Science.gov

Sample records for 239pu 240pu 241pu

  1. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  2. Nevada test site fallout atom ratios: /sup 240/Pu//sup 239/Pu and /sup 241/Pu//sup 239/Pu

    SciTech Connect

    Hicks, H.G.; Barr, D.W.

    1984-02-01

    The exposure of the population in Utah to external gamma radiation from the fallout from nuclear weapons tests carried out between 1951 and 1958 at the Nevada Test Site (NTS) has been reconstructed from recent measurements of /sup 137/Cs and plutonium in soil. The fraction of /sup 137/Cs in the fallout from NTS events was calculated from the total plutonium and the /sup 240/Pu//sup 239/Pu ratios measured in the soil, using the values of 0.180 +- 0.006 and 0.032 +- 0.003 for that ratio in global fallout and NTS fallout, respectively. The total population exposure from NTS events was then calculated on the basis of exposure rates resulting from short-lived radionuclides associated with the /sup 137/Cs at the time of deposition. While the /sup 240/Pu//sup 239/Pu ratio is constant in global fallout, this ratio varies greatly in the fallout from individual events. While the composition of fallout on Utah from NTS events is rather uniform, the Off-Site Radiation Exposure Review Project is currently reconstructing radiation exposures for locations close to NTS where the fallout may be predominantly from one event. Therefore, the authors compiled the pertinent ratios in order to provide information concerning the exposure resulting from any individual event. The plutonium ratios measured at 30 days postshot were compiled from unpublished values in the archives of the Nuclear Chemistry Division of LLNL and INC-11 of LANL. These ratios are pertinent to fallout data. Dates for each event were taken from a publication by the Nevada Operations Office of the Department of Energy. 3 references.

  3. Determination of (239)Pu, (240)Pu, (241)Pu and (242)Pu at femtogram and attogram levels - evidence for the migration of fallout plutonium in an ombrotrophic peat bog profile.

    PubMed

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R

    2013-04-01

    The isotopic composition of plutonium ((239)Pu, (240)Pu, (241)Pu and (242)Pu) was investigated in a ∼0.5 m long peat core from an ombrotrophic bog (Black Forest, Germany) using clean room procedures and accelerator mass spectrometry (AMS). This sophisticated analytical approach was ultimately needed to detect reliably the Pu concentrations present in the peat samples at femtogram (fg) and attogram (ag) levels. The mean (240)Pu/(239)Pu isotopic ratio of 0.19 ± 0.02 (N = 32) in the peat layers, representing approximately the last 80 years, was in good agreement with the accepted value of 0.18 for the global fallout in the Northern Hemisphere. This finding is largely supported by the corresponding and rather constant (241)Pu/(239)Pu (0.0012 ± 0.0005) and (242)Pu/(239)Pu (0.004 ± 0.001) ratios. Since the Pu isotopic composition characteristic of the global fallout was also identified in peat samples pre-dating the period of atmospheric atom bomb testing (AD 1956-AD 1980), migration of Pu within the peat profile is clearly indicated. These results highlight, for the first time, the mobility of Pu in a peat bog with implications for the migration of Pu in other acidic, organic rich environments such as forest soils and other wetland types. These findings constitute a direct observation of the behaviour of Pu at fg and ag levels in the environment. The AMS measurements of Pu concentrations (referring to a corresponding activity of (240+239)Pu from 0.07 mBq g(-1) to 5 mBq g(-1)) essentially confirm our a priori estimates based on existing (241)Am and (137)Cs data in the investigated peat core and agree well with the global fallout levels from the literature. Exclusively employing the Pu isotope ratios established for the peat samples, the date of the Pu irradiation (AD 1956, correctable to AD 1964) was calculated and subsequently compared to the (210)Pb age of the peat layers; this comparison provided an additional hint that global fallout derived Pu is not fixed in

  4. A method of measurement of (239)Pu, (240)Pu, (241)Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tazoe, Hirofumi; Tagami, Keiko; Uchida, Shigeo; Yamada, Masatoshi

    2014-01-01

    An accurate and precise analytical method is highly needed for the determination of Pu isotopes in marine sediments for the long-term marine environment monitoring that is being done since the Fukushima Dai-ichi Nuclear Power Plant accident. The elimination of uranium from the sediment samples needs to be carefully checked. We established an analytical method based on anion-exchange chromatography and SF-ICP-MS in this work. A uranium decontamination factor of 2 × 10(6) was achieved, and the U concentrations in the final sample solutions were typically below 4 pg mL(-1), thus no extra correction of (238)U interferences from the Pu spectra was needed. The method was suitable for the analysis of (241)Pu in marine sediments using large sample amounts (>10 g). We validated the method by measuring marine sediment reference materials and our results agreed well with the certified and the literature values. Surface sediments and one sediment core sample collected after the nuclear accident were analyzed. The characterization of (241)Pu/(239)Pu atom ratios in the surface sediments and the vertical distribution of Pu isotopes showed that there was no detectable Pu contamination from the nuclear accident in the marine sediments collected 30 km off the plant site.

  5. Vertical distributions of radionuclides ((239+240)Pu, (240)Pu/(239)Pu, and (137)Cs) in sediment cores of Lake Bosten in Northwestern China.

    PubMed

    Liao, Haiqing; Bu, Wenting; Zheng, Jian; Wu, Fengchang; Yamada, Masatoshi

    2014-04-01

    Artificial radionuclides ((137)Cs, (239+240)Pu, (241)Pu, (241)Am) deposited in lacustrine sediments have been used for dating as well as radionuclide source identification. In the present work, we investigated the vertical distributions of (239+240)Pu and (137)Cs activities, (240)Pu/(239)Pu atom ratios, and (239+240)Pu/(137)Cs activity ratios in sediment cores collected from Lake Bosten, which is the lake closest to the Lop Nor Chinese Nuclear Weapon Test site in northwestern China. Uniformly high concentrations of (239+240)Pu and (137)Cs were found in the upper layers deposited since 1964 in the sediment cores, and these were controlled by the resuspension of soil containing radionuclides from the nearby land surface. As the Chinese nuclear tests varied remarkably in yield, the mixing of the tropospheric deposition from these tests and the stratospheric deposition of global fallout has led to a (240)Pu/(239)Pu atom ratio that is similar to that of global fallout and to a (239+240)Pu/(137)Cs activity ratio that is slightly higher than that of global fallout. However, a low (240)Pu/(239)Pu atom ratio of 0.080 and high (239+240)Pu/(137)Cs activity ratio of 0.087, significantly different from the global fallout values, were observed in one sediment core (07BS10-2), indicating the inhomogenous tropospheric deposition from the Chinese nuclear tests in Lake Bosten during 1967-1973. These results are important to understand the influence of the CNTs on the radionuclide contamination in Lake Bosten.

  6. (239)Pu, (240)Pu, and (241)Am determination in hot particles by low level gamma-spectrometry.

    PubMed

    Jiménez-Ramos, M C; Hurtado, S; Chamizo, E; García-Tenorio, R; León-Vintró, L; Mitchell, P I

    2010-06-01

    A nondestructive method based on low-energy, high-resolution photon spectrometry is presented which allows accurate determination of (239)Pu, (240)Pu, and (241)Am (as a daughter of (241)Pu) activities in radioactive particles containing relatively high levels of plutonium isotopes. The proposed method requires only one measurement for the establishment of an absolute efficiency curve. Since the density and composition of the radioactive particles of interest may vary, a self-absorption correction is required for the accurate determination of isotopic activities and ratios. This correction is carried out for each individual particle using the convenient gamma-ray emissions of (241)Am.

  7. The geochemistry of fallout plutonium in the North Atlantic: II. 240Pu /239Pu ratios and their significance

    NASA Astrophysics Data System (ADS)

    Buesseler, Ken O.; Sholkovitz, Edward R.

    1987-10-01

    A systematic decrease in the 240Pu /239Pu ratio in marine sediments is found with increasing water depth along a transect of cores between Woods Hole and Bermuda. The 240Pu /239Pu atom ratios range from ≅O.18 on the shelf to ≅O.10 at 5000 m but do not change with depth in individual cores. A model is presented which can account for the range of 240Pu /239Pu ratios found in this and other similar studies ( NOSHKIN and GATROUSIS, 1974; SCOTTet al., 1983). We propose that there have been at least two distinct sources of fallout Pu to this region. The major source of Pu is global stratospheric fallout, characterized by a 240Pu /239Pu ratio of 0.18 and a relatively long residence time in seawater. The second source is characterized by a much lower 240Pu /239Pu ratio, and relative to global fallout it must have been much more efficiently removed from the water column to deep-sea sediments. We suggest that surface-based low yield testing at the Nevada Test Site is the only source of low ratio fallout Pu which could account for the timing, inventories, and refractory characteristics of this second component of fallout Pu inputs to the North Atlantic.

  8. 240Pu/239Pu isotopic ratios and 239 + 240Pu total measurements in surface and deep waters around Mururoa and Fangataufa atolls compared with Rangiroa atoll (French Polynesia).

    PubMed

    Chiappini, R; Pointurier, F; Millies-Lacroix, J C; Lepetit, G; Hemet, P

    1999-09-30

    The average values of 240Pu/239Pu mass isotopic ratios of plutonium deposited in Mururoa and Fangataufa atoll sediments by French atmospheric nuclear tests range from 3.5 to 5%. In order to assess the near field and far field influence of those deposits in the open ocean, two water profiles were measured for 239 + 240Pu and 240Pu/239Pu using, for the first time, an Inductively Coupled Plasma Mass Spectrometer which was developed to achieve femtogram detection limits. One site was located at the limit of the French territorial waters, which is 22 km distant from Mururoa. The second site was located close to Rangiroa atoll, at a distance of approximately 1200-km from French nuclear test sites. The sample volumes were approximately 500 litres and plutonium was purified prior to mass spectrometry and alpha spectrometry measurements. In Rangiroa, the 239 + 240Pu profile is comparable with those already determined in world open oceans but the maximum detected activity, 9 mBq/m3 at 500-600 m is a lot lower than those measured in the northern hemisphere. 240Pu/239Pu ratios were measured between 500 and 1000 m and were not statistically different from the typical 0.18 +/- 0.01 ratio which characterises the global fallout. Consequently, any influence of plutonium from the tests in Mururoa and Fangataufa is not apparent at Rangiroa. The vertical distribution of 239 + 240Pu near Mururoa shows similar changes with depth but with a slight increase in concentration. 240Pu/239Pu mass ratios vary with depth, from 7 to 10% in the upper 500 m and in the deep waters (below 1000 m) to 15-16% between 600 and 1000 m. A contribution from plutonium deposited in the sediments at Mururoa and Fangataufa is observed at the limit of territorial waters, especially in surface and deep waters.

  9. Performance of Cladding on MOX Fuel with Low 240Pu/239Pu Ratio

    SciTech Connect

    McCoy, Kevin; Blanpain, Patrick; Morris, Robert Noel

    2014-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world s first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding.

  10. Determination of 240Pu/239Pu atom ratio in coastal surface seawaters from the western North Pacific Ocean and Japan Sea.

    PubMed

    Yamada, Masatoshi; Zheng, Jian

    2008-01-01

    Surface seawater samples were collected from a site in the vicinity of the nuclear fuel reprocessing facility at Rokkasho, Japan and sites along the Japan Sea coast. (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were determined by alpha-spectrometry and isotope-dilution sector-field ICP-MS. The (240)Pu/(239)Pu atom ratio with the mean value of 0.227 +/- 0.006 was significantly higher than the mean global fallout ratio of 0.18. The contribution of the Pacific Proving Grounds close-in fallout was estimated to be 33% of the (239+240)Pu.

  11. Study of neutron-deficient isotopes of Fl in the 239Pu, 240Pu + 48Ca reactions

    NASA Astrophysics Data System (ADS)

    Voinov, A. A.; Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu Ts; Rykaczewski, K. P.; Abdullin, F. Sh; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu S.; Subbotin, V. G.; Sukhov, A. M.; Sabelnikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2016-07-01

    The results of the experiments aimed at the synthesis of Fl isotopes in the 239Pu + 48Ca and 240Pu + 48Ca reactions are presented. The experiment was performed using the Dubna gas-filled recoil separator at the U400 cyclotron. In the 239Pu+48Ca experiment one decay of spontaneously fissioning 284Fl was detected at 245-MeV beam energy. In the 240Pu+48Ca experiment three decay chains of 285Fl were detected at 245 MeV and four decays were assigned to 284Fl at the higher 48Ca beam energy of 250 MeV. The α-decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined more precisely. The cross section of the 239Pu(48Ca,3n)284Fl reaction was observed to be about 20 times lower than those predicted by theoretical models and 50 times less than the value measured in the 244Pu+48Ca reaction. The cross sections of the 240Pu(48Ca,4-3n)284,285Fl at both 48Ca energies are similar and exceed that observed in the reaction with lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate rapid decrease of stability of superheavy nuclei with departing from the neutron number N=184 predicted to be the next magic number.

  12. Determination of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios in Brown Algae (Fucus distichus) Collected from Amchitka Island, Alaska.

    SciTech Connect

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-05-02

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) activity concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for Brown Algae (Fucus distichus) collected from the littoral zone of Amchitka Island (Alaska) and at a control site on the Alaskan peninsula. Plutonium isotope measurements were performed in replicate using Accelerator Mass Spectrometry (AMS). The average {sup 240}Pu/{sup 239}Pu atom ratio observed in dried Fucus d. collected from Amchitka Island was 0.227 {+-} 0.007 (n=5) and compares with the expected {sup 240}Pu/{sup 239}Pu atom ratio in integrated worldwide fallout deposition in the Northern Hemisphere of 0.1805 {+-} 0.0057 (Cooper et al., 2000). In general, the characteristically high {sup 240}Pu/{sup 239}Pu content of Fucus d. analyzed in this study appear to indicate the presence of a discernible basin-wide secondary source of plutonium entering the marine environment. Of interest to the study of plutonium source terms within the Pacific basin are reports of elevated {sup 240}Pu/{sup 239}Pu atom ratios in fallout debris from high-yield atmospheric nuclear tests conducted in the Marshall Islands during the 1950s (Diamond et al., 1960), the wide range of {sup 240}Pu/{sup 239}Pu atom ratio values (0.19 to 0.34) observed in sea water, sediments, coral and other environmental media from the North Pacific Ocean (Hirose et al., 1992; Buesseler, 1997) and updated estimates of the relative contributions of close-in and intermediate fallout deposition on oceanic inventories of radionuclidies, especially in the Northern Pacific Ocean (Hamilton, 2004).

  13. Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center

    SciTech Connect

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-02-28

    Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

  14. Distribution of nuclear bomb Pu in Nishiyama area, Nagasaki, estimated by accurate and precise determination of 240Pu/239Pu ratio in soils.

    PubMed

    Yoshida, S; Muramatsu, Y; Yamazaki, S; Ban-Nai, T

    2007-01-01

    Plutonium isotopes in forest soils collected in Nishiyama area, Nagasaki, were successfully determined by high resolution inductively coupled plasma mass spectrometry after the treatment with a microwave decomposition system. The (240)Pu/(239)Pu atom ratios observed in the samples in the Nishiyama area were obviously lower than the range of the global fallout. The low ratios (minimum 0.032) observed in Nishiyama area indicated the influence of detonation of the Pu nuclear weapon in 1945. Since the area is contaminated also by global fallout, the (240)Pu/(239)Pu atom ratio can be more sensitive indicator of bomb-derived Pu than Pu activity concentration.

  15. Determination of (235)U, (239)Pu, (240)Pu, and (241)Am in a nuclear bomb particle using a position-sensitive α-γ coincidence technique.

    PubMed

    Peräjärvi, Kari A; Ihantola, Sakari; Pöllänen, Roy C; Toivonen, Harri I; Turunen, Jani A

    2011-02-15

    A nuclear bomb particle containing 1.6 ng of Pu was investigated nondestructively with a position-sensitive α detector and a broad-energy HPGe γ-ray detector. An event-mode data acquisition system was used to record the data. α-γ coincidence counting was shown to be well suited to nondestructive isotope ratio determination. Because of the very small background, the 51.6 keV γ rays of (239)Pu and the 45.2 keV γ rays of (240)Pu were identified, which enabled isotopic ratio calculations. In the present work, the (239)Pu/((239)Pu+(240)Pu) atom ratio was determined to be 0.950 ± 0.010. The uncertainties were much smaller than in the previous more conventional nondestructive studies on this particle. Obtained results are also in good agreement with the data from the destructive mass spectrometric studies obtained previously by other investigators.

  16. Analysis of plutonium isotope ratios including (238)Pu/(239)Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    PubMed

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as (238)U with (238)Pu and (241)Am with (241)Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the (240)Pu/(239)Pu, (241)Pu/(239)Pu, and (242)Pu/(239)Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, (238)Pu/(239)Pu isotope ratios were able to be calculated by using both the (238)Pu/((239)Pu+(240)Pu) activity ratios that had been measured through alpha spectrometry and the (240)Pu/(239)Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including (238)Pu/(239)Pu, in individual U-Pu mixed oxide particles.

  17. Plutonium concentration and (240)Pu/(239)Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS.

    PubMed

    Bu, Kaixuan; Cizdziel, James V; Dasher, Douglas

    2013-10-01

    Three underground nuclear tests, including the Unites States' largest, were conducted on Amchitka Island, Alaska. Monitoring of the radiological environment around the island is challenging because of its remote location. In 2008, the Department of Energy (DOE) Office of Legacy Management (LM) became responsible for the long term maintenance and surveillance of the Amchitka site. The first DOE LM environmental survey occurred in 2011 and is part of a cycle of activities that will occur every 5 years. The University of Alaska Fairbanks, a participant in the 2011 study, provided the lichen (Cladonia spp.), freshwater moss (Fontinalis neomexicanus), kelp (Eualaria fistulosa) and horse mussel (Modiolus modiolus) samples from Amchitka Island and Adak Island (a control site). These samples were analyzed for (239)Pu and (240)Pu concentration and (240)Pu/(239)Pu atom ratio using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Plutonium concentrations and (240)Pu/(239)Pu atom ratios were generally consistent with previous terrestrial and marine studies in the region. The ((239)+)(240)Pu levels (mBq kg(-1), dry weight) ranged from 3.79 to 57.1 for lichen, 167-700 for kelp, 27.9-148 for horse mussel, and 560-573 for moss. Lichen from Adak Island had higher Pu concentrations than Amchitka Island, the difference was likely the result of the higher precipitation at Adak compared to Amchitka. The (240)Pu/(239)Pu atom ratios were significantly higher in marine samples compared to terrestrial and freshwater samples (t-test, p < 0.001); lichen and moss averaged 0.184 ± 0.007, similar to the integrated global fallout ratio, whereas kelp and mussel (soft tissue) averaged 0.226 ± 0.003. These observations provide supporting evidence that a large input of isotopically heavier Pu occurred into the North Pacific Ocean, likely from the Marshall Island high yield nuclear tests, but other potential sources, such as the Kamchatka Peninsula Rybachiy Naval Base and

  18. Determination of 240Pu/239Pu isotopic ratios in human tissues collected from areas around the Semipalatinsk Nuclear Test Site by sector-field high resolution ICP-MS.

    PubMed

    Yamamoto, M; Oikawa, S; Sakaguchi, A; Tomita, J; Hoshi, M; Apsalikov, K N

    2008-09-01

    Information on the 240Pu/239Pu isotope ratios in human tissues for people living around the Semipalatinsk Nuclear Test Site (SNTS) was deduced from 9 sets of soft tissues and bones, and 23 other bone samples obtained by autopsy. Plutonium was radiochemically separated and purified, and plutonium isotopes (239Pu and 240Pu) were determined by sector-field high resolution inductively coupled plasma-mass spectrometry. For most of the tissue samples from the former nine subjects, low 240Pu/239Pu isotope ratios were determined: bone, 0.125 +/- 0.018 (0.113-0.145, n = 4); lungs, 0.063 +/- 0.010 (0.051-0.078, n = 5); and liver, 0.148 +/- 0.026 (0.104-0.189, n = 9). Only 239Pu was detected in the kidney samples; the amount of 240Pu was too small to be measured, probably due to the small size of samples analyzed. The mean 240Pu/239Pu isotope ratio for bone samples from the latter 23 subjects was 0.152 +/- 0.034, ranging from 0.088 to 0.207. A significant difference (a two-tailed Student's t test; 95% significant level, alpha = 0.05) between mean 240Pu/239Pu isotope ratios for the tissue samples and for the global fallout value (0.178 +/- 0.014) indicated that weapons-grade plutonium from the atomic bombs has been incorporated into the human tissues, especially lungs, in the residents living around the SNTS. The present 239,240Pu concentrations in bone, lung, and liver samples were, however, not much different from ranges found for human tissues from other countries that were due solely to global fallout during the 1970's-1980's.

  19. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE PAGES

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; ...

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  20. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy.

    PubMed

    Hoover, Andrew S; Bond, Evelyn M; Croce, Mark P; Holesinger, Terry G; Kunde, Gerd J; Rabin, Michael W; Wolfsberg, Laura E; Bennett, Douglas A; Hays-Wehle, James P; Schmidt, Dan R; Swetz, Daniel; Ullom, Joel N

    2015-04-07

    We have developed a new category of sensor for measurement of the (240)Pu/(239)Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the (240)Pu/(239)Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  1. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas.

    PubMed

    Yamada, Masatoshi; Zheng, Jian; Wang, Zhong-Liang

    2006-07-31

    Surface seawater samples were collected along the track of the R/V Hakuho-Maru cruise (KH-96-5) from Tokyo to the Southern Ocean. The (137)Cs activities were determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas, the eastern Indian Ocean, the Bay of Bengal, the Andaman Sea, and the South China Sea. The (137)Cs activities showed a wide variation with values ranging from 1.1 Bq m(-3) in the Antarctic Circumpolar Region of the Southern Ocean to 3 Bq m(-3) in the western North Pacific Ocean and the South China Sea. The latitudinal distributions of (137)Cs activity were not reflective of that of the integrated deposition density of atmospheric global fallout. The removal rates of (137)Cs from the surface waters were roughly estimated from the two data sets of Miyake et al. [Miyake Y, Saruhashi K, Sugimura Y, Kanazawa T, Hirose K. Contents of (137)Cs, plutonium and americium isotopes in the Southern Ocean waters. Pap Meteorol Geophys 1988;39:95-113] and this study to be 0.016 yr(-1) in the Sulu and Indonesian Seas, 0.033 yr(-1) in the Bay of Bengal and Andaman Sea, and 0.029 yr(-1) in the South China Sea. These values were much lower than that in the coastal surface water of the western Northwest Pacific Ocean. This was likely due to less horizontal and vertical mixing of water masses and less scavenging. (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were also determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas and the South China Sea. The (240)Pu/(239)Pu atom ratios ranged from 0.199+/-0.026 to 0.248+/-0.027 on average, and were significantly higher than the global stratospheric fallout ratio of 0.18. The contributions of the North Pacific Proving Grounds close-in fallout Pu were estimated to be 20% for the western North Pacific Ocean, 39% for the Sulu and Indonesian Seas and 42% for the South China Sea by using the two end-member mixing model. The higher (240)Pu/(239)Pu

  2. Determination of the 240Pu/ 239Pu atomic ratio in soils from Palomares (Spain) by low-energy accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chamizo, E.; García-León, M.; Synal, H.-A.; Suter, M.; Wacker, L.

    2006-08-01

    In 1966, the nuclear fuel of two thermonuclear bombs was released over the Spanish region of Palomares, due to a B52 bomber accident during a refuelling operation. Since then, much effort has been made to assess its impact to the different environmental compartments of this area in South-East Spain, mostly by measuring the 239+240Pu activity concentration and the 238Pu/239+240Pu activity ratio. Nevertheless, these measurements do not give enough information on the problem. In order to recognize unambiguously small traces of the weapon-grade plutonium released in the accident, the ratio of the two major isotopes of plutonium, 240Pu/239Pu, has to be determined. In this work, this ratio has been measured in low- and high-activity samples from Palomares by means of low-energy accelerator mass spectrometry (AMS). That way, we will show the potential of the new generation of compact AMS facilities in terms of plutonium characterization at ultra-trace levels.

  3. Transuranic concentrations in reef and pelagic fish from the Marshall Islands. [/sup 239/Pu, /sup 240/Pu

    SciTech Connect

    Noshkin, V.E.; Eagle, R.J.; Wong, K.M.; Jokela, T.A.

    1980-09-01

    Concentrations of /sup 239 + 240/Pu are reported in tissues of several species of reef and pelagic fish caught at 14 different atolls in the northern Marshall Islands. Several regularities that are species dependent are evident in the distribution of /sup 239 + 240/Pu among different body tissues. Concentrations in liver always exceeded those in bone and concentrations were lowest in the muscle of all fish analyzed. A progressive discrimination against /sup 239 + 240/Pu was observed at successive trophic levels at all atolls except Bikini and Enewetak, where it was difficult to conclude if any real difference exists between the average concentration factor for /sup 239 + 240/Pu among all fish, which include bottom feeding and grazing herbivores, bottom feeding carnivores, and pelagic carnivores from different atoll locations. The average concentration of /sup 239 + 240/Pu in the muscle of surgeonfish from Bikini and Enewetak was not significantly different from the average concentrations determined in these fish at the other, lesser contaminated atolls. Concentrations among all 3rd, 4th, and 5th trophic level species are highest at Bikini where higher environmental concentrations are found. The reasons for the anomalously low concentrations in herbivores from Bikini and Enewetak are not known.

  4. Determination of 239Pu and 240Pu isotope ratio for a nuclear bomb particle using X-ray spectrometry in conjunction with γ-ray spectrometry and non-destructive α-particle spectrometry

    NASA Astrophysics Data System (ADS)

    Pöllänen, R.; Ruotsalainen, K.; Toivonen, H.

    2009-11-01

    A nuclear bomb particle from Thule containing Pu and U was analyzed using X-ray spectrometry in combination with γ-ray spectrometry and non-destructive α-spectrometry. The main objective was to investigate the possibility to determine the 239Pu and 240Pu isotope ratios. Previously, X-ray spectrometry together with the above-mentioned methods has been successfully applied for radiochemically processed samples, but not for individual particles. In the present paper we demonstrate the power of non-destructive analysis. The 239Pu/( 239Pu+ 240Pu) atom ratio for the Thule particle was determined, using two different approaches, to be 0.93±0.07 and 0.91±0.05. These results are consistent with weapons-grade material and the results obtained by other investigators.

  5. Evaluation of the thermal-neutron constants for /sup 233/U, /sup 235/U, /sup 239/Pu and /sup 241/Pu

    SciTech Connect

    Stehn, J.R.; Divadeenam, M.; Holden, N.E.

    1982-01-01

    A consistent set of best values of the 2200 meter/second neutron cross sections, Westcott g-factors, and fission neutron yields for /sup 233/U, /sup 235/U, /sup 239/Pu and /sup 241/Pu are presented. A least squares fitting program, LSF, is used to obtain the best fit and to estimate the sensitivity of these fissile parameters to the quoted uncertainties in experimental data. The half-lives of the uranium and plutonium nuclides have been evaluated and these have been used to reassess the significant experimental data. The latest revision of the spontaneous fission neutron yield anti nu, of /sup 252/Cf and the foil thickness corrections to the fission neutron yield ratios of fissile nuclei to /sup 252/Cf are included. These lead to greater consistency in the data used for anti nu (/sup 252/Cf). Similarly, the /sup 234/U half-life as revised leads to improved consistency in the /sup 235/U fission cross section. Comparison is made with the values from ENDF/B-V and other evaluations.

  6. Plutonium Isotopes ((239-241)Pu) Dissolved in Pacific Ocean Waters Detected by Accelerator Mass Spectrometry: No Effects of the Fukushima Accident Observed.

    PubMed

    Hain, Karin; Faestermann, Thomas; Fimiani, Leticia; Golser, Robin; Gómez-Guzmán, José Manuel; Korschinek, Gunther; Kortmann, Florian; Lierse von Gostomski, Christoph; Ludwig, Peter; Steier, Peter; Tazoe, Hirofumi; Yamada, Masatoshi

    2017-02-21

    The concentration of plutonium (Pu) and the isotopic ratios of (240)Pu to (239)Pu and (241)Pu to (239)Pu were determined by accelerator mass spectrometry (AMS) in Pacific Ocean water samples (20 L each) collected in late 2012. The isotopic Pu ratios are important indicators of different contamination sources and were used to identify a possible release of Pu into the ocean by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. In particular, (241)Pu is a well-suited indicator for a recent entry of Pu because (241)Pu from fallout of nuclear weapon testings has already significantly decayed. A total of 10 ocean water samples were prepared at the Radiochemie München of the TUM and analyzed at the Vienna Environmental Research Laboratory (VERA). Several samples showed a slightly elevated (240)Pu/(239)Pu ratio of up to 0.22 ± 0.02 compared to global fallout ((240)Pu/(239)Pu = 0.180 ± 0.007), whereas all measured (241)Pu-to-(239)Pu ratios were consistent with nuclear weapon fallout ((241)Pu/(239)Pu < 2.4 × 10(-3)), which means that no impact from the Fukushima accident was detected. From the average (241)Pu-to-(239)Pu ratio of 8-2(+3) ×10(-4) at a sampling station located at a distance of 39.6 km to FDNPP, the 1-σ upper limit for the FDNPP contribution to the (239)Pu inventory in the water column was estimated to be 0.2%. Pu, with the signature of weapon-grade Pu was found in a single sample collected around 770 km off the west coast of the United States.

  7. Ultra-trace determination of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell-ICP-MS/MS: Establishing a baseline for global fallout in Qatar soil and sediments.

    PubMed

    Amr, Mohamed A; Helal, Abdul-Fattah I; Al-Kinani, Athab T; Balakrishnan, Perumal

    2016-03-01

    The development of practical, fast, and reliable methods for the ultra-trace determination of anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu by triple quadruple collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS) were investigated in term of its accuracy and precision for producing reliable results. The radionuclides were extracted from 1 kg of the environmental soil samples by concentrated nitric and hydrochloric acids. The leachate solutions were measured directly by triple quadrupole CRC-ICP-MS/MS. For quality assurance, a chemical separation of the concerned radionuclides was conducted and then measured by single quadrupole-ICP-MS. The developed methods were next applied to measure the anthropogenic radionuclides (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu in soil samples collected throughout the State of Qatar. The average concentrations of (90)Sr, (137)Cs, (238)Pu, (239)Pu, and (240)Pu were 0.606 fg/g (3.364 Bq/kg), 0.619 fg/g (2.038 Bq/kg), 0.034 fg/g (0.0195 Bq/kg), 65.59 fg/g (0.150 Bq/kg), and 12.06 fg/g (0.103 Bq/kg), respectively.

  8. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  9. Evaluation of Measurements of 238Pu, 239Pu and 240Pu in Urine at the Microbecquerel Level Using Thermal Ionization Mass Spectrometry and Alpha Spectrometry at Los Alamos National Laboratory: Results of a Two Year Comparison Test (LA-UR-06-8055)

    SciTech Connect

    Bores, Norman; Schultz, Michael K

    2008-01-01

    The Intercomparison Studies Program (ISP) at the Oak Ridge National Laboratory (ORNL, Oak Ridge, TN, USA) provides natural-matrix urine quality-assurance/quality-control (QA/QC) samples to radiobioassay analysis laboratories. In 2003, a single laboratory (Los Alamos National Laboratory LANL, Los Alamos NM USA) requested a change in the test-samples provided previously by the ISP. The change was requested to evaluate measurement performance for analyses conducted using thermal-ionization mass spectrometry (TIMS). Radionuclides included {sup 239}Pu at two activity levels (75-150 {micro}Bq {sm_bullet} sample{sup -1} and 1200-1600 {micro}Bq {sm_bullet} sample{sup -1}) and {sup 238}Pu (3700-7400 {micro}Bq {sm_bullet} sample{sup -1}). In addition, {sup 240}Pu was added to the samples so that the {sup 239+240}Pu specific activity was 3700-7400 {micro}Bq {sm_bullet} sample{sup -1}. In this paper, the results of testing during the period May, 2003 through September, 2005 are presented and discussed.

  10. Vertical distribution of (241)Pu in the southern Baltic Sea sediments.

    PubMed

    Strumińska-Parulska, Dagmara I

    2014-12-15

    The vertical distribution of plutonium (241)Pu in marine sediments can assist in determining the deposition history and sedimentation process of analyzed regions. In addition, (241)Pu/(239+240)Pu activity ratio could be used as a sensitive fingerprint for radioactive source identification. The present preliminary studies on vertical distribution of (241)Pu in sediments from four regions of the southern Baltic Sea are presented. The distribution of (241)Pu was not uniform and depended on sediment geomorphology and depth as well as location. The highest concentrations of plutonium were found in the surface layers of all analyzed sediments and originated from the Chernobyl accident.

  11. Time-resolved record of (236)U and (239,240)Pu isotopes from a coral growing during the nuclear testing program at Enewetak Atoll (Marshall Islands).

    PubMed

    Froehlich, M B; Chan, W Y; Tims, S G; Fallon, S J; Fifield, L K

    2016-12-01

    A comprehensive series of nuclear tests were carried out by the United States at Enewetak Atoll in the Marshall Islands, especially between 1952 and 1958. A Porites Lutea coral that was growing in the Enewetak lagoon within a few km of all of the high-yield tests contains a continuous record of isotopes, which are of interest (e.g. (14)C, (236)U, (239,240)Pu) through the testing period. Prior to the present work, (14)C measurements at ∼2-month resolution had shown pronounced peaks in the Δ(14)C data that coincided with the times at which tests were conducted. Here we report measurements of (236)U and (239,240)Pu on the same coral using accelerator mass spectrometry, and again find prominent peaks in the concentrations of these isotopes that closely follow those in (14)C. Consistent with the (14)C data, the magnitudes of these peaks do not, however, correlate well with the explosive yields of the corresponding tests, indicating that smaller tests probably contributed disproportionately to the debris that fell in the lagoon. Additional information about the different tests can also be obtained from the (236)U/(239)Pu and (240)Pu/(239)Pu ratios, which are found to vary dramatically over the testing period. In particular, the first thermonuclear test, Ivy-Mike, has characteristic (236)U/(239)Pu and (240)Pu/(239)Pu signatures which are diagnostic of the first arrival of nuclear test material in various archives.

  12. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  13. A multi-radionuclide approach to evaluate the suitability of (239+240)Pu as soil erosion tracer.

    PubMed

    Meusburger, Katrin; Mabit, Lionel; Ketterer, Michael; Park, Ji-Hyung; Sandor, Tarjan; Porto, Paolo; Alewell, Christine

    2016-10-01

    Fallout radionuclides have been used successfully worldwide as tracers for soil erosion, but relatively few studies exploit the full potential of plutonium (Pu) isotopes. Hence, this study aims to explore the suitability of the plutonium isotopes (239)Pu and (240)Pu as a method to assess soil erosion magnitude by comparison to more established fallout radionuclides such as (137)Cs and (210)Pbex. As test area an erosion affected headwater catchment of the Lake Soyang (South Korea) was selected. All three fallout radionuclides confirmed high erosion rates for agricultural sites (>25tha(-1)yr(-1)). Pu isotopes further allowed determining the origin of the fallout. Both (240)Pu/(239)Pu atomic ratios and (239+240)Pu/(137)Cs activity ratios were close to the global fallout ratio. However, the depth profile of the (239+240)Pu/(137)Cs activity ratios in undisturbed sites showed lower ratios in the top soil increments, which might be due to higher migration rates of (239+240)Pu. The activity ratios further indicated preferential transport of (137)Cs from eroded sites (higher ratio compared to the global fallout) to the depositional sites (smaller ratio). As such the (239+240)Pu/(137)Cs activity ratio offered a new approach to parameterize a particle size correction factor that can be applied when both (137)Cs and (239+240)Pu have the same fallout source. Implementing this particle size correction factor in the conversion of (137)Cs inventories resulted in comparable estimates of soil loss for (137)Cs and (239+240)Pu. The comparison among the different fallout radionuclides highlights the suitability of (239+240)Pu through less preferential transport compared to (137)Cs and the possibility to gain information regarding the origin of the fallout. In conclusion, (239+240)Pu is a promising soil erosion tracer, however, since the behaviour i.e. vertical migration in the soil and lateral transport during water erosion was shown to differ from that of (137)Cs, there is a clear

  14. Measurement of fallout radionuclides, (239)(,240)Pu and (137)Cs, in soil and creek sediment: Sydney Basin, Australia.

    PubMed

    Smith, B S; Child, D P; Fierro, D; Harrison, J J; Heijnis, H; Hotchkis, M A C; Johansen, M P; Marx, S; Payne, T E; Zawadzki, A

    2016-01-01

    Soil and sediment samples from the Sydney basin were measured to ascertain fallout radionuclide activity concentrations and atom ratios. Caesium-137 ((137)Cs) was measured using gamma spectroscopy, and plutonium isotopes ((239)Pu and (240)Pu) were quantified using accelerator mass spectrometry (AMS). Fallout radionuclide activity concentrations were variable ranging from 0.6 to 26.1 Bq/kg for (137)Cs and 0.02-0.52 Bq/kg for (239+240)Pu. Radionuclides in creek sediment samples were an order of magnitude lower than in soils. (137)Cs and (239+240)Pu activity concentration in soils were well correlated (r(2) = 0.80) although some deviation was observed in samples collected at higher elevations. Soil ratios of (137)Cs/(239+240)Pu (decay corrected to 1/1/2014) ranged from 11.5 to 52.1 (average = 37.0 ± 12.4) and showed more variability than previous studies. (240)Pu/(239)Pu atom ratios ranged from 0.117 to 0.165 with an average of 0.146 (±0.013) and an error weighted mean of 0.138 (±0.001). These ratios are lower than a previously reported ratio for Sydney, and lower than the global average. However, these ratios are similar to those reported for other sites within Australia that are located away from former weapons testing sites and indicate that atom ratio measurements from other parts of the world are unlikely to be applicable to the Australian context.

  15. Concordant 241Pu-241Am Dating of Environmental Samples: Results from Forest Fire Ash

    NASA Astrophysics Data System (ADS)

    Goldstein, S. J.; Oldham, W. J.; Murrell, M. T.; Katzman, D.

    2010-12-01

    We have measured the Pu, 237Np, 241Am, and 151Sm isotopic systematics for a set of forest fire ash samples from various locations in the western U.S. including Montana, Wyoming, Idaho, and New Mexico. The goal of this study is to develop a concordant 241Pu (t1/2 = 14.4 y)-241Am dating method for environmental collections. Environmental samples often contain mixtures of components including global fallout. There are a number of approaches for subtracting the global fallout component for such samples. One approach is to use 242Pu/239Pu as a normalizing isotope ratio in a three-isotope plot, where this ratio for the non-global fallout component can be estimated or assumed to be small. This study investigates a new, complementary method of normalization using the long-lived fission product, 151Sm (t1/2 = 90 y). We find that forest fire ash concentrates actinides and fission products with ~1E10 atoms 239Pu/g and ~1E8 atoms 151Sm/g, allowing us to measure these nuclides by mass spectrometric (MIC-TIMS) and radiometric (liquid scintillation counting) methods. The forest fire ash samples are characterized by a western U.S. regional isotopic signature representing varying mixtures of global fallout with a local component from atmospheric testing of nuclear weapons at the Nevada Test Site (NTS). Our results also show that 151Sm is well correlated with the Pu nuclides in the forest fire ash, suggesting that these nuclides have similar geochemical behavior in the environment. Results of this correlation indicate that the 151Sm/239Pu atom ratio for global fallout is ~0.164, in agreement with an independent estimate of 0.165 based on 137Cs fission yields for atmospheric weapons tests at the NTS. 241Pu-241Am dating of the non-global fallout component in the forest fire ash samples yield ages in the late 1950’s-early 1960’s, consistent with a peak in NTS weapons testing at that time. The age results for this component are in agreement using both 242Pu and 151Sm normalizations

  16. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Henderson, R.; Jandel, M.; Kwan, E.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Wu, C. Y.

    2014-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used to measure the 239Pu(n,γ) cross section from 10 eV to the keV region. Three experimental run conditions were used to characterize the prompt fission γ-ray spectrum across the entire energy regime, measure the cross section in the resolved resonance region, and obtain necessary count rate well into the keV region. The preliminary cross sections are in good agreement with current evaluations from 10 eV to 80 keV.

  17. European roe deer antlers as an environmental archive for fallout (236)U and (239)Pu.

    PubMed

    Froehlich, M B; Steier, P; Wallner, G; Fifield, L K

    2016-01-01

    Anthropogenic (236)U and (239)Pu were measured in European roe deer antlers hunted between 1955 and 1977 which covers and extends beyond the period of intensive nuclear weapons testing (1954-1962). The antlers were hunting trophies, and hence the hunting area, the year of shooting and the approximate age of each animal is given. Uranium and plutonium are known to deposit in skeletal tissue. Since antler histology is similar to bone, both elements were expected in antlers. Furthermore, roe deer shed their antlers annually, and hence antlers may provide a time-resolved environmental archive for fallout radionuclides. The radiochemical procedure is based on a Pu separation step by anion exchange (Dowex 1 × 8) and a subsequent U purification by extraction chromatography using UTEVA(®). The samples were measured by Accelerator Mass Spectrometry at the VERA facility (University of Vienna). In addition to the (236)U and (239)Pu concentrations, the (240)Pu/(239)Pu isotopic ratios were determined with a mean value of 0.172 ± 0.023 which is in agreement with the ratio of global fallout (∼0.18). Rather high (236)U/(238)U ratios of the order of 10(-6) were observed. These measured ratios, where the (236)U arises only from global fallout, have implications for the use of the (236)U/(238)U ratio as a fingerprint for nuclear accidents or releases from nuclear facilities. Our investigations have shown the potential to use antlers as a temporally resolved archive for the uptake of actinides from the environment.

  18. Transport of 137Cs and 239,240Pu with ice-rafted debris in the Arctic Ocean

    USGS Publications Warehouse

    Landa, E.R.; Reimnitz, E.; Beals, D.M.; Pochkowski, J.M.; Winn, W.G.; Rigor, I.

