Turbine airfoil having outboard and inboard sections
Mazzola, Stefan; Marra, John J
2015-03-17
A turbine airfoil usable in a turbine engine and formed from at least an outboard section and an inboard section such that an inner end of the outboard section is attached to an outer end of the inboard section. The outboard section may be configured to provide a tip having adequate thickness and may extend radially inward from the tip with a generally constant cross-sectional area. The inboard section may be configured with a tapered cross-sectional area to support the outboard section.
Critical Mach Numbers of Thin Airfoil Sections with Plain Flaps
NASA Technical Reports Server (NTRS)
Pardee, Otway O'm.; Heaslet, Max A.
1946-01-01
Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.
Ristau, Neil; Siden, Gunnar Leif
2015-07-21
An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.
NASA Technical Reports Server (NTRS)
West, F E
1945-01-01
Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.
NASA Technical Reports Server (NTRS)
Furlong, G. Chester; Fitzpatrick, James E.
1947-01-01
Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.
NASA Technical Reports Server (NTRS)
Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.
1945-01-01
Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from
NASA Technical Reports Server (NTRS)
Graham, Donald J
1949-01-01
Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.
NASA Technical Reports Server (NTRS)
Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)
1983-01-01
Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 of an inch (1.5 mils) despite unanticipated process variations.
NASA Technical Reports Server (NTRS)
Mcalister, K. W.; Pucci, S. L.; Mccroskey, W. J.; Carr, L. W.
1982-01-01
Experimentally derived force and moment data are presented for eight airfoil sections that were tested at fixed and varying incidence in a subsonic two dimensional stream. Airfoil incidence was varied through sinusoidal oscillations in pitch over a wide range of amplitude and frequency. The surface pressure distribution, as well as the lift, drag, and pitching moment derived therefrom, are displayed in a uniform fashion to delineate the static and dynamic characteristics of each airfoil both in and out of stall.
A study of test section configuration for shock tube testing of transonic airfoils
NASA Technical Reports Server (NTRS)
Cook, W. J.
1978-01-01
Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Lilley, D. E.
1975-01-01
Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.
Airfoil Section Characteristics as Affected by Variations of the Reynolds Number
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Sherman, Albert
1937-01-01
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, Khairul; Fagan, Amy; Mankbadi, Mina
2016-01-01
An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.
The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Ward, Kenneth E; Pinkerton, Robert M
1933-01-01
An investigation of a large group of related airfoils was made in the NACA variable-density wind tunnel at a large value of the Reynolds number. The tests were made to provide data that may be directly employed for a rational choice of the most suitable airfoil section for a given application. The variation of the aerodynamic characteristics with variations in thickness and mean-line form were systematically studied. (author)
Tests of N-85, N-86 and N-87 airfoil sections in the 11-inch high speed wind tunnel
NASA Technical Reports Server (NTRS)
Stack, John; Lindsey, W F
1938-01-01
Three airfoils, the N-85, the N-86, and the N-87, were tested at the request of the Bureau of Aeronautics, Navy Department, to determine the suitability of these sections for use as propeller-blade sections. Further tests of the NACA 0009-64 airfoil were also made to measure the aerodynamic effect of thickening the trailing edge in accordance with current propeller practice. The N-86 and the N-87 airfoils appear to be nearly equivalent aerodynamically and both are superior to the N-85 airfoil. Comparison of those airfoils with the previously developed NACA 2409-34 airfoils indicate that the NACA 2409-34 is superior, particularly at high speeds. Thickening the trailing edge appears to have a detrimental effect, although the effect may be small if the trailing-edge radius is less than 0.5 percent of the cord. The N-86 and the N-87 airfoils appear to be nearly equivalent.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.
1973-01-01
Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.
Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies
NASA Technical Reports Server (NTRS)
Johnston, Patrick J.
1959-01-01
A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.
Tests on a CAST 7 two-dimensional airfoil in a streamlining test section
NASA Technical Reports Server (NTRS)
Goodyear, M. J.
1984-01-01
A unique opportunity has arisen to test one and the same airfoil model of CAST-7 section in two wind tunnels having adaptive walled test sections. The tunnels are very similar in terms of size and the available range of test conditions, but differ principally in their wall setting algorithms. Detailed data from the tests of the model in the Southampton tunnel, are included with comparisons between various sources of data indicating that both adaptive walled test sections provide low interference test conditions.
Boundary-layer and stalling characteristics of two symmetrical NACA low-drag airfoil sections
NASA Technical Reports Server (NTRS)
Mccullough, George B; Gault, Donald E
1947-01-01
Two symmetrical airfoils, an NACA 633-018 and an NACA 631-012, were investigated for the purpose of determining their stalling and boundary-layer characteristics with a view toward the eventual application of this information to the problem of boundary-layer control. Force measurements, pressure distributions, tuft studies, and boundary-layer-profile measurements were made at a value of 5,800,000 Reynolds number. It was found that the 18-percent-thick airfoil stalled progressively from the trailing edge because of separation of the turbulent boundary layer. In contrast, the12-percent-thick airfoil stalled abruptly from a separation of flow near the leading edge before the turbulent boundary layer became subject to separation. From this it was concluded that if high values of lift are to be obtained with thin, high-critical-speed sections by means of boundary-layer control, the work must be directed toward delaying the separation of flow near the leading edge. It was found that the presence of a nose flap on the 12-percent-thick section caused the airfoil to stall in a manner similar to that of the 18-percent-thick section.
Assessment of dual-point drag reduction for an executive-jet modified airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1996-01-01
This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.
NASA Technical Reports Server (NTRS)
Platt, Robert C; Abbott, Ira H
1937-01-01
Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.
1982-07-01
Aeronautics and United States Army Space Administration Aviation Research and Ames Remrch Cente Development Command Moffett Field. California 94035 St...appear to be more important than airfoil shape in determining the dynamic- stall airloads. 1. INTRODUCTION Retreating- blade stall limits the high-speed...12.2% Thick R.A.E. Aerofoil Section. RAE Technical Report 68303, Royal Aircraft Establishment, Farnborough Hants, England, Jan. 1969. 14. Fromme, J. A
NASA Technical Reports Server (NTRS)
Smith, R. L.
1978-01-01
Closed-form equations for the lift, drag, and pitching moment coefficients of two dimensional airfoil sections in steady subsonic flow were obtained from published theoretical and experimental results. A turbulent boundary layer was assumed to exist on the airfoil surfaces. The effects of section angle of attack, Mach number, Reynolds number, and the specific airfoil type were considered. The equations were applicable through an angle of attack range of -180 deg to +180 deg; however, above about + or - 20 deg, the section characteristics were assumed to be functions only of angle of attack. A computer program is presented which evaluates the equations for a range of Mach numbers and angles of attack. Calculated results for the NACA 23012 airfoil section were compared with experimental data.
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.
1982-01-01
Pressure data at 90 percent blade radius for a helicopter main rotor with RC-SC2 blade sections was obtained. Concurrent measurements were made of vehicle flight state, performance and some rotor loads. The test envelope included hover, level flight from about 65 to 144 knots, climb and descent, and collective fixed maneuvers. Airfoil pressure distributions obtained in flight agree with those theoretical calculations for two dimensional, steady flow.
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.; Somers, D. M.
1975-01-01
Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000.
Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Mineck, Raymond E.
1993-01-01
A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.
Effect of advanced rotorcraft airfoil sections on the hover performance of a small-scale rotor model
NASA Technical Reports Server (NTRS)
Althoff, Susan L.
1988-01-01
A hover test was conducted on a small scale rotor model for two sets of tapered rotor blades. The baseline rotor blade set used a NACA 0012 airfoil section, whereas the second rotor blade set had advanced rotorcraft airfoils distributed along the radius. The experiment was conducted for a range of thrust coefficients and tip speeds, and the data were compared to the predictions of three analytical methods. The data show the advantage of the advanced airfoils at the higher rotor thrust levels; two of the analyses predicted the correct data trends.
The Aerodynamic Characteristics of Six Full-Scale Propellers Having Different Airfoil Sections
NASA Technical Reports Server (NTRS)
Biermann, David; Hartman, Edwin P
1939-01-01
Wind-tunnel tests are reported of six 3-blade 10-foot propellers operated in front of a liquid-cooled engine nacelle. The propellers were identical except for blade airfoil sections, which were: Clark y, R.A.F. 6, NACA 4400, NACA 2400-34, NACA 2rsub200, and NACA 6400. The range of blade angles investigated extended for 15 degrees to 40 degrees for all propellers except the Clark y, for which it extended to 45 degrees. The results showed that the range in maximum efficiency between the highest and lowest values was about 3 percent. The highest efficiencies were for the low-camber sections.
NASA Technical Reports Server (NTRS)
Allen, H Julian
1938-01-01
A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution.
General theory of airfoil sections having arbitrary shape or pressure distribution
NASA Technical Reports Server (NTRS)
Allen, H Julian
1945-01-01
In this report a theory of thin airfoils of small camber is developed which permits either the velocity distribution corresponding to a given airfoil shape, or the airfoil shape corresponding to a given velocity distribution to be calculated. The procedures to be employed in these calculations are outlined and illustrated with suitable examples.
NASA Technical Reports Server (NTRS)
Hicks, R. M.
1984-01-01
A recontoured upper surface was designed to increase the maximum lift coefficient of a modified NACA 65 (0.82)(9.9) airfoil section which was tested at Mach numbers of 0.3 and 0.4 and Reynolds numbers of 2.3x10(6) and 4.3x10(6). The original 6-series section was tested for comparison with the recontoured section. The recontoured profile was found to have a higher maximum lift coefficient at all test conditions than the original airfoil. The recontoured airfoil showed less drag and nearly the same pitching moment characteristics as the original 6-series airfoil at all test conditions. The improvements found for the recontoured airfoil of the present study are similar to those found during previous investigations of recontoured 6-series airfoils with less camber.
NASA Technical Reports Server (NTRS)
Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.
1980-01-01
A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.
NASA Technical Reports Server (NTRS)
Maresh, J. L.; Bragg, M. B.
1984-01-01
A method has been developed to predict the contamination of an airfoil by insects and the resultant performance penalty. Insect aerodynamics have been modeled and the impingement of insects on an airfoil are solved by calculating their trajectories. Upon impact, insect rupture and the resulting height of the debris is determined based on experimental data. A boundary layer analysis is performed to determine which insects cause boundary layer transition and the resultant drag penalty. A contaminated airfoil figure of merit is presented to be used to compare airfoil susceptibility. Results show that the insect contamination effects depend on accretion conditions, airfoil angle of attack and Reynolds number. The importance of the stagnation region to designing airfoils for minimum drag penalties is discussed.
Investigation of the Kline-Fogleman airfoil section for rotor blade applications
NASA Technical Reports Server (NTRS)
Lumsdaine, E.; Johnson, W. S.; Fletcher, L. M.; Peach, J. E.
1974-01-01
Wind tunnel tests of a wedgeshaped airfoil with sharp leading edge and a spanwise step were conducted. The airfoil was tested with variations of the following parameters: (1) Reynolds number, (2) step location, (3) step shape, (4) apex angle, and (5) with the step on either the upper or lower surface. The results are compared with a flat plate and with wedge airfoils without a step having the same aspect ratio. Water table tests were conducted for flow visualization and it was determined that the flow separates from the upper surface at low angles of attack. The wind tunnel tests show that the lift/drag ratio of the airfoil is lower than for a flat plate and the pressure data show that the airfoil derives its lift in the same manner as a flat plate.
1980-02-01
the elliptic cross section is considered to be more representative of the NACA 64A010 airfoil with boundary layer displacement thickness added on than...section and the flat plate airfoil with Kutta condition. The experimental results are for the NACA 64A010 airfoil at M = 0.5 and Reynolds number between...practice for actual airfoils. The experimental data shown in Fig. 3.5 are for the NACA 4 and 5 digit series airfoils (Ref. 17). The lift curve slope is
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Mendoza, J. P.; Bandettini, A.
1975-01-01
Two different forward contour modifications designed to increase the maximum lift coefficient of the NACA 64 sub 1-212 airfoil section were evaluated experimentally at low speeds. One modification consisted of a slight droop of the leading edge with an increased leading-edge radius; the other modification incorporated increased thickness over the forward 35 percent of the upper surface of the profile. Both modified airfoil sections were found to provide substantially higher maximum lift coefficients than the 64 sub 1-212 section. The drooped leading-edge modification incurred a drag penalty of approximately 10 percent at low and moderate lift coefficients and exhibited a greater nosedown pitching moment than the 64 sub 1-212 profile. The upper surface modification produced about the same drag level as the 64 sub 1-212 section at low and moderate lift coefficients and less nosedown pitching moment than the 64 sub 1-212 profile. Both modified airfoil sections had lower drag coefficients than the 64 sub 1-212 section at high lift coefficients.
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new nonequilibrium turbulence closure model has been developed for computing wall bounded two-dimensional turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present model has been evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated turbulent flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the new nonequilibrium turbulence model accurately captures the history effects of convection and diffusion on turbulence.
Nonlinear power flow feedback control for improved stability and performance of airfoil sections
Wilson, David G.; Robinett, III, Rush D.
2013-09-03
A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.
Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities
NASA Astrophysics Data System (ADS)
Li, Daochun; Guo, Shijun; Xiang, Jinwu
2010-10-01
Nonlinearities in aircraft mechanisms are inevitable, especially in the control system. It is necessary to investigate the effects of them on the dynamic response and control performance of aeroelastic system. In this paper, based on the state-dependent Riccati equation method, a state feedback suboptimal control law is derived for aeroelastic response and flutter suppression of a three degree-of-freedom typical airfoil section. With the control law designed, nonlinear effects of freeplay in the control surface and time delay between the control input and actuator are investigated by numerical approach. A cubic nonlinearity in pitch degree is adopted to prevent the aeroelastic responses from divergence when the flow velocity exceeds the critical flutter speed. For the system with a freeplay, the responses of both open- and closed-loop systems are determined with Runge-Kutta algorithm in conjunction with Henon's method. This method is used to locate the switching points accurately and efficiently as the system moves from one subdomain into another. The simulation results show that the freeplay leads to a forward phase response and a slight increase of flutter speed of the closed-loop system. The effect of freeplay on the aeroelastic response decreases as the flow velocity increases. The time delay between the control input and actuator may impair control performance and cause high-frequency motion and quasi-periodic vibration.
Somers, D. M.
2005-01-01
The effect of small deflections of a 30% chord, simple flap on the section characteristics of a tip airfoil, the S813, designed for 20- to 30-meter, stall-regulated, horizontal-axis wind turbines has been evaluated theoretically. The decrease in maximum lift coefficient due to leading-edge roughness increases in magnitude with increasing, positive flap deflection and with decreasing Reynolds number.
Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section
NASA Technical Reports Server (NTRS)
Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.
2016-01-01
An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Watson, E. C.
1976-01-01
The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
NASA Astrophysics Data System (ADS)
Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.
2014-12-01
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.
Comparison of Full-Scale Propellers Having R.A.F.-6 and Clark Y Airfoil Sections
NASA Technical Reports Server (NTRS)
Freeman, Hugh B
1932-01-01
In this report the efficiencies of two series of propellers having two types of blade sections are compared. Six full-scale propellers were used, three having R. A. F.-6 and three Clark Y airfoil sections with thickness/chord ratios of 0.06, 0.08, and 0.10. The propellers were tested at five pitch setting, which covered the range ordinarily used in practice. The propellers having the Clark Y sections gave the highest peak efficiency at the low pitch settings. At the high pitch settings, the propellers with R. A. F.-6 sections gave about the same maximum efficiency as the Clark Y propellers and were more efficient for the conditions of climb and take-off.
NASA Technical Reports Server (NTRS)
Stivers, Louis S., Jr.
1947-01-01
An analysis has been made of the lift-control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flag on the INCA 65-210 airfoil section.
Wall interference tests of a CAST 10-2/DOA 2 airfoil in an adaptive-wall test section
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.
1987-01-01
A wind-tunnel investigation of a CAST 10-2/DOA 2 airfoil model has been conducted in the adaptive-wall test section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment High Reynolds Number Two-Dimensional Test Facility. The primary goal of the tests was to assess two different wall-interference correction techniques: adaptive test-section walls and classical analytical corrections. Tests were conducted over a Mach number range from 0.3 to 0.8 and over a chord Reynolds number range from 6 million to 70 million. The airfoil aerodynamic characteristics from the tests in the 0.3-m TCT have been corrected for wall interference by the movement of the adaptive walls. No additional corrections for any residual interference have been applied to the data, to allow comparison with the classically corrected data from the same model in the conventional National Aeronautical Establishment facility. The data are presented graphically in this report as integrated force-and-moment coefficients and chordwise pressure distributions.
NASA Technical Reports Server (NTRS)
Hartman, Edwin P; Biermann, David
1938-01-01
Aerodynamic tests were made of seven full-scale 10-foot-diameter propellers of recent design comprising three groups. The first group was composed of three propellers having Clark y airfoil sections and the second group was composed of three propellers having R.A.F. 6 airfoil sections, the propellers of each group having 2, 3, and 4 blades. The third group was composed of two propellers, the 2-blade propeller taken from the second group and another propeller having the same airfoil section and number of blades but with the width and thickness 50 percent greater. The tests of these propellers reveal the effect of changes in solidity resulting either from increasing the number of blades or from increasing the blade width propeller design charts and methods of computing propeller thrust are included.
Sheldahl, R E; Klimas, P C
1981-03-01
When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).
NASA Technical Reports Server (NTRS)
Bergrun, N. R.
1951-01-01
An empirical method for the determination of the area, rate, and distribution of water-drop impingement on airfoils of arbitrary section is presented. The procedure represents an initial step toward the development of a method which is generally applicable in the design of thermal ice-prevention equipment for airplane wing and tail surfaces. Results given by the proposed empirical method are expected to be sufficiently accurate for the purpose of heated-wing design, and can be obtained from a few numerical computations once the velocity distribution over the airfoil has been determined. The empirical method presented for incompressible flow is based on results of extensive water-drop. trajectory computations for five airfoil cases which consisted of 15-percent-thick airfoils encompassing a moderate lift-coefficient range. The differential equations pertaining to the paths of the drops were solved by a differential analyzer. The method developed for incompressible flow is extended to the calculation of area and rate of impingement on straight wings in subsonic compressible flow to indicate the probable effects of compressibility for airfoils at low subsonic Mach numbers.
1987-05-01
for airworthiness evaluation of the JU-21A modifications. TEST OBJECTIVES 3. The objectives of this program were: a. Obtain comparative measurements... aircraft showed reasonable agreement between measured natural cloud parameters. Airworthiness test flights of the Airfoil Section Array (ASA) icing...modification of the aircraft confl- uration. Airworthiness was established by a combination of engineering analysis and flight tests. Flight loads
Frey, G.A.; Twardochleb, C.Z.
1998-01-13
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.
Frey, Gary A.; Twardochleb, Christopher Z.
1998-01-01
Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.
NASA Technical Reports Server (NTRS)
Noonan, K. W.
1981-01-01
An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.
NASA Technical Reports Server (NTRS)
Powell, Robert D., Jr.
1959-01-01
An investigation has been conducted on the Langley helicopter test tower to determine experimentally the maximum mean lift-coefficient characteristics at low tip Mach number and a limited amount of drag- divergence data at high tip Mach number of a helicopter rotor having an NACA 64(1)AO12 airfoil section and 8 deg of linear washout. Data are presented for blade tip Mach numbers M(t) of 0.29 to 0.74 with corresponding values 6 6 of tip Reynolds number of 2.59 x 10(exp 6) and 6.58 x 10(exp 6). Comparisons are made between the data from the present rotor with results previously obtained from two other rotors: one having NACA 0012 airfoil sections and the other having an NACA 0009 airfoil tip section. At low tip Mach numbers, the maximum mean lift coefficient for the blade having the NACA 64(1)AO12 section was about 0.08 less than that obtained with the blade having the NACA 0009 tip section and 0.21 less than the value obtained with the blade having the NACA 0012 tip section. Blade maximum mean lift coefficient values were not obtained for Mach number values greater than 0.47 because of a blade failure encountered during the tests. The effective mean lift-curve slope required for predicting rotor thrust varied from 5.8 for the tip Mach nuniber range of 0.29 to 0.55 to a value of 6.65 for a tip Mach number of 0.71. The blade pitching-moment coefficients were small and relatively unaffected by changes in thrust coefficient and Mach number. In the instances in which stall was reached, the break in the blade pitching-moment curve was in a stable direction. The efficiency of the rotor decreased with an increase in tip speed. Expressed as figure of merit, at a tip Mach number of 0.29 the maximum value was about 0.74. Similar measurements made on another rotor having an NACA 0012 airfoil and with a rotor having an NACA 0009 tip section, showed a value of 0.75. Synthesized section lift and profile-drag characteristics for the rotor-blade airfoil section are presented as an
NASA Technical Reports Server (NTRS)
Loftin, Laurence K, Jr; Bursnall, William J
1950-01-01
Results are presented of an investigation made to determine the two-dimensional lift and drag characteristics of nine NACA 6-series airfoil section at Reynolds numbers of 15.0 x 10sub6, 20.0 x 10sub6, and 25.0 x 10sub6. Also presented are data from NACA Technical Report 824 for the same airfoils at Reynolds numbers of 3.0 x 10sub6, 6.0 x 10sub6, and 9.0 x 10sub6. The airfoils selected represent sections having variations in the airfoil thickness, thickness form, and camber. The characteristics of an airfoil with a split flap were determined in one instance, as was the effect of surface roughness. Qualitative explanations in terms of flow behavior are advanced for the observed types of scale effect.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1971-01-01
Wind-tunnel tests have been conducted at Mach numbers from 0.60 to 0.81 to determine the effects of trailing-edge geometry on the aerodynamic characteristics of a NASA supercritical airfoil shape. Variations in trailing-edge thicknesses from 0 to 1.5 percent of the chord and a cavity in the trailing edge were investigated with airfoils with maximum thicknesses of 10 and 11 percent of the chord.
NASA Technical Reports Server (NTRS)
Gregorek, Gerald; Dresse, John J.; LaNoe, Karine; Ratvasky, Thomas (Technical Monitor)
2000-01-01
The need for fundamental research in Ice Contaminated Tailplane Stall (ICTS) was established through three international conferences sponsored by the FAA. A joint NASA/FAA Tailplane Icing Program was formed in 1994 with the Ohio State University playing a critical role for wind tunnel and analytical research. Two entries of a full-scale 2-dimensional tailplane airfoil model of a DHC-6 Twin Otter were made in The Ohio State University 7x10 ft wind tunnel. This report describes the second test entry that examined additional ice shapes and roughness, as well as airfoil section differences. The addition data obtained in this test fortified the original database of aerodynamic coefficients that permit a detailed analysis of flight test results with an OSU-developed analytical program. The testing encompassed a full range of angles of attack and elevator deflections at flight Reynolds number conditions. Aerodynamic coefficients, C(L), C(M), and C(He), were obtained by integrating static pressure coefficient, C(P), values obtained from surface taps. Comparisons of clean and iced airfoil results show a significant decrease in the tailplane aeroperformance (decreased C(Lmax), decreased stall angle, increased C(He)) for all ice shapes with the grit having the lease affect and the LEWICE shape having the greatest affect. All results were consistent with observed tailplane stall phenomena and constitute an effective set of data for comprehensive analysis of ICTS.
NASA Technical Reports Server (NTRS)
VonGlahn, Uwe H.; Gray, Vernon H.
1954-01-01
The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.
Tests If a Highly Cambered Low-Drag-Airfoil Section with a Lift-Control Flap, Special Report
NASA Technical Reports Server (NTRS)
Abbott, Ira H.; Miller, Ralph B.
1942-01-01
Tests were made in the NACA two-dimensional low turbulence pressure tunnel of a highly cambered low-drag airfoil (NACA 65,3-618) with a plain flap designed for lift control. The results indicate that such a combination offers attractive possibilities for obtaining low profile-drag coefficients over a wide range of lift coefficients without large reductions of critical speed.
NASA Technical Reports Server (NTRS)
Hiltner, Dale; McKee, Michael; LaNoe, Karine; Gregorek, Gerald; Ratvasky, Thomas (Technical Monitor)
2000-01-01
Ice contaminated tailplane stall (ICTS) has been found to be responsible for 16 accidents with 139 fatalities over the last three decades, and is suspected to have played a role in other accidents and incidents. The need for fundamental research in this area has been recognized at three international conferences sponsored by the FAA since 1991. In order to conduct such research, a joint NASA/FAA Tailplane Icing Program was formed in 1994: the Ohio State University has played an important role in this effort. The program employs icing tunnel testing, dry wind tunnel testing, flight testing, and analysis using a six-degrees-of-freedom computer code tailored to this problem. A central goal is to quantify the effect of tailplane icing on aircraft stability and control to aid in the analysis of flight test procedures to identify aircraft susceptibility to ICTS. This report contains the results ot testing of a full scale 2D model of a tailplane section of NASA's Icing Research Aircraft, with and without ice shapes, in an Ohio State University 7 x 10 Low Speed wind tunnel in 1994. The results have been integrated into a comprehensive database of aerodynamic coefficients and stability and control derivatives that will permit detailed analysis of flight test results with the analytical computer program. The testing encompassed a full range of angles of attack and elevator deflections, as well as two velocities to evaluate Reynolds number effects. Lift, drag, pitching moment, and hinge moment coefficients were obtained. In addition. instrumentation for use during flight testing was verified to be effective, all components showing acceptable fidelity. Comparison of clean and iced airfoil results show the ice shapes causing a significant decrease in the magnitude of CLmax (from -1.3 to -0.64) and associated stall angle (from -18.6 deg to -8.2 deg). Furthermore, the ice shapes caused an increase in hinge moment coefficient of approximately 0.02, the change being markedly abrupt
NASA low- and medium-speed airfoil development
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.; Whitcomb, R. T.
1979-01-01
The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized.
Rotational Augmentation on a 2.3 MW Rotor Blade with Thick Flatback Airfoil Cross-Sections: Preprint
Schreck, S.; Fingersh, L.; Siegel, K.; Singh, M.; Medina, P.
2013-01-01
Rotational augmentation was analyzed for a 2.3 MW wind turbine, which was equipped with thick flatback airfoils at inboard radial locations and extensively instrumented for acquisition of time varying surface pressures. Mean aerodynamic force and surface pressure data were extracted from an extensive field test database, subject to stringent criteria for wind inflow and turbine operating conditions. Analyses of these data showed pronounced amplification of aerodynamic forces and significant enhancements to surface pressures in response to rotational influences, relative to two-dimensional, stationary conditions. Rotational augmentation occurrence and intensity in the current effort was found to be consistent with that observed in previous research. Notably, elevated airfoil thickness and flatback design did not impede rotational augmentation.
NASA Technical Reports Server (NTRS)
Ladson, Charles L.
