 13 (50%) had abnormal serum immunoglobulin measurements and 11/20 ≥4 years old (55%) had an abnormal response to pneumococcal polysaccharide. Ten of 30 patients (33%) had autoimmune phenomena; six (20%) were symptomatic. Conclusions: Humoral immunodeficiency is more common than previously recognised in patients with 22q11.2 deletion. Normal T cell function and immunoglobulin levels do not exclude poor specific antibody responses. Patients should be referred for formal immunological assessment of cellular and humoral immune function. PMID:12023174

  20. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome)

    PubMed Central

    Phelan, K.; McDermid, H.E.

    2012-01-01

    The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and neonatal hypotonia. In addition, more than 50% of patients show autism or autistic-like behavior, and therefore it can be classified as a syndromic form of autism spectrum disorders (ASD). The differential diagnosis includes Angelman syndrome, velocardiofacial syndrome, fragile X syndrome, and FG syndrome. Over 600 cases of 22q13.3 deletion syndrome have been documented. Most are terminal deletions of ∼100 kb to >9 Mb, resulting from simple deletions, ring chromosomes, and unbalanced translocations. Almost all of these deletions include the gene SHANK3 which encodes a scaffold protein in the postsynaptic densities of excitatory synapses, connecting membrane-bound receptors to the actin cytoskeleton. Two mouse knockout models and cell culture experiments show that SHANK3 is involved in the structure and function of synapses and support the hypothesis that the majority of 22q13.3 deletion syndrome neurological defects are due to haploinsufficiency of SHANK3, although other genes in the region may also play a role in the syndrome. The molecular connection to ASD suggests that potential future treatments may involve modulation of metabotropic glutamate receptors. PMID:22670140

  1. Unmasking an autosomal recessive disorder by a deletion in the DiGeorge/Velo-cardio-facial chromosome region (DGCR) in 22q11.2

    SciTech Connect

    Budarf, M.L.; Michaud, D.; Emanuel, B.

    1994-09-01

    Unmasking an autosomal recessive disorder by constitutional hemizygosity is well documented for the embryonal tumors RB and WAGR, where the second hit is a somatic event. Few deletion-mediated recessive conditions have been reported in patients with germline mutations. The major platelet receptor for von Willebrand factor, Glycoprotein Ib (GpIb), is a complex of two plasma membrane glycoproteins, Ib{alpha} and Ib{beta}, covalently linked by disulfide bonds. Defects in this receptor have been associated with the rare congenital autosomal recessive bleeding disorder, Bernard-Soulier syndrome (BSS). BSS is characterized by prolonged bleeding times, thrombocytopenia and very large platelets. The GpIb{beta} gene has been cloned and we have mapped it within the DGCR. We have identified a patient with phenotypic features of both BSS and VCFS. The patient was referred for 22q11-deletion FISH studies because of a conventricular VSD and mild dysmorphia. FISH with the N25 DiGeorge cosmid demonstrated a deletion in 22q11.2. Western blot analysis of the patient`s platelet proteins demonstrates a complete absence of GpIb{beta}. We suggest that haploinsufficiency for the DGCR in this patient unmasks a mutation in the remaining GpIb{beta} allele, resulting in manifestations of BSS. This mechanism, haploinsufficiency coupled with a mutation of the {open_quotes}normal{close_quotes} chromosome, might explain some of the phenotypic variability seen amongst patients with 22q11.2 microdeletions. These results further suggest that patients with contiguous gene deletion syndromes are at increased risk for autosomal recessive disorders and that they provide the opportunity to {open_quotes}map{close_quotes}disease loci.

  2. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes.

    PubMed

    Gil-Rodríguez, María Concepción; Deardorff, Matthew A; Ansari, Morad; Tan, Christopher A; Parenti, Ilaria; Baquero-Montoya, Carolina; Ousager, Lilian B; Puisac, Beatriz; Hernández-Marcos, María; Teresa-Rodrigo, María Esperanza; Marcos-Alcalde, Iñigo; Wesselink, Jan-Jaap; Lusa-Bernal, Silvia; Bijlsma, Emilia K; Braunholz, Diana; Bueno-Martinez, Inés; Clark, Dinah; Cooper, Nicola S; Curry, Cynthia J; Fisher, Richard; Fryer, Alan; Ganesh, Jaya; Gervasini, Cristina; Gillessen-Kaesbach, Gabriele; Guo, Yiran; Hakonarson, Hakon; Hopkin, Robert J; Kaur, Maninder; Keating, Brendan J; Kibaek, María; Kinning, Esther; Kleefstra, Tjitske; Kline, Antonie D; Kuchinskaya, Ekaterina; Larizza, Lidia; Li, Yun R; Liu, Xuanzhu; Mariani, Milena; Picker, Jonathan D; Pié, Ángeles; Pozojevic, Jelena; Queralt, Ethel; Richer, Julie; Roeder, Elizabeth; Sinha, Anubha; Scott, Richard H; So, Joyce; Wusik, Katherine A; Wilson, Louise; Zhang, Jianguo; Gómez-Puertas, Paulino; Casale, César H; Ström, Lena; Selicorni, Angelo; Ramos, Feliciano J; Jackson, Laird G; Krantz, Ian D; Das, Soma; Hennekam, Raoul C M; Kaiser, Frank J; FitzPatrick, David R; Pié, Juan

    2015-04-01

    Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes.

  3. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele.

    PubMed

    Vorstman, Jacob A S; Turetsky, Bruce I; Sijmens-Morcus, Monique E J; de Sain, Monique G; Dorland, Bert; Sprong, Mirjam; Rappaport, Eric F; Beemer, Frits A; Emanuel, Beverly S; Kahn, René S; van Engeland, Herman; Kemner, Chantal

    2009-02-01

    The association between the 22q11.2 deletion syndrome (22q11DS) and psychiatric disorders, particularly psychosis, suggests a causal relationship between 22q11DS genes and abnormal brain function. The genes catechol-O-methyl-transferase (COMT) and proline dehydrogenase both reside within the commonly deleted region of 22q11.2. COMT activity and proline levels may therefore be altered in 22q11DS individuals. Associations of both COMT(158) genotype and elevated serum proline levels with abnormal brain function have been reported. Fifty-six 22q11DS children and 75 healthy controls were assessed on physiological measures of brain function, including prepulse inhibition (PPI) of startle, P50 auditory sensory gating and smooth pursuit eye movements (SPEM). COMT(158) genotype and plasma proline levels were determined in the 22q11DS children. We hypothesized an interaction between the COMT(158) genotype and proline, predicting the strongest negative effect of high proline on brain function to occur in 22q11DS children who are carriers of the COMT(met) allele. Of the three physiological measures, only SPEM and PPI were abnormal in the patient sample. With regard to the SPEM performance, there was a significant interaction between the COMT(158) genotype and proline level with significantly decreased SPEM performance in children with high plasma proline levels and the low activity COMT(met) allele. A similar interaction effect was not observed with regard to PPI. These findings are consistent with a model in which elevated proline negatively affects brain function by an increase in dopamine in the prefrontal cortex. 22q11DS patients with low dopamine catabolic capacity are therefore especially vulnerable to this functional disruption.

  4. Localization of the human mitochondrial citrate transporter protein gene to chromosome 22q11 in the DiGeorge syndrome critical region

    SciTech Connect

    Heisterkamp, N.; Hoeve, J.T.; Groffen, J.

    1995-09-20

    A high percentage of patients with DiGeorge syndrome and velo-cardio-facial syndrome have interstitial deletions on chromosome 22q11. The shortest region of overlap is currently estimated to be around 500 kb. Two segments of DNA from chromosome 22q11, located 160 kb apart, were cloned because they contained NotI restriction enzyme sites. In the current study we demonstrate that these segments are absent from chromosomes 22 carrying microdeletions of two different DiGeorge patients. Fluorescence in situ and Southern blot hybridization was further used to show that this locus is within the DiGeorge critical region. Phylogenetically conserved sequences adjacent to one of the two NotI sites hybridized to mRNAs in different human cell lines. cDNAs isolated with a probe from this segment showed it to contain the gene for the human mitochondrial citrate transporter protein. Deletion of this gene in DiGeorge may contribute to the mental deficiency seen in the patients. 35 refs., 5 figs.

  5. Growth in Chilean infants with chromosome 22q11 microdeletion syndrome.

    PubMed

    Guzman, Maria Luisa; Delgado, Iris; Lay-Son, Guillermo; Willans, Edward; Puga, Alonso; Repetto, Gabriela M

    2012-11-01

    Chromosome 22q11 microdeletion syndrome has a wide range of clinical manifestations including congenital heart malformations, palatal defects, endocrine abnormalities, immunologic deficits, learning difficulties, and an increased predisposition to psychiatric disease. Short stature and poor weight gain in infancy are common findings and are usually seen in the absence of hormone deficiencies. An increased frequency of obesity has been observed in adolescents and adults. We generated gender-specific growth curves from 0 to 24 months of age, based on 479 length and 475 weight measurements from 138 Chilean patients with 22q11 deletion. Final adult height and weight on 25 individuals were analyzed. The 10th, 50th, and 90th centile-smoothed curves for infants were built using the LMS method and compared with World Health Organization Child Growth Standards. The 50th centile for length in the deleted patients was slightly lower than the 10th centile of WHO standards in boys and girls. The same was observed for weight, although a trend toward a gradual increase near 2 years of age was observed, particularly in boys. Average adult height was 152 cm (ranging from 143 to 162 cm) in females, corresponding to the 10th centiles of WHO standards, and 166 cm for males (160-172 cm), at the 20th centile of WHO standards. A third of the adult females and none of the males had body mass index (BMI) greater than 25. The curves should be useful to monitor growth in infants with 22q11 microdeletion syndrome.

  6. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    PubMed Central

    Tonelli, Adriano R; Kosuri, Kalyan; Wei, Sainan; Chick, Davoren

    2007-01-01

    Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 40-year-old man without significant past medical history presented with a new-onset generalized tonic-clonic seizure. He had no personal history of hypocalcemia or seizures. Physical examination was remarkable for short stature, hypertelorism, prominent forehead and nasal voice. His initial laboratory examination showed hypocalcemia (Calcium 5.2 mg/dl and Calcium ionized 0.69 mmol/l) with hypoparathyroidism (Parathyroid hormone intact < 2.5 pg/ml. NV: 14–72 pg/ml). Urine Calcium was 3 mg/dl on a spot and 88 mg in a 24-hour urine collection (NV: 100–300 mg/24 hs). The electrocardiogram showed a prolonged corrected QT interval. Echocardiogram, abdominal ultrasound and electroencephalogram were normal. A computer tomography of the brain showed basal ganglia calcification. The subtle physical findings and the presence of idiopathic hypoparathyroidism motivated the performance of fluorescent in situ hybridization which demonstrated a microdeletion on one of the homologs 22q11.2. The patient was treated with calcium citrate and calcitriol with good response. Conclusion Microdeletion of chromosome 22q11.2 is among the most clinically variable syndromes, with more than 180 features associated with the deletion. It has a variable phenotypical expression, requiring a high level of awareness for its early diagnosis. Seizures, related to marked hypocalcemia due to idiopathic hypoparathyroidism, might be the presenting feature in an adult patient with this syndrome. PMID:18053182

  7. Rheumatoid arthritis susceptibility loci at chromosomes 10p15, 12q13 and 22q13.

    PubMed

    Barton, Anne; Thomson, Wendy; Ke, Xiayi; Eyre, Steve; Hinks, Anne; Bowes, John; Plant, Darren; Gibbons, Laura J; Wilson, Anthony G; Bax, Deborah E; Morgan, Ann W; Emery, Paul; Steer, Sophia; Hocking, Lynne; Reid, David M; Wordsworth, Paul; Harrison, Pille; Worthington, Jane

    2008-10-01

    The WTCCC study identified 49 SNPs putatively associated with rheumatoid arthritis at P = 1 x 10(-4) - 1 x 10(-5) (tier 3). Here we show that three of these SNPs, mapping to chromosome 10p15 (rs4750316), 12q13 (rs1678542) and 22q13 (rs3218253), are also associated (trend P = 4 x 10(-5), P = 4 x 10(-4) and P = 4 x 10(-4), respectively) in a validation study of 4,106 individuals with rheumatoid arthritis and an expanded reference group of 11,238 subjects, confirming them as true susceptibility loci in individuals of European ancestry.

  8. Frontonasal malformation with tetralogy of Fallot associated with a submicroscopic deletion of 22q11

    SciTech Connect

    Stratton, R.F.; Payne, R.M.

    1997-03-31

    We report on a 14-month-old girl with bifid nasal tip and tetralogy of Fallot. Several similar patients have been described with CNS or eye abnormalities. Chromosome analysis with FISH, using Oncor DiGeorge probes, confirmed a submicroscopic deletion of 22q11. Many patients with Shprintzen (velo-cardio-facial) syndrome have a similar deletion with conotruncal cardiac defects and an abnormal nasal shape, suggesting that a gene in this area, possibly affecting neural crest cells, influences facial and other midline development. 13 refs., 1 fig.

  9. Chromosome 22q11.2 deletion syndrome: DiGeorge syndrome/velocardiofacial Syndrome.

    PubMed

    Sullivan, Kathleen E

    2008-05-01

    DiGeorge syndrome, or chromosome 22q11.2 deletion syndrome, is a disorder affecting multiple organ systems. The immunologist may be called on to coordinate complex medical care tailored to the specific needs and unique clinical features of each patient. This article focuses on the immune system, but patients require a holistic approach. Attention to cardiac, nutritional, and developmental needs in early infancy is important, and it is critical to identify the rare infants who require either a lymphocyte or thymus transplant. Later, speech and school issues dominate the picture. Allergies and autoimmune disorders also may be troubling for some school-age children.

  10. Post vaccine acute disseminated encephalomyelitis as the first manifestation of chromosome 22q11.2 deletion syndrome in a 15-month old baby: a case report.

    PubMed

    Valenzise, Mariella; Cascio, Antonio; Wasniewska, Malgorzata; Zirilli, Giuseppina; Catena, Maria Ausilia; Arasi, Stefania

    2014-09-29

    We describe a case of a 15-month-old female child admitted to our hospital because of fever, rash, neurological signs (oscillation between states of irritability and drowsiness), palpebral edema and drooping eyelid, appeared 10 days after the vaccination for measles, mumps and rubella. Brain MRI images showed multiple bilateral hyperintense lesions in the white matter typical of acute disseminated encephalomyelitis (ADEM), an autoimmune demyelinating disorder with inflammatory lesions of the central nervous system, due to viral antigens or vaccines. In the mean time, because of patient's vague phenotypic manifestations, suggestive of a genetic defect, array comparative genomic hybridization was carried out which showed the presence of a microdeletion 22q11.21, linked to the DiGeorge syndrome. Our case suggests that pediatric cases of post-vaccination ADEM, in which neurological signs persist, should be investigated for genetic phenotypical features, in order to exclude the presence of a genetic syndrome or disease.

  11. Brain and Behavior in Children with 22Q11.2 Deletion Syndrome: A Volumetric and Voxel-Based Morphometry MRI Study

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; Van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit hyperactivity disorder…

  12. Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome

    PubMed Central

    Chakraborty, D; Bernal, A J; Schoch, K; Howard, T D; Ip, E H; Hooper, S R; Keshavan, M S; Jirtle, R L; Shashi, V

    2012-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans. It is typified by highly variable symptoms, which might be explained by epigenetic regulation of genes in the interval. Using computational algorithms, our laboratory previously predicted that DiGeorge critical region 6 (DGCR6), which lies within the deletion interval, is imprinted in humans. Expression and epigenetic regulation of this gene have not, however, been examined in 22q11DS subjects. The purpose of this study was to determine if the expression levels of DGCR6 and its duplicate copy DGCR6L in 22q11DS subjects are associated with the parent-of-origin of the deletion and childhood psychopathologies. Our investigation showed no evidence of parent-of-origin-related differences in expression of both DGCR6 and DGCR6L. However, we found that the variability in DGCR6 expression was significantly greater in 22q11DS children than in age and gender-matched control individuals. Children with 22q11DS who had anxiety disorders had significantly lower DGCR6 expression, especially in subjects with the deletion on the maternal chromosome, despite the lack of imprinting. Our findings indicate that epigenetic mechanisms other than imprinting contribute to the dysregulation of these genes and the associated childhood psychopathologies observed in individuals with 22q11DS. Further studies are now needed to test the usefulness of DGCR6 and DGCR6L expression and alterations in the epigenome at these loci in predicting childhood anxiety and associated adult-onset pathologies in 22q11DS subjects. PMID:22832905

  13. Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome.

    PubMed

    Gothelf, Doron; Hoeft, Fumiko; Ueno, Takefumi; Sugiura, Lisa; Lee, Agatha D; Thompson, Paul; Reiss, Allan L

    2011-03-01

    The primary objective of the current prospective study was to examine developmental patterns of voxel-by-voxel gray and white matter volumes (GMV, WMV, respectively) that would predict psychosis in adolescents with 22q11.2 deletion syndrome (22q11.2DS), the most common known genetic risk factor for schizophrenia. We performed a longitudinal voxel-based morphometry analysis using structural T1 MRI scans from 19 individuals with 22q11.2DS and 18 typically developing individuals. In 22q11.2DS, univariate analysis showed that greater reduction in left dorsal prefrontal cortical (dPFC) GMV over time predicted greater psychotic symptoms at Time2. This dPFC region also showed significantly reduced volumes in 22q11.2DS compared to typically developing individuals at Time1 and 2, greater reduction over time in 22q11.2DS COMT(Met) compared to COMT(Val), and greater reduction in those with greater decline in verbal IQ over time. Leave-one-out Multivariate pattern analysis results (MVPA) on the other hand, showed that patterns of GM and WM morphometric changes over time in regions including but not limited to the dPFC predicted risk for psychotic symptoms (94.7-100% accuracy) significantly better than using univariate analysis (63.1%). Additional predictive brain regions included medial PFC and dorsal cingulum. This longitudinal prospective study shows novel evidence of morphometric spatial patterns predicting the development of psychotic symptoms in 22q11.2DS, and further elucidates the abnormal maturational processes in 22q11.2DS. The use of neuroimaging using MVPA may hold promise to predict outcome in a variety of neuropsychiatric disorders.

  14. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    ERIC Educational Resources Information Center

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  15. Partial trisomy 2q due to a maternal balanced translocation t(2;22) (q31;p12)

    SciTech Connect

    Steinberg, L.S.; Bleiman, M.; Punnett, H.H.

    1994-09-01

    Features consistent among reported patients with 2q duplications due to familial translocations or de novo duplications include pre- and postnatal growth failure, ocular defects such as congenital glaucoma, cardiac defects, micrognathia, urogenital defects, renal defects, connective tissue laxity, neurologic defects, and dermatologic abnormalities. Genotype/phenotype correlations of patients with trisomy 2q due to familial translocations are complicated by the presence of the deletions of the other chromosome involved. We have had the opportunity to observe `pure` trisomy 2q31-qter resulting from adjacent-1 segregation from 46,XX,t(2;22)(q31;p12) in a carrier mother with apparent loss of the 22 NOR region. He was the 2453 gm product of a gestation complicated by gestational diabetes to a 29-year-old G1 P0 mother and a 30-year-old father. At birth, he was noted to have hypotonia, micrognathia, microphthalmia, left cryptorchidism, hypospadias, bilateral clinodactyly of the fifth digits, mild hyperextensibility of the joints, dry skin disorder, and bilateral hydronephrosis by ultrasound. He was treated for hypoglycemia in the nursery and had a vesicostomy at two months for vesicoureteral reflux. A hearing test at two months found moderate hearing loss in the right ear and mild to moderate hearing loss in the left ear. At 3 months he had surgery for a PDA and bilateral glaucoma and was treated for periods of hypothermia and type IV renal tubular acidosis. This patient and others with unbalanced translocations involving the NOR region of an acrocentric chromosome allow for genotype/phenotype correlation of the `pure` trisomic region.

  16. A Comparative Study of Cognition and Brain Anatomy between Two Neurodevelopmental Disorders: 22q11.2 Deletion Syndrome and Williams Syndrome

    ERIC Educational Resources Information Center

    Campbell, Linda E.; Stevens, Angela; Daly, Eileen; Toal, Fiona; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G. M.; Murphy, Kieran C.

    2009-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is associated with intellectual disability, poor social interaction and a high prevalence of psychosis. However, to date there have been no studies comparing cognition and neuroanatomical characteristics of 22q11DS with other syndromes to investigate if the cognitive strengths and difficulties and…

  17. Individuals with 22q11.2 Deletion Syndrome Are Impaired at Explicit, but Not Implicit, Discrimination of Local Forms Embedded in Global Structures

    ERIC Educational Resources Information Center

    Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mélanie; Debbané, Martin; Eliez, Stephan

    2014-01-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals…

  18. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  19. Association of the Family Environment with Behavioural and Cognitive Outcomes in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Allen, T. M.; Hersh, J.; Schoch, K.; Curtiss, K.; Hooper, S. R.; Shashi, V.

    2014-01-01

    Background: Children with 22q11.2 deletion syndrome (22q11DS) are at risk for social-behavioural and neurocognitive sequelae throughout development. The current study examined the impact of family environmental characteristics on social-behavioural and cognitive outcomes in this paediatric population. Method: Guardians of children with 22q11DS…

  20. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  1. Applicability of the Nonverbal Learning Disability Paradigm for Children With 22q11.2 Deletion Syndrome

    PubMed Central

    Schoch, Kelly; Harrell, Waverly; Hooper, Stephen R.; Ip, Edward H.; Saldana, Santiago; Kwapil, Thomas R.; Shashi, Vandana

    2014-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans. Nonverbal learning disability (NLD) has been used to describe the strengths and deficits of children with 22q11DS, but the applicability of the label for this population has seldom been systematically evaluated. The goal of the current study was to address how well the NLD diagnosis characterizes children and adolescents with 22q11DS. A total of 74 children and adolescents with 22q11DS were given neurocognitive, socioemotional, and academic assessments to measure aspects of NLD. Of the cohort, 20% met at least 7 of 9 assessed criteria for NLD; 25% showed verbal skills exceeding their nonverbal skills as assessed by an IQ test; and 24% showed the good rote verbal capacity commonly associated with NLD. Hypothesizing that if the entire cohort did not show consistent NLD characteristics, the descriptor might be more accurate for a distinct subgroup, the authors used latent class analysis to divide participants into three subgroups. However, the lines along which the groups broke out were more related to general functioning level than to NLD criteria. All three groups showed a heightened risk for psychiatric illness, highlighting the importance of careful mental health monitoring for all children with 22q11DS. PMID:22572413

  2. Early motor development in young children with 22q.11 deletion syndrome and a conotruncal heart defect.

    PubMed

    Swillen, Ann; Feys, Hilde; Adriaens, Tamara; Nelissen, Loes; Mertens, Luc; Gewillig, Marc; Devriendt, Koen; Fryns, Jean-Pierre

    2005-12-01

    Velocardiofacial syndrome is identified by a submicroscopic deletion of chromosome 22q.11 (del22q.11). This study presents data on the early motor development and behaviour of 11 children (8 males, 3 females) with del22q.11 (mean age 41mo, SD 9.7mo) with a congenital heart defect. To control for the impact of the congenital heart defect, a control group of 19 children (15 males, 4 females; mean age 46mo, SD 9mo) with the same types of congenital heart defects but without del22q.11 was selected. Motor development in both groups was measured with the Peabody Developmental Motor Scales-2. Behaviour was assessed with the Child Behaviour Checklist. Children with del22q.11 scored significantly lower (p<0.05) on motor performance than the children of the control group. Most deficient motor skills were found for the subtests Locomotion and Stationary. On the behaviour questionnaire, a statistically significant (p<0.05) difference between the two groups was found only for the subscale Withdrawn. These data reveal a significant motor delay in many young children with del22q.11, which is not caused by the presence of a congenital heart defect or by behavioural features.

  3. Epilepsy and Other Neuropsychiatric Manifestations in Children and Adolescents with 22q11.2 Deletion Syndrome

    PubMed Central

    Kim, Eun-Hee; Yum, Mi-Sun; Lee, Beom-Hee; Kim, Hyo-Won; Lee, Hyun-Jeoung; Kim, Gu-Hwan; Lee, Yun-Jeong; Yoo, Han-Wook

    2016-01-01

    Background and Purpose 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome. Epilepsy and other neuropsychiatric (NP) manifestations of this genetic syndrome are not uncommon, but they are also not well-understood. We sought to identify the characteristics of epilepsy and other associated NP manifestations in patients with 22q11.2DS. Methods We retrospectively analyzed the medical records of 145 child and adolescent patients (72 males and 73 females) with genetically diagnosed 22q11.2DS. The clinical data included seizures, growth chart, psychological reports, development characteristics, school performance, other clinical manifestations, and laboratory findings. Results Of the 145 patients with 22q11.2DS, 22 (15.2%) had epileptic seizures, 15 (10.3%) had developmental delay, and 5 (3.4%) had a psychiatric illness. Twelve patients with epilepsy were classified as genetic epilepsy whereas the remaining were classified as structural, including three with malformations of cortical development. Patients with epilepsy were more likely to display developmental delay (odds ratio=3.98; 95% confidence interval=1.5-10.5; p=0.005), and developmental delay was more common in patients with structural epilepsy than in those with genetic epilepsy. Conclusions Patients with 22q11.2DS have a high risk of epilepsy, which in these cases is closely related to other NP manifestations. This implies that this specific genetic locus is critically linked to neurodevelopment and epileptogenesis. PMID:26754781

  4. Dictyostelium myosin II G680V suppressors exhibit overlapping spectra of biochemical phenotypes including facilitated phosphate release.

    PubMed Central

    Wu, Y; Nejad, M; Patterson, B

    1999-01-01

    We have biochemically characterized 13 intragenic suppressors of the G680V mutation of Dictyostelium myosin II. In the absence of the G680V mutation, the suppressors result in a number of deviant behaviors, most commonly an increase in the basal (actin-independent) ATPase of the motor. This phenotype is complementary to that of the G680V mutant and supports our proposal that the latter impairs phosphate release. Different subsets of the mutants also suffer from poor ATPase enhancement by 1 mg/ml actin, failure to release from actin in the presence of ATPgammaS (or ADP and salt), and excessive release from actin in the presence of ADP. The patterns of suppressor behaviors suggest that, in general, they are facilitating P(i)-releasing state(s) of the motor, but that different individual suppressors may secondarily perturb other states or actions of the motor. PMID:10471704

  5. A case report of 22q11 deletion syndrome confirmed by array-CGH method

    PubMed Central

    Sedghi, Maryam; Nouri, Narges; Abdali, Hossein; Memarzadeh, Mehrdad; Nouri, Nayereh

    2012-01-01

    Velo-cardio-facial syndrome (VCFS) is caused by a submicroscopic deletion on the long arm of chromosome 22 and affects approximately 1 in 4000 persons, making it the second most prevalent genetic syndrome after Down syndrome and the most common genetic syndrome associated with cleft palate. Most of the 22q11.2 deletion cases are new occurrences or sporadic; however, in about 10 % of families, the deletion is inherited and other family members are affected or at risk for passing this deletion to their children. This report describes a 1.5 years-old male child with clinical signs of velo-cardio-facial syndrome (VCFS) presented with heart defect, soft cleft palate, developmental delay, acrocephaly, seizure, MRI abnormalities and descriptive facial feature, such as hypertelorism. Array-CGH test was done to confirm the diagnosis; the result revealed a 2.6 Mbp deletion in 22q11.2 chromosome that containing TBX1 and COMT genes. Our data suggest that haploinsufficiency of TBX1 gene is probably a major contributor to some of the syndrome characteristic signs, such as heart defect. Because of developmental delay and dysmorphic facial feature were observed in the index's mother and relatives, inherited autosomal dominant form of VCF is probable, and MLPA (multiplex ligation-dependent probe amplification) test should be performed for parents to estimate the recurrent risk in next pregnancy. PMID:23267387

  6. A chromosome 10 variant with a 12 Mb inversion [inv(10)(q11.22q21.1)] identical by descent and frequent in the Swedish population.

    PubMed

    Entesarian, Miriam; Carlsson, Birgit; Mansouri, Mahmoud Reza; Stattin, Eva-Lena; Holmberg, Eva; Golovleva, Irina; Stefansson, Hreinn; Klar, Joakim; Dahl, Niklas

    2009-03-01

    We identified a paracentric inversion of chromosome 10 [inv(10)(q11.22q21.1)] in 0.20% of Swedish individuals (15/7,439) referred for cytogenetic analysis. A retrospective analysis of 8,896 karyotypes from amniocenteses in Sweden revealed a carrier frequency of 0.079% (7/8,896) for the inversion. Cloning and detailed analysis of the inversion breakpoint regions show enrichment for interspersed repeat elements and AT-stretches. The centromeric breakpoint coincides with that of a predicted inversion from HapMap data, which suggests that this region is involved in several chromosome 10 variants. No known gene or predicted transcript are disrupted by the inversion which spans approximately 12 Mb. Carriers from four non-related Swedish families have identical inversion breakpoints and haplotype analysis confirmed that the rearrangement is identical by descent. Diagnosis was retrieved in 6 out of the 15 carriers referred for cytogenetic analysis. No consistent phenotype was found to be associated with the inversion. Our study demonstrates that the inv(10)(q11.22q21.1) is a rare and inherited chromosome variant with a broad geographical distribution in Sweden.

  7. The gene for death agonist BID maps to the region of human 22q11.2 duplicated in cat eye syndrome chromosomes and to mouse chromosome 6.

    PubMed

    Footz, T K; Birren, B; Minoshima, S; Asakawa, S; Shimizu, N; Riazi, M A; McDermid, H E

    1998-08-01

    Cat eye syndrome (CES) is associated with a duplication of a segment of human chromosome 22q11.2. Only one gene, ATP6E, has been previously mapped to this duplicated region. We now report the mapping of the human homologue of the apoptotic agonist Bid to human chromosome 22 near locus D22S57 in the CES region. Dosage analysis demonstrated that BID is located just distal to the CES region critical for the majority of malformations associated with the syndrome (CESCR), as previously defined by a single patient with an unusual supernumerary chromosome. However, BID remains a good candidate for involvement in CES-related mental impairment, and its overexpression may subtly add to the phenotype of CES patients. Our mapping of murine Bid confirms that the synteny of the CESCR and the 22q11 deletion syndrome critical region immediately telomeric on human chromosome 22 is not conserved in mice. Bid and adjacent gene Atp6e were found to map to mousechromosome 6, while the region homologous to the DGSCR is known to map to mouse chromosome 16.

  8. Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development.

    PubMed

    Polanco, Juan Carlos; Wilhelm, Dagmar; Davidson, Tara-Lynne; Knight, Deon; Koopman, Peter

    2010-02-01

    Male development in mammals is normally initiated by the Y-linked gene Sry, which activates expression of Sox9, leading to a cascade of gene activity required for testis formation. Although defects in this genetic cascade lead to human disorders of sex development (DSD), only a dozen DSD genes have been identified, and causes of 46,XX DSD (XX maleness) other than SRY translocation are almost completely unknown. Here, we show that transgenic expression of Sox10, a close relative of Sox9, in gonads of XX mice resulted in development of testes and male physiology. The degree of sex reversal correlated with levels of Sox10 expression in different transgenic lines. Sox10 was expressed at low levels in primordial gonads of both sexes during normal mouse development, becoming male-specific during testis differentiation. SOX10 protein was able to activate transcriptional targets of SOX9, explaining at a mechanistic level its ability to direct male development. Because over-expression of SOX10 alone is able to mimic the XX DSD phenotypes associated with duplication of human chromosome 22q13, and given that human SOX10 maps to 22q13.1, our results functionally implicate SOX10 in the etiology of these DSDs.

  9. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation.

    PubMed

    Paronett, Elizabeth M; Meechan, Daniel W; Karpinski, Beverly A; LaMantia, Anthony-Samuel; Maynard, Thomas M

    2015-10-01

    Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.

  10. Multimodal investigation of triple network connectivity in patients with 22q11DS and association with executive functions.