    1998-01-01

    Ice rafting is the dominant mechanism responsible for the transport of fine-grained sediments from coastal zones to the deep Arctic Basin. Therefore, the drift of ice-rafted debris (IRD) could be a significant transport mechanism from the shelf to the deep basin for radionuclides originating from nuclear fuel cycle activities and released to coastal Arctic regions of the former Soviet Union. In this study, 28 samples of IRD collected from the Arctic ice pack during expeditions in 1989-95 were analyzed for 137Cs by gamma spectrometry and for 239Pu and 240Pu by thermal ionization mass spectrometry. 137Cs concentrations in the IRD ranged from less than 0.2 to 78 Bq??kg-1 (dry weight basis). The two samples with the highest 137Cs concentrations were collected in the vicinity of Franz Josef Land, and their backward trajectories suggest origins in the Kara Sea. Among the lowest 137Cs values are seven measured on sediments entrained on the North American shelf in 1989 and 1995, and sampled on the shelf less than six months later. Concentrations of 239Pu + 240Pu ranged from about 0.02 to 1.8 Bq??kg-1. The two highest values came from samples collected in the central Canada Basin and near Spitsbergen; calculated backward trajectories suggest at least 14 years of circulation in the Canada Basin in the former case, and an origin near Severnaya Zemlya (at the Kara Sea/Laptev Sea boundary) in the latter case. While most of the IRD samples showed 240Pu/239Pu ratios near the mean global fallout value of 0.185, five of the samples had lower ratios, in the 0.119 to 0.166 range, indicative of mixtures of Pu from fallout and from the reprocessing of weapons-grade Pu. The backward trajectories of these five samples suggest origins in the Kara Sea or near Severnaya Zemlya.

  19. First measurements of (236)U concentrations and (236)U/(239)Pu isotopic ratios in a Southern Hemisphere soil far from nuclear test or reactor sites.

    PubMed

    Srncik, M; Tims, S G; De Cesare, M; Fifield, L K

    2014-06-01

    The variation of the (236)U and (239)Pu concentrations as a function of depth has been studied in a soil profile at a site in the Southern Hemisphere well removed from nuclear weapon test sites. Total inventories of (236)U and (239)Pu as well as the (236)U/(239)Pu isotopic ratio were derived. For this investigation a soil core from an undisturbed forest area in the Herbert River catchment (17°30' - 19°S) which is located in north-eastern Queensland (Australia) was chosen. The chemical separation of U and Pu was carried out with a double column which has the advantage of the extraction of both elements from a relatively large soil sample (∼20 g) within a day. The samples were measured by Accelerator Mass Spectrometry using the 14UD pelletron accelerator at the Australian National University. The highest atom concentrations of both (236)U and (239)Pu were found at a depth of 2-3 cm. The (236)U/(239)Pu isotopic ratio in fallout at this site, as deduced from the ratio of the (236)U and (239)Pu inventories, is 0.085 ± 0.003 which is clearly lower than the Northern Hemisphere value of ∼0.2. The (236)U inventory of (8.4 ± 0.3) × 10(11) at/m(2) was more than an order of magnitude lower than values reported for the Northern Hemisphere. The (239)Pu activity concentrations are in excellent agreement with a previous study and the (239+240)Pu inventory was (13.85 ± 0.29) Bq/m(2). The weighted mean (240)Pu/(239)Pu isotopic ratio of 0.142 ± 0.005 is slightly lower than the value for global fallout, but our results are consistent with the average ratio of 0.173 ± 0.027 for the southern equatorial region (0-30°S).

  20. Use of plutonium isotope activity ratios in dating recent sediments. [/sup 238/Pu//sup 239/Pu + /sup 240/Pu

    SciTech Connect

    Beasley, T. M.

    1982-01-01

    The majority of plutonium presently in the biosphere has come from the testing of nuclear devices. In the early 1950s, the Pu-238/239+240 activity ratio of fallout debris was > 0.04; in the more extensive test series of 1961 to 1962, the Pu-238/239+240 activity ratios were quite consistent at 0.02 to 0.03 and maximum fallout delivery occurred in mid-1963. A significant perturbation in Pu isotope activity ratios occurred in mid-1966 with the deposition of Pu-238 from the SNAP-9A reentry and burn-up. Recently deposited sediments have recorded these events and where accumulation rates are rapid (> 1 cm/y), changes in Pu isotope activity ratios can be used as a geochronological tool.

  1. 239Pu Resonance Evaluation for Thermal Benchmark System Calculations

    SciTech Connect

    Leal, Luiz C; Noguere, G; De Saint Jean, C; Kahler, A.

    2013-01-01

    Analyses of thermal plutonium solution critical benchmark systems have indicated a deciency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplication (nubar) and the prompt neutron ssion spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation eort.

  2. 239Pu Resonance Evaluation for Thermal Benchmark System Calculations

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Noguere, G.; de Saint Jean, C.; Kahler, A. C.

    2014-04-01

    Analyses of thermal plutonium solution critical benchmark systems have indicated a deficiency in the 239Pu resonance evaluation. To investigate possible solutions to this issue, the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Working Party for Evaluation Cooperation (WPEC) established Subgroup 34 to focus on the reevaluation of the 239Pu resolved resonance parameters. In addition, the impacts of the prompt neutron multiplicity (νbar) and the prompt neutron fission spectrum (PFNS) have been investigated. The objective of this paper is to present the results of the 239Pu resolved resonance evaluation effort.

  3. Second interlaboratory comparison study for the analysis of 239Pu in synthetic urine at the microBq (-100 aCi) level by mass spectrometry

    SciTech Connect

    McCurdy, D; Lin, Z; Inn, K W; Bell III, R; Wagner, S; Efurd, D W; Steiner, R; Duffy, C; Hamilton, T F; Brown, T A; Marchetti, A A

    2005-01-28

    As a follow up to the initial 1998 intercomparison study, a second study was initiated in 2001 as part of the ongoing evaluation of the capabilities of various ultra-sensitive methods to analyze {sup 239}Pu in urine samples. The initial study was sponsored by the Department of Energy, Office of International Health Programs to evaluate and validate new technologies that may supersede the existing fission tract analysis (FTA) method for the analysis of {sup 239}Pu in urine at the {micro}Bq/l level. The ultra-sensitive techniques evaluated in the second study included accelerator mass spectrometry (AMS) by LLNL, thermal ionization mass spectrometry (TIMS) by LANL and FTA by the University of Utah. Only the results for the mass spectrometric methods will be presented. For the second study, the testing levels were approximately 4, 9, 29 and 56 {micro}Bq of {sup 239}Pu per liter of synthetic urine. Each test sample also contained {sup 240}Pu at a {sup 240}Pu/{sup 239}Pu atom ratio of {approx}0.15 and natural uranium at a concentration of 50 {micro}Bq/ml. From the results of the two studies, it can be inferred that the best performance at the {micro}Bq level is more laboratory specific than method specific. The second study demonstrated that LANL-TIMS and LLNL-AMS had essentially the same quantification level for both isotopes. Study results for bias and precision and acceptable performance compared to ANSI N13.30 and ANSI N42.22 have been compiled.

  4. Measurement of Angular-Momentum-Dependent Fission Probabilities of 240Pu

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Jovanovic, Igor

    2016-09-01

    An experimental technique using the surrogate reaction method has been developed to measure fission probabilities of actinides as a function of angular momentum state of the fissioning nucleus near the fission barrier. In this work, the 240Pu (α ,α' f) reaction was used as a surrogate for 239Pu (n , f) . An array of 12 silicon telescopes positioned at 10 degree intervals from 40 to 140 degrees detect the outgoing reaction particle for identification and measurement of the excitation energy. The angular momentum state is determined by measuring the angular distribution of fission fragments. The expected distributions are predicted from the Wigner d function. An array of 50 photovoltaic (solar) cells detects fission fragments with 10-degree granularity. The solar cells are sensitive to fission fragments but have no response to light ions. Relative contributions from different angular momentum states are extracted from the measured distributions and compared across all α particle scattering angles to determine fission probability at a specific angular momentum state. The first experiment using this technique was recently completed using 37 MeV α particles incident on 240Pu. First results will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Nu.

  5. Soft tissue tumors induced by monomeric {sup 239}Pu

    SciTech Connect

    Lloyd, R.D.; Angus, W.; Taylor, G.N.; Miller, S.C.

    1995-10-01

    Individual records of soft tissue tumor occurrence (lifetime incidence) among 236 beagles injected with {sup 239}Pu citrate as young adults and 131 comparable control beagles given no radioactivity enabled us to analyze the possible effects on soft tissue tumor induction resulting from internal exposure to {sup 239}Pu. A significant trend was identified in the proportion of animals having malignant liver tumors with increasing radiation dose from {sup 239}. There was also a significant difference in the relative numbers of both malignant liver tumors (18.1 expected, 66 observed). Malignant tumors of the mouth, pancreas, and skin were more frequent among controls than among the dogs given {sup 239}Pu as well as tumors (malignant plus benign) of the mouth, pancreas, testis, and vagina. For all other tumor sites or types, there was no significant difference for both malignant and all (malignant plus benign) tumors. Mammary tumor occurrence appeared not to be associated with {sup 239}Pu incorporation. We conclude that the only soft-tissue neoplasia induced by the intake of {sup 239}Pu directly into blood is probably a liver tumor. 20 refs., 6 tabs.

  6. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  7. Distribution and source of (129)I, (239)(,240)Pu, (137)Cs in the environment of Lithuania.

    PubMed

    Ežerinskis, Ž; Hou, X L; Druteikienė, R; Puzas, A; Šapolaitė, J; Gvozdaitė, R; Gudelis, A; Buivydas, Š; Remeikis, V

    2016-01-01

    Fifty five soil samples collected in the Lithuania teritory in 2011 and 2012 were analyzed for (129)I, (137)Cs and Pu isotopes in order to investigate the level and distribution of artificial radioactivity in Lithuania. The activity and atomic ratio of (238)Pu/((239,24)0)Pu, (129)I/(127)I and (131)I/(137)Cs were used to identify the origin of these radionuclides. The (238)Pu/(239+240)Pu and (240)Pu/(239)Pu ratios in the soil samples analyzed varied in the range of 0.02-0.18 and 0.18-0.24, respectively, suggesting the global fallout as the major source of Pu in Lithuania. The values of 10(-9) to 10(-6) for (129)I/(127)I atomic ratio revealed that the source of (129)I in Lithuania is global fallout in most cases though several sampling sites shows a possible impact of reprocessing releases. Estimated (129)I/(131)I ratio in soil samples from the southern part of Lithuania shows negligible input of the Chernobyl fallout. No correlation of the (137)Cs and Pu isotopes with (129)I was observed, indicating their different sources terms. Results demonstrate uneven distribution of these radionuclides in the Lithuanian territory and several sources of contamination i.e. Chernobyl accident, reprocessing releases and global fallout.

  8. Neutron Resonance Parameters and Covariance Matrix of 239Pu

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2008-08-01

    In order to obtain the resonance parameters in a single energy range and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the code SAMMY. The most recent experimental data were analyzed or reanalyzed in the energy range thermal to 2.5 keV. The normalization of the fission cross section data was reconsidered by taking into account the most recent measurements of Weston et al. and Wagemans et al. A full resonance parameter covariance matrix was generated. The method used to obtain realistic uncertainties on the average cross section calculated by SAMMY or other processing codes was examined.

  9. Determination of plutonium isotopes in seawater reference materials using isotope-dilution ICP-MS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2012-09-01

    We analyzed the activities of (239)Pu, (240)Pu, (239+240)Pu, (241)Pu, the ratio of number of atoms (atom ratio) for (240)Pu/(239)Pu, and the activity ratio of (241)Pu/(239+240)Pu in seawater reference materials, IAEA-443 and IAEA-381, using a highly sensitive isotope dilution sector field inductively coupled plasma mass spectrometry method. With a mean chemical yield of 65% determined with (242)Pu as a tracer, we found that the experimentally established values in IAEA-443 for (239)Pu, (240)Pu, (241)Pu and (239+240)Pu activities are almost the same as those in IAEA-381. Regarding the (239+240)Pu activity, we provided the most precise and accurate result among the twelve laboratories, which participated in the interlaboratory comparison. In addition, for the (240)Pu/(239)Pu atom ratio, our results for IAEA-381 (0.2315±0.0008) and IAEA-443 (0.2325±0.0008) are in good agreement with the IAEA information value (0.229±0.006), but have much smaller uncertainty. Since the new seawater reference material, IAEA-443, is commercially available, it can be used not only for method validation for seawater plutonium isotope ratio and activity analysis, but also for more general use as a plutonium isotope standard for mass discrimination correction for other environmental samples.

  10. AMS of natural 236U and 239Pu produced in uranium ores

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Barrows, T. T.; Fifield, L. K.; Tims, S. G.; Steier, P.

    2007-06-01

    The rare isotopes 236U and 239Pu are produced naturally by neutron capture in uranium ores. Here we measure 236U and 239Pu by accelerator mass spectrometry (AMS) in the same ore samples for the first time. To ensure efficient extraction of both elements and isotopic equilibrium between the 239Pu in the ore and a 242Pu spike, we developed a new sample preparation protocol. AMS has clear advantages over previous methods because it achieves better discrimination against molecular interferences with higher sensitivity and shorter counting times. Measurements of 236U and 239Pu hold considerable promise as proxy indicators of neutron flux and uranium concentration.

  11. Resolving global versus local/regional Pu sources in the environment using sector ICP-MS

    USGS Publications Warehouse

    Ketterer, M.E.; Hafer, K.M.; Link, C.L.; Kolwaite, D.; Wilson, Jim; Mietelski, J.W.

    2004-01-01

    Sector inductively coupled plasma mass spectrometry is a versatile method for the determination of plutonium activities and isotopic compositions in samples containing this element at fallout levels. Typical detection limits for 239+240Pu are 0.1, 0.02 and 0.002 Bq kg -1Pu for samples sizes of 0.5 g, 3 g, and 50 g of soil, respectively. The application of sector ICP-MS-based Pu determinations is demonstrated in studies in sediment chronology, soil Pu inventory and depth distribution, and the provenance of global fallout versus local or regional Pu sources. A sediment core collected from Sloans Lake (Denver, Colorado, USA) exhibits very similar 137Cs and 239+240Pu activity profiles; 240Pu/239Pu atom ratios indicate possible small influences from the Nevada Test Site and/or the Rocky Flats Environmental Technology Site. An undisturbed soil profile from Lockett Meadow (Flagstaff, Arizona, USA) exhibits an exponential decrease in 239+240Pu activity versus depth; 240Pu/239Pu in the top 3 cm is slightly lower than the global fallout range of 0.180 ?? 0.014 due to possible regional influence of Nevada Test Site fallout. The 239??240Pu inventory at Lockett Meadow is 56 ?? 4 Bq m-2, consistent with Northern Hemisphere mid-latitude fallout. Archived NdF3 sources, prepared from Polish soils, demonstrate that substantial 239+240Pu from the 1986 Chernobyl disaster has been deposited in north eastern regions of Poland; compared to global fallout, Chernobyl Pu exhibits higher abundances of 240Pu and 241Pu. The ratios 240Pu/239pu and 241Pu/239Pu co-vary and range from 0.186-0.348 and 0.0029-0.0412, respectively, in forest soils (241Pu/239Pu = 0.2407??[240Pu/239Pu] - 0.0413; r2 = 0.9924). ?? The Royal Society of Chemistry 2004.

  12. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-raymore » multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  13. Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of 210Pb and 239 + 240Pu profiles

    USGS Publications Warehouse

    Crusius, John; Bothner, Michael H.; Sommerfield, Christopher K.

    2004-01-01

    Profiles of 210Pb and 239 + Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36-192 m) are interpreted with the aid of a numerical sediment-mixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25-35 cm. Roughly half the cores have 210Pb and 239 + 240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from ~0.7 to ~40 cm2 yr-1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of ~0.3 cm yr-1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239 + 240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the present-day flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few centimeters below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.

  14. Chronic cigarette smoke exposure increases the pulmonary retention and radiation dose of {sup 239}Pu inhaled as {sup 239}PuO{sub 2} by F344 rats

    SciTech Connect

    Finch, G.L.; Lundgren, D.L.; Barr, E.B.; Chen, B.T.; Griffith, W.C.; Hobbs, C.H.; Hoover, M.D.; Nikula, K.J.; Mauderly, J.L.

    1998-12-01

    As a portion of a study to examine how chronic cigarette smoke exposure might alter the risk of lung tumors from inhaled {sup 239}PuO{sub 2} in rats, the effects of smoke exposure on alpha-particle lung dosimetry over the life-span of exposed rats were determined. Male and female rats were exposed to inhaled {sup 239}PuO{sub 2} alone or in combination with cigarette smoke. Animals exposed to filtered air along served as controls for the smoke exposure. Whole-body exposure to mainstream smoke diluted to concentrations of either 100 or 250 mg total particulate matter m{sup {minus}3} began at 6 wk of age and continued for 6 h d{sup {minus}1}, 5 d wk{sup {minus}1}, for 30 mo. A single, pernasal, acute exposure to {sup 239}PuO{sub 2} was given to all rats at 12 wk of age. Exposure to cigarette smoke caused decreased body weight gains in a concentration dependent manner. Lung-to-body weight ratios were increased in smoke-exposed rats. Rats exposed to cigarette smoke before the {sup 239}PuO{sub 2} exposure deposited less {sup 239}Pu in the lung than did controls. Except for male rats exposed to LCS, exposure to smoke retarded the clearance of {sup 239}Pu from the lung compared to control rats through study termination at 870 d after {sup 239}PuO{sub 2} exposure. Radiation doses to lungs were calculated by sex and by exposure group for rats on study for at least 360 d using modeled body weight changes, lung-to-body weight ratios, and standard dosimetric calculations. For both sexes, estimated lifetime radiation doses from the time of {sup 239}PuO{sub 2} exposure to death were 3.8 Gy, 4.4 Gy, or 6.7 Gy for the control, LCS, or HCS exposure groups, respectively. Assuming an approximately linear dose-response relationship between radiation dose and lung neoplasm incidence, approximate increases of 20% or 80% in tumor incidence over controls would be expected in rats exposed to {sup 239}PuO{sub 2} and LCS or {sup 239}PuO{sub 2} and HCS, respectively.

  15. A Method for Continuous (239)Pu Determinations in Arctic and Antarctic Ice Cores.

    PubMed

    Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P

    2016-07-05

    Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.

  16. (236)U and (239,)(240)Pu ratios from soils around an Australian nuclear weapons test site.

    PubMed

    Tims, S G; Froehlich, M B; Fifield, L K; Wallner, A; De Cesare, M

    2016-01-01

    The isotopes (236)U, (239)Pu and (240)Pu are present in surface soils as a result of global fallout from nuclear weapons tests carried out in the 1950's and 1960's. These isotopes potentially constitute artificial tracers of recent soil erosion and sediment movement. Only Accelerator Mass Spectrometry has the requisite sensitivity to measure all three isotopes at these environmental levels. Coupled with its relatively high throughput capabilities, this makes it feasible to conduct studies of erosion across the geographical extent of the Australian continent. In the Australian context, however, global fallout is not the only source of these isotopes. As part of its weapons development program the United Kingdom carried out a series of atmospheric and surface nuclear weapons tests at Maralinga, South Australia in 1956 and 1957. The tests have made a significant contribution to the Pu isotopic abundances present in the region around Maralinga and out to distances ∼1000 km, and impact on the assessment techniques used in the soil and sediment tracer studies. Quantification of the relative fallout contribution derived from detonations at Maralinga is complicated owing to significant contamination around the test site from numerous nuclear weapons safety trials that were also carried out around the site. We show that (236)U can provide new information on the component of the fallout that is derived from the local nuclear weapons tests, and highlight the potential of (236)U as a new fallout tracer.

  17. Characterization of Pu concentration and its isotopic composition in a reference fallout material.

    PubMed

    Zhang, Yongsan; Zheng, Jian; Yamada, Masatoshi; Wu, Fengchang; Igarashi, Yasuhito; Hirose, Katsumi

    2010-02-01

    Because there is no reference material for fallout plutonium isotope monitoring, preparation of such a material is necessary for quality control of fallout radionuclides analysis for atmospheric environmental studies. In this work, we report the characterization of Pu activity and its isotopic composition in a reference fallout material prepared by the Meteorological Research Institute (MRI), Japan. This material was prepared from samples collected at 14 stations throughout Japan in 1963-1979, with reference values of (137)Cs, (90)Sr and (239)(+)(240)Pu activities. We analyzed the activities of (239)(+)(240)Pu and (241)Pu, and the atom ratios of (240)Pu/(239)Pu and (241)Pu/(239)Pu using an isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The (239)(+)(240)Pu activities in this fallout material using acid leaching and total digestion were 6.56+/-0.20 mBq/g and 6.79+/-0.16 mBq/g, respectively. Atom ratios of (240)Pu/(239)Pu were 0.1915+/-0.0030 and 0.1922+/-0.0044, respectively. Both (240)Pu/(239)Pu and (241)Pu/(239)Pu atom ratios were slightly higher than those of global fallout, which could be attributed to the deposition of fallout radionuclides resulting from the Chinese nuclear weapons tests conducted in the 1970s. The dominant host phases of (239)(+)(240)Pu were found to be organic matter-sulfides (70%) with a relative high (240)Pu/(239)Pu atom ratio, and Fe-Mn oxides (19%) using a sequential extraction method.

  18. What Are the Legal and Policy Implications of Conducting Preemption and Interdiction Against a Weapons of Mass Destruction?

    DTIC Science & Technology

    2002-01-01

    kg 17 kg 20 kg Uranium 233 Neptunium 237 Americium 241 15 kg 60 kg 100 kg Source: O’Neil 1997, 4. 38 With regard to the question of preassembly or...1996, 2). That is not specifically enriched weapons grade HEU or Pu 239, but does include Pu 239, Pu 240, Pu 241, Pu 242, Uranium 233, Neptunium - 237

  19. A comparison of fallout (236)U and (239)Pu uptake by Australian vegetation.

    PubMed

    Froehlich, M B; Dietze, M M A; Tims, S G; Fifield, L K

    2016-01-01

    The isotopes (236)U and (239)Pu, both produced during nuclear weapons tests carried out in the 1950s and 1960s, are present in the environment and may be used as tracers for soil erosion studies. Although these radionuclides occur only at ultra-trace levels in nature, they can be readily measured by accelerator mass spectrometry with the 14UD heavy ion accelerator at the Australian National University. We have analysed a series of vegetation samples for their (236)U and (239)Pu concentration and compared the results with those found in the surrounding soil. (236)U could be measured in all collected samples whereas (239)Pu could not be detected in several vegetation samples due to its very low concentration, although it was readily detectable in the soil. We find that, relative to plutonium, (236)U is preferentially taken up by plants with enrichment factors ((236)U/(239)Pu)veg/((236)U/(239)Pu)soil that range between 7 and 52 in the present study.

  20. Sensitivities of five alpha continuous air monitors for detection of airborne {sup 239}Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  1. Sensitivities of five alpha continuous air monitors for detection of airborne sup 239 Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  2. Distinguishing fissions of ^239Pu and ^235U with low-resolution detectors

    NASA Astrophysics Data System (ADS)

    Swanberg, E.; Norman, E. B.; Prussin, S. G.; Shugart, H.; Browne, E.

    2008-10-01

    When ^239Pu and ^235U undergo thermal neutron-induced fission, both produce significant numbers of β-delayed gamma rays with energies in the several MeV range. Experiments using high energy-resolution germanium detectorsootnotetextR. E. Marrs et al., Nucl. Instr. & Meth. A (in press). have shown that it is possible to distinguish the fission of ^239Pu from that of ^235U. Using differences in the temporal behavior and in the shapes of the gamma-ray energy spectra, we show that these two isotopes can also be differentiated using low-resolution plastic or liquid scintillators. It is likely this method could be extended to homeland security applications, such as screening of cargo containers for ^235U and ^239Pu, using a neutron source and such scintillators.

  3. Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium ((239)Pu): Chelate assisted uptake and translocation.

    PubMed

    Singh, Shraddha; Fulzele, D P; Kaushik, C P

    2016-10-01

    Plants have demonstrated a great potential to remove toxic elements from soils and solutions and been successfully used for phytoremediation of important radionuclides. Uptake potential of vetiver plants (V. zizanoides) for the remediation of (239)Pu in hydroponic and soil conditions was studied in the present work. High efficiency of V. zizanoides for the removal of (239)Pu was recorded with 66.2% being removed from the hydroponic solution after 30 days. However, remediation of (239)Pu from soil was limited. Remediation of (239)Pu from soil was increased with the addition of chelating agents citric acid (CA) and diethylenetriaminepentaacetic acid (DTPA). Accumulation of (239)Pu was recorded higher in roots than shoots, however its translocation from roots to shoots increased in the presence of chelators in hydroponic as well as soil conditions. DTPA was found more effective than CA showing higher translocation index (TI). Increase in TI was observed 8 and 6 times in the solution and soil respectively when plants were exposed to (239)Pu-DTPA in comparison to only (239)Pu. The present study demonstrates that V. zizanoides plant is a potential plant for phytoremediation of (239)Pu.

  4. Nucleogenic 36Cl, 236U and 239Pu in uranium ores

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Fifield, L. K.; Barrows, T. T.; Tims, S. G.; Gladkis, L. G.

    2008-08-01

    The nucleogenic isotopes 36Cl, 236U and 239Pu are produced naturally in subsurface environments via neutron capture of thermal and epithermal neutrons. Concentrations are, however, very low and accelerator mass spectrometry (AMS) is required for quantitative measurements. A particular challenge is presented by the measurement of 236U/ 238U ratios down to the level of 10 -13 that is expected from rocks with low uranium concentration. Here, we present the AMS methodology that has been developed at the ANU for measuring 236U/ 238U ratios at this level. The more established methodologies for 36Cl and 239Pu measurements are also summarised. These capabilities are then used to characterize the 36Cl, 236U and 239Pu concentrations in a range of uranium ores. A simple model of the neutron production and capture processes in subsurface environments has been developed and is presented. It is shown that nucleogenic 36Cl, 236U and 239Pu can be used to determine both thermal and epithermal neutron fluxes in subsurface environments. Potential applications include uranium exploration and monitoring of the environmental impact of uranium mining.

  5. Plutonium concentration and isotopic ratio in soil samples from central-eastern Japan collected around the 1970s.

    PubMed

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2015-04-16

    Obtaining Pu background data in the environment is essential for contamination source identification and assessment of environmental impact of Pu released from the Fukushima Daiichi nuclear power plant (FDNPP) accident. However, no baseline information on Pu isotopes in Fukushima Prefecture has been reported. Here we analyzed 80 surface soil samples collected from the central-eastern Japan during 1969-1977 for (239+240)Pu activity concentration and (240)Pu/(239)Pu atom ratio to establish the baseline before the FDNPP accident. We found that (239+240)Pu activity concentrations ranged from 0.004 -1.46 mBq g(-1), and (240)Pu/(239)Pu atom ratios varied narrowly from 0.148 to 0.229 with a mean of 0.186 ± 0.015. We also reconstructed the surface deposition density of (241)Pu using the (241)Pu/(239)Pu atom ratio in the Japanese fallout reference material. The obtained results indicated that, for the FDNPP-accident released (241)Pu, a similar radiation impact can be estimated as was seen for the global fallout deposited (241)Pu in the last decades.

  6. Plutonium concentration and isotopic ratio in soil samples from central-eastern Japan collected around the 1970s

    PubMed Central

    Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2015-01-01

    Obtaining Pu background data in the environment is essential for contamination source identification and assessment of environmental impact of Pu released from the Fukushima Daiichi nuclear power plant (FDNPP) accident. However, no baseline information on Pu isotopes in Fukushima Prefecture has been reported. Here we analyzed 80 surface soil samples collected from the central-eastern Japan during 1969–1977 for 239+240Pu activity concentration and 240Pu/239Pu atom ratio to establish the baseline before the FDNPP accident. We found that 239+240Pu activity concentrations ranged from 0.004 –1.46 mBq g−1, and 240Pu/239Pu atom ratios varied narrowly from 0.148 to 0.229 with a mean of 0.186 ± 0.015. We also reconstructed the surface deposition density of 241Pu using the 241Pu/239Pu atom ratio in the Japanese fallout reference material. The obtained results indicated that, for the FDNPP-accident released 241Pu, a similar radiation impact can be estimated as was seen for the global fallout deposited 241Pu in the last decades. PMID:25881009

  7. Plutonium concentration and isotopic ratio in soil samples from central-eastern Japan collected around the 1970s

    NASA Astrophysics Data System (ADS)

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2015-04-01

    Obtaining Pu background data in the environment is essential for contamination source identification and assessment of environmental impact of Pu released from the Fukushima Daiichi nuclear power plant (FDNPP) accident. However, no baseline information on Pu isotopes in Fukushima Prefecture has been reported. Here we analyzed 80 surface soil samples collected from the central-eastern Japan during 1969-1977 for 239+240Pu activity concentration and 240Pu/239Pu atom ratio to establish the baseline before the FDNPP accident. We found that 239+240Pu activity concentrations ranged from 0.004 -1.46 mBq g-1, and 240Pu/239Pu atom ratios varied narrowly from 0.148 to 0.229 with a mean of 0.186 +/- 0.015. We also reconstructed the surface deposition density of 241Pu using the 241Pu/239Pu atom ratio in the Japanese fallout reference material. The obtained results indicated that, for the FDNPP-accident released 241Pu, a similar radiation impact can be estimated as was seen for the global fallout deposited 241Pu in the last decades.

  8. Determination of 241Pu in nuclear waste slurries: a comparative study using LSC and ICP-MS.

    PubMed

    Jäggi, M; Röllin, S; Alvarado, J A Corcho; Eikenberg, J

    2012-02-01

    (241)Pu was determined in slurry samples from a nuclear reactor decommissioning project at the Paul Scherrer Institute (Switzerland). To validate the results, the (241)Pu activities of five samples were determined by LSC (TriCarb and Quantulus) and ICP-MS, with each instrument at a different laboratory. In lack of certified reference materials for (241)Pu, the methods were further validated using the (241)Pu information values of two reference sediments (IAEA-300 and IAEA-384). Excellent agreement with the results was found between LSC and ICP-MS in the nuclear waste slurries and the reference sediments.

  9. Determination of /sup 239,240/Pu in bottom sediments of the Baltic Sea

    SciTech Connect

    Kuznetsov, Yu.V.; Legin, V.K.; Pospelov, Yu.N.; Simonyak, Z.N.

    1988-11-01

    We present a technique for determining the /sup 239,240/Pu content, using /sup 236/Pu as the monitor of chemical yield, in samples of soils and bottom sediments - objects of the external environment. Plutonium is extracted from the matrix material by leaching with a mixture of concentrated acids HCl-HNO/sub 3/, after which it is separated by ion-exchange methods. After electrodeposition onto stainless steel discs the activity of the nuclides of plutonium is measured by the method of alpha-spectrometry. The average chemical yields during the analysis of the samples was 40-60%, the relative standard deviation was 10%, and the lower limit of detectability was 0.3 Bq. We present results of the determination of the /sup 239,240/Pu content in surface samples of bottom sediments from the Gulf of Finland and that past of the Baltic Sea which adjoins the territory of the USSR. It is found that the unit activity of /sup 239,240/Pu in the bottom sediments varies within the limits of 0.4-1.2 Bq/kg and lies at the global level. Global genesis of /sup 239,240/Pu in the bottom sediments of the Gulf of Finland and the open parts of the Baltic Sea is also confirmed by the values which are found for the ratios /sup 238/Pu//sup 239,240/Pu and /sup 239,240/Pu//sup 137/Cs.

  10. Microscopic Calculation of Fission Fragment Energies for the 239Pu(nth,f) Reaction

    SciTech Connect

    Younes, W; Gogny, D

    2011-10-03

    We calculate the total kinetic and excitation energies of fragments produced in the thermal-induced fission of {sup 239}Pu. This result is a proof-of-principle demonstration for a microscopic approach to the calculation of fission-fragment observables for applied data needs. In addition, the calculations highlight the application of a fully quantum mechanical description of scission, and the importance of exploring scission configurations as a function of the moments of the fragments, rather than through global constraints on the moments of the fissioning nucleus. Using a static microscopic calculation of configurations at and near scission, we have identified fission fragments for the {sup 239}Pu (n{sub th}, f) reaction and extracted their total kinetic and excitation energies. Comparison with data shows very good overall agreement between theory and experiment. Beyond their success as a proof of principle, these calculations also highlight the importance of local constraints on the fragments themselves in microscopic calculations.

  11. Dependence of dose coefficients for inhaled 239Pu on absorption parameters.

    PubMed

    Suzuki, K; Sekimoto, H; Ishigure, N

    2001-01-01

    With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.

  12. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  13. Distribution of skeletal malignancies in beagles injected with {sup 239}Pu citrate

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Angus, W.

    1994-04-01

    The distribution of skeletal malignancies among our beagles injected with {sup 239}Pu as young adults roughly seems to follow the distribution of skeletal mass and skeletal {sup 239}Pu. These findings are similar to those we reported previously for a group of dogs given {sup 226}Ra. Although there were differences in tumor distribution between the animals given {sup 239}Ra and those given {sup 239}Pu, most of them were not statistically significant; however, the radium dogs seemed to show a greater sensitivity to bone tumor origin in the tibia, while there may have been a tendency among the plutonium dogs toward increased relative sensitivity in the scapula, lumbar vertebrae, sacrum, and ribs. In contrast, the most common site for the formation of naturally-occurring bone malignancy in the dog is the distal radius. Perhaps there were too few tumors and too few dogs to establish statistical significance. A correlation between tumor location and at least two anatomical-physiological factors in the skeleton indicated that these two factors (site-specific bone turnover rate and percent of red marrow at the site, which is correlated with vascularity) may influence the appearance of malignancies both individually and in combination. Except for the femur, there appeared to be no difference between the relative distribution of skeletal malignancies of low-level (30 Bq-2 Bq kg{sup -1} injected) and high-level (3-122 kBq kg{sup -1}) dogs. Distribution of bone tumors between the axial and appendicular skeleton was 50% vs. 50% for {sup 239}Pu (42 and 42), but it was 39% axial vs. 61% appendicular (22 and 35, respectively) for dogs given {sup 226}Ra. This difference was not significant (p > 0.2). 15 refs., 4 tabs.

  14. Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments

    USGS Publications Warehouse

    Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.

    2012-01-01

    Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.

  15. Chromosomal aberrations in lymphocytes of peripheral blood among Mayak facility workers who inhaled insoluble forms of 239PU.

    PubMed

    Okladnikova, N D; Scott, B R; Tokarskaya, Z B; Zhuntova, G V; Khokhryakov, V F; Syrchikov, V A; Grigoryeva, E S

    2005-01-01

    A cytogenetic study was performed on 79 plutonium (Pu) workers chronically exposed to alpha radiation from inhaled, low-transportable (insoluble) compounds of airborne 239Pu and to external gamma rays. Body burden estimates for 239Pu ranged from 0 to 15.5 kBq. Chromosomal aberrations (CAs) (stable and unstable) among peripheral blood lymphocytes and cumulative alpha radiation doses were evaluated approximately 25 y after first contact with 239Pu. For the cytogenetic analyses, a standard two-day peripheral blood lymphocyte culture technique was applied. While alpha radiation doses continually increase up to the time of cytogenetic measurements, significant gamma ray exposures essentially ceased long before the time of measurement, so that alpha and gamma doses were not correlated. For the exposed workers, the mean 239Pu body burden (estimate), evaluated at the time of the cytogenetic measurement, was 1.23 +/- 0.26 kBq and the corresponding mean absorbed external gamma ray dose (estimate) to the total body was 0.076 +/- 0.009 Gy. Single and multivariate regression analyses were performed on the CA data. Stable, unstable and total aberrations increased as the 239Pu body burden increased over the range 0-4.5 kBq. However, above this range little additional increase was observed. CAs were weakly correlated with time since the first intake of 239Pu. No relationship between chromatid aberrations and 239Pu incorporation was found. Unstable (but not stable) aberrations were correlated with gamma radiation dose. No significant relationship of CA and smoking was found.

  16. Modeling and production of 240Am by deuteron-induced activation of a 240Pu target

    SciTech Connect

    Finn, Erin C.; McNamara, Bruce K.; Greenwood, Lawrence R.; Wittman, Richard S.; Soderquist, Chuck Z.; Woods, Vincent T.; VanDevender, Brent A.; Metz, Lori A.; Friese, Judah I.

    2015-02-01

    A novel reaction pathway for production of 240Am is reported. Models of reaction cross-sections in EMPIRE II suggests that deuteron-induced activation of a 240Pu target produces maximum yields of 240Am from 11.5 MeV incident deuterons. This activation had not been previously reported in the literature. A 240Pu target was activated under the modeled optimum conditions to produce 240Am. The modeled cross-section for the 240Pu(d, 2n)240Am reaction is on the order of 20-30 mbarn, but the experimentally estimated value is 5.3 ± 0.2 mbarn. We discuss reasons for the discrepancy as well as production of other Am isotopes that contaminate the final product.

  17. Commentary on Inhaled 239PuO2 in Dogs — A Prophylaxis against Lung Cancer?

    DOE PAGES

    Cuttler, Jerry M.; Feinendegen, Ludwig E.

    2015-01-01

    Several studies on the effect of inhaled plutonium-dioxide particulates and the incidence of lung tumors in dogs reveal beneficial effects when the cumulative alpha-radiation dose is low. There is a threshold at an exposure level of about 100 cGy for excess tumor incidence and reduced lifespan. The observations conform to the expectations of the radiation hormesis dose-response model and contradict the predictions of the LNT hypothesis. These studies suggest investigating the possibility of employing low-dose alpha-radiation, such as from 239PuO2 inhalation, as a prophylaxis against lung cancer.

  18. Preliminary Evaluation and Uncertainty Quantification of the Prompt Fission Neutron Spectrum of {sup 239}Pu

    SciTech Connect

    Neudecker, D.; Talou, P.; Taddeucci, T.N.; Haight, R.C.; Kawano, T.; Lee, H.Y.; Smith, D.L.; Capote, R.; Rising, M.E.; White, M.C.

    2015-01-15

    Low evaluated uncertainties were obtained in a previous evaluation of the {sup 239}Pu prompt fission neutron spectrum and associated covariances for incident neutrons of 0.5 MeV, which were enlarged a-posteriori before being incorporated into ENDF/B-VII.1. These low evaluated uncertainties triggered an in-depth study and improved estimate of experimental as well as model uncertainties. Here, we will summarize these efforts and show that the improved estimate of experimental and model uncertainties leads to corresponding evaluated uncertainties in good agreement with uncertainties obtained in a statistical analysis based primarily on experimental information.

  19. Preliminary Evaluation and Uncertainty Quantification of the Prompt Fission Neutron Spectrum of 239Pu

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Taddeucci, T. N.; Haight, R. C.; Kawano, T.; Lee, H. Y.; Smith, D. L.; Capote, R.; Rising, M. E.; White, M. C.

    2015-01-01

    Low evaluated uncertainties were obtained in a previous evaluation of the 239Pu prompt fission neutron spectrum and associated covariances for incident neutrons of 0.5 MeV, which were enlarged a-posteriori before being incorporated into ENDF/B-VII.1. These low evaluated uncertainties triggered an in-depth study and improved estimate of experimental as well as model uncertainties. Here, we will summarize these efforts and show that the improved estimate of experimental and model uncertainties leads to corresponding evaluated uncertainties in good agreement with uncertainties obtained in a statistical analysis based primarily on experimental information.

  20. Temporal evolution of (137)Cs, (237)Np, and (239+240)Pu and estimated vertical (239+240)Pu export in the northwestern Mediterranean Sea.

    PubMed

    Bressac, M; Levy, I; Chamizo, E; La Rosa, J J; Povinec, P P; Gastaud, J; Oregioni, B

    2017-04-03

    The evolution of (137)Cs, (237)Np and (239+240)Pu at the DYFAMED station (NW Mediterranean) is discussed in relation to physical processes, downward fluxes of particles, and changes in the main input sources. The data set presented in this study represents the first complete (237)Np vertical profiles (0.12-0.27μBqL(-1)), and constitutes a baseline measurement to assess future changes. A similar behavior of Cs and Np has been evidenced, confirming that Np behaves conservatively. While the (137)Cs decrease has been driven by its radioactive decay, the vertical distribution of (237)Np has not substantially changed over the last decade. In the absence of recent major inputs, a homogenization of their vertical distribution occurred, partly due to deep convection events that became more intense during the last decade. In contrast, (239+240)Pu surface levels in the NW Mediterranean waters have fallen in the past four decades by a factor of 5. This decrease in surface has been balanced by higher concentrations in the deep-water layers. A first estimate of the downward (239+240)Pu fluxes in the NW Mediterranean Sea is proposed over more than two decades. This estimation, based on the DYFAMED sediment trap time-series data and published (239+240)Pu flux measurements, suggests that sinking particles have accounted for 60-90% of the upper layer (0-200m) Pu inventory loss over the period 1989-2013. The upper layer residence time of Pu is estimated to be ~28years, twice as long as the residence time estimated for the whole western Mediterranean (~15years). This difference highlights the slow removal of Pu in the open waters of the NW Mediterranean and confirms that most of the Pu removal occurs along the coastal margin where sedimentation rates are high.

  1. Improving the Assay of 239Pu in Spent and Melted Fuel Using the Nuclear Resonance Fluorescence Integral Resonance Transmission Method

    NASA Astrophysics Data System (ADS)

    Angell, C. T.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Quiter, B. J.; Ludewigt, B. A.; Karwowski, H.; Rich, G.

    2015-10-01

    Non-destructive assay (NDA) of 239Pu in spent nuclear fuel is possible using the isotope-specific nuclear resonance fluorescence (NRF) integral resonance transmission (IRT) method. The IRT method measures the absorption of photons from a quasi-monoenergetic γ-ray beam due to all resonances in the energy width of the beam. According to calculations the IRT method could greatly improve assay times for 239Pu in nuclear fuel. To demonstrate and verify the IRT method, the IRT signature was first measured in 181Ta, whose nuclear resonant properties are similar to those of 239Pu, and then measured in 239Pu. These measurements were done using the quasi-monoenergetic beam at the High Intensity γ-ray Source (HIγS) in Durham, NC, USA. The IRT signature was observed as a decrease in scattering strength when the same isotope material was placed upstream of the scattering target. The results confirm the validity of the IRT method in both 181Ta and 239Pu.