1988-01-01
A comprehensive data base is given for the low speed aerodynamic characteristics of the NACA 0012 airfoil section. The Langley low-turbulence pressure tunnel is the facility used to obtain the data. Included in the report are the effects of Mach number and Reynolds number and transition fixing on the aerodynamic characteristics. Presented are also comparisons of some of the results with previously published data and with theoretical estimates. The Mach number varied from 0.05 to 0.36. The Reynolds number, based on model chord, varied from 3 x 10 to the 6th to 12 x 10 to the 6th power.
NASA Technical Reports Server (NTRS)
Lipson, Stanley
1946-01-01
An investigation was conducted to compare the performance of two 25-ft-diam rotors which had identical dimensions and were similar in construction but different in blade airfoil-sections. Tests were conducted at indicated blade pitch angles from 3 degrees to 11.5 degrees and rotor speeds of 200, 290, and 371 rpm. The 23012.6 rotor required 2 percent less power to hover than the 0012.6. At thrust coefficients above design, the performance of the 23012.6 became better than the 0012.6 rotor.
Thin oblique airfoils at supersonic speed
NASA Technical Reports Server (NTRS)
Jone, Robert T
1946-01-01
The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)
Second Stage Turbine Bucket Airfoil.
Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward
2003-05-06
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Flatback airfoil wind tunnel experiment.
Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.
2008-04-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
Tangler, James L.; Somers, Dan M.
1996-01-01
Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.
Tangler, J.L.; Somers, D.M.
1996-10-08
Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.
Garcia-Crespo, Andres Jose
2015-03-03
A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.
NASA Technical Reports Server (NTRS)
Somers, Dan M. (Inventor)
2005-01-01
An airfoil having a fore airfoil element, an aft airfoil element, and a slot region in between them. These elements induce laminar flow over substantially all of the fore airfoil element and also provide for laminar flow in at least a portion of the slot region. The method of the invention is one for inducing natural laminar flow over an airfoil. In the method, a fore airfoil element, having a leading and trailing edge, and an aft airfoil element define a slot region. Natural laminar flow is induced over substantially all of the fore airfoil element, by inducing the pressures on both surfaces of the fore airfoil element to decrease to a location proximate the trailing edge of the fore airfoil element using pressures created by the aft airfoil element.
Airfoil shape for flight at subsonic speeds
Whitcomb, Richard T.
1976-01-01
An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.
Robust, optimal subsonic airfoil shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2008-01-01
Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.
Multiple piece turbine engine airfoil with a structural spar
Vance, Steven J.
2011-10-11
A multiple piece turbine airfoil having an outer shell with an airfoil tip that is attached to a root with an internal structural spar is disclosed. The root may be formed from first and second sections that include an internal cavity configured to receive and secure the one or more components forming the generally elongated airfoil. The internal structural spar may be attached to an airfoil tip and place the generally elongated airfoil in compression. The configuration enables each component to be formed from different materials to reduce the cost of the materials and to optimize the choice of material for each component.
Supercritical Flow Past Symmetrical Airfoils.
1980-12-01
about quasi-elliptic airfoil sections. The method was later extended by Boerstoel [1967] to present a catalog of solutions for certain body shapes. Bauer...Lecture Notes in Economics and Mathematical Systems, Springer- Verlag, New York, 1972. Boerstoel , J. W., "A Survey of Symmetrical Transonic Potential
AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING
NASA Technical Reports Server (NTRS)
Morgan, H. L
1994-01-01
Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.
Airfoil Dynamic Stall and Rotorcraft Maneuverability
NASA Technical Reports Server (NTRS)
Bousman, William G.
2000-01-01
The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.
Airfoil shape for a turbine bucket
Hyde, Susan Marie; By, Robert Romany; Tressler, Judd Dodge; Schaeffer, Jon Conrad; Sims, Calvin Levy
2005-06-28
Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth Table I wherein X and Y values are in inches and the Z values are non-dimensional values from 0 to 0.938 convertible to Z distances in inches by multiplying the Z values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X and Y distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelop of .+-.0.150 inches in directions normal to the surface of the airfoil.
Unsteady Airloads on Airfoils in Reverse Flow
NASA Astrophysics Data System (ADS)
Lind, Andrew; Jones, Anya
2014-11-01
This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
Second-stage turbine bucket airfoil
Wang, John Zhiqiang; By, Robert Romany; Sims, Calvin L.; Hyde, Susan Marie
2002-01-01
The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X and Y values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket. The second-stage wheel has sixty buckets.
Third-stage turbine bucket airfoil
Pirolla, Peter Paul; Siden, Gunnar Leif; Humanchuk, David John; Brassfield, Steven Robert; Wilson, Paul Stuart
2002-01-01
The third-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Design procedure for low-drag subsonic airfoils
NASA Technical Reports Server (NTRS)
Peterson, J. B.; Chen, A. B.
1975-01-01
Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.
Development of drive mechanism for an oscillating airfoil
NASA Technical Reports Server (NTRS)
Sticht, Clifford D.
1988-01-01
The design and development of an in-draft wind tunnel test section which will be used to study the dynamic stall of airfoils oscillating in pitch is described. The hardware developed comprises a spanned airfoil between schleiren windows, a four bar linkage, flywheels, a drive system and a test section structure.
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr
1945-01-01
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)
Pressure Distribution Over Airfoils with Fowler Flaps
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Anderson, Walter B
1938-01-01
Report presents the results of tests made of a Clark y airfoil with a Clark y Fowler flap and of an NACA 23012 airfoil with NACA Fowler flaps. Some of the tests were made in the 7 by 10-foot wind tunnel and others in the 5-foot vertical wind tunnel. The pressures were measured on the upper and lower surfaces at one chord section both on the main airfoils and on the flaps for several angles of attack with the flaps located at the maximum-lift settings. A test installation was used in which the model was mounted in the wind tunnel between large end planes so that two-dimensional flow was approximated. The data are given in the form of pressure-distribution diagrams and as plots of calculated coefficients for the airfoil-and-flap combinations and for the flaps alone.
Airfoil self-noise and prediction
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.
1989-01-01
A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.
1977-01-01
Airfoil geometries were developed for low speed high lift applications, such as general aviation aircraft, propellers and helicopter rotors. The primary effort was to determine the extent to which the application of turbulent boundary layer separation criteria, plus manipulation of other input parameters, specifically trailing edging velocity ratio, could be utilized to achieve high C sub Lmax airfoils with relatively low drag at C sub Lmax. Both single-element and double-element airfoils were considered. Wind tunnel testing of some airfoils was included.
Experiments on airfoils with trailing edge cut away
NASA Technical Reports Server (NTRS)
Ackeret, J
1927-01-01
Airfoils with their trailing edge cut away are often found on aircraft, as the fins on the hulls of flying boats and the central section of the wings for affording better visibility. It was therefore of some interest to discover the effect of such cutaways on the lift and drag and on the position of the center of pressure. For this purpose, systematic experiments were performed on two different airfoils, a symmetrical airfoil and an airfoil of medium thickness, with successive shortenings of their chords.
Development and testing of airfoils for high-altitude aircraft
NASA Technical Reports Server (NTRS)
Drela, Mark (Principal Investigator)
1996-01-01
Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.
Analytical studies of new airfoils for wind turbines
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.; Calhoun, J. T.
1981-01-01
Computer studies were conducted to analyze the potential gains associated with utilizing new airfoils for large wind turbine rotor blades. Attempts to include 3-dimensional stalling effects were inconclusive. It is recommended that blade pressure measurements be made to clarify the nature of blade stalling. It is also recommended that new laminar flow airfoils be used as rotor blade sections.
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.
1997-01-01
This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.
Plasma Flow Control Optimized Airfoil
NASA Astrophysics Data System (ADS)
Voikov, Vladimir; Patel, Mehul
2005-11-01
Recent advances in flow control research have demonstrated that plasma actuators can be efficient in different aerodynamic applications, particularly in providing flight control without conventional moving surfaces. The concept involves the use of a laminar airfoil design that employs a separation ramp at the trailing edge that can be manipulated by a plasma actuator to control lift, similar to trailing-edge flaps. The advantages are lower drag by a combination of the laminar flow design, and elimination of parasitic drag associated with wing-flap junctions. This work involves numerical simulations and experiments on a HSNLF(1)-0213 airfoil. The numerical results are obtained using an unsteady, compressible Navier-Stokes simulation that includes a model for the plasma actuators. The experiments are performed on a 2-D airfoil section that is mounted on a lift-drag force balance. The results demonstrate lift enhancement produced by the plasma actuator that is comparable to a plane flap. They also reveal an optimum actuator unsteady frequency that scales with the length of the separated region and local velocity, and is associated with the generation of a train of spanwise vortices. Other scaling including the effect of Reynolds number is presented.
Multiple piece turbine airfoil
Kimmel, Keith D; Wilson, Jr., Jack W.
2010-11-02
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.
Two experimental supercritical laminar-flow-control swept-wing airfoils
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Dagenhart, J. Ray
1987-01-01
Two supercritical laminar-flow-control airfoils were designed for a large-chord swept-wing experiment in the Langley 8-Foot Transonic Pressure Tunnel where suction was provided through most of the model surface for boundary-layer control. The first airfoil was derived from an existing full-chord laminar airfoil by extending the trailing edge and making changes in the two lower-surface concave regions. The second airfoil differed from the first one in that it was designed for testing without suction in the forward concave region of the lower surface. Differences between the first airfoil and the one from which it was derived as well as between the first and second airfoils are discussed. Airfoil coordinates and predicted pressure distributions for the design normal Mach number of 0.755 and section lift coefficient of 0.55 are given for the three airfoils.
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N
1932-01-01
Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.
Closed loop steam cooled airfoil
Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.
2006-04-18
An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.
Transonic flow theory of airfoils and wings
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1976-01-01
There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.
NASA supercritical airfoils: A matrix of family-related airfoils
NASA Technical Reports Server (NTRS)
Harris, Charles D.
1990-01-01
The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.
Tangler, J.L.; Somers, D.M.
2000-05-30
Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.
Tangler, James L.; Somers, Dan M.
2000-01-01
Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.
Computation of turbulent near wake for asymmetric airfoils
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1979-01-01
A numerical procedure for studying the turbulent near wake of two dimensional airfoil sections is presented. The Reynolds Navier-Stokes equations were written for flow about bodies of arbitrary geometry and solved on an arbitrary nonuniform curvilinear computational mesh. Eddy viscosity and Reynolds stress turbulence transport models are considered. Specific examples are shown for airfoil section by using an algebraic viscosity model with streamwise relaxation and the interactive Reynolds stress model.
Robust, Optimal Subsonic Airfoil Shapes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2014-01-01
A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.
NASA Astrophysics Data System (ADS)
Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.
2005-07-01
Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.
Multiple piece turbine airfoil
Kimmel, Keith D
2010-11-09
A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.
NASA Technical Reports Server (NTRS)
Craig, Anthony P.; Hansman, R. John
1987-01-01
Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.
Wind tunnel tests of two airfoils for wind turbines operating at high reynolds numbers
Sommers, D.; Tangler, J.
2000-06-29
The objectives of this study were to verify the predictions of the Eppler Airfoil Design and Analysis Code for Reynolds numbers up to 6 x 106 and to acquire the section characteristics of two airfoils being considered for large, megawatt-size wind turbines. One airfoil, the S825, was designed to achieve a high maximum lift coefficient suitable for variable-speed machines. The other airfoil, the S827, was designed to achieve a low maximum lift coefficient suitable for stall-regulated machines. Both airfoils were tested in the NASA Langley Low-Turbulence Pressure Tunnel (LTPT) for smooth, fixed-transition, and rough surface conditions at Reynolds numbers of 1, 2, 3, 4, and 6 x 106. The results show the maximum lift coefficient of both airfoils is substantially underpredicted for Reynolds numbers over 3 x 106 and emphasized the difficulty of designing low-lift airfoils for high Reynolds numbers.
Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines: Preprint
Migliore, P.; Oerlemans, S.
2003-12-01
Aeroacoustic tests of seven airfoils were performed in an open jet anechoic wind tunnel. Six of the airfoils are candidates for use on small wind turbines operating at low Reynolds number. One airfoil was tested for comparison to benchmark data. Tests were conducted with and without boundary layer tripping. In some cases a turbulence grid was placed upstream in the test section to investigate inflow turbulence noise. An array of 48 microphones was used to locate noise sources and separate airfoil noise from extraneous tunnel noise. Trailing edge noise was dominant for all airfoils in clean tunnel flow. With the boundary layer untripped, several airfoils exhibited pure tones that disappeared after proper tripping was applied. In the presence of inflow turbulence, leading edge noise was dominant for all airfoils.
Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail
NASA Astrophysics Data System (ADS)
Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.
2011-04-01
Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.
NASA Technical Reports Server (NTRS)
Hylton, Larry D.
1986-01-01
Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1979-01-01
Computer codes for the design and analysis of transonic airfoils are considered. The design code relies on the method of complex characteristics in the hodograph plane to construct shockless airfoil. The analysis code uses artificial viscosity to calculate flows with weak shock waves at off-design conditions. Comparisons with experiments show that an excellent simulation of two dimensional wind tunnel tests is obtained. The codes have been widely adopted by the aircraft industry as a tool for the development of supercritical wing technology.
Turbine airfoil with controlled area cooling arrangement
Liang, George
2010-04-27
A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.
Performance of two transonic airfoil wind tunnels utilizing limited ventilation
NASA Technical Reports Server (NTRS)
Lee, J. D.; Gregorek, G. M.
1984-01-01
A limited-zone ventilated wall panel was developed for a closed-wall icing tunnel which permitted correct simulation of transonic flow over model rotor airfoil sections with and without ice accretions. Candidate porous panels were tested in the Ohio State University 6- x 12-inch transonic airfoil tunnel and result in essentially interference-free flow, as evidenced by pressure distributions over a NACA 0012 airfoil for Mach numbers up to 0.75. Application to the NRC 12- x 12-inch icing tunnel showed a similar result, which allowed proper transonic flow simulation in that tunnel over its full speed range.
Navier-Stokes analysis of blunt trailing edge airfoils
NASA Technical Reports Server (NTRS)
Stanaway, Sharon; Mccroskey, W. J.; Kroo, Ilan
1992-01-01
The flow around blunt trailing edge airfoils was studied by solving the Reynolds-averaged Navier-Stokes equations. The solution procedure combines a grid around the airfoil with a second grid for the wake so that the time advancement over the domain is fully implicit. This is not only very efficient for the algorithm but also allows implicit solutions of a one equation turbulence model appropriate for both boundary layers and wakes. An algebraic and two one-equation turbulence models are tested for a blunt RAE 2822 airfoil section and detailed comparisons with experimental data are presented in the trailing edge region.
Second-order subsonic airfoil theory including edge effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1956-01-01
Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack
Potential flow analysis of glaze ice accretions on an airfoil
NASA Technical Reports Server (NTRS)
Zaguli, R. J.
1984-01-01
The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)
2014-01-01
A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.
Airfoil Design and Rotorcraft Performance
NASA Technical Reports Server (NTRS)
Bousman, William G.
2003-01-01
The relationship between global performance of a typical helicopter and the airfoil environment, as represented by the airfoil angles of attack and Mach number, has been examined using the comprehensive analysis CAMRAD II. A general correspondence is observed between global performance parameters, such as rotor L/D, and airfoil performance parameters, such as airfoil L/D, the drag bucket boundaries, and the divergence Mach number. Effects of design parameters such as blade twist and rotor speed variation have been examined and, in most cases, improvements observed in global performance are also observed in terms of airfoil performance. The relations observed between global Performance and the airfoil environment suggests that the emphasis in airfoil design should be for good L/D, while the maximum lift coefficient performance is less important.
Effect of pivot location and passive heave on propulsion from a pitching airfoil
NASA Astrophysics Data System (ADS)
Mackowski, A. W.; Williamson, C. H. K.
2017-01-01
We experimentally investigate the propulsive characteristics of a pitching NACA 0012 airfoil section, with emphasis on thrust and propulsive efficiency, at a Reynolds number of 1.7 ×104 . For the sake of mechanical simplicity, we consider an airfoil restricted to a single actuator in the pitching direction. We examine the effect of changing the airfoil's axis of rotation, finding that contrary to Garrick's linear theory, there exists a pitching axis near the airfoil that maximizes propulsive efficiency. Next, we examine the effect of placing passive springs on the airfoil in the heave (transverse) direction using our Cyber-Physical Fluid Dynamics technique. This elastic heaving motion allows the airfoil to combine pitching and heaving modes while being actuated only in the pitching direction. Two sets of dynamics are considered: one case where the airfoil is weighted unevenly and pitched about its center of mass (so that the resulting heaving motion is independent of inertial forces), and another case where the airfoil's center of mass is fixed at its centroid. For pitching at an amplitude of 8∘ and a reduced frequency k of two, we find that elastic heave produces a maximum propulsive efficiency of 35%, compared to 25% without any heave motion. Further, while operating at the same efficiency as the static-pivot case, we find that passive heaving greatly increases the magnitude of the airfoil's thrust. The airfoil configurations with highest propulsive efficiency generally involve pitching near or ahead of the airfoil's leading edge.
The Effects of the Critical Ice Accretion on Airfoil and Wing Performance
NASA Technical Reports Server (NTRS)
Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq
1998-01-01
In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.
First-stage high pressure turbine bucket airfoil
Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry, II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar
2004-05-25
The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.
Computational design and analysis of flatback airfoil wind tunnel experiment.
Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.
2008-03-01
A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.
Technology for pressure-instrumented thin airfoil models
NASA Technical Reports Server (NTRS)
Wigley, David A.
1988-01-01
A novel method of airfoil model construction was developed. This Laminated Sheet technique uses 0.8 mm thick sheets of A286 containing a network of pre-formed channels which are vacuum brazed together to form the airfoil. A 6.25 percent model of the X29A canard, which has a 5 percent thick section, was built using this technique. The model contained a total of 96 pressure orifices, 56 in three chordwise rows on the upper surface and 37 in three similar rows on the lower surface. It was tested in the NASA Langley 0.3 m Transonic Cryogenic Tunnel. Unique aerodynamic data was obtained over the full range of temperature and pressure. Part of the data was at transonic Mach numbers and flight Reynolds number. A larger two dimensional model of the NACA 64a-105 airfoil section was also fabricated. Scale up presented some problems, but a testable airfoil was fabricated.
Aerodynamic properties of thick airfoils II
NASA Technical Reports Server (NTRS)
Norton, F H; Bacon, D L
1923-01-01
This investigation is an extension of NACA report no. 75 for the purpose of studying the effect of various modifications in a given wing section, including changes in thickness, height of lower camber, taper in thickness, and taper in plan form with special reference to the development of thick, efficient airfoils. The method consisted in testing the wings in the NACA 5-foot wind tunnel at speeds up to 50 meters (164 feet) per second while they were being supported on a new type of wire balance. Some of the airfoils developed showed results of great promise. For example, one wing (no. 81) with a thickness in the center of 4.5 times that of the U. S. A. 16 showed both uniformly high efficiency and a higher maximum lift than this excellent section. These thick sections will be especially useful on airplanes with cantilever construction. (author)
Tests of related forward-camber airfoils in the variable-density wind tunnel
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N; Pinkerton, Robert M; Greenberg, Harry
1937-01-01
A recent investigation of numerous related airfoils indicated that positions of camber forward of the usual location resulted in an increase of the maximum lift. As an extension of this investigation, a series of forward-camber airfoils has been developed, the members of which show airfoil characteristics superior to those of the airfoils previously investigated. The primary object of this report is to present fully corrected results for airfoils in the useful range of shapes. With the data thus made available, an airplane designer may intelligently choose the best possible airfoil-section shape for a given application and may predict to a reasonable degree the aerodynamic characteristics to be expected in flight from the section shape chosen.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Study of the TRAC Airfoil Table Computational System
NASA Technical Reports Server (NTRS)
Hu, Hong
1999-01-01
The report documents the study of the application of the TRAC airfoil table computational package (TRACFOIL) to the prediction of 2D airfoil force and moment data over a wide range of angle of attack and Mach number. The TRACFOIL generates the standard C-81 airfoil table for input into rotorcraft comprehensive codes such as CAM- RAD. The existing TRACFOIL computer package is successfully modified to run on Digital alpha workstations and on Cray-C90 supercomputers. A step-by-step instruction for using the package on both computer platforms is provided. Application of the newer version of TRACFOIL is made for two airfoil sections. The C-81 data obtained using the TRACFOIL method are compared with those of wind-tunnel data and results are presented.
NASA Technical Reports Server (NTRS)
Ott, Eric A.
2005-01-01
Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.
Transonic airfoil and axial flow rotary machine
Nagai, Naonori; Iwatani, Junji
2015-09-01
Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.
NREL airfoil families for HAWTs
Tangler, J.L.; Somers, D.M.
1995-12-31
The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time nine airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub 1,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.
NREL airfoil families for HAWTs
Tangler, J L; Somers, D M
1995-01-01
The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.
Inverse airfoil design procedure using a multigrid Navier-Stokes method
NASA Technical Reports Server (NTRS)
Malone, J. B.; Swanson, R. C.
1991-01-01
The Modified Garabedian McFadden (MGM) design procedure was incorporated into an existing 2-D multigrid Navier-Stokes airfoil analysis method. The resulting design method is an iterative procedure based on a residual correction algorithm and permits the automated design of airfoil sections with prescribed surface pressure distributions. The new design method, Multigrid Modified Garabedian McFadden (MG-MGM), is demonstrated for several different transonic pressure distributions obtained from both symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code are compared to the original configurations to assess the capabilities of the inverse design method.
Wind-tunnel test results of airfoil modifications for the EA-6B
NASA Technical Reports Server (NTRS)
Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.
1987-01-01
Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.
Lift enhancing tabs for airfoils
NASA Technical Reports Server (NTRS)
Ross, James C. (Inventor)
1994-01-01
A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.
Turbine airfoil to shround attachment
Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J
2014-05-06
A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.
Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils
2003-12-01
Development, and Engineering Command Ames Research Center Moffett Field, California December 2003 National Aeronautics and Space Administration Ames...60A ROTOR BLADE AND AIRFOILS ................................................................................... 2 EVALUATION OF SECTION CHARACTERISTICS...Characteristics of SC1095 and SC1094 R8 Airfoils WILLIAM G. BOUSMAN Aeroflightdynamics Directorate U.S. Army Research, Development, and Engineering Command Ames
Computational Analysis of Dual Radius Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Vatsa, V. N.; Rumsey, C. L.
2006-01-01
The goal of the work is to use multiple codes and multiple configurations to provide an assessment of the capability of RANS solvers to predict circulation control dual radius airfoil performance and also to identify key issues associated with the computational predictions of these configurations that can result in discrepancies in the predicted solutions. Solutions were obtained for the Georgia Tech Research Institute (GTRI) dual radius circulation control airfoil and the General Aviation Circulation Control (GACC) dual radius airfoil. For the GTRI-DR airfoil, two-dimensional structured and unstructured grid computations predicted the experimental trend in sectional lift variation with blowing coefficient very well. Good code to code comparisons between the chordwise surface pressure coefficients and the solution streamtraces also indicated that the detailed flow characteristics were matched between the computations. For the GACC-DR airfoil, two-dimensional structured and unstructured grid computations predicted the sectional lift and chordwise pressure distributions accurately at the no blowing condition. However at a moderate blowing coefficient, although the code to code variation was small, the differences between the computations and experiment were significant. Computations were made to investigate the sensitivity of the sectional lift and pressure distributions to some of the experimental and computational parameters, but none of these could entirely account for the differences in the experimental and computational results. Thus, CFD may indeed be adequate as a prediction tool for dual radius CC flows, but limited and difficult to obtain two-dimensional experimental data prevents a confident assessment at this time.
On the general theory of thin airfoils for nonuniform motion
NASA Technical Reports Server (NTRS)
Reissner, Eric
1944-01-01
General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.
Airfoil nozzle and shroud assembly
Shaffer, J.E.; Norton, P.F.
1997-06-03
An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.
Airfoil nozzle and shroud assembly
Shaffer, James E.; Norton, Paul F.
1997-01-01
An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
NASA Technical Reports Server (NTRS)
Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)
2001-01-01
An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values
Natural laminar flow airfoil design considerations for winglets on low-speed airplanes
NASA Technical Reports Server (NTRS)
Vandam, C. P.
1984-01-01
Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.
NASA Technical Reports Server (NTRS)
Harris, Thomas A; Recant, Isidore G
1941-01-01
Report presents the results of an investigation conducted in the NACA 7 by 10-foot win tunnel to determine the effect of the deflection of main and auxiliary slotted flaps on the aerodynamic section characteristics of large-chord NACA 23012, 23021, 23030 airfoils equipped with 40-percent-chord double slotted flaps. The complete aerodynamic section characteristics and envelope polar curves are given for each airfoil-flap combination. The effect of airfoil thickness is shown, and comparisons are made of single slotted flaps with double slotted flaps on each of the airfoils.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Sanders, Robert
1934-01-01
This report presents the results of wind tunnel tests on various auxiliary airfoils having three different airfoil sections and several different chord lengths in combination with a Clark y model wing in a sufficient number of relative positions to determine the optimum with regard to certain criterions of aerodynamic performance. The airfoil sections included a symmetrical profile, one of medium camber, and a highly cambered one. The chord sizes of the auxiliary airfoils ranged from 7.5 to 25 percent of the chord of the main wing, and the span was equal to that of the main wing.
NASA Astrophysics Data System (ADS)
Zhang, Qiang
The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface
Analysis of a theoretically optimized transonic airfoil
NASA Technical Reports Server (NTRS)
Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.
1978-01-01
Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.
Nozzle airfoil having movable nozzle ribs
Yu, Yufeng Phillip; Itzel, Gary Michael
2002-01-01
A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.
Boundary Layer Control on Airfoils.
ERIC Educational Resources Information Center
Gerhab, George; Eastlake, Charles
1991-01-01
A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)
Numerical design of shockless airfoils
NASA Technical Reports Server (NTRS)
Garabedian, P. R.
1979-01-01
An attempt is made to indicate and briefly discuss only the most significant achievements of the research. The most successful contribution from the contract was the code for two dimensional analysis of airfoils in transonic flow.
NASA Astrophysics Data System (ADS)
Aul'chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.
2014-05-01
The present work is devoted to a criterial analysis and mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it. Parameters that govern the regimes of interaction of the oscillatory motion of airfoil sections with the breakdown compression shock have been established. The qualitative and quantitative influence of these parameters on the wave resistance of the airfoil has been investigated.
Dynamic Stall on Advanced Airfoil Sections,
1980-05-01
boundary-layer transition, flow Fromme and Golberg " have indicated that 80-1-2 unsteady wall corrections can be greater A limited amount of static and...A., and Golberg , M. A. New Rotor Profile on the Basis "Unsteady Two-Dimensional Air- of Flow Phenomena; Aerofoil loads Acting on Oscillating
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.
1988-01-01
A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.
An improved viscid/inviscid interaction procedure for transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.
1985-01-01
A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.