    PubMed

    Padula, Maria C; Schaer, Marie; Scariati, Elisa; Maeder, Johanna; Schneider, Maude; Eliez, Stephan

    2017-04-01

    Large-scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting-state fMRI and DTI. Furthermore, we investigated if triple network impairments were related to executive dysfunctions or the presence of psychotic symptoms. Sixty-three patients with 22q11DS and sixty-eighty controls (age 6-33 years) were included in the study. Structural connectivity between main nodes of DMN, CEN, and SN was computed using probabilistic tractography. Functional connectivity was computed as the partial correlation between the time courses extracted from each node. Structural and functional connectivity measures were then correlated to executive functions and psychotic symptom scores. Our results showed mainly reduced structural connectivity within the CEN, DMN, and SN, in patients with 22q11DS compared with controls as well as reduced between-network connectivity. Functional connectivity appeared to be more preserved, with impairments being evident only within the DMN. Structural connectivity impairments were also related to executive dysfunctions. These findings show an association between triple network structural alterations and executive deficits in patients with the microdeletion, suggesting that 22q11DS and schizophrenia share common psychopathological mechanisms. Hum Brain Mapp 38:2177-2189, 2017. © 2017 Wiley Periodicals, Inc.

  11. Inv(7)(q22q36) in refactory anemia with excess blasts

    SciTech Connect

    Rayburn, J.; Stegeman, D.; Berger, C.

    1994-09-01

    Morphological review of bone marrow from an 89 year-old male revealed an immature cell population with increased blasts (25% CD34 positive). However, the morphology was not sufficiently clear to discriminate lymphoid from myeloid precursors. Immunophenotypically, there was evidence for both lymphoid and myeloid derivation with dual expression of CD5 and CD20, aberrant expression of CD19 versus CD20, and an increased CD13 population. Twenty percent (20%) of the cells were TdT positive. Cytogenetically, an inversion of chromosome 7, inv(7)(q22q36), was observed in 9 of 20 cells. This abnormality has been reported only once previously, in association with refractory anemia with excess blasts (RAEB). The patient, to date, has not developed an acute leukemic process, but remains in a myelodysplastic state, defined as RAEB.

  12. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome).

    PubMed

    McDonald-McGinn, Donna M; Sullivan, Kathleen E

    2011-01-01

    Chromosome 22q11.2 deletion syndrome is a common syndrome also known as DiGeorge syndrome and velocardiofacial syndrome. It occurs in approximately 1:4000 births, and the incidence is increasing due to affected parents bearing their own affected children. The manifestations of this syndrome cross all medical specialties, and care of the children and adults can be complex. Many patients have a mild to moderate immune deficiency, and the majority of patients have a cardiac anomaly. Additional features include renal anomalies, eye anomalies, hypoparathyroidism, skeletal defects, and developmental delay. Each child's needs must be tailored to his or her specific medical problems, and as the child transitions to adulthood, additional issues will arise. A holistic approach, addressing medical and behavioral needs, can be very helpful.

  13. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    PubMed Central

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  14. 22q11.2 deletion syndrome in patients admitted to a cardiac pediatric intensive care unit in Brazil.

    PubMed

    Rosa, Rafael F M; Pilla, Carlo B; Pereira, Vera L B; Flores, José A M; Golendziner, Eliete; Koshiyama, Dayane B; Hertz, Michele T; Ricachinevsky, Cláudia P; Roman, Tatiana; Varella-Garcia, Marileila; Paskulin, Giorgio A

    2008-07-01

    The 22q11.2 deletion syndrome (22q11DS) is one of the most recognizable causes of congenital heart defects (CHDs), but the frequency varies in non-selected populations. The purpose of this study was to determine the incidence and clinical features of patients with CHD and 22q11DS admitted to a pediatric cardiology intensive care unit in Brazil. In a prospective study, we evaluated a consecutive series of 207 patients with a CHD following a clinical protocol and cytogenetic analysis by high resolution karyotype and fluorescent in situ hybridization (FISH). 22q11DS was identified in four patients (2%), a frequency similar to studies that evaluated subjects with major CHDs in other countries. Despite this similarity, we believe that the low rate of prenatal identification of CHDs and the limited access of these patients to appropriate diagnosis and care, which occur in our region, could have had an influence on this frequency. It is possible that 22q11DS patients with a severe CHD could have died before having a chance to access a tertiary hospital, leading to an underestimate of its frequency.

  15. Low copy repeats mediate distal chromosome 22q11.2 deletions: sequence analysis predicts breakpoint mechanisms.

    PubMed

    Shaikh, Tamim H; O'Connor, Ronald J; Pierpont, Mary Ella; McGrath, James; Hacker, April M; Nimmakayalu, Manjunath; Geiger, Elizabeth; Emanuel, Beverly S; Saitta, Sulagna C

    2007-04-01

    Genomic disorders contribute significantly to genetic disease and, as detection methods improve, greater numbers are being defined. Paralogous low copy repeats (LCRs) mediate many of the chromosomal rearrangements that underlie these disorders, predisposing chromosomes to recombination errors. Deletions of proximal 22q11.2 comprise the most frequently occurring microdeletion syndrome, DiGeorge/Velocardiofacial syndrome (DGS/VCFS), in which most breakpoints have been localized to a 3 Mb region containing four large LCRs. Immediately distal to this region, there are another four related but smaller LCRs that have not been characterized extensively. We used paralog-specific primers and long-range PCR to clone, sequence, and examine the distal deletion breakpoints from two patients with de novo deletions mapping to these distal LCRs. Our results present definitive evidence of the direct involvement of LCRs in 22q11 deletions and map both breakpoints to the BCRL module, common to most 22q11 LCRs, suggesting a potential region for LCR-mediated rearrangement both in the distal LCRs and in the DGS interval. These are the first reported cases of distal 22q11 deletions in which breakpoints have been characterized at the nucleotide level within LCRs, confirming that distal 22q11 LCRs can and do mediate rearrangements leading to genomic disorders.

  16. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    PubMed

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  17. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis.

    PubMed Central

    Driscoll, D A; Salvin, J; Sellinger, B; Budarf, M L; McDonald-McGinn, D M; Zackai, E H; Emanuel, B S

    1993-01-01

    Deletions of chromosome 22q11 have been seen in association with DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). In the present study, we analysed samples from 76 patients referred with a diagnosis of either DGS or VCFS to determine the prevalence of 22q11 deletions in these disorders. Using probes and cosmids from the DiGeorge critical region (DGCR), deletions of 22q11 were detected in 83% of DGS and 68% of VCFS patients by DNA dosage analysis, fluorescence in situ hybridisation, or by both methods. Combined with our previously reported patients, deletions have been detected in 88% of DGS and 76% of VCFS patients. The results of prenatal testing for 22q11 deletions by FISH in two pregnancies are presented. We conclude that FISH is an efficient and direct method for the detection of 22q11 deletions in subjects with features of DGS and VCFS as well as in pregnancies at high risk for a deletion. Images PMID:8230155

  18. Unique Combination of 22q11 and 14qter Microdeletion Syndromes Detected Using Oligonucleotide Array-CGH

    PubMed Central

    Zrnová, E.; Vranová, V.; Šoukalová, J.; Slámová, I.; Vilémová, M.; Gaillyová, R.; Kuglík, P.

    2012-01-01

    We report an infant with a unique combination of 22q11 deletion syndrome and 14q terminal deletion syndrome. The proband had clinical symptoms compatible with diagnosis of 22q11 deletion syndrome: microcephaly, micrognathia, high-arched palate, hypertelorism, short palpebral fissures, square nasal root, prominent tubular nose, hypoplastic nasal alae, bulbous nasal tip, dysplastic low-set ears, short philtrum, and heart defect, but no cell-mediated immunodeficiency typical for the syndrome. G-banding and fluorescence in situ hybridization analyses revealed a karyotype 45,XY,der(14)t(14;22)(q32.3;q11.2),-22.ish del(14)(q32.33)(D14S1420-),del(22)(q11.2q11.2)(N25-). Subsequent analyses disclosed a translocation between chromosomes 14 and 22 in the proband's mother with a deleted 14q telomere. Using comparative genome hybridization on oligonucleotide-based microarray (array-CGH), the deletion at 22q11.21 in the size of ∼4.25 Mb was revealed in the proband as well as the deletion of the telomeric area at 14q32.33qter (∼3.24 Mb) in the proband and his mother. However, both the proband and his mother showed mild symptoms (microcephaly, thin lips, carp-shaped mouth) typical for patients with the described terminal 14q deletion syndrome. PMID:22511897

  19. Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data

    PubMed Central

    Mok, Kin Y; Sheerin, Una; Simón-Sánchez, Javier; Salaka, Afnan; Chester, Lucy; Escott-Price, Valentina; Mantripragada, Kiran; Doherty, Karen M; Noyce, Alastair J; Mencacci, Niccolo E; Lubbe, Steven J; Williams-Gray, Caroline H; Barker, Roger A; van Dijk, Karin D; Berendse, Henk W; Heutink, Peter; Corvol, Jean-Christophe; Cormier, Florence; Lesage, Suzanne; Brice, Alexis; Brockmann, Kathrin; Schulte, Claudia; Gasser, Thomas; Foltynie, Thomas; Limousin, Patricia; Morrison, Karen E; Clarke, Carl E; Sawcer, Stephen; Warner, Tom T; Lees, Andrew J; Morris, Huw R; Nalls, Mike A; Singleton, Andrew B; Hardy, John; Abramov, Andrey Y; Plagnol, Vincent; Williams, Nigel M; Wood, Nicholas W

    2016-01-01

    Summary Background Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. Methods We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on Aging, and International Parkinson's Disease Genomics Consortium studies), which were independent of the original reports of chromosome 22q11.2 deletion syndrome. We did case-control association analysis to compare the proportion of 22q11.2 deletions found, using the Fisher's exact test for the independent case-control studies and the Mantel-Haenszel test for the meta-analyses. We retrieved clinical details of patients with Parkinson's disease who had 22q11.2 deletions from the medical records of these patients. Findings We included array-based copy number variation data from 9387 patients with Parkinson's disease and 13 863 controls. Eight patients with Parkinson's disease and none of the controls had 22q11.2 deletions (p=0·00082). In the 8451 patients for whom age at onset data were available, deletions at 22q11.2 were associated with Parkinson's disease age at onset (Mann-Whitney U test p=0·001). Age at onset of Parkinson's disease was lower in patients carrying a 22q11.2 deletion (median 37 years, 95% CI 32·0–55·5; mean 42·1 years [SD 11·9]) than in those who did not carry a deletion (median 61 years, 95% CI 60·5–61·0; mean 60·3 years [SD 12·8]). A 22q11.2 deletion was present in more patients with early-onset (p<0·0001) and late-onset Parkinson's disease (p=0·016) than in controls, and in more patients with early-onset than late-onset Parkinson's disease (p=0·005). Interpretation Clinicians should be alert to the possibility of 22q11.2 deletions in

  20. Independent de novo 22q11.2 deletions in first cousins with DiGeorge/velocardiofacial syndrome.

    PubMed

    Saitta, Sulagna C; Harris, Stacy E; McDonald-McGinn, Donna M; Emanuel, Beverly S; Tonnesen, Melissa K; Zackai, Elaine H; Seitz, Suzanne C; Driscoll, Deborah A

    2004-01-30

    Deletions of chromosome 22q11.2 are found in the vast majority of patients with DiGeorge/velocardiofacial syndrome (DGS/VCFS). This most frequent microdeletion syndrome is estimated to occur in 1 in 4,000 live births. The majority of deletions are de novo, with 10% or less inherited from an affected parent. Here, we report two separate families with recurrence of a 22q11.2 deletion in first cousins. In each family, unaffected siblings (brother and sister) had an affected child. Fluorescence in situ hybridization (FISH) studies of the parents of each affected child were normal and hence, relatives were not considered at an increased risk for recurrence in another pregnancy. We used highly polymorphic microsatellite repeat markers from within 22q11.2 to determine the parental origin of each cousin's deletion and to assess whether parental germline mosaicism for the 22q11.2 deletion might be a factor in these cases. This analysis confirmed that in each case, the deletion occurred on a chromosome 22 derived from unrelated parents, consistent with independent de novo deletion events. Thus, we concluded that germline mosaicism as the underlying mechanism for affected cousins in these families was unlikely. Our findings underscore the high frequency with which the 22q11.2 deletion occurs in the general population and demonstrate the important role that PCR-based parental origin determination can have in recurrence risk counselling. Furthermore, relatives of affected individuals may benefit from genetic counselling and consider prenatal testing for the 22q11.2 deletion in future pregnancies, despite a low recurrence risk.

  1. Chromosomal orientation of the lambda light chain locus: V lambda is proximal to C lambda in 22q11.

    PubMed Central

    Emanuel, B S; Cannizzaro, L A; Magrath, I; Tsujimoto, Y; Nowell, P C; Croce, C M

    1985-01-01

    We have demonstrated that the chromosomal breakpoint at 22q11 of a Burkitt lymphoma cell line (PA682) with an 8;22 translocation interrupts the variable region of the lambda light chain locus. In these cells, all of the C lambda and some V lambda sequences translocate to the 8q+ chromosome whereas some V lambda sequences remain on the 22q-. These results indicate that the lambda light chain locus on the long arm of chromosome 22 is oriented such that V lambda is proximal to C lambda. Images PMID:3923432

  2. Positional mapping of loci in the DiGeorge critical region at chromosome 22q11 using a new marker (D22S183).

    PubMed

    Mulder, M P; Wilke, M; Langeveld, A; Wilming, L G; Hagemeijer, A; van Drunen, E; Zwarthoff, E C; Riegman, P H; Deelen, W H; van den Ouweland, A M

    1995-08-01

    The majority of patients with DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS) and a minority of patients with non-syndromic conotruncal heart defects are hemizygous for a region of chromosome 22q11. The chromosomal region that is commonly deleted is larger than 2 Mb. It has not been possible to narrow the smallest region of overlap (SRO) of the deletions to less than ca 500 kb, which suggests that DGS/VCFS might be a contiguous gene syndrome. The saturation cloning of the SRO is being carried out, and one gene (TUPLE1) has been identified. By using a cosmid probe (M51) and fluorescence in situ hybridization, we show here that the anonymous DNA marker locus D22S183 is within the SRO, between TUPLE1 and D22S75 (probe N25). A second locus with weak homology to D22S183, recognized by cosmid M56, lies immediately outside the common SRO of the DGS and VCFS deletions, but inside the SRO of the DGS deletions. D22S183 sequences are strongly conserved in primates and weaker hybridizing signals are found in DNA of other mammalian species; no transcripts are however detected in polyA+ RNA from various adult human organs. Probe M51 allows fast reliable screening for 22q11 deletions using fluorescence in situ hybridization. A deletion was found in 11 out of 12 DGS patients and in 3 out of 7 VCFS patients. Two patients inherited the deletion from a parent with mild (atypical) symptoms.

  3. Mutation in a gene for type I procollagen (COL1A2) in a woman with postmenopausal osteoporosis: Evidence for phenotypic and genotypic overlap with mild osteogenesis imperfecta

    SciTech Connect

    Spotila, L.D.; Constantinou, C.D.; Sereda, L.; Ganguly, A.; Prockop, D.J. ); Riggs, B.L. )

    1991-06-15

    Mutations in the two genes for type I collagen (COL1A1 or COL1A2) cause osteogenesis imperfecta (OI), a heritable disease characterized by moderate to extreme brittleness of bone early in life. Here, the authors show that a 52-year-old post menopausal woman with severe osteopenia and a compression fracture of a thoracic vertebra had a mutation in the gene for the {alpha}2(I) chain of type I collagen (COL1A2) similar to mutations that cause OI. cDNA was prepared from the woman's skin fibroblast RNA and assayed for the presence of a mutation by treating DNA heteroduplexes with carbodiimide. The results indicated a sequence variation in the region encoding amino acid residues 660-667 of the {alpha}2(I) chain. Further analysis demonstrated a single-base mutation that caused a serine-for-glycine substitution at position 661 of the {alpha}2(I) triple-helical domain. The substitution produced posttranslational overmodification of the collagen triple helix, as is seen with most glycine substitutions that cause OI. The patient had a history of five previous fractures, slightly blue sclerae, and slight hearing loss. Therefore, the results suggest that there may be phenotypic and genotypic overlap between mild osteogenesis imperfecta and postmenopausal osteoporosis, and that a subset of women with postmenopausal osteoporosis may have mutations in the genes for type I procollagen.

  4. Potential linkage for schizophrenia on chromosome 22q12-q13: A replication study

    SciTech Connect

    Schwab, S.G.; Bondy, B.; Wildenauer, D.B.

    1995-10-09

    In an attempt to replicate a potential linkage on chromosome 22q12-q13.1 reported by Pulver et al., we have analyzed 4 microsatellite markers which span this chromosomal region, including the IL2RB locus, for linkage with schizophrenia in 30 families from Israel and Germany. Linkage analysis by pairwise lod score analysis as well as by multipoint analysis did not provide evidence for a single major gene locus. However, a lod score of Z{sub max} = 0.612 was obtained for a dominant model of inheritance with the marker D22S304 at recombination fraction 0.2 by pairwise analysis. In addition, using a nonparametric method, sib pair analysis, a P value of 0.068 corresponding to a lod score of 0.48 was obtained for this marker. This finding, together with those of Pulver et al., is suggestive of a genetic factor in this region, predisposing for schizophrenia in a subset of families. Further studies using nonparametric methods should be conducted in order to clarify this point. 32 refs., 1 fig., 4 tabs.

  5. Mitochondrial neurogastrointestinal encephalomyopathy syndrome maps to chromosome 22q13.32-qter.

    PubMed Central

    Hirano, M; Garcia-de-Yebenes, J; Jones, A C; Nishino, I; DiMauro, S; Carlo, J R; Bender, A N; Hahn, A F; Salberg, L M; Weeks, D E; Nygaard, T G

    1998-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is a rare, multisystem disorder characterized clinically by ptosis, progressive external ophthalmoplegia, gastrointestinal dysmotility, leukoencephalopathy, thin body habitus, and myopathy. Laboratory studies reveal defects of oxidative-phosphorylation and multiple mtDNA deletions frequently in skeletal muscle. We studied four ethnically distinct families affected with this apparently autosomal recessive disorder. Probands from each family were shown, by Southern blot, to have multiple mtDNA deletions in skeletal muscle. We mapped the MNGIE locus to 22q13.32-qter, distal to D22S1161, with a maximum two-point LOD score of 6.80 at locus D22S526. Cosegregation of MNGIE with a single chromosomal region in families with diverse ethnic backgrounds suggests that we have mapped an important locus for this disorder. We found no evidence to implicate three candidate genes in this region, by using direct sequence analysis for DNA helicase II and by assaying enzyme activities for arylsulfatase A and carnitine palmitoyltransferase. PMID:9683610

  6. A defect in early myogenesis causes Otitis media in two mouse models of 22q11.2 Deletion Syndrome

    PubMed Central

    Fuchs, Jennifer C.; Linden, Jennifer F.; Baldini, Antonio; Tucker, Abigail S.

    2015-01-01

    Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss and is a common feature of a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here, we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1+/−) presenting with bi- or unilateral OME, the fourth pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. PMID:25452432

  7. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders

    PubMed Central

    Drew, Liam J.; Crabtree, Gregg W.; Markx, Sander; Stark, Kimberly L.; Chaverneff, Florence; Xu, Bin; Mukai, Jun; Fenelon, Karine; Hsu, Pei-Ken; Gogos, Joseph A.; Karayiorgou, Maria

    2010-01-01

    Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25–30% and such deletions account for as many as 1–2% of cases of sporadic schizophrenia in the general population. Access to a relatively homogeneous population of individuals that suffer from schizophrenia as the result of a shared etiological factor and the potential to generate etiologically valid mouse models provides an immense opportunity to better understand the pathobiology of this disease. In this review we survey the clinical literature associated with the 22q11.2 microdeletions with a focus on neuroanatomical changes. Then, we highlight results from work modeling this structural mutation in animals. The key biological pathways disrupted by the mutation are discussed and how these changes impact the structure and function of neural circuits is described. PMID:20920576

  8. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    SciTech Connect

    Nickel, R.E.; Pillers, D.M.; Merkens, M.; Magenis, R.E.; Zonana, J.; Driscoll, D.A.; Emanuel, B.S.

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.

  9. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome.

    PubMed

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology.

  10. A Prospective Cross-Sectional Study of Speech in Patients with the 22q11 Deletion Syndrome.

    ERIC Educational Resources Information Center

    Persson, Christina; Lohmander, Anette; Jonsson, Radi; Oskarsdottir, Solveig; Soderpalm, Ewa

    2003-01-01

    A study investigated a consecutive series of 65 participants (ages 3-33) with a confirmed 22q11.2 deletion, to ascertain the frequency and severity of articulation difficulties, velopharyngeal impairment (VPI), and intelligibility. The majority had VPI; over half to such a degree that surgery had been performed or was considered necessary.…

  11. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome

    PubMed Central

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    ABSTRACT The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology. PMID:27500073

  12. Velo-cardio-facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region.

    PubMed

    Nickel, R E; Pillers, D A; Merkens, M; Magenis, R E; Driscoll, D A; Emanuel, B S; Zonana, J

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both also have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletions has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions.

  13. Recurrence risks for different pregnancy outcomes and meiotic segregation analysis of spermatozoa in carriers of t(1;11)(p36.22;q12.2).

    PubMed

    Midro, Alina Teresa; Panasiuk, Barbara; Stasiewicz-Jarocka, Beata; Olszewska, Marta; Wiland, Ewa; Myśliwiec, Marta; Kurpisz, Maciej; Shaffer, Lisa G; Gajecka, Marzena

    2014-12-01

    Cumulative data obtained from two relatively large pedigrees of a unique reciprocal chromosomal translocation (RCT) t(1;11)(p36.22;q12.2) ascertained by three miscarriages (pedigree 1) and the birth of newborn with hydrocephalus and myelomeningocele (pedigree 2) were used to estimate recurrence risks for different pregnancy outcomes. Submicroscopic molecular characterization by fluorescent in situ hybridization (FISH) of RCT break points in representative carriers showed similar rearrangements in both families. Meiotic segregation patterns after sperm analysis by three-color FISH of one male carrier showed all possible outcomes resulting from 2:2 and 3:1 segregations. On the basis of empirical survival data, we suggest that only one form of chromosome imbalance resulting in monosomy 1p36.22→pter with trisomy 11q12.2→qter may be observed in progeny at birth. Segregation analysis of these pedigrees was performed by the indirect method of Stengel-Rutkowski and showed that probability rate for malformed child at birth due to an unbalanced karyotype was 3/48 (6.2±3.5%) after ascertainment correction. The risk for stillbirths/early neonatal deaths was -/48 (<1.1%) and for miscarriages was 17/48 (35.4±6.9%). However, the probability rate for children with a normal phenotype at birth was 28/48 (58.3±7.1%). The results obtained from this study may be used to determine the risks for the various pregnancy outcomes for carriers of t(1;11)(p36.22;q12.2) and can be used for genetic counseling of carriers of this rearrangement.

  14. Facial emotion perception by intensity in children and adolescents with 22q11.2 deletion syndrome.

    PubMed

    Leleu, Arnaud; Saucourt, Guillaume; Rigard, Caroline; Chesnoy, Gabrielle; Baudouin, Jean-Yves; Rossi, Massimiliano; Edery, Patrick; Franck, Nicolas; Demily, Caroline

    2016-03-01

    Difficulties in the recognition of emotions in expressive faces have been reported in people with 22q11.2 deletion syndrome (22q11.2DS). However, while low-intensity expressive faces are frequent in everyday life, nothing is known about their ability to perceive facial emotions depending on the intensity of expression. Through a visual matching task, children and adolescents with 22q11.2DS as well as gender- and age-matched healthy participants were asked to categorise the emotion of a target face among six possible expressions. Static pictures of morphs between neutrality and expressions were used to parametrically manipulate the intensity of the target face. In comparison to healthy controls, results showed higher perception thresholds (i.e. a more intense expression is needed to perceive the emotion) and lower accuracy for the most expressive faces indicating reduced categorisation abilities in the 22q11.2DS group. The number of intrusions (i.e. each time an emotion is perceived as another one) and a more gradual perception performance indicated smooth boundaries between emotional categories. Correlational analyses with neuropsychological and clinical measures suggested that reduced visual skills may be associated with impaired categorisation of facial emotions. Overall, the present study indicates greater difficulties for children and adolescents with 22q11.2DS to perceive an emotion in low-intensity expressive faces. This disability is subtended by emotional categories that are not sharply organised. It also suggests that these difficulties may be associated with impaired visual cognition, a hallmark of the cognitive deficits observed in the syndrome. These data yield promising tracks for future experimental and clinical investigations.

  15. The diverse clinical features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome).

    PubMed

    Maggadottir, Solrun Melkorka; Sullivan, Kathleen E

    2013-01-01

    A 2-year-old boy with chromosome 22q11.2 deletion syndrome was referred for recurrent sinopulmonary infections. He was diagnosed shortly after birth by a fluorescence in situ hybridization test that was performed due to interrupted aortic arch type B. He had no hypocalcemia, and his recovery from cardiac repair was uneventful. He had difficulty feeding and gained weight slowly, but, otherwise, there were no concerns during his first year of life. At 15 months of age, he began to develop significant otitis media and bronchitis. He was hospitalized once for pneumonia at 18 months of age and has never been off antibiotics for more than 1 week since then. He has not had any previous immunologic evaluation. Recurrent sinopulmonary infections in a child with chromosome 22q11.2 deletion syndrome can have the same etiologies as in any other child. Atopy, anatomic issues, cystic fibrosis, and new environmental exposures could be considered in this setting. Early childhood can be problematic for patients with chromosome 22q11.2 deletion syndrome due to unfavorable drainage of the middle ear and sinuses. Atopy occurs at a higher frequency in 22q11.2 deletion syndrome, and these children also have a higher rate of gastroesophageal reflux and aspiration than the general population. As would be appropriate for any child who presents with recurrent infections at 2 years of age, an immunologic evaluation should be performed. In this review, we will highlight recent findings and new data on the management of children and adults with chromosome 22q11.2 deletion syndrome.

  16. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: Illuminating the developmental relationship to risk for psychosis

    PubMed Central

    Prasad, Sarah; Katina, Stanislav; Hennessy, Robin J.; Murphy, Kieran C.; Bowman, Adrian W.

    2015-01-01

    Persons with 22q11.2 deletion syndrome (22q11.2DS) are characterized inter alia by facial dysmorphology and greatly increased risk for psychotic illness. Recent studies indicate facial dysmorphology in adults with schizophrenia. This study evaluates the extent to which the facial dysmorphology of 22q11.2DS is similar to or different from that evident in schizophrenia. Twenty‐one 22q11.2DS‐sibling control pairs were assessed using 3D laser surface imaging. Geometric morphometrics was applied to 30 anatomical landmarks, 480 geometrically homologous semi‐landmarks on curves and 1720 semi‐landmarks interpolated on each 3D facial surface. Principal component (PC) analysis of overall shape space indicated PC2 to strongly distinguish 22q11.2DS from controls. Visualization of PC2 indicated 22q11.2DS and schizophrenia to be similar in terms of overall widening of the upper face, lateral displacement of the eyes/orbits, prominence of the cheeks, narrowing of the lower face, narrowing of nasal prominences and posterior displacement of the chin; they differed in terms of facial length (increased in 22q11.2DS, decreased in schizophrenia), mid‐face and nasal prominences (displaced upwards and outwards in 22q11.2DS, less prominent in schizophrenia); lips (more prominent in 22q11.2DS; less prominent in schizophrenia) and mouth (open mouth posture in 22q11.2DS; closed mouth posture in schizophrenia). These findings directly implicate dysmorphogenesis in a cerebral‐craniofacial domain that is common to 22q11.2DS and schizophrenia and which may repay further clinical and genetic interrogation in relation to the developmental origins of psychotic illness. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:25691406

  17. Accuracy in identification of patients with 22q11.2 deletion by likely care providers using facial photographs.

    PubMed

    Becker, Devra B; Pilgram, Thomas; Marty-Grames, Lynn; Govier, Daniel P; Marsh, Jeffrey L; Kane, Alex A

    2004-11-01

    Numerous facial characteristics are associated with velocardiofacial syndrome. Care providers may use these facial characteristics to identify patients who may benefit from fluorescence in situ hybridization genetic testing to determine the presence of the 22q11.2 deletion. The purpose of this study was to test the hypothesis that experienced care providers were able to correctly diagnose the 22q11.2 deletion on the basis of studying frontal facial photographs. After approval was obtained from the human studies committee, patients who had undergone fluorescence in situ hybridization genetics testing for the presence of a 22q11.2 deletion were asked to submit two frontal photographs: one at infancy and one beyond the second birthday. These photographs were randomized, made anonymous, and then placed on a secure Web site. Specialists in the fields of plastic surgery, otolaryngology, genetics, and speech pathology were asked to evaluate their experience and confidence levels in diagnosing a 22q11.2 deletion and were then asked to rate the photographs by likelihood of deletion using a five-point Likert scale. Thirty-two specialists (10 surgeons, nine geneticists, and 13 speech pathologists) participated in the study. On the basis of clear responses, respondents predicted the presence (sensitivity) and absence (specificity) of the 22q11.2 deletion at chance levels. Of the remaining responses, 20 to 25 percent were unsure and 20 to 25 percent were clearly wrong. When an unsure response was treated as a weak positive, the results favored sensitivity slightly, with a sensitivity of 70 percent and a specificity of 50 percent. Sensitivity improved somewhat with experience, as measured by the number of patients seen per year. The prediction of the presence or absence of the 22q11.2 deletion at chance levels suggests that the ability to diagnose on the basis of appearance alone is not a sufficient diagnostic tool. Although the ability does increase with experience, it is of

  18. Cognitive remediation for adolescents with 22q11 deletion syndrome (22q11DS): A preliminary study examining effectiveness, feasibility, and fidelity of a hybrid strategy, remote and computer-based intervention

    PubMed Central

    Mariano, Margaret A.; Tang, Kerri; Kurtz, Matthew; Kates, Wendy R.

    2015-01-01

    Background 22q11DS is a multiple anomaly syndrome involving intellectual and behavioral deficits, and increased risk for schizophrenia. As cognitive remediation (CR) has recently been found to improve cognition in younger patients with schizophrenia, we investigated the efficacy, feasibility, and fidelity of a remote, hybrid strategy, computerized CR program in youth with 22q11DS. Methods A longitudinal design was implemented in which 21 participants served as their own controls. Following an eight month baseline period in which no interventions were provided, cognitive coaches met with participants remotely for CR via video conferencing three times a week over a targeted 8 month timeframe and facilitated their progress through the intervention, offering task-specific strategies. A subset of strategies were examined for fidelity. Outcomes were evaluated using a neurocognitive test battery at baseline, pre-treatment and post-treatment. Results All participants adhered to the intervention. The mean length of the treatment phase was 7.96 months. A moderately high correlation (intraclass correlation coefficient, 0.73) was found for amount and type of strategies offered by coaches. Participants exhibited significant improvements (ES = .36–.55, p ≤ .009) in working memory, shifting attention and cognitive flexibility. All significant models were driven by improvements in pre to post-treatment scores. Conclusions Based on our preliminary investigation, a remote, hybrid strategy, computerized CR program can be implemented with 22q11DS youth despite geographic location, health, and cognitive deficits. It appears effective in enhancing cognitive skills during the developmental period of adolescence, making this type of CR delivery useful for youth with 22q11DS transitioning into post-school environments. PMID:26044111

  19. Social Cognitive Training in Adolescents with Chromosome 22q11.2 Deletion Syndrome: Feasibility and Preliminary Effects of the Intervention

    ERIC Educational Resources Information Center

    Shashi, V.; Harrell, W.; Eack, S.; Sanders, C.; McConkie-Rosell, A.; Keshavan, M. S.; Bonner, M. J.; Schoch, K.; Hooper, S. R.

    2015-01-01

    Background: Children with chromosome 22q11.2 deletion syndrome (22q11DS) often have deficits in social cognition and social skills that contribute to poor adaptive functioning. These deficits may be of relevance to the later occurrence of serious psychiatric illnesses such as schizophrenia. Yet, there are no evidence-based interventions to improve…

  20. Social Cognition Dysfunction in Adolescents with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome): Relationship with Executive Functioning and Social Competence/Functioning

    ERIC Educational Resources Information Center

    Campbell, L. E.; McCabe, K. L.; Melville, J. L.; Strutt, P. A.; Schall, U.