  2. Consistent Data Assimilation of Actinide Isotopes: 235U and 239Pu

    SciTech Connect

    G. Palmiottti; H. Hiruta; M. Salvatores

    2011-09-01

    In this annual report we illustrate the methodology of the consistent data assimilation that allows to use the information coming from integral experiments for improving the basic nuclear parameters used in cross section evaluation. A series of integral experiments were analyzed using the EMPIRE evaluated files for {sup 235}U, {sup 238}U, and {sup 239}Pu. Inmost cases the results have shown quite large worse results with respect to the corresponding existing evaluations available for ENDF/B-VII. The observed discrepancies between calculated and experimental results were used in conjunction with the computed sensitivity coefficients and covariance matrix for nuclear parameters in a consistent data assimilation. Only the GODIVA and JEZEBEL experimental results were used, in order to exploit information relative to the isotope of interest that are, in this particular case: {sup 235}U and {sup 239}Pu. The results obtained by the consistent data assimilation indicate that with reasonable modifications (mostly within the initial standard deviation) it is possible to eliminate the original large discrepancies on the K{sub eff} of the two critical configurations. However, some residual discrepancy remains for a few fission spectral indices that are, most likely, to be attributed to the detector cross sections.

  3. Bone tumor location in dogs given skeletal irradiation by {sup 239}Pu or {sup 226}Ra

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Miller, S.C.

    1997-10-01

    Statistical analyses have indicated that there was a significant difference between dogs injected with bone volume-seeking {sup 226} Ra as compared to those given bone surface-seeking {sup 239}Pu with respect to location within the skeleton of 334 radiation-induced primary bone malignancies. Corresponding differences also were event when dogs given bone volume-seeking {sup 90}Sr or bone surface-seeking {sup 241}Am, {sup 228}Th {sup 248,252}Cf, or {sup 224}Ra (which decays mostly on bone surfaces because of its short, 3.6 d half time) were included along with the {sup 226}Ra or {sup 239}Pu, respectively (562 total tumors). Further analysis suggested that higher values of percent red marrow (M) and bone turnover rate (R) are correlated with increased probability. of tumor appearance at a particular location within the skeleton for the surface seekers. Proportionately higher values of M and R are associated with skeletal sites containing mostly trabecular bone as compared to those with mostly compact (cortical) bone. Coefficients of determination (r{sup 2}) for the relationship between percent of total tumors vs the combination of percent red marrow and turnover rate (= MR) was about 0.7 for the surface seekers but only about 0.1 for the volume seekers. This indicates that the neoplastic effects of surface seekers, but not volume seekers, are associated with the presence of trabecular bone at the various sites of radio nuclide deposition within the skeleton. 10 refs., 3 tabs.

  4. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  5. Partial (gamma)-Ray Cross Sections for the Reaction 239Pu(n,2n(gamma)i) and the 239Pu(n,2n) Cross Section

    SciTech Connect

    Beacker, J.A.; Bernstein, L.A.; Younes, W.; McNabb, D.P.; Garrett, P.E.; Archer, D.; McGrath, C.A.; Stoyer, M.A.; Chen, H.; Ormand, W.E.; Nelson, R.O.; Chadwick, M.B.; Johns, G.D.; Drake, D.; Young, P.G.; Devlin, M.; Fotiades, N.; Wilburn, W.S.

    2001-09-14

    Absolute partial {gamma}-ray cross sections for production of discrete {gamma} rays in the {sup 239}Pu(n,2n{gamma}i){sup 238}Pu reaction have been measured. The experiments were performed at LANSCE/WNR on the 60R flight line. Reaction {gamma}-rays were measured using the large-scale Compton-suppressed array of Ge detectors, GEANIE. The motivation for this experiment, an overview of the partial {gamma}-ray cross-section measurement, and an introduction to the main experimental issues will be presented. The energy resolution of the Ge detectors allowed identification of reaction {gamma} rays above the background of sample radioactivity and fission {gamma} rays. The use of planar Ge detectors with their reduced sensitivity to neutron interactions and improved line shape was also important to the success of this experiment. Absolute partial {gamma}-ray cross sections are presented for the 6{sub 1}{sup +} {yields} 4{sub 1}{sup +} member of the ground state rotational band in {sup 238}Pu, together with miscellaneous other {gamma}-ray partial cross sections. The n,2n reaction cross section shape and magnitude as a function of neutron energy was extracted from these partial cross sections using nuclear modeling (enhanced Hauser-Feshbach) to relate partial {gamma}-ray cross sections to the n,2n cross section. The critical nuclear modeling issue is the ratio of a partial cross section to the reaction channel cross section, and not the prediction of the absolute magnitude.

  6. 239Pu(n,2n) 238Pu cross section inferred from IDA calculations and GEANIE measurements

    SciTech Connect

    Chen, H; Ormand, W E; Dietrich, F S

    2000-09-01

    This report presents the latest {sup 239}Pu(n,2n){sup 238}Pu cross sections inferred from calculations performed with the nuclear reaction-modeling code system, IDA, coupled with experimental measurements of partial {gamma}-ray cross sections for incident neutron energies ranging from 5.68 to 17.18 MeV. It is found that the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section peaks at E{sub inc} {approx} 11.4 MeV with a peak value of approximately 326 mb. At E{sub inc} {approx} 14 MeV, the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section is found to be in good agreement with previous radio-chemical measurements by Lockheed. However, the shape of the inferred {sup 239}Pu(n,2n){sup 238}Pu cross section differs significantly from previous evaluations of ENDL, ENDF/B-V and ENDF/B-VI. In our calculations, direct, preequilibrium, and compound reactions are included. Also considered in the modeling are fission and {gamma}-cascade processes in addition to particle emission. The main components of physics adopted and the parameters used in our calculations are discussed. Good agreement of the inferred {sup 239}Pu(n,2n){sup 238}Pu cross sections derived separately from IDA and GNASH calculations is shown. The two inferences provide an estimate of variations in the deduced {sup 239}Pu(n,2n){sup 238}Pu cross section originating from modeling.

  7. Exposure of F344 rats to aerosols of {sup 239}PuO{sub 2} and chronically inhaled cigarette smoke

    SciTech Connect

    Finch, G.L.; Nikula, K.J.; Barr, E.B.; Bechtold, W.E.; Chen, B.T.; Griffith, W.C.; Hobbs, C.H.; Hoover, M.D.; Mauderly, J.L.

    1994-11-01

    Nuclear workers may be accidently exposed to radioactive materials such as {sup 239}PuO{sub 2} by inhalation, and thus have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radionuclides and other carcinogens may increase the risk of cancer induction. An important and common lung carcinogen is cigarette smoke. This study is being conducted to better determine the combined effects of inhaled {sup 239}PuO{sub 2} and cigarette smoke on the induction of lung cancer in rats.

  8. Large particle flux of 239+240Pu on the continental margin of the East China Sea.

    PubMed

    Yamada, Masatoshi; Aono, Tatsuo

    2002-03-15

    Settling particles were collected from three locations in the East China Sea continental margin and analyzed for 239+240Pu. Two types of sediment traps were used, cylindrical traps and conical time-series traps. Surface sediment samples collected from five locations were also analyzed for 239+240Pu. Data from cylindrical traps showed there was a clear tendency for total mass fluxes to increase with depth at all three stations, and there was an especially large increase near the bottom. 239+240Pu concentrations in settling particles increased with depth from 1.76 mBq/g at 97-m depth to 3.0 mBq/g at 120-m depth and ranged from approximately 3 to 4 mBq/g at depths greater than 120 m. 239+240Pu concentrations collected in the near-bottom traps were approximately two times higher than those in the underlying surface sediments. Like total mass fluxes there was a clear tendency for 239+240Pu fluxes to increase with depth at every station, and the highest 239+240Pu fluxes were observed near the bottom. 239+240Pu concentrations in the time-series traps had little variation throughout the sampling period, though the total mass fluxes showed a large variation. A high variability of 239+240Pu fluxes occurred in very short period of time (1/2 day). The large fluxes of 239+240Pu might be attributed to episodic lateral transport of particles that flow down the continental slope with the nepheloid layer which was considered to be significant for 239+240Pu transport on the continental slope in the East China Sea.

  9. OPERATIONS TOGGLE, ARBOR and BEDROCK Events: DIAMOND SCULLS, DIDO QUEEN, HUSKY ACE, MING BLADE, HYBLA FAIR and DINING CAR, 20 July 1972 - 5 April 1975

    DTIC Science & Technology

    1987-11-30

    58m co 58 Co 60 iOpp8r ( 29 ) . . . . . . . . . . . . . Cu 64 Curium (96, . . . . . . . . . . . . . Cm 242 Cm 243 Cm 244 Cm 245 Cm 246...was conducted in the LOS pipe. 242 On 12 April (D+7), miners continued to prepare the tunnel for experiment recovery. Work also continued in...Pt 191 Pt 193m Pt 197m Pt 197 Plutonium (94) . . . . . . . . . . Pu 236 Pu 239 Pu 240 Pu 241 Pu 242 Polonium (84

  10. Calculation of 239Pu fission observables in an event-by-event simulation

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-03-31

    The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.

  11. Evaluation of. nu. -bar/sub rho/ for /sup 239/Pu

    SciTech Connect

    Fort, E. ); Frehaut, J. ); Tellier, H. ); Long, P. )

    1988-08-01

    The average number of prompt neutrons ..nu..-bar/sub rho/ emitted per fission event has been evaluated for /sup 239/Pu with a special emphasis on the fluctuations experimentally observed in the low-energy range. These fluctuations have a significant impact on applications, especially the reactivity coefficient of advanced water reactors. Consequently, the ..nu..-bar/sub rho/ curve has to be defined in the same fine energy mesh as the fission cross section for accurate neutron source calculations. In this range, formalisms are proposed to calculate ..nu..-bar/sub rho/ from the resonance parameters, resolved or averaged. Using the JEF-1 library as a data base, an analysis of several thermal, low-moderated, or fast systems shows a good convergence of the selected microscopic and integral information.

  12. Carcinogenic responses of transgenic heterozygous p53 knockout mice to inhaled 239PuO2 or metallic beryllium.

    PubMed

    Finch, G L; March, T H; Hahn, F F; Barr, E B; Belinsky, S A; Hoover, M D; Lechner, J F; Nikula, K J; Hobbs, C H

    1998-01-01

    The transgenic heterozygous p53+/- knockout mouse has been a model for assessing the tumorigenicity of selected carcinogens administered by noninhalation routes of exposure. The sensitivity of the model for predicting cancer by inhaled chemicals has not been examined. This study addresses this issue by acutely exposing p53+/- mice of both sexes by nose-only inhalation to either air (controls), or to 1 of 2 levels of 239PuO2 (500 or 100 Bq 239Pu) or beryllium (Be) metal (60 or 15 micrograms). Additional wild-type p53+/+ mice were exposed by inhalation to either 500 Bq of 239PuO2 or 60 micrograms of Be metal. These carcinogens were selected because they operate by differing mechanisms and because of their use in other pulmonary carcinogenesis studies in our laboratory. Four or 5 of the 15 mice per sex from each group were sacrificed 6 mo after exposure, and only 2 pulmonary neoplasms were observed. The remainder of the mice were held for life-span observation and euthanasia as they became moribund. Survival of the p53+/- knockout mice was reduced compared to the p53+/+ wild-type mice. No lung neoplasms were observed in p53+/- mice exposed to air alone. Eleven of the p53+/- mice inhaling 239PuO2 developed pulmonary neoplasms. Seven p53+/+ mice exposed to 239PuO2 also developed pulmonary neoplasms, but the latency period for pulmonary neoplasia was significantly shorter in the p53+/ mice. Four pulmonary neoplasms were observed in p53+/- mice exposed to the higher dose of Be, whereas none were observed in the wild-type mice or in the heterozygous mice exposed to the lower dose of Be. Thus, both p53+/- and p53+/+ mice were susceptible to 239Pu-induced carcinogenesis, whereas the p53+/- but not the p53+/+ mice were susceptible to Be-induced carcinogenesis. However, only 2 pulmonary neoplasms (1 in each of the 239PuO2 exposure groups) were observed in the 59 p53+/ mice that were sacrificed or euthanatized within 9 mo after exposure, indicating that the p53+/- knockout

  13. Release of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant accident to the marine environment was negligible.

    PubMed

    Bu, Wenting; Fukuda, Miho; Zheng, Jian; Aono, Tatsuo; Ishimaru, Takashi; Kanda, Jota; Yang, Guosheng; Tagami, Keiko; Uchida, Shigeo; Guo, Qiuju; Yamada, Masatoshi

    2014-08-19

    Atmospheric deposition of Pu isotopes from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident has been observed in the terrestrial environment around the FDNPP site; however, their deposition in the marine environment has not been studied. The possible contamination of Pu in the marine environment has attracted great scientific and public concern. To fully understand this possible contamination of Pu isotopes from the FDNPP accident to the marine environment, we collected marine sediment core samples within the 30 km zone around the FDNPP site in the western North Pacific about two years after the accident. Pu isotopes ((239)Pu, (240)Pu, and (241)Pu) and radiocesium isotopes ((134)Cs and (137)Cs) in the samples were determined. The high activities of radiocesium and the (134)Cs/(137)Cs activity ratios with values around 1 (decay corrected to 15 March 2011) suggested that these samples were contaminated by the FDNPP accident-released radionuclides. However, the activities of (239+240)Pu and (241)Pu were low compared with the background level before the FDNPP accident. The Pu atom ratios ((240)Pu/(239)Pu and (241)Pu/(239)Pu) suggested that global fallout and the pacific proving ground (PPG) close-in fallout are the main sources for Pu contamination in the marine sediments. As Pu isotopes are particle-reactive and they can be easily incorporated with the marine sediments, we concluded that the release of Pu isotopes from the FDNPP accident to the marine environment was negligible.

  14. 239Pu Prompt Fission Neutron Spectra Impact on a Set of Criticality and Experimental Reactor Benchmarks

    NASA Astrophysics Data System (ADS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-04-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  15. Vertical distribution and inventories of (239+240)Pu and mercury in Sagua la Grande estuary, Cuba.

    PubMed

    Alonso-Hernández, C M; Martin-Perez, J; Gasco, C; Díaz-Asencio, M; Bolanos-Álvarez, Y; Gómez-Batista, M

    2012-10-01

    The vertical activity distribution and inventories of (239+240)Pu profile and Hg were determined in Sagua la Grande estuary, Cuba. The shape of the (239+240)Pu profile in the core column resembled very closely the history of atmospheric nuclear weapons' testing, and the maximum deposition in 1963 was recorded in the sediment core history. The (239+240)Pu activity concentrations in the surface layer sediments varied from 0.163 to 0.611 mBq g(-1). The inventory of (239+240)Pu was 42 ± 5.6 Bq m(-2), a value close to that expected from direct global fallout. Using the (239+240)Pu as a chronomarker the mass sedimentation rate in the area for the last 60 years was calculated, reaching values of 0.173 g cm(-2) y(-1). The mercury profile reflects the history of anthropogenic pollution in the estuary and perfectly describes the operation of the mercury-cell chlor-alkali plant, for production of NaOH, which began operations in 1980. The inventory of Hg was 2.42 ± 0.19 μg cm(-2). These results contribute to the scarce regional database for pollutants and anthropogenic radionuclides in the Caribbean marine environment, particularly in relation to (239+240)Pu.

  16. Isotopic yield measurement in the heavy mass region for {sup 239}Pu thermal neutron induced fission

    SciTech Connect

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-15

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the {sup 239}Pu(n{sub th},f) reaction. In order to do this, a new experimental method based on {gamma}-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  17. Photofission product yields of 238U and 239Pu with 22-MeV bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Yang, Haori

    2016-06-01

    In homeland security and nuclear safeguards applications, non-destructive techniques to identify and quantify special nuclear materials are in great demand. Although nuclear materials naturally emit characteristic radiation (e.g. neutrons, γ-rays), their intensity and energy are normally low. Furthermore, such radiation could be intentionally shielded with ease or buried in high-level background. Active interrogation techniques based on photofission have been identified as effective assay approaches to address this issue. In designing such assay systems, nuclear data, like photofission product yields, plays a crucial role. Although fission yields for neutron-induced reactions have been well studied and readily available in various nuclear databases, data on photofission product yields is rather scarce. This poses a great challenge to the application of photofission techniques. In this work, short-lived high-energy delayed γ-rays from photofission of 238U were measured in between linac pulses. In addition, a list-mode system was developed to measure relatively long-lived delayed γ-rays from photofission of 238U and 239Pu after the irradiation. Time and energy information of each γ-ray event were simultaneously recorded by this system. Cumulative photofission product yields were then determined using the measured delayed γ-ray spectra.

  18. An examination of the potential fission-bomb weaponizability of nuclides other than 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2017-01-01

    Long-lived fissionable isotopes other than uranium-235 and plutonium-239 are examined for possible use in fission weapons. A few other isotopes are potentially weaponizable and in some cases have been tried or their criticality experimentally demonstrated. In most cases, however, promising isotopes are either extremely rare, difficult to produce in quantity, or hazardous to handle. Some isotopes can serve to boost the yield of fission weapons, but 235U and 239Pu are likely to remain the only practical primary fuels for nuclear weapons. In view of this, and the fact that this analysis gives no engineering details on the design of nuclear weapons, this paper will be of no assistance to putative bomb-makers; rather, my purpose is to clarify the physics similarities between 235U and 239Pu that make them suitable candidates for fission weapons.

  19. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  20. Use of fission track analysis technique for the determination of MicroBequerel level of 239Pu in urine samples from radiation workers handling MOX fuel.

    PubMed

    Yadav, J R; Rao, D D; Kumar, Ranjeet; Aggarwal, S K

    2011-07-01

    Fission track analysis (FTA) technique for the determination of (239)Pu excreted through urine has been standardized using blank samples, tracer and (239)Pu spikes. Double stage anion exchange separation protocol has been applied and an average radiochemical recovery of (239)Pu of 18% was obtained. An average track registration efficiency of 11 tracks per μBq of (239)Pu, irradiated to 0.35×10(17) neutron fluence was established. Reagent blank urine samples from 11 controlled subjects were analyzed by FTA and an average of 149±14 tracks was obtained. Minimum detectable activity of 34μBqL(-1) of urine sample was obtained and will be useful for monitoring chronic exposure cases handling MOX fuel.

  1. Activities of Pu and Am isotopes and isotopic ratios in a soil contaminated by weapons-grade plutonium.

    PubMed

    Lee, M H; Clark, S B

    2005-08-01

    An accident and fire at the former McGuire Air Force Base and Boeing Michigan Aeronautical Research Center (BOMARC) site in New Jersey resulted in dispersion of weapons-grade plutonium in particulate form to the local environment. Soil samples collected at the BOMARC site were measured for their activities and isotopic ratios of Pu and Am isotopes by radioanalytical techniques. The activities of the Pu and Am isotopes in the BOMARC soil were markedly higher than fallout levels, and they decreased nearly exponentially with increasing particle size of the soil. The measured (241)Am activity was compared to calculated values based on decay of (241)Pu. The activity ratios of (238)Pu/(239,240)Pu, (241)Pu/(239,240)Pu, and (241)Am/(239,240)Pu observed in the BOMARC soil were much lower than those attributed to nuclear reprocessing plants and Chernobyl fallout. From the activity ratios of (241)Pu/(239,240)Pu and (241)Am/(239,240)Pu, the origin of the Pu isotopes was identified as weapons-grade and the time since production of the material was estimated. Furthermore, the atomic ratio of (240)Pu/(239)Pu in the BOMARC soil was remarkably lower than the fallout value influenced by nuclear weapons testing and the Chernobyl accident. The atomic ratio of (240)Pu/(239)Pu was very close to the value of the weapons-grade Pu detected from the Thule accident in Greenland. This work demonstrates the utility of radioanalytical measurements and decay calculations for defining characteristics of the source term and discriminating multiple processes that contribute to a source. Such an approach would also be needed to respond to a terrorist event involving an improvised nuclear device or radiological dispersal device.

  2. Event-by-Event Study of Prompt Neutrons from 239Pu

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-01-15

    Employing a recently developed Monte Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1 MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  3. Event-by-event study of prompt neutrons from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2009-07-23

    Employing a recently developed Monte-Carlo model, we study the fission of {sup 240}Pu induced by neutrons with energies from thermal to just below the threshold for second chance fission. Current measurements of the mean number of prompt neutrons emitted in fission, together with less accurate measurements of the neutron energy spectra, place remarkably fine constraints on predictions of microscopic calculations. In particular, the total excitation energy of the nascent fragments must be specified to within 1MeV to avoid disagreement with measurements of the mean neutron multiplicity. The combination of the Monte-Carlo fission model with a statistical likelihood analysis also presents a powerful tool for the evaluation of fission neutron data. Of particular importance is the fission spectrum, which plays a key role in determining reactor criticality. We show that our approach can be used to develop an estimate of the fission spectrum with uncertainties several times smaller than current experimental uncertainties for outgoing neutron energies of less than 2 MeV.

  4. Absolute standardization of 241Pu by the TDCR technique and effect of the beta spectral shape.

    PubMed

    van Wyngaardt, W M; Simpson, B R S; van Staden, M J; Lubbe, J

    2012-09-01

    The NMISA participated in the 2010 international key comparison of (241)Pu, standardizing the inter-comparison solution by the TDCR efficiency calculation technique. Special attention was paid to ensure accurate efficiency calculation for this low-energy, pure beta-emitter: in particular the effect of low-energy stopping powers on the calculation of ionization quenching was assessed and an optimal value for the quench parameter, kB, was determined. In addition, phototube efficiency mismatch was accounted for by a software minimization technique. The effect of the beta spectral shape on the activity extracted from data analysis was assessed and found to be significant. Based on the results of this work we propose a new value for the average beta-particle energy.

  5. Individual and workplace monitoring measurements made after a 240Pu incident and during the clean-up operations.

    PubMed

    Hochmann, R; Eisenwagner, H; Benesch, T; Hunt, J; Cruz-Suarez, R; Bulyha, S; Schmitzer, C

    2011-03-01

    On 3 August 2008, five glass vials containing around 7 GBq of (240)Pu in nitric acid solution burst in a laboratory operated by the IAEA in Seibersdorf, Austria. The vials were located in a fire-proof safe in the IAEA Safeguards Analytical Laboratory, and the release of the (240)Pu caused an air contamination in the room and in adjoining rooms. Immediate emergency work was carried out, which was then followed by a long period of clean-up operations. A large number of conventional individual and workplace monitoring measurements were carried out immediately after the incident and during the clean-up work. In addition, due to the fact that (240)Pu has a very low background presence in the environment, and that the IAEA laboratories operate an inductively coupled plasma mass spectrometry system capable of very low levels of detection of this radionuclide, a number of non-conventional measurements were made to detect (240)Pu on, for example, the photographic camera used to document the incident, on nasal swabs from the first responders, etc. Plastic beakers were left in the corridor of the controlled area to accumulate (240)Pu from precipitation to see whether it was possible to detect traces of the radionuclide. This paper presents the measurements obtained, and discusses their relevance to occupational radiation protection.

  6. Analysis of actinides in an ombrotrophic peat core - evidence of post-depositional migration of fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.

    2013-04-01

    Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.

  7. Reactor Decay Heat in {sup 239}Pu: Solving the {gamma} Discrepancy in the 4-3000-s Cooling Period

    SciTech Connect

    Algora, A.; Jordan, D.; Tain, J. L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A. B.; Molina, F.; Caballero, L.; Nacher, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyas, J.; Vitez, A.; Csatlos, M.; Csige, L.; Aeysto, J.; Penttilae, H.; Moore, I. D.; Eronen, T.; Jokinen, A.

    2010-11-12

    The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

  8. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  9. Time-dependent local and average structural evolution of δ-phase 239Pu-Ga alloys

    DOE PAGES

    Smith, Alice I.; Page, Katharine L.; Siewenie, Joan E.; ...

    2016-08-05

    Here, plutonium metal is a very unusual element, exhibiting six allotropes at ambient pressure, between room temperature and its melting point, a complicated phase diagram, and a complex electronic structure. Many phases of plutonium metal are unstable with changes in temperature, pressure, chemical additions, or time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long periods of time [1]. This paper presents a time-dependent neutron total scattering study of the local and average structure of naturally aging δ-phase239Pu-Ga alloys, together with preliminary results on neutron tomography characterization.

  10. Reactor decay heat in 239Pu: solving the γ discrepancy in the 4-3000-s cooling period.

    PubMed

    Algora, A; Jordan, D; Taín, J L; Rubio, B; Agramunt, J; Perez-Cerdan, A B; Molina, F; Caballero, L; Nácher, E; Krasznahorkay, A; Hunyadi, M D; Gulyás, J; Vitéz, A; Csatlós, M; Csige, L; Aysto, J; Penttilä, H; Moore, I D; Eronen, T; Jokinen, A; Nieminen, A; Hakala, J; Karvonen, P; Kankainen, A; Saastamoinen, A; Rissanen, J; Kessler, T; Weber, C; Ronkainen, J; Rahaman, S; Elomaa, V; Rinta-Antila, S; Hager, U; Sonoda, T; Burkard, K; Hüller, W; Batist, L; Gelletly, W; Nichols, A L; Yoshida, T; Sonzogni, A A; Peräjärvi, K

    2010-11-12

    The β feeding probability of (102,104,105,106,107)Tc, 105Mo, and 101Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the γ component of the decay heat for 239Pu in the 4-3000 s range.

  11. Reactor Decay Heat in 239Pu: Solving the Gamma Discrepancy in the 4–3000-s Cooling Period

    SciTech Connect

    Algora, A.; Sonzogni, A.; Algora,A.; Jordan,D.; Tain,J.L.; Rubio,B.; Agramunt,J.; Perez-Cerdan,A.B.; Molina,F; Caballero,L.; Nacher,E.; Krasznahorkay,A.; Hunyadi,M.D.; Gulyas,J; Vitez,A.; Csatlos,M.; Csige,L.; Aysto,J.; Penttila,H.; Moore,I.D.; Eronen,T.; Jokinen,A.; Nieminen,A.; Hakala,J.; Karvonen,P.; Kankainen,A.; Saastamoinen,A.; Rissanen,J.; Kessler,T.; Weber,C.; Ronkainen,J.; Rahaman,S.; Elomaa,V.; Rinta-Antila,S.; Hager,U.; Sonoda,T.; Burkard,K.; Huller,W.; Batist,L.; Gelletly,W.; Nichols,A.L.; Yoshida,T.; Sonzogni,A.A.; Perajarvi,K.

    2010-11-08

    The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

  12. Induced Fission of 240Pu within a Real-Time Microscopic Framework

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-01

    We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  13. Induced Fission of (240)Pu within a Real-Time Microscopic Framework.

    PubMed

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J; Stetcu, Ionel

    2016-03-25

    We describe the fissioning dynamics of ^{240}Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  14. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    DOE PAGES

    Sandhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-20

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. As a result, we obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both tomore » the dissipation in collective motion and to adiabatic fission characteristics.« less

  15. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    SciTech Connect

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

    2007-10-01

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of demonstration

  16. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    SciTech Connect

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  17. High-precision study of time- and temperature-dependence of the elastic properties of 239Pu

    NASA Astrophysics Data System (ADS)

    Maiorov, B.; Ramshaw, B. J.; Shekhter, A.; Betts, J. B.; Freibert, F.; Migliori, A.

    2015-03-01

    It is important to determine the origin of changes in elastic properties in 239Pu as a function of time. The measurement of mechanical resonance frequencies can be made with extreme precision and used to compute the elastic moduli without corrections giving important insight in this problem. The precision of these measurements enabled observation of changes in elastic properties of 1 part in 107 for measurements lasting hours up to several days. The most-likely source of these changes include a) ingrowth of radioactive decay products such as He and U, b) the introduction of radiation damage, c) phase instabilities associated with transformations to the delta phase or to Pu3Ga. Using Resonant Ultrasound Spectroscopy, measurements were made of the mechanical resonance frequencies of 300mg cylinders of fine-grained polycrystalline alpha-phase 239Pu with about 600PPM Ga. We present the surprising result that at temperatures below 60K, there is a strong dependence on temperature of the rate of change of elastic moduli with time. Older results showed that the sign of this rate of change reverses at higher temperature. Such studies of nascent state are key to exploring damage evolution and its impact on specific volume and elastic moduli. Future studies will continue these measurements to above ambient temperatures.

  18. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  19. Comparison of early mortality in baboons and dogs after inhalation of /sup 239/PuO/sub 2/

    SciTech Connect

    Bair, W.J.; Metivier, H.; Park, J.F.; Masse, R.; Stevens, D.L.; Lafuma, J.; Watson, C.R.; Nolibe, D.

    1980-06-01

    Results from experiments with baboons were compared with those from experiments with dogs to determine the relative sensitivity of the two species to early mortality from inhaled /sup 239/PuO/sub 2/. To ensure a valid comparison of data developed at two laboratories, methodology differences were minimized by establishing a common pool of raw data, using the same computer programs to analyze the data, and standardizing assumptions regarding the calculation of plutonium concentration in lungs. Several comparison methods were used involving variations in estimating different parameters used in these calculations. Although nearly all comparisons suggested baboons were slightly more sensitive, none of the methods for comparing the relationship between dose and survival time showed consistently significant differences between baboons and dogs. Although the baboons were physiologically and morphologically immature when exposed to plutonium, whereas the dogs were mature, we concluded that adult baboons and dogs are similarly sensitive to the early effects of inhaled /sup 239/PuO/sub 2/. Since only early mortality was considered in this comparison, the results do not apply to possible late effects caused by much lower levels of plutonium than were used in these experiments.

  20. Measurement of 239Pu in urine samples at ultra-trace levels using a 1 MV compact AMS system

    NASA Astrophysics Data System (ADS)

    Hernández-Mendoza, H.; Chamizo, E.; Yllera, A.; García-León, M.; Delgado, A.

    2010-04-01

    Routine bioassay monitoring of Pu intake in exposed workers of research and nuclear industry is usually performed by alpha spectrometry. This technique involves large sample volumes of urine and time-consuming preparative and counting protocols. Compact accelerator mass spectrometry (AMS) facilities make feasible the determination of ultra low-level Pu activity concentrations and Pu isotopic ratios in biological samples (blood, urine and feces), being a rapid and cost-effective measurement technique. The plutonium results in urine samples presented here have been obtained on the 1 MV compact AMS system sited at the Centro Nacional de Aceleradores (CNA), in Seville, Spain. In this work, a different methodological approach has been developed alternative to the "classical" preparation of urine samples for alpha spectrometry. The procedure avoids the Pu precipitation step, and involves acid sample evaporation and acid digestion in a microwave oven. Finally, purification of plutonium was achieved by using chromatography columns filled up with BioRad AG1X2 anion exchange resin (Bio-Rad Laboratories Inc.). The total time needed for analysis is about 10 h, unlike the "classical" methods based on alpha spectrometry which need about 1 week. At present, it has been demonstrated that this method allows quantifying 239Pu activity concentrations in urine of, at least, 30 μBq (13 fg 239Pu). We can conclude that the procedure would be suitable to perform in vitro routine bioassay measurements. Moreover, the innovative application of AMS opens new and interesting analytical alternatives in this field.

  1. Pulmonary retention and tissue distribution of {sup 239}Pu nitrate in F344 rats and syrian hamsters inhaling carbon tetrachloride

    SciTech Connect

    Benson, J.M.; Barr, E.B.; Lundgren, D.L.; Nikula, K.J.

    1994-11-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is possible that nuclear plant workers have been exposed to CCl{sub 4} and plutonium compounds. Potential for future exposure exists during {open_quotes}cleanup{close_quotes} operations at weapon production sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. The current Threshold Limit Value for CCl{sub 4} is 5 ppm; however, concentrations of CCl{sub 4} occurring in the nuclear weapons facilities over the past 40-50 y are unknown and may have exceeded this value. The pilot study described in this report is designed to determine whether subchronic inhalation of CCl{sub 4} by CDF{sup register}(F-344)/CrlBR rats and Syrian golden hamsters, at concentrations expected to produce some histologic changes in liver, alters the hepatic retention and toxic effects of inhaled {sup 239}Pu nitrate {sup 239}Pu(NO{sub 3}){sub 4}.

  2. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    DOE PAGES

    Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; ...

    2016-06-23

    Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less

  3. Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana

    2015-10-01

    Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.

  4. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands.

    PubMed

    Alewell, Christine; Meusburger, Katrin; Juretzko, Gregor; Mabit, Lionel; Ketterer, Michael E

    2014-05-01

    Anthropogenic radionuclides have been distributed globally due to nuclear weapons testing, nuclear accidents, nuclear weapons fabrication, and nuclear fuel reprocessing. While the negative consequences of this radioactive contamination are self-evident, the ubiquitous fallout radionuclides (FRNs) distribution form the basis for the use as tracers in ecological studies, namely for soil erosion assessment. Soil erosion is a major threat to mountain ecosystems worldwide. We compare the suitability of the anthropogenic FRNs, 137Cs and 239+240Pu as soil erosion tracers in two alpine valleys of Switzerland (Urseren Valley, Canton Uri, Central Swiss Alps and Val Piora, Ticino, Southern Alps). We sampled reference and potentially erosive sites in transects along both valleys. 137Cs measurements of soil samples were performed with a Li-drifted Germanium detector and 239+240Pu with ICP-MS. Our data indicates a heterogeneous deposition of the 137Cs, since most of the fallout origins from the Chernobyl April/May 1986 accident, when large parts of the European Alps were still snow-covered. In contrast, 239+240Pu fallout originated mainly from 1950s to 1960s atmospheric nuclear weapons tests, resulting in a more homogenous distribution and thus seems to be a more suitable tracer in mountainous grasslands. Soil erosion assessment using 239+240Pu as a tracer pointed to a huge dynamic and high heterogeneity of erosive processes (between sedimentation of 1.9 and 7 t ha(-1) yr(-1) and erosion of 0.2-16.4 t ha(-1) yr(-1) in the Urseren Valley and sedimentation of 0.4-20.3 t ha(-1) yr(-1) and erosion of 0.1-16.4 t ha(-1) yr(-1) at Val Piora). Our study represents a novel and successful application of 239+240Pu as a tracer of soil erosion in a mountain environment.

  5. Off-Site Radiation Exposure Review Project: Phase 2 soils program

    SciTech Connect

    McArthur, R.D.; Miller, F.L. Jr.

    1989-12-01

    To help estimate population doses of radiation from fallout originating at the Nevada Test Site, soil samples were collected throughout the western United States. Each sample was prepared by drying and ball-milling, then analyzed by gamma-spectrometry to determine the amount of {sup 137}Cs it contained. Most samples were also analyzed by chemical separation and alpha-spectrometry to determine {sup 239 + 240}Pu and by isotope mass spectroscopy to determine the ratios of {sup 240}Pu to {sup 239}Pu and {sup 241}Pu to {sup 239}Pu. The total inventories of cesium and plutonium at 171 sites were computed from the results. This report describes the sample collection, processing, and analysis, presents the analytical results, and assesses the quality of the data. 10 refs., 9 figs., 12 tabs.

  6. Reaction rate calibration techniques at ZPPR for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission, and /sup 238/U capture

    SciTech Connect

    Brumbach, S.B.; Maddison, D.W.

    1982-06-10

    Reaction-rate calibration techniques used at ZPPR are described for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission and /sup 238/U capture. In addition to these absolute reaction rates, calibration techniques are described for fission-rate ratios and the ratio of /sup 238/U capture to /sup 239/U capture to /sup 239/Pu fission. Uncertainty estimates are presented for all calibrations. Intercomparison measurements are reported which support the validity of the calibration techniques and their estimated uncertainties.

  7. Total kinetic energy release in 239Pu(n ,f ) post-neutron emission from 0.5 to 50 MeV incident neutron energy

    NASA Astrophysics Data System (ADS)

    Meierbachtol, K.; Tovesson, F.; Duke, D. L.; Geppert-Kleinrath, V.; Manning, B.; Meharchand, R.; Mosby, S.; Shields, D.

    2016-09-01

    The average total kinetic energy (T K E ¯) in 239Pu(n ,f ) has been measured for incident neutron energies between 0.5 and 50 MeV. The experiment was performed at the Los Alamos Neutron Science Center (LANSCE) using the neutron time-of-flight technique, and the kinetic energy of fission fragments post-neutron emission was measured in a double Frisch-gridded ionization chamber. This represents the first experimental study of the energy dependence of T K E ¯ in 239Pu above neutron energies of 6 MeV.

  8. Identifying Sources of Non-fallout Nuclear Contamination in Hudson River Sediments by Plutonium and Neptunium isotope ratios.

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Chillrud, S. N.

    2002-12-01

    In an effort to identify and characterize nuclear contaminants released from sources contained within the Hudson River drainage basin, Pu isotopes and 237Np have been measured in a series of sediment cores collected from various locations within the region. During the last several decades, the Hudson River has received input of radioactive contamination from several sources. The first and most significant, has been global fallout, which was a result of atmospheric testing of nuclear weapons primarily by governments of the United States and Former Soviet Union in the 1950s and 1960s. The second, is contamination resulting from reactor releases at the Indian Point Nuclear Power Plant (IPNPP) located on the Hudson River about 35 miles north of New York City. This facility began operation in 1962. A third source of radioactive contamination to the region is contamination resulting from activities at the Knolls Atomic Power Laboratory (KAPL) located on the Mohawk River, which began operation in 1946. Our research entails identifying different sources of nuclear contamination by measurement of plutonium and neptunium isotopic ratios by inductively coupled plasma mass spectrometry (ICP-MS). The isotopic composition of a nuclear contaminant is a sensitive indicator of its origin. By comparing the isotopic composition measured in fluvial sediments to mean values reported for global fallout (i.e. 240Pu/239Pu = 0.18 ñ 0.014, 237Np/239Pu = 0.48 ñ 0.07, and 241Pu/239Pu = .00194 ñ 00028) it is possible to identify contaminants as non-fallout in origin. To date, we have analyzed selected samples from 3 sediment cores collected from the following locations: 1) the Mohawk River downstream of KAPL, 2) the Hudson River above its confluence with the Mohawk River, and 3) the lower Hudson River at a location in close proximity to IPNPP. Isotopic analysis of sediments from the Mohawk River indicates contamination that is clearly non-fallout in origin (240Pu/239Pu ranges between 0

  9. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    SciTech Connect

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 ..mu..g of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for /sup 238/Pu//sup 239/Pu, 0.996 +- 0.018 for /sup 240/Pu//sup 239/Pu, and 0.980 +- 0.038 for /sup 241/Pu//sup 239/Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs.

  10. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    SciTech Connect

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopics of a mixed actinide sample has been proposed by measuring the coincidence of the alpha particle during radioactive decay with the conversion electron (or Auger) emitted during the relaxation of the daughter isotope. This presents a unique signature to allow the deconvolution of isotopes that possess overlapping alpha particle energy. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector. A passivated ion implanted planar silicon detector provided measurements of alpha spectroscopy. The conversion electron spectra were evaluated from 20–55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information to aid in the coincident measurement approach.

  11. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less

  12. Radioecologycal study of 239/240Pu in Bangka Island and Muria Peninsula: Determination of 239/240Pu in marine sediment and seawater as part of baseline data collecting for sitting of candidates of first Indonesia NPP

    NASA Astrophysics Data System (ADS)

    Suseno, Heny; Wisnubroto, Djarot S.

    2014-03-01

    Radioisotope Pu-239/240 are alpha emitting nuclides important indicators of radioactive contamination of the marine environment. Global fallout is the main source of plutonium in the marine environment. There are very limited study on 239/240Pu in Indonesia coastal environments. The data of this radioisotopes is needed for baseline data of nuclear power plant (NPP) site candidates both in Bangka Island and Muria Peninsula. Bottom sediments play an important role in radioecological studies of the marine environment because a large proportion of radioactive substances entering the sea is adsorbed over time onto suspended particulate matter and deposited in sediments. Plutonium is particle reactive and deposited in marine sediment. Radioisotope 239/240Pu was determinated by alpha spectrometry after radiochemical procedure that was performed in both water and marine sediment from Bangka Island and Muria Peninsula. The sediment baseline of concentration 239/240Pu in Bangka Island and Muria Peninsula were range from 0.013 to 0.021 Bq.kg-1 and 0.018 to 0.024 Bq.kg-1 respectively. The water baseline concentration this isotope were range from 2.73 to 4.05 mBq.m-3 and 2.98 to 4.50 mBq.m-3.

  13. Radioecologycal study of {sup 239/240}Pu in Bangka Island and Muria Peninsula: Determination of {sup 239/240}Pu in marine sediment and seawater as part of baseline data collecting for sitting of candidates of first Indonesia NPP

    SciTech Connect

    Suseno, Heny; Wisnubroto, Djarot S.

    2014-03-24

    Radioisotope Pu-239/240 are alpha emitting nuclides important indicators of radioactive contamination of the marine environment. Global fallout is the main source of plutonium in the marine environment. There are very limited study on {sup 239/240}Pu in Indonesia coastal environments. The data of this radioisotopes is needed for baseline data of nuclear power plant (NPP) site candidates both in Bangka Island and Muria Peninsula. Bottom sediments play an important role in radioecological studies of the marine environment because a large proportion of radioactive substances entering the sea is adsorbed over time onto suspended particulate matter and deposited in sediments. Plutonium is particle reactive and deposited in marine sediment. Radioisotope {sup 239/240}Pu was determinated by alpha spectrometry after radiochemical procedure that was performed in both water and marine sediment from Bangka Island and Muria Peninsula. The sediment baseline of concentration {sup 239/240}Pu in Bangka Island and Muria Peninsula were range from 0.013 to 0.021 Bq.kg{sup −1} and 0.018 to 0.024 Bq.kg{sup −1} respectively. The water baseline concentration this isotope were range from 2.73 to 4.05 mBq.m{sup −3} and 2.98 to 4.50 mBq.m{sup −3}.