1943-12-01
a plain flap on a low —drag airfoil were not • • .•ü;.V;.:-’ ;•»**;’•.••••<«**. •’ .•• V-:.--^i* -I’-••»•’*;w .-•; ’.••.<• % •v — i f...thick low —drag airfoil and on 9— and 15—percent- thick conventional airfoils. Other modifications have included the use of a...airplanes require the use of airfoil sections with low peak pressures, such as low —drag sec- tions, for tail surfaces to
Interference on an airfoil of finite span in an open wind tunnel
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1934-01-01
The wall interference on an airfoil of finite span in an open-throat rectangular section has been treated theoretically and the result is presented in a convenient formula. Numerical results are given in tables and diagrams.
NASA Technical Reports Server (NTRS)
Harris, C. D.
1974-01-01
Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
A supercritical airfoil experiment
NASA Technical Reports Server (NTRS)
Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.
1994-01-01
The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.
NASA Technical Reports Server (NTRS)
Kohl, F. J.
1982-01-01
The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.
Root region airfoil for wind turbine
Tangler, James L.; Somers, Dan M.
1995-01-01
A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.
Advanced technology airfoil research, volume 2. [conferences
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
NASA Technical Reports Server (NTRS)
Hassan, Ahmed
1999-01-01
Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.
Airfoil shape for a turbine nozzle
Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael
2002-01-01
A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.
Hook nozzle arrangement for supporting airfoil vanes
Shaffer, James E.; Norton, Paul F.
1996-01-01
A gas turbine engine's nozzle structure includes a nozzle support ring, a plurality of shroud segments, and a plurality of airfoil vanes. The plurality of shroud segments are distributed around the nozzle support ring. Each airfoil vane is connected to a corresponding shroud segment so that the airfoil vanes are also distributed around the nozzle support ring. Each shroud segment has a hook engaging the nozzle support ring so that the shroud segments and corresponding airfoil vanes are supported by the nozzle support ring. The nozzle support ring, the shroud segments, and the airfoil vanes may be ceramic.
Flutter and Time Response Analyses of Three Degree of Freedom Airfoils in Transonic Flow
1981-08-01
Reference 10), and a NACA 64A010 (Reference 4) airfoil. They also used STRANS2 and UTRANS2 to analyze a TF-8A wing section (Reference 4). In the...used for the reduced frequency kc with values up to 1.0 and the entire Mach number range. He used the code to study the NACA 64A010 airfoil for two...structural equation of motion. Rizzetta (Reference 1G) performed a time-response analysis of a NACA 64A010 airfoil with a single pitch d.o.f, and
Pneumatic Spoiler Controls Airfoil Lift
NASA Technical Reports Server (NTRS)
Hunter, D.; Krauss, T.
1991-01-01
Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions
NASA Technical Reports Server (NTRS)
Robinson, R. Craig; Hatton, Kenneth S.
1999-01-01
Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.
Some observations of surface pressures and the near wake of a blunt trailing edge airfoil
NASA Technical Reports Server (NTRS)
Digumarthi, R. V.; Koutsoyannis, S. P.; Karamcheti, K.
1981-01-01
Experiments with a truncated and untruncated airfoils of profiles NACA 640A10, were carried out in subsonic wind tunnels in a velocity range of 19m/s to 54m/s corresponding to Reynolds numbers of 200,000 to 468,000 based on the chord. Airfoil spanned the test section to achieve two dimensionality of the model. Velocity measurements, pressure measurements, and vortex shedding in the wake were measured using a hotwire and pressure transducers. The measured chordwise static pressure distribution on the smooth trailing edge airfoil along the midspan plane, agreed with the theoretical results calculated on the basis of the potential flow for that airfoil. Boundary layer profiles measured in the midspan plane, behind the maximum thickness of the airfoil show no separation of the flow. Spanwise distribution of the measured static pressure on the upper surface of the airfoil shows uniformity for both configurations with and without the boundary layer trip. This uniformity of pressure distribution and separation indicates that the flow on the airfoil was uniform and two dimensional in character.
Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Chengchun; Wu, Zhengyang; Wharton, James; Ren, Luquan
2017-04-01
A biomimetic airfoil featuring leading edge waves, trailing edge serrations and surface ridges is proposed in this study, based on flow control with each section meeting the NACA 0012 airfoil profile. Numerical simulations have been conducted to compare aerodynamic and acoustic performances between the NACA 0012 and biomimetic airfoils. These simulations utilize the large eddy simulation (LES) method and aeroacoustic analogy at an angle of attack of 0° and a Reynolds number of 1.0×105, based on using the airfoil chord as the characteristic length. The simulation results reveal the overall sound pressure levels (OASPLs) for all frequencies and at the seven observer points around the biomimetic airfoil, and a decrease of 13.1-13.9 dB is observed, whereas the drag coefficient is almost unchanged. The biomimetic structures can transform the shedding vortices in laminar mode for the NACA 0012 airfoil to regular horseshoe-type vortices in the wake, and reduce the spanwise correlation of the large-scale vortices, thereby restrain the vortex shedding noise around the biomimetic airfoil.
A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis
NASA Technical Reports Server (NTRS)
Steen, Gregory Glen
1994-01-01
Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.
Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability
NASA Technical Reports Server (NTRS)
Noonan, K. W. (Inventor)
1983-01-01
An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.
Effectiveness of Thermal-Pneumatic Airfoil-Ice-Protection System
NASA Technical Reports Server (NTRS)
Gowan, William H., Jr.; Mulholland, Donald R.
1951-01-01
Icing and drag investigations were conducted in the NACA Lewis icing research tunnel employing a combination thermal-pneumatic de-icer mounted on a 42-inch-chord NACA 0018 airfoil. The de-icer consisted of a 3-inch-wide electrically heated strip symmetrically located about the leading edge with inflatable tubes on the upper and lower airfoil surfaces aft of the heated area. The entire de-icer extended to approximately 25 percent of chord. A maximum power density of 9.25 watts per square inch was required for marginal ice protection on the airfoil leading edge at an air temperature of 00 F and an airspeed of 300 miles per hour. Drag measurements indicated, that without icing, the de-icer installation increased the section drag to approximately 140 percent of that of the bare airfoil; with the tubes inflated, this value increased to a maximum of approximately 620 percent. A 2-minute tube-inflation cycle prevented excessive ice formation on the inflatable area although small scattered residual Ice formations remained after inflation and were removed intermittently during later cycles. Effects of the time lag of heater temperatures after initial application of power and the insulating effect of ice formations on heater temperatures were also determined.
OUT Success Stories: Advanced Airfoils for Wind Turbines
DOE R&D Accomplishments Database
Jones, J.; Green, B.
2000-08-01
New airfoils have substantially increased the aerodynamic efficiency of wind turbines. It is clear that these new airfoils substantially increased energy output from wind turbines. Virtually all new blades built in this country today use these advanced airfoil designs.
Root region airfoil for wind turbine
Tangler, J.L.; Somers, D.M.
1995-05-23
A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
Airfoil seal system for gas turbine engine
None, None
2013-06-25
A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.
Evaluation of a stalled airfoil analysis program
NASA Technical Reports Server (NTRS)
Rumsey, C. L.
1985-01-01
The Stalled Airfoil Analysis Program (SAAP) is a computer code for predicting the aerodynamic characteristics of an airfoil up to, and beyond, stall. SAAP is presently evaluated through comparisons with experiments and with two other theoretical methods over an extensive range of airfoils and Reynolds number conditions. SAAP modeled drag more accurately than either of the other methods, and at angles of attack below stall yielded a smoother lift variation with angle of attack.
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
Application of shock tubes to transonic airfoil testing at high Reynolds numbers
NASA Technical Reports Server (NTRS)
Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.
1978-01-01
Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.
Techniques for modifying airfoils and fairings on aircraft using foam and fiberglass
NASA Technical Reports Server (NTRS)
Meyer, M. B.; Jiran, F.
1981-01-01
The concept of using foam and fiberglass reinforced plastic to modify airfoils and fairings was applied successfully to high-speed aircraft at NASA Dryden Flight Research Center. An on-aircraft installation method was used to modify an F-15 wing glove and wing leading edge and an F-104 flap trailing edge in support of the Shuttle tile airload tests. A combination of methods, both an on-aircraft installation and an off-aircraft fabrication for installation on the aircraft, was used to modify a section of an F-111 supercritical wing with a natural laminar flow airfoil. Techniques, methods, problem areas, and recommendations are presented which indicate that using foam and fiberglass to modify airfoils and fairings on high-speed aircraft is a viable means of quickly developing airfoils and fairings with desired aerodynamic characteristics with little risk to the parent or carrier aircraft.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1990-02-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Air/water two-phase flow test tunnel for airfoil studies
NASA Astrophysics Data System (ADS)
Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.
1994-01-01
A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.
Inverse transonic airfoil design including viscous interaction
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.
Transonic airfoil flowfield analysis using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1975-01-01
A numerical technique for analyzing transonic airfoils is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that Cartesian coordinates are used rather than a grid which fits the airfoil, such as the conformal circle-plane or 'sheared parabolic' coordinates which were used previously. Comparison with previous results shows that it is not necessary to match the computational grid to the airfoil surface, and that accurate results can be obtained with a Cartesian grid for lifting supercritical airfoils.
Generalized multi-point inverse airfoil design
NASA Technical Reports Server (NTRS)
Selig, Michael S.; Maughmer, Mark D.
1991-01-01
In a rather general sense, inverse airfoil design can be taken to mean the problem of specifying a desired set of airfoil characteristics, such as the airfoil maximum thickness ratio, pitching moment, part of the velocity distribution or boundary-layer development, etc., then from this information determine the corresponding airfoil shape. This paper presents a method which approaches the design problem from this perspective. In particular, the airfoil is divided into segments along which, together with the design conditions, either the velocity distribution or boundary-layer development may be prescribed. In addition to these local desired distributions, single parameters like the airfoil thickness can be specified. The problem of finding the airfoil shape is determined by coupling an incompressible, inviscid, inverse airfoil design method with a direct integral boundary-layer analysis method and solving the resulting nonlinear equations via a multidimensional Newton iteration technique. The approach is fast and easily allows for interactive design. It is also flexible and could be adapted to solving compressible, inverse airfoil design problems.
Wavy flow cooling concept for turbine airfoils
Liang, George
2010-08-31
An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.
Schooling behavior of heaving flexible airfoils
NASA Astrophysics Data System (ADS)
Im, Sunghyuk; Sung, Hyung Jin
2016-11-01
The schooling behavior of rigid and flexible NACA0017 airfoils in the heaving motion is experimentally explored in a merry-go-round equipment. The airfoil was attached to the end of a horizontal support bar whose other end was connected to the freely rotating vertical axis. The axis was forced to undergo a sinusoidal motion in the vertical direction to make a pure heaving motion of the airfoils in the frequency range of 0.5 to 5 Hz. The propulsion due to the heaving airfoils is expressed by a horizontally rotating speed of the support bar. This experimental setup is simulating infinite schooling situations of airfoils in an in-phase heaving motion with the streamwise distance d. The ratio of the distance to the chord length d/ c was determined by the number of airfoils (1 <= n <= 8) . The rotational frequency F according to the heaving frequency f was measured with different experimental parameters. The schooling number S = f /(nF), representing the number of heaving oscillations between each airfoil, was introduced to explain the schooling behavior of the airfoils. The effects of the flexibility, d/ c and f on the propulsive performance were examined with the schooling behavior of the airfoils. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1985-01-01
A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.
Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts
NASA Astrophysics Data System (ADS)
Chen, Xiaomin
Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated
Propulsion of a flapping and oscillating airfoil
NASA Technical Reports Server (NTRS)
Garrick, I E
1937-01-01
Formulas are given for the propelling or drag force experience in a uniform air stream by an airfoil or an airfoil-aileron combination, oscillating in any of three degrees of freedom; vertical flapping, torsional oscillations about a fixed axis parallel to the span, and angular oscillations of the aileron about a hinge.
Measuring Lift with the Wright Airfoils
ERIC Educational Resources Information Center
Heavers, Richard M.; Soleymanloo, Arianne
2011-01-01
In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…
Subsonic flow over thin oblique airfoils at zero lift
NASA Technical Reports Server (NTRS)
Jones, Robert T
1948-01-01
A previous report gave calculations for the pressure distribution over thin oblique airfoils at supersonic speed. The present report extends the calculations to subsonic speeds. It is found that the flows again can be obtained by the superposition of elementary conical flow fields. In the case of the swept-back wing the pressure distributions remain qualitatively similar at subsonic and supersonic speeds. Thus a distribution similar to the Ackeret type of distribution appears on the root sections of the swept-back wing at Mach=0. The resulting positive pressure drag on the root section is balanced by negative drags on outboard sections.
NASA Astrophysics Data System (ADS)
Mughal, Umair Najeeb
2017-01-01
Flow around an airfoil to calculate pressure co-efficient variations at different relative velocities have always been an important/basic part of Aerodynamic Study. Potential flow theory is used to study flow behavior on rankine half body, non-rotating cylinder and rotating cylinder as it is more trackable. Falkan-Skan Similarity Solution is taken to simulate the flow behavior on wedge. However, to use potential flow theory on usable airfoils the author have used conformal mapping to show a relation between realistic airfoil shapes and the knowledge gained from flow about cylinders. This method can further be used in the designing of an airfoil section. The author has used Joukowski Tranform to generate the flow around airfoils of various geometries and then utilized Kutta condition to force the stagnation point at the trailing edge. Co-efficient of pressure over the entire airfoil surface were calculated and corrected using Karman-Tsien compressibility correction equations. On the basis of this, the location of the ports to install the flush measurement system is suggested.
A critical assessment of UH-60 main rotor blade airfoil data
NASA Technical Reports Server (NTRS)
Totah, Joseph
1993-01-01
Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch by 22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.
A critical assessment of UH-60 main rotor blade airfoil data
NASA Technical Reports Server (NTRS)
Totah, Joseph
1993-01-01
Many current comprehensive rotorcraft analyses employ lifting-line methods that require main rotor blade airfoil data, typically obtained from wind tunnel tests. In order to effectively evaluate these lifting-line methods, it is of the utmost importance to ensure that the airfoil section data are free of inaccuracies. A critical assessment of the SC1095 and SC1094R8 airfoil data used on the UH-60 main rotor blade was performed for that reason. Nine sources of wind tunnel data were examined, all of which contain SC1095 data and four of which also contain SC1094R8 data. Findings indicate that the most accurate data were generated in 1982 at the 11-Foot Wind Tunnel Facility at NASA Ames Research Center and in 1985 at the 6-inch-by-22-inch transonic wind tunnel facility at Ohio State University. It has not been determined if data from these two sources are sufficiently accurate for their use in comprehensive rotorcraft analytical models of the UH-60. It is recommended that new airfoil tables be created for both airfoils using the existing data. Additional wind tunnel experimentation is also recommended to provide high quality data for correlation with these new airfoil tables.
NASA Astrophysics Data System (ADS)
Manela, A.
2016-07-01
The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.
Kasprzyk airfoil. The first wind-tunnel tests
NASA Technical Reports Server (NTRS)
Wusatowski, T.
1984-01-01
The Kasprzyk slotted flap glider airfoil (the Kasper wing) enabling glider flight at 32 km/h and 0.5 m/sec descent speed was wind tunnel tested in the U.S. The test layout is described and reasons offered for discrepancies between wind tunnel results and Polish in flight data: high induced drag caused by relative size of model wing span and tunnel, by vortex attenuators on the model and their proximity to the tunnel wall, nonsimilarity between flow over a smooth wing and flow over the Kasprzyk wing with bound vortices, obstruction of the tunnel test chamber cross section by the model wing, discrepant Reynolds numbers, and model airfoil aspect ratio much smaller than the prototype. The overall results offer partial confirmation of the Kasprzyk theory, but further in tunnel and in flight studies are recommended.
CAST-10-2/DOA 2 Airfoil Studies Workshop Results
NASA Technical Reports Server (NTRS)
Ray, Edward J. (Compiler); Hill, Acquilla S. (Compiler)
1989-01-01
During the period of September 23 through 27, 1988, the Transonic Aerodynamics Division at the Langely Research Center hosted an International Workshop on CAST-10-2/DOA 2 Airfoil Studies. The CAST-10 studies were the outgrowth of several cooperative study agreements among the NASA, the NAE of Canada, the DLR of West Germany, and the ONERA of France. Both theoretical and experimental CAST-10 airfoil results that were obtained form an extensive series of tests and studies, were reviewed. These results provided an opportunity to make direct comparisons of adaptive wall test section (AWTS) results from the NASA 0.3-meter Transonic Cryogenic Tunnel and ONERA T-2 AWTS facilities with conventional ventilated wall wind tunnel results from the Canadian high Reynolds number two-dimensional test facility. Individual papers presented during the workshop are included.
A Computational Modeling Mystery Involving Airfoil Trailing Edge Treatments
NASA Astrophysics Data System (ADS)
Choo, Yeunun; Epps, Brenden
2015-11-01
In a curious result, Fairman (2002) observed that steady RANS calculations predicted larger lift than the experimentally-measured data for six different airfoils with non-traditional trailing edge treatments, whereas the time average of unsteady RANS calculations matched the experiments almost exactly. Are these results reproducible? If so, is the difference between steady and unsteady RANS calculations a numerical artifact, or is there a physical explanation? The goals of this project are to solve this thirteen year old mystery and further to model viscous/load coupling for airfoils with non-traditional trailing edges. These include cupped, beveled, and blunt trailing edges, which are common anti-singing treatments for marine propeller sections. In this talk, we present steady and unsteady RANS calculations (ANSYS Fluent) with careful attention paid to the possible effects of asymmetric unsteady vortex shedding and the modeling of turbulence anisotropy. The effects of non-traditional trailing edge treatments are visualized and explained.
An experimental study of transonic flow about a supercritical airfoil
NASA Technical Reports Server (NTRS)
Spaid, F. W.; Dahlin, J. A.; Bachalo, W. D.; Stivers, L. S., Jr.
1983-01-01
A series of experiments was conducted on flow fields about two airfoil models whose sections are slight modifications of the original Whitcomb supercritical airfoil section. Data obtained include surface static-pressure distributions, far-wake surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and holographic interferograms. These data were obtained for different combinations of lift coefficient and free-stream Mach number, which included both subcritical cases and flows with upper-surface shock waves. The availability of both pitot-pressure data and density data from interferograms allowed determination of flow-field properties in the vicinity of the trailing edge and in the wake without recourse to any assumptions about the local static pressure. The data show that significant static-pressure gradients normal to viscous layers exist in this region, and that they persist to approximately 10% chord downstream of the trailing edge. Comparisons are made between measured boundary-layer properties and results from boundary-layer computations that employed measured static-pressure distributions, as well as comparisons between data and results of airfoil flow-field computations.
Leading edge embedded fan airfoil concept -- A new powered high lift technology
NASA Astrophysics Data System (ADS)
Phan, Nhan Huu
A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power
Study of a new airfoil used in reversible axial fans
NASA Technical Reports Server (NTRS)
Li, Chaojun; Wei, Baosuo; Gu, Chuangang
1991-01-01
The characteristics of the reverse ventilation of axial flow are analyzed. An s shaped airfoil with a double circular arc was tested in a wind tunnel. The experimental results showed that the characteristics of this new airfoil in reverse ventilation are the same as those in normal ventilation, and that this airfoil is better than the existing airfoils used on reversible axial fans.
Airfoil flutter model suspension system
NASA Technical Reports Server (NTRS)
Reed, Wilmer H. (Inventor)
1987-01-01
A wind tunnel suspension system for testing flutter models under various loads and at various angles of attack is described. The invention comprises a mounting bracket assembly affixing the suspension system to the wind tunnel, a drag-link assembly and a compound spring arrangement comprises a plunge spring working in opposition to a compressive spring so as to provide a high stiffness to trim out steady state loads and simultaneously a low stiffness to dynamic loads. By this arrangement an airfoil may be tested for oscillatory response in both plunge and pitch modes while being held under high lifting loads in a wind tunnel.
Design optimization of transonic airfoils
NASA Technical Reports Server (NTRS)
Joh, C.-Y.; Grossman, B.; Haftka, R. T.
1991-01-01
Numerical optimization procedures were considered for the design of airfoils in transonic flow based on the transonic small disturbance (TSD) and Euler equations. A sequential approximation optimization technique was implemented with an accurate approximation of the wave drag based on the Nixon's coordinate straining approach. A modification of the Euler surface boundary conditions was implemented in order to efficiently compute design sensitivities without remeshing the grid. Two effective design procedures producing converged designs in approximately 10 global iterations were developed: interchanging the role of the objective function and constraint and the direct lift maximization with move limits which were fixed absolute values of the design variables.
Spline-Based Smoothing of Airfoil Curvatures
NASA Technical Reports Server (NTRS)
Li, W.; Krist, S.
2008-01-01
Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been
Characteristics of two sharp-nosed airfoils having reduced spinning tendencies
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N
1932-01-01
According to Mr. L.D. Bell, of the Consolidated Aircraft Corporation, certain undesirable spinning characteristics of a commercial airplane were eliminated by the addition of a filler to the forward part of the wing to give it a sharp leading edge. To ascertain what aerodynamic effects result from such a change of section, two airfoils having sharp leading edges were tested in the variable-density wind tunnel. Both sections were derived by modifying the Gott. 398. The tests, which were made at a large value of the Reynolds Number, were carried to very large angles of attack to provide data for application to flight at angles of attack well beyond the stall. The characteristics of the sharp-nosed airfoils are compared with those of the normal Gott. 398 airfoil. Both of the sharp-nosed airfoils, which differ in the angle between the upper and lower surfaces at the leading edge, have about the same characteristics. As compared with the normal airfoil, the maximum lift is reduced by approximately 26 per cent, but the objectionable rapidly decreasing lift with angle of attack beyond the stall is eliminated; the profile drag of the section is slightly reduced in the range of the lift coefficient between 0.2 and 0.85, but at higher and lower lift coefficients the drag is increased.
Uncertainty Quantification for Airfoil Icing
NASA Astrophysics Data System (ADS)
DeGennaro, Anthony Matteo
Ensuring the safety of airplane flight in icing conditions is an important and active arena of research in the aerospace community. Notwithstanding the research, development, and legislation aimed at certifying airplanes for safe operation, an analysis of the effects of icing uncertainties on certification quantities of interest is generally lacking. The central objective of this thesis is to examine and analyze problems in airfoil ice accretion from the standpoint of uncertainty quantification. We focus on three distinct areas: user-informed, data-driven, and computational uncertainty quantification. In the user-informed approach to uncertainty quantification, we discuss important canonical icing classifications and show how these categories can be modeled using a few shape parameters. We then investigate the statistical effects of these parameters. In the data-driven approach, we build statistical models of airfoil ice shapes from databases of actual ice shapes, and quantify the effects of these parameters. Finally, in the computational approach, we investigate the effects of uncertainty in the physics of the ice accretion process, by perturbing the input to an in-house numerical ice accretion code that we develop in this thesis.
Trailing edge modifications for flatback airfoils.
Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.
2008-03-01
The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.
Navier-Stokes simulations of WECS airfoil flowfields
Homicz, G.F.
1994-06-01
Sandia National Laboratories has initiated an effort to apply Computational Fluid Dynamics (CFD) to the study of WECS aerodynamics. Preliminary calculations are presented for the flow past a SAND 0018/50 airfoil. The flow solver used is F3D, an implicitly, finite-difference code which solves the Thin-Layer Navier-airfoil. The flow solver used is F3D, an implicit, finite-difference code which solves the Thin-Layer Navier-Stokes equations. 2D steady-state calculations are presented at various angles of attack, {alpha}. Sectional lift and drag coefficient, as well as surface pressure distributions, are compared with wind tunnel data, and exhibit reasonable agreement at low to moderate angles of attack. At high {alpha}, where the airfoil is stalled, a converged solution to the steady-state equations could not be obtained. The flowfield continued to change with successive iterations, which is consistent with the fact that the actual flow is inherently transient, and requires the solution of the full unsteady form of the equations.
Turbine airfoil with outer wall thickness indicators
Marra, John J; James, Allister W; Merrill, Gary B
2013-08-06
A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.
Unsteady Aerodynamic Response of a Linear Cascade of Airfoils in Separated Flow
NASA Technical Reports Server (NTRS)
Capece, Vincent R.; Ford, Christopher; Bone, Christopher; Li, Rui
2004-01-01
The overall objective of this research program was to investigate methods to modify the leading edge separation region, which could lead to an improvement in aeroelastic stability of advanced airfoil designs. The airfoil section used is representative of current low aspect ratio fan blade tip sections. The experimental potion of this study investigated separated zone boundary layer from removal through suction slots. Suction applied to a cavity in the vicinity of the separation onset point was found to be the most effective location. The computational study looked into the influence of front camber on flutter stability. To assess the influence of the change in airfoil shape on stability the work-per-cycle was evaluated for torsion mode oscillations. It was shown that the front camberline shape can be an important factor for stabilizing the predicted work-per-cycle and reducing the predicted extent of the separation zone. In addition, data analysis procedures are discussed for reducing data acquired in experiments that involve periodic unsteady data. This work was conducted in support of experiments being conducted in the NASA Glenn Research Center Transonic Flutter Cascade. The spectral block averaging method is presented. This method is shown to be able to account for variations in airfoil oscillation frequency that can occur in experiments that force oscillate the airfoils to simulate flutter.
Two-dimensional cascade test of a highly loaded, low-solidity, tandem airfoil turbine rotor blade
NASA Technical Reports Server (NTRS)
Kline, J. F.; Stabe, R. G.
1973-01-01
A tip region section of a low-solidity tandem airfoil blade for a turbine rotor was tested in a two-dimensional cascade tunnel at solidities of 0.736 and 0.912. Blade surface static pressures and blade exit total and static pressure and flow angle were surveyed. Blade surface velocities, wake shapes, and kinetic energy losses were analyzed and compared with values for 1.852 solidity tandem airfoil blading.
Ice Accretions on Modern Airfoils Investigated
NASA Technical Reports Server (NTRS)
Addy, Harold E., Jr.
2000-01-01
The Icing Branch at the NASA Glenn Research Center at Lewis Field initiated and conducted the Modern Airfoils Ice Accretions project to identify ice shapes and determine their effects on the aerodynamic performance of aircraft, particularly on lift and drag. Previous aircraft ice shape and performance documentation focused on a few, older airfoils. This permitted more basic studies of the ice accretion process to be undertaken. However, having established both a working data base of ice shapes and the capability to predict these shapes for basic airfoils, questions arose about how ice might accrete differently on airfoils more representative of those being designed and flown on various aircraft today. Similarly, information about how these ice shapes would affect aerodynamic performance was needed.
Low speed airfoil design and analysis
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1979-01-01
A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.
Turbine airfoil to shroud attachment method
Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J
2014-12-23
Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.
Liang, George [Palm City, FL
2011-01-18
An airfoil is provided for a gas turbine comprising an outer structure comprising a first wall, an inner structure comprising a second wall spaced relative to the first wall such that a cooling gap is defined between at least portions of the first and second walls, and seal structure provided within the cooling gap between the first and second walls for separating the cooling gap into first and second cooling fluid impingement gaps. An inner surface of the second wall may define an inner cavity. The inner structure may further comprise a separating member for separating the inner cavity of the inner structure into a cooling fluid supply cavity and a cooling fluid collector cavity. The second wall may comprise at least one first impingement passage, at least one second impingement passage, and at least one bleed passage.