    2015-01-01

    Background: Social difficulties are often noted among people with intellectual disabilities. Children and adults with 22q.11.2 deletion syndrome (22q11DS) often have poorer social competence as well as poorer performance on measures of executive and social-cognitive skills compared with typically developing young people. However, the relationship…

  1. Intellectual Functioning in Relation to Autism and ADHD Symptomatology in Children and Adolescents with 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Hidding, E.; Swaab, H.; Sonneville, L. M. J.; Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    Background: The 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intellectual functioning and severity of ASD and ADHD…

  2. Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: an update and literature review.

    PubMed

    Shaikh, T H; Kurahashi, H; Emanuel, B S

    2001-01-01

    Several constitutional rearrangements, including deletions, duplications, and translocations, are associated with 22q11.2. These rearrangements give rise to a variety of genomic disorders, including DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes (DGS/VCFS/CAFS), cat eye syndrome (CES), and the supernumerary der(22)t(11;22) syndrome associated with the recurrent t(11;22). Chromosome 22-specific duplications or low copy repeats (LCRs) have been directly implicated in the chromosomal rearrangements associated with 22q11.2. Extensive sequence analysis of the different copies of 22q11 LCRs suggests a complex organization. Examination of their evolutionary origin suggests that the duplications in 22q11.2 may predate the divergence of New World monkeys 40 million years ago. Based on the current data, a number of models are proposed to explain the LCR-mediated constitutional rearrangements of 22q11.2.

  3. Distribution of Fasciola hepatica and F. gigantica in the endemic area of Guilan, Iran: Relationships between zonal overlap and phenotypic traits.

    PubMed

    Ashrafi, Keyhan; Valero, M Adela; Peixoto, Raquel V; Artigas, Patricio; Panova, Miroslava; Mas-Coma, Santiago

    2015-04-01

    Fascioliasis is a zoonotic disease emerging in numerous parts of the world. In any endemic area, the characterisation of scenarios and patterns of infection must always be considered the starting point before implementing any control measure. Fascioliasis is a parasitic disease of different epidemiological, pathological and control characteristics depending on the endemic area and the causal agent, Fasciola hepatica and Fasciolagigantica. Classically it has been accepted that F. hepatica is present worldwide, while the distribution of the two species overlaps in many areas of Africa and Asia. Fascioliasis caused by F. hepatica, F. gigantica and intermediate forms is present in Guilan province, a complicated epidemiological situation where the highest human infection rates have been described in Iran. Morphometric tools were used to analyse the possible relationship between liver-fluke metric traits and geographical and altitudinal distribution. This is the first study in which a detailed distribution of both Fasciola species is analysed in a human fascioliasis endemic area with a zonal overlap transmission pattern. An accurate analysis was conducted to phenotypically discriminate between fasciolids from naturally infected livestock (cattle, buffaloes, sheep and goats). The distribution of the % F. hepatica-like (F.h.) and F. gigantica-like (F.g.) flukes detected in each liver versus altitude (m) in each group was analysed. The presence of F.g. specimens mainly in locations below sea level (average: 11.23% F.h., 88.77% F.g.), the presence of both species with similar intensity at 1-99m (average: 56.95% F.h., 43.05% F.g.) and the presence of F.h. specimens mainly from 100 to 999m (average: 71.69% F.h., 28.31% F.g.) as well as in locations with an altitude above 1000m (average: 97.48% F.h., 2.52% F.g.) are noteworthy. A significant positive correlation was obtained between altitude and % F.h., and a significant negative correlation was obtained between altitude and

  4. De novo tandem duplication of chromosome segement 22q11-q12: Clinical, cytogenetic, and molecular characterization

    SciTech Connect

    Lindsay, E.A.; Shaffer, L.G.; Carrozzo, R.

    1995-04-10

    We report on a case of duplication of the segment 22q11-q12 due to a de novo duplication. Molecular cytogenetics studies demonstrated this to be a tandem duplication, flanked proximally by the marker D22Z4, a centromeric alpha satellite DNA repeat, and distally by D22S260, an anonymous DNA marker proximal to the Ewing sarcoma breakpoint. The segment includes the regions responsible for the {open_quotes}cat-eye{close_quotes}, Di George, and velo-cardio-facial syndromes and extends distal to the breakpoint cluster region (BCR). The clinical picture is dominated by the cardiac defects and includes findings reminiscent of {open_quotes}cat-eye{close_quotes} syndrome. These findings reinforce the hypothesis that the proximal 22q region contains dosage-sensitive genes involved in development. 20 refs., 3 figs.

  5. Hypocalcemic seizure mistaken for idiopathic epilepsy in two cases of DiGeorge syndrome (chromosome 22q11 deletion syndrome).

    PubMed

    Tsai, Pei-Lin; Lian, Li-Ming; Chen, Wei-Hung

    2009-12-01

    The chromosome 22q11 deletion syndrome, which is synonymous with DiGeorge syndrome, is a congenital anomaly characterized by abnormal facies, congenital heart defects, hypoparathyroidism with hypocalcemia, and immunodeficiency. Neurological manifestations of the chromosome 22q11 deletion syndrome are variable, and include mental deficiency, speech disturbances, learning difficulties, attention deficit hyperactivity disorder, and epilepsy. Hypoparathyroidism and hypocalcemia cause recurrent seizures if patients are not properly treated. We present two patients with poorly controlled epileptic seizures that turned out to be caused by DiGeorge syndrome with hypocalcemia. For such patients, the definitive treatment of seizures depends on recognition of this syndrome and correction of the hypocalcemic state, rather than the use of anticonvulsants.

  6. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11.

    PubMed

    McKie, J M; Sutherland, H F; Harvey, E; Kim, U J; Scambler, P J

    1997-11-01

    A Drosophila-related expressed sequence tag (DRES) with sequence similarity to the peanut gene has previously been localized to human chromosome 22q11. We have isolated the cDNA corresponding to this DRES and show that it is a novel member of the family of septin genes, which encode proteins with GTPase activity thought to interact during cytokinesis. The predicted protein has P-loop nucleotide binding and GTPase motifs. The gene, which we call PNUTL1, maps to the region of 22q11.2 frequently deleted in DiGeorge and velo-cardio-facial syndromes and is particularly highly expressed in the brain. The mouse homologue, Pnutl1, maps to MMU16 adding to the growing number of genes from the DiGeorge syndrome region that map to this chromosome.

  7. Disclosure of psychiatric manifestations of 22q11.2 deletion syndrome in medical genetics: a 12-year, retrospective chart review

    PubMed Central

    Baughman, Serena Talcott; Morris, Emily; Jensen, Kimberly; Austin, Jehannine

    2015-01-01

    Individuals with 22q11.2 Deletion Syndrome (22qDS) have increased risk for psychiatric disorders. However, while medical geneticists self-report discussing psychiatric features of 22qDS with families (though often only when the child is older), most parents of children with 22qDS report receiving information about the psychiatric manifestations of 22qDS from non-medical sources. In an attempt to reconcile these previous findings, we sought to objectively determine the frequency with which medical geneticists discuss the potential psychiatric manifestations of 22qDS: a) in letters to referring physicians, and b) with families, and to explore plans for follow up. We abstracted data from charts of patients with 22qDS who were referred to a single medical genetics centre between January 1, 2000 and December 31, 2012. Psychiatric disorders were discussed in consult letters to referring physicians for n=57 (46%) of the 125 patients who met inclusion criteria – making them less frequently discussed than all other features of 22qDS. Despite exhaustive review of charts, the content of discussions with families was typically unclear. Follow-up in medical genetics was suggested for 50 people but only 18 (36%) of these patients returned. Disclosure of psychiatric features of 22qDS to families is necessary so that psychiatric disorders can be identified in time for early intervention to be implemented to achieve better prognosis for those affected. These empiric data offer some explanation as to why psychiatric services are underused by individuals with 22qDS. PMID:26033850

  8. Disclosure of psychiatric manifestations of 22q11.2 deletion syndrome in medical genetics: A 12-year retrospective chart review.

    PubMed

    Baughman, Serena Talcott; Morris, Emily; Jensen, Kimberly; Austin, Jehannine

    2015-10-01

    Individuals with 22q11.2 deletion syndrome (22qDS) have increased risk for psychiatric disorders. However, while medical geneticists self-report discussing psychiatric features of 22qDS with families (though often only when the child is older), most parents of children with 22qDS report receiving information about the psychiatric manifestations of 22qDS from non-medical sources. In an attempt to reconcile these previous findings, we sought to objectively determine the frequency with which medical geneticists discuss the potential psychiatric manifestations of 22qDS: (i) in letters to referring physicians and (ii) with families, and to explore plans for follow-up. We abstracted data from charts of patients with 22qDS who were referred to a single medical genetics center between January 1, 2000 and December 31, 2012. Psychiatric disorders were discussed in consult letters to referring physicians for n = 57 (46%) of the 125 patients who met inclusion criteria-making them less frequently discussed than all other features of 22qDS. Despite exhaustive review of charts, the content of discussions with families was typically unclear. Follow-up in medical genetics was suggested for 50 people but only 18 (36%) of these patients returned. Disclosure of psychiatric features of 22qDS to families is necessary so that psychiatric disorders can be identified in time for early intervention to be implemented to achieve better prognosis for those affected. These empiric data offer some explanation as to why psychiatric services are underused by individuals with 22qDS.

  9. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    PubMed

    Howley, Sarah A; Prasad, Sarah E; Pender, Niall P; Murphy, Kieran C

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  10. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety

    PubMed Central

    Scott, Julia A.; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R.; Schumann, Cynthia M.; Carmichael, Owen T.; Simon, Tony J.

    2016-01-01

    Background Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. Methods We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. Results We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Limitations Shape alterations are not specific to hippocampal subfields. Conclusion Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection

  11. Obstructive Sleep Apnea Syndrome in Children with 22q11.2 Deletion Syndrome after Operative Intervention for Velopharyngeal Insufficiency

    PubMed Central

    Crockett, David Jeffrey; Goudy, Steven L.; Chinnadurai, Sivakumar; Wootten, Christopher Todd

    2014-01-01

    Introduction: Surgical treatment of velopharyngeal insufficiency (VPI) in 22q11.2 deletion syndrome is often warranted. In this patient population, VPI is characterized by poor palatal elevation and muscular hypotonia with an intact palate. We hypothesize that 22q11.2 deletion patients are at greater risk of obstructive sleep apnea (OSA) after surgical correction of VPI, due, in part, to their functional hypotonia, large velopharyngeal gap size, and the need to surgically obstruct the velopharynx. Methods: We performed a retrospective analysis of patients with 22q11.2 deletion syndrome treated at a tertiary pediatric hospital between the years of 2002 and 2012. The incidence of VPI, need for surgery, post-operative polysomnogram, post-operative VPI assessment, and OSA treatments were evaluated. Results: Forty-three patients (18 males, 25 females, ages 1–14 years) fitting the inclusion criteria were identified. Twenty-eight patients were evaluated by speech pathology due to hypernasality. Twenty-one patients had insufficient velopharyngeal function and required surgery. Fifteen underwent pharyngeal flap surgery, three underwent sphincter pharyngoplasty, two underwent Furlow palatoplasty, and one underwent combined sphincter pharyngoplasty with Furlow palatoplasty. Of these, eight had post-operative snoring. Six of these underwent polysomnography (five underwent pharyngeal flap surgeries and one underwent sphincter pharyngoplasty). Four patients were found to have OSA based on the results of the polysomnography (average apnea/hypopnea index of 4.9 events/h, median = 5.1, SD = 2.1). Two required continuous positive airway pressure (CPAP) due to moderate OSA. Conclusion: Surgery is often necessary to correct VPI in patients with 22q11.2 deletion syndrome. Monitoring for OSA should be considered after surgical correction of VPI due to a high occurrence in this population. Furthermore, families should be counseled of the risk of OSA after surgery and the

  12. Evidence of the impact of visuo-spatial processing on magnitude representation in 22q11.2 microdeletion syndrome.

    PubMed

    Attout, Lucie; Noël, Marie-Pascale; Vossius, Line; Rousselle, Laurence

    2017-03-23

    The influence of visuo-spatial skills on numerical magnitude processing is the subject of a long-standing debate. As most of the numerical and non-numerical magnitude abilities underpinning mathematical development are visual by nature, they are often assessed in the visual modality, thereby confusing visuo-spatial and numerical processing. In order to assess the influence of visuo-spatial processing on numerical magnitude representation, we examined magnitude processing in patients with 22q11.2 deletion syndrome (22q11DS), a genetic condition characterized by a cognitive profile with a relative weakness in visuo-spatial abilities but with preserved verbal abilities. Twenty-seven participants with 22q11DS were compared to two control groups (one matched on verbal intelligence and the other on visuo-spatial abilities) on several magnitude comparison tasks each with different visuo-spatial processing requirements. Our results showed that participants with 22q11DS present a consistent pattern of impairment in magnitude comparison tasks requiring the processing of visuo-spatial dimensions: comparison of lengths and collections. In contrast, their performance did not differ from the control groups in a visual task with no spatial processing requirement (i.e. numerical comparison of flashed dot sequences) or in auditory tasks (i.e., duration comparison and numerical comparison of sound sequences). Finally, a specific deficit of enumeration processes was observed in the subitizing range. Taken together, these results show that deficits in magnitude can occur as a consequence of a visuo-spatial deficit. This highlights the influence of the nature of the tasks selected to assess magnitude representation.

  13. Central precocious puberty in a boy with 22q13 deletion syndrome and NOTCH-1 gene duplication.

    PubMed

    Giannakopoulos, Aris; Fryssira, Helen; Tzetis, Maria; Xaidara, Athina; Kanaka-Gantenbein, Christina

    2016-11-01

    The 22q13 deletion syndrome or Phelan-McDermid syndrome is a neurodevelopmental disorder associated with developmental delay, hypotonia, delayed or absent speech, autistic-like behavior, normal to accelerated growth and dysmorphic faces. We report the occurrence of central precocious puberty in a boy diagnosed with Phelan-McDermid syndrome. At the age of 1 year, our patient presented with increased testicular volume for his age, bone age advancement and growth acceleration. Stimulated gonadotropin levels demonstrated a premature activation of the hypothalamic-pituitary-gonadal (HPG) axis. Central precocious puberty was treated with gonadotropin-releasing hormone (GnRH) analog. Molecular diagnosis with array-comparative genomic hybridization (CGH) revealed a major deletion of 5.8 Mb at the 22q13 chromosomal region and a 25 kb duplication at the 9q34.3 region that included the NOTCH-1 gene. On the background of 22q13 deletion syndrome and data from animals on the effect of abnormal NOTCH-1 gene expression on kisspeptin neuron formation, we discuss the probable role of Notch signaling in the premature activation of the HPG axis.

  14. Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia

    PubMed Central

    Ping, Lieh-Yung; Chuang, Yang-An; Hsu, Shih-Hsin; Tsai, Hsin-Yao; Cheng, Min-Chih

    2016-01-01

    A higher-than-expected frequency of schizophrenia in patients with 22q11.2 deletion syndrome suggests that chromosome 22q11.2 harbors the responsive genes related to the pathophysiology of schizophrenia. The TBX1 gene, which maps to the region on chromosome 22q11.2, plays a vital role in neuronal functions. Haploinsufficiency of the TBX1 gene is associated with schizophrenia endophenotype. This study aimed to investigate whether the TBX1 gene is associated with schizophrenia. We searched for mutations in the TBX1 gene in 652 patients with schizophrenia and 567 control subjects using a re-sequencing method and conducted a reporter gene assay. We identified six SNPs and 25 rare mutations with no association with schizophrenia from Taiwan. Notably, we identified two rare schizophrenia-specific mutations (c.-123G>C and c.-11delC) located at 5′ UTR of the TBX1 gene. The reporter gene assay showed that c.-123C significantly decreased promoter activity, while c.-11delC increased promoter activity compared with the wild-type. Our findings suggest that the TBX1 gene is unlikely a major susceptible gene for schizophrenia in an ethnic Chinese population for Taiwan, but a few rare mutations in the TBX1 gene may contribute to the pathogenesis of schizophrenia in some patients. PMID:27879657

  15. Applicability of the nonverbal learning disability paradigm for children with 22q11.2 deletion syndrome.

    PubMed

    Schoch, Kelly; Harrell, Waverly; Hooper, Stephen R; Ip, Edward H; Saldana, Santiago; Kwapil, Thomas R; Shashi, Vandana

    2014-01-01

    Chromosome 22qll.2 deletion syndrome (22qllDS) is the most common microdeletion in humans. Nonverbal learning disability (NLD) has been used to describe the strengths and deficits of children with 22q11DS, but the applicability of the label for this population has seldom been systematically evaluated. The goal of the current study was to address how well the NLD diagnosis characterizes children and adolescents with 22q11DS. A total of 74 children and adolescents with 22q11DS were given neurocognitive, socioemotional, and academic assessments to measure aspects of NLD. Of the cohort, 20% met at least 7 of 9 assessed criteria for NLD; 25% showed verbal skills exceeding their nonverbal skills as assessed by an IQ test; and 24% showed the good rote verbal capacity commonly associated with NLD. Hypothesizing that if the entire cohort did not show consistent NLD characteristics, the descriptor might be more accurate for a distinct subgroup, the authors used latent class analysis to divide participants into three subgroups. However, the lines along which the groups broke out were more related to general functioning level than to NLD criteria. All three groups showed a heightened risk for psychiatric illness, highlighting the importance of careful mental health monitoring for all children with 22qllDS.

  16. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    PubMed

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population.

  17. Isolation and characterization of a novel gene containing WD40 repeats from the region deleted in velo-cardio-facial/DiGeorge syndrome on chromosome 22q11.

    PubMed

    Funke, B; Pandita, R K; Morrow, B E

    2001-05-01

    Three congenital disorders, cat-eye syndrome (CES), der(22) syndrome, and velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), result from tetrasomy, trisomy, and monosomy, respectively, of part of 22q11. They share a 1.5-Mb region of overlap, which contains 24 known genes. Although the region has been sequenced and extensively analyzed, it is expected to contain additional genes, which have thus far escaped identification. To understand completely the molecular etiology of VCFS/DGS, der(22) syndrome, and CES, it is essential to isolate all genes in the interval. We have identified and characterized a novel human gene, located within the 1.5-Mb region deleted in VCFS/DGS, trisomic in der(22) syndrome and tetrasomic in CES. The deduced amino acid sequence of the human gene and its mouse homologue contain several WD40 repeats, but lack homology to known proteins. We termed this gene WDR14 (WD40 repeat-containing gene deleted in VCFS). It is expressed in a variety of human and mouse adult and fetal tissues with substantial expression levels in the adult thymus, an organ hypoplastic in VCFS/DGS.

  18. Case fatality rate and associated factors in patients with 22q11 microdeletion syndrome: a retrospective cohort study

    PubMed Central

    Repetto, Gabriela M; Guzmán, M Luisa; Delgado, Iris; Loyola, Hugo; Palomares, Mirta; Lay-Son, Guillermo; Vial, Cecilia; Benavides, Felipe; Espinoza, Karena; Alvarez, Patricia

    2014-01-01

    Objective Chromosome 22q11.2 deletion is the most commonly occurring known microdeletion syndrome. Deaths related to the syndrome have been reported, but the magnitude of death has not been quantified. This study evaluated the deletion's impact on survival and its clinical manifestations in a large cohort of Chilean patients. Design Demographic and clinical data of individuals with 22q11 deletions diagnosed between 1998 and 2013 were collected from medical records and death certificates. Case fatality rate was calculated and compared with national vital statistics. OR with 95% CI analysis was used to assess the association between clinical manifestations and death. Setting Genetic services in tertiary care centres in Chile, following patients with 22q11.2 deletion. Outcomes Fatality rate and associated factors. Results 59 of 419 patients (14.1%) died during the study period at a median of 3.4 months (range 0 to 32 years of age). Factors associated with death included congenital heart disease (OR 5.27; 95% CI 2.06 to 13.99; p<0.0001), hypocalcaemia (OR 4.27; 95% CI 1.67 to 11.15; p<0.002) and airway malacia (OR 13.37; 95% CI 1.19 to 110.51; p<0.002). Patients with deletions and defects such as tetralogy of Fallot with or without pulmonary atraesia, truncus arteriosus or ventricular septal defect, had a 2.6-fold to 4.6-fold higher death rate compared with nationwide reports for the same types of defects. Conclusions In this cohort, we observed a death rate of 14.1%, implying that one in seven patients with 22q11 deletion died during the study period. Significant associations with cardiac defects, hypocalcaemia and airway malacia were observed. Furthermore, the death risk in patients with 22q11 deletion and cardiac defects exceeded the global figures observed in Chile for infants with structurally similar but apparently isolated anomalies. These observations indicate a need to identify patients who may require specific perioperative management to improve survival

  19. Autistic Spectrum Disorders in Velo-Cardio Facial Syndrome (22q11.2 Deletion)

    ERIC Educational Resources Information Center

    Antshel, Kevin M.; Aneja, Alka; Strunge, Leslie; Peebles, Jena; Fremont, Wanda P.; Stallone, Kimberly; AbdulSabur, Nuria; Higgins, Anne Marie; Shprintzen, Robert J.; Kates, Wendy R.

    2007-01-01

    The extent to which the phenotype of children comorbid for velocardiofacial syndrome (VCFS) and autism spectrum disorders (ASD) differs from that of VCFS-only has not been studied. The sample consisted of 41 children (20 females) with VCFS, ranging in age from 6.5 years to 15.8 years. Eight children with VCFS met formal DSM-IV diagnostic criteria…

  20. FISH for 22q11.2 deletion not cost-effective for infants with congenital heart disease with microarray.

    PubMed

    Geddes, Gabrielle C; Butterly, Mark; Sajan, Imran

    2015-03-01

    The objective of this study is to evaluate the yield of genetic testing in infants with congenital heart disease, who undergo surgical intervention prior to one year of age, and develop a cost-effective strategy to screen infants with congenital heart disease for genetic conditions while providing standard of care. 409 charts of patients with congenital heart disease, who underwent surgical intervention prior to one year of age, were retrospectively reviewed for cytogenetic testing results. 278 patients underwent cytogenetic testing, and 89.6 % of these patients had more than one cytogenetic test completed. The most commonly encountered chromosomal anomaly within the sample was Down Syndrome (12.5 %), followed by 22q11.2 Deletion Syndrome (4.6 %). G-Banded Karyotypes were abnormal in 10.5 % of patients, fluorescence in situ hybridization (FISH) probe for 22q11.2 deletion was abnormal in 7.1 % of patients. SNP microarray testing showed the highest yield and was abnormal in 33 % of patients. Based on the data at our institution, a more directed approach of genetic screening with only microarray would have saved our institution approximately $101, 200 on the 103 patients who underwent genetic evaluation with microarray reviewed. Screening infants with congenital heart disease for 22q11.2 deletion with FISH resulted in a loss of approximately $32,000 per 100 patients at our institution. Institutions should develop microarray-based protocols for genetic screening in patients with congenital heart disease with the anticipation of adding lesion-specific single gene testing as single gene testing becomes routinely available.

  1. Are t(X;Y) (p22;q11) translocations in females frequently associated with Madelung deformity?

    PubMed

    Guichet, A; Briault, S; Le Merrer, M; Moraine, C

    1997-10-01

    We report a female with a de novo 46,X,der(X)t(X;Y) (p22;q12) translocation who presented with short stature, mild clinical features of Turner syndrome and a Madelung deformity. It appears that some particular radiological and/or clinical skeletal features are common in females carrying X-Y translocation. Based on the corresponding papers and on clinical findings of our patient we discuss the significance of Madelung deformity encountered in X-Y translocations, dyschondrosteosis and Turner syndrome.

  2. Prognostic Impact of del(17p) and del(22q) as Assessed by Interphase FISH in Sporadic Colorectal Carcinomas

    PubMed Central

    González-González, María; Muñoz-Bellvis, Luís; Mackintosh, Carlos; Fontanillo, Celia; Gutiérrez, M. Laura; Abad, M. Mar; Bengoechea, Oscar; Teodosio, Cristina; Fonseca, Emilio; Fuentes, Manuel; De Las Rivas, Javier

    2012-01-01

    Background Most sporadic colorectal cancer (sCRC) deaths are caused by metastatic dissemination of the primary tumor. New advances in genetic profiling of sCRC suggest that the primary tumor may contain a cell population with metastatic potential. Here we compare the cytogenetic profile of primary tumors from liver metastatic versus non-metastatic sCRC. Methodology/Principal Findings We prospectively analyzed the frequency of numerical/structural abnormalities of chromosomes 1, 7, 8, 13, 14, 17, 18, 20, and 22 by iFISH in 58 sCRC patients: thirty-one non-metastatic (54%) vs. 27 metastatic (46%) disease. From a total of 18 probes, significant differences emerged only for the 17p11.2 and 22q11.2 chromosomal regions. Patients with liver metastatic sCRC showed an increased frequency of del(17p11.2) (10% vs. 67%;p<.001) and del(22q11.2) (0% vs. 22%;p = .02) versusnon-metastatic cases. Multivariate analysis of prognostic factors for overall survival (OS) showed that the only clinical and cytogenetic parameters that had an independent adverse impact on patient outcome were the presence of del(17p) with a 17p11.2 breakpoint and del(22q11.2). Based on these two cytogenetic variables, patients were classified into three groups: low- (no adverse features), intermediate- (one adverse feature) and high-risk (two adverse features)- with significantly different OS rates at 5-years (p<.001): 92%, 53% and 0%, respectively. Conclusions/Significance Our results unravel the potential implication of del(17p11.2) in sCRC patients with liver metastasis as this cytogenetic alteration appears to be intrinsically related to an increased metastatic potential and a poor outcome, providing additional prognostic information to that associated with other cytogenetic alterations such as del(22q11.2). Additional prospective studies in larger series of patients would be required to confirm the clinical utility of the new prognostic markers identified. PMID:22912721

  3. 22q11.2 Deletion Syndrome due to a Translocation t(6;22) in a Patient Conceived via in vitro Fertilization

    PubMed Central

    Gollo Dantas, Anelisa; Bortolai, Adriana; Moysés-Oliveira, Mariana; Takeno Herrero, Sylvia; Azoubel Antunes, Adriana; Tavares Costa-Carvalho, Beatriz; Ayres Meloni, Vera; Melaragno, Maria Isabel

    2016-01-01

    We report on a patient conceived via in vitro fertilization (IVF) with a 22q11.2 deletion due to an unusual unbalanced translocation involving chromosomes 6 and 22 in a karyotype with 45 chromosomes. Cytogenomic studies showed that the patient has a 3.3-Mb deletion of chromosome 22q and a 0.4-Mb deletion of chromosome 6p, which resulted in haploinsufficiency of the genes responsible for the 22q11.2 deletion syndrome and also of the IRF4 gene, a member of the interferon regulatory factor family of transcription factors, which is expressed in the immune system cells. The rearrangement could be due to the manipulation of the embryo or as a sporadic event unrelated to IVF. Translocation involving chromosome 22 in a karyotype with 45 chromosomes is a rare event, with no previous reports involving chromosomes 6p and 22q. PMID:26997945

  4. An examination of the relationship of anxiety and intelligence to adaptive functioning in children with chromosome 22q11.2 deletion syndrome

    PubMed Central

    Angkustsiri, Kathleen; Leckliter, Ingrid; Tartaglia, Nicole; Beaton, Elliott A.; Enriquez, Janice; Simon, Tony J.

    2012-01-01

    Objective This study investigates the relationship between anxiety symptoms and adaptive function in children with Chromosome 22q11.2 Deletion Syndrome (22q11.2DS). Methods Seventy-eight children ages 7-14 years with 22q11.2DS and 36 typically developing (TD) children without known genetic syndromes participated in a larger study of neurocognition. Parents completed questionnaires about their child’s anxiety symptoms (Behavior Assessment System for Children, 2nd ed.: BASC-2 and Spence Children’s Anxiety Scale: SCAS) and adaptive functioning (BASC-2 and Adaptive Behavior Assessment System, 2nd ed.: ABAS-II). Within the 22q11.2DS group, different DSM-IV anxiety domains were also analyzed using SCAS subscales. Results Based on parent report, 19% of children with 22q11.2DS had a prior diagnosis of an anxiety disorder vs. 58% with at least one elevated anxiety score (BASC-2 and/or SCAS). Mean BASC-2 anxiety scores were significantly higher in 22q11.2DS (55.6+12.5) than TD (48.3+10; p=0.003) and a greater percentage of children with 22q11.DS (37%) had elevated BASC-2 anxiety scores compared with TD (14%; p=0.01). Higher anxiety scores were related to lower adaptive function (r=−0.27, p=0.015) but there was no relationship between WISC-IV FSIQ and BASC-2 adaptive skills (r=−0.06, p=0.6) in the 22q11.2DS group. For the individual SCAS anxiety subscales, panic-agoraphobia (r=−0.38, p=0.03), physical injury (r=−0.34, p=0.05), and obsessive compulsive disorder (r=−0.47, p=0.005) were significantly negatively related to adaptive function in 22q11.2DS. Conclusions Despite known risk, anxiety is under-identified in children with 22q11.2DS. The presence of anxiety symptoms, but not intelligence levels, in children with 22q11.2DS is negatively correlated with adaptive function and impacts everyday living skills. PMID:23117596

  5. A New Case of a Complex Small Supernumerary Marker Chromosome: A Der(9)t(7;9)(p22;q22) due to a Maternal Balanced Rearrangement

    PubMed Central

    Manvelyan, Marine; Simonyan, Izabella; Hovhannisyan, Galina; Aroutiounian, Rouben; Hamid, Ahmed B.; Liehr, Thomas

    2015-01-01

    Complex small supernumerary marker chromosomes (sSMCs) constitute one of the smallest subsets within the patients with an sSMC. Complex sSMCs consist of chromosomal material derived from more than one chromosome, for example, the derivative der(22)t(11;22)(q23;q11.2) in Emanuel syndrome. Here, a yet unreported case of a complex sSMC formed due to a t(7;9)(p22;q22)mat is presented. PMID:27617132

  6. How many breaks do we need to CATCH on 22q11?

    SciTech Connect

    Dallapiccola, B.; Pizzuti, A.; Novelli, G. ||

    1996-07-01

    The major clinical manifestations of DiGeorge syndrome (DGS; MIM 188400), which reflect developmental abnormalities of the 3d and 4th pharyngeal pouch derivatives, include thymus- and parathyroid-gland aplasia or hypoplasia and conotruncal cardiac malformations. The additional dysmorphic facial features, such as hypertelorism, cleft lip and palate, bifid uvula, and small/low-set ears, which are also common, presumably reflect the same defect. The DGS phenotype has been associated with chromosome abnormalities and, sometimes, is the effect of teratogenic agents such as retinoic acid and alcohol. 53 refs., 1 fig.

  7. Breakpoint Associated with a novel 2.3 Mb deletion in the VCFS region of 22q11 and the role of Alu (SINE) in recurring microdeletions

    PubMed Central

    Uddin, Raihan K; Zhang, Yang; Siu, Victoria Mok; Fan, Yao-Shan; O'Reilly, Richard L; Rao, Jay; Singh, Shiva M

    2006-01-01

    Background Chromosome 22q11.2 region is highly susceptible to rearrangement, specifically deletions that give rise to a variety of genomic disorders including velocardiofacial or DiGeorge syndrome. Individuals with this 22q11 microdeletion syndrome are at a greatly increased risk to develop schizophrenia. Methods Genotype analysis was carried out on the DNA from a patient with the 22q11 microdeletion using genetic markers and custom primer sets to define the deletion. Bioinformatic analysis was performed for molecular characterization of the deletion breakpoint sequences in this patient. Results This 22q11 deletion patient was established to have a novel 2.3 Mb deletion with a proximal breakpoint located between genetic markers RH48663 and RH48348 and a distal breakpoint between markers D22S1138 and SHGC-145314. Molecular characterization of the sequences at the breakpoints revealed a 270 bp shared sequence of the breakpoint regions (SSBR) common to both ends that share >90% sequence similarity to each other and also to short interspersed nuclear elements/Alu elements. Conclusion This Alu sequence like SSBR is commonly in the proximity of all known deletion breakpoints of 22q11 region and also in the low copy repeat regions (LCRs). This sequence may represent a preferred sequence in the breakpoint regions or LCRs for intra-chromosomal homologous recombination mechanisms resulting in common 22q11 deletion. PMID:16512914

  8. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.