  14. The inflow of 238Pu and (239+240)Pu from the Odra and Pomeranian rivers catchments area to the Baltic Sea.

    PubMed

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan; Tuszkowska, Agnieszka

    2012-11-01

    The aim of the work was to estimate plutonium inflow from the Odra River catchments area to the Baltic Sea. The highest activities of (238)Pu and (239+240)Pu were observed in a winter and a spring season. The highest annual surface inflow of (239+240)Pu from the Odra River watershed was observed for a mountain tributary the Bóbr (1230 Bq km(-2) year(-1)). The annual inflow of (238)Pu and (239+240)Pu to the Baltic Sea was estimated at 9.51 MBq and 45.86 MBq respectively and the highest plutonium surface runoff was observed for the Bóbr drainage.

  15. 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical processes.

    PubMed

    Hirose, Katsumi; Aoyama, Michio; Povinec, Pavel P

    2009-03-01

    Anthropogenic radionuclides in seawater have been used as transient tracers of processes in the marine environment. Especially, plutonium in seawater is considered to be a valuable tracer of biogeochemical processes due to its particle-reactive properties. However, its behavior in the ocean is also affected by physical processes such as advection, mixing and diffusion. Here we introduce Pu/(137)Cs ratio as a proxy of biogeochemical processes and discuss its trends in the water column of the North Pacific Ocean. We observed that the (239,240)Pu/(137)Cs ratio in seawater exponentially increased with increasing depth (depth range: 100-1000 m). This finding suggests that the profiles of the (239,240)Pu/(137)Cs ratios in shallower waters directly reflect biogeochemical processes in the water column. A half-regeneration depth deduced from the curve fitting the observed data, showed latitudinal and longitudinal distributions, also related to biogeochemical processes in the water column.

  16. Numerical simulation of 137Cs and (239,240)Pu concentrations by an ocean general circulation model.

    PubMed

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-01-01

    We simulated the spatial distributions and the temporal variations of 137Cs and (239,240)Pu concentrations in the ocean by using the ocean general circulation model which was developed by National Center of Atmospheric Research. These nuclides are introduced into seawaters from global fallout due to atmospheric nuclear weapons tests. The distribution of radioactive deposition on the world ocean is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute in Japan and several observed points in New Zealand. Radionuclides from global fallout have been transported by advection, diffusion and scavenging, and this concentration reduces by radioactive decay in the ocean. We verified the results of the model calculations by comparing simulated values of 137Cs and (239,240)Pu in seawater with the observed values included in the Historical Artificial Radionuclides in the HAM database, which has been constructed by the Meteorological Research Institute. The vertical distributions of the calculated 137Cs concentrations were in good agreement and are in good agreement with the observed profiles in the 1960s up to 250 m, in the 1970s up to 500 m, in the 1980s up to 750 m and in the 1990s up to 750 m. However, the calculated 137Cs concentrations were underestimated compared with the observed 137Cs at the deeper layer. This may suggest other transport processes of 137Cs to deep waters. The horizontal distributions of 137Cs concentrations in surface water could be simulated. A numerical tracer release experiment was performed to explain the horizontal distribution pattern. A maximum (239,240)Pu concentration layer occurs at an intermediate depth for both observed and calculated values, which is formed by particle scavenging. The horizontal distributions of the calculated (239,240)Pu concentrations in surface water could be simulated by considering the scavenging effect.

  17. Reevaluation and Validation of the {sup 241}Pu Resonance Parameters in the Energy Range Thermal to 20 eV

    SciTech Connect

    Derrien, H.; Leal, L.C.; Courcelle, A.; Santamarina, A.

    2005-05-15

    A new SAMMY analysis of the {sup 241}Pu resonance parameters from thermal to 20 eV is presented. This evaluation takes into account the trends given by integral experiments [post-irradiation experiments performed in French pressurized water reactors (PWRs)]. Compared to the previous evaluations performed by Derrien and de Saussure, the capture cross section increases especially in the 0.26-eV resonance. It is shown that the new resonance parameters proposed in this work improve the prediction of the {sup 242}Pu buildup in a PWR, which was significantly underestimated with the previous evaluations.

  18. Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.

    NASA Astrophysics Data System (ADS)

    Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo

    2013-04-01

    A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0

  19. AMS of the Minor Plutonium Isotopes.

    PubMed

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method.

  20. Comparative analysis of (239)Pu, (137)Cs, (210)Pb and (40)K spatial distributions in the top soil layer at the Baltic coast.

    PubMed

    Luksiene, B; Druteikiene, R; Gvozdaite, R; Gudelis, A

    2006-01-01

    This paper presents the results of an investigation into the spatial distribution of radionuclides of artificial ((239,240)Pu, (137)Cs) and natural ((210)Pb, (40)K) origins in the upper (0-5 cm) soil layers on the Baltic coastline of Lithuania ( approximately 5 km(2) area). The samples were analysed by gamma ray spectrometry and combined radiochemical procedures. The highest (210)Pb, (239,240)Pu and (137)Cs activity concentrations were determined in the forest samples, whereas (40)K activity was rather homogeneous across the study area. Relatively high (239,240)Pu and (40)K activity concentrations were determined along the surf zone. The (210)Pb and (137)Cs activity concentrations showed a gradual increase from the surf zone to the forest. The average activity concentrations of (239,240)Pu, (137)Cs, (210)Pb and (40)K in the beach and forest samples, respectively, were as follows: 0.32+/-0.08 and 0.74+/-0.14; 50+/-4 and 1190+/-50; 4.7+/-2.0 and 48+/-6; 186+/-15 and 216+/-17 Bq/kg.

  1. Radiological implications of inhaled 239Pu and 241Am in dusts at the former nuclear test site in Maralinga.

    PubMed

    Stradling, G N; Stather, J W; Gray, S A; Moody, J C; Ellender, M; Pearce, M J; Collier, C G

    1992-12-01

    The biokinetics of 239Pu and 241Am present in three dust samples obtained from Maralinga were investigated after their deposition in the rat lung. Results were used as an experimental basis for assessing the radiological implications for human exposure. The transfer rates of these actinides to blood in the various dusts differed by 50-fold. The most transportable forms were compatible with a material that had 25% class W and 75% class Y characteristics. The doses per unit intake for adults, children, and infants exposed to an aerosol of 5 microns AMAD were calculated to be, respectively, 0.059, 0.076, and 0.140 mSv Bq-1. The corresponding doses for the least transportable forms were the same as those calculated for a class Y compound, namely 0.036, 0.049, and 0.096 mSv Bq-1. The behavior of the actinides in humans was predicted by combining the transfer rates to blood with mechanical clearance data obtained after volunteers had inhaled 85Sr or 88Y labeled fused aluminosilicate particles. The results suggested that monitoring of 241Am in the chest could be used to advantage for assessing intakes incurred by workers involved with any further decontamination procedures but would be of little practical value for assessing inadvertent public exposure. The paper includes comments on the relevance of the 1990 ICRP recommendations and the proposed new dosimetric model for the respiratory tract.

  2. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    NASA Astrophysics Data System (ADS)

    Zavorka, L.; Adam, J.; Baldin, A. A.; Caloun, P.; Chilap, V. V.; Furman, W. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalova, J.

    2015-04-01

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies.

  3. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  4. The CIELO Collaboration: Neutron Reactions on 1H, 16O, 56Fe, 235,238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Dupont, E.; Bauge, E.; Blokhin, A.; Bouland, O.; Brown, D. A.; Capote, R.; Carlson, A.; Danon, Y.; De Saint Jean, C.; Dunn, M.; Fischer, U.; Forrest, R. A.; Frankle, S. C.; Fukahori, T.; Ge, Z.; Grimes, S. M.; Hale, G. M.; Herman, M.; Ignatyuk, A.; Ishikawa, M.; Iwamoto, N.; Iwamoto, O.; Jandel, M.; Jacqmin, R.; Kawano, T.; Kunieda, S.; Kahler, A.; Kiedrowski, B.; Kodeli, I.; Koning, A. J.; Leal, L.; Lee, Y. O.; Lestone, J. P.; Lubitz, C.; MacInnes, M.; McNabb, D.; McKnight, R.; Moxon, M.; Mughabghab, S.; Noguere, G.; Palmiotti, G.; Plompen, A.; Pritychenko, B.; Pronyaev, V.; Rochman, D.; Romain, P.; Roubtsov, D.; Schillebeeckx, P.; Salvatores, M.; Simakov, S.; Soukhovitskiı˜, E. Sh.; Sublet, J. C.; Talou, P.; Thompson, I.; Trkov, A.; Vogt, R.; van der Marck, S.

    2014-04-01

    CIELO (Collaborative International Evaluated Library Organization) provides a new working paradigm to facilitate evaluated nuclear reaction data advances. It brings together experts from across the international nuclear reaction data community to identify and document discrepancies among existing evaluated data libraries, measured data, and model calculation interpretations, and aims to make progress in reconciling these discrepancies to create more accurate ENDF-formatted files. The focus will initially be on a small number of the highest-priority isotopes, namely 1H, 16O, 56Fe, 235,238U, and 239Pu. This paper identifies discrepancies between various evaluations of the highest priority isotopes, and was commissioned by the OECD's Nuclear Energy Agency WPEC (Working Party on International Nuclear Data Evaluation Co-operation) during a meeting held in May 2012. The evaluated data for these materials in the existing nuclear data libraries - ENDF/B-VII.1, JEFF-3.1, JENDL-4.0, CENDL-3.1, ROSFOND, IRDFF 1.0 - are reviewed, discrepancies are identified, and some integral properties are given. The paper summarizes a program of nuclear science and computational work needed to create the new CIELO nuclear data evaluations.

  5. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  6. Photo-fission Product Yield Measurements at Eγ=13 MeV on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan, Fnu; Tonchev, A. P.

    2016-09-01

    We have measured Fission Product Yields (FPYs) in photo-fission of 235U, 238U, and 239Pu at TUNL's High-Intensity Gamma-ray Source (HI γS) using mono-energetic photons of Eγ = 13 MeV. Details of the experimental setup and analysis procedures will be discussed. Yields for approximately 20 fission products were determined. They are compared to neutron-induced FPYs of the same actinides at the equivalent excitation energies of the compound nuclear systems. In the future photo-fission data will be taken at Eγ = 8 . 0 and 10.5 MeV to find out whether photo-fission exhibits the same so far unexplained dependence of certain FPYs on the energy of the incident probe, as recently observed in neutron-induced fission, for example, for the important fission product 147Nd. Work supported by the U. S. Dept. of Energy, under Grant No. DE-FG02-97ER41033, and by the NNSA, Stewardship Science Academic Alliances Program, Grant No. DE-NA0001838 and the Lawrence Livermore, National Security, LLC under Contract No. DE-AC52-07NA27344.

  7. Alpha and conversion electron spectroscopy of 238,239Pu and 241Am and alpha-conversion electron coincidence measurements

    NASA Astrophysics Data System (ADS)

    Dion, Michael P.; Miller, Brian W.; Warren, Glen A.

    2016-09-01

    A technique to determine the isotopic constituents of a mixed actinide sample has been proposed by a coincident alpha-conversion electron measurement. This presents a unique signature to allow the unfolding of isotopes that possess overlapping alpha particle energy and reduce backgrounds of an unseparated sample. The work presented here are results of conversion electron spectroscopy of 241Am, 238Pu and 239Pu using a dual-stage peltier-cooled 25 mm2 silicon drift detector and alpha spectroscopy with a passivated ion implanted planar silicon detector. The conversion electron spectra were evaluated from 20-55 keV based on fits to the dominant conversion electron emissions, which allowed the relative conversion electron emission intensities to be determined. These measurements provide crucial singles spectral information and calibration to aid in the coincident measurement approach. Furthermore, an alpha-conversion electron spectrometer was assembled using the silicon based detectors described and results of a coincident spectrum analysis is reported for 241Am.

  8. Resonance Region Covariance Analysis Method and New Covariance Data for {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu

    SciTech Connect

    Leal, L.C. Arbanas, G.; Wiarda, D.; Derrien, H.

    2008-12-15

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance region were done for {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for {sup 233}U and {sup 235}U. RPCMs for {sup 232}Th, {sup 238}U and {sup 239}Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the File32 representation. Alternatively, for computer storage reasons, the File32 was converted in the File33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM with SAMMY.

  9. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  10. Effects of combined exposure of F344 rats to inhaled {sup 239}PuO{sub 2} and a chemical carcinogen (NNK)

    SciTech Connect

    Lundgren, D.L.; Belinsky, S.A.; Nikula, K.J.; Griffith, W.C.; Hoover, M.D.

    1994-11-01

    Workers in nuclear weapons facilitates have a significant potential for exposure to chemical carcinogens and to radiation from external sources or from internally deposited radionuclides such as {sup 239}Pu. Although the carcinogenic effects of inhaled {sup 239}Pu and many chemicals have been studied individually, very little information is available on their combined effects. One chemical carcinogen that workers could be exposed to, via tobacco smoke, is the tobacco-specific nitrosamine 4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a product of the curing of tobacco and pyrolysis of nicotine in tobacco. NNK causes lung tumors in rats, regardless of the route of administration and to a lesser extent tumors in the liver, nasal passages, and pancreas. The purpose of this study is to characterize the effects of combined exposure of rats to NNK and internally deposited plutonium, as well as to these agents alone.

  11. U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris.

    PubMed

    Eriksson, Mats; Lindahl, Patric; Roos, Per; Dahlgaard, Henning; Holm, Elis

    2008-07-01

    This study concerns an arctic marine environment that was contaminated by actinide elements after a nuclear accident in 1968, the so-called Thule accident In this study we have analyzed five isolated hot particles as well as sediment samples containing particles from the weapon material for the determination of the nuclear fingerprint of the accident. We report that the fissile material in the hydrogen weapons involved in the Thule accident was a mixture of highly enriched uranium and weapon-grade plutonium and that the main fissile material was 235U (about 4 times more than the mass of 239Pu). In the five hot particles examined, the measured uranium atomic ratio was 235U/238U = 1.02 +/- 0.16 and the Pu-isotopic ratios were as follows: 24Pu/239Pu = 0.0551 +/- 0.0008 (atom ratio), 238Pu/239+240Pu = 0.0161 +/- 0.0005 (activity ratio), 241Pu/239+240Pu = 0.87 +/- 0.12 (activity ratio), and 241Am/ 239+240Pu = 0.169 +/- 0.005 (activity ratio) (reference date 2001-10-01). From the activity ratios of 241Pu/241Am, we estimated the time of production of this weapon material to be from the late 1950s to the early 1960s. The results from reanalyzed bulk sediment samples showed the presence of more than one Pu source involved in the accident, confirming earlier studies. The 238Pu/239+240PU activity ratio and the 240Pu/ 239Pu atomic ratio were divided into at least two Pu-isotopic ratio groups. For both Pu-isotopic ratios, one ratio group had identical ratios as the five hot particles described above and for the other groups the Pu isotopic ratios were lower (238Pu/ 239+240PU activity ratio approximately 0.01 and the 240Pu/P239Pu atomic ratio 0.03). On the studied particles we observed that the U/Pu ratio decreased as a function of the time these particles were present in the sediment. We hypothesis that the decrease in the ratio is due to a preferential leaching of U relative to Pu from the particle matrix.

  12. Total and spontaneous fission half-lives of the uranium and plutonium nuclides

    SciTech Connect

    Holden, N.E.

    1984-01-01

    The total half-life and the half-life for spontaneous fission are evaluated for the various long-lived nuclides of interest. Recommended values are presented for /sup 232/U, /sup 233/U, /sup 234/U, /sup 235/U, /sup 236/U, /sup 238/U, /sup 236/Pu, /sup 238/Pu, /sup 239/Pu, /sup 240/Pu, /sup 241/Pu, /sup 242/Pu, and /sup 244/Pu. The uncertainties are provided at the 95% confidence limit for each of the recommended values.

  13. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    NASA Astrophysics Data System (ADS)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  14. Reassessment of 239Pu on planchets from human urine samples at ultra-trace levels using Aridus-ICPSFMS and AMS.

    PubMed

    Hernández-Mendoza, Héctor; Chamizo, Elena; Delgado, Antonio; García-León, Manuel; Yllera, Abel

    2012-12-01

    New analytical methods developed at the facilities here, based on two ultra-sensitive mass spectrometry (MS) techniques, inductively coupled plasma sector field mass spectrometer with a desolvator system (Aridus-ICP-SFMS) and accelerator MS (AMS), have been applied in this work for the reassessment of (239)Pu in alpha spectrometry (AS) planchets corresponding to spiked human urine samples. The obtained (239)Pu minimum detectable activities (MDAs) values by Aridus-ICP-SFMS and AMS were 3 fg (∼6.92 µBq) and 0.4 fg (∼0.92 µBq), respectively, per sample, which are much better than those attainable by AS [50 fg (∼115.3 µBq) of (239)Pu per sample, approximately]. Therefore, it is demonstrated that the MS techniques employed in this work are very powerful tools for internal dosimetry studies in human urine samples, giving excellent results when the reassessment of AS planchets is needed (samples with a Pu concentration below or at the MDA levels measurable by AS). This work is the continuation of an article published in J. Anal. At. Spectrom. 25 (1410-1415) 2010.

  15. Migration of (137)Cs, (90)Sr, and (239+240)Pu in Mediterranean forests: influence of bioavailability and association with organic acids in soil.

    PubMed

    Guillén, J; Baeza, A; Corbacho, J A; Muñoz-Muñoz, J G

    2015-06-01

    The understanding of downward migration of anthropogenic radionuclides in soil is a key factor in the assessment of their environmental behavior. There are several factors that can affect this process, such as the radionuclide source, their chemical form, soil and environmental characteristics, etc. Two Mediterranean pinewood ecosystems in Spain, which were affected mainly by global fallout, were selected to assess the migration of (137)Cs, (90)Sr, and (239+240)Pu. Using auxiliary modeling (diffusion-convection equation and compartmental model), it followed from field observations that the migration velocities of (90)Sr and (239+240)Pu were similar and higher than that of (137)Cs. The downward migration of radionuclides can be considered a consequence of their association with soil particles. A sequential speciation procedure also confirmed that (90)Sr was the most bioavailable radionuclide followed by (239+240)Pu and (137)Cs. Although this can explain the different velocity of (90)Sr and (137)Cs, bioavailability could not explain by itself the similar velocities of (239+240)Pu and (90)Sr. The presence of organic acids in the soil can also influence the migration of radionuclides attached to them, which decreased in the order: (239+240)Pu > (90)Sr > (137)Cs. Thus, the joint consideration of bioavailable and humic + fulvic acid fractions can explain the observed differences in the downward velocities.

  16. Determination of (241)Pu by the method of disturbed radioactive equilibrium using 2πα-counting and precision gamma-spectrometry.

    PubMed

    Alekseev, I; Kuzmina, T

    2016-04-01

    A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am.

  17. Evaluation of the 239Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of 239Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  18. Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: A historical perspective and new frontiers in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Ketterer, Michael E.; Szechenyi, Scott C.

    2008-07-01

    Inductively coupled plasma mass spectrometry (ICPMS), particularly with sector field mass analyzers (SF-ICPMS), has emerged in the past several years as an excellent analytical technique for rapid, highly sensitive determination of transuranic elements (TRU) in environmental samples. SF-ICPMS has advantages of simplicity of sample preparation, high sample throughput, widespread availability in laboratories worldwide, and relatively straightforward operation when compared to other competing mass spectrometric techniques. Arguably, SF-ICPMS is the preferred technique for routine, high-throughput determination of 237Np and the Pu isotopes, excepting 238Pu, at fg-pg levels in environmental samples. Many research groups have now demonstrated the SF-ICPMS determination of 239 + 240 Pu activities, 240Pu/ 239Pu and other Pu atom ratios in several different application areas. Many studies have examined the relative contribution of global fallout vs. local/regional Pu sources in the environment through measurement of 240Pu/ 239Pu and, in some cases, 241Pu/ 239Pu and 242Pu/ 239Pu. "Stratospheric fallout", which was deposited from thermonuclear tests, conducted largely during the 1952-1964 time period, is characterized by a well-defined 240Pu/ 239Pu of ~ 0.18, while most other sources have different ratios. Examples of local/regional Pu sources are the Nevada Test Site, the Chernobyl plume, and accidents at Palomares, Spain and Thule, Greenland. The determination of Pu activities and atom ratios has stimulated much interest in the use of Pu as a marine tracer; several studies have shown that Pu is transported over long distances by ocean currents. 240Pu/ 239Pu ratios > 0.20 in sediments and seawater of the North Pacific are ascribed to ocean current transport of fallout from the Pacific Proving Ground. In nuclear forensics, much effort is focused on detection and fingerprinting of small amounts of TRU in environmental samples consisting of bulk material or individual isolated

  19. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    where the present results are about 4%-relative higher for neutrons incident on 239Pu and 235U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the 147Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

  20. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  1. Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f)

    SciTech Connect

    Vogt, R; Randrup, J; Brown, D A; Descalle, M A; Ormand, W E

    2011-11-28

    We have developed an improved evaluation method for the spectrum of neutrons emitted in fission of {sup 239}Pu induced by incident neutrons with energies up to 20 MeV. The covariance data, including incident energy correlations introduced by the evaluation method, were used to fix the input parameters in our event-by-event model of fission, FREYA, by applying formal statistical methods. Formal estimates of uncertainties in the evaluation were developed by randomly sampling model inputs and calculating likelihood functions based on agreement with the evaluated . Our approach is able to employ a greater variety of fission measurements than the relatively coarse spectral data alone. It also allows the study of numerous fission observables for more accurate model validation. The combination of an event-by-event Monte Carlo fission model with a statistical-likelihood analysis is thus a powerful tool for evaluation of fission-neutron data. Our empirical model FREYA follows the complete fission event from birth of the excited fragments through their decay via neutron emission until the fragment excitation energy is below the neutron separation energy when neutron emission can no longer occur. The most recent version of FREYA incorporates pre-equilibrium neutron emission, the emission of the first neutron before equilibrium is reached in the compound nucleus, and multi-chance fission, neutron evaporation prior to fission when the incident neutron energy is above the neutron separation energy. Energy, momentum, charge and mass number are conserved throughout the fission process. The best available values of fragment masses and total kinetic energies are used as inputs to FREYA. We fit three parameters that are not well under control from previous measurements: the shift in the total fragment kinetic energy; the energy scale of the asymptotic level density parameter, controlling the fragment 'temperature' for neutron evaporation; and the relative excitation of the

  2. References to Studies of 137Cs, 90Sr and 239+240Pu in the Pacific Ocean a Bibliography

    SciTech Connect

    Noshkin, V.E.

    2001-02-01

    This report contains a listing of publications known to this author on reported concentrations, reviews and discussions of {sup 137}Cs, {sup 90}Sr and {sup 239+240}Pu in seawater, sediment and the biota from parts of the North and South Pacific Ocean. Each reference has been assigned an accession number consisting of the first three letters of the first author's last name followed by the first letter of the first name, the year of the publication and an assigned number. Studies in both the coastal areas and the open ocean are included as well as those providing data within lagoons of coral atolls. Some references to the radionuclides in the Indian Ocean are also provided.

  3. Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to nth+235U, nth+239Pu, and 252Cf (sf)

    NASA Astrophysics Data System (ADS)

    Becker, B.; Talou, P.; Kawano, T.; Danon, Y.; Stetcu, I.

    2013-01-01

    The prompt neutron and γ emission from primary fission fragments are calculated for thermal neutron induced fission of 235U and 239Pu and for spontaneous fission of 252Cf using a Monte Carlo Hauser-Feshbach approach for the evaporation of the excited fission fragments. Remaining free model parameters, such as excitation energy sharing and initial spin distribution, are determined by comparison of the neutron emission characteristics with experimental data. Using the obtained parameters the γ-ray characteristics, e.g., γ spectrum, multiplicity distribution, average multiplicity and energy, and multiplicity distribution, are calculated and compared with available experimental data.

  4. (239)Pu neutron resonance parameters revisited and covariance matrix in the neutron energy range from thermal to 2.5 keV

    SciTech Connect

    Derrien, Herve; Leal, Luiz C; Larson, Nancy M

    2008-01-01

    To obtain the resonance parameters in a single energy range up to 2.5 keV neutron energy and the corresponding covariance matrix, a reevaluation of 239Pu was performed with the analysis code SAMMY. The most recent experimental data were analyzed in the energy range thermal to 2.5 keV. The experimental data were renormalized, aligned on a common energy scale, and corrected for residual background. Average neutron transmission and cross sections calculated with the new resonance parameters were compared to the corresponding experimental data and to ENDF/B-VI.

  5. 239 + 240Pu and 137Cs concentrations in fish, cephalopods, crustaceans, shellfish, and algae collected around the Japanese coast in the early 1990s.

    PubMed

    Yamada, M; Aono, T; Hirano, S

    1999-10-01

    Marine organisms, i.e. fish, cephalopods, crustaceans, shellfish, and algae, were collected in the early 1990s along the Sea of Japan coast and the Japanese Pacific coast and analyzed for their 239 + 240Pu and 137Cs concentrations. The 239 + 240Pu concentrations in muscle of fish were below 0.4 mBq/kg wet wt. and the lowest among the analyzed marine organisms. Most 137Cs concentrations in muscle of fish ranged from 100 to 300 mBq/kg wet wt. Higher concentrations of 239 + 240Pu, ranging from 1.6 to 5.7 mBq/kg wet wt., were observed in viscera of cephalopods than in their muscle. The 239 + 240Pu concentrations in whole soft tissues of bivalves varied approximately one order of magnitude from 0.8 to 6.1 mBq/kg wet wt., while 137Cs concentrations had little variation, being approximately 60 mBq/kg wet wt. The 239 + 240Pu concentrations in algae had a wide variation, ranging from 1.7 to 42.3 mBq/kg wet wt., and were higher than those of the other marine organisms. No statistically significant difference in mean concentrations of 239 + 240Pu was detected among the whole soft tissues of bivalves, viscera of cephalopods and crustaceans, and whole bodies of cephalopods and crustaceans within the 95% confidence limit. The mean concentrations of 137Cs became higher in the order, cephalopods and crustaceans and bivalves, algae, viscera of fish, muscles of fish. The mean concentrations of 239 + 240Pu were comparable for algae collected along the Japan Sea coast and the Pacific coast. Furthermore, the difference in mean concentrations of 137Cs in algae between the Japan Sea coast and the Pacific coast was not statistically significant within the 95% confidence limit. These results can be considered to indicate no definite influence from radioactive dumping into the Japan Sea by the former USSR and Russia with respect to radioactive pollution of marine organisms collected along the Japanese coast.

  6. Report on the effectiveness of flocculation for removal of {sup 239}Pu at concentrations of 1 pCi/L and 0.1 pCi/L. RFP Pond Water Characterization and Treatment (LATO-EG&G-91-022): Task C deliverables: 5.1.2 and 5.2.2

    SciTech Connect

    Triay, I.R.; Bayhurst, G.K.; Mitchell, A.J.; Cisneros, M.R.; Efurd, D.W.; Roensch, F.R.; Rokop, D.J.; Aguilar, R.D.; Attrep, M.; Nuttall, H.E.

    1993-08-01

    The objective of this work is to assess the effectiveness of flocculation for the removal of Pu from Rocky Flats Plant (RFP) pond waters spiked with {sup 239}Pu at the 1.0 and 0.1 pCi/L level. The flocculation treatment procedure is described in detail. Results are presented for treatment studies for the removal of Pu from C-2 pond water spiked with {sup 239}Pu and from distilled water spiked with {sup 239}Pu.

  7. 90Sr, 137Cs and (239,240)Pu concentration surface water time series in the Pacific and Indian Oceans--WOMARS results.

    PubMed

    Povinec, Pavel P; Aarkrog, Asker; Buesseler, Ken O; Delfanti, Roberta; Hirose, Katsumi; Hong, Gi Hoon; Ito, Toshimichi; Livingston, Hugh D; Nies, Hartmut; Noshkin, Victor E; Shima, Shigeki; Togawa, Orihiko

    2005-01-01

    Under an IAEA's Co-ordinated Research Project "Worldwide Marine Radioactivity Studies (WOMARS)" 90Sr, 137Cs and (239,240)Pu concentration surface water time series in the Pacific and Indian Oceans have been investigated. The Pacific and Indian Oceans were divided into 17 latitudinal boxes according to ocean circulation, global fallout patterns and the location of nuclear weapons test sites. The present levels and time trends in radionuclide concentrations in surface water for each box were studied and the corresponding effective half-lives were estimated. For the year 2000, the estimated average 90Sr, 137Cs and (239,240)Pu concentrations in surface waters of the Pacific and Indian Oceans varied from 0.1 to 1.5 mBq/L, 0.1 to 2.8 mBq/L, and 0.1 to 5.2 microBq/L, respectively. The mean effective half-lives for 90Sr and 137Cs in surface water were 12+/-1 years for the North, 20+/-1 years for the South and 21+/-2 years for the Equatorial Pacific. For (239,240)Pu the corresponding mean effective half-lives were 7+/-1 years for the North, 12+/-4 years for the South and 10+/-2 years for the Equatorial Pacific. For the Indian Ocean the mean effective half-lives of 137Cs and (239,240)Pu were 21+/-2 years and 9+/-1 years, respectively. There is evidence that fallout removal rates before 1970 were faster than those observed during recent decades. The estimated surface water concentrations of 90Sr, 137Cs and (239,240)Pu in latitudinal belts of the Pacific and Indian Oceans for the year 2000 may be used as the average levels so that any new contribution from nuclear facilities, nuclear weapons test sites, radioactive waste dumping sites and from possible nuclear accidents can be identified.

  8. Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons

    SciTech Connect

    Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

    2010-03-16

    This Panel was chartered to review and assess new evaluations of work on fission product data, as well as the evaluation process used by the two U.S. nuclear weapons physics laboratories. The work focuses on fission product yields resulting from fission spectrum neutrons incident on plutonium, and includes data from measurements that had not been previously published as well as new or revised fission product cumulative yield data, and related quantities such as Q values and R values. This report documents the Panel's assessment of the work presented by Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Based on the work presented we have seven key observations: (1) Experiments conducted in the 1970s at LANL, some of which were performed in association with a larger, NIST-led, program, have recently been documented. A preliminary assessment of this work, which will be referred to in this document as ILRR-LANL, shows it to be technically sound. (2) LLNL has done a thorough, unbiased review and evaluation of the available literature and is in the process of incorporating the previously unavailable LANL data into its evaluation of key fission product yields. The results of the LLNL effort, which includes a preliminary evaluation of the ILRR-LANL data, have been documented. (3) LANL has also conducted an evaluation of fission product yields for fission spectrum neutrons on plutonium including a meta-analysis of benchmark data as part of a planned upgrade to the ENDF/B compilation. We found that the approach of using meta-analysis provides valuable additional insight for evaluating the sparse data sets involved in this assessment. (4) Both laboratories have provided convincing evidence for energy dependence in the fission product yield of {sup 147}Nd produced from the bombardment of {sup 239}Pu with fission spectrum neutrons over an incident neutron energy range of 0.2 to 1.9 MeV. (5) Consistent, complete, and explicit treatment of

  9. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  10. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  11. A study of 239Pu production rate in a water cooled natural uranium blanket mock-up of a fusion-fission hybrid reactor

    NASA Astrophysics Data System (ADS)

    Feng, Song; Liu, Rong; Lu, Xinxin; Yang, Yiwei; Xu, Kun; Wang, Mei; Zhu, Tonghua; Jiang, Li; Qin, Jianguo; Jiang, Jieqiong; Han, Zijie; Lai, Caifeng; Wen, Zhongwei

    2016-03-01

    The 239Pu production rate is important data in neutronics design for a natural uranium blanket of a fusion-fission hybrid reactor, and the accuracy and reliability should be validated by integral experiments. The distribution of 239Pu production rates in a subcritical natural uranium blanket mock-up was obtained for the first time with a D-T neutron generator by using an activation technique. Natural uranium foils were placed in different spatial locations of the mock-up, the counts of 277.6 keV γ-rays emitted from 239Np generated by 238U capture reaction were measured by an HPGe γ spectrometer, and the self-absorption of natural uranium foils was corrected. The experiment was analyzed using the Super Monte Carlo neutron transport code SuperMC2.0 with recent nuclear data of 238U from the ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0u2, JEFF-3.2 and CENDL-3.1 libraries. Calculation results with the JEFF-3.2 library agree with the experimental ones best, and they agree within the experimental uncertainty in general with the average ratios of calculation results to experimental results (C/E) in the range of 0.93 to 1.01.

  12. Relative radiosensitivity of bone tumor induction among beagles as a function of age at injection of {sup 239}Pu or {sup 226}Ra

    SciTech Connect

    Lloyd, R.D.; Taylor, G.N.; Jee, W.S.S.; Miller, S.C.

    1999-01-01

    A comparison was made of the response to induction of skeletal malignancy from exposure of beagles to monomeric {sup 239}Pu or to {sup 226}Ra as juveniles (3 mo of age), young adults (1.5 y of age), or mature adults (5 y of age). This indicated that of these age groups, animals injected as young adults are most sensitive per Gy of average skeletal dose evaluated at 1 y before death. Dogs exposed either as juveniles or as mature adults appeared to be less sensitive. Relative radiosensitivities (RRS) of juvenile and mature beagles ranged between about 0.3 and 0.7 that of dogs injected as young adults. Mean values of RRS for both radionuclides were about 0.5, but RRS values derived from dogs given monomeric {sup 239}Pu appeared to be most reliable and were 0.27 {+-} 0.09 for dogs injected as juveniles and 0.41 {+-} 0.13 for animals exposed as mature adults.

  13. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  14. High-Performance Method for Determination of Pu Isotopes in Soil and Sediment Samples by Sector Field-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Wang, Zhongtang; Zheng, Jian; Ni, Youyi; Men, Wu; Tagami, Keiko; Uchida, Shigeo

    2017-02-21

    Plutonium is extensively studied in radioecology (e.g., soil to plant transfer and radiological assessment) and geochemistry (e.g., sediment dating). Here, we reported a new chemical separation method for rapid determination of Pu in soil and sediment samples, based on the following investigations: extraction behaviors of interfering elements (IEs, for inductively coupled plasma mass spectrometry (ICPMS) measurement) on TEVA resin; decontamination of U using TEVA, UTEVA, and DGA resins; and the impact of coprecipitation on Pu determination. The developed method consists of four steps: HNO3 leaching for Pu release; CaF2/LaF3 coprecipitation for the removal of major metals and U; the proposed TEVA + UTEVA + DGA procedure for the removal of U, Pb, Bi, Tl, Hg, Hf, Pt, and Dy; and ICPMS measurement. The accuracy of this method in determining (239+240)Pu activity and (240)Pu/(239)Pu and (241)Pu/(239)Pu isotopic ratios was validated by analyzing five standard reference materials (soil, fresh water sediment, and ocean sediment). This method is characterized by its stable and high Pu recovery (90-97% for soil; 92-98% for sediment) and high decontamination factor of U (1.6 × 10(7)), which is the highest reported for soil and sediment samples. In addition, the short analytical time of 12 h and the method detection limits, which are the lowest yet reported in literature, of 0.56 μBq g(-1) (0.24 fg g(-1)) for (239)Pu, 1.2 μBq g(-1) (0.14 fg g(-1)) for (240)Pu, and 0.34 mBq g(-1) (0.09 fg g(-1)) for (241)Pu (calculated on the basis of a 1 g soil sample) allow the rapid determination of ultratrace level Pu in soil and sediment samples.

  15. Minimum Critical Values Study

    SciTech Connect

    Fox, P.B.

    2005-07-11

    This report provides minimum critical values for various 30-cm water-reflected uranium and plutonium oxide and nitrate aqueous mixtures as calculated by the SCALE CSAS1X sequence using the 238-group ENDF/B-V neutron cross-section library. The minimum values were determined through parametric searches in one-dimensional geometry. The calculations have been performed to obtain the minimum values: critical volume and mass for spheres, critical radius for cylinders, critical thickness for slabs, and minimum critical concentration (infinite geometry) for the following homogeneous mixtures: (1) UO{sub 2}-H{sub 2}O for 3, 4, 5, 20, and 100 wt % {sup 235}U; (2) UNH for 3, 4, 5, 20, and 100 wt % {sup 235}U; (3) PuO{sub 2}-H{sub 2}O for 100/0/0, 95/5/0, 90/5/5, 80/10/10, and 71/17/11/1 wt % of {sup 239}Pu/{sup 240}Pu/{sup 241}Pu(/{sup 242}Pu); and (4) PuNH for 100/0/0, 95/5/0, 90/5/5, 80/10/10, and 71/17/11/1 wt % of {sup 239}Pu/{sup 240}Pu/{sup 241}Pu(/{sup 242}Pu). All bounding surfaces were fully reflected by 30 cm of H{sub 2}O.

  16. SUPPLEMENTARY COMPARISON: Activity measurements of a suite of radionuclides (40K, 137Cs, 210Pb, 210Po, 228Ra, 232Th, 234U, 235U, 238U, 238Pu, 239Pu, 239+240Pu, 241Am) in vegetal reference material (seaweed)

    NASA Astrophysics Data System (ADS)

    Outola, I.; Inn, K. G. W.; Karam, L. R.

    2008-01-01

    In 2005, the CCRI decided that a comparison undertaken from 2002 to 2005 by the NIST (SIM) in the development of a new seaweed standard reference material (SRM) was sufficiently well constructed that it could be converted into a supplementary comparison under CCRI(II), with comparison identifier CCRI(II)-S1, so as to support calibration and measurement capability (CMC) claims for radionuclide measurements in reference material (specifically, plant material). Previous comparisons of radionuclides have been of single or multiple nuclides in non-complex matrices and results of such could not be extended to support capabilities to measure the same nuclides in reference materials. The results of this comparison have been reported to the participants, and were also used to determine the certified reference values of the SRM. The key comparison working group (KCWG) of the CCRI(II) has approved this approach as a mechanism to link all the results to the certified 'reference values' in lieu of the key comparison reference value (KCRV) of these specified radionuclides in this type of matrix (vegetative) so as to support CMCs of similar materials. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section II, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. Upper concentration limits for {sup 239}Pu traces in some {open_quotes}KTB{close_quotes}-samples and in one Hawaiian lava

    SciTech Connect

    Barth, H.; Ganz, M.; Brandt, R.

    1994-11-01

    Trace quantities of plutonium are observed in the environment all over the world, and include both man-made {sup 238-242}Pu and natural {sup 239}Pu in uranium ores. Typical concentrations range from 10{sup {minus}14} g Pu/g sample up to 10{sup {minus}12} g Pu/g in pitchblende. We have determined some upper concentration limits for the plutonium in samples from KTB (Kontinentales Tiefbohrprogramm, Germany) which are in the range of 10{sup {minus}15} down to 3{center_dot}10{sup {minus}17} g Pu/g sample. In addition, we have investigated one sample of Hawaiian lava, with a limit of 5{center_dot}10{sup {minus}15}. We could not confirm previous reports on the observation of plutonium in some Pacific Lavas, nor do our results show any evidence for cold fusion neutrons producing plutonium in fluids of great depth in the crust.

  18. Estimating Reaction Cross Sections from Measured (Gamma)-Ray Yields: The 238U(n,2n) and 239Pu(n,2n) Cross Sections

    SciTech Connect

    Younes, W

    2002-11-18

    A procedure is presented to deduce the reaction-channel cross section from measured partial {gamma}-ray cross sections. In its simplest form, the procedure consists in adding complementary measured and calculated contributions to produce the channel cross section. A matrix formalism is introduced to provide a rigorous framework for this approach. The formalism is illustrated using a fictitious product nucleus with a simple level scheme, and a general algorithm is presented to process any level scheme. In order to circumvent the cumbersome algebra that can arise in the matrix formalism, a more intuitive graphical procedure is introduced to obtain the same reaction cross-section estimate. The features and limitations of the method are discussed, and the technique is applied to extract the {sup 235}U (n,2n) and {sup 239}Pu(n,2n) cross sections from experimental partial {gamma}-ray cross sections, coupled with (enhanced) Hauser-Feshbach calculations.

  19. Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system 'Energy plus Transmutation' by relativistic protons

    NASA Astrophysics Data System (ADS)

    Adam, J.; Katovsky, K.; Balabekyan, A.; Kalinnikov, V. G.; Krivopustov, M. I.; Kumawat, H.; Solnyshkin, A. A.; Stegailov, V. I.; Stetsenko, S. G.; Tsoupko-Sitnikov, V. M.; Westmeier, W.

    2007-02-01

    Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with subcritical uranium blanket. In the neutron field outside the blanket, radioactive iodine, neptunium, plutonium and americium samples were irradiated and transmutation reaction yields (residual nuclei production yields) have been determined using g-spectroscopy. Neutron field's energy distribution has also been studied using a set of threshold detectors. Results of transmutation studies of 129I, 237Np, 238Pu, 239Pu and 241Am are presented.

  20. Effect of chemical pollution on forms of 137Cs, 90Sr and 239,240Pu in arctic soil studied by sequential extraction.

    PubMed

    Puhakainen, M; Riekkinen, I; Heikkinen, T; Jaakkola, T; Steinnes, E; Rissanen, K; Suomela, M; Thørring, H

    2001-01-01

    The aim of the present study was to determine the forms of 137Cs, 90Sr and 239,240Pu occurring in different soil horizons using sequential extraction of samples taken from four sites located along a pollution gradient from the copper-nickel smelter at Monchegorsk in the Kola Peninsula, Russia, and from a reference site in Finnish Lapland in 1997. A selective sequential-leaching procedure was employed using a modification of the method of Tessier, Cambell and Bisson ((1979). Analytical Chemistry, 51, 844-851). For 137Cs the organic (O) and uppermost mineral (E1) layer were studied, for 90Sr and 239,240Pu only the uppermost organic layer (Of). The fraction of 137Cs occurring in readily exchangeable form in the organic layer was about 50% at the reference site and decreased as a function of pollution, being 15% at the most polluted site in the Kola Peninsula. There was a clear positive correlation in the O layer between the distance from the smelter and the percentage of 137Cs extracted in the readily exchangeable fraction (Spearman correlation rsp = 0.7805, p = 0.0001), whereas in the E1 layer no correlation was evident. The distribution of 90Sr in the Of layer was similar at all sites, with the highest amounts occurring in exchangeable form and bound to organic matter, whereas stable Sr showed a somewhat different distribution with the highest amount in the oxide fraction. Most of the 239,240Pu was bound to organic matter. Chemical pollution affected the exchangeable fraction of 239,240Pu, which was about 1% at the most polluted site and 4-6% at the other sites.