NASA Astrophysics Data System (ADS)
Dag, Yusuf
Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0
Transonic airfoil design using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1976-01-01
A numerical technique for designing transonic airfoils having a prescribed pressure distribution (the inverse problem) is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that inverse boundary conditions and Cartesian coordinates are used. The method is a direct-inverse approach that controls trailing-edge closure. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.
Modeling and Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.
2007-01-01
SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
Transonic Airfoils with a Given Pressure Distribution,
1981-06-01
erovse sidst necesosar mod Ideatify b lock mmb)L An inverse design procedure for airfoils, based on hodograph techniques, has been developed. For...w L-:- " " -- - r- L i -- _ 9 ABSTRACT An inverse design procedure for airfoils, based on hodograph tech...generated in the hodograph plane by Nieuwand,5 Bauer, Garabedian and Korn,6 Boerstoel and Huizing,7 and Sobieczky.8 More recently, the development of
Unsteady Pressure Distributions on Airfoils in Cascade.
1980-04-01
of thin airfoil theory has been used by Henderson (-ftj’ and Bruce (1-7-)’to derive expressions for the unsteady response which includes the cascade...model in conjunction with the assumptions of thin airfoil theory has been used by Henderson (16) and Bruce (17) to derive expressions for the unsteady...effect, that is, a sharp change in the unsteady lift when the disturbance wavelength equals the blade spacing. Bruce (19) further extends this theory to
Propulsion by active and passive airfoil oscillation
NASA Astrophysics Data System (ADS)
Mackowski, A. W.; Williamson, C. H. K.
2013-11-01
Oscillating airfoils have been the subject of much research both as a mechanism of propulsion in engineering devices as well as a model of understanding how fish, birds, and insects produce thrust and maneuvering forces. Additionally, the jet or wake generated by an oscillating airfoil exhibits a multitude of vortex patterns, which are an interesting study in their own right. We present PIV measurements of the vortex flow behind an airfoil undergoing controlled pitching oscillations at moderate Reynolds number. As a method of propulsion, oscillating foils have been found to be capable performers when undergoing both pitching and heaving motions [Anderson et al. 1998]. While an airfoil undergoing only pitching motion is a relatively inefficient propulsor, we examine the effect of adding passive dynamics to the system: for example, actuated pitching with a passive spring in the heave direction. Practically speaking, a mechanical system with such an arrangement has the potential to reduce the cost and complexity of an oscillating airfoil propulsor. To study an airfoil undergoing both active and passive motion, we employ our ``cyber-physical fluid dynamics'' technique [Mackowski & Williamson, 2011] to simulate the effects of passive dynamics in a physical experiment.
Numerical investigation of multi-element airfoils
NASA Technical Reports Server (NTRS)
Cummings, Russell M.
1993-01-01
The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.
Simulation of a Controlled Airfoil with Jets
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Holt, Maurice; Packard, Andrew
1997-01-01
Numerical simulations of a two-dimensional airfoil, controlled by an applied moment in pitch and an airfoil controlled by jets, were investigated. These simulations couple the Reynolds-averaged Navier-Stokes equations and Euler's equations of rigid body motion, with an active control system. Controllers for both systems were designed to track altitude commands and were evaluated by simulating a closed-loop altitude step response using the coupled system. The airfoil controlled by a pitching moment used an optimal state feedback controller. A closed-loop simulation, of the airfoil with an applied moment, showed that the trajectories compared very well with quasi-steady aerodynamic theory, providing a measure of validation. The airfoil with jets used a controller designed by robust control methods. A linear plant model for this system was identified using open-loop data generated by the nonlinear coupled system. A closed-loop simulation of the airfoil with jets, showed good tracking of an altitude command. This simulation also showed oscillations in the control input as a result of dynamics not accounted for in the control design. This research work demonstrates how computational fluid dynamics, coupled with rigid body dynamics, and a control law can be used to prototype control systems in problematic nonlinear flight regimes.
Isolated and cascade airfoils with prescribed velocity distribution
NASA Technical Reports Server (NTRS)
Goldstein, Arthur W; Jerison, Meyer
1947-01-01
An exact solution of the problem of designing an airfoil with a prescribed velocity distribution on the suction surface in a given uniform flow of an incompressible perfect fluid is obtained by replacing the boundary of the airfoil by vortices. By this device, a method of solution is developed that is applicable both to isolated airfoils and to airfoils in cascade. The conformal transformation of the designed airfoil into a circle can then be obtained and the velocity distribution at any angle of attack computed. Numerical illustrations of the method are given for the airfoil in cascade.
NASA Technical Reports Server (NTRS)
Mathews, Charles W; Thompson, Jim Rogers
1950-01-01
Directly comparable drag measurements have been made of an airfoil with a conventional rectangular plan form and an airfoil with a sweptback plan form mounted on freely falling bodies. Both airfoils had NACA 65-009 sections and were identical in span, frontal area, and chord perpendicular to the leading edge. The sweptback plan form incorporated a sweepback angle of 45 degrees. The data obtained have been used to establish the relation between the airfoil drag coefficients and the free-stream Mach number over a range of Mach numbers from 0.90 to 1.27. The results of the measurements indicate that the drag of the sweptback plan form is less than 0.3 that of the rectangular plan form at a Mach number of 1.00 and is less than 0.4 that at a Mach number of 1.20.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Dyer, R.
1984-01-01
The passive shock wave/boundary layer control for reducing the drag of 14%-thick supercritical airfoil was investigated in the 3 in. x 15.4 in. RPI Transonic Wind Tunnel with and without the top wall insert at transonic Mach numbers. Top wall insert was installed to increase the flow Mach number to 0.90 with the model mounted on the test section bottom wall. Various porous surfaces with a cavity underneath were positioned on the area of the airfoil where the shock wave occurs. The higher pressure behind the shock wave circulates flow through the cavity to the lower pressure ahead of the shock wave. The effects from this circulation prevent boundary layer separation and enthropy increase hrough the shock wave. The static pressure distributions over the airfoil, the wake impact pressure survey for determining the profile drag and the Schlieren photographs for porous surfaces are presented and compared with the results for solid surface airfoil. With a 2.8% uniform porosity the normal shock wave for the solid surface was changed to a lambda shock wave, and the wake impact pressure data indicate a drag coefficient reduction as much as 45% lower than for the solid surface airfoil at high transonic Mach numbers.
Flow past a self-oscillating airfoil with two degrees of freedom: measurements and simulations
NASA Astrophysics Data System (ADS)
Šidlof, Petr; Štěpán, Martin; Vlček, Václav; Řidký, Václav; Šimurda, David; Horáček, Jaromír
2014-03-01
The paper focuses on investigation of the unsteady subsonic airflow past an elastically supported airfoil for subcritical flow velocities and during the onset of the flutter instability. A physical model of the NACA0015 airfoil has been designed and manufactured, allowing motion with two degrees of freedom: pitching (rotation about the elastic axis) and plunging (vertical motion). The structural mass and stiffness matrix can be tuned to certain extent, so that the natural frequencies of the two modes approach as needed. The model was placed in the measuring section of the wind tunnel in the aerodynamic laboratory of the Institute of Thermomechanics in Nový Knín, and subjected to low Mach number airflow up to the flow velocities when self-oscillation reach amplitudes dangerous for the structural integrity of the model. The motion of the airfoil was registered by a high-speed camera, with synchronous measurement of the mechanic vibration and discrete pressure sensors on the surface of the airfoil. The results of the measurements are presented together with numerical simulation results, based on a finite volume CFD model of airflow past a vibrating airfoil.
Development of heat flux sensors for turbine airfoils
NASA Astrophysics Data System (ADS)
Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.
1985-10-01
The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.
Effectiveness of spoilers on the GA(W)-1 airfoil with a high performance Fowler flap
NASA Technical Reports Server (NTRS)
Wentz, W. H., Jr.
1975-01-01
Two-dimensional wind-tunnel tests were conducted to determine effectiveness of spoilers applied to the GA(W)-1 airfoil. Tests of several spoiler configurations show adequate control effectiveness with flap nested. It is found that providing a vent path allowing lower surface air to escape to the upper surface as the spoiler opens alleviates control reversal and hysteresis tendencies. Spoiler cross-sectional shape variations generally have a modest influence on control characteristics. A series of comparative tests of vortex generators applied to the (GA-W)-1 airfoil show that triangular planform vortex generators are superior to square planform vortex generators of the same span.
Upper-surface modifications for C sub l max improvement of selected NASA 6-series airfoils
NASA Technical Reports Server (NTRS)
Szelazek, C. A.; Hicks, R. M.
1979-01-01
The thickness of the upper surface of 64 airfoils was increased from the leading edge to the position of maximum thickness. The modifications were generated using a numerical optimization routine coupled with an aerodynamic analysis code. The type of modification presented can be used for aircraft design or for the retrofit of current aircraft to improve the stall characteristics and climb performance. The coordinates of the modified airfoils are presented with plots of the forward 45% of the profiles and pressure distributions for both the modified and unmodified sections at an angle of attack of 14 degrees.
Application of numerical optimization to the design of advanced supercritical airfoils
NASA Technical Reports Server (NTRS)
Johnson, R. R.; Hicks, R. M.
1979-01-01
An application of numerical optimization to the design of advanced airfoils for transonic aircraft showed that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while minimizing the drag coefficient at the design Mach number. This multiple design-point numerical optimization has been implemented with the use of airfoil shape functions which permit a wide range of attainable profiles during the optimization process. Analytical data for the starting airfoil shape, a single design-point optimized shape, and a double design-point optimized shape are presented. Experimental data obtained in the NASA Ames two-by two-foot wind tunnel are also presented and discussed.
Interference method for obtaining the potential flow past an arbitrary cascade of airfoils
NASA Technical Reports Server (NTRS)
Katzoff, S; Finn, Robert S; Laurence, James C
1947-01-01
A procedure is presented for obtaining the pressure distribution on an arbitrary airfoil section in cascade in a two-dimensional, incompressible, and nonviscous flow. The method considers directly the influence on a given airfoil of the rest of the cascade and evaluates this interference by an iterative process, which appeared to converge rapidly in the cases tried (about unit solidity, stagger angles of 0 degree and 45 degrees). Two variations of the basic interference calculations are described. One, which is accurate enough for most purposes, involves the substitution of sources, sinks, and vortices for the interfering airfoils; the other, which may be desirable for the final approximation, involves a contour integration. The computations are simplified by the use of a chart presented by Betz in a related paper. Illustrated examples are included.
Experimental Results with Airfoils Tested in the High-speed Tunnel at Guidonia
NASA Technical Reports Server (NTRS)
Ferri, Antonio
1940-01-01
The results are presented of a triple series of tests using force measurements, pressure-distribution measurements, and air flow photographs on airfoil sections suitably selected so that comparison could be made between the experimental and theoretical results. The comparison with existing theory is followed by a discussion of the divergences found, and an attempt is made to find their explanation.
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Yao, Chung-Sheng; Allan, Brian G.
2006-01-01
Recent efforts in extreme short takeoff and landing aircraft configurations have renewed the interest in circulation control wing design and optimization. The key to accurately designing and optimizing these configurations rests in the modeling of the complex physics of these flows. This paper will highlight the physics of the stagnation and separation regions on two typical circulation control airfoil sections.
Program manual for the Eppler airfoil inversion program
NASA Technical Reports Server (NTRS)
Thomson, W. G.
1975-01-01
A computer program is described for calculating the profile of an airfoil as well as the boundary layer momentum thickness and energy form parameter. The theory underlying the airfoil inversion technique developed by Eppler is discussed.
AirfoilPrep.py Documentation: Release 0.1.0
Ning, S. A.
2013-09-01
AirfoilPrep.py provides functionality to preprocess aerodynamic airfoil data. Essentially, the module is an object oriented version of the AirfoilPrep spreadsheet with additional functionality and is written in the Python language. It allows the user to read in two-dimensional aerodynamic airfoil data, apply three-dimensional rotation corrections for wind turbine applications, and extend the datato very large angles of attack. This document discusses installation, usage, and documentation of the module.
NASA Technical Reports Server (NTRS)
Ivey, Margaret F
1945-01-01
Flat-plate flaps with no wing cutouts and flaps having Clark Y sections with corresponding cutouts made in wing were tested for various flap deflections, chord-wise locations, and gaps between flaps and airfoil contour. The drag was slightly lower for wing with airfoil section flaps. Satisfactory aileron effectiveness was obtained with flap gap of 20% wing chord and flap-nose location of 80 percent wing chord behind leading edge. Airflow was smooth and buffeting negligible.
Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils
2015-06-30
Technical Report 4. TITLE AND SUBTITLE Coating - Substrate Systems for Thermomechanically Durable Turbine Airfoils 6. AUTHOR(S) Dr. Tresa Pollock 3...Thermomechanically Durable Turbine Airfoils Final Report ONRGrant#N00014-l 1-1-0616 Technical Contact (Principal Investigator) Tresa M. Pollock Materials...Substrate Systems for Thermomechanically Durable Turbine Airfoils 1. Summary In the severe operating environments encountered in Naval ship
NASA Astrophysics Data System (ADS)
Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander
2017-03-01
The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.
NASA Technical Reports Server (NTRS)
Kolesar, C. E.
1987-01-01
Research activity on an airfoil designed for a large airplane capable of very long endurance times at a low Mach number of 0.22 is examined. Airplane mission objectives and design optimization resulted in requirements for a very high design lift coefficient and a large amount of laminar flow at high Reynolds number to increase the lift/drag ratio and reduce the loiter lift coefficient. Natural laminar flow was selected instead of distributed mechanical suction for the measurement technique. A design lift coefficient of 1.5 was identified as the highest which could be achieved with a large extent of laminar flow. A single element airfoil was designed using an inverse boundary layer solution and inverse airfoil design computer codes to create an airfoil section that would achieve performance goals. The design process and results, including airfoil shape, pressure distributions, and aerodynamic characteristics are presented. A two dimensional wind tunnel model was constructed and tested in a NASA Low Turbulence Pressure Tunnel which enabled testing at full scale design Reynolds number. A comparison is made between theoretical and measured results to establish accuracy and quality of the airfoil design technique.
Compressor airfoil tip clearance optimization system
Little, David A.; Pu, Zhengxiang
2015-08-18
A compressor airfoil tip clearance optimization system for reducing a gap between a tip of a compressor airfoil and a radially adjacent component of a turbine engine is disclosed. The turbine engine may include ID and OD flowpath boundaries configured to minimize compressor airfoil tip clearances during turbine engine operation in cooperation with one or more clearance reduction systems that are configured to move the rotor assembly axially to reduce tip clearance. The configurations of the ID and OD flowpath boundaries enhance the effectiveness of the axial movement of the rotor assembly, which includes movement of the ID flowpath boundary. During operation of the turbine engine, the rotor assembly may be moved axially to increase the efficiency of the turbine engine.
Options for Robust Airfoil Optimization under Uncertainty
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Li, Wu
2002-01-01
A robust optimization method is developed to overcome point-optimization at the sampled design points. This method combines the best features from several preliminary methods proposed by the authors and their colleagues. The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of spline control points as design variables yet the resulting airfoil shape does not need to be smoothed, and (3) it allows the user to make a tradeoff between the level of optimization and the amount of computing time consumed. For illustration purposes, the robust optimization method is used to solve a lift-constrained drag minimization problem for a two-dimensional (2-D) airfoil in Euler flow with 20 geometric design variables.
Turbine airfoil fabricated from tapered extrusions
Marra, John J
2013-07-16
An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.
Comparative Study of Airfoil Flow Separation Criteria
NASA Astrophysics Data System (ADS)
Laws, Nick; Kahouli, Waad; Epps, Brenden
2015-11-01
Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.
Vortex noise from nonrotating cylinders and airfoils
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amiet, R. K.; Fink, M. R.
1976-01-01
An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2013-09-17
A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.
1944-09-01
relatively low Reynolds number of an isolated nacelle fitted with an NAOA C-type cowling and did not include sufficient measurements of the internal flow to...through the nscellr was simulated by a baffle inside the cowling. The conductivity of the cowling was deter- mined from measurements of the quantity...of the various cowling flaps end variable-lenpth cowling skirts on the ratio of eowlinr-ex.it area to nacelle crocs -sectional area la shown in
Blowing Circulation Control on a Seaplane Airfoil
NASA Astrophysics Data System (ADS)
Guo, B. D.; Liu, P. Q.; Qu, Q. L.
2011-09-01
RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.
TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE
NASA Technical Reports Server (NTRS)
Dougherty, F. C.
1994-01-01
The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters
An efficient algorithm for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.
Multi-pass cooling for turbine airfoils
Liang, George
2011-06-28
An airfoil for a turbine vane of a gas turbine engine. The airfoil includes an outer wall having pressure and suction sides, and a radially extending cooling cavity located between the pressure and suction sides. A plurality of partitions extend radially through the cooling cavity to define a plurality of interconnected cooling channels located at successive chordal locations through the cooling cavity. The cooling channels define a serpentine flow path extending in the chordal direction. Further, the cooling channels include a plurality of interconnected chambers and the chambers define a serpentine path extending in the radial direction within the serpentine path extending in the chordal direction.
Stiffness characteristics of airfoils under pulse loading
NASA Astrophysics Data System (ADS)
Turner, Kevin Eugene
The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Green, Lawrence L.; Newman, Perry A.
1989-01-01
From the time that wind tunnel wall interference was recognized to be significant, researchers have been developing methods to alleviate or account for it. Despite the best effort so far, it appears that no method is available which completely eliminates the effects due to the wind tunnel walls. This report discusses procedures developed for slotted wall and adaptive wall test sections of the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) to assess and correct for the residual interference by methods consistent with the transonic nature of the tests.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
NASA Technical Reports Server (NTRS)
Swanson, Robert S.; Schuldenfrei, Marvin J.
1940-01-01
An investigation has been made in the NACA 7- by 10-foot wind tunnel of a large chord NACA 27-212 airfoil with a 20% chord split flap and with two arrangements of a 25.66% chord slotted flap to determine the section lift characteristics as affected by flap deflection for the split flap and as affected by flap deflection, flap position, and slot shape for the slotted flap. For the two arrangements of the slotted flap, the flap positions for maximum section lift are given. Comparable data on the NACA 23012 airfoil equipped with similar flaps are also given. On the basis of maximum section lift coefficient, the slotted flap with an easy slot entry was slightly better than either the split flap or the slotted flap with a sharp slot entry. With both types of flap the decrease in the angle of attack, for maximum section lift coefficient, with flap deflection is large for the NACA 27-212 airfoil as compared with the NACA 23012 airfoil. Also with both flaps, the maximum section lift coefficient obtained with flaps is much lower for the NACA 27-212 airfoil than for the NACA 23012 airfoil.
NASA Technical Reports Server (NTRS)
Schwartzberg, Milton A; Braslow, Albert L
1952-01-01
A Langley low-turbulence wind-tunnel investigation of a porous NACA 64A010 airfoil section has been made to determine the effectiveness of area suction in maintaining full-chord laminar flow behind finite disturbances and at angles of attacks other than 0 degrees. Aero suction resulted in only a small increase in the size of a finite disturbance required to cause premature boundary-layer transition as compared with that for the airfoil without suction. Combined wake and suction drags lower than the drag of the plain airfoil were obtained through a range of low lift coefficient by the use of area suction.
On the acoustic radiation of a pitching airfoil
NASA Astrophysics Data System (ADS)
Manela, A.
2013-07-01
We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.
Lifetime prediction modeling of airfoils for advanced power generation
NASA Astrophysics Data System (ADS)
Karaivanov, Ventzislav Gueorguiev
The use of gases produced from coal as a turbine fuel offers an attractive means for efficiently generating electric power from our Nation's most abundant fossil fuel resource. The oxy-fuel and hydrogen-fired turbine concepts promise increased efficiency and low emissions on the expense of increased turbine inlet temperature (TIT) and different working fluid. Developing the turbine technology and materials is critical to the creation of these near-zero emission power generation technologies. A computational methodology, based on three-dimensional finite element analysis (FEA) and damage mechanics is presented for predicting the evolution of creep and fatigue in airfoils. We took a first look at airfoil thermal distributions in these advanced turbine systems based on CFD analysis. The damage mechanics-based creep and fatigue models were implemented as user modified routine in commercial package ANSYS. This routine was used to visualize the creep and fatigue damage evolution over airfoils for hydrogen-fired and oxy-fuel turbines concepts, and regions most susceptible to failure were indentified. Model allows for interaction between creep and fatigue damage thus damage due to fatigue and creep processes acting separately in one cycle will affect both the fatigue and creep damage rates in the next cycle. Simulation results were presented for various thermal conductivity of the top coat. Surface maps were created on the airfoil showing the development of the TGO scale and the Al depletion of the bond coat. In conjunction with model development, laboratory-scale experimental validation was executed to evaluate the influence of operational compressive stress levels on the performance of the TBC system. TBC coated single crystal coupons were exposed isothermally in air at 900, 1000, 1100oC with and without compressive load. Exposed samples were cross-sectioned and evaluated with scanning electron microscope (SEM). Performance data was collected based on image analysis
Trailing edge flow conditions as a factor in airfoil design
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Maughmer, M. D.
1984-01-01
Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.
Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000
NASA Astrophysics Data System (ADS)
Levy, David-Elie; Seifert, Avraham
2009-07-01
Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.
Aerodynamic Simulation of Ice Accretion on Airfoils
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel
2011-01-01
This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.
Exact solutions in oscillating airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1977-01-01
A result obtained by Williams (1977) for two-dimensional airfoils oscillating in an arbitrary subsonic parallel flowfield is reformulated to show that the pressure distribution induced by any deformation can be construed from the particular solutions for heaving and pitching motions. Specific formulas are presented for an oscillating control surface with a sealed gap.
Near-wall serpentine cooled turbine airfoil
Lee, Ching-Pang
2014-10-28
A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.
Airfoil Ice-Accretion Aerodynamics Simulation
NASA Technical Reports Server (NTRS)
Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.
2007-01-01
NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.
NASA Technical Reports Server (NTRS)
Braslow, Albert L; Burrows, Dale L; Tetervin, Neal; Visconti, Fioravante
1951-01-01
A low-turbulence wind-tunnel investigation was made of an NACA 64a010 airfoil having a porous surface to determine the reduction in section total-drag coefficient that might be obtained at large Reynolds numbers by the use of suction to produce continuous inflow through the surface of the airfoil (area suction). In addition to the experimental investigation, a related theoretical analysis was made to provide a basis of comparison for the test results.
Tests of NACA 0009, 0012, and 0018 Airfoils in the Full-Scale Tunnel
NASA Technical Reports Server (NTRS)
Goett, Harry J; Bullivant, W Kenneth
1939-01-01
An investigation was conducted in the NACA full-scale wind tunnel to determine the aerodynamic characteristics of the NACA 0009, 0012, and 0018 airfoils, with the ultimate purpose of providing data to be used as a basis for comparison with other wind-tunnel data, mainly in the study of scale and turbulence effects. Three symmetrical 6 by 36-foot rectangular airfoils were used. The Reynolds number range for minimum drag was form 1,800,000 to 7,000,000 and for maximum lift, from 1,700,000 to 4,500,000. The effect of rounded tips was determined for each of the airfoils. Tests were also made of the NACA 0012 airfoil equipped with a 0.20c full-span split flap hinged at 0.80c. Tuft surveys were included to show the progressive breakdown of flow near maximum lift. Momentum surveys were made in conjunction with force measurements at zero lift as an aid in converting force-test data to section coefficients.
The effects of leading-edge serrations on reducing flow unsteadiness about airfoils.
NASA Technical Reports Server (NTRS)
Schwind, R. G.; Allen, H. J.
1973-01-01
High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 x 1,000,000 to 6.2 x 1,000,000 on a rectangular wing of NACA 63-009 airfoil section. A wide selection of leading-edge serrations were also added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large peak in rms pressure, which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related mathematically to the airfoil trailing-edge and boundary-layer thicknesses.
Turbine airfoil with laterally extending snubber having internal cooling system
Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.
2016-09-06
A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.
New airfoils for small horizontal axis wind turbines
Giguere, P.; Selig, M.S.
1997-12-31
In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.
Quiet airfoils for small and large wind turbines
Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA
2012-06-12
Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.
Investigation of low-speed turbulent separated flow around airfoils
NASA Technical Reports Server (NTRS)
Wadcock, Alan J.
1987-01-01
Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.
Transonic airfoil analysis and design in nonuniform flow
NASA Technical Reports Server (NTRS)
Chang, J. F.; Lan, C. E.
1986-01-01
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness.
Three-dimensional unsteady viscous flow analysis over airfoil sections
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Shamroth, S. J.
1984-01-01
A three-dimensional solution procedure for the approximate form of the Navier-Stokes equation was exercised in the two- and three-dimensional modes to compute the unsteady turbulent boundary layer on a flat plate corresponding to the data of Karlsson. The procedure is based on the use of a consistently split Linearized Block Implicit technique in conjunction with a QR operator scheme. New time-dependent upstream boundary conditions were developed that yielded realistic solutions for the interior in the vicinity of the upstream boundary. Comparisons of the computation employing these boundary conditions with the data indicate that both qualitative and quantitative agreement was obtained for the mean velocity and the in phase and out of phase components of the first harmonic of the velocity. In addition, the calculation gave results for the skin friction phase angle that had expected physical behavior for large distances downstream of the inflow boundary. For the three-dimensional case, the two-dimensional data of Karlsson was considered, but in a coordinate system skewed at 45 deg to the free stream direction. The results of the calculations were in excellent agreement with the data and the two-dimensional computations.
Three-dimensional unsteady viscous flow analysis over airfoil sections
NASA Astrophysics Data System (ADS)
Weinberg, B. C.; Shamroth, S. J.
1984-06-01
A three-dimensional solution procedure for the approximate form of the Navier-Stokes equation was exercised in the two- and three-dimensional modes to compute the unsteady turbulent boundary layer on a flat plate corresponding to the data of Karlsson. The procedure is based on the use of a consistently split Linearized Block Implicit technique in conjunction with a QR operator scheme. New time-dependent upstream boundary conditions were developed that yielded realistic solutions for the interior in the vicinity of the upstream boundary. Comparisons of the computation employing these boundary conditions with the data indicate that both qualitative and quantitative agreement was obtained for the mean velocity and the in phase and out of phase components of the first harmonic of the velocity. In addition, the calculation gave results for the skin friction phase angle that had expected physical behavior for large distances downstream of the inflow boundary. For the three-dimensional case, the two-dimensional data of Karlsson was considered, but in a coordinate system skewed at 45 deg to the free stream direction. The results of the calculations were in excellent agreement with the data and the two-dimensional computations.
S825 and S826 Airfoils: 1994--1995
Somers, D. M.