    PubMed

    Toritsuka, Michihiro; Kimoto, Sohei; Muraki, Kazue; Landek-Salgado, Melissa A; Yoshida, Atsuhiro; Yamamoto, Norio; Horiuchi, Yasue; Hiyama, Hideki; Tajinda, Katsunori; Keni, Ni; Illingworth, Elizabeth; Iwamoto, Takashi; Kishimoto, Toshifumi; Sawa, Akira; Tanigaki, Kenji

    2013-10-22

    22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate precursor cells. Furthermore, Df1/+ mice show functional defects in Chemokine receptor 4/Chemokine ligand 12 (Cxcr4/Cxcl12; Sdf1) signaling, which reportedly underlie interneuron migration. Notably, the defects in interneuron progenitors are rescued by ectopic expression of Dgcr8, one of the genes in 22q11 microdeletion. Furthermore, heterozygous knockout mice for Dgcr8 show similar neurodevelopmental abnormalities as Df1/+ mice. Thus, Dgcr8-mediated regulation of microRNA is likely to underlie Cxcr4/Cxcl12 signaling and associated neurodevelopmental defects. Finally, we observe that expression of CXCL12 is decreased in olfactory neurons from sporadic cases with schizophrenia compared with normal controls. Given the increased risk of 22q11DS in schizophrenia that frequently shows interneuron abnormalities, the overall study suggests that CXCR4/CXCL12 signaling may represent a common downstream mediator in the pathophysiology of schizophrenia and related mental conditions.

  9. Identification of a human chromosome-specific interstitial telomere-like sequence (ITS) at 22q11.2 using double-strand PRINS.

    PubMed

    Yan, J; Bouchard, E F; Samassekou, O; Chen, B-Z

    2007-01-01

    Interstitial telomeric sequences (ITSs), telomere-like repeats at intrachromosomal sites, are common in mammals and consist of tandem repeats of the canonical telomeric repeat, TTAGGG, or a repeat similar to this. We report that the ITS in human chromosome region 22q11.2 is, in the sequenced genome database, 101 tandem repeats of the sequence TTAGGGAGG. Using the primed in situ labeling (PRINS) technique and primers against the canonical telomeric repeat (TTAGGG), we illuminated telomeric sites for all chromosomes and an ITS locus at 22q11.2. Using the TTAGGGAGG sequence, we designed PRINS primers that efficiently and specifically illuminate the 22q11.2 ITS locus without illuminating telomeric and other ITS loci. The 22q11.2 locus has more repeat units than other ITSs loci enabling an unprecedented high detection frequency for this interstitial telomere locus. The 22q11.2 is associated with hot spots for disease-related chromosome breaks for multiple disorders, such as DiGeorge syndrome and chronic myeloid leukemia. We describe our findings that the ITS at 22q11.2 is in the same area of, and proximal to the common rearrangement region of multiple disorders. We suggest that the ITS might be involved in DNA repair processes in this area to protect the chromosome from more serious damage.

  10. Large-scale genotyping identifies a new locus at 22q13.2 associated with female breast size

    PubMed Central

    Li, Jingmei; Foo, Jia Nee; Schoof, Nils; Varghese, Jajini S.; Fernandez-Navarro, Pablo; Gierach, Gretchen L.; Quek, Swee Tian; Hartman, Mikael; Nord, Silje; Kristensen, Vessela N.; Pollán, Marina; Figueroa, Jonine D.; Thompson, Deborah J.; Li, Yi; Khor, Chiea Chuen; Humphreys, Keith; Liu, Jianjun; Czene, Kamila; Hall, Per

    2014-01-01

    Background Individual differences in breast size are a conspicuous feature of variation in human females and have been associated with fecundity and advantage in selection of mates. To identify common variants that are associated with breast size, we conducted a large-scale genotyping association meta-analysis in 7,169 women of European descent across 3 independent sample collections with digital or screen film mammograms. Methods The samples consisted of the Swedish KARMA, LIBRO-1 and SASBAC studies genotyped on iCOGS, a custom illumina iSelect genotyping array comprising of 211,155 single nucleotide polymorphisms (SNPs) designed for replication and fine mapping of common and rare variants with relevance to breast, ovary and prostate cancer. Breast size of each subject was ascertained by measuring total breast area (mm2) on a mammogram. Results We confirm genome-wide significant associations at 8p11.23 (rs10086016, P = 1.3 × 10−14) and report a new locus at 22q13 (rs5995871, P = 3.2 × 10−8). The latter region contains the MKL1 gene, which has been shown to impact endogenous estrogen-receptor α transcriptional activity and is recruited on estradiol-sensitive genes. We also replicated previous GWAS findings for breast size at four other loci. Conclusion A new locus at 22q13 may be associated with female breast size. PMID:23825393

  11. Ictus emeticus presenting as an unusual seizure type in chromosome 22q11.2 deletion syndrome.

    PubMed

    Hung, Pi-Lien; Huang, Li-Tung; Kwan, Shang-Yeong; Chang, Kai-Ping; Chen, Hsin-Hung; Lee, Yi-Yen; Fan, Hueng-Chuen; Chen, Chien

    2017-03-08

    We present a case study of a patient with chromosome 22q11.2 deletion syndrome presenting with ictus emeticus, together with a review of the relevant literature. The patient developed generalized tonic-clonic seizures at 3 months old, and seizures eventually remitted after calcium therapy. He then experienced vigorous vomiting that occurred during sleep, with glassy eyes and legs flexion. Video-EEG recordings exhibited a switch in background activity from organized reactivity during normal sleep to left lateralized temporal delta activity, which was bilaterally synchronized during an emetic attack. The ictal vomiting ceased following management with oxcarbazepine, high-dose phenobarbital, and a ketogenic diet. The unique seizure type and rare ictal EEG findings are the first reported in a child with chromosome 22q11.2 deletion syndrome. This case highlights that ictus emeticus without detectable epileptic discharge on EEG is one potential epileptic presentation in this genetic syndrome. [Published with video sequences on www.epilepticdisorders.com].

  12. Shape-based classification of 3D facial data to support 22q11.2DS craniofacial research.

    PubMed

    Wilamowska, Katarzyna; Wu, Jia; Heike, Carrie; Shapiro, Linda

    2012-06-01

    3D imaging systems are used to construct high-resolution meshes of patient's heads that can be analyzed by computer algorithms. Our work starts with such 3D head meshes and produces both global and local descriptors of 3D shape. Since these descriptors are numeric feature vectors, they can be used in both classification and quantification of various different abnormalities. In this paper, we define these descriptors, describe our methodology for constructing them from 3D head meshes, and show through a set of classification experiments involving cases and controls for a genetic disorder called 22q11.2 deletion syndrome that they are suitable for use in craniofacial research studies. The main contributions of this work include: automatic generation of novel global and local data representations, robust automatic placement of anthropometric landmarks, generation of local descriptors for nasal and oral facial features from landmarks, use of local descriptors for predicting various local facial features, and use of global features for 22q11.2DS classification, showing their potential use as descriptors in craniofacial research.

  13. A radiation hybrid map of human chromosome 11q22-q23 containing the ataxia-telangiectasia disease locus

    SciTech Connect

    Richard, C.W. III; Cox, D.R.; Kapp, L.; Murnane, J. ); Cornelis, F.; Julier, C.; Lathrop, M.; James, M.R. )

    1993-07-01

    The authors describe a high-resolution radiation hybrid map of human chromosome 11q22-q23 containing the ataxia-telangiectasia (AT) disease gene loci. The order and intermarker distances of 32 chromosome 11q22-q23 markers were determined by a multipoint maximum likelihood method analysis of the cosegregation of markers in 100 radiation hybrids. The radiation hybrid map of polymorphic loci was consistent with genetic linkage maps of common markers. Several genes, including [alpha]B-crystallin, adrenal ferrodoxin, CBL2, collagenase, dopamine receptor type 2, neural cell adhesion molecule, progesterone receptor, and stromelysins 1 and 2, were placed in relation to previously ordered, genetically mapped polymorphic loci. Five new markers ([alpha]B-crystallin, adrenal ferrodoxin, CJ52.114, CJ52.3, and D11S535) were ordered within the current published flanking markers for the AT group A and group C disease loci. A candidate AT group D gene (ATDC) identified by Kapp et al. was mapped telomeric to THY1, outside the flanking markers identified by multipoint linkage analysis for the major AT locus. 29 refs., 1 fig., 2 tabs.

  14. t(8;21) (q22;q22) acute myelogenous leukemia in Mexico: a single institution experience.

    PubMed

    Ruiz-Argüelles, Guillermo J; Morales-Toquero, Amelia; Manzano, Carlos; Ruiz-Delgado, Guillermo J; Jaramillo, Patricia; Gonzalez-Carrillo, Martha L; Reyes-Núñez, Virginia

    2006-08-01

    We analyze the prevalence and clinical features of a group of patients with t(8;21) (q22;q22) acute myeloblastic leukemia, identified in a single institution in México over a 10-year period. Fifteen patients presented at the Centro de Hematología y Medicina Interna de Puebla from February 1995 to August 2005; only nine were treated and followed in the institution. Median age was 24 years, (range 7-49); there was only one male. According to the French-American-British (FAB) morphological classification of leukemia, the morphology was M2 in four cases, M4 in three cases, M3 in one case and M0 in one. In addition to the myeloid markers, lymphoid markers were identified in 6 patients. Patients were induced to remission with combined chemotherapy and three subsequently underwent bone marrow transplantation (BMT). The median overall and disease-free survival has not been reached, being above 3390 days, the probability of survival at this time was 73%. In this single-center experience in México, we found that the t(8;21) (q22;q22) variant of leukemia was more frequent than in Caucasian populations, that the co-expression of lymphoid markers in the blast cells is very frequent and that this malignancy is associated with a relatively good prognosis.

  15. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome

    PubMed Central

    Gao, Shan; Moreno, Myriam; Eliason, Steven; Cao, Huojun; Li, Xiao; Yu, Wenjie; Bidlack, Felicitas B.; Margolis, Henry C.; Baldini, Antonio; Amendt, Brad A.

    2015-01-01

    T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1cKO) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1cKO mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS. PMID:25556186

  16. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients.

    PubMed

    Lango-Chavarría, M; Chimal-Ramírez, G K; Ruiz-Tachiquín, M E; Espinoza-Sánchez, N A; Suárez-Arriaga, M C; Fuentes-Pananá, E M

    2017-02-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24-/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer.

  17. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients

    PubMed Central

    Lango-Chavarría, M.; Chimal-Ramírez, G.K.; Ruiz-Tachiquín, M.E.; Espinoza-Sánchez, N.A.; Suárez-Arriaga, M.C.; Fuentes-Pananá, E.M.

    2017-01-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer. PMID:28101578

  18. Constitutional t(8;22)(q24;q11.2) that mimics the variant Burkitt-type translocation in Philadelphia chromosome-positive chronic myeloid leukemia.

    PubMed

    Kawamoto, Shinichiro; Yamamoto, Katsuya; Toyoda, Masanori; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Minami, Hironobu

    2017-02-01

    Constitutional translocations that coincide with t(9;22)(q34;q11.2) may lead to unnecessary treatments in chronic myeloid leukemia (CML) patients, as, under the standard criteria, a diagnosis of CML with additional chromosomal abnormalities indicates an accelerated phase (AP). In the present report, a 47-year-old male had pain in the right foot due to gout. Peripheral blood examination showed leukocytosis with left shift. Bone marrow aspiration revealed myeloid hyperplasia with megakaryocytosis. RT-PCR revealed the major BCR-ABL fusion transcript, and CML in the chronic phase was diagnosed, followed by nilotinib treatment. Although WBC counts decreased immediately, G-banding analysis showed 46,XY,t(8;22)(q24;q11.2),t(9;22)(q34;q11.2) [20]. The t(8;22)(q24;q11.2) translocation is known to be recurrent in Burkitt's lymphoma. The diagnosis was changed to CML in AP, leading to B-lymphoid crisis. Unexpectedly, the karyotype was 46,XY,t(8;22)(q24;q11.2) [20] in hematological complete remission, even after 3 months. Fluorescence in situ hybridization on metaphase spreads revealed the MYC signal on the der(22)t(8;22), indicating that the 8q24 breakpoint was centromeric to MYC at 8q24.21. G-banding analysis of phytohemagglutinin-stimulated peripheral blood T-lymphocytes also indicated 46,XY,t(8;22)(q24.1;q11.2). We conclude that the t(8;22) is constitutional in this patient. As the tumor suppressor gene TRC8/RNF139 is disrupted by constitutional t(8;22)(q24.13;q11.21) in dysgerminoma, it may be associated with the onset of CML.

  19. Association of COMT and PRODH gene variants with intelligence quotient (IQ) and executive functions in 22q11.2DS subjects.

    PubMed

    Carmel, Miri; Zarchi, Omer; Michaelovsky, Elena; Frisch, Amos; Patya, Miriam; Green, Tamar; Gothelf, Doron; Weizman, Abraham

    2014-09-01

    The 22q11.2 deletion syndrome (22q11.2DS) carries the highest genetic risk factor for the development of schizophrenia. We investigated the association of genetic variants in two schizophrenia candidate genes with executive function (EF) and IQ in 22q11.2DS individuals. Ninety two individuals with 22q11.2 deletion were studied for the genetic association between COMT and PRODH variants and EF and IQ. Subjects were divided into children (under 12 years old), adolescents (between 12 and 18 years old) and adults (older than 18 years), and genotyped for the COMT Val158Met (rs4680) and PRODH Arg185Trp (rs4819756) polymorphisms. The participants underwent psychiatric evaluation and EF assessment. Our main finding is a significant influence of the COMT Val158Met polymorphism on both IQ and EF performance. Specifically, 22q11.2DS subjects with Met allele displayed higher IQ scores in all age groups compared to Val carriers, reaching significance in both adolescents and adults. The Met allele carriers performed better than Val carriers in EF tasks, being statistically significant in the adult group. PRODH Arg185Trp variant did not affect IQ or EF in our 22q11.2DS cohort. In conclusion, functional COMT variant, but not PRODH, affects IQ and EF in 22q11.2DS subjects during neurodevelopment with a maximal effect at adulthood. Future studies should monitor the cognitive performance of the same individuals from childhood to old age.

  20. Cardiovascular Malformations in CHARGE Syndrome with DiGeorge Phenotype: Two Case Reports.

    PubMed

    Yasuda, Kazushi; Morihana, Eiji; Fusazaki, Naoki; Ishikawa, Shiro

    2016-01-01

    Both CHARGE syndrome and DiGeorge anomaly are frequently accompanied by cardiovascular malformations. Some specific cardiovascular malformations such as interrupted aortic arch type B and truncus arteriosus are frequently associated with 22q11.2 deletion syndrome, while conotruncal defects and atrioventricular septal defects are overrepresented in patients with CHARGE syndrome. CHD7 gene mutation is identified in approximately two-thirds of patients with CHARGE syndrome, and chromosomal microdeletion at 22q11.2 is found in more than 95% of patients with 22q11.2 deletion syndrome. CHARGE syndrome is occasionally accompanied by DiGeorge phenotype. We report two patients with dysmorphic features of both CHARGE syndrome and 22q11.2 deletion syndrome. Although both of the two cases did not have 22q11.2 deletion, they had typical dysmorphic features of 22q11.2 deletion syndrome including cardiovascular malformations such as interrupted aortic arch type B. They also had characteristic features of CHARGE syndrome including ear malformation, genital hypoplasia, limb malformation, and endocrinological disorders. CHD7 gene mutation was confirmed in one of the two cases. When a patient with cardiovascular malformations frequently associated with 22q11.2 deletion syndrome does not have 22q11.2 deletion, we suggest that associated malformations characteristic of CHARGE syndrome should be searched for.

  1. Cardiovascular Malformations in CHARGE Syndrome with DiGeorge Phenotype: Two Case Reports

    PubMed Central

    Morihana, Eiji; Fusazaki, Naoki; Ishikawa, Shiro

    2016-01-01

    Both CHARGE syndrome and DiGeorge anomaly are frequently accompanied by cardiovascular malformations. Some specific cardiovascular malformations such as interrupted aortic arch type B and truncus arteriosus are frequently associated with 22q11.2 deletion syndrome, while conotruncal defects and atrioventricular septal defects are overrepresented in patients with CHARGE syndrome. CHD7 gene mutation is identified in approximately two-thirds of patients with CHARGE syndrome, and chromosomal microdeletion at 22q11.2 is found in more than 95% of patients with 22q11.2 deletion syndrome. CHARGE syndrome is occasionally accompanied by DiGeorge phenotype. We report two patients with dysmorphic features of both CHARGE syndrome and 22q11.2 deletion syndrome. Although both of the two cases did not have 22q11.2 deletion, they had typical dysmorphic features of 22q11.2 deletion syndrome including cardiovascular malformations such as interrupted aortic arch type B. They also had characteristic features of CHARGE syndrome including ear malformation, genital hypoplasia, limb malformation, and endocrinological disorders. CHD7 gene mutation was confirmed in one of the two cases. When a patient with cardiovascular malformations frequently associated with 22q11.2 deletion syndrome does not have 22q11.2 deletion, we suggest that associated malformations characteristic of CHARGE syndrome should be searched for. PMID:27957375

  2. Transmission disequilibrium test provides evidence of association between promoter polymorphisms in 22q11 gene DGCR14 and schizophrenia.

    PubMed

    Wang, H; Duan, S; Du, J; Li, X; Xu, Y; Zhang, Z; Wang, Y; Huang, G; Feng, G; He, L

    2006-10-01

    Recent research has suggested that the DiGeorge syndrome critical region gene 14 (DGCR14) exhibits activity differences of more than 1.5 fold between the haplotypes of the variants in the promoter region. DGCR14 is located at 22q11.21, an acknowledged region for susceptibility to schizophrenia. To test the hypothesis that DGCR14 may be involved in the etiology of the disease, we carried out a family-based association study between the reported functional markers and schizophrenia in 235 Chinese Han trios. We found significant evidence of preferential transmission of the promoter variants of DGCR14 across all the trios (Best p-value = 0.00038, Global p-value = 0.0008). The positive results have suggested that DGCR14 is likely to play an important role in the etiology of schizophrenia in the Chinese Han population.

  3. Humoral immune responses and CD27+ B cells in children with DiGeorge syndrome (22q11.2 deletion syndrome).

    PubMed

    Finocchi, A; Di Cesare, S; Romiti, M L; Capponi, C; Rossi, P; Carsetti, R; Cancrini, C

    2006-08-01

    The spectrum of T-cell abnormalities in 22q11.2 syndrome is quite broad, ranging from profound and life threatening to non-existent defects. Humoral abnormalities have been described in some of these patients, although no data are currently available on their phenotypical and functional B cell subsets. The purpose of this study was to investigate humoral immune function in a cohort of 13 children with DiGeorge syndrome by immunophenotyping B and by analysing their functionality in vivo. Humoral immunity was assessed by serum immunoglobulin evaluation, IgG subclasses determination, and testing of specific antibody titers to recall antigens. B cells were analyzed by flow cytometry and the relevant percentage of membrane surface expression of CD27, IgM, IgD was evaluated. In our cohort, one of 13 children (7.7%) had a complete IgA deficiency, four of 13 (30.7%) had minor immunoglobulin abnormalities, and five (38%) had an impaired production of specific antibodies. Five of 13 children (38%) had recurrent infections. Interestingly, peripheral CD27+ B cells were reduced in our patients as compared with age-matched healthy controls, and this decrement was statistically significant for IgM+ IgD+ CD27+ B cells. Immunoglobulin abnormalities were associated with the occurrence of recurrent infections. We conclude that a significant proportion of patients with DiGeorge syndrome have defective humoral immunity, which may represent an additional pathogenic mechanism underlying the increased susceptibility to infections. Whether the decreased CD27+ B-cell subset might be one of the defects that contribute to impaired humoral immunity, and to susceptibility to infection remains to be elucidated.

  4. Cognitive ability is associated with altered medial frontal cortical circuits in the LgDel mouse model of 22q11.2DS.

    PubMed

    Meechan, D W; Rutz, H L H; Fralish, M S; Maynard, T M; Rothblat, L A; LaMantia, A-S

    2015-05-01

    We established a relationship between cognitive deficits and cortical circuits in the LgDel model of 22q11 Deletion Syndrome (22q11DS)-a genetic syndrome with one of the most significant risks for schizophrenia and autism. In the LgDel mouse, optimal acquisition, execution, and reversal of a visually guided discrimination task, comparable to executive function tasks in primates including humans, are compromised; however, there is significant individual variation in degree of impairment. The task relies critically on the integrity of circuits in medial anterior frontal cortical regions. Accordingly, we analyzed neuronal changes that reflect previously defined 22q11DS-related alterations of cortical development in the medial anterior frontal cortex of the behaviorally characterized LgDel mice. Interneuron placement, synapse distribution, and projection neuron frequency are altered in this region. The magnitude of one of these changes, layer 2/3 projection neuron frequency, is a robust predictor of behavioral performance: it is substantially and selectively lower in animals with the most significant behavioral deficits. These results parallel correlations of volume reduction and altered connectivity in comparable cortical regions with diminished executive function in 22q11DS patients. Apparently, 22q11 deletion alters behaviorally relevant circuits in a distinct cortical region that are essential for cognitive function.

  5. Effect of 22q11.2 deletion on bleeding and transfusion utilization in children with congenital heart disease undergoing cardiac surgery

    PubMed Central

    Brenner, Michelle K.; Clarke, Shanelle; Mahnke, Donna K.; Simpson, Pippa; Bercovitz, Rachel S.; Tomita-Mitchell, Aoy; Mitchell, Michael E.; Newman, Debra K.

    2016-01-01

    Background Post-surgical bleeding causes significant morbidity and mortality in children undergoing surgery for congenital heart defects (CHD). 22q11.2 deletion syndrome (DS) is the second most common genetic risk factor for CHD. The deleted segment of chromosome 22q11.2 encompasses the gene encoding glycoprotein (GP) Ibβ, which is required for expression of the GPIb-V-IX complex on the platelet surface, where it functions as the receptor for von Willebrand factor (VWF). Binding of GPIb-V-IX to VWF is important for platelets to initiate hemostasis. It is not known whether hemizygosity for the gene encoding GPIbβ increases the risk for bleeding following cardiac surgery for patients with 22q11.2 DS. Methods We performed a case-control study of 91 pediatric patients who underwent cardiac surgery with cardiopulmonary bypass from 2004–2012 at Children’s Hospital of Wisconsin. Results Patients with 22q11.2 DS had larger platelets and lower platelet counts, bled more excessively and received more transfusion support with packed red blood cells in the early post-operative period relative to control patients. Conclusions Pre-surgical genetic testing for 22q11.2 DS may help to identify a subset of pediatric cardiac surgery patients who are at increased risk for excessive bleeding and who may require more transfusion support in the post-operative period. PMID:26492284

  6. Identification, characterization, and precise mapping of a human gene encoding a novel membrane-spanning protein from the 22q11 region deleted in velo-cardio-facial syndrome.

    PubMed

    Sirotkin, H; Morrow, B; Saint-Jore, B; Puech, A; Das Gupta, R; Patanjali, S R; Skoultchi, A; Weissman, S M; Kucherlapati, R

    1997-06-01

    Velo-cardio-facial syndrome (VCFS) and DiGeorge syndrome (DGS) are characterized by a wide spectrum of phenotypes including cleft palate, conotruncal heart defects, and facial dysmorphology. Hemizygosity for a portion of chromosome 22q11 has been detected in 80-85% of VCFS/DGS patients. Using a cDNA selection protocol, we have identified a new gene, TMVCF (transmembrane protein deleted in VCFS), which maps to the deleted interval. The genomic locus is positioned between polymorphic markers D22S944 and D22S941. TMVCF encodes a small protein of 219 amino acids that is predicted to contain two membrane-spanning domains. TMVCF is expressed abundantly in human adult lung, heart, and skeletal muscle, and transcripts can be detected at least as early as Day 9 of mouse development.

  7. A prenatally sonographically diagnosed conotruncal anomaly with mosaic type trisomy 21 and 22q11.2 microdeletion/DiGeorge syndrome.

    PubMed

    Balci, S; Altugan, F S; Alehan, D; Aypar, E; Baltaci, V

    2009-01-01

    A prenatally sonographically diagnosed conotruncal anomaly with mosaic type trisomy 21 and 22q11.2 microdeletion/DiGeorge syndrome: We report a prenatally sonographically diagnosed conotruncal and urogenital anomaly. Postnatally, the patient presented with seizures, hypocalcemia, hypoparathyroidism and thymic aplasia and diagnosed as DiGeorge syndrome. Echocardiography showed malalignment VSD, supravalvular pulmonary stenosis and overriding aorta. Chromosome and FISH studies showed the association of mosaic type trisomy 21 and 22q11.2 microdeletion. The present patient is the second case of mosaic type of Down syndrome associated with 22q11.2 microdeletion. In addition the patient also had clinical and laboratory features of DiGeorge syndrome.

  8. A new three-way variant t(15;22;17)(q22;q11.2;q21) in acute promyelocytic leukemia.

    PubMed

    Kato, Takayasu; Hangaishi, Akira; Ichikawa, Motoshi; Motokura, Toru; Takahashi, Tsuyoshi; Kurokawa, Mineo

    2009-03-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), which results in the fusion of the promyelocytic leukemia (PML) gene at 15q22 with the retinoic acid alpha-receptor (RARA) at 17q21. We report the case of a 44-year-old man with APL carrying a new complex variant translocation (15;22;17). Karyotypic analysis with G-banding of bone marrow cells revealed t(15;22;17) (q22;q11.2;q21). Fluorescence in situ hybridization with a PML/RARA dual-color DNA probe showed the fusion signals. RT-PCR analysis showed long-form PML/RARA fusion transcripts. A complete remission was attained with a course of conventional chemotherapy with all-trans retinoic acid (ATRA). This is the first report of a new three-way translocation of 22q11 involvement with APL.

  9. Association of IL-12p70 and IL-6:IL-10 ratio with autism-related behaviors in 22q11.2 deletion syndrome: a preliminary report.

    PubMed

    Ross, Heather E; Guo, Ying; Coleman, Karlene; Ousley, Opal; Miller, Andrew H

    2013-07-01

    22q11.2 deletion syndrome (22q11DS) is a genetic disorder that conveys a significant risk for the development of social behavior disorders, including autism and schizophrenia. Also known as DiGeorge syndrome, 22q11DS is the second most common genetic disorder and is characterized by an elevated risk for immune dysfunction, up to 77% of individuals have an identifiable immune deficiency. We hypothesize that this immune dysfunction could contribute to the elevated risk of impaired social behavior seen in 22q11DS. The current study begins to elucidate these immune deficits and link them with the behavioral alterations associated with the disorder. Serum concentrations of a series of cytokines were examined, using a multiplex immunoassay, in sixteen individuals with 22q11DS and screened for autism-related behavior using the Autism Diagnostic Interview-Revised (ADI-R). This preliminary study examined correlations between specific immune proteins and each of the ADI-R algorithm scores (social, communication, and repetitive behavior). The inflammatory cytokine IL-1β, as well as the ratio between the inflammatory cytokine IL-6 and the anti-inflammatory cytokine IL-10, were correlated with social scores (r=0.851, p=0.004; r=0.580, p=0.018). In addition, the inflammatory cytokines interferon gamma and IL-12p70 were correlated with repetitive behaviors (r=0.795, p=0.033; r=0.774, p=0.002). Interestingly, IL-12 has been reported to be increased in autistic children. These data show a positive association between severity of autism-related behaviors and level of serum concentrations of inflammatory cytokines in individuals with 22q11DS, providing a basis for further inquiry.

  10. Loss of heterozygosity on chromosome 22 in ovarian carcinoma is distal to and is not accompanied by mutations in NF2 at 22q12.

    PubMed Central

    Englefield, P.; Foulkes, W. D.; Campbell, I. G.

    1994-01-01

    Frequent loss of heterozygosity (LOH) has been reported on 22q in ovarian carcinoma, implying the presence of a tumour-suppressor gene. The neurofibromatosis type 2 gene (NF2) at 22q12 is a plausible candidate. Analysis of 9 of the 17 exons of NF2 by single-strand conformational polymorphism (SSCP) in 67 ovarian carcinomas did not detect any somatic mutations, suggesting that NF2 is not involved in the pathogenesis of ovarian carcinoma. LOH data support this conclusion and that the putative tumour-suppressor gene lies distal to NF2, beyond D22S283. Images Figure 1 PMID:7947096

  11. Association of a de novo 16q copy number variant with a phenotype that overlaps with Lenz microphthalmia and Townes-Brocks syndromes

    PubMed Central

    2009-01-01

    Background Anophthalmia and microphthalmia are etiologically and clinically heterogeneous. Lenz microphthalmia is a syndromic form that is typically inherited in an X-linked pattern, though the causative gene mutation is unknown. Townes-Brocks syndrome manifests thumb anomalies, imperforate anus, and ear anomalies. We present a 13-year-old boy with a syndromic microphthalmia phenotype and a clinical diagnosis of Lenz microphthalmia syndrome. Case Presentation The patient was subjected to clinical and molecular evaluation, including array CGH analysis. The clinical features included left clinical anophthalmia, right microphthalmia, anteriorly placed anus with fistula, chordee, ventriculoseptal defect, patent ductus arteriosus, posteriorly rotated ears, hypotonia, growth retardation with delayed bone age, and mental retardation. The patient was found to have an approximately 5.6 Mb deletion of 16q11.2q12.1 by microarray based-comparative genomic hybridization, which includes the SALL1 gene, which causes Townes-Brocks syndrome. Conclusions Deletions of 16q11.2q12.2 have been reported in several individuals, although those prior reports did not note microphthalmia or anophthalmia. This region includes SALL1, which causes Townes-Brocks syndrome. In retrospect, this child has a number of features that can be explained by the SALL1 deletion, although it is not clear if the microphthalmia is a rare feature of Townes-Brocks syndrome or caused by other mechanisms. These data suggest that rare copy number changes may be a cause of syndromic microphthalmia allowing a personalized genomic medicine approach to the care of patients with these aberrations. PMID:20003547

  12. A physical map across chromosome 11q22-q23 containing the major locus for ataxia telangiectasia

    SciTech Connect

    Ambrose, H.J.; Byrd, P.J.; McConville, C.M.

    1994-06-01

    The authors have constructed a long-range physical map for 12 markers, including genes for GRIA3, IL1BC, and ACAT, across 9 MB of chromosome 11q22-q23 in the region of the major locus for ataxia-telangiectasia (A-T). The markers fall into the proximal and distal groups with respect to the centromere. They have linked the proximal and distal groups by hybridization to a 2.7-Mb NotI fragment and and 4.6-Mb MluI fragment. The following locus order was obtained: centromere-CJ52.75-J12.1C2-Y11B11R-IL1BC-hbcDNA-GRIA4-CJ52.3-Y11B29L-ACAT-CJ52.193-J12.8-Y11B06R-telomere. They show that hbcDNA/GRIA4 and CJ52.3 are very closely linked to each end, respectively, of the 2.7-Mb NotI fragment, thereby fixing the position of the complete contig. The results indicate that the gene for A-T is flanked by the markers GRIA4 and J12.8, which are no more than 3 Mb apart, on a 4.6-Mb MluI fragment. The physical map allows rapid positioning of markers, and this will facilitate the construction of a YAC contig across the region. 25 refs., 4 figs., 4 tabs.

  13. A gene prenature ovarian failure associated with eyelid malformation maps to chromosomes 3q22-q23

    SciTech Connect

    1996-05-01

    Premature ovarian failure and XX gonadal dysgenesis leading to female infertility have been reported in association with an autosomal dominantly inherited malformation of the eyelids: blepharophimosis-ptosis-epicanthus inversus syndrome (BPES; MIM 110100). This association distinguishes BPES type I from BPES type II, in which affected females are fertile and the transmission occurs through both sexes. Recently, a gene responsible for BPES type II has been mapped to chromosome 3q22-q23, and the critical region for the gene location has been reduced to the interval between loci D3S1615 and D3S1316. Hitherto, however, no information regarding the localization of the gene for BPES type I, in which female ovarian failure is associated with eyelid malformation, has been available. We have studied two independent families affected with BPES type I, including a total of 12 affected individuals (6 infertile women) and 6 healthy relatives. The diagnostic criteria for the ophthalmological anomaly included (1) reduced horizontal diameter of palpebral fissures, (2) drooping of the upper eyelids, and (3) an abnormal skinfold running from the lower lids. Telecanthus and a flat nasal bridge were present in most cases. In both families the disease was transmitted only by the male, and no affected woman of childbearing age was fertile. 12 refs., 2 figs., 1 tab.