  1. Neutron-induced fission cross section of 240Pu from 0.5 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-07-01

    240Pu has recently been pointed out by a sensitivity study of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) to be one of the isotopes whose fission cross section lacks accuracy to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). In the High Priority Request List (HPRL) of the OECD, it is suggested that the knowledge of the 240Pu(n ,f ) cross section should be improved to an accuracy within 1-3 %, compared to the present 5%. A measurement of the 240Pu cross section has been performed at the Van de Graaff accelerator of the Joint Research Center (JRC) Institute for Reference Materials and Measurements (IRMM) using quasi-monoenergetic neutrons in the energy range from 0.5 MeV to 3 MeV. A twin Frisch-grid ionization chamber (TFGIC) has been used in a back-to-back configuration as fission fragment detector. The 240Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U (n ,f ) , and 238U (n ,f ) . Additionally, the secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U (n ,f ) in the same geometry. A comprehensive study of the corrections applied to the data and the associated uncertainties is given. The results obtained are in agreement with previous experimental data at the threshold region. For neutron energies higher than 1 MeV, the results of this experiment are slightly lower than the ENDF/B-VII.1 evaluation, but in agreement with the experiments of Laptev et al. (2004) as well as Staples and Morley (1998).

  2. Integration of measurements with atmospheric dispersion models: Source term estimation for dispersal of (239)Pu due to non-nuclear detonation of high explosive

    NASA Astrophysics Data System (ADS)

    Edwards, L. L.; Harvey, T. F.; Freis, R. P.; Pitovranov, S. E.; Chernokozhin, E. V.

    1992-10-01

    The accuracy associated with assessing the environmental consequences of an accidental release of radioactivity is highly dependent on our knowledge of the source term characteristics and, in the case when the radioactivity is condensed on particles, the particle size distribution, all of which are generally poorly known. This paper reports on the development of a numerical technique that integrates the radiological measurements with atmospheric dispersion modeling. This results in a more accurate particle-size distribution and particle injection height estimation when compared with measurements of high explosive dispersal of (239)Pu. The estimation model is based on a non-linear least squares regression scheme coupled with the ARAC three-dimensional atmospheric dispersion models. The viability of the approach is evaluated by estimation of ADPIC model input parameters such as the ADPIC particle size mean aerodynamic diameter, the geometric standard deviation, and largest size. Additionally we estimate an optimal 'coupling coefficient' between the particles and an explosive cloud rise model. The experimental data are taken from the Clean Slate 1 field experiment conducted during 1963 at the Tonopah Test Range in Nevada. The regression technique optimizes the agreement between the measured and model predicted concentrations of (239)Pu by varying the model input parameters within their respective ranges of uncertainties. The technique generally estimated the measured concentrations within a factor of 1.5, with the worst estimate being within a factor of 5, very good in view of the complexity of the concentration measurements, the uncertainties associated with the meteorological data, and the limitations of the models. The best fit also suggest a smaller mean diameter and a smaller geometric standard deviation on the particle size as well as a slightly weaker particle to cloud coupling than previously reported.

  3. Alveolar macrophage kinetics after inhalation of 239PuO2 by CBA/Ca mice: changes in synthesis of DNA.

    PubMed Central

    Kellington, J P; Gibson, K; Buckle, T M; Talbot, R J; Hornby, S B

    1992-01-01

    For workers in the nuclear industry, the primary route for the entry of radioactive materials into the body is by inhalation, and the rate of clearance of particles from the pulmonary region of the lung is an important factor in determining radiation dose. It is the function of alveolar macrophages (AM) to maintain the sterility of the lung and to remove insoluble particles from the respiratory surfaces and airways. The AM population is not static, and under normal conditions the loss of macrophages from the alveoli via the conducting airways is balanced by renewal. Studies of the effects of external irradiation on the kinetics of AM are numerous, but to date little is known about the effects of inhaled radioactive particles. In this investigation the effects of inhaled 239PuO2 (plutonium dioxide) particles on the synthesis of DNA by AM were studied at times up to 77 days after exposure. We also measured the number of cells recovered by bronchoalveolar lavage and the incidence of AM with nuclear aberrations. The latter provides a sensitive indicator of the effects of radiation. One of the earliest effects observed after exposure to 239PuO2 is a reduction in the number of AM recovered by lavage. This reduction is associated with a 3-fold reduction in the proportion of AM undergoing DNA synthesis at early times after exposure. The overall mean pulse labeling index of AM recovered from sham-exposed mice is 1.68%, and no trend is observed with time.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1396470

  4. Examining (239+240)Pu, (210)Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia.

    PubMed

    Sanders, Christian J; Santos, Isaac R; Maher, Damien T; Breithaupt, Joshua L; Smoak, Joseph M; Ketterer, Michael; Call, Mitchell; Sanders, Luciana; Eyre, Bradley D

    2016-01-01

    Two sediment cores were collected in a mangrove forest to construct geochronologies for the previous century using natural and anthropogenic radionuclide tracers. Both sediment cores were dated using (239+240)Pu global fallout signatures as well as (210)Pb, applying both the Constant Initial Concentration (CIC) and the Constant Rate of Supply (CRS) models. The (239+240)Pu and CIC model are interpreted as having comparable sediment accretion rates (SAR) below an apparent mixed region in the upper ∼5 to 10 cm. In contrast, the CRS dating method shows high sediment accretion rates in the uppermost intervals, which is substantially reduced over the lower intervals of the 100-year record. A local anthropogenic nutrient signal is reflected in the high total phosphorus (TP) concentration in younger sediments. The carbon/nitrogen molar ratios and δ(15)N values further support a local anthropogenic nutrient enrichment signal. The origin of these signals is likely the treated sewage discharge to Moreton Bay which began in the early 1970s. While the (239+240)Pu and CIC models can only produce rates averaged over the intervals of interest within the profile, the (210)Pb CRS model identifies elevated rates of sediment accretion, organic carbon (OC), nitrogen (N), and TP burial from 2000 to 2013. From 1920 to 2000, the three dating methods provide similar OC, N and TP burial rates, ∼150, 10 and 2 g m(-2) year(-1), respectively, which are comparable to global averages.

  5. Radionuclide concentrations in soils and vegetation at Low-Level Radioactive Waste Disposal Area G during the 1998 growing season (with a cumulative summary of {sup 3}H and {sup 239}Pu over time)

    SciTech Connect

    P. R. Fresquez; M. H. Ebinger; R. J. Wechsler; L. Naranjo, Jr.

    1999-11-01

    Soils and unwashed overstory and understory vegetation were collected at eight locations within and around Area G, a disposal facility for low-level, radioactive solid waste at Los Alamos National Laboratory. The samples were analyzed for {sup 3}H, {sup 238}Pu, {sup 239}Pu, {sup 90}Sr, {sup 241}Am, {sup 137}Cs, {sup tot}U. Most of the radionuclide concentrations in soils and vegetation were within the upper 95% level of background concentrations except for {sup 3}H and {sup 239}Pu. Tritium concentrations in vegetation from most sites were greater than background concentrations of about 2 pCi mL{sup {minus}1}. The concentrations of {sup 239}Pu in soils and understory vegetation were largest in samples collected several meters north of the transuranic waste pad area and were consistent with previous results. Based on {sup 3}H and {sup 239}Pu data through 1998, it was shown that concentrations were (1) significantly greater than background concentrations (p < 0.05) in soils and vegetation collected from most locations at Area G, and (2) there was no systematic increase or decrease in concentrations with time apparent in the data.

  6. Can 239 + 240Pu replace 137Cs as an erosion tracer in agricultural landscapes contaminated with Chernobyl fallout?

    PubMed

    Schimmack, W; Auerswald, K; Bunzl, K

    2001-01-01

    Erosion studies often use 137Cs from the global fallout (main period: 1953-1964) as a tracer in the soil. In many European countries, where 137Cs was deposited in considerable amounts also by the Chernobyl fallout in 1986, the global fallout fraction (GF-Cs) has to be separated from the Chernobyl fraction by means of the isotope 134Cs. In a few years, this will no longer be possible due to the short half-life of 134Cs (2 yr). Because GF-Cs in the soil can then no longer be determined, the potential of using 239 + 240Pu as a tracer is evaluated. This radionuclide originates in most European countries essentially only from the global fallout. The activities and spatial distributions of Pu and GF-Cs were compared in the soil of a steep field (inclination about 20%, area ca. 3 ha, main soil type Dystric Eutrochrept), sampled at 48 nodes of a 25 x 25 m2 grid. The reference values were determined at 12 points adjacent to the field. Their validity was assured by an inventory study of radiocaesium in a 70 ha area surrounding the field sampling 275 nodes of a 50 x 50 m2 grid. In the field studied, the activity concentrations of GF-Cs and Pu in the Ap horizon were not correlated (Spearman correlation coefficient R = 0.20, p > 0.05), and the activity balance of Pu differed from that of GF-Cs. Whereas no net loss of GF-Cs from the field was observed as compared to the reference site, Pu was more mobile with an average loss of ca. 11% per unit area. In addition, the spatial pattern of GF-Cs and Pu in the field differed significantly. The reason may be that due to their different associations with soil constituents, Pu and Cs represent different fractions of the soil, exhibiting different properties with respect to erosion/deposition processes. This indicates that both radionuclides or one of them may not be appropriate to quantity past erosion. When tracer losses are used to calibrate or verify erosion prediction models, systematic deviations may not only stem from model

  7. Parity splitting and E1/E2 branching in the alternating parity band of {sup 240}Pu from two-center octupole wave functions using supersymmetric quantum mechanics

    SciTech Connect

    Jolos, R. V.; Brentano, P. von

    2011-08-15

    An interpretation is suggested of the recently published experimental data on the alternating parity bands in {sup 240}Pu. The interpretation is based on the assumption that the main role in the description of the properties of the alternating parity bands plays the octupole mode which preserves the axial symmetry. The mathematical technique of the supersymmetric quantum mechanics is used for the realization of the model with the two-center octupole wave functions. A good description of the parity splitting and of the ratio of the dipole and quadrupole transitional moments is obtained for the first two bands.

  8. Microdistribution and long-term retention of 239Pu (NO3)4 in the respiratory tracts of an acutely exposed plutonium worker and experimental beagle dogs.

    PubMed

    Nielsen, Christopher E; Wilson, Dulaney A; Brooks, Antone L; McCord, Stacey L; Dagle, Gerald E; James, Anthony C; Tolmachev, Sergei Y; Thrall, Brian D; Morgan, William F

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [(239)Pu (NO(3))(4)] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histologic lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a nonuniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the subpleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential to increase cancer risk.

  9. Inhaled /sup 239/PuO/sub 2/ and/or total-body gamma radiation: Early mortality and morbidity in rats and dogs

    SciTech Connect

    Filipy, R.E.; Decker, J.R.; Lai, Y.L.; Lauhala, K.E.; Buschbom, R.L.; Hiastala, M.P.; McGee, D.R.; Park, J.F.; Kuffel, E.G.; Ragan, H.A.; Cannon, W.C.; Yaniv, S.S.; Scott, B.R.

    1988-08-01

    Rats and beagle dogs were given doses of /sup 60/Co gamma radiation and/or body burdens of /sup 239/PuO/sub 2/ within lethal ranges in an experiment to determine and compare morbidity and mortality responses of both species within 1 year after exposure. Radiation-induced morbidity was assessed by measuring changes in body weights, hematologic parameters, and pulmonary-function parameters. Gamma radiation caused transient morbidity, reflected by immediately depressed blood cell concentrations and by long-term loss of body weight and diminished pulmonary function in animals of both species that survived the acute gamma radiation syndrome. Inhaled plutonium caused a loss of body weight and diminished pulmonary function in both species, but its only effect on blood cell concentrations was lymphocytopenia in dogs. Combined gamma irradiation and plutonium lung burdens were synergistic, in that animals receiving both radiation insults had higher morbidity and mortality rates than would be predicted based on the effect of either kind of radiation alone. Plutonium lung burdens enhanced the effect of gamma radiation in rats within the first 30 days of exposure, and gamma radiation enhanced the long-term effect of plutonium lung burdens in both species. Rats were less sensitive to both kinds of radiation, whether administered alone or in combination. 71 refs., 105 figs., 48 tabs.

  10. Comparative effects of protracted exposures to 60Co gamma-radiation and 239Pu alpha-radiation on breeding performance in female mice..

    PubMed

    Searle, A G; Beechey, C V; Green, D; Howells, G R

    1980-02-01

    Breeding performances are compared of hybrid female mice given 239Pu (5 or 10 mu Cikg-1 body mass in 1% trisodium citrate via the tail-vein), or kept in a 10 rad/day or 20 rad/day 60Co gamma-irradiation field (but mated in the control area), or unirradiated. Ovarian dose-rates from the injected plutonium were initially 0.8 and 1.7 rad/day, changing little thereafter; actual gamma-ray dose-rates to breeding females averaged around 8 and 16 rad/day respectively. Both gamma-ray treatments affected reproductive performance more than the plutonium injections, with respet to duration of fertility and to offspring per litter in successive 4-weekly periods, though overall mean litter-sizes were not significantly less than controls. The r.b.e. for these effects on reproduction, attributed to germ-cell killing, is about 2.5 for the alpha-particles vs. gamma-rays, lower than for testis mass reduction in males. This low r.b.e. may be connected with inhomogeneity of alpha-particle dose within the ovary, but it is known that fission neutron versus gamma r.b.e.'s for impairment of female fertility are also lower than those for impairment of male fertility.

  11. Microdistribution and Long-Term Retention of 239Pu (NO3)4 in the Respiratory Tracts of an Acutely Exposed Plutonium Worker and Experimental Beagle Dogs

    SciTech Connect

    Nielsen, Christopher E.; Wilson, Dulaney A.; Brooks, Antone L.; McCord, Stacey; Dagle, Gerald E.; James, Anthony C.; Tolmachev, Sergei Y.; Thrall, Brian D.; Morgan, William F.

    2012-11-01

    The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histological lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a non-uniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma. Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the sub-pleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential increase in cancer risk.

  12. The Association of Inbreeding With Lung Fibrosis Incidence in Beagle Dogs That Inhaled 238PuO2 or 239PuO2.

    SciTech Connect

    Wilson, Dulaney A.; Brigantic, Andrea M.; Morgan, William F.

    2011-09-12

    Studies of health effects in animals after exposure to internally deposited radionuclides were intended to supplement observational studies in humans. Both nuclear workers and Beagle dogs have exhibited plutonium associated lung fibrosis; however, the dogs smaller gene pool may limit the applicability of findings to humans. Data on Beagles that inhaled either plutonium-238 dioxide (238PuO2) or plutonium-239 dioxide (239PuO2) were analyzed. Wright's Coefficient of Inbreeding was used to measure genetic or familial susceptibility and was assessed as an explanatory variable when modeling the association between lung fibrosis incidence and plutonium exposure. Lung fibrosis was diagnosed in approximately 80% of the exposed dogs compared with 23.7% of the control dogs. The maximum degree of inbreeding was 9.4%. Regardless of isotope, the addition of inbreeding significantly improved the model in female dogs but not in males. In female dogs an increased inbreeding coefficient predicted decreased hazard of a lung fibrosis diagnosis. Lung fibrosis was common in these dogs with inbreeding affecting models of lung fibrosis incidence in females but not in males. The apparent protective effect in females predicted by these models of lung fibrosis incidence is likely to be minimal given the small degree of inbreeding in these groups.

  13. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  14. Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers.

    PubMed

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J Patrick; Ayrault, Sophie

    2014-08-19

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (∼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.

  15. Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly

    NASA Astrophysics Data System (ADS)

    da Cruz, D. F.; Rochman, D.; Koning, A. J.

    2014-04-01

    Uncertainty analysis on reactivity and discharged inventory for a typical PWR fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. The Total Monte-Carlo (TMC) method was applied using the deterministic transport code DRAGON. The nuclear data used in this study is from the JEFF-3.1 evaluations, with the exception of the nuclear data files for U, Pu and fission products isotopes, which are taken from the nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as result of uncertainties in nuclear data of the considered isotopes) is virtually independent on fuel burnp and amounts to 700 pcm. The uncertainties in inventory of the discharged fuel is dependent on the element considered and lies in the range 1-15% for most fission products, and is below 5% for the most important actinides.

  16. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    PubMed

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  17. Theoretical analyses of (n,xn) reactions on sup 235 U, sup 238 U, sup 237 Np, and sup 239 Pu for ENDF/B-VI

    SciTech Connect

    Young, P.G.; Arthur, E.D.

    1991-01-01

    Theoretical analyses were performed of neutron-induced reactions on {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu between 0.01 and 20 MeV in order to calculate neutron emission cross sections and spectra for ENDF/B-VI evaluations. Coupled-channel optical model potentials were obtained for each target nucleus by fitting total, elastic, and inelastic scattering cross section data, as well as low-energy average resonance data. The resulting deformed optical model potentials were used to calculate direct (n,n{prime}) cross sections and transmission coefficients for use in Hauser-Feshbach statistical theory analyses. A fission model with multiple barrier representation, width fluctuation corrections, and preequilibrium corrections were included in the analyses. Direct cross sections for higher-lying vibrational states were calculated using DWBA theory, normalized using B(E{ell}) values determined from (d,d{prime}) and Coulomb excitation data, where available, and from systematics otherwise. Initial fission barrier parameters and transition state density enhancements appropriate to the compound systems involved were obtained from previous analyses, especially fits to charged-particle fission probability data. The parameters for the fission model were adjusted for each target system to obtain optimum agreement with direct (n,f) cross section measurements, taking account of the various multichance fission channels, that is, the different compound systems involved. The results from these analyses were used to calculate most of the neutron (n,n), (n,n{prime}), and (n,xn) cross section data in the ENDF/B/VI evaluations for the above nuclei, and all of the energy-angle correlated spectra. The deformed optical model and fission model parameterizations are described. Comparisons are given between the results of these analyses and the previous ENDF/B-V evaluations as well as with the available experimental data. 14 refs., 3 figs., 1 tab.

  18. Tracing the dispersion of contaminated sediment with plutonium isotope measurements in coastal catchments of Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Pointurier, Fabien; Onda, Yuichi; Chartin, Caroline; Hubert, Amélie; Lepage, Hugo; Pottin, Anne-Claire; Lefèvre, Irène; Bonté, Philippe; Laceby, J. Patrick; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurement of Pu isotopic atom and activity ratios is required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we measured Pu isotopic ratios in recently deposited sediments along rivers draining the most contaminated part of the inland radioactive plume. To this end, we carried out a thorough chemical purification and concentration of Pu from sediment samples (5 g dry material) and precise isotopic measurements using a double-focusing sector field ICP-MS. Results showed that the entire range of measured Pu isotopes (i.e., 239Pu, 240Pu, 241Pu, and 242Pu) were detected in all samples, although in extremely low concentrations. The 241Pu/239Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113±0.00008 on average in the Northern Hemisphere between 31°-71°N). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout, representing up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (45 km) from FDNPP and deposited in rivers representing a potential source of Pu to the ocean.

  19. Analytical method for the determination of Np and Pu in sea water by AMS with respect to the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Hain, K.; Faestermann, T.; Famulok, N.; Fimiani, L.; Gómez-Guzmán, J. M.; Korschinek, G.; Kortmann, F.; Lierse v. Gostomski, Ch.; Ludwig, P.; Shinonaga, T.

    2015-10-01

    A chemical separation procedure for plutonium (Pu) and neptunium (Np) was developed using extraction chromatography, mass spectrometry and radiometric analysis to determine their concentrations and isotopic ratios in sea water. 241Am, which causes isobaric background to 241Pu in mass spectrometric measurements, was successfully separated from the Pu fraction by this method. Water samples which were spiked with 242Pu and 237Np or 239Np, respectively, were used for chemical yield determination. The chemical yields of Pu and Np, which were determined by alpha and gamma spectrometry at the Radiochemie München (RCM), of more than 85% were obtained. The developed method was applied to analyze the concentration of Pu and Np in the certified reference material, IAEA-443, by Accelerator Mass Spectrometry (AMS) at the Maier-Leibnitz-Laboratory (MLL) to check the applicability of the method to sea water samples. The concentrations of 240Pu, 241Pu and 237Np obtained in this study are in agreement with the certified and literature values within the uncertainties. Due to strong isotopic interference of 239Pu with 238U, it was not possible to analyze the concentration of 239Pu. Some modifications of the chemical separation method to suppress the uranium (U) fraction are under consideration. This method can be used for the analysis of Pu and Np in Pacific Ocean water samples collected after the Fukushima accident.

  20. Second order phase transitions from octupole-nondeformed to octupole-deformed shape in the alternating parity bands of nuclei around 240Pu based on data

    NASA Astrophysics Data System (ADS)

    Jolos, R. V.; von Brentano, P.; Jolie, J.

    2012-08-01

    Background: Shape phase transitions in finite quantal systems are very interesting phenomena of general physical interest. There is a very restricted number of the examples of nuclei demonstrating this phenomenon.Purpose: Based on experimental excitation spectra, there is a second order phase transition in the alternating parity bands of some actinide nuclei.Method: The mathematical techniques of supersymmetric quantum mechanics, two-center octupole wave functions ansatz, and the Landau theory of phase transitions are used to analyze the experimental data on alternating parity bands.Results: The potential energy of the octupole collective motion is determined and analyzed for all observed values of the angular momentum of the alternating parity band states in 232Th, 238U, and 240Pu.Conclusion: It is shown that as a function of increasing angular momentum there is a second order phase transition from the octupole-nondeformed to the octupole-deformed shape in the considered nuclei.

  1. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    PubMed

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  2. Conversion electron spectrometry of Pu isotopes with a silicon drift detector.

    PubMed

    Pommé, S; Paepen, J; Peräjärvi, K; Turunen, J; Pöllänen, R

    2016-03-01

    An electron spectrometry set-up was built at IRMM consisting of a vacuum chamber with a moveable source holder and windowless Peltier-cooled silicon drift detector (SDD). The SDD is well suited for measuring low-energy x rays and electrons emitted from thin radioactive sources with low self-absorption. The attainable energy resolution is better than 0.5keV for electrons of 30keV. It has been used to measure the conversion electron spectra of three plutonium isotopes, i.e. (238)Pu, (239)Pu, (240)Pu, as well as (241)Am (being a decay product of (241)Pu). The obtained mixed x-ray and electron spectra are compared with spectra obtained with a close-geometry set-up using another SDD in STUK and spectra measured with a Si(Li) detector at IRMM. The potential of conversion electron spectrometry for isotopic analysis of mixed plutonium samples is investigated. With respect to the (240)Pu/(239)Pu isotopic ratio, the conversion electron peaks of both isotopes are more clearly separated than their largely overlapping peaks in alpha spectra.

  3. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on {sup 239}Pu, {sup 235}U, {sup 238}U

    SciTech Connect

    Selby, H.D.; Mac Innes, M.R.; Barr, D.W.; Keksis, A.L.; Meade, R.A.; Burns, C.J.; Chadwick, M.B.; Wallstrom, T.C.

    2010-12-15

    over to the ENDF/B-VII.0 library, except for {sup 99}Mo where the present results are about 4%-relative higher for neutrons incident on {sup 239}Pu and {sup 235}U. Additionally, our results illustrate the importance of representing the incident energy dependence of fission product yields over the fast neutron energy range for high-accuracy work, for example the {sup 147}Nd from neutron reactions on plutonium. An upgrade to the ENDF library, for ENDF/B-VII.1, based on these and other data, is described in a companion paper to this work.

  4. ANSI/ANS-8.15-1981(R87): Nuclear criticality control of special actinide elements

    SciTech Connect

    Brewer, R.W.; Pruvost, N.L.; Rombough, C.T.

    1996-12-31

    The American National Standard, {open_quotes}Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactotors{close_quotes} American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.1-1983(R88) provides guidance for the nuclides {sup 233}U, {sup 235}U, and {sup 239}Pu. These three nuclides are of primary interest in out-of-reactor criticality safety since they are the most commonly encountered in the vast majority of operations. However, some operations can involve nuclides other than {sup 233}U, {sup 235}U, and {sup 239}Pu in sufficient quantities that their effect on criticality safety could be of concern. ANSI/ANS-8.15-1981(R87) {open_quotes}Nuclear Criticality Control of Special Actinide Elements,{close_quotes} provides guidance for 15 such nuclides. The standard was approved for use on November 9, 1981. When it received its first 5-yr review, no changes were made, and it was reaffirmed effective October 30, 1987. The standard was again reviewed and reaffirmed without changes in December 1995. The next 5-yr review of the standard is due in December 2000. The affected nuclides are {sup 237}Np, {sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm, {sup 239}Pu, {sup 241}Pu, {sup 242m}Am, {sup 243}Cm, {sup 245}Cm, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf.

  5. Pre-operational radio-environmental studies of Plant Vogtle

    SciTech Connect

    Winn, W.G.; Sigg, R.A.

    1989-05-01

    This baseline study evaluates radioactivity in the environment near Plant Vogtle before initial reactor startup in 1987. These data will distinguish between any future radio-environmental effects from SRS and Plant Vogtle. Alpha, beta, and gamma-spectrometric methods analyzed river, stream, sediment, and soil samples. The study detected manmade radionuclides {sup 3}H, {sup 60}Co, {sup 134}Cs, {sup 137}Cs, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. However, all concentration levels are extremely low and are consistent with levels expected from fallout and from SRS operations in its early years. The measurements begun in this study continue to be used to monitor Vogtle post-startup effluents. 12 refs., 6 figs., 7 tabs.

  6. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  7. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  8. Role of natural organic matter on iodine and (239)(,240)Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan.

    PubMed

    Xu, Chen; Zhang, Saijin; Sugiyama, Yuko; Ohte, Nobuhito; Ho, Yi-Fang; Fujitake, Nobuhide; Kaplan, Daniel I; Yeager, Chris M; Schwehr, Kathleen; Santschi, Peter H

    2016-03-01

    In order to assess how environmental factors are affecting the distribution and migration of radioiodine and plutonium that were emitted from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, we quantified iodine and (239,240)Pu concentration changes in soil samples with different land uses (urban, paddy, deciduous forest and coniferous forest), as well as iodine speciation in surface water and rainwater. Sampling locations were 53-63 km northwest of the FDNPP within a 75-km radius, in close proximity of each other. A ranking of the land uses by their surface soil (<4 cm) stable (127)I concentrations was coniferous forest > deciduous forest > urban > paddy, and (239,240)Pu concentrations ranked as deciduous forest > coniferous forest > paddy ≥ urban. Both were quite distinct from that of (134)Cs and (137)Cs: urban > coniferous forest > deciduous forest > paddy, indicating differences in their sources, deposition phases, and biogeochemical behavior in these soil systems. Although stable (127)I might not have fully equilibrated with Fukushima-derived (129)I, it likely still works as a proxy for the long-term fate of (129)I. Surficial soil (127)I content was well correlated to soil organic matter (SOM) content, regardless of land use type, suggesting that SOM might be an important factor affecting iodine biogeochemistry. Other soil chemical properties, such as Eh and pH, had strong correlations to soil (127)I content, but only within a given land use (e.g., within urban soils). Organic carbon (OC) concentrations and Eh were positively, and pH was negatively correlated to (127)I concentrations in surface water and rain samples. It is also noticeable that (127)I in the wet deposition was concentrated in both the deciduous and coniferous forest throughfall and stemfall water, respectively, comparing to the bulk rainwater. Further, both forest throughfall and stemflow water consisted exclusively of organo-iodine, suggesting all inorganic iodine in the

  9. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; Talbot, L.R.; McFarland, S.S.; Pollard, I.A.; Atherton, D.R.; VanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10(/sup 6/) mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +/- SD for the RBE relative to /sup 226/Ra . 1.0: /sup 239/Pu . 15.3 +/- 3.9, /sup 241/Am . 4.9 +/- 1.4, /sup 249/Cf . 5.0 +/- 1.4, and /sup 252/Cf . 2.6 +/- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to alpha irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +/- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  10. Comparative toxicity of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, and /sup 252/Cf in C57BL/Do black and albino mice

    SciTech Connect

    Taylor, G.N.; Mays, C.W.; Lloyd, R.D.; Gardner, P.A.; TAlbot, L.R.; McFarland, S.S.; Pollard, T.A.; Atherton, D.R.; vanMoorhem, D.; Brammer, D.

    1983-09-01

    Groups of C57BL/Do (black and albino) mice were injected with graded activities of /sup 226/Ra, /sup 239/Pu, /sup 241/Am, /sup 249/Cf, or /sup 252/Cf and were followed throughout life. Bone sarcoma was the principal radiation-induced end point, and the risks associated with average skeletal doses of the four transuranium radionuclides, relative to radium, were determined. The relative biological effectiveness (RBE) was calculated for each emitter by dividing its risk coefficient (bone sarcomas per 10/sup 6/ mouse-rad) by the risk coefficient for /sup 226/Ra. Combined data for males and females in both black and albino mice gave the following values +- SD for the RBE relative to /sup 226/Ra = 1.0: /sup 239/Pu = 15.3 +- 3.9, /sup 241/Am = 4.9 +- 1.4, /sup 249/Cf = 5.0 +- 1.4, and /sup 252/Cf = 2.6 +- 0.8. About 70% of the tumors occurred in the axial skeleton, and the risk coefficient for females averaged about four times higher than for males when all five nuclides were included. The RBE of fission fragment irradiation from /sup 252/Cf for cancer induction, relative to ..cap alpha.. irradiation, for the combined data in all of the animals given /sup 252/Cf and /sup 249/Cf, was 0.02 +- 0.28, in agreement with the calculated theoretical value of 0.03, based on the ratio of summed track lengths in tissue.

  11. Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to /sup 239/Pu alpha particles, fission neutrons, or /sup 60/Co gamma rays

    SciTech Connect

    Grahn, D.; Lee, C.H.; Farrington, B.F.

    1983-09-01

    The relative biological effectiveness (RBE) of /sup 239/Pu ..cap alpha.. particles, fission neutrons (0.85 MeV), and /sup 60/Co ..gamma.. rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF/sub 1/ mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for /sup 239/Pu (single intravenous dose of 10 ..mu..Ci/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for ..gamma.. rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to ..gamma.. radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. The overall response to the ..cap alpha.. emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.

  12. International program to improve decay data for transactinium nuclides

    NASA Astrophysics Data System (ADS)

    Helmer, R. G.; Reich, C. W.

    1986-01-01

    To help meet an identified need for precise decay data, in 1977 the IAEA organized an international Coordinated Research Program (CRP) to measure and evaluate half-lives and γ- and α-emission probabilities for selected transactinium nuclides of importance for reactor technology. The CRP goals were (1) to determine a list of data that needed improvement, (2) to encourage new measurements, and (3) to evaluate the available data. All three phases of this work are now complete. Our participation in this effort has involved the measurement of γ-ray emission probabilities for 232,233,235U, 238,239,240,241Pu, 229Th and 233Pa, as well as participating in the data evaluation. The γ-emission probabilities were determined from the measurement of γ-emission rates with the goal of obtaining uncertainties of ≤ 1%. γ-measurements were made on calibrated Ge detectors. These calibrations were done by standard methods, generally involving measurements at ˜ 60 γ-ray energies from 14 to 2700 keV. The efficiency-calibration functions were assigned uncertainties ranging from 2% below 50 keV to 0.50% from 400 to 1400 keV. The determination of the decay rates of the various sources involved several techniques. The 238Pu, 239Pu and 240Pu samples were calibrated by gross α-emission-rate measurements at NBS. The 235U sample was taken from an NBS-calibrated spike solution. The 241Pu and 233U samples were calibrated by isotope-dilution mass spectrometry based on spikes of the calibrated 239Pu, 240Pu and 235U materials. Some of our results are given, together with a comparison of some present and previous results.

  13. Accelerator mass spectrometry (AMS) in plutonium analysis.

    PubMed

    Strumińska-Parulska, Dagmara I

    The paper summarizes the results of the (240)Pu/(239)Pu atomic ratio studies in atmospheric fallout samples collected in 1986 over Gdynia (Poland) as well as three Baltic fish species collected in 1997 using the accelerator mass spectrometry. A new generation of AMS has been developed during last years and this method is an efficient and good technique to measure long-lived radioisotopes in the environment and provides the most accurate determination of the atomic ratios between (240)Pu and (239)Pu. The nuclide compositions of plutonium in filter samples correspond to their means of production. AMS measurements of atmospheric fallout collected in April showed sufficient increase of the (240)Pu/(239)Pu atomic ratio from 0.28 from March to 0.47. Also such high increase of (240)Pu/(239)Pu atomic ratio, close to reactor core (240)Pu/(239)Pu atomic ratio, was observed in September and equaled 0.47.

  14. Sedimentation and mixing rates of radionuclides in Barents Sea sediments off Novaya Zemlya

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Ellis, K. M.; Naes, K.; Dahle, S.; Matishov, D.

    Radionuclide measurements have been conducted on sediment cores collected in 1992 in the south-eastern region of the Barents Sea, known as the Pechora Sea. Cesium-137 and 239,24OPu activities in surface sediments are generally less than 30 Bq/kg, with the highest levels being measured in sediments off the southwestern coastline of the island of Novaya Zemlya. High correlations between both 137Cs and 239,24OPu and the concentration of fine (< 63 μm) particles in surface sediments indicate that much of the variance in radionuclide concentrations throughout the Pechora Sea can be explained by particle size fractionation. However, elevated activities of 137Cs (138 Bq/kg), 60Co (92 Bq/kg), 241Am (433 Bq/kg), and especially 239,24OPu (8.47 × 103 Bq/kg) were measured in one surface sediment sample from the fjord of Chernaya Bay on the southern coast of Novaya Zemlya. The source of radioactive contamination is two underwater nuclear tests conducted in Chernaya Bay in 1955 and 1957. The 238Pu /239,240Vu activity ratio of 0.0245 in Chernaya Bay is equivalent to values measured in global fallout. The 240Pu /239Pu atom ratio (0.0304), measured by mass spectrometry, is much lower than values (0.18) typical of global fallout, but is consistent with ratios measured for fallout from the early (1951-1955) series of weapons tests at the Nevada Test Site. The timing of the Chernaya Bay source term, estimated from the 241Am /241Pu ratio, is consistent with the timing of the 1955 and 1957 underwater nuclear tests. Relatively low initial yields of 241Pu ( 241Pu /239Pu atom ratio = 0.00 123) in these tests have resulted in relatively low 241Am /239,240Pu activity ratios (0.05) in recent sediments in Chernaya Bay. Radionuclide tracer profiles in cores from the Pechora Sea can be simulated using a two-layer biodiffusion model with rapid, near-homogeneous mixing in the surface mixed layer and reduced mixing in the deep layer. Lead-210 profiles are consistent with a wide range of

  15. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant.

    PubMed

    Ueda, Shinji; Ohtsuka, Yoshihito; Kondo, Kunio; Hisamatsu, Shun'ichi

    2009-10-01

    We investigated the vertical profiles of (239+240)Pu, (137)Cs, and excess (210)Pb ((210)Pb(ex)) in sediment core samples obtained from two freshwater lakes and two brackish lakes situated near the first commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan, before the final test of the plant using actual spent nuclear fuel. The inventory of (239+240)Pu in those lakes was larger than that in soil in Rokkasho, which indicated the inflow of (239+240)Pu from the catchment area in addition to direct deposition on the lake surfaces. The (137)Cs inventory in sediments of the brackish lakes was lower than that in the soil, which showed that part of the (137)Cs was removed from the sediments by the brackish water or that it was not deposited into the sediments, because of the high solubility of Cs in brackish water. The (137)Cs inventory in sediments of the freshwater lakes was higher than that of the brackish lakes, and comparable with that in soil except for one core sample out of four. The (239+240)Pu/(137)Cs ratio in freshwater lake sediments was higher than that in soil, and that indicated that part of the (137)Cs was lost from the sediments. The low inventory of (137)Cs may be attributable to competition for absorption sites in sediments with ammonium ions formed in the reducing environment which occurs from summer to fall in the sediments. Those data will be used as background data on the artificial radionuclides in the lakes to assess the effect of released radionuclides on their concentrations.

  16. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Final report, June 1, 1992--December 31, 1996

    SciTech Connect

    Schier, W. A.; Couchell, G. P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of {sup 235}U and {sup 238}U and {sup 239}Pu and on cumulative and independent yield measurements of fission products of {sup 235}U and {sup 238}U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation`s evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for {sup 235}U, {sup 238}U and {sup 239}Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of {sup 235}U and {sup 238}U was also quite good although the present measurements suggest needed improvements in several individual cases.

  17. Interpretation of cytogenetic damage induced in the germ line of male mice exposed for over 1 year to /sup 239/Pu alpha particles, fission neutrons, or /sup 60/Co gamma rays

    SciTech Connect

    Grahn, D.; Lee, C.H.; Farrington, B.F.

    1983-09-01

    The relative biological effectiveness (RBE) of /sup 239/Pu alpha particles, fission neutrons (0.85 MeV), and /sup 60/Co gamma rays has been evaluated for the induction of reciprocal chromosome translocations in spermatogonia and of chromosome/chromatid fragments and chromatid rearrangements in the primary spermatocyte of adult male B6CF1 mice. Age concurrency was maintained for both internal and external radiations which were delivered at about 1 rad/week for /sup 239/Pu (single intravenous dose of 10 microCi/kg), 0.67, 1.67, and 2.67 rad/week for neutrons, and 6.95, 17.4, and 32 rad/week for gamma rays for at least 60 weeks. In terms of frequency of translocations, the response to the alpha emitter was nonlinear (concave downward) with little dose-response predictability; to cumulative neutron exposures the response was linear, without evidence of a dose-rate effect; and to gamma radiation the responses were linear, and a significant dose-rate effect was seen. RBE estimates are variable. For translocations, the n/gamma ratio is between 10 and 24, depending upon weekly dose level, and the ratio is 1 or less for the alpha particle relative to the neutron. For fragments, the n/gamma ratio is 18 to 22, depending upon age factors, and alpha/n is 1.5. For chromatid rearrangements, n/gamma is 7 and alpha/n is essentially indeterminate, but much below one. The overall response to the alpha emitter is interpreted to be a complex function of (a) microdosimetric heterogeneity, (b) a nearly invariant deposition pattern in the gonad, (c) the high sensitivity of differentiating spermatogonia to cell killing, and (d) the capacity of stem cells in relatively radiation-free areas to progressively assume the major spermatogenic role.

  18. Determination of Np-237 by radiochemical neutron activation analysis combined with extraction chromatography.

    PubMed

    Kalmykov, St N; Aliev, R A; Sapozhnikov, D Yu; Sapozhnikov, Yu A; Afinogenov, A M

    2004-01-01

    A procedure for determination of 237Np, 238Pu, 239,240Pu and 241Pu in environmental samples is described. Neptunium-237 is determined using radiochemical neutron activation analysis with pre- and post-irradiation chemistry based on solvent extraction and extraction chromatography. 238Pu, 239,240Pu is determined using alpha spectrometry and 241Pu by liquid scintillation spectrometry. The vertical profiles of 237Np, 238Pu, 239,240Pu in bottom sediments from the Black Sea are presented.

  19. Modelling Deposition and Erosion rates with RadioNuclides (MODERN) - Part 2: A comparison of different models to convert (239+240)Pu inventories into soil redistribution rates at unploughed sites.

    PubMed

    Arata, Laura; Alewell, Christine; Frenkel, Elena; A'Campo-Neuen, Annette; Iurian, Andra-Rada; Ketterer, Michael E; Mabit, Lionel; Meusburger, Katrin

    2016-10-01

    Sheet erosion is one of the major threats to alpine soils. To quantify its role and impact in the degradation processes of alpine grasslands, the application of Fallout Radionuclides (FRN) showed very promising results. The specific characteristics of plutonium 239 + 240 ((239+240)Pu), such as the homogeneous fallout distribution, the long half-life and the cost and time effective measurements make this tracer application for investigating soil degradation in Alpine grasslands more suitable than any other FRN (e.g. (137)Cs). However, the conversion of (239+240)Pu inventories into soil erosion rates remains a challenge. Currently available conversion models have been developed mainly for (137)Cs with later adaptation to other FRN (e.g. Excess (210)Pb, and (7)Be), each model being defined for specific land use (ploughed and/or unploughed) and processes (erosion or deposition). As such, they may fail in describing correctly the distribution of Pu isotopes in the soil. A new conversion model, MODERN, with an adaptable algorithm to estimate erosion and deposition rates from any FRN inventory changes was recently proposed (Arata et al., 2016). In this complementary contribution, the authors compare the application of MODERN to other available conversion models. The results show a good agreement between soil redistribution rates obtained from MODERN and from the models currently used by the FRN scientific community (i.e. the Inventory Method).

  20. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Gooden, M.; Arnold, C.; Bredeweg, T.; Vieira, D.; Wilhelmy, J.; Tonchev, A.; Stoyer, M.; Bhike, M.; Krishichayan, F.; Tornow, W.; Fowler, M.

    2015-10-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and ?-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. ?-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of 2 months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. These results are compared to previous measurements and theoretical estimates. This work was performed under the auspices of the USDoE by Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  1. Northern Marshall Islands radiological survey: sampling and analysis summary

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Eagle, R.J.; Stuart, M.L.

    1981-07-23

    A radiological survey was conducted in the Northern Marshall Islands to document reamining external gamma exposures from nuclear tests conducted at Enewetak and Bikini Atolls. An additional program was later included to obtain terrestrial and marine samples for radiological dose assessment for current or potential atoll inhabitants. This report is the first of a series summarizing the results from the terrestrial and marine surveys. The sample collection and processing procedures and the general survey methodology are discussed; a summary of the collected samples and radionuclide analyses is presented. Over 5400 samples were collected from the 12 atolls and 2 islands and prepared for analysis including 3093 soil, 961 vegetation, 153 animal, 965 fish composite samples (average of 30 fish per sample), 101 clam, 50 lagoon water, 15 cistern water, 17 groundwater, and 85 lagoon sediment samples. A complete breakdown by sample type, atoll, and island is given here. The total number of analyses by radionuclide are 8840 for /sup 241/Am, 6569 for /sup 137/Cs, 4535 for /sup 239 +240/Pu, 4431 for /sup 90/Sr, 1146 for /sup 238/Pu, 269 for /sup 241/Pu, and 114 each for /sup 239/Pu and /sup 240/Pu. A complete breakdown by sample category, atoll or island, and radionuclide is also included.