2005-01-01
A family of airfoils, the S825 and S826, for 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moments and the airfoil thicknesses have been satisfied. The airfoils should exhibit docile stalls.
Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance
NASA Technical Reports Server (NTRS)
Ratnayake, Nalin A.
2009-01-01
Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of
NASA Technical Reports Server (NTRS)
Letko, W; Denaci, H. G.; Freed, C
1943-01-01
Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
Turbine airfoil with ambient cooling system
Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.
2016-06-07
A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
Analysis of airfoil transitional separation bubbles
NASA Technical Reports Server (NTRS)
Davis, R. L.; Carter, J. E.
1984-01-01
A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.
Turbine engine airfoil and platform assembly
Campbell, Christian X [Oviedo, FL; James, Allister W [Chuluota, FL; Morrison, Jay A [Oviedo, FL
2012-07-31
A turbine airfoil (22A) is formed by a first process using a first material. A platform (30A) is formed by a second process using a second material that may be different from the first material. The platform (30A) is assembled around a shank (23A) of the airfoil. One or more pins (36A) extend from the platform into holes (28) in the shank (23A). The platform may be formed in two portions (32A, 34A) and placed around the shank, enclosing it. The two platform portions may be bonded to each other. Alternately, the platform (30B) may be cast around the shank (23B) using a metal alloy with better castability than that of the blade and shank, which may be specialized for thermal tolerance. The pins (36A-36D) or holes for them do not extend to an outer surface (31) of the platform, avoiding stress concentrations.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine and compared to earlier methods. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Low Reynolds number airfoil survey, volume 1
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1981-01-01
The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.
Improved methods of vibration analysis of pretwisted, airfoil blades
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1984-01-01
Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.
Damping element for reducing the vibration of an airfoil
Campbell, Christian X; Marra, John J
2013-11-12
An airfoil (10) is provided with a tip (12) having an opening (14) to a center channel (24). A damping element (16) is inserted within the opening of the center channel, to reduce an induced vibration of the airfoil. The mass of the damping element, a spring constant of the damping element within the center channel, and/or a mounting location (58) of the damping element within the center channel may be adjustably varied, to shift a resonance frequency of the airfoil outside a natural operating frequency of the airfoil.
Transonic airfoil analysis and design using Cartesian coordinates
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1975-01-01
An inverse numerical technique for designing transonic airfoils having a prescribed pressure distribution is presented. The method uses the full potential equation, inverse boundary conditions, and Cartesian coordinates. It includes simultaneous airfoil update and utilizes a direct-inverse approach that permits a logical method for controlling trailing edge closure. The method can also be used for the analysis of flowfields about specified airfoils. Comparison with previous results shows that accurate results can be obtained with a Cartesian grid. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.
Numerical investigation of acoustic radiation from vortex-airfoil interaction
NASA Astrophysics Data System (ADS)
Legault, Anne; Ji, Minsuk; Wang, Meng
2012-11-01
Numerical simulations of vortices interacting with a NACA 0012 airfoil and a flat-plate airfoil at zero angle of attack are carried out to assess the applicability and accuracy of classical theories. Unsteady lift and sound are computed and compared with the predictions by theories of Sears and Amiet, which assume a thin-plate airfoil in an inviscid flow. A Navier-Stokes solver is used in the simulations, and therefore viscous effects are taken into consideration. For the thin-plate airfoil, the effect of viscosity is negligible. For a NACA 0012 airfoil, the viscous contribution to the unsteady lift and sound mainly comes from coherent vortex shedding in the wake of the airfoil and the interaction of the incoming vortices with the airfoil wake, which become stronger at higher Reynolds numbers for a 2-D laminar flow. When the flow is turbulent at chord Reynolds number of 4 . 8 ×105 , however, the viscous contribution becomes negligible as coherent vortex shedding is not present. Sound radiation from vortex-airfoil interaction at turbulent Reynolds numbers is computed numerically via Lighthill's theory and the result is compared with the predictions of Amiet and Curle. The effect of the airfoil thickness is also examined. Supported by ONR Grant N00014-09-1-1088.
Comparisons of Theoretical Methods for Predicting Airfoil Aerodynamic Characteristics
2010-08-01
Airfoil ,” Airfoils , U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-107, August 2010. [2] Somers, D.M. and...Maughmer, M.D., “Design and Experimental Results for the S407 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D...S414 Airfoil ,” U.S. Army Aviation Research, Development and Engineering Command, RDECOM TR 10-D-112, August 2010. [5] Somers, D.M. and Maughmer
Investigation of the Boundary Layer Behavior on Turbine Airfoils.
1979-08-01
turbine airfoil cascade . The airfoil profile was based on a turbine blade design used by Lander ’’4 and employed in previous wake studies by Cox and...simulate the wake from upstream turning vanes or blades , a circular cylinder was placed upstream of the centra l or test airfoil . The displacement of this...of turbine airfoil cascade model s by Cox and Han 15 are very much evident in the graph . It might be noted that the blade stag- nation points are at
An analytical study for the design of advanced rotor airfoils
NASA Technical Reports Server (NTRS)
Kemp, L. D.
1973-01-01
A theoretical study has been conducted to design and evaluate two airfoils for helicopter rotors. The best basic shape, designed with a transonic hodograph design method, was modified to meet subsonic criteria. One airfoil had an additional constraint for low pitching-moment at the transonic design point. Airfoil characteristics were predicted. Results of a comparative analysis of helicopter performance indicate that the new airfoils will produce reduced rotor power requirements compared to the NACA 0012. The hodograph design method, written in CDC Algol, is listed and described.
NASA Technical Reports Server (NTRS)
Mutterperl, William
1944-01-01
A method of conformal transformation is developed that maps an airfoil into a straight line, the line being chosen as the extended chord line of the airfoil. The mapping is accomplished by operating directly with the airfoil ordinates. The absence of any preliminary transformation is found to shorten the work substantially over that of previous methods. Use is made of the superposition of solutions to obtain a rigorous counterpart of the approximate methods of thin-airfoils theory. The method is applied to the solution of the direct and inverse problems for arbitrary airfoils and pressure distributions. Numerical examples are given. Applications to more general types of regions, in particular to biplanes and to cascades of airfoils, are indicated. (author)
2010-08-01
airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 4.) This characteristic is related to the...edge with increasing (decreasing) lift coefficient. This feature results in a leading-edge shape that produces a suction peak at higher lift...should look like sketch 3. Sketch 3 1Director, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Germany, 1974–1985.5 No suction
Streamwise Oscillation of Airfoils into Reverse Flow
NASA Astrophysics Data System (ADS)
Granlund, Kenneth; Jones, Anya; Ol, Michael
2015-11-01
An airfoil in freestream is oscillated in streamwise direction to cyclically enter reverse flow. Measured lift is compared to analytical blade element theories. Advance ratio, reduced frequency and angle of attack is varied within those typical for helicopters. Experimental results reveal that lift does not become negative in the flow reversal part, contradicting one theory and supported by another. Flow visualization reveal the leading edge vortex advecting against the freestream to a point in front of the leading edge.
Linearized propulsion theory of flapping airfoils revisited
NASA Astrophysics Data System (ADS)
Fernandez-Feria, R.
2016-12-01
A vortical impulse theory is used to compute the thrust force of a plunging and pitching airfoil in forward flight at high Reynolds numbers within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick, which considered only two effects, the leading-edge suction and the projection in the flight direction of the pressure force on the airfoil. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains, in addition to the pressure force projection term, a new term that generalizes the leading-edge suction term in Garrick's theory. This term depends on Theodorsen function C (k ) and on a new complex function C1(k ) of the reduced frequency k . The main qualitative difference with Garrick's theory is that the propulsive efficiency, or ratio of the mean thrust power and the mean input power required to drive the airfoil, tends to zero as the reduced frequency increases to infinity (as k-1), in contrast to Garrick's propulsive efficiency that tends to a constant (1 /2 ). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k →∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining nondimensional parameters. The present analytical results are in good agreement, for small amplitude oscillations, with numerical results from unsteady panel methods, and with experimental data and numerical results from the Navier-Stokes equations, except for small reduced frequencies where viscous effects are obviously important.
Turbulent Flow over Rough Turbine Airfoils.
1985-08-01
SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB. GR. Turbine blades ’ vanes ; surface roughness...turbulent boundary layer over rough turbine vanes or blades is developed. A new formulation of the mixing length model, expressed in the velocity-space...A-163 005 TURBULENT FLOW OVER ROUGH TURBINE AIRFOILS (U) OHIO 1/ STATE UNIV RESEARCH FOUNDATION COLUMBUS L S HAN AUG B5 OSURF-76357/?i4467 AFWL-TR-95
Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise
NASA Technical Reports Server (NTRS)
2010-01-01
Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.
Two-dimensional separated wake modeling and its use to predict maximum section lift coefficient
NASA Technical Reports Server (NTRS)
Henderson, M. L.
1978-01-01
A technique for computing the lift of separating multielement airfoils in incompressible flow is presented. The procedure employs repeated application of a panel method to solve for the separated wake displacement surface using entirely inviscid boundary conditions. Results are presented that compare computed pressure distributions with those measured in the wind tunnel for airfoils with one, two, and four elements with separation on each element. A method employing this technique is presented which shows promise in predicting airfoil section lift through stall.
Pressure Distribution Over Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Dryden, H L
1927-01-01
This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.
LES tests on airfoil trailing edge serration
NASA Astrophysics Data System (ADS)
Zhu, Wei Jun; Shen, Wen Zhong
2016-09-01
In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.
Wake structure of a deformable Joukowski airfoil
NASA Astrophysics Data System (ADS)
Ysasi, Adam; Kanso, Eva; Newton, Paul K.
2011-10-01
We examine the vortical wake structure shed from a deformable Joukowski airfoil in an unbounded volume of inviscid and incompressible fluid. The deformable airfoil is considered to model a flapping fish. The vortex shedding is accounted for using an unsteady point vortex model commonly referred to as the Brown-Michael model. The airfoil’s deformations and rotations are prescribed in terms of a Jacobi elliptic function which exhibits, depending on a dimensionless parameter m, a range of periodic behaviors from sinusoidal to a more impulsive type flapping. Depending on the parameter m and the Strouhal number, one can identify five distinct wake structures, ranging from arrays of isolated point vortices to vortex dipoles and tripoles shed into the wake with every half-cycle of the airfoil flapping motion. We describe these regimes in the context of other published works which categorize wake topologies, and speculate on the importance of these wake structures in terms of periodic swimming and transient maneuvers of fish.
Ordered roughness effects on NACA 0026 airfoil
NASA Astrophysics Data System (ADS)
Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.
2016-10-01
The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Yeh, F. C.; Austin, P. J., Jr.
1987-01-01
Two methods were used to calculate the heat flux to full-coverage film cooled airfoils and, subsequently, the airfoil wall temperatures. The calculated wall temperatures were compared to measured temperatures obtained in the Hot Section Facility operating at real engine conditions. Gas temperatures and pressures up to 1900 K and 18 atm with a Reynolds number up to 1.9 million were investigated. Heat flux was calculated by the convective heat transfer coefficient adiabatic wall method and by the superposition method which incorporates the film injection effects in the heat transfer coefficient. The results of the comparison indicate the first method can predict the experimental data reasonably well. However, superposition overpredicted the heat flux to the airfoil without a significant modification of the turbulent Prandtl number. The results suggest that additional research is required to model the physics of full-coverage film cooling where there is significant temperature/density differences between the gas and the coolant.
Numerical Study of Ram Air Airfoils and Upper Surface Bleed-Air Control
2014-06-16
of ram -air parachute systems to complement the design and analysis of new and existing airdrop systems. In this paper an unsteady numerical study of...two-dimensional, rigid, ram -air sections with an array of upper surface bleed-air actuators is presented. Aerodynamic forces and lift-to-drag ratios of...a modified Clark-Y ram -air airfoil are calculated from unsteady Reynolds-Averaged Navier-Stokes (RANS) simulations, using the Kestrel and Cobalt flow
Effect of Compressibility on Pressure Distribution over an Airfoil with a Slotted Frise Aileron
NASA Technical Reports Server (NTRS)
Luoma, Avro A
1944-01-01
Pressure distribution measurements were made over an airfoil with slotted Frise aileron up to 0.76 Mach at various angles of attack and aileron defections. Section characteristics were determined from these pressure data. Results indicated loss of aileron rolling power for deflections ranging from -12 Degrees to -19 Degrees. High stick forces for non-differential deflections incurred at high speed, which were due to overbalancing tendency of up-moving aileron, may precipitate serious control difficulties. Detailed results are presented graphically.
NASA Technical Reports Server (NTRS)
Gray, Vernon H.
1958-01-01
An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Sealing apparatus for airfoils of gas turbine engines
Jones, R.B.
1998-05-19
An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed. 17 figs.
Sealing apparatus for airfoils of gas turbine engines
Jones, Russell B.
1998-01-01
An improved airfoil tip sealing apparatus is disclosed wherein brush seals are attached to airfoil tips with the distal ends of the brush seal fibers sealingly contacting opposing wall surfaces. Embodiments for variable vanes, stators and both cooled and uncooled turbine blade applications are disclosed.
Numerical Airfoil Optimization Using a Reduced Number of Design Coordinates
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Hicks, R. M.
1976-01-01
A method is presented for numerical airfoil optimization whereby a reduced number of design coordinates are used to define the airfoil shape. The approach is to define the airfoil as a linear combination of shapes. These basic shapes may be analytically or numerically defined, allowing the designer to use his insight to propose candidate designs. The design problem becomes one of determining the participation of each such function in defining the optimum airfoil. Examples are presented for two-dimensional airfoil design and are compared with previous results based on a polynomial representation of the airfoil shape. Four existing NACA airfoils are used as basic shapes. Solutions equivalent to previous results are achieved with a factor of more than 3 improvements in efficiency, while superior designs are demonstrated with an efficiency greater than 2 over previous methods. With this shape definition, the optimization process is shown to exploit the simplifying assumptions in the inviscid aerodynamic analysis used here, thus demonstrating the need to use more advanced aerodynamics for airfoil optimization.
TRANDES: A FORTRAN program for transonic airfoil analysis or design
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1977-01-01
A program called TRANDES is presented that is used for the analysis of steady, irrotational transonic flow over specified two-dimensional airfoils in free air or for the design of airfoils having a prescribed pressure distribution, including the effects of weak viscous interaction. Instructions on program usage, listings of the program, and sample cases are given.
Airfoil family design for large offshore wind turbine blades
NASA Astrophysics Data System (ADS)
Méndez, B.; Munduate, X.; San Miguel, U.
2014-06-01
Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design
Illustration of airfoil shape effect on forward-swept wing divergence
NASA Technical Reports Server (NTRS)
Bland, S. R.
1980-01-01
A static aeroelastic analysis is presented of the divergence of untapered wings with conventional and supercritical airfoil sections at sweep angles of zero and -15 deg. One bending and one torsion mode were employed for a uniform rectangular cantilevered beam with the elastic axis at midchord, and calculations were based on a two-dimensional differential equations formulation in the structural coordinate system and in simple strip theory. A minimum divergence speed in the transonic range is obtained which is associated with the rearward shift of the aerodynamic center, and a 17% difference in minimum divergence dynamic pressure is found between a supercritical and a conventional wing. It is noted that although the strip method employed allows the assessment of the sensitivity of airfoil shapes to divergence, three-dimensional transonic aerodynamic methods should be used to predict wing divergence characteristics.
Experimental Investigation of Wind-Tunnel Interference on the Downwash Behind an Airfoil
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S
1937-01-01
The interference of the wind-tunnel boundaries on the downwash behind an airfoil has been experimentally investigated and the results have been compared with the available theoretical results for open-throat wind tunnels. As in previous studies, the simplified theoretical treatment that assumes the test section to be an infinite free jet has been shown to be satisfactory at the lifting line. The experimental results, however, show that this assumption may lead to erroneous conclusions regarding the corrections to be applied to the downwash in the region behind the airfoil where the tail surfaces are normally located. The results of a theory based on the more accurate concept of the open-jet wind tunnel as a finite length of free jet provided with a closed exit passage are in good qualitative agreement with the experimental results.
Application of numerical optimization to the design of supercritical airfoils without drag-creep
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Vanderplaats, G. N.
1977-01-01
Recent applications of numerical optimization to the design of advanced airfoils for transonic aircraft have shown that low-drag sections can be developed for a given design Mach number without an accompanying drag increase at lower Mach numbers. This is achieved by imposing a constraint on the drag coefficient at an off-design Mach number while the drag at the design Mach number is the objective function. Such a procedure doubles the computation time over that for single design-point problems, but the final result is worth the increased cost of computation. The ability to treat such multiple design-point problems by numerical optimization has been enhanced by the development of improved airfoil shape functions. Such functions permit a considerable increase in the range of profiles attainable during the optimization process.
Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.
1982-01-01
The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.
An extended theory of thin airfoils and its application to the biplane problem
NASA Technical Reports Server (NTRS)
Millikan, Clark B
1931-01-01
The report presents a new treatment, due essentially to von Karman, of the problem of the thin airfoil. The standard formulae for the angle of zero lift and zero moment are first developed and the analysis is then extended to give the effect of disturbing or interference velocities, corresponding to an arbitrary potential flow, which are superimposed on a normal rectilinear flow over the airfoil. An approximate method is presented for obtaining the velocities induced by a 2-dimensional airfoil at a point some distance away. In certain cases this method has considerable advantage over the simple "lifting line" procedure usually adopted. The interference effects for a 2-dimensional biplane are considered in the light of the previous analysis. The results of the earlier sections are then applied to the general problem of the interference effects for a 3-dimensional biplane, and formulae and charts are given which permit the characteristics of the individual wings of an arbitrary biplane without sweepback or dihedral to be calculated. In the final section the conclusions drawn from the application of the theory to a considerable number of special cases are discussed, and curves are given illustrating certain of these conclusions and serving as examples to indicate the nature of the agreement between the theory and experiment.
A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack
NASA Technical Reports Server (NTRS)
Petrilli, Justin; Paul, Ryan; Gopalarathnam, Ashok; Frink, Neal T.
2013-01-01
This paper presents selected results from an ongoing effort to develop an aerodynamic database from Reynolds-Averaged Navier-Stokes (RANS) computational analysis of airfoils and wings at stall and post-stall angles of attack. The data obtained from this effort will be used for validation and refinement of a low-order post-stall prediction method developed at NCSU, and to fill existing gaps in high angle of attack data in the literature. Such data could have potential applications in post-stall flight dynamics, helicopter aerodynamics and wind turbine aerodynamics. An overview of the NASA TetrUSS CFD package used for the RANS computational approach is presented. Detailed results for three airfoils are presented to compare their stall and post-stall behavior. The results for finite wings at stall and post-stall conditions focus on the effects of taper-ratio and sweep angle, with particular attention to whether the sectional flows can be approximated using two-dimensional flow over a stalled airfoil. While this approximation seems reasonable for unswept wings even at post-stall conditions, significant spanwise flow on stalled swept wings preclude the use of two-dimensional data to model sectional flows on swept wings. Thus, further effort is needed in low-order aerodynamic modeling of swept wings at stalled conditions.
Multiple element airfoils optimized for maximum lift coefficient.
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Chen, A. W.
1972-01-01
Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.
Transition effects on compressible dynamic stall of transiently pitching airfoils
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Chandrasekhara, M. S.; Carr, L. W.
1993-01-01
Experimental results and analysis of the effects of boundary layer tripping on dynamic stall of a transiently pitching airfoil are presented. At low Mach numbers, the tripped airfoil exhibits qualitative similarity with the behavior of the untripped airfoil. However, the local supersonic flow at Mach numbers greater than 0.3 is significantly modified by the trip leading to vastly different shock/boundary layer interactions, dynamic stall onset and vortex formation angles. The formation of the laminar separation bubble is found to have a favorable influence in delaying dynamic stall on the untripped airfoil flow. In both Mach number regimes, the tripped flow actually stalls at slightly lower angles of attack. Further experimentation with three trips on an oscillating airfoil showed that the dynamic stall process is very sensitive to the state of the turbulence in the boundary layer. This sensitivity points to a need for finer turbulence modeling techniques for use in dynamic stall computations.
Wind tunnel test of the S814 thick root airfoil
Somers, D.M.; Tangler, J.L.
1996-11-01
The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.
Reversible airfoils for stopped rotors in high speed flight
NASA Astrophysics Data System (ADS)
Niemiec, Robert; Jacobellis, George; Gandhi, Farhan
2014-10-01
This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier-Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4-5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation.
An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil
NASA Astrophysics Data System (ADS)
Gul, M.; Uzol, O.; Akmandor, I. S.
2014-06-01
This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x105 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x105 Reynolds number at zero angle of attack.
Approximation concepts for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
An efficient algorithm for airfoil optimization is presented. The algorithm utilizes approximation concepts to reduce the number of aerodynamic analyses required to reach the optimum design. Examples are presented and compared with previous results. Optimization efficiency improvements of more than a factor of 2 are demonstrated. Improvements in efficiency are demonstrated when analysis data obtained in previous designs are utilized. The method is a general optimization procedure and is not limited to this application. The method is intended for application to a wide range of engineering design problems.
Direct Numerical Simulations of Plunging Airfoils
2010-01-07
Schmidt and E Turkel, Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes, AIAA paper 81-1259...Ω ( p ∂vj ∂xj − σij ∂v i ∂xj ) dV (4) Definition 1 A numerical scheme to solve the viscous Navier-Stokes equations is said to be Kinetic Energy...Direct Numerical Simulations of Plunging Airfoils Yves Allaneau∗ and Antony Jameson† Stanford University, Stanford, California, 94305, USA This paper
FLEET Velocimetry Measurements on a Transonic Airfoil
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
Linearized propulsion theory of flapping airfoils revisited
NASA Astrophysics Data System (ADS)
Fernandez-Feria, Ramon
2016-11-01
A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
Airfoil for a gas turbine engine
Liang, George
2011-05-24
An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.
Efficiency of an auto-propelled flapping airfoil
NASA Astrophysics Data System (ADS)
Benkherouf, T.; Mekadem, M.; Oualli, H.; Hanchi, S.; Keirsbulck, L.; Labraga, L.
2011-05-01
The present study deals with an investigation of the flow aerodynamic characteristics and the propulsive velocity of a system equipped with a nature inspired propulsion system. In particular, the study is aimed at studying the effect of the flapping frequency on the flow behavior. We consider a NACA0014 airfoil undergoing a vertical sinusoidal flapping motion. In contrast to nearly all previous studies in the literature, the present work does not impose any velocity on the inlet flow. During each iteration the outer flow velocity is computed after having determined the forces exerted on the airfoil. Forward motion may only be produced by flapping motion of the airfoil. This is more consistent with the physical phenomenon. The non-stationary viscous flow around the flapping airfoil is simulated using Ansys-Fluent 12.0.7. The airfoil movement is achieved using the deformable mesh technique and an in-house developed User Define Function (UDF). Our results show the influence of flapping frequency and amplitude on both the airfoil velocity and the propulsive efficiency. The resulting motion is contrasts to the applied forces. In the present study, the frequency ranges from 0.1 to 20 Hz while the airfoil amplitude values considered are: 10%, 17.5%, 25% and 40%.
On the Theory of the Unsteady Motion of an Airfoil
NASA Technical Reports Server (NTRS)
Sedov, L. I.
1947-01-01
The paper presents a systematical analysis of the problem of the determination of the unsteady motion about an airfoil moving in an infinite fluid that contains a system of vortices and the determination of the hydrodynamical forces acting on the airfoil. The hydrodynamical problem is reduced to the determination of the function f (xi) which transforms conformally the external region of the airfoil into the interior of a circle. The proposed methods of determining the irrotational motion of a fluid that is produced by any motion of the airfoil are especially simple and effective if the function f (xi) is rational. As an example the flow is determined for the case of an arbitrary motion of an airfoil of the Joukowsky type. The formulas obtained for the determination of the hydrodynamical forces by means of contour integration are similar to those given by S. Chaplygin. These formulas are used to determine the force acting on the airfoil in the cases where the unsteady motion is potential throughout and the circulation about the airfoil is constant and also when the fluid contains a system of vortices. A full discussion is given of the concept of virtual masses together with practical formulas for computing the virtual mass coefficients.
Unsteady Newton-Busemann flow theory. I - Airfoils
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.
Inverse design of airfoils using a flexible membrane method
NASA Astrophysics Data System (ADS)
Thinsurat, Kamon
The Modified Garabedian Mc-Fadden (MGM) method is used to inversely design airfoils. The Finite Difference Method (FDM) for Non-Uniform Grids was developed to discretize the MGM equation for numerical solving. The Finite Difference Method (FDM) for Non-Uniform Grids has the advantage of being used flexibly with an unstructured grids airfoil. The commercial software FLUENT is being used as the flow solver. Several conditions are set in FLUENT such as subsonic inviscid flow, subsonic viscous flow, transonic inviscid flow, and transonic viscous flow to test the inverse design code for each condition. A moving grid program is used to create a mesh for new airfoils prior to importing meshes into FLUENT for the analysis of flows. For validation, an iterative process is used so the Cp distribution of the initial airfoil, the NACA0011, achieves the Cp distribution of the target airfoil, the NACA2315, for the subsonic inviscid case at M=0.2. Three other cases were carried out to validate the code. After the code validations, the inverse design method was used to design a shock free airfoil in the transonic condition and to design a separation free airfoil at a high angle of attack in the subsonic condition.
Computer-aided roll pass design in rolling of airfoil shapes
NASA Technical Reports Server (NTRS)
Akgerman, N.; Lahoti, G. D.; Altan, T.
1980-01-01
This paper describes two computer-aided design (CAD) programs developed for modeling the shape rolling process for airfoil sections. The first program, SHPROL, uses a modular upper-bound method of analysis and predicts the lateral spread, elongation, and roll torque. The second program, ROLPAS, predicts the stresses, roll separating force, the roll torque and the details of metal flow by simulating the rolling process, using the slab method of analysis. ROLPAS is an interactive program; it offers graphic display capabilities and allows the user to interact with the computer via a keyboard, CRT, and a light pen. The accuracy of the computerized models was evaluated by (a) rolling a selected airfoil shape at room temperature from 1018 steel and isothermally at high temperature from Ti-6Al-4V, and (b) comparing the experimental results with computer predictions. The comparisons indicated that the CAD systems, described here, are useful for practical engineering purposes and can be utilized in roll pass design and analysis for airfoil and similar shapes.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.
1982-01-01
A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. A study is presented of the shock motion associated with an oscillating airfoil and its representation by the harmonic procedure. The effects of the shock motion and the resulting pressure pulse are shown to be included in the harmonic pressure distributions and the corresponding generalized forces. Analytical and experimental pressure distributions for the NACA 64A010 airfoil are compared for Mach numbers of 0.75, 0.80 and 0.842. A typical section, two-degree-of-freedom flutter analysis of a NACA 64A010 airfoil is performed. The results show a sharp transonic bucket in one case and abrupt changes in instability modes.