  14. Assignment of the human Na[sup +]/glucose cotransporter gene SGLT1 to chromosome 22q13. 1

    SciTech Connect

    Turk, E.; Klisak, I.; Bacallao, R.; Sparkes, R.S.; Wright, E.M. )

    1993-09-01

    The Na[sup +]/glucose cotransporter gene SGLT1 encodes the primary carrier protein responsible for the uptake of the dietary sugars glucose and galactose from the intestinal lumen. SGLT1 transport activity is currently exploited in oral rehydration therapy. The 75-kDa glycoprotein is localized in the brush border of the intestinal epithelium and is predicted to comprise 12 membrane spans. In two patients with the autosomal recessive disease glucose/galactose malabsorption, the underlying cause was found to be a missense mutation in SGLT1, and the Asp28 [yields] Asn change was demonstrated in vitro to eliminate SGLT1 transport activity. The SGLT1 gene was previously shown to reside on the distal q arm of chromosome 22(11.2 [yields] qter). The authors have used a cosmid probe for fluorescence in situ hybridization, which refines the localization to 22q13.1, and provide an example of the utility of the SGLT1 probe as a diagnostic for genetic diseases associated with trans-locations of chromosome 22. 18 refs., 2 figs.

  15. An atypical 0.73 MB microduplication of 22q11.21 and a novel SALL4 missense mutation associated with thumb agenesis and radioulnar synostosis.

    PubMed

    Diehl, Adam; Mu, Weiyi; Batista, Denise; Gunay-Aygun, Meral

    2015-07-01

    We describe a 0.73 Mb duplication of chromosome 22q11.21 between LCR-B and LCR-D and a missense mutation in a conserved C2H2 zinc finger domain of SALL4 in a cognitively normal patient with multiple skeletal anomalies including radioulnar synostosis, thumb aplasia, butterfly vertebrae, rib abnormalities, and hypoplasia of the humeral and femoral epiphyses. 22q11.21 is a common site for microdeletions and their reciprocal microduplications as a result of non-allelic homologous recombination between its multiple low copy repeat regions (LCR). DiGeorge /Velocardiofacial syndrome (DG/VCFS) is classically caused by a 3 Mb deletion between LCR-A and LCR-D or a 1.5 Mb deletion between LCR-A and LCR-B. The reciprocal syndrome to DG/VCFS is the recently described 22q11.2 microduplication, which usually presents with the typical 3 Mb or 1.5 Mb duplication. Numerous atypical deletions and duplications have been reported between other LCRs. Typically, SALL4-related Duane-radial ray syndrome is caused by deletions or nonsense mutations; the only missense SALL4 mutation described prior was thought to result in gain of function and produced cranial midline defects. The skeletal anomalies presented in this report have not been previously described in association with 22q11.2 microduplication nor SALL4 mutations.

  16. A New Account of the Neurocognitive Foundations of Impairments in Space, Time, and Number Processing in Children with Chromosome 22q11.2 Deletion Syndrome

    ERIC Educational Resources Information Center

    Simon, Tony J.

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly…

  17. Search for copy number variants in chromosomes 15q11-q13 and 22q11.2 in obsessive compulsive disorder

    PubMed Central

    2010-01-01

    Background Obsessive-compulsive disorder (OCD) is a clinically and etiologically heterogeneous syndrome. The high frequency of obsessive-compulsive symptoms reported in subjects with the 22q11.2 deletion syndrome (DiGeorge/velocardiofacial syndrome) or Prader-Willi syndrome (15q11-13 deletion of the paternally derived chromosome), suggests that gene dosage effects in these chromosomal regions could increase risk for OCD. Therefore, the aim of this study was to search for microrearrangements in these two regions in OCD patients. Methods We screened the 15q11-13 and 22q11.2 chromosomal regions for genomic imbalances in 236 patients with OCD using multiplex ligation-dependent probe amplification (MLPA). Results No deletions or duplications involving 15q11-13 or 22q11.2 were identified in our patients. Conclusions Our results suggest that deletions/duplications of chromosomes 15q11-13 and 22q11.2 are rare in OCD. Despite the negative findings in these two regions, the search for copy number variants in OCD using genome-wide array-based methods is a highly promising approach to identify genes of etiologic importance in the development of OCD. PMID:20565924

  18. Isolation of anonymous DNA markers for human chromosome 22q11 from a flow-sorted library, and mapping using hybrids from patients with DiGeorge syndrome.

    PubMed

    Sharkey, A M; McLaren, L; Carroll, M; Fantes, J; Green, D; Wilson, D; Scambler, P J; Evans, H J

    1992-04-01

    DiGeorge syndrome (DGS) is a human developmental defect of the structures derived from the third and fourth pharyngeal pouches. It apparently arises due to deletion of 22q11. We describe a strategy for the isolation of DNA probes for this region. A deleted chromosome 22, which includes 22q11, was flow-sorted from a lymphoblastoid cell line of a patient with cat eye syndrome and used as the source of DNA. A DNA library was constructed from this chromosome by cloning into the EcoR1 site of the vector Lambda gt10. Inserts were amplified by PCR and mapped using a somatic cell hybrid panel of this region. Out of 32 probes, 14 were mapped to 22q11. These probes were further sublocalised within the region by dosage analysis of DGS patients, and by the use of two new hybrid cell lines which we have produced from DGS patients. One of these lines (7939B662) contains the altered human chromosome segregated from its normal homologue. This chromosome 22 contains an interstitial deletion in 22q11, and will be useful for localising further probes to the DGS region.

  19. Haploinsufficiency of the 22q11.2-microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium

    PubMed Central

    Devaraju, Prakash; Yu, Jing; Eddins, Donnie; Mellado-Lagarde, Marcia M.; Earls, Laurie R.; Westmoreland, Joby J.; Quarato, Giovanni; Green, Douglas R.; Zakharenko, Stanislav S.

    2016-01-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity (STP) that contributes to working memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal STP. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia. PMID:27184122

  20. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain.

    PubMed

    Harper, Kathryn M; Hiramoto, Takeshi; Tanigaki, Kenji; Kang, Gina; Suzuki, Go; Trimble, William; Hiroi, Noboru

    2012-08-01

    Social behavior dysfunction is a symptomatic element of schizophrenia and autism spectrum disorder (ASD). Although altered activities in numerous brain regions are associated with defective social cognition and perception, the causative relationship between these altered activities and social cognition and perception-and their genetic underpinnings-are not known in humans. To address these issues, we took advantage of the link between hemizygous deletion of human chromosome 22q11.2 and high rates of social behavior dysfunction, schizophrenia and ASD. We genetically manipulated Sept5, a 22q11.2 gene, and evaluated its role in social interaction in mice. Sept5 deficiency, against a high degree of homogeneity in a congenic genetic background, selectively impaired active affiliative social interaction in mice. Conversely, virally guided overexpression of Sept5 in the hippocampus or, to a lesser extent, the amygdala elevated levels of active affiliative social interaction in C57BL/6J mice. Congenic knockout mice and mice overexpressing Sept5 in the hippocampus or amygdala were indistinguishable from control mice in novelty and olfactory responses, anxiety or motor activity. Moreover, post-weaning individual housing, an environmental condition designed to reduce stress in male mice, selectively raised levels of Sept5 protein in the amygdala and increased active affiliative social interaction in C57BL/6J mice. These findings identify this 22q11.2 gene in the hippocampus and amygdala as a determinant of social interaction and suggest that defective social interaction seen in 22q11.2-associated schizophrenia and ASD can be genetically and environmentally modified by altering this 22q11.2 gene.

  1. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy.

    PubMed

    Moreira, Danielle P; Griesi-Oliveira, Karina; Bossolani-Martins, Ana L; Lourenço, Naila C V; Takahashi, Vanessa N O; da Rocha, Kátia M; Moreira, Eloisa S; Vadasz, Estevão; Meira, Joanna Goes Castro; Bertola, Debora; O'Halloran, Eoghan; Magalhães, Tiago R; Fett-Conte, Agnes C; Passos-Bueno, Maria Rita

    2014-01-01

    Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy.

  2. Investigation of 15q11-q13, 16p11.2 and 22q13 CNVs in Autism Spectrum Disorder Brazilian Individuals with and without Epilepsy

    PubMed Central

    Moreira, Danielle P.; Griesi-Oliveira, Karina; Bossolani-Martins, Ana L.; Lourenço, Naila C. V.; Takahashi, Vanessa N. O.; da Rocha, Kátia M.; Moreira, Eloisa S.; Vadasz, Estevão; Meira, Joanna Goes Castro; Bertola, Debora; Halloran, Eoghan O’; Magalhães, Tiago R.; Fett-Conte, Agnes C.; Passos-Bueno, Maria Rita

    2014-01-01

    Copy number variations (CNVs) are an important cause of ASD and those located at 15q11-q13, 16p11.2 and 22q13 have been reported as the most frequent. These CNVs exhibit variable clinical expressivity and those at 15q11-q13 and 16p11.2 also show incomplete penetrance. In the present work, through multiplex ligation-dependent probe amplification (MLPA) analysis of 531 ethnically admixed ASD-affected Brazilian individuals, we found that the combined prevalence of the 15q11-q13, 16p11.2 and 22q13 CNVs is 2.1% (11/531). Parental origin could be determined in 8 of the affected individuals, and revealed that 4 of the CNVs represent de novo events. Based on CNV prediction analysis from genome-wide SNP arrays, the size of those CNVs ranged from 206 kb to 2.27 Mb and those at 15q11-q13 were limited to the 15q13.3 region. In addition, this analysis also revealed 6 additional CNVs in 5 out of 11 affected individuals. Finally, we observed that the combined prevalence of CNVs at 15q13.3 and 22q13 in ASD-affected individuals with epilepsy (6.4%) was higher than that in ASD-affected individuals without epilepsy (1.3%; p<0.014). Therefore, our data show that the prevalence of CNVs at 15q13.3, 16p11.2 and 22q13 in Brazilian ASD-affected individuals is comparable to that estimated for ASD-affected individuals of pure or predominant European ancestry. Also, it suggests that the likelihood of a greater number of positive MLPA results might be found for the 15q13.3 and 22q13 regions by prioritizing ASD-affected individuals with epilepsy. PMID:25255310

  3. Velo-cardio-facial and partial DiGeorge phenotype in a child with interstitial deletion at 10p13 - implications for cytogenetics and molecular biology

    SciTech Connect

    Lipson, A.; Sholler, G.; Issacs, D.

    1996-11-11

    We report on a female with a interstitial deletion of 10p13 and a phenotype similar to that seen with the 22q deletion syndromes (DiGeorge/velo-cardio-facial). She had a posterior cleft palate, perimembranous ventricular septal defect, dyscoordinate swallowing, T-cell subset abnormalities, small ears, maxillary and mandibular hypoplasia, broad nasal bridge, deficient alae nasi, contractures of fingers and developmental delay. This could indicate homology of some developmental genes at 22q and 10p so that patients with the velocardiofacial phenotype who do not prove to be deleted on 22q are candidates for a 10p deletion. 58 refs., 3 figs.

  4. Deficits in Mental State Attributions in Individuals with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome)

    PubMed Central

    Ho, Jennifer S.; Radoeva, Petya D.; Jalbrzikowski, Maria; Chow, Carolyn; Hopkins, Jessica; Tran, Wen-Ching; Mehta, Ami; Enrique, Nicole; Gilbert, Chelsea; Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.; Bearden, Carrie E.

    2012-01-01

    Velo-cardio-facial syndrome (VCFS; 22q11.2 deletion syndrome) results from a genetic mutation that increases risk for Autism Spectrum Disorder (ASD). We compared Theory of Mind (ToM) skills in 63 individuals with VCFS (25% with an ASD diagnosis) and 43 typically-developing controls, and investigated the relationship of ToM to reciprocal social behavior. We administered a video-based task to assess mentalizing at two sites (UCLA and SUNY Upstate Medical University). The videos depicted interactions representing complex mental states (ToM condition), or simple movements (Random condition). Verbal descriptions of the videos were rated for Intentionality (i.e., mentalizing) and Appropriateness. Using Repeated Measures ANOVA, we assessed the effects of VCFS and ASD on Intentionality and Appropriateness, and the relationship of mentalizing to Social Responsiveness Scale (SRS) scores. Results indicated that individuals with VCFS overall had lower Intentionality and Appropriateness scores than controls for ToM, but not for Random scenes. In the SUNY sample, individuals with VCFS, both with and without ASD, performed more poorly than controls on the ToM condition; however, in the UCLA sample, only individuals with VCFS without ASD performed significantly worse than controls on the ToM condition. Controlling for site and age, performance on the ToM condition was significantly correlated with SRS scores. Individuals with VCFS, regardless of an ASD diagnosis, showed impairments in the spontaneous attribution of mental states to abstract visual stimuli, which may underlie real-life problems with social interactions. A better understanding of the social deficits in VCFS is essential for the development of targeted behavioral interventions. PMID:22962003

  5. Identifying patterns of anxiety and depression in children with chromosome 22q11.2 deletion syndrome: Comorbidity predicts behavioural difficulties and impaired functional communications

    PubMed Central

    Stephenson, David D.; Beaton, Elliott A.; Weems, Carl F.; Angkustsiri, Kathleen; Simon, Tony J.

    2014-01-01

    Background Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex genetic disorder with a variable clinical presentation that can include cardiac, neural, immunological, and psychological issues. Previous studies have measured elevated anxiety and depression in children with 22q11.2DS. Comorbity of anxiety and depression is well established in the pediatric literature but the nature of comorbidity patterns has not been empirically established in children with 22q11.2DS. Comorbidity of anxiety and depression has important implications for treatment and prognosis, and may be a marker of risk in this population of children at high-risk for developing schizophrenia. Method Participants were 131 boys and girls ages 8 to 14 with (n = 76) and without (n = 55) 22q11.2DS and their mothers. Children and mothers independently completed self- and parent-report measures of anxiety and depression. Mothers also completed measures of behavioural functioning including the Behavioral Assessment for Children, 2nd ed. (BASC-2). Cluster analyses were conducted to test if theoretically based groupings of anxiety and depression could be identified. We hypothesized four psychological profiles based on child- and mother-reports: low/no anxiety and low/no depression, higher depression and low/no anxiety, higher anxiety and no/low depression, and a comorbid profile of higher anxiety and higher depression. BASC-2 subscale scores were then compared across subgroups of children to determine if a comorbid profile would predict greater behavioural difficulties. Results In the full sample of children both with and without 22q11.2DS, cluster analyses of self and maternal reported anxiety and depression revealed the expected subgroups: 1) a group of children with higher anxiety/lower depression (anxious); 2) a group with primary depression (lower anxiety/higher depression (depressed); 3) a comorbid group with higher anxiety/higher depression (comorbid); and, 4) a lowest anxiety

  6. Clinical experience with single‐nucleotide polymorphism‐based non‐invasive prenatal screening for 22q11.2 deletion syndrome

    PubMed Central

    Gross, S. J.; Stosic, M.; McDonald‐McGinn, D. M.; Bassett, A. S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; Babiarz, J. E.; Ryan, A.; Jinnett, K. N.; Demko, Z.

    2016-01-01

    ABSTRACT Objectives To evaluate the performance of a single‐nucleotide polymorphism (SNP)‐based non‐invasive prenatal test (NIPT) for the detection of fetal 22q11.2 deletion syndrome in clinical practice, assess clinical follow‐up and review patient choices for women with high‐risk results. Methods In this study, 21 948 samples were submitted for screening for 22q11.2 deletion syndrome using a SNP‐based NIPT and subsequently evaluated. Follow‐up was conducted for all cases with a high‐risk result. Results Ninety‐five cases were reported as high risk for fetal 22q11.2 deletion. Diagnostic testing results were available for 61 (64.2%) cases, which confirmed 11 (18.0%) true positives and identified 50 (82.0%) false positives, resulting in a positive predictive value (PPV) of 18.0%. Information regarding invasive testing was available for 84 (88.4%) high‐risk cases: 57.1% (48/84) had invasive testing and 42.9% (36/84) did not. Ultrasound anomalies were present in 81.8% of true‐positive and 18.0% of false‐positive cases. Two additional cases were high risk for a maternal 22q11.2 deletion; one was confirmed by diagnostic testing and one had a positive family history. There were three pregnancy terminations related to screening results of 22q11.2 deletion, two of which were confirmed as true positive by invasive testing. Conclusions Clinical experience with this SNP‐based non‐invasive screening test for 22q11.2 deletion syndrome indicates that these deletions have a frequency of approximately 1 in 1000 in the referral population with most identifiable through this test. Use of this screening method requires the availability of counseling and other management resources for high‐risk pregnancies. © 2015 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd. on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:26396068

  7. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype.

  8. Kinematic Movement Strategies in Primary School Children with 22q11.2 Deletion Syndrome Compared to Age- and IQ-Matched Controls during Visuo-Manual Tracking

    ERIC Educational Resources Information Center

    Van Aken, Katrijn; Swillen, Ann; Beirinckx, Marc; Janssens, Luc; Caeyenberghs, Karen; Smits-Engelsman, Bouwien

    2010-01-01

    The present study focused on the mechanism subserving the production of kinematic patterns in 21 children with 22q11.2DS (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.05 [plus or minus] 10.2) and 21 age- and IQ-matched control children (mean age=9.6 [plus or minus] 1.9; mean FSIQ=73.38 [plus or minus] 12.0) when performing a visuo-manual…

  9. Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis.

    PubMed

    Guo, Xingyi; Delio, Maria; Haque, Nousin; Castellanos, Raquel; Hestand, Matthew S; Vermeesch, Joris R; Morrow, Bernice E; Zheng, Deyou

    2016-09-01

    Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11.2DS) is caused by meiotic non-allelic homologous recombination events between flanking low copy repeats termed LCR22A and LCR22D, resulting in a 3 million base pair (Mb) deletion. Due to their complex structure, large size and high sequence identity, genetic variation within LCR22s among different individuals has not been well characterized. In this study, we sequenced 13 BAC clones derived from LCR22A/D and aligned them with 15 previously available BAC sequences to create a new genetic variation map. The thousands of variants identified by this analysis were not uniformly distributed in the two LCR22s. Moreover, shared single nucleotide variants between LCR22A and LCR22D were enriched in the Breakpoint Cluster Region pseudogene (BCRP) block, suggesting the existence of a possible recombination hotspot there. Interestingly, breakpoints for atypical 22q11.2 rearrangements have previously been located to BCRPs To further explore this finding, we carried out in-depth analyses of whole genome sequence (WGS) data from two unrelated probands harbouring a de novo 3Mb 22q11.2 deletion and their normal parents. By focusing primarily on WGS reads uniquely mapped to LCR22A, using the variation map from our BAC analysis to help resolve allele ambiguity, and by performing PCR analysis, we infer that the deletion breakpoints were most likely located near or within the BCRP module. In summary, we found a high degree of sequence variation in LCR22A and LCR22D and a potential recombination breakpoint near or within the BCRP block, providing a starting point for future breakpoint mapping using additional trios.

  10. Unmasking of a Recessive SCARF2 Mutation by a 22q11.12 de novo Deletion in a Patient with Van den Ende-Gupta Syndrome

    PubMed Central

    Bedeschi, M.F.; Colombo, L.; Mari, F.; Hofmann, K.; Rauch, A.; Gentilin, B.; Renieri, A.; Clerici, D.

    2011-01-01

    Van den Ende-Gupta syndrome (VDEGS) is a congenital condition characterized by craniofacial and skeletal manifestations, specifically blepharophimosis, malar and maxillary hypoplasia, distinctive nose, arachnocamptodactyly, and long slender bones of the hands and feet. To date, only 24 patients have been described. It is generally thought that the syndrome is transmitted by an autosomal recessive mode of inheritance, although evidence for genetic heterogeneity has recently been presented. We report on a girl followed from birth up to 3 years of life with a set of peculiar minor anomalies, arachnocamptodactyly of hands and feet, characteristic of VDEGS in association with a 22q11.12 deletion. Recently, the VDEGS gene was mapped to the DiGeorge syndrome region on 22q11.2, and homozygous mutations in the SCARF2 gene were identified. We now report the first patient with VDEGS due to compound heterozygosity for the common 22q11.2 microdeletion and a hemizygous SCARF2 splice site mutation. PMID:22140376

  11. Histology of the Pharyngeal Constrictor Muscle in 22q11.2 Deletion Syndrome and Non-Syndromic Children with Velopharyngeal Insufficiency

    PubMed Central

    Widdershoven, Josine C. C.; Spruijt, Nicole E.; Spliet, Wim G. M.; Breugem, Corstiaan C.; Kon, Moshe; Mink van der Molen, Aebele B.

    2011-01-01

    Plastic surgeons aim to correct velopharyngeal insufficiency manifest by hypernasal speech with a velopharyngoplasty. The functional outcome has been reported to be worse in patients with 22q11.2 deletion syndrome than in patients without the syndrome. A possible explanation is the hypotonia that is often present as part of the syndrome. To confirm a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome, specimens of the pharyngeal constrictor muscle were taken from children with and without the syndrome. Histologic properties were compared between the groups. Specimens from the two groups did not differ regarding the presence of increased perimysial or endomysial space, fiber grouping by size or type, internalized nuclei, the percentage type I fibers, or the diameters of type I and type II fibers. In conclusion, a myogenic component of the etiology of velopharyngeal insufficiency in children with 22q11.2 deletion syndrome could not be confirmed. PMID:21738760

  12. Kabuki syndrome is not caused by a microdeletion in the DiGeorge/velocardiofacial chromosomal region within 22q11.2

    SciTech Connect

    Li, M.; Zackai, E.H.; Kaplan, P.; Driscoll, D.A.; Niikawa, Norio

    1996-10-16

    Kabuki syndrome (KS) or Niikawa-Kuroki syndrome is a sporadic disorder characterized by postnatal growth retardation, developmental delay, mild to moderate retardation, and a characteristic facial appearance. Cardiovascular defects, clefts of the lip, palate, or both, and musculoskeletal abnormalities occur in about 50% of patients with KS. The cause of this multiple congenital anomaly syndrome is unknown, and investigators have speculated that KS is a contiguous gene-deletion syndrome. Based on the presence of congenital heart defects in patients with KS, it was suggested that this disorder might share a common cause with the 22q11 deletion syndromes. A preliminary study of 2 patients with KS failed to detect a deletion within 22q11. We report the results of fluorescence in situ hybridization with cosmid probes for loci D22S75 (N25) and D22S259 (1132) within the DiGeorge chromosomal region (DGCR) on metaphase spreads from an additional 5 patients, 2 non-Japanese and 3 Japanese, with KS. None of the 5 had deletions at either locus. It is unlikely that KS is caused by a deletion within 22q11. 16 refs.

  13. Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for mental retardation.

    PubMed

    Torres-Juan, Laura; Rosell, Jordi; Morla, Montse; Vidal-Pou, Catalina; García-Algas, Fernando; de la Fuente, Maria-Angeles; Juan, Miguel; Tubau, Albert; Bachiller, Daniel; Bernues, Marta; Perez-Granero, Angeles; Govea, Nancy; Busquets, Xavier; Heine-Suñer, Damian

    2007-06-01

    A screen for TBX1 gene mutations identified two mutations in patients with some features compatible with the 22q11.2-deletion syndrome but with no deletions. One is a de novo missense mutation and the other is a 5' untranslated region (5'UTR) C>T change that affects a nucleotide with a remarkable trans-species conservation. Computer modelling shows that the 5'UTR change is likely to affect the mRNA structure and in vitro translation experiments demonstrate that it produces a twofold increase in translation efficiency. Recently, duplications in the 22q11.2 region were reported in patients referred for fragile-X determination because of cognitive and behavioural problems. Because the 5'UTR nucleotide change may be a functional equivalent of a duplication of the TBX1 gene, we decided to screen 200 patients who had been referred for fragile-X determination and 400 healthy control individuals. As a result, we found the 5'UTR mutation to be present in three patients with mental retardation or behavioural problems and absent in control individuals of the same ethnic background. This observation suggests that it may be reasonable to screen for such mutation among patients with unspecific cognitive deficits and we provide an easy and quick way to do it with an amplification refractory mutation system (ARMS) approach. To our knowledge, this is the first human mutation showing that TBX1 is a candidate causing mental retardation associated with the 22q11.2 duplication syndrome.

  14. Self-Reported Speech Problems in Adolescents and Young Adults with 22q11.2 Deletion Syndrome: A Cross-Sectional Cohort Study

    PubMed Central

    Vorstman, Jacob AS; Kon, Moshe; Mink van der Molen, Aebele B

    2014-01-01

    Background Speech problems are a common clinical feature of the 22q11.2 deletion syndrome. The objectives of this study were to inventory the speech history and current self-reported speech rating of adolescents and young adults, and examine the possible variables influencing the current speech ratings, including cleft palate, surgery, speech and language therapy, intelligence quotient, and age at assessment. Methods In this cross-sectional cohort study, 50 adolescents and young adults with the 22q11.2 deletion syndrome (ages, 12-26 years, 67% female) filled out questionnaires. A neuropsychologist administered an age-appropriate intelligence quotient test. The demographics, histories, and intelligence of patients with normal speech (speech rating=1) were compared to those of patients with different speech (speech rating>1). Results Of the 50 patients, a minority (26%) had a cleft palate, nearly half (46%) underwent a pharyngoplasty, and all (100%) had speech and language therapy. Poorer speech ratings were correlated with more years of speech and language therapy (Spearman's correlation= 0.418, P=0.004; 95% confidence interval, 0.145-0.632). Only 34% had normal speech ratings. The groups with normal and different speech were not significantly different with respect to the demographic variables; a history of cleft palate, surgery, or speech and language therapy; and the intelligence quotient. Conclusions All adolescents and young adults with the 22q11.2 deletion syndrome had undergone speech and language therapy, and nearly half of them underwent pharyngoplasty. Only 34% attained normal speech ratings. Those with poorer speech ratings had speech and language therapy for more years. PMID:25276637

  15. In Search of the Optimal Surgical Treatment for Velopharyngeal Dysfunction in 22q11.2 Deletion Syndrome: A Systematic Review

    PubMed Central

    Spruijt, Nicole E.; ReijmanHinze, Judith; Hens, Greet; Vander Poorten, Vincent; Mink van der Molen, Aebele B.

    2012-01-01

    Background Patients with the 22q11.2 deletion syndrome (22qDS) and velopharyngeal dysfunction (VPD) tend to have residual VPD following surgery. This systematic review seeks to determine whether a particular surgical procedure results in superior speech outcome or less morbidity. Methodology/ Principal Findings A combined computerized and hand-search yielded 70 studies, of which 27 were deemed relevant for this review, reporting on a total of 525 patients with 22qDS and VPD undergoing surgery for VPD. All studies were levels 2c or 4 evidence. The methodological quality of these studies was assessed using criteria based on the Cochrane Collaboration's tool for assessing risk of bias. Heterogeneous groups of patients were reported on in the studies. The surgical procedure was often tailored to findings on preoperative imaging. Overall, 50% of patients attained normal resonance, 48% attained normal nasal emissions scores, and 83% had understandable speech postoperatively. However, 5% became hyponasal, 1% had obstructive sleep apnea (OSA), and 17% required further surgery. There were no significant differences in speech outcome between patients who underwent a fat injection, Furlow or intravelar veloplasty, pharyngeal flap pharyngoplasty, Honig pharyngoplasty, or sphincter pharyngoplasty or Hynes procedures. There was a trend that a lower percentage of patients attained normal resonance after a fat injection or palatoplasty than after the more obstructive pharyngoplasties (11–18% versus 44–62%, p = 0.08). Only patients who underwent pharyngeal flaps or sphincter pharyngoplasties incurred OSA, yet this was not statistically significantly more often than after other procedures (p = 0.25). More patients who underwent a palatoplasty needed further surgery than those who underwent a pharyngoplasty (50% versus 7–13%, p = 0.03). Conclusions/ Significance In the heterogeneous group of patients with 22qDS and VPD, a grade C recommendation can be made to

  16. Representational oligonucleotide microarray analysis (ROMA) and comparison of binning and change-point methods of analysis: application to detection of del22q11.2 (DiGeorge) syndrome.

    PubMed

    Stanczak, Christopher M; Chen, Zugen; Nelson, Stanley F; Suchard, Marc; McCabe, Edward R B; McGhee, Sean

    2008-01-01

    DiGeorge (del22q11.2) syndrome is estimated to occur in 1:4,000 births, is the most common contiguous-gene deletion syndrome in humans, and is caused by autosomal dominant deletions in the 22q11.2 DiGeorge syndrome critical region (DGCR). Multiple microarray methods have been developed recently for analyzing such copy number changes, but data analysis and accurate deletion detection remains challenging. Clinical use of these microarray methods would have many advantages, particularly when the possibility of a chromosomal disorder cannot be determined simply on the basis of history and physical examination data alone. We investigated the use of the microarray technique, representational oligonucleotide microarray analysis (ROMA), in the detection of del22q11.2 syndrome. Genomic DNA was isolated from three well-characterized cell lines with 22q11.2 DGCR deletions and from the blood of a patient suspected of having del22q11.2 syndrome, and analyzed using both the binning and change-point model algorithms. Though the 22q11.2 deletion was easily identified with either method, change-point models provide clearer identification of deleted regions, with the potential for fewer false-positive results. For circumstances in which a clear, a priori, copy-number change hypothesis is not present, such as in many clinical samples, change-point methods of analysis may be easier to interpret.

  17. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms

    PubMed Central

    Wilson, H; Wong, A; Shaw, S; Tse, W; Stapleton, G; Phelan, M; Hu, S; Marshall, J; McDermid, H

    2003-01-01

    Methods: The 22q13 deletion syndrome (MIM 606232) is characterised by moderate to profound mental retardation, delay/absence of expressive speech, hypotonia, normal to accelerated growth, and mild dysmorphic features. We have determined the deletion size and parent of origin in 56 patients with this syndrome. Results: Similar to other terminal deletion syndromes, there was an overabundance of paternal deletions. The deletions vary widely in size, from 130 kb to over 9 Mb; however all 45 cases that could be specifically tested for the terminal region at the site of SHANK3 were deleted for this gene. The molecular structure of SHANK3 was further characterised. Comparison of clinical features to deletion size showed few correlations. Some measures of developmental assessment did correlate to deletion size; however, all patients showed some degree of mental retardation and severe delay or absence of expressive speech, regardless of deletion size. Conclusion: Our analysis therefore supports haploinsufficiency of the gene SHANK3, which codes for a structural protein of the postsynaptic density, as a major causative factor in the neurological symptoms of 22q13 deletion syndrome. PMID:12920066

  18. The role of modern imaging techniques in the diagnosis of malposition of the branch pulmonary arteries and possible association with microdeletion 22q11.2.

    PubMed

    Cuturilo, Goran; Drakulic, Danijela; Krstic, Aleksandar; Gradinac, Marija; Ilisic, Tamara; Parezanovic, Vojislav; Milivojevic, Milena; Stevanovic, Milena; Jovanovic, Ida

    2013-04-01

    Malposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients

  19. A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

    SciTech Connect

    Gill, M.; Vallada, H.; Collier, D.

    1996-02-16

    Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not shared (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that there may be a susceptibility locus for schizophrenia at 22q12. 27 refs., 3 tabs.

  20. Novel chromosomal translocation (17;22)(q12;q12) in a case of myelodisplastic syndrome characterized with signs of hemolytic anemia at presentation.

    PubMed

    Antic, Darko; Impera, Luciana; Fekete, Marija Dencic; Djordjevic, Vesna; Storlazzi, Clelia Tiziana; Elezovic, Ivo

    2012-02-01

    Myelodysplastic syndromes (MDS) are clonal stem cell diseases that can result in cytopenias, dysplasia in one or more cell lineages, infective hematopoiesis, and increase the risk of progression to acute myeloid leukemia (AML). MDSs are characterized by several recurrent cytogenetic defects, which can affect diagnosis, prognosis, and treatment. Some of that chromosomal alterations are associated with very poor prognosis. Conventional cytogenetics cannot accurately define the rearranged karyotype. Instead, molecular cytogenetics analyses can provide important diagnostic and prognostic information for patients affected by MDS, allowing the characterization of the whole mutational spectrum and, mainly, novel chromosomal lesions. In this paper, we report a MDS case with a novel chromosomal translocation [t(17;22)(q12;q22)], described for the first time here. Following Giemsa-banding karyotyping, fluorescent in situ hybridization analyses, by using chromosome-specific probes, displayed the breakpoint regions at chromosomes 17 and 22, within which intra and inter-chromosomal segmental duplications (SD) are present. Because of the occurrence of SDs in breakpoint region, it was not possible to finely define the genomic regions where breaks fell. Further investigations could be required to better understand the molecular basis of the novel translocation t(17;22)(q12;q12) acting in MDS context and to explain if SDs could contribute to the pathogenesis of MDS.