  2. Mechanical environmental transport of actinides and ¹³⁷Cs from an arid radioactive waste disposal site.

    PubMed

    Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C

    2015-10-01

    Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles.

  3. Beta and gamma decay heat measurements between 0.1s - 50,000s for neturon fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Progress report, June 1, 1992--December 31, 1994

    SciTech Connect

    Schier, W.A.; Couchell, G.P.

    1997-05-01

    In the investigations reported here, a helium-jet/tape-transport system was used for the rapid transfer of fission products to a low-background environment where their aggregate beta and gamma-ray spectra were measured as a function of delay time after neutron induced fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Beta and gamma-ray energy distributions have been deduced for delay times as short as 0.2 s and extending out to 100,000s. Instrumentation development during the initial phase of the project included: (1) assembly and characterization of a NaI(Tl) spectrometer for determining aggregate gamma-ray energy distributions, (2) development and characterization of a beta spectrometer (having excellent gamma-ray rejection) for measuring aggregate beta-particle energy distributions, (3) assembly and characterization of a Compton-suppressed HPGe spectrometer for determining gamma-ray intensities of individual fission products to deduce fission-product yields. Spectral decomposition and analysis codes were developed for deducing energy distributions from measured aggregate beta and gamma spectra. The aggregate measurements in the time interval 0.2 - 20s after fission are of special importance since in this region data from many short-lived nuclei are missing and summation calculations in this region rely on model calculations for a large fraction of their predicted beta and gamma decay heat energy spectra. Comparison with ENDF/B-VI fission product data was performed in parallel with the measurements through a close collaboration with Dr. T. England at LANL, assisted by one of our graduate students. Such aggregate measurements provide tests of the Gross Theory of beta decay used to calculated missing contributions to this data base. Fission-product yields deduced from the HPGe studies will check the accuracy of the semi-empirical Gaussian dispersion model used presently by evaluators in the absence of measured yields.

  4. Energy Dependence of Fission Product Yields from {sup 235}U, {sup 238}U and {sup 239}Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    SciTech Connect

    Gooden, M.E.; Arnold, C.W.; Becker, J.A.; Bhatia, C.; Bhike, M.; Bond, E.M.; Bredeweg, T.A.; Fallin, B.; Fowler, M.M.; Howell, C.R.; Kelley, J.H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S.A.; Stoyer, M.A.; Tonchev, A.P.; Tornow, W.; and others

    2016-01-15

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for {sup 235}U, {sup 238}U and {sup 239}Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber

  5. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  6. Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV

    DOE PAGES

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; ...

    2016-01-06

    In this study, Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varyingmore » degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual

  7. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  8. The role of plutonium as a resource now and in the future

    SciTech Connect

    Ray, D.L.

    1988-01-01

    This paper is the author's predictions of the role of plutonium as a resource. /sup 238/Pu is considered as a fuel for radiothermal generators in satellites and space probes. /sup 239/Pu is acknowledged to be vital in weapons applications. /sup 239/Pu and /sup 240/Pu are discussed from the viewpoint of commercial electrical generation.

  9. Estimation of Ni{sup 63}, Pu{sup 241}, Pu{sup 242} and Am{sup 243} from Co{sup 60}, Pu{sup 239}, and Cm{sup 244} activities in groundwater samples

    SciTech Connect

    Holcomb, H.P.

    1993-05-14

    The Part B Permit for F&H Seepage Basins calls for analysis of several constituents of concern in groundwater monitoring wells. Four of these analytes are the radionuclides Ni{sup 63}, Pu{sup 241}, Pu{sup 242}, and Am{sup 243}. These are currently not being analyzed due to their very difficult, tedious analytical schemes coupled with their relatively low activity values. This report demonstrates how the activity value for Ni{sup 63}, a week beta emitter, can be estimated from that of Co{sup 60}, an easily detectable, high-energy gamma emitter. Similarly, estimates of Pu{sup 241}, a beta emitter, and the alpha-emitting Pu{sup 242} can be made from the activity value of the more easily detected Pu{sup 239}. Am{sup 243} can be estimated from the activity of Cm{sup 244}, which is easier to detect because of a shorter half-life (higher specific activity) and the emission of higher energy alpha particles. These correlations are made under very specific parameters in order to ensure the validity of this approach. Therefore, assumptions must be established setting ground rules for establishing these activity relationships. Bases for these assumptions are explained and/or referenced. Their degree of uncertainty limits the accuracy of the data so that the term ``estimate`` is used. Such soundly-based, conservative estimates for these four rads can provide a tool for evaluating any hazards from their presence over the next several years. Hopefully, during this time, sufficient advances will be made in their radiochemical analyses and in counting techniques so that in the future, their activities may be quantitatively determined more easily and also more cost effectively.

  10. Distribution of neptunium and plutonium in New Mexico lichen samples (Usnea arizonica) contaminated by atmospheric fallout

    DOE PAGES

    Oldham, Jr., Warren J.; Hanson, Susan K.; Lavelle, Kevin B.; ...

    2015-08-30

    In this study, the concentrations of 237Np, 239Pu and 240Pu were determined in lichen samples (Usnea arizonica) that were collected from ten locations in New Mexico between 2011 and 2013 using isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS). The observed isotopic ratios for 237Np/239Pu and 240Pu/239Pu indicate trace contamination from global and regional fallout (e.g. Trinity test and atmospheric testing at the Nevada Test Site). The fact that actinide contamination is detected in recent lichen collections suggests continuous re-suspension of fallout radionuclides even 50 years after ratification of the Limited Test Ban Treaty.

  11. Airborne Plutonium and non-natural Uranium from the Fukushima DNPP found at 120 km distance a few days after reactor hydrogen explosions.

    PubMed

    Shinonaga, Taeko; Steier, Peter; Lagos, Markus; Ohkura, Takehisa

    2014-04-01

    Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.

  12. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2012-01-01

    This study describes a new method utilizing the Dancoff factor to model a non-standard TRISO fuel form characteristic of the AHTR reactor design concept for depletion analysis using the TRITON sequence of SCALE and the validation of this method by code-to-code comparisons. The fuel used in AHTR has the TRISO particles concentrated along the edges of a slab fuel element. This particular geometry prevented the use of a standard DOUBLEHET treatment, previously developed in SCALE to handle NGNP-designed fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel design typical of the NGNP, where the DOUBLEHET treatment is available. A more comprehensive study was performed using the VESTA code that uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor, and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where the DOUBLEHET treatment is unavailable.

  13. Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor

    SciTech Connect

    KELLY, RYAN; Ilas, Dan

    2013-01-01

    This study describes a new approach employing the Dancoff correction method to model the TRISO-based fuel form used by the Advanced High-Temperature Reactor (AHTR) reactor design concept. The Dancoff correction method is used to perform isotope depletion analysis using the TRITON sequence of SCALE and is verified by code-to-code comparisons. The current AHTR fuel design has TRISO particles concentrated along the edges of a slab fuel element. This geometry prevented the use of the DOUBLEHET treatment, previously developed in SCALE to model spherical and cylindrical fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel configuration typical of the Next Generation Nuclear Plant (NGNP), where DOUBLEHET treatment is possible. A confirmatory study was performed on the AHTR reference core geometry using the VESTA code, which uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu, and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where DOUBLEHET treatment cannot be performed.

  14. Highly enriched isotopes of uranium and transuranium elements for scientific investigation

    NASA Astrophysics Data System (ADS)

    Vesnovskii, Stanislav P.; Polynov, Vladimir N.

    1992-08-01

    The paper describes the production of highly enriched isotopes of uranium, plutonium, americium and curium by means of electromagnetic separation for scientific and applied research in physics, chemistry, geology and other fields. The equipment and radiochemical methods used allows to provide the isotopic pure samples in quantities sufficient to set up nuclear physics experiments, to produce reference materials and standard sources for calibration of radiometrical and mass spectrometrical equipment and for use in radionuclear metrology. For a series of nuclei unique characteristics of isotopic enrichment and radiochemical and chemical purity were achieved: 233U: 99.97%; 235U: 99.97%; 236U: 98.0%; 238U: 99.997%; 238Pu: 99.6%; 239Pu: 99.9977%; 240Pu: 99.9-100%; 241Pu: 96.998%; 242Pu: 97.8-99.96%; 244Pu: 96.7%; 241Am: 99.6%; 242mAm: 85.6%; 243Am: 99.2-99.94%; 243Cm: 99.99%; 245Cm: 99.998%; 246Cm: 99.8%; 247Cm: 90%; 248Cm: 97%. Methods of radiochemical and chemical separation, product certification, fabrication of special sources or targets and layers of highly enriched isotopes on various substrates are presented.

  15. Spent fuel temperature and age determination from the analysis of uranium and plutonium isotopics

    SciTech Connect

    Scott, Mark R; Eccleston, George W; Bedell, Jeffrey J; Lockard, Chanelle M

    2009-01-01

    The capability to determine the age (time since irradiation) of spent fuel can be useful for verification and safeguards. While the age of spent fuel can be determined based on measurements of short-lived fission products, these measurements are not routinely done nor generally reported. As an alternative, age can also be determined if the uranium (U) and plutonium (Pu) isotopic values are available. Uranium isotopics are not strongly affected by fuel temperature, and bumup is determined from the {sup 235}U and {sup 236}U isotopic values. Age is calculated after estimating the {sup 241}Pu at the end of irradiation while accounting for the fuel temperature, which is determined from {sup 239}Pu or {sup 240}Pu. Burnup and age determinations are calibrated to reactor models that provide uranium and plutonium isotopics over the range of fuel irradiation. The reactor model must contain sufficient fidelity on details of the reactor type, fuel burnup, irradiation history, initial fuel enrichment and fuel temperature to obtain accurate isotopic calculations. If the latter four are unknown, they can be derived from the uranium and plutonium isotopics. Fuel temperature has a significant affect on the production of plutonium isotopics; therefore, one group cross section reactor models, such as ORIGEN, cannot be used for these calculations. Multi-group cross section set codes, such as Oak Ridge National Laboratory's TRITON code, must be used.

  16. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    SciTech Connect

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  17. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    SciTech Connect

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.; Casella, Andrew M.; Gesh, Christopher J.; Warren, Glen A.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure

  18. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  19. Self-regulating neutron coincidence counter

    DOEpatents

    Baron, N.

    1980-06-16

    A device for accurately measuring the mass of /sup 240/Pu and /sup 239/Pu in a sample having arbitrary moderation and mixed with various contaminants. The device utilizes a thermal neutron well counter which has two concentric rings of neutron detectors separated by a moderating material surrounding the well. Neutron spectroscopic information derived by the two rings of detectors is used to measure the quantity of /sup 239/Pu and /sup 240/Pu in device which corrects for background radiation, deadtime losses of the detector and electronics and various other constants of the system.

  20. Plutonium isotopes derived from Nagasaki atomic bomb in the sediment of Nishiyama reservoir at Nagasaki, Japan.

    PubMed

    Saito-Kokubu, Y; Esaka, F; Yasuda, K; Magara, M; Miyamoto, Y; Sakurai, S; Usuda, S; Yamazaki, H; Yoshikawa, S; Nagaoka, S

    2007-04-01

    The source of plutonium in sediments deposited at Nishiyama reservoir at Nagasaki was characterized by their (240)Pu/(239)Pu atom ratio. The average ratio was approximately 0.03, except in two layers. The main source of the plutonium was the Nagasaki atomic bomb. The plutonium continues to flow into the reservoir even now. The (240)Pu/(239)Pu atom ratios in two layers were higher than the average, which showed that plutonium in these layers were made of those of nuclear tests added to those of the atomic bomb.

  1. Anthropogenic plutonium in the North Jiangsu tidal flats of the Yellow Sea in China.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Gao, Jianhua

    2013-08-01

    The (239+240)Pu activities and (240)Pu/(239)Pu atom ratios were analyzed using a double-focusing SF-ICP-MS for sediment core samples obtained in 2007-2008 from the North Jiangsu tidal flats in the Yellow Sea in China. Particular attention was focused on the (240)Pu/(239)Pu atom ratios in the sediment to identify the origins of Pu isotopes. The profiles of (239+240)Pu activities in the sediment cores are similar to those of the (137)Cs activities. The (240)Pu/(239)Pu atom ratios in the tidal flats showed typical global fallout values, indicating that this area did not receive the possible early direct close-in fallout or oceanic current transported Pu from the Pacific Proving Grounds (PPG). If any, the contribution of the PPG source Pu to the total Pu inventory is negligible. This is different from the sediments in the Yangtze River estuary in the East China Sea, where the PPG source Pu contributed ca. 45 % to the total inventory. In addition, the observation of the global fallout origin Pu in the North Jiangsu tidal flats indicated that the nuclear power plant in the region was not causing any alteration/contamination to the (240)Pu/(239)Pu atom ratios. The (239+240)Pu and (137)Cs activities/inventories in the sediment cores showed correlation to the mean clay sediment compositions (fine particles) in the tidal flats. Therefore, mud deposits are served as sinks for the anthropogenic radionuclides in the tidal flats and the Yellow Sea. Integrated with the previously reported spatial distributions of (239+240)Pu and (137)Cs activities in the surface sediments of the Yellow Sea, the mechanism of Pu transport with the ocean currents and the scavenging characteristics in the Yellow Sea were discussed.

  2. [239Pu and chromosomal aberrations in human peripheral blood lymphocytes].

    PubMed

    Okladnikova, N D; Osovets, S V; Kudriavtseva, T I

    2009-01-01

    The genome status in somatic cells was assessed using the chromosomal aberration (CA) test in peripheral blood lymphocytes from 194 plutonium workers exposed to occupational radiation mainly from low-transportable compounds of airborne 230Pu. Pu body burden at the time of cytogenetic study varied from values close to the method sensitivity to values multiply exceeding the permissible level. Standard (routine) methods of peripheral blood lymphocytes cultivation were applied. Chromatid- and chromosomal-type structural changes were estimated. Aberrations were estimated per 100 examined metaphase cells. The quantitative relationship between the CA frequency and Pu body burden and the absorbed dose to the lung was found. Mathematical processing of results was carried out based on the phenomenological model. The results were shown as theoretical and experimental curves. The threshold of the CA yield was 0.43 +/- 0.03 kBq (Pu body burden) and 6.12 +/- 1.20 cGy (absorbed dose to the lung).

  3. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Tazoe, Hirofumi; Yamada, Masatoshi

    2014-04-11

    Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident.

  4. A fast semi-quantitative method for Plutonium determination in an alpine firn/ice core

    NASA Astrophysics Data System (ADS)

    Gabrieli, J.; Cozzi, G.; Vallelonga, P.; Schwikowski, M.; Sigl, M.; Boutron, C.; Barbante, C.

    2009-04-01

    Plutonium is present in the environment as a consequence of atmospheric nuclear tests carried out in the 1960s, nuclear weapons production and releases by the nuclear industry over the past 50 years. Plutonium, unlike uranium, is essentially anthropogenic and it was first produced and isolated in 1940 by deuteron bombardment of uranium in the cyclotron of Berkeley University. It exists in five main isotopes, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, derived from civilian and military sources (weapons production and detonation, nuclear reactors, nuclear accidents). In the environment, 239Pu is the most abundant isotope. Approximately 6 tons of 239Pu have been released into the environment as a result of 541 atmospheric weapon tests Nuclear Pu fallout has been studied in various environmental archives, such as sediments, soil and herbarium grass. Mid-latitude ice cores have been studied as well, on Mont Blanc, the Western Alps and on Belukha Glacier, Siberian Altai. We present a Pu record obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (M. Rosa, 4450 m a.s.l.), dating from 1945 to 1991. The239Pu signal was recorded directly, without preliminary cleaning or preconcentration steps, using an ICP-SFMS (Thermo Element2) equipped with a desolvation system (APEX). 238UH+ interferences were negligible for U concentrations lower than 50 ppt as verified both in spiked fresh snow and pre-1940 ice samples. The shape of 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak starts in 1954/55 to 1958 and includes the first testing period which reached a maximum in 1958. Despite a temporary halt in testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the sign of the "Limited Test Ban Treaty" between USA and URSS in 1964, Pu

  5. Temporal record of Pu isotopes in inter-tidal sediments from the northeastern Irish Sea.

    PubMed

    Lindahl, Patric; Worsfold, Paul; Keith-Roach, Miranda; Andersen, Morten B; Kershaw, Peter; Leonard, Kins; Choi, Min-Seok; Boust, Dominique; Lesueur, Patrick

    2011-11-01

    A depth profile of (239)Pu and (240)Pu specific activities and isotope ratios was determined in an inter-tidal sediment core from the Esk Estuary in the northeastern Irish Sea. The study site has been impacted with plutonium through routine radionuclide discharges from the Sellafield nuclear reprocessing plant in Cumbria, NW England. A pronounced sub-surface maximum of ~10 k Bq kg(-1) was observed for (239+240)Pu, corresponding to the peak in Pu discharge from Sellafield in 1973, with a decreasing trend with depth down to ~0.04 k Bq kg(-1) in the deeper layers. The depth profile of (239+240)Pu specific activities together with results from gamma-ray spectrometry for (137)Cs and (241)Am was compared with reported releases from the Sellafield plant in order to estimate a reliable sediment chronology. The upper layers (1992 onwards) showed higher (239+240)Pu specific activities than would be expected from the direct input of annual Sellafield discharges, indicating that the main input of Pu is from the time-integrated contaminated mud patch of the northeastern Irish Sea. The (240)Pu/(239)Pu atom ratios ranged from ~0.03 in the deepest layers to >0.20 in the sub-surface layers with an activity-weighted average of 0.181. The decreasing (240)Pu/(239)Pu atom ratio with depth reflects the changing nature of operations at the Sellafield plant from weapons-grade Pu production to reprocessing spent nuclear fuel with higher burn-up times in the late 1950s. In addition, recent annual (240)Pu/(239)Pu atom ratios in winkles collected during 2003-2008 from three stations along the Cumbrian coastline showed no significant spatial or temporal differences with an overall average of 0.204, which supports the hypothesis of diluted Pu input from the contaminated mud patch.

  6. Depth profile of 236U/238U in soil samples in La Palma, Canary Islands

    PubMed Central

    Srncik, M.; Steier, P.; Wallner, G.

    2011-01-01

    The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source. PMID:21481502

  7. Highly enriched isotope samples of uranium and transuranium elements for scientific investigation

    NASA Astrophysics Data System (ADS)

    Vesnovskii, Stanislav P.; Polynov, Vladimir N.; Danilin, Lev. D.

    1992-02-01

    The paper describes the production of highly enriched isotopes of uranium, plutonium, americium and curium by electromagnetic separation for scientific and applied researches in physics, chemistry, geology, medicine, biology and other fields. Using the equipment described, the isotopes are produced in quantities sufficient to set up nuclear physical experiments, to produce nuclear reference materials and standard sources for calibration of radiometrical and mass spectrometrical equipment, in radionuclide metrology, etc. For the following isotopes the indicated degrees of isotopic enrichment were achieved: 233U - 99.97%; 235U - 99.97%; 236U - 98.0%; 238U - 99.997%; 238Pu - 99.6%; 239Pu - 99.9977%; 240Pu - 99.9-100%; 241Pu - 96.998%; 242Pu - 97.8-99.96%; 244Pu - 96.7%; 241Am - 99.6%; 242Am - 73.6%; 243Am - 99.2-99.94%; 243Cm - 99.99%; 245Cm - 99.998%; 246Cm - 99.8%; 247Cm - 90%; 248Cm - 97%. Methods for preparing layers of highly enriched isotopes on various substances are presented: - electrochemical deposition of transuranic elements from aqueous-organic and organic media and vacuum spraying: - the method of foil and coating formation via compounds in the vapour phase; - the method of fabrication of layers of transuranic elements on superthin (1-2 μm) metal substrates with additional isolating polymer-metal coatings (0.2-0.4 μm), that substantially decrease material transfer from the active layer and increase safety of product handling.

  8. Measurement and calculation of high-actinide burnup in the prototype fast reactor

    SciTech Connect

    Broadhead, B.L.; Raman, S.; Dickens, J.K. )

    1991-01-01

    An agreement was signed in May 1979 as a part of a long-term cooperative program between the United Kingdom and the US under the liquid-metal fast breeder reactor agreement of 1976. This agreement included an experiment to carry out irradiations of physics specimens of fissile and fertile actinides to improve our knowledge of basic nuclear physics phenomena. Three fuel pins were prepared by the US to contain the actinide physics samples; two of these pins were irradiated at the Dounreay prototype fast reactor (PFR) for a total irradiation of 63 full-power days. The third pin has only recently been removed from the PFT, following an irradiation of > 500 full-power days. Each pin houses 35 capsules containing milligram quantities of actinide oxides of {sup 231}Pa, {sup 230}Th, {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 244}Pu, {sup 241}Am, {sup 243}Am, {sup 243}Cm, {sup 244}Cm, {sup 246}Cm, and {sup 248}Cm. Following the return of the first fuel pin (FP-1) to the United States in May 1984, the actinide samples were prepared for studies of fission product yields, isotopics, and material concentrations. The measurements were repeated for the second fuel pin (FP-2) to remedy several problems encountered in the processing of the FP-1 pin. A brief description of the measured and calculated {sup 137}Cs yields for both FP-1 and FP-2 are included in this paper.

  9. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    SciTech Connect

    Snider, C.A.; Weston, W.W.

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  10. OSMOSE program : statistical review of oscillation measurements in the MINERVE reactor R1-UO2 configuration.

    SciTech Connect

    Stoven, G.; Klann, R.; Zhong, Z.; Nuclear Engineering Division

    2007-08-28

    The OSMOSE program is a collaboration on reactor physics experiments between the United States Department of Energy and the France Commissariat Energie Atomique. At the working level, it is a collaborative effort between the Argonne National Laboratory and the CEA Cadarache Research Center. The objective of this program is to measure very accurate integral reaction rates in representative spectra for the actinides important to future nuclear system designs, and to provide the experimental data for improving the basic nuclear data files. The main outcome of the OSMOSE measurement program will be an experimental database of reactivity-worth measurements in different neutron spectra for the heavy nuclides. This database can then be used as a benchmark to verify and validate reactor analysis codes. The OSMOSE program (Oscillation in Minerve of isotopes in Eupraxic Spectra) aims at improving neutronic predictions of advanced nuclear fuels through oscillation measurements in the MINERVE facility on samples containing the following separated actinides: {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm, and {sup 245}Cm. The first part of this report provides an overview of the experimental protocol and the typical processing of a series of experimental results which is currently performed at CEA-Cadarache. In the second part of the report, improvements to this technique are presented, as well as the program that was created to process oscillation measurement results from the MINERVE facility in the future.

  11. Plutonium in surface soil near the southwestern boundary of the Hanford project

    SciTech Connect

    Price, K.R.; Dirkes, R.L.

    1981-05-01

    Samples of airborne particles collected near the Prosser Barricade in another study showed low /sup 240/Pu//sup 239/Pu ratios that are indicative of Hanford-produced plutonium. In an effort to locate evidence of a trail or the remains of a large short-term release of plutonium that may have occurred during past Hanford operations, surface soil samples were collected along the southweastern boundary of the Hanford Site in December 1979. Results indicated the possibility of slightly elevated levels of /sup 239/ /sup 240/Pu (0.016 pCi/g) occurring in the general vicinity of the Arid Land Ecology Field lab extending to the junction of Highway 240 and Horn Rapids Road as compared to lower levels (0.006 pCi/g) in a northwesterly direction along the base of Rattlesnake Mountain and the eastern slope of Yakima Ridge. Assuming the worldwide average /sup 240/Pu//sup 239/Pu ratio of 0.18 for soil of the Pacific Northwest, the plutonium in these soil samples may be slightly less enriched with /sup 240/Pu (/sup 240/Pu//sup 239/Pu = 0.16). No evidence was discovered of an acute release remaining intact and crossing the southwestern boundary during the operating history of plutonium facilities in the 200 Areas.

  12. Certified reference materials for radionuclides in Bikini Atoll sediment (IAEA-410) and Pacific Ocean sediment (IAEA-412).

    PubMed

    Pham, M K; van Beek, P; Carvalho, F P; Chamizo, E; Degering, D; Engeler, C; Gascó, C; Gurriaran, R; Hanley, O; Harms, A V; Herrmann, J; Hult, M; Ikeuchi, Y; Ilchmann, C; Kanisch, G; Kis-Benedek, G; Kloster, M; Laubenstein, M; Llaurado, M; Mas, J L; Nakano, M; Nielsen, S P; Osvath, I; Povinec, P P; Rieth, U; Schikowski, J; Smedley, P A; Suplinska, M; Sýkora, I; Tarjan, S; Varga, B; Vasileva, E; Zalewska, T; Zhou, W

    2016-03-01

    The preparation and characterization of certified reference materials (CRMs) for radionuclide content in sediments collected offshore of Bikini Atoll (IAEA-410) and in the open northwest Pacific Ocean (IAEA-412) are described and the results of the certification process are presented. The certified radionuclides include: (40)K, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (234)U, (238)U, (239)Pu, (239+240)Pu and (241)Am for IAEA-410 and (40)K, (137)Cs, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (235)U, (238)U, (239)Pu, (240)Pu and (239+240)Pu for IAEA-412. The CRMs can be used for quality assurance and quality control purposes in the analysis of radionuclides in sediments, for development and validation of analytical methods and for staff training.

  13. ²³⁹Pu and ²⁴⁰Pu inventories and ²⁴⁰Pu/²³⁹Pu atom ratios in the equatorial Pacific Ocean water column.

    PubMed

    Yamada, Masatoshi; Zheng, Jian

    2012-07-15

    The (239+240)Pu concentrations and (240)Pu/(239)Pu atom ratios were determined by alpha spectrometry and inductively coupled plasma mass spectrometry for seawater samples from two stations, one at the equator and the other in the equatorial South Pacific. To better understand the fate of Pu isotopes, this study dealt with the contribution of the close-in fallout Pu from the Pacific Proving Grounds (PPG) in water columns of the Pacific Ocean. The (239)Pu, (240)Pu and (239+240)Pu inventories over the depth interval 0-3000 m at the equator station were 10.4, 8.9 and 19.3 Bq m(-2), respectively. Further, no noticeable difference was observed in (239)Pu, (240)Pu and (239+240)Pu inventories over the depth interval 0-3000 m between the two stations. The total (239+240)Pu inventories were significantly higher than the expected cumulative deposition density of global fallout. Water column (239+240)Pu inventories measured in this study were lower than those reported for comparable stations in the Geochemical Ocean Sections Study, indicating that these inventories have been decreasing at average rates of 0.89 ± 0.07 and 0.16 ± 0.07 Bq m(-2)yr(-1) at the equator and equatorial South Pacific stations, respectively, from 1973 to 1990. The obtained (240)Pu/(239)Pu atom ratios were higher than the mean global fallout ratio of 0.18. These high atom ratios proved the existence of close-in tropospheric fallout Pu from the PPG in the Marshall Islands. The (239+240)Pu inventories originating from the close-in fallout in the entire water column were estimated to be 11.1 Bq m(-2) at the equator station and 7.1 Bq m(-2) at the equatorial South Pacific Ocean station, and the relative percentages of close-in fallout Pu were 40% at the former and 34% at the latter. A significant amount of close-in fallout Pu originating from the PPG has been transported to deep layers below the 1000 m depth in the equatorial Pacific Ocean.

  14. Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai-ichi Nuclear Power Station accident.

    PubMed

    Oikawa, Shinji; Watabe, Teruhisa; Takata, Hyoe

    2015-04-01

    A radioactivity measurement survey was carried out from 24 April 2008 to 3 June 2011 to determine the levels of plutonium isotopes and (240)Pu/(239)Pu atom ratios in the marine environments off the sites of commercial nuclear power stations around the Japanese islands; the sampling period extended to two months after the Fukushima Dai-ichi Nuclear Power Station accident. In our previous study (Oikawa et al., 2015), data on Pu isotopes and (241)Am in sediments have already been reported. In this study, we report those on Pu isotopes in seawater as well as sediments, and the characteristics of sediments in addition (e.g., ignition loss and biogenic opals). Concentrations of (239+240)Pu in seawater and bottom sediments remained nearly constant at all sampling locations during the survey period. In addition, no regional differences were observed in the (239+240)Pu concentrations in surface waters. Higher (239+240)Pu concentrations were found in bottom waters at deeper sampling locations, but the (240)Pu/(239)Pu atom ratios were nearly constant regardless of the water depth. Higher (239+240)Pu concentrations were also found in bottom sediments at deeper sampling locations, but vice versa for (240)Pu/(239)Pu atom ratios as reported in the previous report. The sediments samples from deeper locations showed the higher percentage of ignition loss as well as the higher content of biogenic opal. There was likely to be some driving force participating in the transfer of Pu isotopes associated with biogenic substances to the deeper seabed. The present survey showed that the accident at the Fukushima Dai-ichi Nuclear Power Station did not contribute much to the inventory of Pu isotopes in the adjacent sea area.

  15. Spatial and temporal distribution of Pu in the Northwest Pacific Ocean using modern coral archives.

    PubMed

    Lindahl, Patric; Andersen, Morten B; Keith-Roach, Miranda; Worsfold, Paul; Hyeong, Kiseong; Choi, Min-Seok; Lee, Sang-Hoon

    2012-04-01

    Historical (239)Pu activity concentrations and (240)Pu/(239)Pu atom ratios were determined in skeletons of dated modern corals collected from three locations (Chuuk Lagoon, Ishigaki Island and Iki Island) to identify spatial and temporal variations in Pu inputs to the Northwest Pacific Ocean. The main Pu source in the Northwest Pacific is fallout from atmospheric nuclear weapons testing which consists of global fallout and close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands. PPG close-in fallout dominated the Pu input in the 1950s, as was observed with higher (240)Pu/(239)Pu atom ratios (>0.30) at the Ishigaki site. Specific fallout Pu contamination from the Nagasaki atomic bomb and the Ivy Mike thermonuclear detonation at the PPG were identified at Ishigaki Island from the (240)Pu/(239)Pu atom ratios of 0.07 and 0.46, respectively. During the 1960s and 1970s, global fallout was the major Pu source to the Northwest Pacific with over 60% contribution to the total Pu. After the cessation of the atmospheric nuclear tests, the PPG again dominated the Pu input due to the continuous transport of remobilised Pu from the Marshall Islands along the North Equatorial Current and the subsequent Kuroshio Current. The Pu contributions from the PPG in recent coral bands (1984 onwards) varied over time with average estimated PPG contributions between 54% and 72% depending on location.

  16. Particle-size speciation of Pu isotopes in surface soils from Inner Mongolia (China) and its implications for Asian Dust monitoring.

    PubMed

    Dong, Wei; Zheng, Jian; Guo, Qiuju

    2017-02-01

    To study the applications of Pu isotopes in long-distance dust migration monitoring, Pu isotopes in surface soil of Inner Mongolia have been analyzed using SF-ICP-MS after size fractionation. (240)Pu/(239)Pu atom ratios ranged narrowly (0.169-0.200) and indicated global fallout character, while (239+240)Pu activities increased with decreasing particle size. A spherical model could well simulate (239+240)Pu activities as a function of particle diameter when soil particle size was less than 600µm, and the soil particle surface sorption phenomenon of Pu isotopes in natural soil samples was revealed. Furthermore, (239+240)Pu activity in fine particles (sized less than 53µm) had good consistency with that in atmospheric depositions of Japan since the 2000s, suggesting new Asian Dust sources (i.e. central Inner Mongolia) other than the well-known Chinese deserts.

  17. Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.

    PubMed

    Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I

    2014-01-01

    Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes.

  18. Experiments on the synthesis of superheavy nuclei 284Fl and 285Fl in the Pu,240239+48Ca reactions

    NASA Astrophysics Data System (ADS)

    Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dmitriev, S. N.; Grzywacz, R. K.; Itkis, M. G.; Miernik, K.; Polyakov, A. N.; Roberto, J. B.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Tsyganov, Yu. S.; Voinov, A. A.; Subbotin, V. G.; Sukhov, A. M.; Sabel'nikov, A. V.; Vostokin, G. K.; Hamilton, J. H.; Stoyer, M. A.; Strauss, S. Y.

    2015-09-01

    Irradiations of 239Pu and 240Pu targets with 48Ca beams aimed at the synthesis of Z =114 flerovium isotopes were performed at the Dubna Gas Filled Recoil Separator. A new spontaneously fissioning (SF) isotope 284Fl was produced for the first time in the 240Pu+48Ca (250 MeV) and 239Pu+48Ca (245 MeV) reactions. The cross section of the 239Pu(48Ca,3 n )284Fl reaction channel was about 20 times lower than predicted by theoretical models and about 50 times lower than the maximum fusion-evaporation cross section for the 3 n and 4 n channels measured in the 244Pu+48Ca reaction. In the 240Pu+48Ca experiment, performed at 245 MeV in order to maximize the 3 n -evaporation channel, three decay chains of 285Fl were detected. The α -decay energy of 285Fl was measured for the first time and decay properties of its descendants 281Cn, 277Ds, 273Hs, 269Sg, and 265Rf were determined with higher accuracy. The assignment of SF events observed during the irradiation of the 240Pu target with a 250 MeV 48Ca beam to 284Fl decay is presented and discussed. The cross sections at both 48Ca energies are similar and exceed that observed in the reaction with the lighter isotope 239Pu by a factor of 10. The decay properties of the synthesized nuclei and their production cross sections indicate a rapid decrease of stability of superheavy nuclei as the neutron number decreases from the predicted magic neutron number N =184 .

  19. American National Standard: for nuclear criticality control of special actinide elements

    SciTech Connect

    Not Available

    1981-01-01

    This standard is applicable to operations with the following: /sup 237/Np, /sup 238/Pu, /sup 240/Pu, /sup 241/Pu, /sup 242/Pu, /sup 241/Am, /sup 242m/Am, /sup 243/Am, /sup 243/Cm, /sup 244/Cm, /sup 245/Cm, /sup 247/Cm, /sup 249/Cf and /sup 251/Cf. Subcritical mass limits are presented for isolated fissionable units. The limits are not applicable to interacting units.

  20. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice.

  1. Anomalous plutonium isotopic ratios in sediments of Lake Qinghai from the Qinghai-Tibetan Plateau, China.

    PubMed

    Wu, Fengchang; Zheng, Jian; Liao, Haiqing; Yamada, Masatoshi; Wan, Guojiang

    2011-11-01

    The vertical profiles of (239+240)Pu and (137)Cs activities and (240)Pu/(239)Pu isotopic ratios are determined for three sediment cores of Lake Qinghai from the Qinghai-Tibetan Plateau, China, and compared with those in sediments of another three lakes (Lakes Bosten, Sugan, and Shuangta), the only existing ones closest to Lop Nor area, China's nuclear weapons test site in the northwestern part of the country. The mean inventory of 47.7 ± 18.7 MBq km(-2) for (239+240)Pu activity in Lake Qinghai is comparable to the average value of global fallout expected at the same latitude, yet the mean inventory of 1112.0 ± 78.0 MBq km(-2) for (137)Cs is slightly lower than that of global fallout. Anomalously low (240)Pu/(239)Pu isotopic ratios (0.038-0.125) were found in the 3-6.5 cm deep sediment layers, indicating the trace Pu input from early nuclear weapons research activities at Atomic City in the lake's watershed during the 1950-60s. Model calculation indicated that the Pu input accounted for approximately 5-16% of the total Pu inventory. The observation of low (240)Pu/(239)Pu ratio in the deep sediment layer provided a new time marker for recent sediment dating in the lake and around the area. The results are of great significance to the further understanding of sources, records, and environmental impacts of global and regional nuclear activities in the environment and provide important chronological information for further studies on the water eutrophication process and climatic change, and reconstruction of pollution history of organic contaminants and heavy metals in the watershed of Lake Qinghai.

  2. Studies of Np and Pu in the marine environment of Swedish-Danish waters and the North Atlantic Ocean.

    PubMed

    Lindahl, Patric; Roos, Per; Holm, Elis; Dahlgaard, Henning

    2005-01-01

    The long-lived anthropogenic radionuclides (237)Np, (239)Pu and (240)Pu were determined in marine environmental samples (seaweed and seawater) collected from Swedish-Danish waters and the North Atlantic Ocean at various locations on different occasions during the period 1991-2001. The measurements were performed with sector field Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and conventional alpha spectrometry. The (237)Np activity concentrations in Fucus vesiculosus and surface seawater from the Swedish west coast and Danish waters ranged from 0.16+/-0.02 to 1.02+/-0.09 mBq kg(-1) (dry weight) and 0.65+/-0.02 to 1.69+/-0.02 mBq m(-3), respectively, depending on the location and sampling year. Most of the (237)Np in these waters is believed to originate from the Sellafield nuclear reprocessing plant, with some contribution from global fallout. The (240)Pu/(239)Pu atomic ratios in F. vesiculosus samples are reported in this study with an overall average of 0.17+/-0.03. The (237)Np and (239)Pu activity concentrations observed in surface seawater collected in North Atlantic waters ranged from 0.16+/-0.01 to 0.62+/-0.08 mBq m(-3) and from 0.64+/-0.05 to 4.27+/-0.08 mBq m(-3), respectively, and the (237)Np/(239)Pu atomic ratios were a good indicator of conservative behaviour of Np in marine waters.

  3. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  4. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    SciTech Connect

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria

  5. Modeling report of the CEA cadarache MINERVE reactor for the OSMOSE project.

    SciTech Connect

    Klann, R.; Perret, G.; Hudelot, J. P.; Antony, M.

    2005-02-25

    The OSMOSE program (Oscillation in Minerve of isotopes in ''Eupraxic'' spectra) is a collaboration between the U.S. Department of Energy (DOE) and the Commissariat a l' Energie Atomique (CEA). It aims at measuring integral absorption rates of minor actinides by the oscillation technique in the MINERVE experimental facility located at the CEA Cadarache Research Center. The OSMOSE program also includes a complete analytical program to understand and resolve potential discrepancies between calculated and measured values. The OSMOSE program began in 2001 and will continue until 2013. The Argonne National Laboratory has developed Monte Carlo and deterministic calculation models of the MINERVE facility to determine core and safety parameters such as axial and radial fission rate distributions, control rod worth, spectral indices, and the reactivity worth of oscillated samples. Oscillation samples include calibration samples with different uranium enrichments and boron concentrations and the OSMOSE samples--separated actinides including {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm and {sup 245}Cm. Seven different neutron spectra will be created in the MINERVE facility: an overmoderated UO{sub 2} matrix (representative of a fuel processing plant or flooded storage cask), a UO{sub 2} matrix in water (representative of LWRs), a mixed oxide fuel matrix (representative of cores containing MOX fuels), two epithermal spectra (representative of under-moderated reactors), a moderated fast spectrum (representative of fast reactors which have some slowing down due to moderators such as lead-bismuth or sodium), and a very hard spectrum (representative of fast reactors with little moderation from reactor coolant). The different spectra are achieved by changing the experimental lattice within the MINERVE reactor. The currently investigated core

  6. The OSMOSE program for the qualification of integral cross sections of actinides: Preliminary results in a PWR-UOx spectrum

    SciTech Connect

    Hudelot, J. P.; Antony, M.; Bernard, D.; Fougeras, P.

    2006-07-01

    The need for improved nuclear data for minor actinides has been stressed by various organizations throughout the world - especially for studies relating to plutonium management, waste incineration, transmutation of waste, and Pu burning in future nuclear concepts. Several international programs have indicated a strong desire to obtain accurate integral reaction rate data for improving the major and minor actinides cross sections. Data on major actinides (i.e. {sup 235}U, {sup 236}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu and {sup 241}Am) are reasonably well-known and available in the Evaluated Nuclear Data Files (JEFF, JENDL, ENDF-BX However information on the minor actinides (i.e. {sup 232}Th, {sup 233}U, {sup 237}Np, {sup 238}Pu, {sup 242}Am, {sup 243}Am, {sup 243}Cm, {sup 235}Cm, {sup 244}Cm, {sup 245}Cm, {sup 246}Cm and {sup 247}Cm) is less well-known and considered to be relatively poor in some cases, having to rely on model and extrapolation of few data points. In this framework, the ambitious OSMOSE program between the Commissariat a l'Energie Atomique (CEA), Electricite de France (EDF) and the U.S. Dept. of Energy (DOE) has been undertaken with the aim of measuring the integral absorption rate parameters of actinides in the MINERVE experimental facility located at the CEA Cadarache Research Center. The OSMOSE Program (Oscillation in Minerve of isotopes in 'Eupraxic' Spectra) includes a complete analytical program associated with the experimental measurement program and aims at understanding and resolving potential discrepancies between calculated and measured values. In the OSMOSE program, the reactivity worth of samples containing separated actinides are measured in different neutron spectra using an oscillation technique with an overall expected accuracy better than 3%. Reactivity effects of less than 10 pcm (0.0001 or approximately 1.5 cents) are measured and compared with calibrations to determine the differential reactivity

  7. Characterization of plutonium in deep-sea sediments of the Sulu and South China Seas.

    PubMed

    Dong, Wei; Zheng, Jian; Guo, Qiuju; Yamada, Masatoshi; Pan, Shaoming

    2010-08-01

    Anthropogenic Pu isotopes are important geochemical tracers for sediment studies. Their distributions and sources in the water columns as well as the sediments of the North Pacific have been intensively studied; however, information about Pu in the Southeast Asian seas is limited. To study the isotopic composition of Pu, and thus to identify its sources, we collected sediment core samples in the South China Sea and the Sulu Sea during the KH-96-5 Cruise of the R/V Hakuho Maru. We analysed the activities of (239+240)Pu and the atom ratios of (240)Pu/(239)Pu using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS). The (240)Pu/(239)Pu atom ratios in the sediments of both areas (inventory weighted mean: 0.251 for the South China Sea and 0.280 for the Sulu Sea) were higher than the global fallout value (0.178+/-0.019), suggesting the existence of Pu from the Pacific Proving Grounds in the North Pacific. Low inventories of (239+240)Pu in sediments were observed in the South China Sea (3.75 Bq/m(2)) and the Sulu Sea (1.38 Bq/m(2)). Most of the Pu input is still present in the water column. Scavenging and benthic mixing processes were considered to be the main processes controlling the distribution of Pu in the deep-sea sediments of both study areas.