Accurate load prediction by BEM with airfoil data from 3D RANS simulations
NASA Astrophysics Data System (ADS)
Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger
2016-09-01
In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.
Effects of leading and trailing edge flaps on the aerodynamics of airfoil/vortex interactions
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Sankar, L. N.; Tadghighi, H.
1994-01-01
A numerical procedure has been developed for predicting the two-dimensional parallel interaction between a free convecting vortex and a NACA 0012 airfoil having leading and trailing edge integral-type flaps. Special emphasis is placed on the unsteady flap motion effects which result in alleviating the interaction at subcritical and supercritical onset flows. The numerical procedure described here is based on the implicit finite-difference solutions to the unsteady two-dimensional full potential equation. Vortex-induced effects are computed using the Biot-Savart Law with allowance for a finite core radius. The vortex-induced velocities at the surface of the airfoil are incorporated into the potential flow model via the use of the velocity transpiration approach. Flap motion effects are also modeled using the transpiration approach. For subcritical interactions, our results indicate that trailing edge flaps can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, our results demonstrate the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time-dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented
Discontinuous Galerkin methodology for Large-Eddy Simulations of wind turbine airfoils
NASA Astrophysics Data System (ADS)
Frére, A.; Sørensen, N. N.; Hillewaert, K.; Winckelmans, G.
2016-09-01
This paper aims at evaluating the potential of the Discontinuous Galerkin (DG) methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is however not used in the wind energy sector yet. The present study aims at evaluating this methodology on an application which is relevant for that sector and focuses on blade section aerodynamics characterization. To be pertinent for large wind turbines, the simulations would need to be at low Mach numbers (M ≤ 0.3) where compressible approaches are often limited and at large Reynolds numbers (Re ≥ 106) where wall-resolved LES is still unaffordable. At these high Re, a wall-modeled LES (WMLES) approach is thus required. In order to first validate the LES methodology, before the WMLES approach, this study presents airfoil flow simulations at low and high Reynolds numbers and compares the results to state-of-the-art models used in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 x 104), involving laminar boundary layer separation and transition in the detached shear layer, the Eppler 387 airfoil is studied at two angles of attack. The LES results agree slightly better with the experimental chordwise pressure distribution than both XFOIL and RANS results. At high Reynolds number (Re = 1.64 x 106), the NACA4412 airfoil is studied close to stall condition. In this case, although the wall model approach used for the WMLES is very basic and not supposed to handle separation nor adverse pressure gradients, all three methods provide equivalent accuracy on averaged quantities. The present work is hence considered as a strong step forward in the use of LES at high Reynolds numbers.
Wind tunnel testing of low-drag airfoils
NASA Technical Reports Server (NTRS)
Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.
1986-01-01
Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.
Characteristics of an Airfoil as Affected by Fabric Sag
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1932-01-01
This report presents the results of tests made at a high value of the Reynolds Number in the N.A.C.A. variable-density wind tunnel to determine the aerodynamic characteristics of an airfoil as affected by fabric sag. Tests were made of two Gottingen 387 airfoils, one having the usual smooth surface and the other having a surface modified to simulate two types of fabric sag. The results of these tests indicate that the usual sagging of the wind covering between ribs has a very small effect on the aerodynamic characteristics of an airfoil.
Influence of airfoil thickness on convected gust interaction noise
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Tsai, C. T.
1989-01-01
The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.
Transonic airfoil calculations using solution-adaptive grids
NASA Technical Reports Server (NTRS)
Holst, T. L.; Brown, D.
1981-01-01
A new algorithm for generating solution-adaptive grids (SAG) about airfoil configurations embedded in transonic flow is presented. The present SAG approach uses only the airfoil surface solution to recluster grid points on the airfoil surface, i.e., the reclustering problem is one dimension smaller than the flow-field calculation problem. Special controls automatically built into the elliptic grid generation procedure are then used to obtain grids with suitable interior behavior. This concept of redistributing grid points greatly simplifies the idea of solution-adaptive grids. Numerical results indicate significant improvements in accuracy for SAG grids relative to standard grids using the same number of points.
Low-speed single-element airfoil synthesis
NASA Technical Reports Server (NTRS)
Mcmasters, J. H.; Henderson, M. L.
1979-01-01
The use of recently developed airfoil analysis/design computational tools to clarify, enrich and extend the existing experimental data base on low-speed, single element airfoils is demonstrated. A discussion of the problem of tailoring an airfoil for a specific application at its appropriate Reynolds number is presented. This problem is approached by use of inverse (or synthesis) techniques, wherein a desirable set of boundary layer characteristics, performance objectives, and constraints are specified, which then leads to derivation of a corresponding viscous flow pressure distribution. Examples are presented which demonstrate the synthesis approach, following presentation of some historical information and background data which motivate the basic synthesis process.
Broadband Noise Predictions for an Airfoil in a Turbulent Stream
NASA Technical Reports Server (NTRS)
Casper, J.; Farassat, F.; Mish, P. F.; Devenport, W. J.
2003-01-01
Loading noise is predicted from unsteady surface pressure measurements on a NACA 0015 airfoil immersed in grid-generated turbulence. The time-dependent pressure is obtained from an array of synchronized transducers on the airfoil surface. Far field noise is predicted by using the time-dependent surface pressure as input to Formulation 1A of Farassat, a solution of the Ffowcs Williams - Hawkings equation. Acoustic predictions are performed with and without the effects of airfoil surface curvature. Scaling rules are developed to compare the present far field predictions with acoustic measurements that are available in the literature.
Laser velocimetry measurements of oscillating airfoil dynamic stall flow field
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Ahmed, S.
1991-01-01
Ensemble-averaged two-component velocity measurements over an airfoil experiencing oscillatory dynamic stall under compressibility conditions were obtained. The measurements show the formation of a separation bubble over the airfoil that persists till angles of attack close to when the dynamic stall vortex forms and convects. The fluid attains mean velocities as large as 1.6 times the free stream velocity with instantaneous values of 1.8 times the free stream velocity. The airfoil motion induces these large velocities in regions that are far removed from the surface.
Design and experimental results for the S809 airfoil
Somers, D M
1997-01-01
A 21-percent-thick, laminar-flow airfoil, the S809, for horizontal-axis wind-turbine applications, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.
Design and experimental results for the S805 airfoil
Somers, D.M.
1997-01-01
An airfoil for horizontal-axis wind-turbine applications, the S805, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.
Approximate method of designing a two-element airfoil
NASA Astrophysics Data System (ADS)
Abzalilov, D. F.; Mardanov, R. F.
2011-09-01
An approximate method is proposed for designing a two-element airfoil. The method is based on reducing an inverse boundary-value problem in a doubly connected domain to a problem in a singly connected domain located on a multisheet Riemann surface. The essence of the method is replacement of channels between the airfoil elements by channels of flow suction and blowing. The shape of these channels asymptotically tends to the annular shape of channels passing to infinity on the second sheet of the Riemann surface. The proposed method can be extended to designing multielement airfoils.
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Newman, Perry A.
1991-01-01
A nonlinear, four wall, post-test wall interference assessment/correction (WIAC) code was developed for transonic airfoil data from solid wall wind tunnels with flexibly adaptable top and bottom walls. The WIAC code was applied over a broad range of test conditions to four sets of NACA 0012 airfoil data, from two different adaptive wall wind tunnels. The data include many test points for fully adapted walls, as well as numerous partially adapted and unadapted test points, which together represent many different model/tunnel configurations and possible wall interference effects. Small corrections to the measured Mach numbers and angles of attack were obtained from the WIAC code even for fully adapted data; these corrections generally improve the correlation among the various sets of airfoil data and simultaneously improve the correlation of the data with calculations for a 2-D, free air, Navier-Stokes code. The WIAC corrections for airfoil data taken in fully adapted wall test sections are shown to be significantly smaller than those for comparable airfoil data from straight, slotted wall test sections. This indicates, as expected, a lesser degree of wall interference in the adapted wall tunnels relative to the slotted wall tunnels. Application of the WIAC code to this data was, however, somewhat more difficult and time consuming than initially expected from similar previous experience with WIAC applications to slotted wall data.
NASA Technical Reports Server (NTRS)
Wenzinger, Carl J; Bamber, Millard J
1938-01-01
A large-chord NACA 23012 airfoil was tested. The airfoil extended completely across the test section, and two-dimensional flow was approximated. The model was fitted with a full-span slotted flap having a chord 25.66 percent of the airfoil chord. The ailerons investigated extended over the entire span and each had a chord 10 percent of the airfoil chord. The types of ailerons tested were: retractable ailerons, slot-lip ailerons using the lip of the slot for ailerons, and plain ailerons on the trailing edge of the slotted flap. The data are presented in the form of curves of section lift, drag, and pitching-moment coefficients for the airfoil with flap deflected but with ailerons neutral, and of rolling-moment, yawing-moment, and hinge-moment coefficients calculated for a rectangular wing of aspect ratio 6 with a semi-span aileron and a full-span flap. For the ailerons investigated the data indicate that, from considerations of rolling and yawing moments produced and of stick forces desired, the retractable aileron is the most satisfactory means of lateral control for use with a full-span slotted flap.
NASA Technical Reports Server (NTRS)
Gray, Vernon H.
1950-01-01
The effect of modifying the gas passage of hollow metal airfoils by the additIon of internal fins and partitions was experimentally investigated and comparisons were made among a basic unfinned airfoil section and two airfoil designs having metal fins attached at the leading edge of the internal gas passage. An analysis considering the effects of heat conduction in the airfoil metal was made to determine the internal modification effectiveness that may be obtained in gas-heated components, such as turbojet-inlet guide vanes, support struts, hollow propeller blades, arid. thin wings. Over a wide range of heated-gas flow and tunnel-air velocity, the increase In surface-heating rates with internal finning was marked (up to 3.5 times), with the greatest increase occurring at the leading edge where anti-icing heat requirements are most critical. Variations in the amount and the location of internal finning and. partitioning provided. control over the local rates of surface heat transfer and permitted efficient anti-icing utilization of the gas-stream heat content.
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.
1988-01-01
The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.
Viscous effects on transonic airfoil stability and response
NASA Technical Reports Server (NTRS)
Berry, H. M.; Batina, J. T.; Yang, T. Y.
1985-01-01
Viscous effects on transonic airfoil stability and response are investigated using an integral boundary layer model coupled to the inviscid XTRAN2L transonic small disturbance code. Unsteady transonic airloads required for stability analyses are computed using a pulse transfer function analysis including viscous effects. The pulse analysis provides unsteady aerodynamic forces for a wide range of reduced frequency in a single flow field computation. Nonlinear time marching aeroelastic solutions are presented which show the effects of viscosity on airfoil response behavior and flutter. Effects of amplitude on time marching responses are demonstrated. A state space aeroelastic model employing Pade approximants to describe the unsteady airloads is used to study the effects of viscosity on transonic airfoil stability. State space dynamic pressure root loci are in good overall agreement with time marching damping and frequency estimates. Parallel sets of results with and without viscous effects reveal the effects of viscosity on transonic unsteady airloads and aeroelastic characteristics of airfoils.
Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.
Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric
2010-06-01
The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.
Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils
NASA Technical Reports Server (NTRS)
Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.
1995-01-01
An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.
High-flaps for natural laminar flow airfoils
NASA Technical Reports Server (NTRS)
Morgan, Harry L.
1986-01-01
A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.
Design and experimental results for the S814 airfoil
Somers, D.M.
1997-01-01
A 24-percent-thick airfoil, the S814, for the root region of a horizontal-axis wind-turbine blade has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of high maximum lift, insensitive to roughness, and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results show good agreement with the exception of maximum lift which is overpredicted. Comparisons with other airfoils illustrate the higher maximum lift and the lower profile drag of the S814 airfoil, thus confirming the achievement of the objectives.
Transonic airfoil and wing design using Navier-Stokes codes
NASA Technical Reports Server (NTRS)
Yu, N. J.; Campbell, R. L.
1992-01-01
An iterative design method has been implemented into 2D and 3D Navier-Stokes codes for the design of airfoils or wings with given target pressure distributions. The method begins with the analysis of an initial geometry, and obtains the analysis pressure distributions of that geometry. The differences between analysis pressures and target pressures are used to drive geometry changes through the use of a streamline curvature method. This paper describes the procedure that makes the iterative design method work for Navier-Stokes codes. Examples of 2D airfoil design, and 3D wing design are included. It is demonstrated that the method is highly effective for airfoil or wing design at flow conditions where no substantial separation occurs. Problems encountered in the airfoil design with shock induced flow separations are discussed.
Aerodynamic sound of flow past an airfoil
NASA Technical Reports Server (NTRS)
Wang, Meng
1995-01-01
The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord
Turbine airfoil with a compliant outer wall
Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL
2012-04-03
A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.
Three-dimensional effects on airfoils
NASA Technical Reports Server (NTRS)
Chevallier, J. P.
1983-01-01
The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.
Experimental airfoil characterization under tailored turbulent conditions
NASA Astrophysics Data System (ADS)
Heißelmann, Hendrik; Peinke, Joachim; Hölling, Michael
2016-09-01
Studies of the impact of turbulent inflow conditions on the airfoil characteristics were performed within the EU FP7 project AVATAR. The aim of this study is to provide data for the validation of simulations and the improvement of engineering tools. Chord-wise pressure distributions and highly-resolved force data of the wind turbine dedicated DU 00-W-212 profile were measured in the wind tunnel in two tailored turbulent inflow conditions generated with an active grid. A sinusoidal and an intermittent pattern with customized inflow angle fluctuations were generated providing two significantly different distributions of reduced frequencies. The obtained pressure distributions and polars from the unsteady patterns are compared to the laminar baseline case.
Heat Transfer of Airfoils and Plates
NASA Technical Reports Server (NTRS)
Seibert, Otto
1943-01-01
The few available test data on the heat dissipation of wholly or partly heated airfoil models are compared with the corresponding data for the flat plate as obtained by an extension of Prandtl's momentum theory, with differentiation between laminar and turbulent boundary layer and transitional region between both, the extent and appearance of which depend upon certain critical factors. The satisfactory agreement obtained justifies far-reaching conclusions in respect to other profile forms and arrangements of heated surface areas. The temperature relationship of the material quantities in its effect on the heat dissipation is discussed as far as is possible at tk.e present state of research, and it is shown that the profile drag of heated wing surfaces can increase or decrease with the temperature increase depending upon the momentarily existent structure of the boundary layer.
Cooled airfoil in a turbine engine
Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J
2015-04-21
An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.
Design and Experimental Results for the S414 Airfoil
2010-08-01
of most current general-aviation aircraft, including busi - ness jets , as well as unmanned aerial vehicles and all sailplanes. It does, however...RDECOM TR 10-D-112 U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND TITLE: Design and Experimental Results for the S414 Airfoil AUTHOR: Dan M...Somers and Mark D. Maughmer COMPANY NAME: Airfoils , Incorporated COMPANY ADDRESS: 122 Rose Drive Port Matilda PA 16870-7535 DATE: August 2010 FINAL
An assessment of airfoil design by numerical optimization
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Murman, E. M.; Vanderplaats, G. N.
1974-01-01
A practical procedure for optimum design of aerodynamic shapes is demonstrated. The proposed procedure uses an optimization program based on the method of feasible directions coupled with an analysis program that uses a relaxation solution of the inviscid, transonic, small-disturbance equations. Results are presented for low-drag, nonlifting transonic airfoils. Extension of the method to lifting airfoils, other speed regimes, and to three dimensions if feasible.
Flow Visualization of Dynamic Stall on an Oscillating Airfoil
1989-09-01
Dynamic Stall; Dynamic lift, ’Unsteady lift; Helicopter retreating blade stall; Oscillating airfoil ; Flow visualization,’Schlieren method ;k ez.S-,’ .0...the degree of MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING from the NAVAL POSTGRADUATE SCHOOL September 1989 Author...and moment behavior is quite different from the static stall associated with fixed-wing airfoils . Helicopter retreating blade stall is a dynamic
Active aerodynamic control of wake-airfoil interaction noise - Experiment
NASA Astrophysics Data System (ADS)
Simonich, J. C.; Lavrich, P. L.; Sofrin, T. G.; Topol, D. A.
A proof of concept experiment is conducted that shows the potential for active aerodynamic control of rotor wake/stator interaction noise in a simplified manner. A single airfoil model representing the stator was fitted with a moveable trailing edge flap controlled by a servo motor. The control system moves the motor driven flap in the correct angular displacement phase and rate to reduce the unsteady load on the airfoil during the wake interaction.
Natural laminar flow airfoil analysis and trade studies
NASA Technical Reports Server (NTRS)
1979-01-01
An analysis of an airfoil for a large commercial transport cruising at Mach 0.8 and the use of advanced computer techniques to perform the analysis are described. Incorporation of the airfoil into a natural laminar flow transport configuration is addressed and a comparison of fuel requirements and operating costs between the natural laminar flow transport and an equivalent turbulent flow transport is addressed.
TRANSEP: A program for high lift separated flow about airfoils
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1980-01-01
A method and program called TRANSEP is presented that can be used for the analysis of the flow about a low speed airfoil under high lift, massive separation conditions. Since the present program is a modification of the direct-inverse TRANDES code, it can also be used for the design and analysis of transonic airfoils, including the effects of weak viscous interaction. Interactions on program usage, program modifications to convert TRANDES to TRANSEP, and sample cases and results are given.
Analysis of crossover between local and massive separation on airfoils
NASA Technical Reports Server (NTRS)
Barnett, Mark
1987-01-01
The occurrence of massive separation on airfoils operating at high Reynolds number poses an important problem to the aerodynamicist. In the present study, the phenomenon of crossover, induced by airfoil thickness, between local separation and massive separation is investigated for low speed (incompressible), symmetric flow past realistic airfoil geometries. This problem is studied both for the infinite Reynolds number asymptotic limit using triple-deck theory and for finite Reynolds number using interacting boundary-layer theory. Numerical results are presented which illustrate how the flow evolves from local to massive separation as the airfoil thickness is increased. The results of the triple-deck and the interacting boundary-layer analyses are found to be in qualitative agreement for the NACA four digit series and an uncambered supercritical airfoil. The effect of turbulence on the evolution of the flow is also considered. Solutions are presented for turbulent flows past a NACA 0014 airfoil and a circular cylinder. For the latter case, the calculated surface pressure distribution is found to agree well with experimental data if the proper eddy pressure level is specified.
Symmetric airfoil geometry effects on leading edge noise.
Gill, James; Zhang, X; Joseph, P
2013-10-01
Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.
Design of advanced airfoil for stall-regulated wind turbines
NASA Astrophysics Data System (ADS)
Grasso, F.; Coiro, D. P.; Bizzarrini, N.; Calise, G.
2016-09-01
Nowadays, all the modern MW-class wind turbines make use of pitch control to optimize the rotor performance and control the turbine. However, for kW-range machines, stall-regulated solutions are still attractive and largely used for their simplicity and robustness. On the design phase, the aerodynamics plays a crucial role, especially concerning the selection/design of the necessary airfoils. This is because the airfoil performance should guarantee high wind turbine performance, but also the needed machine control capabilities. In the present work, the design of a new airfoil dedicated for stall machines is discussed. The design strategy makes use of numerical optimization scheme where a gradient-based algorithm is coupled with XFOIL code and an original Bezier-curves-based parameterization to describe the airfoil shape. The performances of the new airfoil are compared in free and fixed transition conditions. In addition, the performance of the rotor is analysed comparing the impact of the new geometry with alternative candidates. The results show that the new airfoil offers better performance and control than existing candidates do.
Computer programs for smoothing and scaling airfoil coordinates
NASA Technical Reports Server (NTRS)
Morgan, H. L., Jr.
1983-01-01
Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.
Incidence angle effects on convected gust airfoil noise
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Myers, M. R.
1983-01-01
An analysis is developed which predicts the influence of airfoil mean loading on noise generation due to convected gusts. The theory is based on a linearization of the exact inviscid equations about a nonuniform compressible mean flow and the solution is developed using singular perturbation techniques. The case of a flat plate airfoil, at incidence angle alpha, interacting with three-dimensional disturbances is analyzed. It is found that in the vicinity of the airfoil leading and trailing edges, local regions are present which scale on the disturbance wavelength, with the noise generation concentrated in these regions. Away from the airfoil edges, the mean flow variation is found to be slow compared to the disturbance wavelength and no significant noise generation occurs. The mean flow variation near the leading edge generates additional noise by distorting the convected gust. The cumulative effect of the airfoil mean loading in the trailing edge region produces a 0(1) phase shift between the disturbances on the upper and lower surfaces of the airfoil. A corresponding 0(1) decrease, compared to the alpha = 0 case, is found in the noise generated at the trailing edge.
A Numerical Evaluation of Icing Effects on a Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Chung, James J.; Addy, Harold E., Jr.
2000-01-01
As a part of CFD code validation efforts within the Icing Branch of NASA Glenn Research Center, computations were performed for natural laminar flow (NLF) airfoil, NLF-0414. with 6 and 22.5 minute ice accretions. Both 3-D ice castings and 2-D machine-generated ice shapes were used in wind tunnel tests to study the effects of natural ice is well as simulated ice. They were mounted in the test section of the Low Turbulence Pressure Tunnel (LTPT) at NASA Langley that the 2-dimensionality of the flow can be maintained. Aerodynamic properties predicted by computations were compared to data obtained through the experiment by the authors at the LTPT. Computations were performed only in 2-D and in the case of 3-D ice, the digitized ice shape obtained at one spanwise location was used. The comparisons were mainly concentrated on the lift characteristics over Reynolds numbers ranging from 3 to 10 million and Mach numbers ranging from 0.12 to 0.29. WIND code computations indicated that the predicted stall angles were in agreement with experiment within one or two degrees. The maximum lift values obtained by computations were in good agreement with those of the experiment for the 6 minute ice shapes and the minute 3-D ice, but were somewhat lower in the case of the 22.5 minute 2-D ice. In general, the Reynolds number variation did not cause much change in the lift values while the variation of Mach number showed more change in the lift. The Spalart-Allmaras (S-A) turbulence model was the best performing model for the airfoil with the 22.5 minute ice and the Shear Stress Turbulence (SST) turbulence model was the best for the airfoil with the 6 minute ice and also for the clean airfoil. The pressure distribution on the surface of the iced airfoil showed good agreement for the 6 minute ice. However, relatively poor agreement of the pressure distribution on the upper surface aft of the leading edge horn for the 22.5 minute ice suggests that improvements are needed in the grid or
An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence
NASA Technical Reports Server (NTRS)
Mish, Patrick F.; Devenport, William J.
2003-01-01
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; McFarland, E. R.; Chima, R. V.; Capece, V. R.; Hayden, J.
2002-01-01
A study was conducted in the NASA Glenn Research Center linear cascade on the intermittent flow on the suction surface of an airfoil section from the tip region of a modern low aspect ratio fan blade. Experimental results revealed that, at a large incidence angle, a range of transonic inlet Mach numbers exist where the leading-edge shock-wave pattern was unstable. Flush mounted high frequency response pressure transducers indicated large local jumps in the pressure in the leading edge area, which generates large intermittent loading on the blade leading edge. These measurements suggest that for an inlet Mach number between 0.9 and 1.0 the flow is bi-stable, randomly switching between subsonic and supersonic flows. Hence, it appears that the change in overall flow conditions in the transonic region is based on the frequency of switching between two stable flow states rather than on the continuous increase of the flow velocity. To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the byproduct of an endwall restricted linear cascade.
NASA Technical Reports Server (NTRS)
Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.
1987-01-01
An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.
NASA Technical Reports Server (NTRS)
Londenberg, W. K.
1993-01-01
Navier-Stokes solutions about a supercritical airfoil with aileron deflection have been computed using the CFL3D code coupled with the Baldwin-Lomax, Johnson-King, Baldwin-Barth, and Spalart-Allmaras turbulence models. Computations were made at a Mach number of 0.716 and chord Reynolds numbers of 5, 15, and 25 million. The airfoil was analyzed with both 0 deg and 2 deg (TED) aileron deflections. Comparisons over a range of angles-of-attack showed that solutions obtained using the Baldwin-Barth turbulence model presented the best agreement with experimental pressures and sectional lift coefficients. However, Reynolds number trends in sectional lift coefficient and in aileron effectiveness were not predicted consistently.
NASA Technical Reports Server (NTRS)
Johnson, W. G., Jr.
1976-01-01
An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil - Drag equations
NASA Technical Reports Server (NTRS)
Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.
1989-01-01
The Langley Research Center has designed a swept, supercritical airfoil incorporating Laminar Flow Control for testing at transonic speeds. Analytical expressions have been developed and an evaluation made of the experimental section drag, composed of suction drag and wake drag, using theoretical design information and experimental data. The analysis shows that, although the sweep-induced boundary-layer crossflow influence on the wake drag is too large to be ignored and there is not a practical method for evaluating these crossflow effects on the experimental wake data, the conventional unswept 2-D wake-drag computation used in the reduction of the experimental data is at worst 10 percent too high.
NASA Technical Reports Server (NTRS)
Street, William G; Ames, Milton B
1939-01-01
Pressure-distribution tests of an N.A.C.A. 0009 airfoil with a 50-percent-chord plain flap and three plain tabs, having chords 10, 20, and 30 percent of the flap chord, were made in the N.A.C.A. 4- by 6- foot vertical tunnel. The tests supplied aerodynamic section data that may be applied to the design of horizontal and vertical tail surfaces. The results are presented as resultant-pressure diagrams for the airfoil with the flap and the 20-percent-chord tab. Plots are also given of increments of normal-force and hinge-moment coefficients for the airfoil, the flap, and the three tabs. The experimental results and values computed by analytical methods are in good agreement for small flap and tab deflections. The results of the tests indicated that the effectiveness of all three tab sizes in reducing flap hinge moments decreased with increasing flap deflection.
Application of two procedures for dual-point design of transonic airfoils
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Campbell, Richard L.; Allison, Dennis O.
1994-01-01
Two dual-point design procedures were developed to reduce the objective function of a baseline airfoil at two design points. The first procedure to develop a redesigned airfoil used a weighted average of the shapes of two intermediate airfoils redesigned at each of the two design points. The second procedure used a weighted average of two pressure distributions obtained from an intermediate airfoil redesigned at each of the two design points. Each procedure was used to design a new airfoil with reduced wave drag at the cruise condition without increasing the wave drag or pitching moment at the climb condition. Two cycles of the airfoil shape-averaging procedure successfully designed a new airfoil that reduced the objective function and satisfied the constraints. One cycle of the target (desired) pressure-averaging procedure was used to design two new airfoils that reduced the objective function and came close to satisfying the constraints.
A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.
Vargas, Abel; Mittal, Rajat; Dong, Haibo
2008-06-01
A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.
Wind tunnel results of the high-speed NLF(1)-0213 airfoil
NASA Technical Reports Server (NTRS)
Sewall, William G.; Mcghee, Robert J.; Hahne, David E.; Jordan, Frank L., Jr.