  1. Isolation of a transcription factor expressed in neural crest from the region of 22q11 deleted in DiGeorge syndrome

    SciTech Connect

    Wadey, R.; Roberts, C.; Daw, S.

    1994-09-01

    Deletions within chromosome 22q11 cause a wide variety of birth defects including DiGeorge syndrome and Shprintzen syndrome. We have defined a commonly deleted region of over 2 Mb, and a critical region of 300 kb. A gene, TUPLE1, has been isolated from this critical region encoding a transcriptional regulator similar to the yeast HIR1 histone regulator gene. Since it has been suggested that DGS results from a defective neural crest, the expression of Tuple1 was examined in whole mouse and chick embryos, tissue sections and neural tube explants: Tuple1 is expressed in a dynamic pattern with high levels in regions containing migrating crest. Prior to crest migration Tuple1 is expressed in a rhombomere-specific expression pattern. Later Tuple1 is expressed in discrete domains within the developing neural tube. A remarkable feature of the experiments was the detection of a similar dynamic pattern with sense probe; i.e., there is an antisense Tuple1 transcript. This was confirmed using RPA. Tuple1 is being screened for mutations in non-deletion patients and constructs assembled for homologous recombination in ES cells. Tuple1 maps to MMU16 extending the homology of linkage with human chromosome 22. From these data we predict that the human homologue of the murine scid mutation maps to 22q11.

  2. Molecular localization of the t(11; 22)(q24; q12) translocation of Ewing sarcoma by chromosomal in situ suppression hybridization

    SciTech Connect

    Selleri, L.; Hermanson, G.G.; Eubanks, J.H.; Lewis, K.A.; Evans, G.A. )

    1991-02-01

    Chromosome translocations are associated with a variety of human leukemias, lymphomas, and solid tumors. To localize molecular markers flanking the t(11;22)(q24;q12) breakpoint that occurs in virtually all cases of Ewing sarcoma and peripheral neuroepithelioma, high-resolution chromosomal in situ suppression hybridization was carried out using a panel of cosmid clones localized and ordered on chromosome 11q. The location of the Ewing sarcoma translocation breakpoint was determined relative to the nearest two cosmid markers on 11q, clones 23.2 and 5.8, through the analysis of metaphase chromosome hybridization. By in situ hybridization to interphase nuclei, the approximate physical separation of these two markers was determined. In both Ewing sarcoma and peripheral neuroepithelioma, cosmid clone 5.8 is translocated from chromosome 11q24 to the derivative chromosome 22 and a portion of chromosome 22q12 carrying the leukemia inhibitory factor gene is translocated to the derivative chromosome 11. The physical distance between the flanking cosmid markers on chromosome 11 was determined to be in the range of 1,000 kilobases, and genomic analysis using pulsed-field gel electrophoresis showed no abnormalities over a region of 650 kilobases in the vicinity of the leukemia inhibitory factor gene on chromosome 22. This approach localizes the Ewing sarcoma breakpoint to a small region on chromosome 11q24 and provides a rapid and precise technique for the molecular characterization of chromosomal aberrations.

  3. Fusion of EWSR1 with the DUX4 facioscapulohumeral muscular dystrophy region resulting from t(4;22)(q35;q12) in a case of embryonal rhabdomyosarcoma.

    PubMed

    Sirvent, Nicolas; Trassard, Martine; Ebran, Nathalie; Attias, Rita; Pedeutour, Florence

    2009-11-01

    Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and rarely occurs in adults. There are six main subtypes, each histologically, clinically, and cytogenetically distinct. Embryonal RMS is characterized by chromosomal gains, usually not associated with any consistent structural anomaly. We describe here a case of embryonal RMS in a 19-year-old female patient. The conventional cytogenetic analysis showed a t(4;22)(q35;q12) translocation as the sole cytogenetic change. Complementary fluorescence in situ hybridization analysis showed that the translocation breakpoints were located in the EWSR1 gene at 22q12 and the region of the DUX4 and FSHMD1A at 4q35. This constitutes a novel example of the high frequency of EWSR1 rearrangements in various types of sarcomas as well as of its ability to fuse with a large variety of partner genes. Because DUX4 is involved in myogenic differentiation and cell-cycle control, the striated muscle differentiation observed in the present case might be a direct consequence of the alteration of the DUX4 region generated by the t(4;22). The involvement of the DUX4 region might represent the genetic hallmark of a novel subclass of small round cell tumors.

  4. A new account of the neurocognitive foundations of impairments in space, time and number processing in children with chromosome 22q11.2 deletion syndrome.

    PubMed

    Simon, Tony J

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly delineated neural circuits for basic spatiotemporal cognition. This dysfunction then cascades into impairments in basic magnitude and then numerical processes, because of the central role that representations of space and time play in their construction. I propose that this takes the form of "spatiotemporal hypergranularity"; the increase in grain size and thus reduced resolution of mental representations of spatial and temporal information. The result is that spatiotemporal processes develop atypically and thereby produce the characteristic impairments in nonverbal cognitive domains that are a hallmark feature of chromosome 22q11.2 deletion syndrome. If this hypothesis driven account is supported by future research, the results will create a neurocognitive explanation of spatiotemporal and numerical impairments in the syndrome that is specific enough to be directly translated into the development of targeted therapeutic interventions.

  5. Cortical Morphology Differences in Subjects at Increased Vulnerability for Developing a Psychotic Disorder: A Comparison between Subjects with Ultra-High Risk and 22q11.2 Deletion Syndrome

    PubMed Central

    Bakker, Geor; Caan, Matthan W. A.; Vingerhoets, Wilhelmina A. M.; da Silva- Alves, Fabiana; de Koning, Mariken; Boot, Erik; Nieman, Dorien H.; de Haan, Lieuwe; Bloemen, Oswald J.; Booij, Jan; van Amelsvoort, Thérèse A. M. J.

    2016-01-01

    Introduction Subjects with 22q11.2 deletion syndrome (22q11DS) and subjects with ultra-high risk for psychosis (UHR) share a risk of approximately 30% to develop a psychotic disorder. Studying these groups helps identify biological markers of pathophysiological processes involved in the development of psychosis. Total cortical surface area (cSA), total cortical grey matter volume (cGMV), cortical thickness (CT), and local gyrification index (LGI) of the cortical structure have a distinct neurodevelopmental origin making them important target markers to study in relation to the development of psychosis. Materials and Methods Structural T1-weighted high resolution images were acquired using a 3 Tesla Intera MRI system in 18 UHR subjects, 18 22q11DS subjects, and 24 matched healthy control (HC) subjects. Total cSA, total cGMV, mean CT, and regional vertex-wise differences in CT and LGI were assessed using FreeSurfer software. The Positive and Negative Syndrome Scale was used to assess psychotic symptom severity in UHR and 22q11DS subjects at time of scanning. Results 22q11DS subjects had lower total cSA and total cGMV compared to UHR and HC subjects. The 22q11DS subjects showed bilateral lower LGI in the i) prefrontal cortex, ii) precuneus, iii) precentral gyrus and iv) cuneus compared to UHR subjects. Additionally, lower LGI was found in the left i) fusiform gyrus and right i) pars opercularis, ii) superior, and iii) inferior temporal gyrus in 22q11DS subjects compared to HC. In comparison to 22q11DS subjects, the UHR subjects had lower CT of the insula. For both risk groups, positive symptom severity was negatively correlated to rostral middle frontal gyrus CT. Conclusion A shared negative correlation between positive symptom severity and rostral middle frontal gyrus CT in UHR and 22q11DS may be related to their increased vulnerability to develop a psychotic disorder. 22q11DS subjects were characterised by widespread lower degree of cortical gyrification linked to

  6. Association thermodynamics and conformational stability of beta-sheet amyloid beta(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization.

    PubMed

    Blinov, Nikolay; Dorosh, Lyudmyla; Wishart, David; Kovalenko, Andriy

    2010-01-20

    Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17

  7. A case of ring chromosome 22 with deletion of the 22q13.3 region associated with agenesis of the corpus callosum, fornix and septum pellucidum.

    PubMed

    Delcán, José; Orera, María; Linares, Rafael; Saavedra, Dolores; Palomar, Angustias

    2004-08-01

    We report a 16-week-gestation foetus obtained by voluntary abortion after prenatal diagnosis, in which a ring chromosome 22 was observed with deletion of the 22q13.3 region. A prenatal study of the amniotic fluid by standard chromosome technique with G bands and FISH (fluorescence in situ hybridisation) was performed. After the abortion, the anatomopathological study of the obtained foetus was carried out. Morphological and histological analysis of the foetus did not reveal severe physical abnormalities, although alterations of the nervous system were observed consisting of corpus callosum, fornix and septum pellucidum agenesia. It could be that the genes in this region that were involved in the development of the central nervous system were responsible for the alterations found in the morphological study. The wide range of manifestations observed in patients with this cytogenetic alteration is probably due to size differences in the deleted region.

  8. Prenatal diagnosis of mosaic ring 22 duplication/deletion with terminal 22q13 deletion due to abnormal first trimester screening and choroid plexus cyst detected on ultrasound.

    PubMed

    Koç, Altuğ; Arisoy, Ozgür; Pala, Elif; Erdem, Mehmet; Kaymak, Ayşegül Oztürk; Erkal, Ozgür; Karaoğuz, Meral Yirmibeş

    2009-10-01

    We report a rare case of mosaic ring chromosome 22 duplication/deletion in a fetus for whom karyotype analysis was required because of an abnormal finding in the maternal serum screening test and a choroid plexus cyst detected on prenatal ultrasound. Additional prenatal study of the amniotic fluid by fluorescence in situ hybridization was performed and the terminal 22q13.3 deletion was detected on ring chromosome. The final karyotype was 45,XX,-22[3]/46,XX,r(22)(p11q13.2)[63]/46,XX,idicr(22)(p11q13.2;p11q13.2)[2]dn.ishder(22)(N25+, ARSA-, ter-). The pegnancy was terminated. Cytogenetic analysis of the intracardiac blood also revealed ring 22 mosaicism with only one metaphase spread with idicr(22) as the unstable isodicentric rings are subsequently lost from most cells. We discuss the prenatal diagnosis of this rare condition.

  9. Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families

    SciTech Connect

    Kalsi, G.; Read, T.; Butler, R.

    1995-08-14

    A possible linkage to a genetic subtype of schizophrenia and related disorders has been reported on the long arm of chromosome 22 at q12-13. However formal statistical tests in a combined sample could not reject homogeneity and prove that there was linked subgroup of families. We have studied 23 schizophrenia pedigrees to test whether some multiplex schizophrenia families may be linked to the microsatellite markers D22S274 and D22S283 which span the 22q12-13 region. Two point followed by multipoint lod and non-parametric linkage analyses under the assumption of heterogeneity provided no evidence for linkage over the relevant region. 16 refs., 4 tabs.

  10. Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1: Part 1

    SciTech Connect

    Pulver, A.E.; Wolyniec, P.S.; Lasseter, V.K.

    1994-03-15

    To identify genes responsible for the susceptibility for schizophrenia, and to test the hypothesis that schizophrenia is etiologically heterogeneous, we have studied 39 multiplex families from a systematic sample of schizophrenic patients. Using a complex autosomal dominant model, which considers only those with a diagnosis of schizophrenia or schizoaffective disorder as affected, a random search of the genome for detection of linkage was undertaken. Pairwise linkage analyses suggest a potential linkage (LRH = 34.7 or maximum lod score = 1.54) for one region (22q12-q13.1). Reanalyses, varying parameters in the dominant model, maximized the LRH at 660.7 (maximum lod score 2.82). This finding is of sufficient interest to warrant further investigation through collaborative studies. 72 refs., 5 tabs.

  11. Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease.

    PubMed

    Halford, S; Wadey, R; Roberts, C; Daw, S C; Whiting, J A; O'Donnell, H; Dunham, I; Bentley, D; Lindsay, E; Baldini, A

    1993-12-01

    A wide spectrum of birth defects are caused by deletions of the DiGeorge syndrome critical region (DGCR) at human chromosome 22q11. Over one hundred such deletions have now been examined and a minimally deleted region of 300kb defined. Within these sequences we have identified a gene expressed during human and murine embryogenesis. The gene, named TUPLE1, and its murine homologue, encodes a protein containing repeated motifs similar to the WD40 domains found in the beta-transducin/enhancer of split (TLE) family. The TUPLE1 product has several features typical of transcriptional control proteins and in particular has homology with the yeast Tup1 transcriptional regulator. We propose that haploinsufficiency for TUPLE1 is at least partly responsible for DiGeorge syndrome and related abnormalities.

  12. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk

    PubMed Central

    Broderick, Peter; Chen, Bowang; Johnson, David C; Försti, Asta; Vijayakrishnan, Jayaram; Migliorini, Gabriele; Dobbins, Sara E; Holroyd, Amy; Hose, Dirk; Walker, Brian A; Davies, Faith E; Gregory, Walter A; Jackson, Graham H; Irving, Julie A; Pratt, Guy; Fegan, Chris; Fenton, James AL; Neben, Kai; Hoffmann, Per; Nöthen, Markus M; Mühleisen, Thomas W; Eisele, Lewin; Ross, Fiona M; Straka, Christian; Einsele, Hermann; Langer, Christian; Dörner, Elisabeth; Allan, James M; Jauch, Anna; Morgan, Gareth J; Hemminki, Kari; Houlston, Richard S; Goldschmidt, Hartmut

    2016-01-01

    To identify variants for multiple myeloma risk, we conducted a genome-wide association study with validation in additional series totaling 4,692 cases and 10,990 controls. We identified four risk loci at 3q26.2 (rs10936599, P=8.70x10-14), 6p21.33 (rs2285803, PSORS1C2; P= 9.67x10-11), 17p11.2 (rs4273077, TNFRSF13B; P=7.67x10-9) and 22q13.1 (rs877529, CBX7; P=7.63x10-16). These data provide further evidence for genetic susceptibility to this B-cell hematological malignancy and insight into the biological basis of predisposition. PMID:23955597

  13. Velopharyngeal incompetence diagnosed in a series of cardiac patients prompted by the finding of a 22q11.2 deletion

    SciTech Connect

    Driscoll, D.A.; Emanuel, B.S.; Goldmuntz, E.

    1994-09-01

    Congenital heart disease is very common and may occur as an isolated malformation or as part of a well-defined syndrome. In some syndromes, specific types are overrepresented as compared to their incidence in the general population. Conotruncal anomalies are one such example where they are seen as part of DiGeorge syndrome (DGS) and Velo-Cardio-Facial syndrome (VCFS). Often, the diagnosis of VCFS is not suspected because mild facial dysmorphia is frequently not appreciated in the newborn period. While overt cleft palate, a characteristic finding in VCFS, would be detected early, a submucousal cleft palate or velopharyngeal incompetence (VPI) may go unrecognized in the pre-verbal child and may remain undiagnosed in the older patient who is not referred for a palatal evaluation. In patients with either DGS or VCFS, microdeletions of chromosome 22q11.2 have been demonstrated in almost 90% of patients. As part of our ongoing study, twenty patients with a conotruncal cardiac anomaly, without an overt cleft palate, were referred for 22q11.2 deletion analysis. 13/20 patients were found to have a deletion. All 13 deleted patients underwent palatal evaluations by a plastic surgeon and speech pathologist. 7 patients were noted to have VPI. Intervention including speech therapy and/or posterior pharyngeal flap surgery for these previously undiagnosed abnormalities is underway. These results suggest that palatal abnormalities are underdiagnosed in a significant proportion of patients with conotruncal cardiac defects. We therefore propose deletion studies in these patients followed by prompt palatal evaluations when the deletion is present. Early diagnosis of VPI and submucousal cleft palate should lead to early intervention and appropriate management of the speech difficulties encountered by these individuals.

  14. Traffic of genetic information between segmental duplications flanking the typical 22q11.2 deletion in velo-cardio-facial syndrome/DiGeorge syndrome.

    PubMed

    Pavlicek, Adam; House, Reniqua; Gentles, Andrew J; Jurka, Jerzy; Morrow, Bernice E

    2005-11-01

    Velo-cardio-facial syndrome/DiGeorge syndrome results from unequal crossing-over events between two 240-kb low-copy repeats termed LCR22 (LCR22-2 and LCR22-4) on Chromosome 22q11.2, comprised of modules, each of which are >99% identical in sequence. To delineate regions in the LCR22s that might contain hotspots for 22q11.2 rearrangements, we scanned the interval for increased rates of recombination with the hypothesis that these regions might be more prone to breakage. We generated an algorithm to detect sites of altered recombination by searching for single nucleotide polymorphic positions in BAC clones from different libraries mapped to LCR22-2 and LCR22-4. This method distinguishes single nucleotide polymorphisms from paralogous sequence variants and complex polymorphic positions. Sites of shared polymorphism are considered potential sites of gene conversion or double cross-over between the two LCR22s. We found an inverse correlation between regions of paralogous sequence variants that are unique to a given position within one LCR22 and clusters of shared polymorphic sites, suggesting that these clusters depict altered recombination and not remnants of ancestral single nucleotide polymorphisms. We postulate that most shared polymorphic sites are products of past transfers of DNA information between the LCR22s, suggesting that frequent traffic of genetic material may induce genomic instability in the two LCR22s. We also found that gaps up to 1.5 kb long can be transferred between LCR22s.

  15. A prospective study of influenza vaccination and a comparison of immunologic parameters in children and adults with chromosome 22q11.2 deletion syndrome (digeorge syndrome/velocardiofacial syndrome).

    PubMed

    Jawad, Abbas F; Prak, Eline Luning; Boyer, Jean; McDonald-McGinn, Donna M; Zackai, Elaine; McDonald, Kenyetta; Sullivan, Kathleen E

    2011-12-01

    Prior to the advent of cardiac bypass, most children with congenital cardiac anomalies and chromosome 22q11.2 deletion syndrome died. With improved technology, there is now a wave of young adults with chromosome 22q11.2 deletion syndrome requiring clinical care. Fifteen young children and 20 adults with chromosome 22q11.2 deletion had flow cytometry, functional T cell analyses, and functional B cell analyses to characterize their immune system. Subjects were vaccinated with the annual inactivated influenza vaccine, and responses were evaluated by hemagglutination inhibition titer assessment. The pattern of T cell subset abnormalities was markedly different between pediatric and adult patients. In spite of the cellular deficits observed in adults, titers produced after influenza vaccine administration were largely intact. We conclude that disruption to T cell production appears to have secondary consequences for T cell differentiation and B cell function although the clinical impact remains to be determined.

  16. [Phenotype specific therapy of COPD].

    PubMed

    Rothe, Thomas

    2014-12-10

    COPD is not a homogenous disease but consists of at least four different phenotypes: Emphysema, COPD with chronic bronchitis, asthma-COPD overlap syndrome (ACOS), and COPD with recurrent exacerbations. With differentiation, treatment can be designed phenotype-specific. Some modern drugs are not indicated in all phenotypes.

  17. Steganalysis of overlapping images

    NASA Astrophysics Data System (ADS)

    Whitaker, James M.; Ker, Andrew D.

    2015-03-01

    We examine whether steganographic images can be detected more reliably when there exist other images, taken with the same camera under the same conditions, of the same scene. We argue that such a circumstance is realistic and likely in practice. In `laboratory conditions' mimicking circumstances favourable to the analyst, and with a custom set of digital images which capture the same scenes with controlled amounts of overlap, we use an overlapping reference image to calibrate steganographic features of the image under analysis. Experimental results show that the analysed image can be classified as cover or stego with much greater reliability than traditional steganalysis not exploiting overlapping content, and the improvement in reliability depends on the amount of overlap. These results are curious because two different photographs of exactly the same scene, taken only a few seconds apart with a fixed camera and settings, typically have steganographic features that differ by considerably more than a cover and stego image.

  18. Persistent low thymic activity and non-cardiac mortality in children with chromosome 22q11.2 microdeletion and partial DiGeorge syndrome.

    PubMed

    Eberle, P; Berger, C; Junge, S; Dougoud, S; Büchel, E Valsangiacomo; Riegel, M; Schinzel, A; Seger, R; Güngör, T

    2009-02-01

    A subgroup of patients with 22q11.2 microdeletion and partial DiGeorge syndrome (pDGS) appears to be susceptible to non-cardiac mortality (NCM) despite sufficient overall CD4(+) T cells. To detect these patients, 20 newborns with 22q11.2 microdeletion and congenital heart disease were followed prospectively for 6 years. Besides detailed clinical assessment, longitudinal monitoring of naive CD4(+) and cytotoxic CD3(+)CD8(+) T cells (CTL) was performed. To monitor thymic activity, we analysed naive platelet endothelial cell adhesion molecule-1 (CD31(+)) expressing CD45RA(+)RO(-)CD4(+) cells containing high numbers of T cell receptor excision circle (T(REC))-bearing lymphocytes and compared them with normal values of healthy children (n = 75). Comparing two age periods, low overall CD4(+) and naive CD4(+) T cell numbers were observed in 65%/75%, respectively, of patients in period A (< 1 year) declining to 22%/50%, respectively, of patients in period B (> 1/< 7 years). The percentage of patients with low CTLs (< P10) remained robust until school age (period A: 60%; period B: 50%). Low numbers of CTLs were associated with abnormally low naive CD45RA(+)RO(-)CD4(+) T cells. A high-risk (HR) group (n = 11) and a standard-risk (SR) (n = 9) group were identified. HR patients were characterized by low numbers of both naive CD4(+) and CTLs and were prone to lethal infectious and lymphoproliferative complications (NCM: four of 11; cardiac mortality: one of 11) while SR patients were not (NCM: none of nine; cardiac mortality: two of nine). Naive CD31(+)CD45RA(+)RO(-)CD4(+), naive CD45RA(+)RO(-)CD4(+) T cells as well as T(RECs)/10(6) mononuclear cells were abnormally low in HR and normal in SR patients. Longitudinal monitoring of naive CD4(+) and cytotoxic T cells may help to discriminate pDGS patients at increased risk for NCM.

  19. [Superior sagittal sinus thrombosis after intrathecal chemotherapy and intravenous high-dose cytarabine in an acute myeloid leukemia case with t(8;21)(q22;q22)].

    PubMed

    Kawakami, Keiki; Ito, Ryugo; Kageyama, Yuki; Nagaharu, Keiki; Yamaguchi, Takanori; Ito, Nobuo

    2016-04-01

    Superior sagittal sinus thrombosis (SSST) is a very rare but life-threatening complication in leukemia patients. SSST is very rare in acute myeloid leukemia (AML). In leukemia patients, several risk factors for SSST have been reported such as administration of L-asparaginase, disseminated intravascular coagulation, congenital thrombophilia, meningeal leukemia, and intrathecal chemotherapy (IT). Lumbar puncture itself and corticosteroid administration have also been acknowledged as risk factors. We describe herein our clinical experience with SSST in a 29-year-old Japanese man suffering from AML with t(8;21)(q22;q22), who presented with abrupt onset of loss of consciousness, left hemiplegia, and seizure soon after IT and high-dose cytarabine (HD-AraC) with dexamethasone for post remission consolidation. Despite the presence of intracranial hemorrhage (ICH) due to SSST rupture, we conducted anticoagulant therapy with heparin. Although ICH worsened temporarily, his clinical condition gradually improved with resolution of the SSST, and he eventually became fully ambulatory. There were no deficiencies of natural anticoagulants. Three additional cycles of HD-AraC without IT therapy were conducted, but no neurological complications recurred with the concomitant use of warfarin. He was discharged free of neurological deficits. In our case, there is a possibility that IT and the administration of corticosteroids along with HD-AraC triggered SSST.

  20. Cia27 is a novel non-MHC arthritis severity locus on rat chromosome 10 syntenic to the rheumatoid arthritis 17q22-q25 locus.

    PubMed

    Brenner, M; Laragione, T; Yarlett, N C; Li, W; Mello, A; Gulko, P S

    2006-07-01

    Cia27 on rat chromosome 10 is a collagen-induced arthritis (CIA) severity quantitative trait locus originally identified in a study of (DA x ACI) F2. As an initial step towards the positional cloning of the Cia27 gene, a 17 cM (21 Mb) interval from the DA strain (arthritis-susceptible) containing the two-logarithm of odds support interval comprising Cia27 was introgressed into the ACI (arthritis-resistant) background through genotype-guided congenic breeding. ACI.DA(Cia27) congenics developed a significantly more severe form of arthritis (CIA), with a 5.9-fold increase in median arthritis severity index, a parameter known to correlate with synovial inflammation, and cartilage and bone erosions, compared with ACI (P< or =0.001). The arthritis severity enhancing effect could be detected from day 21 onwards. Rats heterozygous at the congenic interval developed a disease similar to ACI rats, suggesting that DA alleles operate in a recessive manner. Levels of autoantibodies anti-rat type II collagen did not correlate with arthritis severity. Synovial tissue mRNA levels of interleukin-1beta (IL-1beta) were significantly increased in ACI.DA(Cia27) congenics compared with ACI. These results demonstrate that Cia27 harbors a novel arthritis severity regulatory gene. The identification of this gene should facilitate the identification of the rheumatoid arthritis gene mapped to the human syntenic region on chromosome 17q22-q25.

  1. Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1: Part 2

    SciTech Connect

    Pulver, A.E.; Lasseter, V.K.; Wolyniec, P.

    1994-03-15

    A collaboration involving four groups of investigators (Johns Hopkins University/Massachusetts Institute of Technology; Medical College of Virginia/The Health Research Board, Dublin; Institute of Psychiatry, London/University of Wales, Cardiff; Centre National de la Recherche Scientifique, Paris) was organized to confirm results suggestive of a schizophrenia susceptibility locus on chromosome 22 identified by the JHU/MIT group after a random search of the genome. Diagnostic, laboratory, and analytical reliability exercises were conducted among the groups to ensure uniformity of procedures. Data from genotyping of 3 dinucleotide repeat polymorphisms (at the loci D22S268, IL2RB, D22S307) for a combined replication sample of 256 families, each having 2 or more affected individuals with DNA, were analysed using a complex autosomal dominant model. This study provided no evidence for linkage or heterogeneity for the region 22q12-q13 under this model. We conclude that if this region confers susceptibility to schizophrenia, it must be in only a small proportion of families. Collaborative efforts to obtain large samples must continue to play an important role in the genetic search for clues to complex psychiatric disorders such as schizophrenia. 32 refs., 3 tabs.

  2. Mapping of four distinct BCR-related loci to chromosome region 22q11: order of BCR loci relative to chronic myelogenous leukemia and acute lymphoblastic leukemia breakpoints

    SciTech Connect

    Croce, C.M.; Huebner, K.; Isobe, M.; Fainstain, E.; Lifshitz, B.; Shtivelman, E.; Canaani, E.

    1987-10-01

    A probe derived from the 3' region of the BCR gene (breakpoint cluster region gene) detects four distinct loci in the human genome. One of the loci corresponds to the complete BCR gene, whereas the other contain a 3' segment of the gene. After HindIII cleavage of human DNA, these four loci are detected as 23-, 19-, 13-, and 9-kikobase-pair fragments, designated BCR4, BCR3, BCR2, and BCR1, respectively, with BCR1 deriving from the original complete BCR gene. All four BCR loci segregate 100% concordantly with human chromosome 22 in a rodent-human somatic cell hybrid panel and are located at chromosome region 22q11.2 by chromosomal in situ hybridization. The BCR2 and BCR4 loci are amplified in leukemia cell line K562 cells, indicating that they fall within the amplification unit that includes immunoglobulin lambda light chain locus (IGL) and ABL locus on the K562 Philadelphia chromosome (Ph/sup 1/). Similarly, in mouse-human hybrids retaining a Ph/sup 1/ chromosome derived from an acute lymphoblastic leukemia-in the absence of the 9q/sup +/ and 22, only BCR2 and BCR4 loci are retained. Thus, the order of loci on chromosome 22 is centromere ..-->.. BCR2, BCR4, and IGL ..-->.. BCR1 ..-->.. BCR3 ..-->.. SIS, possibly eliminating BCR2 and BCR4 loci as candidate targets for juxtaposition to the ABL gene in the acute lymphoblastic leukemia Ph/sup 1/ chromosome.

  3. Epstein-Barr virus-positive T-cell lymphoma cells having chromosome 22q11.2 deletion: an autopsy report of DiGeorge syndrome.

    PubMed

    Itoh, Shigemi; Ohno, Tadayuki; Kakizaki, Shuhei; Ichinohasama, Ryo

    2011-12-01

    Reported herein was the first autopsy case of Epstein-Barr virus-associated T-cell lymphoma in a 25-year-old man with DiGeorge syndrome. Systemic lymph nodes demonstrated diffuse encasement by large lymphoma cells positive for CD45, CD2, CD3, CD5, CD7, CD8, TIA1, and granzyme B, accompanied with marked hemophagocytosis. Almost 100% of lymphoma cells were both EBER- and LMP-1-positive, and EBNA2-negative. The rearrangement of T-cell receptor β gene was proved by polymerase chain reaction. Clinical and pathologic features coincided with Epstein-Barr virus-associated T/NK-cell lymphoproliferative disorder preceded by chronic active Epstein-Barr virus infection. A fluorescence in situ hybridization using paraffin-embedded tissues demonstrated a mosaic chromosome 22q11.2 deletion with both host cardiac myocytes and lymphoma cells, suggesting that Epstein-Barr virus-associated T-cell lymphoma was associated with and derived from the cells carrying the chromosomal abnormality. Furthermore, the lymphomagenesis of our case correlated with defect of cellular immunity in DiGeorge syndrome.

  4. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11.

    PubMed

    Gong, W; Emanuel, B S; Collins, J; Kim, D H; Wang, Z; Chen, F; Zhang, G; Roe, B; Budarf, M L

    1996-06-01

    The majority of patients with DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS) have a microdeletion of 22q11. Using translocation breakpoints and fluorescence in situ hybridization analysis (FISH), the minimal DiGeorge critical region (MDGCR) has been narrowed to 250 kb in the vicinity of D22S75 (N25). The construction of a detailed transcription map covering the MDGCR is an essential first step toward the identification of genes important to the etiology of DGS/VCFS, two complex disorders. We have identified a minimum of 11 transcription units encoded in the MDGCR using a combination of methods including cDNA selection, RT-PCR, RACE and genomic sequencing. This approach is somewhat unique and may serve as a model for gene identification. Of the 11 transcripts, one is the previously reported DGCR2/IDD/LAN gene, and three revealed a high level of similarity to mammalian genes: a Mus musculus serine/threonine kinase, a rat tricarboxylate transport protein and a bovine clathrin heavy chain. The remaining transcripts do not demonstrate any significant homology to genes of known function. The identification of these transcription units in the MDGCR will facilitate their further characterization and help elucidate their role in the etiology of DGS/VCFS.

  5. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster

    SciTech Connect

    Koelble, K.; Kaluz, S.; Reid, K.B.M. ); Mole, S.E. )

    1993-08-01

    Pulmonary surfactant consists of a complex mixture of phospholipids and several proteins essential to normal respiratory function. Two of the surfactant proteins, SP-A and SP-D, appear to have lectin-like activity relevant to the local phagocytic defense. Using polymerase chain reaction (PCR)-based somatic cell hybrid mapping, the human SP-D gene (SFTP4) was assigned to chromosome 10. A regional mapping panel was assembled and characterized using sequence tagged sites for five loci previously mapped to 10q. SFTP4, the SP-A gene (SFTP1), and the microsatellite D10S109 were placed in the interval 10q22-q23. Low-stringency PCR using the SFTP1 primer pair suggested the presence of at least two additional SP-A-related genes in the same region. With the locus for mannose-binding lectin (MBL) at 10q21, this may be indicative of this region's central role in the evolutionary history of carbohydrate-binding proteins containing collagen-like regions. 41 refs., 3 figs., 1 tab.

  6. Pulmonary extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue associated with granulomatous inflammation in a child with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome).