  8. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Yu; Huh, Chih-An; Su, Chih-Chieh; You, Chen-Feng

    2004-11-01

    Owing to its location, geomorphology and hydrodynamic conditions, the southernmost part of the Southern Okinawa Trough (SOT) acts like an efficient receptacle for sediments from Taiwan and the East China Sea shelf. The high sediment flux coupled with the passage, bifurcation, upwelling, swirling and detour of Kuroshio in the SOT area result in intense particle scavenging, with sedimentary inventories of 210Pb and 239, 240Pu far greater than expected from local atmospheric input and in situ water column production. The unusually high inventories, as well as the deposition history of Pu isotopes must be explained by advective transport of Pu westward from the Marshall Islands, the largest source of Pu in the Pacific, by the North Equatorial Current (NEC) followed by northward transport of Kuroshio to the SOT area. The high sedimentation rate in the SOT area enabled us to differentiate the subsurface peak of 239, 240Pu resulting from the global fallout maximum in AD 1963 and the subsurface maximum of 240Pu/239Pu caused by close-in fallout from neutron-rich thermonuclear tests conducted by the US during AD 1952-1954 at the Enewetak and Bikini Atolls. The vertical offset between the subsurface peaks of 239, 240Pu and 240Pu/239Pu in sediments suggests that deposition of the 240Pu/239Pu maximum preceded that of the 239, 240Pu maximum by 3-5 yr and that the transit time of the 240Pu-enriched Pu from its source (at ∼12°N, 162°E) to the SOT area is ∼6 yr. The mean velocity of NEC thus calculated is ∼0.022 m s-1. The present is the key to the past. This study reveals teleconnection between the Equatorial Pacific and the western Pacific margins and suggests that ODP and IMAGES cores recently collected from the SOT area holds great promise for the reconstruction of high-resolution paleoceanographic records along the trajectories of NEC and Kuroshio.

  9. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well.

  10. Using sequential extraction techniques to assess the partitioning of plutonium and neptunium-237 from multiple sources in sediments from the Ob River (Siberia).

    PubMed

    Kenna, Timothy C

    2009-07-01

    Sequential extraction techniques have been developed to assess partitioning of anthropogenic radionuclides ((240)Pu, (239)Pu, and (237)Np), originating from a variety of sources, as identified by using bulk sediment isotopic composition. Sediments were leached sequentially with a series of six chemical treatments designed to approximate different environmental processes that may occur or to selectively extract trace metals contained in different solid phases of the sediments (i.e., exchangeable, reducible, carbonate, organic, acid leachable, and refractory). Results indicate the majority of Pu and Np is similarly distributed within many of the extracted fractions, with the largest percentage (66-97%) of both elements being observed in sediments treated with buffered citrate dithionite (CDB), which targets easily reduced constituents such as Mn and Fe hydrous oxides. While these results do indicate an association of Pu and Np with redox sensitive elements, the environmental implications are unclear given that the CDB treatment is more extreme than naturally occurring conditions. Minor amounts of Np partition differently from Pu in sediments. The NH(4)-acetate treatment, which is designed to liberate trace metals that are loosely adsorbed onto the surfaces of sedimentary materials such as hydrated iron oxides and humic substances, or present at exchangeable sites in clay minerals, mobilized approximately 12% of the total Np while Pu levels were below detection. The H(2)O(2) treatment, which is designed to liberate trace metals bound to organic matter, mobilized approximately 8 and approximately 1% of Np and Pu, respectively. These results indicate that a minor portion of the total Np may be affected by environmental conditions that have little or no effect on Pu. Between 7 and 24% of the Pu was observed in treatments designed to liberate Pu and Np that are tightly bound to lithogenic phases or refractory silicates. The (240)Pu/(239)Pu observed in accessible and

  11. Determination of Pu isotopes and 241Am in a reference fallout material using SF-ICP-MS.

    PubMed

    Zheng, Jian; Zhang, Yongsan; Yamada, Masatoshi; Wu, Fengchang; Igarashi, Yasuhito; Hirose, Katsumi

    2011-07-01

    This paper reports on the characterisation of activities of Pu and (241)Am, and Pu isotopic composition in a reference fallout material prepared by the Meteorological Research Institute (MRI), Japan, from samples collected at 14 stations throughout Japan in 1963-1979. The acid leaching and total digestion were used to compare whether there is difference in Pu and (241)Am activities and Pu isotopic composition between these two methods. The results of activities of (239+240)Pu and (241)Pu, and Pu isotopic composition have been reported in the previous work (Sci. Total Environ. 2010, 408, 1139-1144). In this study, the (241)Am activity and (241)Am/(239+240)Pu activity ratio in the reference fallout material are reported, and the usefulness of Pu atom ratios and (241)Am/(239+240)Pu activity ratio for source identification is discussed.

  12. Investigations of the binding of 239Pu to liver cell membranes.

    PubMed

    Planas-Bohne, F; Kampmann, G; Olinger, H

    1989-07-15

    The binding of Pu to liver cell membranes was studied and compared with that of iron with which plutonium shares some physiological properties. The binding of both metals is sensitive to pH changes and they can be dissociated from their binding sites by chelating agents and transferrin. The metal-binding proteins can be extracted with detergents. Both metals have at least two binding sites, the molecular weights of which lie between 150 and 400 kDa; the isoelectric points for iron are 5.5 and 6.5, and for plutonium 6.0 and 6.5. The significance of these results for plutonium uptake into liver cells is discussed.

  13. Fission Product Yields from Fission Spectrum n+ 239Pu for ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Kawano, T.; Barr, D. W.; Mac Innes, M. R.; Kahler, A. C.; Graves, T.; Selby, H.; Burns, C. J.; Inkret, W. C.; Keksis, A. L.; Lestone, J. P.; Sierk, A. J.; Talou, P.

    2010-12-01

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small — especially for 99Mo — we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for 95Zr, 140Ba, 144Ce), but are larger for 99Mo (4%-relative) and 147Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the 147Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on the energy dependence over the fast neutron energy range from 0.2-2 MeV. Based on these trends, we present an evaluation of the FPY data at 0.5 and 2.0 MeV average incident neutron energies. This new set of ENDF/B-VII data will enable users to linearly interpolate between the pooled FPY data at ˜0.5 MeV and our new data at 2 MeV to obtain FPYs at other energies. We intend to release the ENDF/B-VII.1 database in December 2011, and all released data are subject to CSEWG approval. It is possible that the released evaluated data will differ from those presented in this paper; the evaluated date presented here can be referred to as ENDF/B-VII.1 beta 0.

  14. Matrix effects corrections in DDT assay of {sup 239}Pu with the CTEN instrument

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1997-11-01

    The accuracy of transuranic (TRU) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. We have used a new instrument, the combined thermal/epithermal neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. We have developed methods of data acquisition and analysis to extract correlation in the neutron signals resulting from fission during active interrogation. This correlation information, in conjunction with the total number of neutrons detected, is used to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows us to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. Recent results indicate that for some matrix systems, corrections for position dependent effects within the matrix are possible. 7 refs., 7 figs., 1 tab.

  15. Differential die-away technique for determination of the fissile contents in spent fuel assembly

    SciTech Connect

    Lee, Tachoon; Menlove, Howard O; Swinhoe, Nartyn T; Tobin, Stephen J

    2010-01-01

    Monte Carlo simulations were performed for the differential die-away (DDA) technique to quantify its capability to measure the fissile contents in spent fuel assemblies of 64 different cases in terms of initial enrichment, burnup, and cooling time. The DDA count rate varies according to the contents of fissile isotopes such as {sup 235}U, {sup 239}Pu, and {sup 241}Pu contained in the spent fuel assembly. The effective {sup 239}Pu concept was introduced to quantify the total fissile mass of spent fuel by weighting the relative signal contributions of {sup 235}U and {sup 241}Pu compared to that of {sup 239}Pu. The Monte Carlo simulation results show that the count rate of the DDA instrument for a spent fuel assembly of 4% initial enrichment, 45 GWD/MTU burnup, and 5 year cooling time is {approx} 9.8 x 10{sup 4} counts per second (c/s) with the 100-Hz repeated interrogation pattern of 0 to 10 {micro}s interrogation, 0.2 ms to 1 ms counting time, and 1 x 10{sup 9} n/s neutron source. The {sup 244}Cm neutron background count rate for this counting time scheme is {approx} 1 x 10{sup 4} c/s, and thus the signal to background ratio is {approx}10.

  16. Chronology of Pu isotopes and 236U in an Arctic ice core.

    PubMed

    Wendel, C C; Oughton, D H; Lind, O C; Skipperud, L; Fifield, L K; Isaksson, E; Tims, S G; Salbu, B

    2013-09-01

    In the present work, state of the art isotopic fingerprinting techniques are applied to an Arctic ice core in order to quantify deposition of U and Pu, and to identify possible tropospheric transport of debris from former Soviet Union test sites Semipalatinsk (Central Asia) and Novaya Zemlya (Arctic Ocean). An ice core chronology of (236)U, (239)Pu, and (240)Pu concentrations, and atom ratios, measured by accelerator mass spectrometry in a 28.6m deep ice core from the Austfonna glacier at Nordaustlandet, Svalbard is presented. The ice core chronology corresponds to the period 1949 to 1999. The main sources of Pu and (236)U contamination in the Arctic were the atmospheric nuclear detonations in the period 1945 to 1980, as global fallout, and tropospheric fallout from the former Soviet Union test sites Novaya Zemlya and Semipalatinsk. Activity concentrations of (239+240)Pu ranged from 0.008 to 0.254 mBq cm(-2) and (236)U from 0.0039 to 0.053 μBq cm(-2). Concentrations varied in concordance with (137)Cs concentrations in the same ice core. In contrast to previous published results, the concentrations of Pu and (236)U were found to be higher at depths corresponding to the pre-moratorium period (1949 to 1959) than to the post-moratorium period (1961 and 1962). The (240)Pu/(239)Pu ratio ranged from 0.15 to 0.19, and (236)U/(239)Pu ranged from 0.18 to 1.4. The Pu atom ratios ranged within the limits of global fallout in the most intensive period of nuclear atmospheric testing (1952 to 1962). To the best knowledge of the authors the present work is the first publication on biogeochemical cycles with respect to (236)U concentrations and (236)U/(239)Pu atom ratios in the Arctic and in ice cores.

  17. Impact of environmental curium on plutonium migration and isotopic signatures.

    PubMed

    Kurosaki, Hiromu; Kaplan, Daniel I; Clark, Sue B

    2014-12-02

    Plutonium (Pu), americium (Am), and curium (Cm) activities were measured in sediments from a former radioactive waste disposal basin located on the Savannah River Site, South Carolina, and in subsurface aquifer sediments collected downgradient from the basin. In situ Kd values (Pu concentration ratio of sediment/groundwater) derived from this field data and previously reported groundwater concentration data compared well to laboratory Kd values reported in the literature. Pu isotopic signatures confirmed multiple sources of Pu contamination. The ratio of (240)Pu/(239)Pu was appreciably lower for sediment samples compared to the associated groundwater. This isotopic ratio difference may be explained by the following: (1) (240)Pu produced by decay of (244)Cm may exist predominantly in high oxidation states (Pu(V)O2(+) and Pu(VI)O2(2+)) compared to Pu derived from the disposed waste effluents, and (2) oxidized forms of Pu sorb less to sediments than reduced forms of Pu. Isotope-specific Kd values calculated from measured Pu activities in the sediments and groundwater indicated that (240)Pu, which is derived primarily from the decay of (244)Cm, had a value of 10 ± 2 mL g(-1), whereas (239)Pu originating from the waste effluents discharged at the site had a value of 101 ± 8 mL g(-1). One possible explanation for the isotope-specific sorption behavior is that (240)Pu likely existed in the weaker sorbing oxidation states, +5 or +6, than (239)Pu, which likely existed in the +3 or +4 oxidation states. Consequently, remediation strategies for radioactively contaminated systems must consider not only the discharged contaminants but also their decay products. In this case, mitigation of Cm as well as Pu will be required to completely address Pu migration from the source term.

  18. Distribution of Np and Pu in Swedish lichen samples (Cladonia stellaris) contaminated by atmospheric fallout.

    PubMed

    Lindahl, Patric; Roos, Per; Eriksson, Mats; Holm, Elis

    2004-01-01

    The activity concentrations of (237)Np and the two Pu isotopes, (239)Pu and (240)Pu, were determined in lichen samples (Cladonia stellaris) contaminated by fallout from atmospheric nuclear test explosions and the Chernobyl accident. The samples were collected at 18 locations in Sweden, from north to south, between 1986 and 1988 and analysed with high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and alpha spectrometry. Data on the activity ratios (238)Pu/(239+240)Pu and (134)Cs/(137)Cs measured previously were also included in this study for comparison. The (237)Np activity concentration ranged from 0.08 +/- 0.01 to 2.08 +/- 0.17 MBq kg(-1), depending on the location of the sampling site and time of collection. The (239+240)Pu activity concentration ranged from 0.09 +/- 0.01 to 4.09 +/- 0.15 Bq kg(-1), with the (240)Pu/(239)Pu atomic ratio ranging between 0.16 +/- 0.01 and 0.44 +/- 0.03, the higher ratios indicating a combination of weapons test fallout and Chernobyl fallout. The (237)Np/(239)Pu atomic ratios ranged between 0.06 +/- 0.01 and 0.42 +/- 0.04, the lower ratios indicating combination of weapons test fallout and Chernobyl fallout. At a well-defined sampling site at Lake Rogen (62.32 degrees N, 12.38 degrees E), additional lichen samples were collected between 1987 and 1998 to study the distribution of Np and Pu in different layers. The concentrations of the two elements follow each other quite well in the profile.

  19. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having high americium content.

    PubMed

    Patra, Sabyasachi; Agarwal, Chhavi; Chaudhury, Sanhita; Newton Nathaniel, T; Gathibandhe, M; Goswami, A

    2013-08-01

    Interference of high amount of americium in the plutonium isotopic composition analysis has been studied by simulating gamma-ray spectra for Am-Pu samples over a wide composition range (5-97% (241)Am) for both power and research reactor grade plutonium. An alternate way for isotopic composition analysis has been proposed by correlating the isotopic ratios available in our old database with the experimentally obtained (241)Pu/(239)Pu isotopic ratio. The proposed method has been validated using simulated spectra of known isotopic compositions.

  20. In situ subterranean determination of actinides by high-resolution gamma-ray spectrometry

    SciTech Connect

    Brodzinski, R. L.

    1981-04-01

    A system utilizing high resolution germanium diode gamma-ray spectroscopy for the simple, safe, and economical in situ determination of actinides is described. Six isotopes, /sup 235/U, /sup 238/U, /sup 237/Np, /sup 239/Pu, /sup 241/Pu, and /sup 241/Am, can be simultaneously measured at the 10 nCi g/sup -1/ level in less than 7 minutes. Collimators provide for measurement of horizontal strata as thin as 1 cm or solid angles as small as 0.1 steradians. Information obtainable with the system is discussed and compared to that obtainable with neutron activation/detection systems.

  1. Prompt neutron fission spectrum mean energies for the fissile nuclides and /sup 252/Cf

    SciTech Connect

    Holden, N.E.

    1985-01-01

    The international standard for a neutron spectrum is that produced from the spontaneous fission of /sup 252/Cf, while the thermal neutron induced fission neutron spectra for the four fissile nuclides, /sup 233/U, /sup 235/U, /sup 239/Pu, and /sup 241/Pu are of interest from the standpoint of nuclear reactors. The average neutron energies of these spectra are tabulated. The individual measurements are recorded with the neutron energy range measured, the method of detection as well as the average neutron energy for each author. Also tabulated are the measurements of the ratio of mean energies for pairs of fission neutron spectra. 75 refs., 9 tabs. (LEW)

  2. Tritium and plutonium in waters from the Bering and Chukchi Seas

    USGS Publications Warehouse

    Landa, E.R.; Beals, D.M.; Halverson, J.E.; Michel, R.L.; Cefus, G.R.

    1999-01-01

    During the summer of 1993, seawater in the Bering and Chukchi Seas was sampled on a joint Russian-American cruise [BERPAC] of the RV Okean to determine concentrations of tritium, 239Pu and 240Pu. Concentrations of tritium were determined by electrolytic enrichment and liquid scintilation counting. Tritium levels ranged up to 420 mBq L-1 showed no evidence of inputs other than those attribute atmospheric nuclear weapons testing. Plutonium was recovered from water samples by ferric hydroxide precipitation, and concentrations were determined by thermal ionization mass spectrometry. 239+240Pu concentrations ranged from <1 to 5.5 [mu]Bq L-1. These concentrations are lower than those measured in water samples from other parts of the ocean during the mid-1960's to the late 1980's. The 240Pu:239Pu ratios, although associated with large uncertainties, suggest that most of the plutonium is derived from world-wide fallout. As points of comparison, the highest concentrations of tritium and plutonium observed here were about five orders of magnitude lower than the maximum permissible concentrations allowed in water released to the off-site environs from licensed nuclear facilities in the United States. This study and others sponsored by the International Atomic Energy Agency and the Office of Naval Research's Arctic Nuclear Waste Assessment Program are providing data for the assessment of potential radiological impacts in the Arctic regions associated with nuclear waste disposal by the former Soviet Union.

  3. Isotopic composition and distribution of plutonium in northern South China Sea sediments revealed continuous release and transport of Pu from the Marshall Islands.

    PubMed

    Wu, Junwen; Zheng, Jian; Dai, Minhan; Huh, Chih-An; Chen, Weifang; Tagami, Keiko; Uchida, Shigeo

    2014-03-18

    The (239+240)Pu activities and (240)Pu/(239)Pu atom ratios in sediments of the northern South China Sea and its adjacent Pearl River Estuary were determined to examine the spatial and temporal variations of Pu inputs. We clarified that Pu in the study area is sourced from a combination of global fallout and close-in fallout from the Pacific Proving Grounds in the Marshall Islands where above-ground nuclear weapons testing was carried out during the period of 1952-1958. The latter source dominated the Pu input in the 1950s, as evidenced by elevated (240)Pu/(239)Pu atom ratios (>0.30) in a dated sediment core. Even after the 1950s, the Pacific Proving Grounds was still a dominant Pu source due to continuous transport of remobilized Pu from the Marshall Islands, about 4500 km away, along the North Equatorial Current followed by the transport of the Kuroshio current and its extension into the South China Sea through the Luzon Strait. Using a simple two end-member mixing model, we have quantified the contributions of Pu from the Pacific Proving Grounds to the northern South China Sea shelf and the Pearl River Estuary are 68% ± 1% and 30% ± 5%, respectively. This study also confirmed that there were no clear signals of Pu from the Fukushima Daiichi Nuclear Power Plant accident impacting the South China Sea.

  4. Determination of plutonium in environmental samples by AMS and alpha spectrometry.

    PubMed

    Hrnecek, E; Steier, P; Wallner, A

    2005-01-01

    Environmental samples from nuclear weapons test sites at the atolls of Mururoa and Fangataufa (French Polynesia, south Pacific) have been analyzed for their content of plutonium isotopes by applying the independent techniques of decay counting (Alpha Spectrometry) and accelerator mass spectrometry (AMS). Here, we propose the combination of both techniques which results in a maximum of information on the isotopic signature of Pu in environmental samples. Plutonium was chemically separated from the bulk material by anion exchange. (242)Pu was used as an internal standard for both AMS and alpha spectrometry. The samples for alpha spectrometry were prepared by micro-precipitation with NdF(3). After alpha spectrometry, the samples were reprocessed for AMS. Pu was co-precipitated with Fe(OH)(3) and finally, solid samples were prepared. At the VERA (Vienna Environmental Research Accelerator) facility, the various Pu isotopes were separated by their isotopic masses and quantified by the AMS technique. A good agreement of the results obtained from the AMS measurements was found with those obtained from Alpha Spectrometry. Overall, the data agree on average within 10% of each other. Isotope ratios for (238)Pu, (239)Pu and (240)Pu can be extracted from our investigations. Alpha spectrometry delivers data for the (238)Pu and the combination of ((239+240))Pu concentrations in those samples. In addition, the AMS technique provides information on the individual concentrations of (240)Pu and (239)Pu.

  5. Assay of long-lived radionuclides in low-level wastes from power reactors

    SciTech Connect

    Cline, J.E.; Noyce, J.R.; Coe, L.J.; Wright, K.W.

    1985-04-01

    The 10 CFR Part 61 waste classification system includes several nuclides which are difficult to assay without expensive radiochemical methods. In order for waste generators to classify wastes practically, NRC Staff has recommended the use of correlation factors to scale the difficult-to-measure nuclides with nuclides which can be measured more easily (i.e., gamma emitters such as /sup 60/Co or /sup 137/Cs). In this study, Science Applications International Corporation (SAIC) performed complete radiochemical assays for all the 10 CFR Part 61 waste classification nuclides on over 100 samples. These data, along with almost 800 other samples in the SAIC data base, were used to assess the validity of correlation factors suggested for use in nuclear power plant wastes. Specific generic correlation factors are recommended with other approaches to correlate nuclides for which generic scaling factors are not defensible. The primary nuclide correlations studied were /sup 14/C, /sup 55/Fe, /sup 59/Ni, /sup 63/Ni, and /sup 94/Nb, with /sup 60/Co; /sup 90/Sr, /sup 99/Tc, /sup 129/I, /sup 135/Cs, and /sup 239, 240/Pu with /sup 137/Cs; /sup 238/Pu, /sup 239, 240/Pu, /sup 241/Pu, /sup 241/Am, /sup 242/Cm, and /sup 243, 244/Cm with /sup 144/Ce; and /sup 238/Pu, /sup 241/Pu, /sup 241/Am, /sup 242/Cm and /sup 243, 244/Cm with /sup 239, 240/Pu.

  6. Comparative food-chain behavior and distribution of actinide elements in and around a contaminated fresh-water pond

    SciTech Connect

    Garten, C.T. Jr.; Trabalka, J.R.; Bogle, M.A.

    1981-01-01

    The bioaccumulation of /sup 233/ /sup 234/U, /sup 238/U, /sup 238/Pu, /sup 239/ /sup 240/Pu, /sup 241/Am, and /sup 244/Cm in both native and introduced biota was studied at Pond 3513, a former low-level radioactive waste settling basin at Oak Ridge National Laboratory. This system, which was decommissioned in 1976 after more than 30 years use, contains approximately 5 Ci of /sup 239/ /sup 240/Pu; inventories of other actinide isotopes are considerably less. Significantly higher concentrations of actinides in fish that were allowed access to sediments indicated that sedimentary particulates may be the primary source of transuranics to biota in shallow fresh-water ecosystems. Our study determined habitat, in particular the degree of association of an organism with the sediment-water interface, to be the primary factor in controlling transuranic concentrations in aquatic biota. In most of the biological samples analyzed, excluding samples suspected of being contaminated by sediment, /sup 241/Am//sup 239/Pu, /sup 244/Cm//sup 239/Pu, and /sup 238/U//sup 239/Pu ratios were greater than the respective ratio in sediment while /sup 233/ /sup 234/U//sup 238/U, and /sup 239/ /sup 240/Pu//sup 238/Pu ratios were not different from the respective ratios in sediment. The relative uptake of actinides from contaminated sediment by aquatic and terrestrial biota at this site was U > Cm greater than or equal to Am > Pu. The relative extractability of actinides from shoreline sediment was U > Cm approx. = Am > Pu; we also observed the same relative ranking for sediment-water exchange in situ. Concentrations of transuranics in water, terrestrial vegetation, and vertebrate carcasses were less than 10% of the recommended public exposure maximum permissible concentration (MPC) of the ICRP.

  7. Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident

    PubMed Central

    Zheng, Jian; Tagami, Keiko; Watanabe, Yoshito; Uchida, Shigeo; Aono, Tatsuo; Ishii, Nobuyoshi; Yoshida, Satoshi; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2012-01-01

    The Fukushima Daiichi nuclear power plant (DNPP) accident caused massive releases of radioactivity into the environment. The released highly volatile fission products, such as 129mTe, 131I, 134Cs, 136Cs and 137Cs were found to be widely distributed in Fukushima and its adjacent prefectures in eastern Japan. However, the release of non-volatile actinides, in particular, Pu isotopes remains uncertain almost one year after the accident. Here we report the isotopic evidence for the release of Pu into the atmosphere and deposition on the ground in northwest and south of the Fukushima DNPP in the 20–30 km zones. The high activity ratio of 241Pu/239+240Pu (> 100) from the Fukushima DNPP accident highlights the need for long-term 241Pu dose assessment, and the ingrowth of 241Am. The results are important for the estimation of reactor damage and have significant implication in the strategy of decontamination. PMID:22403743

  8. Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications

    SciTech Connect

    Horansky, Robert D.; Ullom, Joel N.; Beall, James A.; Hilton, Gene C.; Irwin, Kent D.; Dry, Donald E.; Hastings, Elizabeth P.; Lamont, Stephen P.; Rudy, Clifford R.; Rabin, Michael W.

    2008-09-22

    Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter, which achieves a resolution of 1.06 keV for 5.3 MeV alphas, the highest resolving power of any energy dispersive measurement. With this exquisite resolution, we can unambiguously identify the {sup 240}Pu/{sup 239}Pu ratio in Pu, a critical measurement for ascertaining the intended use of nuclear material. Furthermore, we have made a direct measurement of the {sup 209}Po ground state decay.

  9. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS.

    PubMed

    Konegger-Kappel, Stefanie; Prohaska, Thomas

    2016-01-01

    Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from

  10. Evaluation of New Inorganic Sorbents for Strontium and Actinide Removal from High-Level Nuclear Waste Solutions

    SciTech Connect

    Hobbs, D.T.; Nyman, M.; Medvedev, D.G.; Tripathi, A.; Clearfield, A.

    2004-03-28

    Monosodium titanate (MST), a hydrous metal oxide sorbent, is the baseline material for the removal of 90Sr and alpha-emitting radionuclides (principally 238Pu, 239Pu, 240Pu and 237Np) from alkaline waste solutions generated during the processing of irradiated nuclear materials at the Savannah River Site. This material exhibits excellent performance characteristics for strontium removal. Plutonium removal is also good, but problematic at the estimated bonding concentration. We are currently developing new inorganic materials for improved sorption characteristics. These materials include sodium nonatitanates, pharmacosiderites and heteropolyniobates. We will present results evaluating the performance of these materials with simulated and actual high level nuclear waste solutions.

  11. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  12. Certified Reference Material IAEA-446 for radionuclides in Baltic Sea seaweed.

    PubMed

    Pham, M K; Benmansour, M; Carvalho, F P; Chamizo, E; Degering, D; Engeler, C; Gascó, C; Gwynn, J P; Harms, A V; Hrnecek, E; Ibanez, F L; Ilchmann, C; Ikaheimonen, T; Kanisch, G; Kloster, M; Llaurado, M; Mauring, A; Møller, B; Morimoto, T; Nielsen, S P; Nies, H; Norrlid, L D R; Pettersson, H B L; Povinec, P P; Rieth, U; Samuelsson, C; Schikowski, J; Silobritiene, B V; Smedley, P A; Suplinska, M; Vartti, V-P; Vasileva, E; Wong, J; Zalewska, T; Zhou, W

    2014-05-01

    A Certified Reference Material (CRM) for radionuclides in seaweed (Fucus vesiculosus) from the Baltic Sea (IAEA-446) is described and the results of the certification process are presented. The (40)K, (137)Cs, (234)U and (239+240)Pu radionuclides were certified for this material, and information values for 12 other radionuclides ((90)Sr, (99)Tc, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (230)Th, (232)Th, (235)U, (238)U, (239)Pu and (240)Pu) are presented. The CRM can be used for Quality Assurance/Quality Control of analysis of radionuclides in seaweed and other biota samples, as well as for development and validation of analytical methods, and for training purposes.

  13. Comparative skeletal distribution of Am and Pu in man, monkey, and baboon

    SciTech Connect

    Lynch, T.P.; Kathren, R.L.; Dagle, G.E.; McInroy, J.F. )

    1989-01-01

    The skeletal distribution of Am and Pu in four human cases was compared with the skeletal distributions of these radioelements in baboons and monkeys. Excellent agreement was noted among the four human cases; data were available for Am in all four and Pu in three. A statistically significant correlation was found between the {sup 241}Am and {sup 239}Pu + {sup 240}Pu skeletal distributions in the humans and those in nonhuman primates. Trabecular bone had the highest concentrations of {sup 241}Am and {sup 239+240}Pu in humans, baboons, and monkeys. Scaling factors are proposed to convert the percentages of skeletal activity in animal bones to the corresponding percentages in the bones of the human skeleton.

  14. Global fallout Pu recorded in lacustrine sediments in Lake Hongfeng, SW China.

    PubMed

    Zheng, Jian; Wu, Fengchang; Yamada, Masatoshi; Liao, Haiqing; Liu, Congqiang; Wan, Guojiang

    2008-03-01

    Studies on the distribution and isotope compositions of fallout Pu are important for source characterization of possible future non-fallout Pu contamination in aquatic environments, and useful for dating of recent sediments to understand the pollution history of environmental contaminants. We present the historical record of atmospheric Pu fallout reconstructed from a sediment core from Lake Hongfeng, China. The Pu activity profile was in agreement with the 137Cs profile. Inventories were 50.7 Bq m(-2) for 239+240Pu and 1586 Bq m(-2) for 137Cs. The average 240Pu/239Pu atom ratio was 0.185+/-0.009, indicating that Pu originated from global stratospheric fallout rather than from direct tropospheric or close-in fallout from the Chinese nuclear testing conducted in the 1970s. Our data suggested that Lake Hongfeng would be an ideal setting for monitoring atmospheric fallout and environmental changes in this region.

  15. First results on 236U levels in global fallout.

    PubMed

    Sakaguchi, A; Kawai, K; Steier, P; Quinto, F; Mino, K; Tomita, J; Hoshi, M; Whitehead, N; Yamamoto, M

    2009-07-01

    The global fallout (236)U level in soil was deduced from measurements of (236)U, (239+240)Pu and (137)Cs in surface soils which are solely influenced by global fallout. A total of 12 soil cores from the depths of 0-10, 0-20 and 0-30 cm were collected at a flat forest area in Japan. Concentrations of (239+240)Pu and (238)U were determined by alpha-particle spectrometry, while the (236)U/(238)U ratio was measured with accelerator mass spectrometry (AMS). Consistent (236)U/(239)Pu ratios between 0.212 and 0.253 were found. Using this ratio, the total global fallout of (236)U on the earth is estimated to be as much as ca. 900 kg. This knowledge will contribute to the promotion of research on U isotopes, including (236)U, for the fields of geo-resources, waste management and geochemistry.

  16. Pu and Am determination in the environment—method development

    NASA Astrophysics Data System (ADS)

    Afonin, M.; Simonoff, M.; Donard, O.; Michel, H.; Ardisson, G.

    2003-01-01

    A high resolution inductively coupled plasma mass spectrometric (HR-ICP-MS) method for the determination of plutonium isotopes, Am and the 240Pu/239Pu isotope ratio utilising modification of Pu-02-RC Plutonium in Soil Samples, Pu-03-RC Plutonium in Soil Residue—Total Dissolution Method, Pu-11-RC Plutonium Purification—Ion Exchange Technique, Pu-12-RC Plutonium and/or Americium in Soil or Sediments, HASL-300 was developed. Total plutonium concentrations (239+240Pu) measured in environmental samples by this HR-ICP-MS method were in good agreement with recommended data obtained from a-spectrometry. It was achieved the decreasing of the time to analyze the samples over than 33%.

  17. Plutonium in the WIPP environment: its detection, distribution and behavior.

    PubMed

    Thakur, P; Ballard, S; Nelson, R

    2012-05-01

    The Waste Isolation Pilot Plant (WIPP) is the only operating deep underground geologic nuclear repository in the United States. It is located in southeastern New Mexico, approximately 655 m (2150 ft) below the surface of the Earth in a bedded Permian evaporite salt formation. This mined geologic repository is designed for the safe disposal of transuranic (TRU) wastes generated from the US defense program. Aerosol and soil samples have been collected near the WIPP site to investigate the sources of plutonium in the WIPP environment since the late 1990s, well before WIPP received its first shipment. Activities of (238)Pu, (239+240)Pu and (241)Am were determined by alpha spectrometry following a series of chemical separations. The concentrations of Al and U were determined in a separate set of samples by inductively coupled plasma mass spectrometry. The annual airborne concentrations of (239+240)Pu during the period from 1998 to 2010 show no systematic interannual variations. However, monthly (239+240)Pu particulate concentrations show a typical seasonal variation with a maximum in spring, the time when strong and gusty winds frequently give rise to blowing dust. Resuspension of soil particles containing weapons fallout is considered to be the predominant source of plutonium in the WIPP area. Further, this work characterizes the source, temporal variation and its distribution with depth in a soil profile to evaluate the importance of transport mechanisms affecting the fate of these radionuclides in the WIPP environment. The mean (137)Cs/(239+240)Pu, (241)Am/(239+240)Pu activity ratio and (240)Pu/(239)Pu atom ratio observed in the WIPP samples are consistent with the source being largely global fallout. There is no evidence of any release from the WIPP contributing to radionuclide concentrations in the environment.

  18. Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion

    PubMed Central

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming

    2013-01-01

    Surface and soil core samples from northeast China were analyzed for Pu isotopes. The measured 240Pu/239Pu atomic ratios and 239 + 240Pu/137Cs activity ratios revealed that the global fallout is the dominant source of Pu and 137Cs at these sites. Migration behavior of Pu varying with land type and human activities resulted in different distribution of Pu in surface soils. A sub-surface maximum followed by exponential decline of 239 + 240Pu concentrations was observed in an undisturbed soil core, with a total 239 + 240Pu inventory of 86.9 Bq/m2 and more than 85% accumulated in 0 ~ 20 cm layers. While only half inventory of Pu was obtained in another soil core and no sub-surface maximum value occurred. Erosion of topsoil in the site should be the most possible reason for the significantly lower Pu inventory, which is also supported by the reported 137Cs profiles. These results demonstrated that Pu could be applied as an ideal substitute of 137Cs for soil erosion study in the future. PMID:24336360

  19. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 5 (MACROBATCH 6)

    SciTech Connect

    Bannochie, C.; Bibler, N.; Diprete, D.

    2010-02-04

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Tank 40 (Sludge Batch 4 (SB4)), Sludge Batch 5 (SB5) that was transferred to Tank 40 from Tank 51, and H-Canyon Np transfers completed after the start of processing. The blend of sludge in Tank 40 is also referred to as Macrobatch 6 (MB6). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use

  20. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 4 MACROBATCH 5

    SciTech Connect

    Bannochie, C; Ned Bibler, N; David Diprete, D

    2008-05-30

    The Waste Acceptance Product Specifications (WAPS)1 1.2 require that 'The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115'. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP)2 and Waste Form Qualification Report (WQR)3. However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 3) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Sludge Batch 4 (also referred to as Macrobatch 5 (MB5)). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of

  1. Modelling the dispersion of 137Cs and 239Pu released from dumped waste in the Kara Sea

    NASA Astrophysics Data System (ADS)

    Harms, Ingo H.

    1997-10-01

    Three-dimensional, baroclinic, circulation models are applied to study the dispersal of radioactivity in the Barents Sea and Kara Sea. The release is supposed to occur at underwater dump sites for radioactive waste in the Kara Sea, used by the former Soviet Union. Two different spatial scales of dispersion are considered: the regional scale (the far field), which covers the shelves of the Barents and Kara Seas and the local scale (the near field) which is focused mainly on Abrasimov Bay where the dumping partly took place. The regional-scale model results suggest that, even for a worst case scenario, the radioactive contamination of Siberian coastal waters would be relatively small compared to observations in other marine systems (e.g the Baltic Sea and the Irish Sea). Realistic gradual release scenarios show very low concentrations in the central and eastern Kara Sea. A significant contamination of surrounding seas like the Laptev Sea, the Arctic Ocean or the Barents Sea by radioactive waste dispersion from the Kara Sea seems to be unlikely.

  2. Fission Product Yields from Fission Spectrum n+{sup 239}Pu for ENDF/B-VII.1

    SciTech Connect

    Chadwick, M.B.; Kawano, T.; Barr, D.W.; Mac Innes, M.R.; Kahler, A.C.; Graves, T.; Selby, H.; Burns, C.J.; Inkret, W.C.; Keksis, A.L.; Lestone, J.P.; Sierk, A.J.; Talou, P.

    2010-12-15

    We describe a new cumulated fission product yield (FPY) evaluation for fission spectrum neutrons on plutonium that updates the ENDF/B-VI evaluation by England and Rider, for the forthcoming ENDF/B-VII.1 database release. We focus on FPs that are needed for high accuracy burnup assessments; that is, for inferring the number of fissions in a neutron environment. Los Alamos conducted an experiment in the 1970s in the Bigten fast critical assembly to determine fission product yields as part of the Interlaboratory Reaction Rate (ILRR) collaboration, and this has defined the Laboratory's fission standard to this day. Our evaluation includes use of the LANL-ILRR measurements (not previously available to evaluators) as well as other Laboratory FPY measurements published in the literature, especially the high-accuracy mass spectrometry data from Maeck and others. Because the measurement database for some of the FPs is small - especially for {sup 99}Mo - we use a meta-analysis that incorporates insights from other accurately-measured benchmark FP data, using R-value ratio measurements. The meta-analysis supports the FP measurements from the LANL-ILRR experiment. Differences between our new evaluations and ENDF/B-VI are small for some FPs (less than 1-2%-relative for {sup 95}Zr, {sup 140}Ba, {sup 144}Ce), but are larger for {sup 99}Mo (4%-relative) and {sup 147}Nd (5%-relative, at 1.5 MeV) respectively. We present evidence for an incident neutron energy dependence to the {sup 147}Nd fission product yield that accounts for observed differences in the FPY at a few-hundred keV average energy in fast reactors versus measurements made at higher average neutron energies in Los Alamos' fast critical assemblies. Accounting for such FPY neutron energy dependencies is important if one wants to reach a goal of determining the number of fissions to accuracies of 1-2%. An evaluation of the energy-dependence of fission product yields is given for all A values based on systematical trends in the measured data, with a focus on the energy dependence over the fast neutron energy range from 0.2-2 MeV. Based on these trends, we present an evaluation of the FPY data at 0.5 and 2.0 MeV average incident neutron energies. This new set of ENDF/B-VII data will enable users to linearly interpolate between the pooled FPY data at {approx}0.5 MeV and our new data at 2 MeV to obtain FPYs at other energies.

  3. Fission fragment charge and mass distributions in 239Pu(n, f ) in the adiabatic nuclear energy density functional theory

    DOE PAGES

    Regnier, D.; Dubray, N.; Schunck, N.; ...

    2016-05-13

    Here, accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics.

  4. Results of the Excreta Bioassay Quality Control Program for April 1, 2009 through March 31, 2010

    SciTech Connect

    Antonio, Cheryl L.

    2012-07-19

    A total of 58 urine samples and 10 fecal samples were submitted during the report period (April 1, 2009 through March 31, 2010) to General Engineering Laboratories, South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for Sr, 238Pu, 239Pu, 241Am, 243Am 235U, 238U, elemental uranium and fecal analyses for 241Am, 238Pu and 239Pu were tested this year as well as four tissue samples for 238Pu, 239Pu, 241Am and 241Pu. The number of QC urine samples submitted during the report period represented 1.3% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 33% of the analyses processed by GEL during the third year of this contract were quality control samples. GEL tested the performance of 21 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty (Table 4).

  5. OSMOSE experiment representativity studies.

    SciTech Connect

    Aliberti, G.; Klann, R.; Nuclear Engineering Division

    2007-10-10

    The OSMOSE program aims at improving the neutronic predictions of advanced nuclear fuels through measurements in the MINERVE facility at the CEA-Cadarache (France) on samples containing the following separated actinides: Th-232, U-233, U-234, U-235, U-236, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, Am-241, Am-243, Cm-244 and Cm-245. The goal of the experimental measurements is to produce a database of reactivity-worth measurements in different neutron spectra for the separated heavy nuclides. This database can then be used as a benchmark for integral reactivity-worth measurements to verify and validate reactor analysis codes and integral cross-section values for the isotopes tested. In particular, the OSMOSE experimental program will produce very accurate sample reactivity-worth measurements for a series of actinides in various spectra, from very thermalized to very fast. The objective of the analytical program is to make use of the experimental data to establish deficiencies in the basic nuclear data libraries, identify their origins, and provide guidelines for nuclear data improvements in coordination with international programs. To achieve the proposed goals, seven different neutron spectra can be created in the MINERVE facility: UO2 dissolved in water (representative of over-moderated LWR systems), UO2 matrix in water (representative of LWRs), a mixed oxide fuel matrix, two thermal spectra containing large epithermal components (representative of under-moderated reactors), a moderated fast spectrum (representative of fast reactors which have some slowing down in moderators such as lead-bismuth or sodium), and a very hard spectrum (representative of fast reactors with little moderation from reactor coolant). The different spectra are achieved by changing the experimental lattice within the MINERVE reactor. The experimental lattice is the replaceable central part of MINERVE, which establishes the spectrum at the sample location. This configuration

  6. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    SciTech Connect

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  7. ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS

    SciTech Connect

    McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel; Blanpain, Patrick; Hemrick, James Gordon

    2013-01-01

    The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rods was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.

  8. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.

    PubMed

    Armstrong, Christopher R; Nuessle, Patterson R; Brant, Heather A; Hall, Gregory; Halverson, Justin E; Cadieux, James R

    2015-02-03

    This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by α particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the (238)Pu/(239+240)Pu activity ratios attributed to SRS are substantially different than fallout due to past (238)Pu production on the site. The (240)Pu/(239)Pu atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the (242)Pu/(239)Pu atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment.