1987-01-01
Wind tunnel tests were conducted to evaluate a natural laminar flow airfoil designed for the high speed jet aircraft in general aviation. The airfoil, designated as the High Speed Natural Laminar Flow (HSNLF)(1)-0213, was tested in two dimensional wind tunnels to investigate the performance of the basic airfoil shape. A three dimensional wing designed with this airfoil and a high lift flap system is also being evaluated with a full size, half span model.
A computer program for the design and analysis of low-speed airfoils
NASA Technical Reports Server (NTRS)
Eppler, R.; Somers, D. M.
1980-01-01
A conformal mapping method for the design of airfoils with prescribed velocity distribution characteristics, a panel method for the analysis of the potential flow about given airfoils, and a boundary layer method have been combined. With this combined method, airfoils with prescribed boundary layer characteristics can be designed and airfoils with prescribed shapes can be analyzed. All three methods are described briefly. The program and its input options are described. A complete listing is given as an appendix.
Finite Difference Calculation of an Inviscid Transonic Flow over Oscillating Airfoils,
1980-10-01
solutions for the NLR 7301 airfoil and the NACA 64A010 airfoil also will be obtained. They will be compared with the results obtained by Tijdeman and...and the NACA 0012 airfoil oscillating in pitch, in order to obtain several individual flow patterns. The resulting unsteady pressure distributions...shock wave locations, etc, are presented. Furthermore, the unsteady numerical results obtained by this procedure for the NLR 7301 airfoil and the NACA
Uncertainty Analysis for a Jet Flap Airfoil
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Cruz, Josue
2006-01-01
An analysis of variance (ANOVA) study was performed to quantify the potential uncertainties of lift and pitching moment coefficient calculations from a computational fluid dynamics code, relative to an experiment, for a jet flap airfoil configuration. Uncertainties due to a number of factors including grid density, angle of attack and jet flap blowing coefficient were examined. The ANOVA software produced a numerical model of the input coefficient data, as functions of the selected factors, to a user-specified order (linear, 2-factor interference, quadratic, or cubic). Residuals between the model and actual data were also produced at each of the input conditions, and uncertainty confidence intervals (in the form of Least Significant Differences or LSD) for experimental, computational, and combined experimental / computational data sets were computed. The LSD bars indicate the smallest resolvable differences in the functional values (lift or pitching moment coefficient) attributable solely to changes in independent variable, given just the input data points from selected data sets. The software also provided a collection of diagnostics which evaluate the suitability of the input data set for use within the ANOVA process, and which examine the behavior of the resultant data, possibly suggesting transformations which should be applied to the data to reduce the LSD. The results illustrate some of the key features of, and results from, the uncertainty analysis studies, including the use of both numerical (continuous) and categorical (discrete) factors, the effects of the number and range of the input data points, and the effects of the number of factors considered simultaneously.
Numerical solution of periodic vortical flows about a thin airfoil
NASA Technical Reports Server (NTRS)
Scott, James R.; Atassi, Hafiz M.
1989-01-01
A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.
Numerical computation of viscous flow about unconventional airfoil shapes
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.
Recent progress in the analysis of iced airfoils and wings
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue
1992-01-01
Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.
Supercritical flow past a symmetrical bicircular arc airfoil
NASA Technical Reports Server (NTRS)
Holt, Maurice; Yew, Khoy Chuah
1989-01-01
A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.
Design analysis of vertical wind turbine with airfoil variation
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad
2016-03-01
With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.
2013-12-24
helicopter rotor blades, wind turbine blades, pitching and flapping airfoils and wings , and rotating turbomachinery blades. For instance, helicopter...of turbulent flow over a pitching airfoil at realistic Reynolds and Mach numbers is performed. Numerical stability at high Reynolds number...Approved for Public Release; Distribution Unlimited Large-Eddy Simulation Analysis of Unsteady Separation Over a Pitching Airfoil at High Reynolds
Reynolds number tests of an NPL 9510 airfoil in the Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1983-01-01
An investigation of the NPL 9510 airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel over the following ranges of test conditions: Mach number of 0.35 to 0.82, total temperature of 94 K to 300 K, total pressure of 1.20 to 5.81 atm, Reynolds number based on airfoil chord of 1.34 x 10 to the 6th power to 48.23 x 10 to the 6th power, and angle of attack of 0 deg to 6 deg. The drag creep previously reported by the British National Physics Laboratory at low Reynolds numbers was also found to be present at high Reynolds numbers; the section drag coefficient continued to decrease even at the highest Reynolds number tested. Tests made close to free-stream saturation did not produce altered aerodynamic coefficients due to condensation effects.
Full-scale Force and Pressure-distribution Tests on a Tapered U.S.A. 45 Airfoil
NASA Technical Reports Server (NTRS)
Parsons, John F
1935-01-01
This report presents the results of force and pressure-distribution tests on a 2:1 tapered USA 45 airfoil as determined in the full-scale wind tunnel. The airfoil has a constant-chord center section and rounded tips and is tapered in thickness from 18 percent at the root to 9 percent at the tip. Force tests were made throughout a Reynolds Number range of approximately 2,000,000 to 8,000,000 providing data on the scale effect in addition to the conventional characteristics. Pressure-distribution data were obtained from tests at a Reynolds Number of approximately 4,000,000. The aerodynamic characteristics given by the usual dimensionless coefficients are presented graphically.
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Becker, John V
1938-01-01
For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.
Evaluation of Airfoil Dynamic Stall Characteristics for Maneuverability
NASA Technical Reports Server (NTRS)
Bousman, William G.; Aiken, Edwin W. (Technical Monitor)
2000-01-01
In severe maneuvers, out of necessity for a military aircraft or inadvertently for a civil aircraft, a helicopter airfoil will stall in a dynamic manner and provide lift beyond what would be calculated based on static airfoil tests. The augmented lift that occurs in dynamic stall is related to a vortex that is shed near the leading edge of the airfoil. However, directly related to the augmented lift that results from the dynamic stall vortex are significant penalties in pitching moment and drag. An understanding of the relationship between the augmented lift in dynamic stall and the associated moment and drag penalties is the purpose of this paper. This relationship is characterized using data obtained in two-dimensional wind tunnel tests and related to the problem of helicopter maneuverability.
Ice Accretions on a Swept GLC-305 Airfoil
NASA Technical Reports Server (NTRS)
Vargas, Mario; Papadakis, Michael; Potapczuk, Mark; Addy, Harold; Sheldon, David; Giriunas, Julius
2002-01-01
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28 deg. swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.
Inverse boundary-layer technique for airfoil design
NASA Technical Reports Server (NTRS)
Henderson, M. L.
1979-01-01
A description is presented of a technique for the optimization of airfoil pressure distributions using an interactive inverse boundary-layer program. This program allows the user to determine quickly a near-optimum subsonic pressure distribution which meets his requirements for lift, drag, and pitching moment at the desired flow conditions. The method employs an inverse turbulent boundary-layer scheme for definition of the turbulent recovery portion of the pressure distribution. Two levels of pressure-distribution architecture are used - a simple roof top for preliminary studies and a more complex four-region architecture for a more refined design. A technique is employed to avoid the specification of pressure distributions which result in unrealistic airfoils, that is, those with negative thickness. The program allows rapid evaluation of a designed pressure distribution off-design in Reynolds number, transition location, and angle of attack, and will compute an airfoil contour for the designed pressure distribution using linear theory.
Effects of finite aspect ratio on wind turbine airfoil measurements
NASA Astrophysics Data System (ADS)
Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus; Hansen, Martin O. L.
2016-09-01
Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two aspect ratios of AR = 1 and AR = 2. The tests are conducted in a wind tunnel that is pressurized up to 150 bar in order to achieve a constant Reynolds number of Rec = 3 • 106, despite the variable chord length.
Aerodynamic performance of an annular classical airfoil cascade
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Stauter, R. C.; Fleeter, S.
1983-01-01
Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.
Computation of viscous transonic flow about a lifting airfoil
NASA Technical Reports Server (NTRS)
Walitt, L.; Liu, C. Y.
1976-01-01
The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.
Musial, W.D.; Butterfield, C.P.; Jenks, M.D.
1990-02-01
At the Solar Energy Research Institute (SERI), we carried out tests to measure the effects of leading-edge roughness on an S809 airfoil using a 10-m, three-bladed, horizontal-axis wind turbine (HAWT). The rotor employed a constant-chord (.457 m) blade geometry with zero twist. Blade structural loads were measured with strain gages mounted at 9 spanwise locations. Airfoil pressure measurements were taken at the 80% spanwise station using 32 pressure taps distributed around the airfoil surface. Detailed inflow measurements were taken using nine R.M. Young Model 8002 propvane anemometers on a vertical plane array (VPA) located 10 m upwind of the test turbine in the prevailing wind direction. The major objective of this test was to determine the sensitivity of the S809 airfoil to roughness on a rotating wind turbine blade. We examined this effect by comparing several parameters. We compared power curves to show the sensitivity of whole rotor performance to roughness. We used pressure measurements to generate pressure distributions at the 80% span which operates at a Reynolds number (Re) of 800,000. We then integrated these distributions to determine the effect of roughness on the section's lift and pressure-drag coefficients. We also used the shapes of these distributions to understand how roughness affects the aerodynamic forces on the airfoil. We also compared rough and smooth wind tunnel data to the rotating blade data to study the effects of blade rotation on the aerodynamic behavior of the airfoil below, near, and beyond stall. 13 refs., 11 figs.
Dynamic Stall Characteristics of Drooped Leading Edge Airfoils
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen
2000-01-01
Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.
Aerodynamics of a Flapping Airfoil with a Flexible Tail
NASA Astrophysics Data System (ADS)
Lai, Alan Kai San
This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.
Airfoil design by numerical optimization using a minicomputer
NASA Technical Reports Server (NTRS)
Hicks, R. M.; Szelazek, C. A.
1978-01-01
A computer program developed for the automated design of low speed airfoils utilizes a generalized Joukowski method for aerodynamic analysis coupled with a conjugate gradient, penalty function, numerical optimization algorithm to give an efficient calculation technique for use with minicomputers. The program designs airfoils with a prescribed pressure distribution as well as those which minimize or maximize some aerodynamic force coefficient. At present the method is restricted to inviscid, incompressible flow. A typical design problem will execute in 4.5 hr on an HP 9830 minicomputer.
Euler computations of AGARD Working Group 07 airfoil test cases
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Barton, J. T.
1985-01-01
In an attempt to provide a set of accurate standard test problems for computational code developers, a series of inviscid airfoil test cases were chosen by the AGARD Working Group 07, a subpanel of the AGARD Fluid Dynamics Panel. The cases include three different airfoils at transonic to supersonic conditions. A large number of international experts responded in this effort with computations that have been contrasted for accuracy and consistency. This paper is a summary of the authors' contribution to this study. In particular, the important aspects of the solution process that made it possible to obtain the high level of accuracy needed in this study are stressed.
Differential pressure sensing system for airfoils usable in turbine engines
Yang, Wen-Ching; Stampahar, Maria E.
2005-09-13
A detection system for identifying airfoils having a cooling systems with orifices that are plugged with contaminants or with showerheads having a portion burned off. The detection system measures pressures at different locations and calculates or measures a differential pressure. The differential pressure may be compared with a known benchmark value to determine whether the differential pressure has changed. Changes in the differential pressure may indicate that one or more of the orifices in a cooling system of an airfoil are plugged or that portions of, or all of, a showerhead has burned off.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
NASA Astrophysics Data System (ADS)
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Dynamic Stall of a Pitching and Horizontally Oscillating Airfoil
NASA Astrophysics Data System (ADS)
Martinat, G.; Braza#, M.; Harran, G.; Sevrain, A.; Tzabiras, G.; Hoarau, Y.; Favier, D.
This paper provides a study of the dynamic stall of a pitching airfoil and of a pitching and horizontally oscillating airfoil at 105 Reynolds number by means of nbumerical simulation. Three turbulence models are compared in both cases: URANS Spalart-Allmaras model, URANS k—ɛ Chien model and URANS=OES model. results are in accordance with experimental data but spalart model seems to be too much viscous to provide good results and overpredict hysteresis cycle observed where URANS=OES seems to be viscousless. URANS k—ɛ Chien model is providing the best results.
Feasibility of predicting performance degradation of airfoils in heavy rain
NASA Technical Reports Server (NTRS)
Bilanin, A. J.; Quackenbush, T. R.; Feo, A.
1989-01-01
The heavy rain aerodynamic performance penalty program is detailed. This effort supported the design of a fullscale test program as well as examined the feasibility of estimating the degradation of performance of airfoils from first principles. The analytic efforts were supplemented by a droplet splashback test program in an attempt to observe the physics of impact and generation of ejecta. These tests demonstrated that the interaction of rain with an airfoil is a highly complex phenomenon and this interaction is not likely to be analyzed analytically with existing tools.
A hybrid algorithm for transonic airfoil and wing design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Smith, Leigh A.
1987-01-01
The present method for the design of transonic airfoils and wings employs a predictor/corrector approach in which an analysis code calculates the flowfield for an initial geometry, then modifies it on the basis of the difference between calculated and target pressures. This allows the design method to be straightforwardly coupled with any existing analysis code, as presently undertaken with several two- and three-dimensional potential flow codes. The results obtained indicate that the method is robust and accurate, even in the cases of airfoils with strongly supercritical flow and shocks. The design codes are noted to require computational resources typical of current pure-inverse methods.
Modeling of heavy-gas effects on airfoil flows
NASA Technical Reports Server (NTRS)
Drela, Mark
1992-01-01
Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.
Aspects of Numerical Simulation of Circulation Control Airfoils
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, C. L.; Anders, S. G.
2005-01-01
The mass-averaged compressible Navier-Stokes equations are solved for circulation control airfoils. Numerical solutions are computed with a multigrid method that uses an implicit approximate factorization smoother. The effects of flow conditions (e.g., free-stream Mach number, angle of attack, momentum coefficient) and mesh on the prediction of circulation control airfoil flows are considered. In addition, the impact of turbulence modeling, including curvature effects and modifications to reduce eddy viscosity levels in the wall jet (i.e., Coanda flow), is discussed. Computed pressure distributions are compared with available experimental data.
Effects of Airfoil Thickness and Maximum Lift Coefficient on Roughness Sensitivity: 1997--1998
Somers, D. M.
2005-01-01
A matrix of airfoils has been developed to determine the effects of airfoil thickness and the maximum lift to leading-edge roughness. The matrix consists of three natural-laminar-flow airfoils, the S901, S902, and S903, for wind turbine applications. The airfoils have been designed and analyzed theoretically and verified experimentally in the Pennsylvania State University low-speed, low-turbulence wind tunnel. The effect of roughness on the maximum life increases with increasing airfoil thickness and decreases slightly with increasing maximum lift. Comparisons of the theoretical and experimental results generally show good agreement.
An Approach to the Constrained Design of Natural Laminar Flow Airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford E.
1997-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
An approach to the constrained design of natural laminar flow airfoils
NASA Technical Reports Server (NTRS)
Green, Bradford Earl
1995-01-01
A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.
NASA Technical Reports Server (NTRS)
Schwind, R. G.; Allen, H. J.
1973-01-01
High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.
Computer Program to Obtain Ordinates for NACA Airfoils
NASA Technical Reports Server (NTRS)
Ladson, Charles L.; Brooks, Cuyler W., Jr.; Hill, Acquilla S.; Sproles, Darrell W.
1996-01-01
Computer programs to produce the ordinates for airfoils of any thickness, thickness distribution, or camber in the NACA airfoil series were developed in the early 1970's and are published as NASA TM X-3069 and TM X-3284. For analytic airfoils, the ordinates are exact. For the 6-series and all but the leading edge of the 6A-series airfoils, agreement between the ordinates obtained from the program and previously published ordinates is generally within 5 x 10(exp -5) chord. Since the publication of these programs, the use of personal computers and individual workstations has proliferated. This report describes a computer program that combines the capabilities of the previously published versions. This program is written in ANSI FORTRAN 77 and can be compiled to run on DOS, UNIX, and VMS based personal computers and workstations as well as mainframes. An effort was made to make all inputs to the program as simple as possible to use and to lead the user through the process by means of a menu.
Cost Effective Repair Techniques for Turbine Airfoils. Volume I
1978-11-01
Turbine blades and vanes in current engines are subjected to the most hostile environment...payoff potential in turbine vanes / blades . The criteria used included: • Incidence of damage - Scrapped or damaged turbine airfoils at the ALC centers...Corporate Author: GENERAL ELECTRIC CO CINCINNATI OHIO AIRCRAFT ENGINE GROUP Unclassified Title: (U) Cost Effective Repair Techniques for Turbine
Cost Effective Repair Techniques for Turbine Airfoils. Volume 2
1979-04-01
BLADES , *GUIDE VANES , *REPAIR, TURBOFAN ENGINES , DIFFUSION BONDING, COST EFFECTIVENESS Identifiers: (U) * Turbine vanes , TF-39 engines , Activated...REPAIR TECHNIQUES FOR TURBINE AIRFOILS J. A. WEIN W. R. YOUNG GENERAL ELECTRIC COMPANY AIRCRAFT ENGINE GROUP CINCINNATI, OHIO 45215 APRIL 1979...Author: GENERAL ELECTRIC CO CINCINNATI OH AIRCRAFT ENGINE BUSINESS GROUP Unclassified Title: (U) Cost Effective Repair Techniques for
Two-Dimensional Grids About Airfoils and Other Shapes
NASA Technical Reports Server (NTRS)
Sorenson, R.
1982-01-01
GRAPE computer program generates two-dimensional finite-difference grids about airfoils and other shapes by use of Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including limited number of sharp corners. Numerically stable and computationally fast, GRAPE provides aerodynamic analyst with efficient and consistant means of grid generation.
Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation
NASA Astrophysics Data System (ADS)
Sun, Quan; Cheng, Bangqin; Li, Yinghong; Cui, Wei; Jin, Di; Li, Jun
2013-11-01
An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.
Decomposing the aerodynamic forces of low-Reynolds flapping airfoils
NASA Astrophysics Data System (ADS)
Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar
2016-11-01
We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.
Advanced turbine study. [airfoil coling in rocket turbines
NASA Technical Reports Server (NTRS)
1982-01-01
Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.
Stability of Inviscid Flow over Airfoils Admitting Multiple Numerical Solutions
NASA Astrophysics Data System (ADS)
Liu, Ya; Xiong, Juntao; Liu, Feng; Luo, Shijun
2012-11-01
Multiple numerical solutions at the same flight condition are found of inviscid transonic flow over certain airfoils (Jameson et al., AIAA 2011-3509) within some Mach number range. Both symmetric and asymmetric solutions exist for a symmetric airfoil at zero angle of attack. Global linear stability analysis of the multiple solutions is conducted. Linear perturbation equations of the Euler equations around a steady-state solution are formed and discretized numerically. An eigenvalue problem is then constructed using the modal analysis approach. Only a small portion of the eigen spectrum is needed and thus can be found efficiently by using Arnoldi's algorithm. The least stable or unstable mode corresponds to the eigenvalue with the largest real part. Analysis of the NACA 0012 airfoil indicates stability of symmetric solutions of the Euler equations at conditions where buffet is found from unsteady Navier-Stokes equations. Euler solutions of the same airfoil but modified to include the displacement thickness of the boundary layer computed from the Navier-Stokes equations, however, exhibit instability based on the present linear stability analysis. Graduate Student.
Large Eddy Simulation of Airfoil Self-Noise at High Reynolds Number
NASA Astrophysics Data System (ADS)
Kocheemoolayil, Joseph; Lele, Sanjiva
2015-11-01
The trailing edge noise section (Category 1) of the Benchmark Problems for Airframe Noise Computations (BANC) workshop features five canonical problems. No first-principles based approach free of empiricism and tunable coefficients has successfully predicted trailing edge noise for the five configurations to date. Our simulations predict trailing edge noise accurately for all five configurations. The simulation database is described in detail, highlighting efforts undertaken to validate the results through systematic comparison with dedicated experiments and establish insensitivity to grid resolution, domain size, alleatory uncertainties such as the tripping mechanism used to force transition to turbulence and epistemic uncertainties such as models for unresolved near-wall turbulence. Ongoing efforts to extend the predictive capability to non-canonical configurations featuring flow separation are summarized. A novel, large-span calculation that predicts the flow past a wind turbine airfoil in deep stall with unprecedented accuracy is presented. The simulations predict airfoil noise in the near-stall regime accurately. While the post-stall noise predictions leave room for improvement, significant uncertainties in the experiment might preclude a fair comparison in this regime. We thank Cascade Technologies Inc. for providing access to the CharLES toolkit - a massively-parallel, unstructured large eddy simulation framework.
An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications
NASA Astrophysics Data System (ADS)
Murphy, Jeffery T.; Hu, Hui
2010-08-01
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.
The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils
NASA Astrophysics Data System (ADS)
Miller, M.; Slew, K. Lee; Matida, E.
2016-09-01
With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.
Wind-tunnel Tests of the NACA 45-125 Airfoil: A Thick Airfoil for High-Speed Airplanes
NASA Technical Reports Server (NTRS)
Delano, James B.
1940-01-01
Investigations of the pressure distribution, the profile drag, and the location of transition for a 30-inch-chord 25-percent-thick N.A,C.A. 45-125 airfoil were made in the N.A.C.A 8-foot high-speed wind tunnel for the purpose of aiding in the development of a thick wing for high-speed airplanes. The tests were made at a lift coefficient of 0.1 for Reynolds Numbers from 1,750,000 to 8,690,000, corresponding to speeds from 80 to 440 miles per hour at 59 F. The effect on the profile drag of fixing the transition point was also investigated. The effect of compressibility on the rate of increase of pressure coefficients was found to be greater than that predicted by a simplified theoretical expression for thin wings. The results indicated that, for a lift coefficient of 0.1, the critical speed of the N.A.C,A. 45-125 airfoil was about 460 miles per hour at 59 F,. The value of the profile-drag coefficient at a Reynolds Number of 4,500,000 was 0.0058, or about half as large as the value for the N.A,C,A. 0025 airfoil. The increase in the profile-drag coefficient for a given movement of the transition point was about three times as large as the corresponding increase for the N.A.C,A. 0012 airfoil. Transition determinations indicated that, for Reynolds Numbers up to ?,000,000, laminar boundary 1ayers were maintained over approximately 40 percent of the upper and the lower surfaces of the airfoil.
Advancements in adaptive aerodynamic technologies for airfoils and wings
NASA Astrophysics Data System (ADS)
Jepson, Jeffrey Keith
Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as
NASA Astrophysics Data System (ADS)
Manela, A.; Halachmi, M.
2015-06-01
The acoustic signature of side-by-side airfoils, subject to small-amplitude harmonic pitching and incoming flow unsteadiness, is investigated. The two-dimensional near-field problem is formulated using thin-airfoil theory, where flow unsteadiness is modeled as a passing line vortex, and wake evolution is calculated via the Brown and Michael formula. Assuming that the setup is acoustically compact, acoustic radiation is obtained by means of the Powell-Howe acoustic analogy. The associated compact Green's function is calculated numerically using potential-flow analysis of the fluid-structure flow domain. Results, comparing the acoustic radiation of the double-airfoil system to a reference case of a single airfoil, point to several mechanisms of sound attenuation and sound amplification, caused by airfoil-airfoil and airfoils-wake interactions. It is found that counter-phase pitching of the airfoils results in effective cloaking of the system, which otherwise becomes significantly noisy (as a 5/2-power of the pitching frequency) at large frequencies. In addition, depending on the distance between airfoils, in-phase pitching may result in an acoustic signature equivalent to a single airfoil (when the airfoils are adjacent) or to two separate airfoils (when the airfoils are far apart). In general, flow unsteadiness produces more sound when interacting with a double (compared with a single) airfoil setup. However, airfoils' nonlinear wake-wake interactions give rise to a sound reduction mechanism, which becomes most efficient at times when incoming vorticity passes above airfoils' leading and trailing edges. The present scheme can be readily extended to consider the acoustic properties of various double-airfoil configurations, as well as multiple (> 2) airfoil setups.
Method for forming a liquid cooled airfoil for a gas turbine
Grondahl, Clayton M.; Willmott, Leo C.; Muth, Myron C.
1981-01-01
A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.
An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight
NASA Technical Reports Server (NTRS)
Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.
1982-01-01
A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated.
Influence of airfoil thickness on sound generated by high-frequency gust interactions
NASA Technical Reports Server (NTRS)
Tsai, C. T.; Kerschen, E. J.
1992-01-01
The sound radiated by interaction of a short wavelength gust with a symmetric thin airfoil is analyzed. The theory is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. The sound generation mechanism is found to be concentrated in a local region surrounding the parabolic nose of the airfoil; the size of this local region scales on the gust wavelength. At low Mach numbers, moderate values of airfoil thickness decrease the sound power, while at higher Mach numbers the sound power tends to increase with airfoil thickness. Airfoil thickness produces dramatic changes in the far field directivity. Both the sound power and the directivity are strong functions of the gust orientation.
Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil
NASA Technical Reports Server (NTRS)
Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.
1987-01-01
A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.
NASA Technical Reports Server (NTRS)
Nicks, Oran W.; Korkan, Kenneth D.
1991-01-01
Two reports on student activities to determine the properties of a new laminar airfoil which were delivered at a conference on soaring technology are presented. The papers discuss a wind tunnel investigation and analysis of the SM701 airfoil and verification of the SM701 airfoil aerodynamic charcteristics utilizing theoretical techniques. The papers are based on a combination of analytical design, hands-on model fabrication, wind tunnel calibration and testing, data acquisition and analysis, and comparison of test results and theory.
Wind Noise Measurements of Microphones Embedded in the Airfoil of an UAV
2012-10-01
Embedded in the Airfoil of an UAV October 2012 Wayne E. Prather and William G. Frazier National Center for Physical Acoustics...platforms has been increasing in recent years. Embedding microphones in the skin of an airfoil is one option for how acoustic sensors might be...employed on a small Unmanned Aerial Vehicle (UAV). The analysis of wind noise measurements made by an array of microphones embedded in the airfoil of a
A critical evaluation of the predictions of the NASA-Lockheed multielement airfoil computer program
NASA Technical Reports Server (NTRS)
Brune, G. W.; Manke, J. W.
1978-01-01
Theoretical predictions of several versions of the multielement airfoil computer program are evaluated. The computed results are compared with experimental high lift data of general aviation airfoils with a single trailing edge flap, and of airfoils with a leading edge flap and double slotted trailing edge flaps. Theoretical and experimental data include lift, pitching moment, profile drag and surface pressure distributions, boundary layer integral parameters, skin friction coefficients, and velocity profiles.
2011-05-13
sound production from a hydrofoil and identified three mechanisms: (1) low frequency curvature noise associated with interaction of a turbulent...2002). 2 Technical Approach A two-dimensional, dual-slotted, elliptic circulation control airfoil based on the hydrofoil studied by Rogers...airfoil, shown in Figure 1A, is designed based on the geometry of the hydrofoil previously studied by Rogers & Donnelly (2004). The airfoil’s profile
S830, S831, and S832 Airfoils: November 2001-November 2002
Somers, D. M.