    PubMed

    Pongpruttipan, Tawatchai; Cook, James R; Reyes-Mugica, Miguel; Spahr, Jonathan E; Swerdlow, Steven H

    2012-11-01

    Patients with immunodeficiency disorders have an increased incidence of lymphoproliferative disorders; however, only 4 such patients with DiGeorge/chromosome 22q11.2 deletion syndrome have been reported. We report a case of a pulmonary Epstein-Barr virus-negative extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue in a child with this syndrome.

  7. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  8. Heterogeneity of asthma–COPD overlap syndrome

    PubMed Central

    Joo, Hyonsoo; Han, Deokjae; Lee, Jae Ha; Rhee, Chin Kook

    2017-01-01

    Many patients suffering from asthma or COPD have overlapping features of both diseases. However, a phenotypical approach for evaluating asthma–COPD overlap syndrome (ACOS) has not been established. In this report, we examined the phenotypes in patients with ACOS. Patients diagnosed with ACOS between 2011 and 2015 were identified and classified into four phenotype groups. Group A was composed of patients who smoked <10 pack years and had blood eosinophil counts ≥300. Group B was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Group C was composed of patients who smoked ≥10 pack years and had blood eosinophil counts ≥300. Group D was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Clinical characteristics were analyzed and compared among groups. Comparisons were made among 103 ACOS patients. Patients in group D were oldest, while patients in group A were youngest. There were relatively more female patients in groups A and B; the majority of patients in groups C and D were male. The degree of airflow obstruction was most severe in group C. The rate of being free of severe exacerbation was significantly lower in group C than in the other groups. In this study, each ACOS phenotype showed different characteristics. The proportion of patients free of severe exacerbation differed significantly among groups. At this time, further studies on the phenotypes of ACOS are required. PMID:28260876

  9. Distal tibiofibular radiological overlap

    PubMed Central

    Sowman, B.; Radic, R.; Kuster, M.; Yates, P.; Breidiel, B.; Karamfilef, S.

    2012-01-01

    Objectives Overlap between the distal tibia and fibula has always been quoted to be positive. If the value is not positive then an injury to the syndesmosis is thought to exist. Our null hypothesis is that it is a normal variant in the adult population. Methods We looked at axial CT scans of the ankle in 325 patients for the presence of overlap between the distal tibia and fibula. Where we thought this was possible we reconstructed the images to represent a plain film radiograph which we were able to rotate and view in multiple planes to confirm the assessment. Results The scans were taken for reasons other than pathology of the ankle. We found there was no overlap in four patients. These patients were then questioned about previous injury, trauma, surgery or pain, in order to exclude underlying pathology. Conclusion We concluded that no overlap between the tibia and fibula may exist in the population, albeit in a very small proportion. PMID:23610666

  10. Overlap among Environmental Databases.

    ERIC Educational Resources Information Center

    Miller, Betty

    1981-01-01

    Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)

  11. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    PubMed

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.

  12. Two Functional Copies of the DGCR6 Gene Are Present on Human Chromosome 22q11 Due to a Duplication of an Ancestral Locus

    PubMed Central

    Edelmann, Lisa; Stankiewicz, Pavel; Spiteri, Elizabeth; Pandita, Raj K.; Shaffer, Lisa; Lupski, James; Morrow, Bernice E.

    2001-01-01

    The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans. PMID:11157784

  13. Novel KAT6B-KANSL1 Fusion Gene Identified by RNA Sequencing in Retroperitoneal Leiomyoma with t(10;17)(q22;q21)

    PubMed Central

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Heim, Sverre

    2015-01-01

    Retroperitoneal leiomyoma is a rare type of benign smooth muscle tumor almost exclusively found in women and with histopathological features similar to uterine leiomyomas. The pathogenesis of retroperitoneal leiomyoma is unclear and next to nothing is known about the cytogenetics and molecular genetics of the tumor. Here we present the first cytogenetically analyzed retroperitoneal leiomyoma. It had a t(10;17)(q22;q21) as the sole chromosomal abnormality. Using RNA-Sequencing and the ‘grep’ command to search the fastq files of the sequence data we found that the translocation resulted in fusion of the genes KAT6B (10q22) with KANSL1 (17q21). RT-PCR together with direct (Sanger) sequencing verified the presence of a KAT6B-KANSL1 fusion transcript. No reciprocal KANSL1-KAT6B transcript was amplified suggesting that it was either absent or unexpressed. The KAT6B-KANSL1 fusion transcript consists of exons 1 to 3 of KAT6B and exons 11 to 15 of KANSL1, is 3667 bp long, has a 1398 bp long open reading frame, and codes for a 466 amino acid residue protein. The corresponding KAT6B-KANSL1 protein contains the NEMM domain (including the linker histone H1/H5, domain H15) of KAT6B and the PEHE domain of KANSL1. The function of the fusion protein might be regulation of transcription with an affinity for chromatin (linker histone H1/H5) and interaction with the HAT domain of KAT8 (PEHE domain). The tumor expressed HMGA2 and HMGA1 even though 12q14-15 and 6p looked normal by G-banding analysis. The tumor also expressed MED12 in the absence of exon 2 mutations. Overall, the data show that the examined retroperitoneal leiomyoma resembles a subset of uterine leiomyomas in terms of histology and genetics. PMID:25621995

  14. Characterisation of the Nevoid basal cell carcinoma (Gorlin`s) syndrome (NBCCS) gene region on chromosome 9q22-q31

    SciTech Connect

    Morris, D.J.; Digweed, M.; Sperling, K.

    1994-09-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominantly inherited malignancy-associated disease of unknown etiology. The gene has been mapped to chromosome 9q22-q31 by us and other groups, using linkage analysis and loss of heterozygosity studies. Subsequent linkage and haplotype analyses from 133 meioses in NBCCS families has refined the position of the gene between D9S12 and D9S287. Since the gene for Fanconi`s Anaemia type C (FAAC) has been assigned to the same 9q region, we have performed linkage analysis between FACC and NBCCCS in NBCCS families. No recombination has been observed between NBCCS and FACC and maximum lod scores of 34.98 and 11.94 occur for both diseases at the markers D9S196/D9S197. Southern blot analysis using an FACC cDNA probe has revealed no detectable rearrangements in our NBCCS patients. We have established a YAC contig spanning the region from D9S12 to D9S176 and STS content mapping in 22 YACs has allowed the ordering of 12 loci in the region, including the xeroderma pigmentosum type A (XPAC) gene, as follows: D9S151/D9S12P1 - D9S12P2 - D9S197 - D9S196 - D9S280 - FACC - D9S287/XPAC - D9S180 - D9S6 - D9S176. Using the contig we have been able to eliminate the {alpha}1 type XV collagen gene and the markers D9S119 and D9S297 from the NBCCS candidate region. Twelve YACs have been used to screen a chromosome 9 cosmid library and more than 1000 cosmids from the region have been identified to be used for the construction of a cosmid contig. A selection of these cosmids will be used for the isolation of coding sequencing from the region.

  15. Comparison of facial features of DiGeorge syndrome (DGS) due to deletion 10p13-10pter with DGS due to 22q11 deletion

    SciTech Connect

    Goodship, J.; Lynch, S.; Brown, J.

    1994-09-01

    DiGeorge syndrome (DGS) is a congenital anomaly consisting of cardiac defects, aplasia or hypoplasia of the thymus and parathroid glands, and dysmorphic facial features. The majority of DGS cases have a submicroscopic deletion within chromosome 22q11. However there have been a number of reports of DGS in association with other chromosomal abnormalities including four cases with chromosome 10p deletions. We describe a further 10p deletion case and suggest that the facial features in children with DGS due to deletions of 10p are different from those associated with chromosome 22 deletions. The propositus was born at 39 weeks gestation to unrelated caucasian parents, birth weight 2580g (10th centile) and was noted to be dysmorphic and cyanosed shortly after birth. The main dysmorphic facial features were a broad nasal bridge with very short palpebral fissures. Echocardiography revealed a large subsortic VSD and overriding aorta. She had a low ionised calcium and low parathroid hormone level. T cell subsets and PHA response were normal. Abdominal ultrasound showed duplex kidneys and on further investigation she was found to have reflux and raised plasma creatinine. She had an anteriorly placed anus. Her karyotype was 46,XX,-10,+der(10)t(3;10)(p23;p13)mat. The dysmorphic facial features in this baby are strikingly similar to those noted by Bridgeman and Butler in child with DGS as the result of a 10p deletion and distinct from the face seen in children with DiGeorge syndrome resulting from interstitial chromosome 22 deletions.

  16. Two functional copies of the DGCR6 gene are present on human chromosome 22q11 due to a duplication of an ancestral locus.

    PubMed

    Edelmann, L; Stankiewicz, P; Spiteri, E; Pandita, R K; Shaffer, L; Lupski, J R; Morrow, B E; Lupski, J

    2001-02-01

    The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans.

  17. Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome.

    PubMed

    Babcock, Melanie; Yatsenko, Svetlana; Hopkins, Janet; Brenton, Matthew; Cao, Qing; de Jong, Pieter; Stankiewicz, Pawel; Lupski, James R; Sikela, James M; Morrow, Bernice E

    2007-11-01

    Segmental duplications or low-copy repeats (LCRs) constitute approximately 5% of the sequenced portion of the human genome and are associated with many human congenital anomaly disorders. The low-copy repeats on chromosome 22q11.2 (LCR22s) mediate chromosomal rearrangements resulting in deletions, duplications and translocations. The evolutionary mechanisms leading to LCR22 formation is unknown. Four genes, USP18, BCR, GGTLA and GGT, map adjacent to the LCR22s and pseudogene copies are located within them. It has been hypothesized that gene duplication occurred during primate evolution, followed by recombination events, forming pseudogene copies. We investigated whether gene duplication could be detected in non-human hominoid species. FISH mapping was performed using probes to the four functional gene loci. There was evidence for a single copy in humans but additional copies in hominoid species. We then compared LCR22 copy number using LCR22 FISH probes. Lineage specific LCR22 variation was detected in the hominoid species supporting the hypothesis. To independently validate initial findings, real time PCR, and screening of gorilla BAC library filters were performed. This was compared to array comparative genome hybridization data available. The most striking finding was a dramatic amplification of LCR22s in the gorilla. The LCR22s localized to the telomeric or subtelomeric bands of gorilla chromosomes. The most parsimonious explanation is that the LCR22s became amplified by inter-chromosomal recombination between telomeric bands. In summary, our results are consistent with a lineage specific coupling between gene and LCR22 duplication events. The LCR22s thus serve as an important model for evolution of genome variation.

  18. Clustered 11q23 and 22q11 Breakpoints and 3:1 Meiotic Malsegregation in Multiple Unrelated t(11;22) Families

    PubMed Central

    Shaikh, Tamim H.; Budarf, Marcia L.; Celle, Livija; Zackai, Elaine H.; Emanuel, Beverly S.

    1999-01-01

    Summary The t(11;22) is the only known recurrent, non-Robertsonian constitutional translocation. We have analyzed t(11;22) balanced-translocation carriers from multiple unrelated families by FISH, to localize the t(11;22) breakpoints on both chromosome 11 and chromosome 22. In 23 unrelated balanced-translocation carriers, the breakpoint was localized within a 400-kb interval between D22S788 (N41) and ZNF74, on 22q11. Also, 13 of these 23 carriers were tested with probes from chromosome 11, and, in each, the breakpoint was localized between D11S1340 and APOA1, on 11q23, to a region ⩽185 kb. Thus, the breakpoints on both chromosome 11 and chromosome 22 are clustered in multiple unrelated families. Supernumerary-der(22)t(11;22) syndrome can occur in the progeny of balanced-t(11;22) carriers, because of malsegregation of the der(22). There has been speculation regarding the mechanism by which the malsegregation occurs. To elucidate this mechanism, we have analyzed 16 of the t(11;22) families, using short tandem-repeat–polymorphism markers on both chromosome 11 and chromosome 22. In all informative cases the proband received two of three alleles, for markers above the breakpoint on chromosome 22 and below the breakpoint on chromosome 11, from the t(11;22)-carrier parent. These data strongly suggest that 3:1 meiosis I malsegregation in the t(11;22) balanced-translocation–carrier parent is the mechanism in all 16 families. Taken together, these results establish that the majority of t(11;22) translocations occur within the same genomic intervals and that the majority of supernumerary-der(22) offspring result from a 3:1 meiosis I malsegregation in the balanced-translocation carrier. PMID:10577913

  19. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for “double trouble” overlapping syndromes

    PubMed Central

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-01-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient’s muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient. PMID:22245016

  20. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for "double trouble" overlapping syndromes.

    PubMed

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-06-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient's muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient.

  1. Maternal uniparental disomy 22 has no impact on the phenotype

    SciTech Connect

    Schinzel, A.A.; Bernasconi, F.; Robinson, W.P. ); Basaran, S.; Karaman, B.; Yueksel-Apak, M.

    1994-01-01

    A 25-year-old normal healthy male was karyotyped because five of his wife's pregnancies terminated in spontaneous abortions at 6-14 wk of gestation. Cytogenetic investigation disclosed a de novo balanced Robertsonian t(22q;22q) translocation. Molecular studies revealed maternal only inheritance for chromosome 22 markers. Reduction to homozygosity for all informative markers indicates that the rearranged chromosome is an isochromosome derived from one of the maternal chromosomes 22. Except for the possibility of homozygosity for recessive mutations, maternal uniparental disomy 22 does not seem to have an adverse impact on the phenotype, apart from causing reproductive failure. It can be concluded that no maternally imprinted genes with major effect map to chromosome 22. 10 refs., 2 figs., 1 tab.

  2. The Plate Overlap Technique.

    DTIC Science & Technology

    1978-07-31

    INTRODUCTION 1 II. NOTATION 2 III. THE GNOMONIC PROJECTION 4 IV . THE PLATE OVERLAP TECHNIQUE 6 A. MOTIVATION 6 B. FORNULATION 9 C. ON STATISTICAL RIGOR 14 D...and new hardware. Since this aim was clearly recognized long ago, wherever possible in earlier documents or software development flexibility was...reader should see 1, 2, and 3. The procedures one should use to update stellar positions are discussed in 4 with applica- tions to the SAOC in 5. Non

  3. Minimal phenotype in a girl with trisomy 15q due to t(X;15)(q22.3;q11.2) translocation.

    PubMed

    Stankiewicz, Paweł; Kuechler, Alma; Eller, C Daniel; Sahoo, Trilochan; Baldermann, Christiane; Lieser, Ulla; Hesse, Martin; Gläser, Christiane; Hagemann, Monika; Yatsenko, Svetlana A; Liehr, Thomas; Horsthemke, Bernhard; Claussen, Uwe; Marahrens, York; Lupski, James R; Hansmann, Ingo

    2006-03-01

    Few cases of de novo unbalanced X;autosome translocations associated with a normal or mild dysmorphic phenotype have been described. We report a 3-year-old dizygotic female twin with prenatally ascertained increased nuchal translucency. Prenatal chromosome studies revealed nearly complete trisomy 15 due to a de novo unbalanced translocation t(X;15)(q22;q11.2) confirmed postnatally. A mild phenotype was observed with normal birth measurements, minor facial dysmorphic features (hypertelorism, short broad nose, and a relatively long philtrum), and moderate developmental delay at the age of 3 years in comparison to her male fraternal twin. Replication timing utilizing BrdU and acridine-orange staining showed that the der(X) chromosome was late-replicating with variable spreading of inactivation into the translocated 15q segment. The der(X) was determined to be of paternal origin by analyses of polymorphic markers and CGG-repeat at FMR1. Methylation analysis at the SNRPN locus and analysis of microsatellites on 15q revealed paternal isodisomy with double dosage for all markers and the unmethylated SNRPN gene. The Xq breakpoint was mapped within two overlapping BAC clones RP11-575K24 and RP13-483F6 at Xq22.3 and the 15q breakpoint to 15q11.2, within overlapping clones RP11-509A17 and RP11-382A4 that are all significantly enriched for LINE-1 elements (36.6%, 43.0%, 26.6%, 22.0%, respectively). We speculate that the attenuated phenotype may be due to inactivation spreading into 15q, potentially facilitated by the enrichment of LINE-1 elements at the breakpoints. In silico analysis of breakpoint regions revealed the presence of highly identical low-copy repeats (LCRs) at both breakpoints, potentially involved in generating the translocation.

  4. The overlap syndromes of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2013-02-01

    Autoimmune hepatitis has two major variant phenotypes in which the features of classical disease are co-mingled with those of primary biliary cirrhosis or primary sclerosing cholangitis. These overlap syndromes lack codified diagnostic criteria, established pathogenic mechanisms, and confident management strategies. Their clinical importance relates mainly to the identification of patients who respond poorly to conventional corticosteroid treatment. Scoring systems that lack discriminative power have been used in their definition, and a clinical phenotype based on pre-defined laboratory and histological findings has not been promulgated. The frequency of overlap with primary biliary cirrhosis is 7-13 %, and the frequency of overlap with primary sclerosing cholangitis is 8-17 %. Patients with autoimmune hepatitis and features of cholestatic disease must be distinguished from patients with cholestatic disease and features of autoimmune hepatitis. Variants of the overlap syndromes include patients with small duct primary sclerosing cholangitis, antimitochondrial antibody-negative primary biliary cirrhosis, autoimmune sclerosing cholangitis, and immunoglobulin G4-associated disease. Conventional corticosteroid therapy alone or in conjunction with ursodeoxycholic acid (13-15 mg/kg daily) has been variably effective, and cyclosporine, mycophenolate mofetil, and budesonide have been beneficial in selected patients. The key cholestatic features that influence the prognosis of autoimmune hepatitis must be defined and incorporated into the definition of the syndrome rather than rely on designations that imply the co-mingling of different diseases with manifestations of variable clinical relevance. The overlap syndromes in autoimmune hepatitis are imprecise, heterogeneous, and unfounded, but they constitute a clinical reality that must be accepted, diagnosed, refined, treated, and studied.

  5. Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis.

    PubMed

    Jaudal, Mauren; Zhang, Lulu; Che, Chong; Putterill, Joanna

    2015-01-01

    The timing of the transition to flowering is carefully controlled by plants in order to optimize sexual reproduction and the ensuing production of seeds, grains, and fruits. The genetic networks that regulate floral induction are best characterized in the temperate eudicot Arabidopsis in which the florigen gene FT plays a major role in promoting the transition to flowering. Legumes are an important plant group, but less is known about the regulation of their flowering time. In the model legume Medicago truncatula (Medicago), a temperate annual plant like Arabidopsis, flowering is induced by prolonged cold (vernalization) followed by long day lengths (LD). Recent molecular-genetic experiments have revealed that a FT-like gene, MtFTa1, is a central regulator of flowering time in Medicago. Here, we characterize the three Medicago FRUITFULL (FUL) MADS transcription factors, MtFULa, MtFULb, and MtFULc using phylogenetic analyses, gene expression profiling through developmental time courses, and functional analyses in transgenic plants. MtFULa and MtFULb have similarity in sequence and expression profiles under inductive environmental conditions during both vegetative and reproductive development while MtFULc is only up regulated in the apex after flowering in LD conditions. Sustained up regulation of MtFULs requires functional MtFTa1 but their transcript levels are not affected during cold treatment. Overexpression of MtFULa and MtFULb promotes flowering in transgenic Arabidopsis plants with an additional terminal flower phenotype on some 35S:MtFULb plants. An increase in transcript levels of the MtFULs was also observed in Medicago plants overexpressing MtFTa1. Our results suggest that the MtFULs are targets of MtFTa1. Overall, this work highlights the conserved functions of FUL-like genes in promoting flowering and other roles in plant development and thus contributes to our understanding of the genetic control of the flowering process in Medicago.

  6. A Novel Four-Way Complex Variant Translocation Involving Chromosome 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) in a Chronic Myeloid Leukemia Patient

    PubMed Central

    Asif, Muhammad; Jamal, Mohammad Sarwar; Khan, Abdul Rehman; Naseer, Muhammad Imran; Hussain, Abrar; Choudhry, Hani; Malik, Arif; Khan, Shahida Aziz; Mahmoud, Maged Mostafa; Ali, Ashraf; Iram, Saima; Kamran, Kashif; Iqbal, Asim; Abduljaleel, Zainularifeen; Pushparaj, Peter Natesan; Rasool, Mahmood

    2016-01-01

    Philadelphia (Ph) chromosome (9;22)(q34;q11) is well established in more than 90% of chronic myeloid leukemia (CML) patients, and the remaining 5–8% of CML patients show variant and complex translocations, with the involvement of third, fourth, or fifth chromosome other than 9;22. However, in very rare cases, the fourth chromosome is involved. Here, we found a novel case of four-way Ph+ chromosome translocation involving 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) with CML in the chronic phase. Complete blood cell count of the CML patient was carried out to obtain total leukocytes count, hemoglobin, and platelets. Fluorescence in situ hybridization technique was used for the identification of BCR–ABL fusion gene, and cytogenetic test for the confirmation of Ph (9;22)(q34;q11) and the mechanism of variant translocation in the bone marrow. The patient is successfully treated with a dose of 400 mg/day imatinib mesylate (Gleevec). We observed a significant decrease in white blood cell count of 11.7 × 109/L after 48-month follow-up. Patient started feeling better generally. There was a reduction in the swelling of the body, fatigue, and anxiety. PMID:27303656

  7. Overlaps between Frailty and Sarcopenia Definitions.

    PubMed

    Cederholm, Tommy

    2015-01-01

    Aging is characterized by the catabolism of muscles leading to sarcopenia and frailty. These are two geriatric syndromes with partly overlapping phenotypes. Primary sarcopenia, i.e. loss of muscle mass and function related to aging alone, usually precedes frailty. Thus, robustness passes from sarcopenia over frailty to disability leading eventually to a mortal outcome. Frailty (defined according to the phenotype model) encompasses states as exhaustion, weakness, and slowness, whereas sarcopenia, combining mass and function, is more strictly focused on muscles. Frailty is age related, whereas sarcopenia is also related to disease, starvation, and disuse. In general, the criteria for the two conditions overlap, but frailty requires weight loss, whereas sarcopenia requires muscle loss. Both gait speed and hand grip strength are suggested to be used as diagnostic measures for the two conditions since muscle function is crucial for any of the two syndromes. It is suggested that frailty screening should be part of the geriatric comprehensive assessment starting with measuring walking capacity and complemented by taking a history of fatigue and low activity. For younger adults (i.e. <70 years), sarcopenia screening could first register gait speed or hand grip strength and then body composition measurements. Simple questionnaires are feasible clinical alternatives. Treatment of frailty and sarcopenia overlaps, i.e. provide adequate protein and vitamin D supplementation, and encourage resistance exercise.

  8. Acute myeloid leukemia with a RUNX1-RUNX1T1 t(1;21;8)(q21;q22;q22) novel variant: a case report and review of the literature.

    PubMed

    Kim, Hanah; Moon, Hee-Won; Hur, Mina; Yun, Yeo-Min; Lee, Mark Hong

    2011-01-01

    Variants of t(8;21)(q22;q22) account for approximately 3% of all t(8;21) in acute myeloid leukemia (AML). We report a 63-year-old female patient with AML, who showed a 3-way novel variant of t(8;21), t(1;21;8)(q21;q22;q22). She presented with gastric discomfort and splenomegaly, and her complete blood count was: white blood cell count 7.96 × 10(9)/l, with 7% blasts; hemoglobin 8.3 g/dl, and platelets 66 × 10(9)/l. Her bone marrow showed increased blasts (32.5%) with a basophilic cytoplasm, salmon-pink granules and Auer rods. Cytogenetic analysis revealed a karyotype of 46,XX,t(1;21;8)(q21;q22;q22), and fluorescence in situ hybridization confirmed a RUNX1-RUNX1T1 fusion signal on the derivative chromosome 8. After induction chemotherapy, the patient achieved complete remission and has been stable for 6 months. To the best of our knowledge, this is the first report on the novel variant of t(8;21) involving the breakpoint 1q21 and the third case with a translocation among chromosomes 1, 21 and 8. Although the clinical relevance of variant t(8;21) is still unclear, a review of 24 such cases in the literature does not imply a poorer prognosis of variant t(8;21) than of the classic t(8;21).

  9. Syndromes microdélétionnels (syndrome de Williams et syndrome de la délétion 22q11) au CHU Hassan II de Fès: à propos de 3 observations

    PubMed Central

    Ouldim, Karim; Bouguenouch, Laila; Samri, Imane; El Otmani, Ihsan; Hamdaoui, Hasna; Bennis, Sanae; Lakhdar, Mounia Idrissi; Chaouki, Sana; Atmani, Samir; Hida, Moustapha

    2012-01-01

    Les syndromes microdélétionnels sont définis par la présence d’une anomalie chromosomique de taille mineure (inférieure à 5 mégabases) ou aneusomie segmentaire, décelable par cytogénétique moléculaire (FISH : Fluorescent in Situ Hybridization). Les syndromes microdélétionnels représentent des syndromes cliniques avec des phénotypes suffisamment caractéristiques pour être reconnus cliniquement. Actuellement la FISH est la technique de choix pour rechercher ces syndromes. Plusieurs syndromes microdélétionnels peuvent être confirmés aisément, les plus recherchés sont Le syndrome de Williams (microdélétion en 7q11.23) et le syndrome de la délétion 22q11 (microdélétion en 22q11.2). Le syndrome de Williams est caractérisé par une anomalie du développement qui associe un retard psycho-moteur, une dysmorphie du visage évocatrice et un profil cognitif et comportemental spécifique, une sténose aortique supravalvulaire -SASV- le plus souvent. Le Syndrome de la délétion 22q11 se caractérise par l’association de plusieurs malformations d’expression variable: une cardiopathie congénitale de type conotroncal, une dysmorphie faciale discrète mais caractéristique et une hypoplasie du thymus et des parathyroïdes. Nous rapportons nos premières observations au CHU Hassan II confirmées par FISH : Syndrome de la délétion 22q11 (n:2) et un syndrome de Williams. Le but de cet article est la mise à jour de nos connaissances sur ces deux syndromes et la mise en valeur du rôle de la cytogénétique moléculaire dans le diagnostic et le conseil génétique des syndromes microdélétionnels. PMID:22368746

  10. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13. 3

    SciTech Connect

    Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. )

    1994-04-01

    Heme oxygenase catalyzes the oxidation of heme to biliverdin, the precursor of the bile pigment bilirubin, and carbon monoxide, a putative neurotransmitter. The authors have employed polymerase chain reaction and fluorescence in situ hybridization to determine the chromosome localization of the genes coding for the two known heme oxygenase isozymes. Heme oxygenase-1 (HMOX1), the inducible form, was localized to human chromosome 22q12, while heme oxygenase-2 (HMOX2), the constitutive form, was localized to chromosome 16p13.3. 14 refs., 3 figs.

  11. The human mitochondrial citrate transporter gene (SLC20A3) maps to chromosome band 22q11 within a region implicated in DiGeorge syndrome, velo-cardio-facial syndrome and schizophrenia.

    PubMed

    Stoffel, M; Karayiorgou, M; Espinosa, R; Beau, M M

    1996-07-01

    The gene encoding the human mitochondrial citrate transporter designated SLC20A3 was mapped to chromosome 22 by analyzing its segregation in a panel of human-hamster somatic cell hybrids. This assignment was confirmed by fluorescence in situ hybridization to metaphase chromosomes, and the gene was further localized to band 22q11.21. The gene is located in a critical region associated with allelic losses in a variety of clinical syndromes, including DiGeorge syndrome, velo-cardio-facial syndrome and a subtype of schizophrenia.

  12. A 1.5-Mb contig within the cat eye syndrome critical region at human chromosome 22q11.2.

    PubMed

    Johnson, A; Minoshima, S; Asakawa, S; Shimizu, N; Shizuya, H; Roe, B A; McDermid, H E

    1999-04-15

    We have constructed a 1.5-Mb contig spanning the distal half of the critical region for cat eye syndrome on human chromosome 22 from D22S543 to D22S181. The contig consists of 20 P1 artificial chromosome (PAC) clones and 11 bacterial artificial chromosome (BAC) clones screened from 2 BAC and 2 PAC libraries. Continuous overlap between the clones was confirmed using vectorette PCR and riboprobes. Despite the instability of this region in a previous YAC contig, only 1 BAC showed a minor instability and then in only one isolation. This contig is now providing the basis for genomic sequencing and gene identification in the cat eye syndrome critical region.

  13. Clinical case of acute myeloblastic leukemia with t(8;21)(q22;q22) in a patient with Klinefelter's syndrome

    PubMed Central

    Slavcheva, Vanya; Lukanov, Tzvetan; Balatsenko, Gueorgui; Angelova, Svetlana; Antonov, Antonio; Bogdanov, Lachezar; Tsvetkov, Nikolay

    2010-01-01

    Klinefelter's syndrome is characterized by abnormal karyotype 47, XXY and a phenotype associated with hypogonadism and gynecomastia. Often the disease can be diagnosed accidentally, when carrying out cytogenetic analysis in cases of a malignant blood disease. We present the clinical case of a patient diagnosed with acute myelomonoblastic leukemia-M4 Eo (AML- M4), where by means of classic cytogenetics a karyotype was found corresponding to Klinefelter's syndrome. Three induction courses of polychemotherapy wermade, which led to remission of the disease, documented both flowcytometrically and cytogenetically. PMID:22184514

  14. Overlapping clusters for distributed computation.

    SciTech Connect

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initial partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.

  15. Laterality preference and cognition: cross-syndrome comparison of patients with trisomy 21 (Down), del7q11.23 (Williams-Beuren) and del22q11.2 (DiGeorge or Velo-Cardio-Facial) syndromes.

    PubMed

    Carlier, Michèle; Desplanches, Aude Gérard; Philip, Nicole; Stefanini, Silvia; Vicari, Stefano; Volterra, Virginia; Deruelle, Christine; Fisch, Gene; Doyen, Anne Lise; Swillen, Anne

    2011-05-01

    We report on a cross-syndrome comparison of hand, foot, eye and ear laterality in three groups of individuals with different genetic disorders (trisomy 21, del7q11.23, and del22q11.2) to test the relationship between atypical laterality and intellectual disability. These groups were compared to a group of typically developing persons. Hand, foot, eye and ear laterality was assessed using item tasks, conducted twice, and Bishop's card-reaching test. Ordering of the mean IQ score for each of the three groups was as follows: trisomy 21 < del7q11.23 < del22q11.2. We observed the same ordering as for IQ, particularly in mixed handedness, degree of laterality, hand and foot consistency. The existence of a cognitive threshold, below which lateral preference is atypical, advocates for a causal link between cognition and laterality in those with low IQ although unknown other factors underlying both could determine this association.

  16. Inheritance of balanced translocation t(17; 22) from a Down syndrome mother to a phenotypically normal daughter.

    PubMed

    Liu, X Y; Jiang, Y T; Wang, R X; Luo, L L; Liu, Y H; Liu, R Z

    2015-08-28

    We report that a 30-year-old woman with mental retardation was referred for prenatal diagnoses during pregnancy. An ultrasound scan showed that the heart structure and function of the fetus were normal. Cytogenetic analysis showed that the female karyotype was 47,XX, t(17; 22) (q21; q11), +21. The woman's husband had a normal male karyotype and was phenotypically normal. During this first pregnancy, an amniocentesis, which was done at 19 weeks, revealed that the fetal karyotype was 46,XX, t(17; 22) (q21; q11). Fluorescence in situ hybridization testing of amniotic fluid gave a normal result for chromosome 21. The child was a phenotypically normal female baby.

  17. Mosaic microdeletion of 17p11.2-p12 and duplication of 17q22-q24 in a girl with Smith-Magenis phenotype and peripheral neuropathy.

    PubMed

    Goh, Elaine Suk-Ying; Banwell, Brenda; Stavropoulos, Dimitri James; Shago, Mary; Yoon, Grace

    2014-03-01

    We report on a girl with a de novo mosaic derivative chromosome 17 involving a 7.4 Mb deletion of chromosome region 17p11.2 to 17p12 and a duplication of a 12.35 Mb region at 17q22 to 17q24. She was ascertained because of developmental delay, peripheral neuropathy, brachydactyly and minor anomalies. The derivative chromosome was present in approximately 12% of lymphocytes based on FISH studies, and was detected by array comparative genomic hybridization. To our knowledge, this is the third case of mosaicism involving deletion of the 17p11.2 region and the lowest level of mosaicism reported in a patient with Smith-Magenis syndrome (SMS).