2005-08-01
A family of quiet, thick, natural-laminar-flow airfoils, the S830, S831, and S832, for 40 - 50-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.
S833, S834, and S835 Airfoils: November 2001--November 2002
Somers, D. M.
2005-08-01
A family of quiet, thick, natural-laminar-flow airfoils, the S833, S834, and S835, for 1 - 3-meter-diameter, variable-speed/variable-pitch, horizontal-axis wind turbines has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The airfoils should exhibit docile stalls, which meet the design goal. The constraints on the pitching moment and the airfoils thicknesses have been satisfied.
Systematic Airfoil Tests in the Large Wind Tunnel of the DVL
NASA Technical Reports Server (NTRS)
Doetsch, H; Kramer, M
1938-01-01
The present report is a description of systematic tests at maximum lift on airfoils with and without split flap and of profile drag at low lift. In order to obtain an opinion as to the suitability of the airfoils with flaps, the maximum-lift measurements were repeated on airfoils with split flaps. The profile drag at low lift was arrived at by direct weighing and momentum measurements and, since the profiles were of unusual depth, extended to large Reynolds numbers.
Transition and Turbulence Structure in the Boundary Layers of an Oscillating Airfoil
1989-12-31
measurements near the trailing edge of an oscillating NACA 64A010 airfoil operating at various fiequencies and in unstalled condition. It was...to identify: (i) the conditions under which a sinusoidally oscillating NACA 0012 airfoil operates with a leading edge separation bubble; (ii) the...vortex formation. These experiments were conducted using an NACA 0012 airfoil with a tripping wire to promote transition of the boundary layer. The
Airfoil for a turbine of a gas turbine engine
Liang, George
2010-12-21
An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.
Effect of oscillation frequency on wind turbine airfoil dynamic stall
NASA Astrophysics Data System (ADS)
Zhou, Z.; Li, C.; Nie, J. B.; Chen, Y.
2013-12-01
At the same oscillation amplitude, Reynolds Number, mean angle of attack, the dynamic stall characteristics of the NREL S809 airfoil undergoing sinusoidal pitch oscillations of different oscillation frequencies were investigated with modified k-ω SST turbulence model of CFD solution for two-dimensional numerical simulation. The predicted lift, drag coefficients and moment coefficients were compared with the Ohio State University wind tunnel test results, which showed a good agreement. The birth, development and breaking off of eddies were analyzed through streamline distribution around airfoil and the influence of oscillation frequencies on dynamic stall characteristics was also described and analyzed in detail, which enrich the database of dynamic stall characteristics needed by the quantization of oscillation frequencies on dynamic characteristics and prove that sliding mesh method is reliable when dealing with dynamic stall problems.
A Theory of Unstaggered Airfoil Cascades in Compressible Flow
NASA Technical Reports Server (NTRS)
Spurr, Robert A.; Allen, H. Julian
1947-01-01
By use of the methods of thin airfoil theory, which include effects of compressibility, rela.tio^as are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord gap ratios, For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low speed flows. Choking of cascades, a phenomenon of particular importance in compressor design, is considered.
A theory of unstaggered airfoil cascades in compressible flow
NASA Technical Reports Server (NTRS)
Spurr, Robert A; Allen, H Julian
1947-01-01
By use of the methods of thin airfoil theory, which include effects of compressibility, relations are developed which permit the rapid determination of the pressure distribution over an unstaggered cascade of airfoils of a given profile, and the determination of the profile shape necessary to yield a given pressure distribution for small chord/gap ratios. For incompressible flow the results of the theory are compared with available examples obtained by the more exact method of conformal transformation. Although the theory is developed for small chord/gap ratios, these comparisons show that it may be extended to chord/gap ratios of order unity, at least for low-speed flows. Choking cascades, a phenomenon of particular importance in compressor design, is considered.
Theory and Low-Order Modeling of Unsteady Airfoil Flows
NASA Astrophysics Data System (ADS)
Ramesh, Kiran
Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It
Supersonic flow past pointed-nose thin airfoils
NASA Astrophysics Data System (ADS)
Hemdan, Hamdi T.; Selim, Abdulfatah A.
1992-05-01
Accurate results for steady inviscid supersonic flow past any pointed-nose thin airfoil at small angle of attack are obtained in this paper. Straightforward perturbation from some basic wedge flow is applied to a recently developed hypersonic theory with second-order terms in the longitudinal curvature included. The hypersonic equations are thus reduced to two systems of simple linear ordinary differential equations for which polynomial solutions of the first and second degree are obtained. Further, the hypersonic theory is extended to include second-order effects on the basic wedge flow. This resulted in great increase in the accuracy of the results for curved airfoils besides, the range of validity of the theory extended to cover moderate supersonic speeds with quite reasonable accuracy.
PROFILE: Airfoil Geometry Manipulation and Display. User's Guide
NASA Technical Reports Server (NTRS)
Collins, Leslie; Saunders, David
1997-01-01
This report provides user information for program PROFILE, an aerodynamics design utility for plotting, tabulating, and manipulating airfoil profiles. A dozen main functions are available. The theory and implementation details for two of the more complex options are also presented. These are the REFINE option, for smoothing curvature in selected regions while retaining or seeking some specified thickness ratio, and the OPTIMIZE option, which seeks a specified curvature distribution. Use of programs QPLOT and BPLOT is also described, since all of the plots provided by PROFILE (airfoil coordinates, curvature distributions, pressure distributions)) are achieved via the general-purpose QPLOT utility. BPLOT illustrates (again, via QPLOT) the shape functions used by two of PROFILE's options. These three utilities should be distributed as one package. They were designed and implemented for the Applied Aerodynamics Branch at NASA Ames Research Center, Moffett Field, California. They are all written in FORTRAN 77 and run on DEC and SGI systems under OpenVMS and IRIX.
Horizontal axis wind turbine post stall airfoil characteristics synthesization
NASA Technical Reports Server (NTRS)
Tangler, James L.; Ostowari, Cyrus
1995-01-01
Blade-element/momentum performance prediction codes are routinely used for wind turbine design and analysis. A weakness of these codes is their inability to consistently predict peak power upon which the machine structural design and cost are strongly dependent. The purpose of this study was to compare post-stall airfoil characteristics synthesization theory to a systematically acquired wind tunnel data set in which the effects of aspect ratio, airfoil thickness, and Reynolds number were investigated. The results of this comparison identified discrepancies between current theory and the wind tunnel data which could not be resolved. Other factors not previously investigated may account for these discrepancies and have a significant effect on peak power prediction.
Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD
Wolfe, W.P.; Ochs, S.S.
1997-09-01
An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.
Measuremants in the wake of an infinite swept airfoil
NASA Technical Reports Server (NTRS)
Novak, C. J.; Ramaprian, B. R.
1982-01-01
This is a report of the measurements in the trailing edge region as well as in the report of the developing wake behind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurements include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the authors. The development of the three dimensional near-wake into a nearly two dimensional far-wake is discussed in the light of the experimental data. A complete set of wake data along with the data on the initial boundary layer in the trailing edge region of the airfoil are tabulated in an appendix to the report.
Airfoil in sinusoidal motion in a pulsating stream
NASA Technical Reports Server (NTRS)
Greenberg, J Mayo
1947-01-01
The forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge. An assumption as to the form of the wake is made with a certain degree of approximation. A comparison with previous work applicable only to the special case of a stationary airfoil is made by means of a numerical example, and the excellent agreement obtained shows that the wake approximation is quite sufficient. The results obtained are expected to be useful in considerations of forced vibrations and flutter of rotary wing aircraft.
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Porous plug for reducing orifice induced pressure error in airfoils
NASA Technical Reports Server (NTRS)
Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)
1988-01-01
A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.
Aerodynamic coefficients in generalized unsteady thin airfoil theory
NASA Technical Reports Server (NTRS)
Williams, M. H.
1980-01-01
Two cases are considered: (1) rigid body motion of an airfoil-flap combination consisting of vertical translation of given amplitude, rotation of given amplitude about a specified axis, and rotation of given amplitude of the control surface alone about its hinge; the upwash for this problem is defined mathematically; and (2) sinusoidal gust of given amplitude and wave number, for which the upwash is defined mathematically. Simple universal formulas are presented for the most important aerodynamic coefficients in unsteady thin airfoil theory. The lift and moment induced by a generalized gust are evaluated explicitly in terms of the gust wavelength. Similarly, in the control surface problem, the lift, moment, and hinge moments are given as explicit algebraic functions of hinge location. These results can be used together with any of the standard numerical inversion routines for the elementary loads (pitch and heave).
An airfoil pitch apparatus-modeling and control design
NASA Astrophysics Data System (ADS)
Andrews, Daniel R.
1989-03-01
The study of dynamic stall of rapidly pitching airfoils is being conducted at NASA Ames Research Center. Understanding this physical phenomenon will aid in improving the maneuverability of fighter aircraft as well as civilian aircraft. A wind tunnel device which can linearly pitch and control an airfoil with rapid dynamic response is needed for such tests. To develop a mechanism capable of high accelerations, an accurate model and control system is created. The model contains mathematical representations of the mechanical system, including mass, spring, and damping characteristics for each structural element, as well as coulomb friction and servovalve saturation. Electrical components, both digital and analog, linear and nonlinear, are simulated. The implementation of such a high-performance system requires detailed control design as well as state-of-the-art components. This paper describes the system model, states the system requirements, and presents results of its theoretical performance which maximizes the structural and hydraulic aspects of this system.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
NASA Technical Reports Server (NTRS)
Greenberg, Harry
1941-01-01
At the request of the Bureau of Aeronautics, Navy Department, tests were made in the variable-density wind tunnel of a tapered wing of 3-10-18 plan form and based on the NACA 4400R series sections. The wing was also tested with 0.2 chord spit flaps, deflected 60 deg span ratios of 0.3, 0.5, 0.7 and 1.0 respectively. In order to get data from which to calculate the characteristics of the flapped wing, the investigation was extended to include tests of the four rectangular airfoils of the NACA 4400R series (4409R, 4412R, 4415R, and 4418R) with full-span 0.2 chord, trailing edge split flaps deflected 60 deg.
An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil
NASA Technical Reports Server (NTRS)
Somers, Dan M.
2012-01-01
A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.
Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream
Myers, Robert B.; Yagiela, Anthony S.
1990-12-25
An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.
Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream
Myers, R.B.; Yagiela, A.S.
1990-12-25
An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member. 3 figs.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils
NASA Technical Reports Server (NTRS)
Lindsey, Walter F; Landrum, Emma Jean
1958-01-01
Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.
Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets
NASA Technical Reports Server (NTRS)
Volino, Ralph J.; Ibrahim, Mounir B.; Kartuzova, Olga
2010-01-01
Motivation - Higher loading on Low-Pressure Turbine (LPT) airfoils: Reduce airfoil count, weight, cost. Increase efficiency, and Limited by suction side separation. Growing understanding of transition, separation, wake effects: Improved models. Take advantage of wakes. Higher lift airfoils in use. Further loading increases may require flow control: Passive: trips, dimples, etc. Active: plasma actuators, vortex generator jets (VGJs). Can increased loading offset higher losses on high lift airfoils. Objectives: Advance knowledge of boundary layer separation and transition under LPT conditions. Demonstrate, improve understanding of separation control with pulsed VGJs. Produce detailed experimental data base. Test and develop computational models.
Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure
NASA Technical Reports Server (NTRS)
Magnus, R.; Yoshihara, H.
1973-01-01
A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.
Design and Experimental Results for the S415 Airfoil
2010-08-01
polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8.) This... suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near the leading edge. Thus, the...pressure distribution should look like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a moderately adverse pressure
Design and Experimental Results for the S411 Airfoil
2010-08-01
unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8...produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near the leading edge. Thus...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar
Design and Experimental Results for the S406 Airfoil
2010-08-01
point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near...3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar flow
Multi-element airfoil viscous-inviscid interactions
NASA Technical Reports Server (NTRS)
Gross, L. W.
1979-01-01
Subsonic viscous-inviscid interactions for multi-element airfoils are predicted by iterating between inviscid and viscous solutions until the performance coefficients converge. Inviscid flow is modelled by using distributed source-vortex singularities on configuration surface panels. Viscous effects are calculated by an existing laminar separation bubble model and a NASA-Lockheed boundary layer-wake method. Numerical formulations and example calculations are presented.
Unsteady separation process and vorticity balance on unsteady airfoils
NASA Technical Reports Server (NTRS)
Ho, Chih-Ming; Gursul, Ismet; Shih, Chiang; Lin, Hank
1992-01-01
Low momentum fluid erupts at the unsteady separation region and forms a local shear layer at the viscous-inviscid interface. At the shear layer, the vorticity lumps into a vortex and protrudes into the inviscid region. This process initiates the separation process. The response of airfoils in unsteady free stream was investigated based on this vortex generation and convection concept. This approach enabled us to understand the complicated unsteady aerodynamics from a fundamental point of view.
Experimental investigation of the flowfield of an oscillating airfoil
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
1992-01-01
The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.
Experimental investigation of the flowfield of an oscillating airfoil
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.
1992-01-01
The flow field of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than k less than 1.6, is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between alpha of 5 deg and 25 deg. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 deg at k = 0.2, but is shed at the minimum alpha of 5 deg at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 deg) dominates the unsteady fluctuations in the wake.
The S411, S412, and S413 Airfoils
2010-08-01
not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near...This concept allows a wide low-drag range to be achieved and increases the loading in the leading-edge region. The forward loading serves to balance
Unsteady Flow Separation and Attachment Induced by Pitching Airfoils
1983-01-13
dynamic stall. The oc- er may remain totally laminar prior :o seoaration , curronce and severity of dyvnamic stall is directly and this, by definition...in **Professor, iep.Artrent of *..rospace Lnziner- pitch direction of the airfoil were achieved v’ine in Scicnces. ,mal I os, ill.it ion anrles ( .-5...Variables for Hotwire Study The creat ion and f.te of the highly synchro- nized, strcn; vor:ccit’-.,-rc carefully charictrrizzed Feynulds Reduced Mean
Effects of enviromentally imposed roughness on airfoil performance
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer
1987-01-01
The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary layer procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.
Numerical Grid Generation and Potential Airfoil Analysis and Design
1988-01-01
contents include a discussion of grid generation concepts and schemes in the literature , iter- ative methods for numerical grid generation and two...to multicomponent rN airfoils, arbitrary multiple bodies and cascade grid generation for the first time. We present representative results as a... literature , iter- ative methods for numerical grid generation and two differential grid gen- eration schemes: (1) an elliptic, and (2) a parabolic scheme. A
Laser Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field
1991-06-01
Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field By M.S.Chandrasekharal Navy-NASA Joint Institute of Aeronautics and Fluid Mechanics ...tunnel of the Fluid Mechanics Laboratory(FML) angle information. The other could be used for the at NASA Ames Research Center (ARC). It is one of...were on throat is always kept choked so that no disturbances a different traverse mechanism , but this was driven as can propagate upstream into the
Turbine blade having a constant thickness airfoil skin
Marra, John J
2012-10-23
A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.
25. "GAFFTC 19 OCT 60, BLAST EFFECTS ON AIRFOILS, STATIC ...
25. "G-AFFTC 19 OCT 60, BLAST EFFECTS ON AIRFOILS, STATIC RUN 5." View of track rail mounting and the water brake trough at 20,000-foot track. Looking northeast. File no. 12,358-60. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Some examples of unsteady transonic flows over airfoils
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Magnus, R.; Yoshihara, H.
1975-01-01
A finite difference flutter analysis is presented for the NACA 64A-410 airfoil at M equals 0.72, where the incidence is abruptly changed from 2 to 4 degrees. The effect of gust loads is studied, and the unsteady flow adjusting process is displayed. The semi-implicit procedure of Ballhaus and Lomax (1974) is used to solve the small disturbance transonic potential equation. The physical aspects of the results, rather than the numerical details, are emphasized.
Effects of environmentally imposed roughness on airfoil performance
NASA Technical Reports Server (NTRS)
Cebeci, Tuncer
1987-01-01
The experimental evidence for the effects of rain, insects, and ice on airfoil performance are examined. The extent to which the available information can be incorporated in a calculation method in terms of change of shape and surface roughness is discussed. The methods described are based on the interactive boundary procedure of Cebeci or on the thin layer Navier Stokes procedure developed at NASA. Cases presented show that extensive flow separation occurs on the rough surfaces.
Tests in the variable-density wind tunnel of the NACA 23012 airfoil with plain and split flaps
NASA Technical Reports Server (NTRS)
Abbott, Ira H; Greenberg, Harry
1939-01-01
Section characteristics for use in wing design are presented for the NACA 23012 airfoil with plain and split flaps of 20 percent wing chord at a value of the effective Reynolds number of about 8,000,000. The flap deflections covered a range from 60 degrees upward to 75 degrees downward for the plain flap and from neutral to 90 degrees downward for the split flap. The split flap was aerodynamically superior to the plain flap in producing high maximum lift coefficients and in having lower profile-drag coefficients at high lift coefficients.
Low-Reynolds number compressible flow around a triangular airfoil
NASA Astrophysics Data System (ADS)
Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke
2013-11-01
We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.
Flow control at low Reynolds numbers using periodic airfoil morphing
NASA Astrophysics Data System (ADS)
Jones, Gareth; Santer, Matthew; Papadakis, George; Bouremel, Yann; Debiasi, Marco; Imperial-NUS Joint PhD Collaboration
2014-11-01
The performance of airfoils operating at low Reynolds numbers is known to suffer from flow separation even at low angles of attack as a result of their boundary layers remaining laminar. The lack of mixing---a characteristic of turbulent boundary layers---leaves laminar boundary layers with insufficient energy to overcome the adverse pressure gradient that occurs in the pressure recovery region. This study looks at periodic surface morphing as an active flow control technique for airfoils in such a flight regime. It was discovered that at sufficiently high frequencies an oscillating surface is capable of not only reducing the size of the separated region---and consequently significantly reducing drag whilst simultaneously increasing lift---but it is also capable of delaying stall and as a result increasing CLmax. Furthermore, by bonding Macro Fiber Composite actuators (MFCs) to the underside of an airfoil skin and driving them with a sinusoidal frequency, it is shown that this control technique can be practically implemented in a lightweight, energy efficient way. Imperial-NUS Joint Ph.D. Programme.
Performance Trades Study for Robust Airfoil Shape Optimization
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2003-01-01
From time to time, existing aircraft need to be redesigned for new missions with modified operating conditions such as required lift or cruise speed. This research is motivated by the needs of conceptual and preliminary design teams for smooth airfoil shapes that are similar to the baseline design but have improved drag performance over a range of flight conditions. The proposed modified profile optimization method (MPOM) modifies a large number of design variables to search for nonintuitive performance improvements, while avoiding off-design performance degradation. Given a good initial design, the MPOM generates fairly smooth airfoils that are better than the baseline without making drastic shape changes. Moreover, the MPOM allows users to gain valuable information by exploring performance trades over various design conditions. Four simulation cases of airfoil optimization in transonic viscous ow are included to demonstrate the usefulness of the MPOM as a performance trades study tool. Simulation results are obtained by solving fully turbulent Navier-Stokes equations and the corresponding discrete adjoint equations using an unstructured grid computational fluid dynamics code FUN2D.
Aerodynamic Control of a Pitching Airfoil by Distributed Bleed Actuation
NASA Astrophysics Data System (ADS)
Kearney, John; Glezer, Ari
2013-11-01
The aerodynamic forces and moments on a dynamically pitching 2-D airfoil model are controlled in wind tunnel experiments using distributed active bleed. Bleed flow on the suction surface downstream of the leading edge is driven by pressure differences across the airfoil and is regulated by low-power louver actuators. The bleed interacts with cross flows to effect time-dependent variations of the vorticity flux and thereby alters the local flow attachment, resulting in significant changes in pre- and post-stall lift and pitching moment (over 50% increase in baseline post-stall lift). The flow field over the airfoil is measured using high-speed (2000 fps) PIV, resolving the dynamics and characteristic time-scales of production and advection of vorticity concentrations that are associated with transient variations in the aerodynamic forces and moments. In particular, it is shown that the actuation improves the lift hysteresis and pitch stability during the oscillatory pitching by altering the evolution of the dynamic stall vortex and the ensuing flow attachment during the downstroke. Supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.
Prediction of Film Cooling on Gas Turbine Airfoils
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1994-01-01
A three-dimensional Navier-Stokes analysis tool has been developed in order to study the effect of film cooling on the flow and heat transfer characteristics of actual turbine airfoils. An existing code (Arnone et al., 1991) has been modified for the purpose. The code is an explicit, multigrid, cell-centered, finite volume code with an algebraic turbulence model. Eigenvalue scaled artificial dissipation and variable-coefficient implicit residual smoothing are used with a full-multigrid technique. Moreover, Mayle's transition criterion (Mayle, 1991) is used. The effects of film cooling have been incorporated into the code in the form of appropriate boundary conditions at the hole locations on the airfoil surface. Each hole exit is represented by several control volumes, thus providing an ability to study the effect of hole shape on the film-cooling characteristics. Comparison is fair with near mid-span experimental data for four and nine rows of cooling holes, five on the shower head, and two rows each on the pressure and suction surfaces. The computations, however, show a strong spanwise variation of the heat transfer coefficient on the airfoil surface, specially with shower-head cooling.
Macro-Fiber Composite actuated simply supported thin airfoils
NASA Astrophysics Data System (ADS)
Bilgen, Onur; Kochersberger, Kevin B.; Inman, Daniel J.; Ohanian, Osgar J., III
2010-05-01
A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid-structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s - 1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation.
Wind turbine airfoil investigations in customized turbulent inflow
NASA Astrophysics Data System (ADS)
Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael
2016-11-01
Experimental airfoil characterizations are usually performed in laminar or unsteady periodical flows. Neither of these matches the flow conditions of natural atmospheric flows as experienced by wind turbine blades. In the presented experimental study, an active grid is used to generate turbulent inflow with customized properties, like reduced frequencies or inflow angles. This is used not only to tune flow properties, but also to mimic time series of measured atmospheric wind speeds and inflow angles in the wind tunnel. Experiments were performed on a wind turbine dedicated DU 00-W-212 airfoil to obtain highly resolved force data and chord-wise pressure distributions at Re=500,000 and Re=900,000. Additional to a laminar baseline case, unsteady sinusoidal inflow fluctuations were applied as well as three different turbulent inflows with comparable turbulence intensity, but different inflow angle fluctuations to grasp the impact of inflow characteristics on the airfoil performance. In comparison with the laminar inflow case, the lift peak of the polar is shifted to higher angles of attack in the turbulent flows. While the laminar lift polars show a rather sudden transition to stall, a softer transition with an extended stall region is found for all turbulent cases. The presented work was performed within the project AVATAR and is funded from the European Unions Seventh Program for research, technological development and demonstration under Grand Agreement No FP7-ENERGY-2013-1/n 608396.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Sewall, William G.
1995-01-01
Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.
NASA Technical Reports Server (NTRS)
St.hilaire, A. O.; Carta, F. O.
1979-01-01
The effect of sweep on the dynamic response of the NACA 0012 airfoil was investigated. Unsteady chordwise distributed pressure data were obtained from a tunnel spanning wing equipped with 21 single surface transducers (13 on the suction side and 8 on the pressure side of the airfoil). The pressure data were obtained at pitching amplitudes of 8 and 10 degrees over a tunnel Mach number range of 0.10 to 0.46 and a pitching frequency range of 2.5 to 10.6 cycles per second. The wing was oscillated in the unswept and swept positions about the quarter-chord pivot axis relative to mean incidence angle settings of 0, 9, 12, and 15 degrees. A compilation of all the response data obtained during the test program is presented. These data are in the form of normal force, chord force, lift force, pressure drag, and moment hysteresis loops derived from chordwise integrations of the unsteady pressure distributions. The hysteresis loops are organized in two main sections. In the first section, the loop data are arranged to show the effect of sweep (lambda = 0 and 30 deg) for all available combinations of mean incidence angle, pitching amplitude, reduced frequency, and chordwise Mach number. The second section shows the effect of chordwise Mach number (MC = 0.30 and MC = 0.40) on the swept wing response for all available combinations of mean incidence angle, pitching amplitude, and reduced frequency.
NASA Technical Reports Server (NTRS)
Papadakis, Michael; Hung, Kuohsing E.; Vu, Giao T.; Yeong, Hsiung Wei; Bidwell, Colin S.; Breer, Martin D.; Bencic, Timothy J.
2002-01-01
Validation of trajectory computer codes, for icing analysis, requires experimental water droplet impingement data for a wide range of aircraft geometries as well as flow and icing conditions. This report presents improved experimental and data reduction methods for obtaining water droplet impingement data and provides a comprehensive water droplet impingement database for a range of test geometries including an MS(1)-0317 airfoil, a GLC-305 airfoil, an NACA 65(sub 2)-415 airfoil, a commercial transport tail section, a 36-inch chord natural laminar flow NLF(1)-0414 airfoil, a 48-inch NLF(1)-0414 section with a 25 percent chord simple flap, a state-of-the-art three-element high lift system, a NACA 64A008 finite span swept business jet tail, a full-scale business jet horizontal tail section, a 25 percent-scale business jet empennage, and an S-duct turboprop engine inlet. The experimental results were obtained at the NASA Glenn Icing Research Tunnel (IRT) for spray clouds with median volumetric diameter (MVD) of 11, 11.5, 21, 92, and 94 microns and for a range of angles of attack. The majority of the impingement experiments were conducted at an air speed of 175 mph corresponding to a Reynolds number of approximately 1.6 million per foot. The maximum difference of repeated tests from the average ranged from 0.24 to 12 percent for most of the experimental results presented. This represents a significant improvement in test repeatability compared to previous experimental studies. The increase in test repeatability was attributed to improvements made to the experimental and data reduction methods. Computations performed with the LEWICE-2D and LEWICE-3D computer codes for all test configurations are presented in this report. For the test cases involving median volumetric diameters of 11 and 21 microns, the correlation between the analytical and experimental impingement efficiency distributions was good. For the median volumetric diameters of 92 and 94-micron cases, however
Pressure Distribution over Thick Airfoils - Model Tests
NASA Technical Reports Server (NTRS)
Norton, F H; Bacon, D L
1923-01-01
This investigation was undertaken to study the distribution of loading over thick wings of various types. The unloading on the wing was determined by taking the pressure at a number of holes on both the upper and lower surfaces of a model wing in the wind tunnel. The results from these tests show, first, that the distribution of pressure over a thick wing of uniform section is very little different from that over a thin wing; second, that wings tapering either in chord or thickness have the lateral center of pressure, as would be expected, slightly nearer the center of the wings; and, third, that wings tapering in plan form and with a section everywhere proportional to the center section may be considered to have a loading at any point which is proportional to the chord when compared to a wing with a similar constant section. These tests confirm the belief that wings tapering both in thickness and plan form are of considerable structural value because the lateral center of pressure is thereby moved toward the center of the span.