  18. A patient presenting a 22q13 deletion associated with an apparently balanced translocation t(16;22): An illustrative case in the investigation of patients with low ARSA activity

    PubMed Central

    Artigalás, Osvaldo; Paskulin, Giorgio; Riegel, Mariluce; Burin, Maira; Saraiva-Pereira, Maria Luiza; Maluf, Sharbel; Kiss, Andrea; Schwartz, Ida Vanessa D.

    2012-01-01

    A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features. PMID:22888290

  19. Primary intracerebral angiomatoid fibrous histiocytoma: report of a case with a t(12;22)(q13;q12) causing type 1 fusion of the EWS and ATF-1 genes.

    PubMed

    Dunham, Christopher; Hussong, Jerry; Seiff, Michael; Pfeifer, John; Perry, Arie

    2008-03-01

    Angiomatoid fibrous histiocytoma (AFH) is generally considered a soft tissue sarcoma of low malignant potential that occurs in children/young adults and most frequently affects the extremities. AFH infrequently recurs and rarely metastasizes. AFH has a characteristic histomorphology, and immunohistochemical reactivities for desmin and CD68 have led to myofibroblastic and fibrohistiocytic histogenetic hypotheses, respectively. Although only a limited number of AFH cases have been molecularly characterized, many have demonstrated evidence of an underlying translocation event. Reverse transcription-polymerase chain reaction and fluorescence in situ hybridization studies suggest that chromosomal rearrangement in AFH most frequently involve the EWS, CREB, ATF-1, and FUS genes. We report the first pathologically confirmed case of an AFH presenting as an intracerebral primary in a previously healthy 25-year-old man. Genetic analyses revealed a t(12;22)(q13;q12) and a unique underlying clear cell sarcomalike type 1 EWS/ATF-1 gene fusion.

  20. GNB1L, a gene deleted in the critical region for DiGeorge syndrome on 22q11, encodes a G-protein beta-subunit-like polypeptide.

    PubMed

    Gong, L; Liu, M; Jen, J; Yeh, E T

    2000-11-15

    CATCH 22 syndromes, which include DiGeorge syndrome and Velocardiofacial syndrome, are the most common cause of congenital heart disease which involve microdeletion of 22q11. Using a strategy including EST searching, PCR amplification and 5'-RACE, we have cloned a 1487 bp cDNA fragment from human heart cDNA library. The cloned GNB1L cDNA encodes a G-protein beta-subunit-like polypeptide, and the GNB1L gene is located in the critical region for DiGeorge syndrome. A comparison of GNB1L cDNA sequence with corresponding genomic DNA sequence revealed that this gene consists of seven exons and spans an approximately 60 kb genomic region. Northern blot analysis revealed GNB1L is highly expressed in the heart.

  1. Phelan-McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype?

    PubMed Central

    Verhoeven, Willem MA; Egger, Jos IM; Willemsen, Marjolein H; de Leijer, Gert JM; Kleefstra, Tjitske

    2012-01-01

    The 22q13.3 deletion, or Phelan-McDermid syndrome, is characterized by global intellectual disability, generalized hypotonia, severely delayed or absent speech associated with features of autism spectrum disorder, and minor dysmorphisms. Its behavioral phenotype comprises sleep disturbances, communication deficits, and motor perseverations. Data on psychological dysfunctions are so far not available. Previous studies have suggested that the loss of one copy of the gene SH3 and multiple ankyrin repeat domains 3 (SHANK3) is related to the neurobehavioral phenotype. Additional genes proximal to SHANK3 are also likely to play a role in the phenotype of patients with larger deletions. The present paper describes two adult brothers with an identical 2.15 Mb 22qter (22q13.32q13.33) deletion, of whom the youngest was referred for evaluation of recurrent mood changes. In both patients, magnetic resonance imaging of the brain showed hypoplasia of the vermis cerebelli. Extensive clinical examinations led to a final diagnosis of atypical bipolar disorder, of which symptoms fully remitted during treatment with a mood stabilizer. In the older brother, a similar psychopathological picture appeared to be present, although less severe and with a later onset. It is concluded that the behavioral phenotype of the 22q13.3 deletion syndrome comprises absent or delayed speech and perseverations with associated autistic-like features, whereas its psychopathological phenotype comprises an atypical bipolar disorder. The latter may have implications for the treatment regime of the syndrome-related behavioral disturbances. PMID:22570549

  2. Seeding for pervasively overlapping communities

    NASA Astrophysics Data System (ADS)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  3. Clique graphs and overlapping communities

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  4. Substantial Genetic Overlap between Schizotypy and Neuroticism: A Twin Study

    PubMed Central

    Macare, Christine; Bates, Timothy C.; Heath, Andrew C.; Martin, Nicholas G.; Ettinger, Ulrich

    2013-01-01

    Schizotypy is phenotypically associated with neuroticism. To reveal the origin of this association, we assessed 3349 (1449 monozygotic (MZ), 1105 dizygotic (DZ) same-sex and 795 DZ opposite-sex) twins on a 12-item version of Chapman’s Psychosis-Proneness Scales and the short-form of the Eysenck Personality Questionnaire-Revised as measures of schizotypy and neuroticism. A substantial proportion (.51 with 95% CI from .38 to .64) of the phenotypic correlation of .37 between neuroticism and the perceptual and ideational components of schizotypy was accounted for by shared genetic influences on these two traits. Moreover, a Cholesky decomposition including anhedonia, hypomania and impulsivity fully accounted for the heritable variance in perceptual and ideational components of schizotypy. These findings suggest a shared genetic etiology between neuroticism and perceptual and ideational components of schizotypy and affect future investigations on the etiology of these phenotypically overlapping traits and affective and psychotic disorders. PMID:22955548

  5. A new classification of interphase nuclei based on spatial organizations of chromosome 8 and 21 for t(8;21) (q22;q22) acute myeloid leukemia by three-dimensional fluorescence in situ hybridization.

    PubMed

    Tian, Xueli; Wang, Yanfang; Zhao, Fengying; Liu, Jinlin; Yin, Jun; Chen, Dieyan; Ma, Wanyun; Ke, Xiaoyan

    2015-12-01

    Interphase heterogenous chromosomes spatially close to each other are predominantly located near the center of nuclei and are prone to incur translocations. We screened a t(8;21) (q22;q22) acute myeloid leukemia-M2 patient during three phases (post-chemotherapy, remittent stage, and relapse) and a donor of normal karyotype as control by two-(2D) and three-dimensional (3D)-fluorescence in situ hybridization (FISH). Our classification of nuclei (normal, transitional, and malignant nuclei) by 3D-FISH analyses may provide a more precise prognosis than 2D-FISH results, especially for remittent stage sample in our study, in which 2D-FISH findings showed normal results, whereas 3D-FISH results showed extreme abnormalities (normal nuclei 27%, transitional nuclei 36%, malignant nuclei 37%). The relative radial positions (d/R) of chromosomes 8 were similar to d/R of chromosomes 21 for the relapse sample. We classified heterogenous chromosome pairs into close pairs and normal pairs based on their relative distances (d'/(2R)). The centers of close pairs were more internal than normal pairs in nuclei in all samples, and the d/R values of a given-type pairwise heterogenous chromosomes were similar among four samples. Our data demonstrate that the classification of nuclei based on spatial organization of chromosomes by 3D-FISH is reasonable and essential for evaluating acute myeloid leukemia prognosis.

  6. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome

    PubMed Central

    Piskorowski, Rebecca A.; Nasrallah, Kaoutsar; Diamantopoulou, Anastasia; Mukai, Jun; Hassan, Sami I.; Siegelbaum, Steven A.; Gogos, Joseph A.; Chevaleyre, Vivien

    2015-01-01

    Several neuropsychiatric disorders are associated with cognitive and social dysfunction. Post-mortem studies of patients with schizophrenia have revealed specific changes in area CA2, a long over-looked region of the hippocampus recently found to be critical for social memory formation. To examine how area CA2 is altered in psychiatric illness, we used the Df(16)A+/− mouse model of the 22q11.2 microdeletion, a genetic risk factor for developing several neuropsychiatric disorders, including schizophrenia. We report several age-dependent CA2 alterations: a decrease in the density of parvalbumin-stained interneurons, a reduction in the amount of feed-forward inhibition and a change in CA2 pyramidal neuron intrinsic properties. Furthermore, we found that area CA2 is less plastic in Df(16)A+/− mice, making it nearly impossible to evoke action potential firing in CA2 pyramidal neurons. Finally, we show that Df(16)A+/− mice display impaired social cognition, providing a potential mechanism and a neural substrate for this impairment in psychiatric disorders. PMID:26748091

  7. High-density single-nucleotide polymorphism (SNP) map in the 96-kb region containing the entire human DiGeorge syndrome critical region 2 (DGCR2) gene at 22q11.2.

    PubMed

    Iida, A; Ohnishi, Y; Ozaki, K; Ariji, Y; Nakamura, Y; Tanaka, T

    2001-01-01

    We constructed a high-density single-nucleotide polymorphism (SNP) map in the 96-kb region containing the DiGeorge syndrome critical region 2 (DGCR2) gene at chromosome 22q11.2, a human counterpart of mouse seizure-related gene SEZ-12. A total of 102 SNPs were isolated from the region by systematic screening among 48 Japanese individuals: 9 SNPs in the 5' flanking region, 3 in the 5' untranslated region, 2 in the coding regions, 77 in introns, 7 in the 3' untranslated region, and 4 in the 3' flanking region. By a comparison of our data with SNPs deposited in the dbSNP database in the National Center for Biotechnology Information, 80 SNPs (78.4%) were considered to be novel. The ratio of transition to transversion was 3.08:1. In addition, eight other types of genetic variations (one GA dinucleotide polymorphism and seven insertion/deletion polymorphisms) were discovered. The high-resolution map that we constructed will be a useful resource for analyzing gene scans of complex diseases mapped to this local segment on chromosome 22.

  8. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  9. Intrafamilial and interfamilial variability of phenotype in familial velo-cardio-facial syndrome

    SciTech Connect

    Hajianpour, M.J.; Covle, M.

    1994-09-01

    Two half-sisters and their mother from one family, and two full-brothers and their mother from another family presented with features of velo-cardio-facial syndrome (VCSF)/DiGeorge syndrome (DS) with intrafamilial and interfamilial variability of phenotypic expression. None of these patients had an apparent cleft palate. Cardiac anomaly, jejunal atresia and hypocalcemia were present only in the newborn patient. Fluorescence in situ hybridization for VCFS/DS with probe D22S75 showed a deletion in the 22q11.2 region in patients available for the study.

  10. Overlap in Facebook Profiles Reflects Relationship Closeness.

    PubMed

    Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E

    2015-01-01

    We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness.

  11. Molecular and phenotypic characterization of ring chromosome 22 in two unrelated patients.

    PubMed

    Hannachi, H; Mougou, S; Benabdallah, I; Soayh, N; Kahloul, N; Gaddour, N; Le Lorc'h, M; Sanlaville, D; El Ghezal, H; Saad, A

    2013-01-01

    We report on the cytogenetic and molecular characterization of a constitutional de novo ring chromosome 22 (r(22)) in 2 unrelated patients with emphasis on different hypotheses proposed to explain the phenotypic variability characterizing this genomic disorder. In both patients, molecular investigations using FISH and array-CGH techniques revealed a 22q terminal deletion involving the 22q13.33 critical region. The size of the deletion was estimated to at least 1.35 Mb in the first proband and to only 300 kb in the second. They both exhibited the major features of r(22) syndrome, but the first patient was more profoundly affected. He had a more severe phenotype, further complicated by behavioral anomalies, autistic-like features with abnormal EEG pattern and brain MRI profile. Haploinsufficiency of the SHANK3 gene, lying in the minimal critical region, is nowadays considered as responsible for most neurobehavioral anomalies. Nevertheless, phenotypic severity and occurrence of additional features in the first patient suggest a potential involvement of one or more specific gene(s) located proximally to SHANK3 (as PLXNB2, PANX2, ALG12 or MLC1), acting either independently of it or by regulating or promoting its expression and thus disrupting its function when deleted.

  12. Overlapping structures in sensory-motor mappings.

    PubMed

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots.

  13. Overlapping Structures in Sensory-Motor Mappings

    PubMed Central

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  14. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes.

    PubMed

    Megonigal, M D; Rappaport, E F; Jones, D H; Williams, T M; Lovett, B D; Kelly, K M; Lerou, P H; Moulton, T; Budarf, M L; Felix, C A

    1998-05-26

    We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11. 2) disrupting MLL. Known 5' sequence from MLL but unknown 3' sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5' MLL genomic sequence to the 5' ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem-loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.

  15. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  16. Finding overlapping communities using seed set

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-02-01

    The local optimization algorithm using seed set to find overlapping communities has become more and more a significant method, but it is a great challenge how to choose a good seed set. In this paper, a new method is proposed to achieve the choice of candidate seed sets, and yields a new algorithm to find overlapping communities in complex networks. By testing in real world networks and synthetic networks, this method can successfully detect overlapping communities and outperform other state-of-the-art overlapping community detection methods.

  17. Overlap syndromes among autoimmune liver diseases.

    PubMed

    Rust, Christian; Beuers, Ulrich

    2008-06-07

    The three major immune disorders of the liver are autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Variant forms of these diseases are generally called overlap syndromes, although there has been no standardised definition. Patients with overlap syndromes present with both hepatitic and cholestatic serum liver tests and have histological features of AIH and PBC or PSC. The AIH-PBC overlap syndrome is the most common form, affecting almost 10% of adults with AIH or PBC. Single cases of AIH and autoimmune cholangitis (AMA-negative PBC) overlap syndrome have also been reported. The AIH-PSC overlap syndrome is predominantly found in children, adolescents and young adults with AIH or PSC. Interestingly, transitions from one autoimmune to another have also been reported in a minority of patients, especially transitions from PBC to AIH-PBC overlap syndrome. Overlap syndromes show a progressive course towards liver cirrhosis and liver failure without treatment. Therapy for overlap syndromes is empiric, since controlled trials are not available in these rare disorders. Anticholestatic therapy with ursodeoxycholic acid is usually combined with immunosuppressive therapy with corticosteroids and/or azathioprine in both AIH-PBC and AIH-PSC overlap syndromes. In end-stage disease, liver transplantation is the treatment of choice.

  18. Asthma, chronic obstructive pulmonary disease (COPD), and the overlap syndrome.

    PubMed

    Nakawah, Mohammad Obadah; Hawkins, Clare; Barbandi, Farouk

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent chronic diseases in the general population. Both are characterized by heterogeneous chronic airway inflammation and airway obstruction. In both conditions, chronic inflammation affects the whole respiratory tract, from central to peripheral airways, with different inflammatory cells recruited, different mediators produced, and thus differing responses to therapy. Airway obstruction is typically intermittent and reversible in asthma but is progressive and largely irreversible in COPD. However, there is a considerable pathologic and functional overlap between these 2 heterogeneous disorders, particularly among the elderly, who may have components of both diseases (asthma-COPD overlap syndrome). The definitions for asthma and COPD recommended by current guidelines are useful but limited because they do not illustrate the full spectrum of obstructive airway diseases that is encountered in clinical practice. Defining asthma and COPD as separate entities neglects a considerable proportion of patients with overlapping features and is largely based on expert opinion rather than on the best current evidence. The presence of different phenotypes or components of obstructive airway diseases, therefore, needs to be addressed to individualize and optimize treatment to achieve the best effect with the fewest side effects for the patient. Although specific interventions vary by disease, the treatment goals of obstructive airway diseases are similar and driven primarily by the need to control symptoms, optimize health status, and prevent exacerbations.

  19. Evidence for Overlapping Genetic Influences on Autistic and ADHD Behaviours in a Community Twin Sample

    ERIC Educational Resources Information Center

    Ronald, Angelica; Simonoff, Emily; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert

    2008-01-01

    Background: High levels of clinical comorbidity have been reported between autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). This study takes an individual differences approach to determine the degree of phenotypic and aetiological overlap between autistic traits and ADHD behaviours in the general population.…

  20. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  1. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  2. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  3. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing.

  4. [Asthma and chronic obstructive pulmonary disease overlap].

    PubMed

    Müller, Veronika; Gálffy, Gabriella; Tamási, Lilla

    2011-01-16

    Asthma bronchiale and chronic obstructive pulmonary disease are the most prevalent lung diseases characterized by inflammation of the airways. International and Hungarian guidelines provide proper definitions for clinical symptoms, diagnostics and therapy of both diseases. However, in everyday clinical practice, overlap of asthma and chronic obstructive pulmonary disease has become more frequent. As guidelines are mainly based on large, multicenter, randomized, controlled trials that exclude overlap patients, there is a lack of diagnostic and especially therapeutic strategies for these patients. This review summarizes clinical characteristics of asthma and chronic obstructive pulmonary disease overlap, and provides daily practical examples for its management.

  5. Physical findings in 21q22 deletion suggest critical region for 21q - phenotype in q22

    SciTech Connect

    Thedoropoulos, D.S.; Cowan, J.M.; Elias, E.R.; Cole, C.

    1995-11-06

    Multiple abnormalities were observed in a newborn infant with a deletion in the long arm of chromosome 21, from band 22q22.1{yields}qter. The phenotype of this infant was similar to that previously described in infants with deletions spanning the long arm of chromosome 21, from the centromere to 21q22. However, as a phenotypically normal child with normal intelligence and with deletion of 21q11.1-21q21.3 has also been identified, this case suggests that the critical region of deletion for the 21q - phenotype lies distal to 21q21, within 21q22.1-22.2. 10 refs., 2 figs.

  6. Correlated edge overlaps in multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  7. Infrared lidar overlap function: an experimental determination.

    PubMed

    Guerrero-Rascado, Juan Luis; Costa, Maria João; Bortoli, Daniele; Silva, Ana Maria; Lyamani, Hassan; Alados-Arboledas, Lucas

    2010-09-13

    The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

  8. Overlapping Antisense Transcription in the Human Genome

    PubMed Central

    Fahey, M. E.; Moore, T. F.

    2002-01-01

    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose. PMID:18628857

  9. The overlap between anxiety, depression, and obsessive-compulsive disorder

    PubMed Central

    Goodwin, Guy M.

    2015-01-01

    The anxiety disorders include generalized anxiety disorder, specific phobia, social phobia, agoraphobia, and panic disorder. In addition to the specific symptoms of these disorders, there may be a common experience of anxiety and even dysphoria across the conditions, and of course recourse to the same drug or choice of drugs for treatment. This overlap probably occurs because of universal dimensions of distress or negative affectivity, a shared genetic predisposition, and a common neurobiology Evidence of shared genes is still based mainly on twin studies, but the shared neurobiology can be investigated directly by the investigation of emotional or cognitive bias either behaviorally or using functional brain imaging. This intermediate phenotype can then provide a substrate for understanding and developing medicines and psychological treatments. PMID:26487806

  10. The overlap between anxiety, depression, and obsessive-compulsive disorder.

    PubMed

    Goodwin, Guy M

    2015-09-01

    The anxiety disorders include generalized anxiety disorder, specific phobia, social phobia, agoraphobia, and panic disorder. In addition to the specific symptoms of these disorders, there may be a common experience of anxiety and even dysphoria across the conditions, and of course recourse to the same drug or choice of drugs for treatment. This overlap probably occurs because of universal dimensions of distress or negative affectivity, a shared genetic predisposition, and a common neurobiology Evidence of shared genes is still based mainly on twin studies, but the shared neurobiology can be investigated directly by the investigation of emotional or cognitive bias either behaviorally or using functional brain imaging. This intermediate phenotype can then provide a substrate for understanding and developing medicines and psychological treatments.

  11. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case.

    PubMed

    Seligmann, Hervé

    2012-12-01

    Mitochondrial genes code for additional proteins after +2 frameshifts by reassigning stops to code for amino acids, which defines overlapping genetic codes for overlapping genes. Turtles recode stops UAR → Trp and AGR → Lys (AGR → Gly in the marine Olive Ridley turtle, Lepidochelys olivacea). In Lepidochelys the +2 frameshifted mitochondrial Cytb gene lacks stops, open reading frames from other genes code for unknown proteins, and for regular mitochondrial proteins after frameshifts according to the overlapping genetic code. Lepidochelys' inversion between proteins coded by regular and overlapping genetic codes substantiates the existence of overlap coding. ND4 differs among Lepidochelys mitochondrial genomes: it is regular in DQ486893; in NC_011516, the open reading frame codes for another protein, the regular ND4 protein is coded by the frameshifted sequence reassigning stops as in other turtles. These systematic patterns are incompatible with Genbank/sequencing errors and DNA decay. Random mixing of synonymous codons, conserving main frame coding properties, shows optimization of natural sequences for overlap coding; Ka/Ks analyses show high positive (directional) selection on overlapping genes. Tests based on circular genetic codes confirm programmed frameshifts in ND3 and ND4l genes, and predicted frameshift sites for overlap coding in Lepidochelys. Chelonian mitochondria adapt for overlapping gene expression: cloverleaf formation by antisense tRNAs with predicted anticodons matching stops coevolves with overlap coding; antisense tRNAs with predicted expanded anticodons (frameshift suppressor tRNAs) associate with frameshift-coding in ND3 and ND4l, a potential regulation of frameshifted overlap coding. Anaeroby perhaps switched between regular and overlap coding genes in Lepidochelys.

  12. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    This paper describes a technique to segment overlapping and touching chromosomes of human metaphase cells. Automated chromosome classification has been an important pattern recognition problem for decades, numerous attempts were made in the past to characterize chromosome band patterns. But successful separation between touching and overlapping chromosomes is vital for correct classification. Since chromosomes are non-rigid objects, common methods for separation between touching chromosomes are not usable. We proposed a method using shape concave and convex information, topology analysis information, and band pale paths for segmentation of touching and overlapping chromosomes. To detect shape concave and convex information, we should first pre-segment the chromosomes and get the edge of overlapping and touching chromosomes. After filtering the original image using edge-preserving filter, we adopt the Otsu's segmentation method and extract the boundary of chromosomes. Hence the boundary can be used for segment the overlapping and touching chromosomes by detecting the concave and convex information based on boundary information. Most of the traditional boundary-based algorithms detect corners based on two steps: the first step is to acquire the smoothed version of curvature at every point along the contour, and the second step is to detect the positions where curvature maximal occur and threshold the curvature as corner points. Recently wavelet transform has been adopted into corner detection algorithms. Since the metaphase overlapping chromosomes has multi-scale corners, we adopt a multi-scale corner detection method based on Hua's method for corner detection. For touching chromosomes, it is convenient to split them using pale paths. Starting from concave corner points, a search algorithm is represented. The searching algorithm traces three pixels into the object in the direction of the normal vector in order to avoid stopping at the initial boundary until it

  13. Phonon Overlaps in Molecular Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Sethna, James

    2004-03-01

    We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.

  14. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  15. Phenotypic variability in monozygotic twins with neurofibromatosis 2

    SciTech Connect

    Baser, M.E.; Ragge, N.K.; Riccardi, V.M.

    1996-09-06

    Mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene on chromosome 22q12 cause a clinically variable autosomal dominant syndrome characterized by bilateral vestibular schwannomas (VSs), other nervous system tumors, and early onset lenticular cataracts. We studied three pairs of monozygotic (MZ) twins with NF2, all with bilateral VSs, to separate genetic from nongenetic causes of clinical variability. The evaluation included gadolinium-enhanced high-resolution magnetic resonance imaging of the head and spine, neuro-ophthalmic examination with slit lamp, physical examination, and zygosity testing with microsatellite markers. Each MZ pair was concordant for general phenotypic subtype (mild or severe) and often for the affected organ systems. However, the MZ pairs were discordant for some features of disease presentation or progression. For example, all three pairs were discordant for presence or type of associated cranial tumors. We hypothesize that phenotypic differences between NF2 MZ twins are at least partly due to stochastic processes, such as the loss of the second NF2 allele or alleles of other genes. 42 refs., 1 tab.

  16. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  17. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications.

  18. Genetic overlap between schizophrenia and selective components of executive function.

    PubMed

    Owens, Sheena F; Rijsdijk, Fruhling; Picchioni, Marco M; Stahl, Daniel; Nenadic, Igor; Murray, Robin M; Toulopoulou, Timothea

    2011-04-01

    Impairments in selective components of executive function are seen in unaffected family members of patients with schizophrenia and may represent the biological expression of increased genetic risk. However no study has quantified the extent to which liability to schizophrenia overlaps genetically with that of executive dysfunction. We studied a total of 418 monozygotic and dizygotic twins, including pairs concordant and discordant for schizophrenia. Participants completed the trail making test part A and verbal fluency tasks to assess initiation, TMT part B to test mental flexibility, and the WAIS-III to assess general intellectual function. Bivariate genetic modeling was used to investigate whether selective measures of executive processing are genetically linked to schizophrenia and to quantify the genetic (i.e. heritability) and environmental contributions to their variability. Genetic influences contributed substantially to test variance for initiation and mental flexibility. Genetic factors were the main source of the phenotypic correlations between schizophrenia and these processes. Verbal fluency tasks shared a large genetic correlation with IQ whilst TMT scales did not, suggesting that they measure discreet processes, and therefore indexing discreet endophenotypes. Both verbal fluency and mental flexibility meet some of the criteria for endophenotypes, but our data suggest that mental flexibility is a purer cognitive process sharing very little common variance with general intellectual functioning. The inclusion of this mental flexibility phenotype in linkage or association analysis should improve the power to detect susceptibility genes for schizophrenia.

  19. Polydactyly: phenotypes, genetics and classification.

    PubMed

    Malik, S

    2014-03-01

    Polydactyly is one of the most common hereditary limb malformations featuring additional digits in hands and/or feet. It constituted the highest proportion among the congenital limb defects in various epidemiological surveys. Polydactyly, primarily presenting as an additional pre-axial or post-axial digit of autopod, is a highly heterogeneous condition and depicts broad inter- and intra-familial clinical variability. There is a plethora of polydactyly classification methods reported in the medical literature which approach the heterogeneity in polydactyly in various ways. In this communication, well-characterized, non-syndromic polydactylies in humans are reviewed. The cardinal features, phenotypic variability and molecular advances of each type have been presented. Polydactyly at cellular and developmental levels is mainly a failure in the control of digit number. Interestingly, GLI3 and SHH (ZRS/SHH enhancer), two antagonistic factors known to modulate digit number and identity during development, have also been implicated in polydactyly. Mutations in GLI3 and ZRS/SHH cause overlapping polydactyly phenotypes highlighting shared molecular cascades in the etiology of additional digits, and thus suggesting the lumping of at least six distinct polydactyly entities. However, owing to the extreme phenotypic and clinical heterogeneity witnessed in polydactyly a substantial genetic heterogeneity is expected across different populations and ethnic groups.

  20. Australian University Libraries: Collections Overlap Study

    ERIC Educational Resources Information Center

    Missingham, Roxanne; Walls, Robert

    2003-01-01

    In 2002, the Department of Education, Science and Training (DEST), Higher Education Information Infrastructure Advisory Committee commissioned the National Library of Australia to analyse the uniqueness and overlap of Australian university library collections, comparing library collections in each state, using the National Bibliographic Database…

  1. Stochastic Cooling with Schottky Band Overlap

    SciTech Connect

    Lebedev, Valeri

    2006-03-20

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  2. Stochastic Cooling with Schottky Band Overlap

    NASA Astrophysics Data System (ADS)

    Lebedev, Valeri

    2006-03-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  3. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station other than a Class D (secondary) station will not be accepted if the...

  4. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station other than a Class D (secondary) station will not be accepted if the...

  5. Autism and ADHD: Overlapping and Discriminating Symptoms

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah

    2012-01-01

    Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…

  6. A new case of a severe clinical phenotype of the cat-eye syndrome.

    PubMed

    Denavit, T Martin; Malan, V; Grillon, C; Sanlaville, D; Ardalan, A; Jacquemont, M L; Burglen, L; Taillemite, J L; Portnoi, M F

    2004-01-01

    A new case of severe clinical phenotype of the cat-eye syndrome: We report on a female infant with severe clinical phenotype of Cat-Eye Syndrome (CES). At birth, she had respiratory distress and marked hypotonia. Physical examination showed major craniofacial anomalies including microcephaly, bilateral total absence of the external ears, hypertelorism, bilateral ocular coloboma of iris and micrognathia. In addition, she had anal stenosis, a patent ductus arteriosus and intra- and extra- hepatic biliary atresia. She deteriorated with the development of bradycardia. She died at age one month of cardiac failure. Cytogenetic analysis of the proband showed an extra de novo small bisatelllited marker chromosome in all cells examined. Molecular cytogenetic analysis with fluorescence in situ hybridization (FISH) identified the marker as a CES chromosome. Thus, the patient's karyotype was: 47, XX, +idic(22)(pter-->q11.2 ::q11.2-->pter). The duplication breakpoints giving rise to the CES chromosome were distal to the DiGeorge Syndrome (DGS) locus 22q11.2. The marker could be classed as a type 11 symmetrical (10). According to a recent review of CES literature (1) only 41 % of the CES patients have the combination of iris coloboma, anal anomalies and preauricular anomalies. Almost 60% are hard to recognize by their phenotype alone. Only twelve patients showed a severe clinical phenotype leading to the death of the child. This phenotypic variability increases the difficulties of genetic counseling.

  7. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature

    PubMed Central

    2012-01-01

    Background Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the NF2 gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient. Case presentation We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing NF2, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including NF2 and MN1 (meningioma 1). Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing NF2 were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed MN1, PITPNB and TTC28. MN1, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (TEL/MN1) in human myeloid leukemias. Interestingly, Mn1-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, Mn1 regulates maturation and function of calvarial osteoblasts and is an upstream regulator of Tbx22, a gene associated with murine and human cleft palate. This suggests that deletion of MN1 in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities. Conclusions

  8. Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome.

    PubMed

    Lania, Gabriella; Bresciani, Alberto; Bisbocci, Monica; Francone, Alessandra; Colonna, Vincenza; Altamura, Sergio; Baldini, Antonio

    2016-08-09

    Pathological conditions caused by reduced dosage of a gene, such as gene haploinsufficiency, can potentially be reverted by enhancing the expression of the functional allele. In practice, low specificity of therapeutic agents, or their toxicity reduces their clinical applicability. Here, we have used a high throughput screening (HTS) approach to identify molecules capable of increasing the expression of the gene Tbx1, which is involved in one of the most common gene haploinsufficiency syndromes, the 22q11.2 deletion syndrome. Surprisingly, we found that one of the two compounds identified by the HTS is the vitamin B12. Validation in a mouse model demonstrated that vitamin B12 treatment enhances Tbx1 gene expression and partially rescues the haploinsufficiency phenotype. These results lay the basis for preclinical and clinical studies to establish the effectiveness of this drug in the human syndrome.

  9. Imaging of autoimmune hepatitis and overlap syndromes.

    PubMed

    Malik, Neera; Venkatesh, Sudhakar K

    2017-01-01

    Autoimmune hepatitis (AIH) is an uncommon, chronic inflammatory, and relapsing liver disease of unknown origin that may lead to liver cirrhosis, hepatocellular carcinoma, liver transplantation, or death. AIH occurs in all age groups and races but can frequently manifest as acute fulminant hepatitis. Clinical presentation of AIH can have features similar to primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC), and these diseases may coexist leading to overlap syndromes. Although histological diagnosis is necessary, imaging features often can demonstrate characteristics that may be helpful to distinguish these diseases. Imaging features of AIH are those of chronic liver disease, and imaging plays important role in detection of complications and ruling out other possible causes of chronic liver disease. Emerging techniques such as elastography provide non-invasive options for diagnosis of significant fibrosis and cirrhosis during clinical follow-up as well as assessment of response to treatment. In this study, we will describe imaging findings in AIH and overlap syndromes.

  10. "Overlapped" rhinitis: a real trap for rhinoallergologists.

    PubMed

    Gelardi, M

    2014-11-01

    Under the broad heading of "vasomotor" rhinitis two big groups can be distinguished: allergic rhinitis (IgE-mediated), and nonallergic rhinitis. Since they are two separate nosological entities, they can co-exist in the same patient, classifying themselves in the group of "overlapped" rhinitis (OR). Although not absolutely rare (indeed it is estimated a 15-20% incidence among all vasomotor rhinopathies), this condition is not investigated and diagnosed, with significant implications in the clinical-diagnostic and therapeutic field.

  11. Overlap of fibromyalgia with other medical conditions.

    PubMed