  9. MATERIAL PROPERTIES OF PLUTONIUM-BEARING OXIDES STORED IN STAINLESS STEEL CONTAINERS

    SciTech Connect

    Kessinger, G.; Almond, P.; Bridges, N.; Bronikowski, M.; Crowder, M.; Duffey, J.; Livingston, R.; Mcelwee, M.; Missimer, D.; Scogin, J.; Summer, M.; Jurgensen, A.

    2010-02-01

    The destructive examination (DE) of 3013 containers after storage is part of the Surveillance and Monitoring Program based on the Department of Energy's standard for long-term storage of Pu (DOE-STD-3013). The stored, Pu-bearing materials may contain alkali halide contamination that varies from trace amounts of salt to about 50 weight percent, with smaller fractions of other compounds and oxides. These materials were characterized prior to packaging, and surveillance characterizations are conducted to determine the behavior of the materials during long term storage. The surveillance characterization results are generally in agreement with the pre-surveillance data. The predominant phases identified by X-ray diffraction are in agreement with the expected phase assemblages of the as-received materials. The measured densities are in reasonable agreement with the expected densities of materials containing the fraction of salts and actinide oxide specified by the pre-surveillance data. The radiochemical results are generally in good agreement with the pre-surveillance data for mixtures containing 'weapons grade' Pu (nominally 94% {sup 239}Pu and 6% {sup 240}Pu); however, the ICP-MS results from the present investigation generally produce lower concentrations of Pu than the pre-surveillance analyses. For mixtures containing 'fuel grade' Pu (nominally 81-93% {sup 239}Pu and 7-19% {sup 240}Pu), the ICP-MS results from the present investigation appear to be in better agreement with the pre-surveillance data than the radiochemistry results.

  10. Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study

    DOE PAGES

    Armstrong, Christopher R.; Nuessle, Patterson R.; Brant, Heather A.; ...

    2015-01-16

    This work presents the findings of a long term plutonium study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at Savannah River National Laboratory (SRNL) in A-area. Plutonium content and isotopic abundances were measured over this time period by alpha spectrometry and three stage thermal ionization mass spectrometry (3STIMS). Here we detail the complete sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the 238Pu/239+240Pu activity ratios attributed to SRS are abovemore » atmospheric global fallout ranges. The 240Pu/239Pu atom ratios are reasonably consistent from year to year and are lower than fallout, while the 242Pu/239Pu atom ratios are higher than fallout values. Overall, the plutonium signatures obtained in this study reflect a mixture of weapons-grade, higher burn-up, and fallout material. This study provides a blue print for long term low level monitoring of plutonium in the environment.« less

  11. Preparation of a multi-isotope plutonium AMS standard and preliminary results of a first inter-lab comparison

    NASA Astrophysics Data System (ADS)

    Dittmann, B.-A.; Dunai, T. J.; Dewald, A.; Heinze, S.; Feuerstein, C.; Strub, E.; Fifield, L. K.; Froehlich, M. B.; Tims, S. G.; Wallner, A.; Christl, M.

    2015-10-01

    The motivation of this work is to establish a new multi-isotope plutonium standard for isotopic ratio measurements with accelerator mass spectrometry (AMS), since stocks of existing solutions are declining. To this end, certified reference materials (CRMs) of each of the individual isotopes 239Pu, 240Pu, 242Pu and 244Pu were obtained from JRC IRMM (Joint Research Center Institute for Reference Materials and Measurements). These certified reference materials (IRMM-081a, IRMM-083, IRMM-043 and IRMM-042a) were diluted with nitric acid and mixed to obtain a stock standard solution with an isotopic ratio of approximately 1.0:1.0:1.0:0.1 (239Pu:240Pu:242Pu:244Pu). From this stock solution, samples were prepared for measurement of the plutonium isotopic composition by AMS. These samples have been measured in a round-robin exercise between the AMS facilities at CologneAMS, at the ANU Canberra and ETH Zurich to verify the isotopic ratio and to demonstrate the reproducibility of the measurements. The results show good agreement both between the different AMS measurements and with the gravimetrically determined nominal ratios.

  12. Impact of Saharan dust events on radionuclide levels in Monaco air and in the water column of the northwest Mediterranean Sea.

    PubMed

    Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P

    2017-01-01

    Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ((210)Pb, (210)Po, uranium and radium isotopes) and anthropogenic ((137)Cs, (239)Pu, (240)Pu, and (239+240)Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the (137)Cs (∼40 Bq kg(-1)) and (239+240)Pu (∼1 Bq kg(-1)) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m(-2) for (137)Cs and 6.8-9.8 mBq m(-2) for (239+240)Pu and contributed significantly (28-37% for (137)Cs and 34-45% for (239+240)Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The (137)Cs/(239+240)Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the (137)Cs activity varied by a factor of two, while the (239+240)Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The (137)Cs and (239+240)Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events.

  13. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  14. Global distribution of Pu isotopes and 237Np.

    PubMed

    Kelley, J M; Bond, L A; Beasley, T M

    1999-09-30

    Inventories and compositions of Pu isotopes and 237Np in archived soil samples collected in the 1970s from 54 locations around the world were determined to provide regional baselines for recognizing possible future environmental inputs of non-fallout Pu and Np. As sample sizes used in this work were small (typically 1 g), inhomogeneities in Pu and Np concentrations were easily recognizable and, as a result, we were able to determine that atypical debris in South America, from French testing in the South Pacific, is more widely and uniformly distributed than previously supposed. From our results we conclude that fallout 237Np/239Pu atom ratios are generally lower in the Southern Hemisphere (approximately 0.35) than in the Northern Hemisphere (approximately 0.47.) Moreover, 237Np/239Pu atom ratios are more device-dependent, hence more variable, than counterpart 240Pu/239Pu atom ratios. Given predictable trends caused by sample inhomogeneities, with only two exceptions, the Pu results of this work are entirely consistent with (and in several instances improve on) results previously reported for these same samples. However, unlike earlier interpretations used to explain these results, we recommend that fallout isotopic signatures be represented by mixing lines, rather than averages, to better reflect regional variations of stratospheric fallout inventories relative to tropospheric fallout inventories, and provide the theoretical basis for doing so. Finally, the Np results of this work constitute one of the largest single compilations of such data reported to date.

  15. Polonium, uranium and plutonium radionuclides in aquatic and land ecosystem of Poland.

    PubMed

    Skwarzec, Bogdan; Strumińska-Parulska, Dagmara I; Boryło, Alicja; Kabat, Krzysztof

    2012-01-01

    This article presents the results of study about distribution, inflow and accumulation of polonium, uranium and plutonium in aquatic and land environment of Poland and the southern Baltic Sea. Radionuclides of (210)Po, (234)U and (238)U as well as (239+240)Pu and (241)Pu are strongly accumulated in Baltic organisms and plants and transferred through the trophic chain. The values of bioconcentration factor (BCF) in Baltic plants and animals are higher for polonium and plutonium in comparison with uranium. The principal source of radionuclides in the southern Baltic Sea is their inflow with rivers. Total annual runoff of polonium, uranium and plutonium from the Vistula and the Odra as well as the Pomeranian rivers were calculated at 95 GBq of (210)Po, 750 GBq of (234+238)U and 160 MBq of (238+239+240)Pu. Seasonal and spatial variability of (210)Po, (238)U and (239+240)Pu levels in the Vistula and the Odra drainage basins were assessed by application of neural-network based classification, especially cluster analysis (CA), principal component analysis (PCA) and self-organizing maps (SOM). The result for the Vistula river indicated correlation between polonium and plutonium as well as polonium and uranium. In the Odra drainage basin, the biggest differences were observed in the case of (238)U. To assess if there are statistically significant differences in mean concentration values of (210)Po, (238)U and (239+240)Pu for the Vistula and the Odra rivers drainage basins were obtained by used of the non-parametric tests. Comparing to the Vistula catchment area, statistically differences concentration of (210)Po and (239+240)Pu in all year was observed for river samples collected on the Odra drainage basin.

  16. Passive NMIS Measurements to Estimate the Shape of Plutonium Assemblies

    SciTech Connect

    Mattingly, J.K.; Chiang, L.G.; March-Leuba, J.A.; Mihalczo, J.T.; Mullens, J.A.; Perez, R.B.; Valentine, T.E.

    1999-07-22

    A new technique to estimate the shape attribute of plutonium assemblies using the Nuclear Materials Identification System (NMIS) is described. The proposed method possesses a number of advantages. It is passive no external radiation source is required to estimate the shape of plutonium assemblies. Instead, inherent gamma and neutron emissions from spontaneous fission of {sup 240}Pu and subsequent induced fission of {sup 239}Pu are detected to estimate the shape attribute. The technique is also stationary: shape is estimated without scanning the assembly by moving the detectors relative to the assembly. The proposed method measures third order correlations between triplets of gamma/neutron-sensitive detectors. The real coincidence of a pair of gammas is used as a ''trigger'' to approximately identify the time of a spontaneous or induced fission event. The spatial location of this fission event is inferred from the real coincidence of a subsequent neutron with the initial pair of correlated gammas by using the neutron's time-of-flight (approximately the delay between the gamma pair and the neutron) and the fission neutron spectra of {sup 240}Pu and {sup 239}Pu. The spatial distribution of fission sites and hence the approximate shape of the plutonium assembly is thereby inferred by measuring the distribution of a large number of these correlated triplets. Proof-of-principle measurements were performed using {sup 252}Cf as a surrogate for {sup 240}Pu to demonstrate that the technique is feasible. For the simple shapes approximated with {sup 252}Cf sources, the measurements showed that the proposed method is capable of correctly identifying the shape and accurately estimating its size to within a few percent of actual.

  17. Concordant plutonium-241-americium-241 dating of environmental samples: results from forest fire ash

    SciTech Connect

    Goldstein, Steven J; Oldham, Warren J; Murrell, Michael T; Katzman, Danny

    2010-12-07

    We have measured the Pu, {sup 237}Np, {sup 241}Am, and {sup 151}Sm isotopic systematics for a set of forest fire ash samples from various locations in the western U.S. including Montana, Wyoming, Idaho, and New Mexico. The goal of this study is to develop a concordant {sup 241}Pu (t{sub 1/2} = 14.4 y)-{sup 241}Am dating method for environmental collections. Environmental samples often contain mixtures of components including global fallout. There are a number of approaches for subtracting the global fallout component for such samples. One approach is to use {sup 242}/{sup 239}Pu as a normalizing isotope ratio in a three-isotope plot, where this ratio for the nonglobal fallout component can be estimated or assumed to be small. This study investigates a new, complementary method of normalization using the long-lived fission product, {sup 151}Sm (t{sub 1/2} = 90 y). We find that forest fire ash concentrates actinides and fission products with {approx}1E10 atoms {sup 239}Pu/g and {approx}1E8 atoms {sup 151}Sm/g, allowing us to measure these nuclides by mass spectrometric (MIC-TIMS) and radiometric (liquid scintillation counting) methods. The forest fire ash samples are characterized by a western U.S. regional isotopic signature representing varying mixtures of global fallout with a local component from atmospheric testing of nuclear weapons at the Nevada Test Site (NTS). Our results also show that {sup 151}Sm is well correlated with the Pu nuclides in the forest fire ash, suggesting that these nuclides have similar geochemical behavior in the environment. Results of this correlation indicate that the {sup 151}Sm/{sup 239}Pu atom ratio for global fallout is {approx}0.164, in agreement with an independent estimate of 0.165 based on {sup 137}Cs fission yields for atmospheric weapons tests at the NTS. {sup 241}Pu-{sup 241}Am dating of the non-global fallout component in the forest fire ash samples yield ages in the late 1950's-early 1960's, consistent with a peak in NTS

  18. CALORIMETER-BASED ADJUSTMENT OF MULTIPLICITY DETERMINED 240PU EFF KNOWN-A ANALYSIS FOR THE ASSAY OF PLUTONIUM

    SciTech Connect

    Dubose, F.

    2012-02-21

    In nuclear material processing facilities, it is often necessary to balance the competing demands of accuracy and throughput. While passive neutron multiplicity counting is the preferred method for relatively fast assays of plutonium, the presence of low-Z impurities (fluorine, beryllium, etc.) rapidly erodes the assay precision of passive neutron counting techniques, frequently resulting in unacceptably large total measurement uncertainties. Conversely, while calorimeters are immune to these impurity effects, the long count times required for high accuracy can be a hindrance to efficiency. The higher uncertainties in passive neutron measurements of impure material are driven by the resulting large (>>2) {alpha}-values, defined as the ({alpha},n):spontaneous fission neutron emission ratio. To counter impurity impacts for high-{alpha} materials, a known-{alpha} approach may be adopted. In this method, {alpha} is determined for a single item using a combination of gamma-ray and calorimetric measurements. Because calorimetry is based on heat output, rather than a statistical distribution of emitted neutrons, an {alpha}-value determined in this way is far more accurate than one determined from passive neutron counts. This fixed {alpha} value can be used in conventional multiplicity analysis for any plutonium-bearing item having the same chemical composition and isotopic distribution as the original. With the results of single calorimeter/passive neutron/gamma-ray measurement, these subsequent items can then be assayed with high precision and accuracy in a relatively short time, despite the presence of impurities. A calorimeter-based known-{alpha} multiplicity analysis technique is especially useful when requiring rapid, high accuracy, high precision measurements of multiple plutonium bearing items having a common source. The technique has therefore found numerous applications at the Savannah River Site. In each case, a plutonium (or mixed U/Pu) bearing item is divided into multiple containers. A single item from that batch is then selected for both neutron and calorimetric measurements; all remaining items undergo a neutron measurement only. Using the technique mentioned above, the 'true' {alpha} value determined from the first (calorimeter and passive neutron measured) item is used in multiplicity analysis for all other items in the batch. The justification for using this {alpha} value in subsequent calculations is the assumption that the chemical composition and isotopic distribution of all batch items are the same, giving a constant ({alpha},n):spontaneous fission ratio. This analysis method has been successfully applied to the KIS Facility, significantly improving measurement uncertainties and reducing processing times for numerous items. Comprehensive plans were later developed to extend the use of this method to other applications, including the K-Area Shuffler and the H-Area Pu-Blending Project. While only the feasibility study for the Shuffler has been completed, implementation of the method in the H-Area Pu-Blending Project is currently in progress and has been successfully applied to multiple items. This report serves to document the details of this method in order to serve as a reference for future applications. Also contained herein are specific examples of the application of known-{alpha} multiplicity analysis.

  19. Uranium comparison by means of AMS and ICP-MS and Pu and 137Cs results around an Italian Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    De Cesare, M.; Tims, S. G.; Fifield, L. K.

    2015-04-01

    Italy built and commissioned 4 nuclear power plants between 1958-1978, which delivered a total of 1500 MW. All four were closed down after the Chernobyl accident following a referendum in 1987. One of the plants was Garigliano, commissioned in 1959. This plant used a 160 MW BWR1 (SEU of 2.3 %) and was operational from 1964 to 1979, when it was switched off for maintenance. It was definitively stopped in 1982, and is presently being decommissioned. We report here details on the chemistry procedure and on the measurements for soil samples, collected up to 4.5 km from the Nuclear Plant. A comparison between uranium (238U) concentration as determined by means of AMS (Accelerator Mass Spectrometry) and by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) techniques respectively at the ANU (Australian National University) and at the Ecowise company in Canberra, Australia, is reported, as well as 236U and 239;240Pu concentration results detected by AMS. 236U/238U and 240Pu/239Pu isotopic ratios by means of AMS are also provided. A contamination from Chernobyl is visible in the 137Cs/239+240Pu activity ratio measurements.

  20. Comparison of Pu and (137)Cs as tracers of soil and sediment transport in a terrestrial environment.

    PubMed

    Everett, S E; Tims, S G; Hancock, G J; Bartley, R; Fifield, L K

    2008-02-01

    Following atmospheric nuclear weapons testing in the 1950s and 1960s significant quantities of (137)Cs and (239+240)Pu were deposited worldwide. In recent decades, (137)Cs has been commonly used as a tracer of soil erosion and sedimentation, particularly in the Northern Hemisphere where atomic deposition was three times as great as in the Southern Hemisphere. The relatively short 30-year half-life of this isotope means that its sensitivity as a tracer is rapidly decreasing. In contrast, with half-lives of 24,110 and 6561 years, the sensitivity of the two plutonium isotopes remains essentially the same as when it was deposited. Here we use the technique of Accelerator Mass Spectrometry to demonstrate the potential of anthropogenic Pu as an alternative to (137)Cs as a tracer of soil transport in Australia. We measure an average (137)Cs/(239+240)Pu activity ratio of 27.3+/-1.5 and an average (240)Pu/(239)Pu atom ratio of 0.149+/-0.003, both slightly lower than the global average.

  1. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    PubMed

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  2. Concerning advantages in using 208Pb as such a FR coolant

    NASA Astrophysics Data System (ADS)

    Khorasanov, G.; Zemskov, E.; Blokhin, A.

    2017-01-01

    In the paper cores of two fast reactors with heavy liquid metal coolant are considered. The first object, RBETS-M, is a project of a medium power, 900 MW, reactor cooled with lead-bismuth. The second object, BRUTS, is a project of an ultra-small power, 0.5 MW, reactor cooled with lead. The results of replacement of their standard coolants with the lead coolant enriched up to 100% with 208Pb are presented. In the RBETS-M core having a large coolant volume share this replacement results in sufficient increasing the share of 238U involved in the fission process and respective decreasing the share of 239Pu and 241Pu burning.

  3. Precise determination of the 235U reactor antineutrino cross section per fission

    NASA Astrophysics Data System (ADS)

    Giunti, C.

    2017-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of 235U, 238U, 239Pu, and 241Pu may be responsible for the reactor antineutrino anomaly if the anomaly is due to a miscalculation of the antineutrino fluxes. We find that it is very likely that at least the calculation of the 235U flux must be revised. From the fit of the data we obtain the precise determination σ235 = (6.33 ± 0.08) ×10-43cm2 /fission of the 235U cross section per fission, which is more precise than the calculated value and differs from it by 2.2σ. The cross sections per fission of the other fluxes have large uncertainties and in practice their values are undetermined by the fit.

  4. Spectrum tailoring of the neutron energy spectrum in the context of delayed neutron detection

    SciTech Connect

    Koehler, William E; Tobin, Steve J; Sandoval, Nathan P; Fensin, Mike L

    2010-01-01

    For the purpose of measuring plutonium mass in spent fuel, a delayed neutron instrument is of particular interest since, if properly designed, the delayed neutron signal from {sup 235}U is significantly stronger than the signature from {sup 239}Pu or {sup 241}Pu. A key factor in properly designing a delayed neutron instrument is to minimize the fission of {sup 238}U. This minimization is achieved by keeping the interrogating neutron spectrum below {approx} 1 MeV. In the context of spent fuel measurements it is desirable to use a 14 MeV (deuterium and tritium) neutron generator for economic reasons. Spectrum tailoring is the term used to describe the inclusion of material between the 14 MeV neutrons and the interrogated object that lower the neutron energy through nuclear reactions and moderation. This report quantifies the utility of different material combination for spectrum tailoring.

  5. Analysis of spent fuel assay with a lead slowing down spectrometer

    SciTech Connect

    Gavron, Victor I; Smith, L Eric; Ressler, Jennifer J

    2008-01-01

    Assay of fissile materials in spent fuel that are produced or depleted during the operation of a reactor, is of paramount importance to nuclear materials accounting, verification of the reactor operation history, as well as for criticality considerations for storage. In order to prevent future proliferation following the spread of nuclear energy, we must develop accurate methods to assay large quantities of nuclear fuels. We analyze the potential of using a Lead Slowing Down Spectrometer for assaying spent fuel. We conclude that it is possible to design a system that will provide around 1% statistical precision in the determination of the {sup 239}Pu, {sup 241}Pu and {sup 235}U concentrations in a PWR spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron sources, and a system of {sup 238}U threshold fission detectors. Pending further analysis of systematic errors, it is possible that missing pins can be detected, as can asymmetry in the fuel bundle.

  6. Analysis of spent fuel assay with a lead slowing down spectrometer

    SciTech Connect

    Gavron, Victor I; Smith, L. Eric; Ressler, Jennifer J

    2010-10-29

    Assay of fissile materials in spent fuel that are produced or depleted during the operation of a reactor, is of paramount importance to nuclear materials accounting, verification of the reactor operation history, as well as for criticality considerations for storage. In order to prevent future proliferation following the spread of nuclear energy, we must develop accurate methods to assay large quantities of nuclear fuels. We analyze the potential of using a Lead Slowing Down Spectrometer for assaying spent fuel. We conclude that it is possible to design a system that will provide around 1% statistical precision in the determination of the {sup 239}Pu, {sup 241}Pu and {sup 235}U concentrations in a PWR spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron sources, and a system of {sup 238}U threshold fission detectors. Pending further analysis of systematic errors, it is possible that missing pins can be detected, as can asymmetry in the fuel bundle.

  7. A compact gas-filled avalanche counter for DANCE

    DOE PAGES

    Wu, C. Y.; Chyzh, A.; Kwan, E.; ...

    2012-08-04

    A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu,239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.

  8. Ternary particles with extreme N/Z ratios from neutron-induced fission

    SciTech Connect

    Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M.; Ahmad, I. J.; Devlin, M.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Sarantites, D. G.; Siem, S.; Sobotka, L. G.; Sonzogni, A.

    2000-05-16

    The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

  9. Using radiosilver and plutonium isotopes to trace the dispersion of contaminated sediment in Fukushima coastal catchments

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Ayrault, S.; Pointurier, F.; Onda, Y.; Laceby, J. P.; Lepage, H.; Chartin, C.; Cirella, M.; Pottin, A. C.; Hubert, A.; Lefèvre, I.

    2015-12-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a 3000-km² radioactive pollution plume consisting predominantly of radiocesium (137Cs and 134Cs). This plume is drained by several rivers to the Pacific Ocean after flowing through less contaminated, but densely inhabited coastal plains. As the redistribution of radionuclide contaminated sediment could expose the local population to higher radiation rates, novel fingerprinting methods were developed to trace the downstream dispersion of contaminated sediment. First, the heterogeneous deposition of metastable silver-110 (110mAg) across these coastal catchments was used to investigate sediment migration. In particular, the 110mAg/137Cs activity ratio was measured in soils and river sediment demonstrating the occurrence of a seasonal cycle of soil erosion during typhoons and spring snowmelt in 2011 and 2012. However, due to the rapid decay of 110mAg (half-life of 250 days), alternative methods were required to continue tracking sediment from 2013 onwards. One promising method includes the analyses of plutonium isotopes to further understand sediment migration in the Fukushima region. For example, 241Pu/239Pu atom ratios measured in sediment collected in Fukushima coastal rivers shortly after the accident were shown to be significantly higher (0.0017 - 0.0884) than corresponding values attributed to the global fallout (0.00113 ± 0.00008). Additional analyses were conducted on sediment sampled in 2013 and 2014 after the start of decontamination works. These analyses show that the 241Pu/239Pu atom ratios decreased towards the global fallout values in rivers draining decontaminated paddy fields, demonstrating the effectiveness of remediation works.

  10. Plutonium as a tracer for soil erosion assessment in northeast China.

    PubMed

    Xu, Yihong; Qiao, Jixin; Pan, Shaoming; Hou, Xiaolin; Roos, Per; Cao, Liguo

    2015-04-01

    Soil erosion is one of the most serious environmental and agricultural problems faced by human society. Assessing intensity is an important issue for controlling soil erosion and improving eco-environmental quality. The suitability of the application of plutonium (Pu) as a tracer for soil erosion assessment in northeast China was investigated by comparing with that of 137Cs. Here we build on preliminary work, in which we investigated the potential of Pu as a soil erosion tracer by sampling additional reference sites and potential erosive sites, along the Liaodong Bay region in northeast China, for Pu isotopes and 137Cs. 240Pu/239Pu atomic ratios in all samples were approximately 0.18, which indicated that the dominant source of Pu was the global fallout. Pu showed very similar distribution patterns to those of 137Cs at both uncultivated and cultivated sites. 239+240Pu concentrations in all uncultivated soil cores followed an exponential decline with soil depth, whereas at cultivated sites, Pu was homogenously distributed in plow horizons. Factors such as planted crop types, as well as methods and frequencies of irrigation and tillage were suggested to influence the distribution of radionuclides in cultivated land. The baseline inventories of 239+240Pu and 137Cs were 88.4 and 1688 Bq m(-2) respectively. Soil erosion rates estimated by 239+240Pu tracing method were consistent with those obtained by the 137Cs method, confirming that Pu is an effective tracer with a similar tracing behavior to that of 137Cs for soil erosion assessment.

  11. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  12. Multi-collector Isotope Ratio Mass Spectrometer -- Operational Performance Report

    SciTech Connect

    Appelhans, Anthony D; Olson, John E; Watrous, Matthew G; Ward, Michael B.; Dahl, David A.

    2010-12-01

    This report describes the operational testing of a new magnetic sector mass spectrometer that utilizes seven full-sized discrete dynode electron multipliers operating simultaneously. The instrument includes a newly developed ion dispersion lens that enables the mass dispersed individual isotope beams to be separated sufficiently to allow a full-sized discrete dynode pulse counting multiplier to be used to measure each isotope beam. The performance of the instrument was measured using SRM 996 (244Pu spike) at loadings of 2.4 and 12 fg on resin beads and with SRM 4350B Columbia River Sediment samples. The measured limit of detection (3s) for 240Pu was 3.4 attograms for SRM 996. The limit of quantitation (LOQ), defined as 10 s, was 11.2 attograms. The measured concentration of 239Pu in the CRS standard was 152 ± 6 fg/g.

  13. LITERATURE REVIEW ON MAXIMUM LOADING OF RADIONUCLIDES ON CRYSTALLINE SILICOTITANATE

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-10-13

    Plans are underway to use small column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions at Savannah River Site. The ion exchange material slated for the SCIX project is engineered or granular crystalline silicotitanate (CST). Information on the maximum loading of radionuclides on CST is needed by Savannah River Remediation for safety evaluations. A literature review has been conducted that culminated in the estimation of the maximum loading of all but one of the radionuclides of interest (Cs-137, Sr-90, Ba-137m, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, and Cm-244). No data was found for Cm-244.

  14. Applications of Event-by-Event Fission Modeling with FREYA

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-16

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on {sup 239}Pu(n{sub th},f), {sup 240}Pu(sf) and {sup 252}Cf(sf), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  15. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  16. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hobbs D. T.; Poirier, M. R.; Barnes, M. J.; Stallings, M. E.; Nyman, M. D.

    2005-11-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST material.

  17. SUBSURFACE MOBILE PLUTONIUM SPECIATION: SAMPLING ARTIFACTS FOR GROUNDWATER COLLOIDS

    SciTech Connect

    Kaplan, D.; Buesseler, K.

    2010-06-29

    A recent review found several conflicting conclusions regarding colloid-facilitated transport of radionuclides in groundwater and noted that colloids can both facilitate and retard transport. Given these contrasting conclusions and the profound implications even trace concentrations of plutonium (Pu) have on the calculated risk posed to human health, it is important that the methodology used to sample groundwater colloids be free of artifacts. The objective of this study was: (1) to conduct a field study and measure Pu speciation, ({sup 239}Pu and {sup 240}Pu for reduced-Pu{sub aq}, oxidized-Pu{sub aq}, reduced-Pu{sub colloid}, and oxidized-Pu{sub colloid}), in a Savannah River Site (SRS) aquifer along a pH gradient in F-Area, (2) to determine the impact of pumping rate on Pu concentration, Pu speciation, and Pu isotopic ratios, (3) determine the impact of delayed sample processing (as opposed to processing directly from the well).

  18. Determination of origin and intended use of plutonium metal using nuclear forensic techniques.

    PubMed

    Rim, Jung H; Kuhn, Kevin J; Tandon, Lav; Xu, Ning; Porterfield, Donivan R; Worley, Christopher G; Thomas, Mariam R; Spencer, Khalil J; Stanley, Floyd E; Lujan, Elmer J; Garduno, Katherine; Trellue, Holly R

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% (240)Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was (239)Pu fission foil targets for physics experiments, such as cross-section measurements, etc.

  19. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presence ofmore » a significant quantity of 238U in the samples.« less

  20. Distribution of sup 137 Cs, sup 90 Sr, sup 238 Pu, sup 239 Pu, sup 241 Am and sup 244 Cm in Pond B, Savannah River Site

    SciTech Connect

    Whicker, F.W. ); Pinder, J.E. III; Bowling, J.W. ); Alberts, J.J. . Marine Inst.); Brisbin, I.L. Jr. )

    1989-05-01

    The gradual senescence of present-day operating nuclear facilities, and resultant contamination of aquatic and terrestrial ecosystems, emphasize the importance of understanding the behavior of radionuclides in the environment. Observations and deductions concerning mechanisms of radionuclide transport can contribute significantly to knowledge of fundamental ecological processes. This study emphasized the ecosystem-level distribution of several long-lived radionuclides in an abandoned reactor cooling impoundment after a twenty year period of chemical and biological equilibration. 90 refs., 14 figs., 5 tabs.

  1. Leaching of UO2 pellets doped with alpha-emitters (238/239Pu) in synthetic deep Callovian-Oxfordian groundwater

    NASA Astrophysics Data System (ADS)

    Tribet, M.; Jégou, C.; Broudic, V.; Marques, C.; Rigaux, P.; Gavazzi, A.

    2010-03-01

    The reactivity of a polycrystalline UO2 surface under alpha irradiation in contact with groundwater is investigated, in the hypothesis of direct disposal of spent fuel in a deep geological repository. Two series of plutonium-doped UO2 samples (specific alpha activity of 18 and 385 MBq·g-1UO2) were leached in a synthetic Callovian-Oxfordian deep groundwater under anoxic conditions (Ar/CO2 3000 ppm, 3.5 bar relative pressure) to assess both the impact of alpha radiolysis of water and the complexing capacity of the groundwater ions on the dissolution of UO2. This study follows a prior one performed in pure and carbonated waters. Firstly, technical developments were necessary for the analyses in the groundwater solution because of its high salt concentrations: quantification limits were determined for the measurement of uranium and radiolytic H2O2 traces in this medium. Secondly, given the very high reactivity of these samples in the presence of air and in order to minimize any prior surface oxidation, a strict experimental protocol was followed, based on high-temperature annealing in Ar + 4% H2 with preleaching cycles. Each type of UO2 pellet was then leached under static conditions for 30 days (anoxic conditions, deep groundwater solutions). Results on the evolution of uranium releases are presented. For the lowest alpha activity (18 MBq·g-1UO2), uranium releases in groundwater were below the quantification limit of 2 × 10-8 mol·L-1 with a kinetic phosphorescence analyzer, even after 30 days. However, for higher alpha activity (385 MBq·g-1UO2) the uranium releases begin to exceed the quantification limit after 14 days of leaching and then increase exponentially. This increase is comparable to results previously obtained in carbonated solutions.

  2. Transmutation of 129I, 237Np, 238Pu, 239Pu and 241Am Using Neutrons Produced in Target-Blanket System ``Energy & Transmutation'' Bombarded by Relativistic Protons

    NASA Astrophysics Data System (ADS)

    Adam, J.; Katovsky, K.; Balabekyan, A.; Solnyshkin, A. A.; Kalinnikov, V. G.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Stetsenko, S. G.; Krivopustov, M. I.; Pronskikh, V. S.; Vladimirova, N. M.; Kumawat, H.

    2005-05-01

    Target-blanket facility "Energy & Transmutation" was irradiated by a 2 GeV proton beam extracted from the Nuclotron Accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Radioactive samples made from iodine, neptunium, plutonium and americium were irradiated by spallation neutrons produced in the "E&T" facility. Transmutation reaction yields (residual nuclei production yields) have been determined using methods of γ-spectroscopy. The energy spectrum of the neutron field has been studied by using a set of threshold detectors.

  3. On the similarity of 239Pu α-activity histograms when the angular velocities of the Earth diurnal rotation, orbital movement and rotation of collimators are equalized

    NASA Astrophysics Data System (ADS)

    Shnoll, S. E.; Rubinstein, I. A.; Shapovalov, S. N.; Tolokonnikova, A. A.; Shlektaryov, V. A.; Kolombet, V. A.; Kondrashova, M. N.

    2016-01-01

    It was shown earlier that the persistent "scatter" of results of measurements of any nature is determined by the diurnal and orbital movement of the Earth. The movement is accompanied by "macroscopic fluctuations" (MF)—regular, periodic changes in the shape of histograms, spectra of fluctuation amplitudes of the measured parameters. There are two near-daily periods ("sidereal", 1436 min; and "solar", 1440 min) and three yearly ones ("calendar", 365 average solar days; "tropical", 365 days 5 h and 48 min; and "sidereal", 365 days 6 h and 9 min). This periodicity was explained by the objects whose parameters are measured passing through the same spatial-temporal heterogeneities as the Earth rotates and shifts along its orbit.

  4. IAEA-447: a new certified reference material for environmental radioactivity measurements.

    PubMed

    Shakhashiro, A; Tarjan, S; Ceccatelli, A; Kis-Benedek, G; Betti, M

    2012-08-01

    The environment program of the International Atomic Energy Agency (IAEA) includes activities to produce and certify reference materials for environmental radioactivity measurements. This paper describes methodologies applied in preparation and certification of the new IAEA-447 moss-soil certified reference material. In this work, the massic activities and associated standard uncertainties of (40)K, (90)Sr, (137)Cs, (208)Tl, (210)Pb, (210)Po, (212)Pb, (214)Pb, (214)Bi, (226)Ra, (228)Ac, (234)Th, (234)U, (238)U, (238)Pu, (239+240)Pu, (241)Pu and (241)Am were established. Details of the analytical methods including radiochemical procedures were reported. Analytical challenges and lessons learned from the reported results in the worldwide IAEA proficiency test using this material was summarized and best analytical practices to improve the performance for environmental radioactivity determinations were recommended. IAEA-447 is an important reference material for quality control and method validation of gamma-ray spectrometry and radiochemical analytical procedures.

  5. Monte Carlo simulation of transfer reactions using extended R-matrix theory picturing surrogate-type WFCF features

    NASA Astrophysics Data System (ADS)

    Bouland, Olivier H.

    2016-03-01

    This article supplies an overview of issues related to the interpretation of surrogate measurement results for neutron-incident cross section predictions; difficulties that are somehow masked by the historical conversion route based on Weisskopf-Ewing approximation. Our proposal is to handle the various difficulties by using a more rigorous approach relying on Monte Carlo simulation of transfer reactions with extended R-matrix theory. The multiple deficiencies of the historical surrogate treatment are recalled but only one is examined in some details here; meaning the calculation of in-out-going channel Width Fluctuation Correction Factors (WFCF) which behavior witness partly the failure of Niels Bohr's compound nucleus theoretical landmark. Relevant WFCF calculations according to neutron-induced surrogate- and cross section-types as a function of neutron-induced fluctuating energy range [0 - 2.1 MeV] are presented and commented in the case of the 240Pu* and 241Pu* compound nucleus isotopes.

  6. The plutonium isotopic composition of marine biota on Enewetak Atoll: a preliminary assessment.

    PubMed

    Hamilton, Terry F; Martinelli, Roger E; Kehl, Steven R; McAninch, Jeffrey E

    2008-10-01

    We have determined the level and distribution of gamma-emitting radionuclides, plutonium activity concentrations, and 240Pu/239Pu atom ratios in tissue samples of giant clam (Tridacna gigas and Hippopus hippopus), a top snail (Trochus nilaticas) and sea cucumber (Holothuria atra) collected from different locations around Enewetak Atoll. The plutonium isotopic measurements were performed using ultra-high sensitivity accelerator mass spectrometry (AMS). Elevated levels of plutonium were observed in the stomachs (includes the stomach lining) of Tridacna clam (0.62 to 2.98 Bq kg(-1), wet wt.), in the soft parts (edible portion) of top snails (0.25 to 1.7 Bq kg(-1)), wet wt.) and, to a lesser extent, in sea cucumber (0.015 to 0.22 Bq kg(-1), wet wt.) relative to muscle tissue concentrations in clam (0.006 to 0.021 Bq kg(-1), wet wt.) and in comparison with previous measurements of plutonium in fish. These data and information provide a basis for re-evaluating the relative significance of dietary intakes of plutonium from marine foods on Enewetak Atoll and, perhaps most importantly, demonstrate that discrete 240Pu239Pu isotope signatures might well provide a useful investigative tool to monitor source-term attribution and consequences on Enewetak Atoll. One potential application of immediate interest is to monitor and assess the health and ecological impacts of leakage of plutonium (as well as other radionuclides) from a low-level radioactive waste repository on Runit Island relative to background levels of fallout contamination in Enewetak Atoll lagoon.

  7. Radioactive substances in tap water.

    PubMed

    Atsuumi, Ryo; Endo, Yoshihiko; Suzuki, Akihiko; Kannotou, Yasumitu; Nakada, Masahiro; Yabuuchi, Reiko

    2014-01-01

    A 9.0 magnitude (M) earthquake with an epicenter off the Sanriku coast occurred at 14: 46 on March 11, 2011. TEPCO Fukushima Daiichi Nuclear Power Plant (F-1 NPP) was struck by the earthquake and its resulting tsunami. Consequently a critical nuclear disaster developed, as a large quantity of radioactive materials was released due to a hydrogen blast. On March 16(th), 2011, radioiodine and radioactive cesium were detected at levels of 177 Bq/kg and 58 Bq/kg, respectively, in tap water in Fukushima city (about 62km northwest of TEPCO F-1 NPP). On March 20th, radioiodine was detected in tap water at a level of 965 Bq/kg, which is over the value-index of restrictions on food and drink intake (radioiodine 300 Bq/kg (infant intake 100 Bq/kg)) designated by the Nuclear Safety Commission. Therefore, intake restriction measures were taken regarding drinking water. After that, although the all intake restrictions were lifted, in order to confirm the safety of tap water, an inspection system was established to monitor all tap water in the prefecture. This system has confirmed that there has been no detection of radioiodine or radioactive cesium in tap water in the prefecture since May 5(th), 2011. Furthermore, radioactive strontium ((89) Sr, (90)Sr) and plutonium ((238)Pu, (239)Pu+(240)Pu) in tap water and the raw water supply were measured. As a result, (89) Sr, (238)Pu, (239)Pu+(240)Pu were undetectable and although (90)Sr was detected, its committed effective dose of 0.00017 mSv was much lower than the yearly 0.1 mSv of the World Health Organization guidelines for drinking water quality. In addition, the results did not show any deviations from past inspection results.

  8. Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods.

    PubMed

    Zheltonozhsky, V; Mück, K; Bondarkov, M

    2001-01-01

    Both after the Chernobyl accident and nuclear weapon detonations, agglomerates of radioactive material, so-called hot particles, were released or formed which show a behaviour in the environment quite different from the activity released in gaseous or aerosol form. The differences in their characteristic properties, in the radionuclide composition and the uranium and actinide contents are described in detail for these particles. While nuclear bomb hot particles (both from fission and fusion bombs) incorporate well detectable trace amounts of 60Co and 152Eu, these radionuclides are absent in Chernobyl hot particles. In contrast, Chernobyl hot particles contain 125Sb and 144Ce which are absent in atomic bomb HPs. Obvious differences are also observable between fusion and fission bombs' hot particles (significant differences in 152Eu/l55Eu, 154Eu/155Eu and 238Pu/239Pu ratios) which facilitate the identification of HPs of unknown provensence. The ratio of 239Pu/240Pu in Chernobyl hot particles could be determined by a non-destructive method at 1:1.5. A non-destructive method to determine the content of non-radioactive elements by Kalpha-emission measurements was developed by which inactive Zr, Nb, Fe and Ni could be verified in the particles.

  9. Upward movement of plutonium to surface sediments during an 11-year field study.

    PubMed

    Kaplan, D I; Demirkanli, D I; Molz, F J; Beals, D M; Cadieux, J R; Halverson, J E

    2010-05-01

    An 11-year lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The (240)Pu/(239)Pu and (242)Pu/(239)Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

  10. The Dynamic Movement of Plutonium in an Underground Nuclear Test with Implications for the Contamination of Groundwater

    SciTech Connect

    Smith, D K; Williams, R W

    2003-03-25

    The recent discovery of the migration of plutonium in groundwater away from underground nuclear tests at the Nevada Test Site has spawned considerable interest in the mechanisms by which plutonium may be released to the environment by a nuclear test. A suite of solid debris samples was collected during drilling through an expended test cavity and the overlying collapse chimney. Uranium and plutonium were analyzed for isotope ratios and concentration using high precision magnetic sector inductively coupled mass spectrometry. The data unequivocally shows that plutonium may be dispersed throughout the cavity and chimney environment at the time of the detonation. The {sup 239}Pu/{sup 240}Pu ratios are also fractionated relative to initial plutonium isotope ratio for the test device. Fractionation is the result of the volatilization of uranium and production of {sup 239}Pu by the reaction {sup 238}U (n,{gamma}). We conclude that for the test under consideration plutonium was deposited outside of the confines of the cavity by dynamic processes in early-time and it is this plutonium that is most likely first transferred to the groundwater regime.

  11. UPWARD MOVEMENT OF PLUTONIUM TO SURFACE SEDIMENTS DURING AN 11-YEAR FIELD STUDY

    SciTech Connect

    Kaplan, D.; Beals, D.; Cadieux, J.; Halverson, J.

    2010-01-25

    An 11-y lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The {sup 240}Pu/{sup 239}Pu and {sup 242}Pu/{sup 239}Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

  12. Radionuclide transfer to marine biota species: review of Russian language studies.

    PubMed

    Fesenko, S; Fesenko, E; Titov, I; Karpenko, E; Sanzharova, N; Fonseca, A Gondin; Brown, J

    2010-11-01

    An extensive programme of experiments on transfer of radionuclides to aquatic species was conducted in the former USSR starting from the early 1950s. Only a few of these studies were made available in the English language literature or taken into account in international reviews of radionuclide behaviour in marine ecosystems. Therefore, an overview of original information on radionuclide transfer to marine biota species available from Russian language literature sources is presented here. The concentration ratio (CR) values for many radionuclides and for marine species such as: (239)Pu, (106)Ru and (95)Zr (crustacean), (54)Mn, (90)Sr, (95)Nb, (106)Ru, (137)Cs (239)Pu, (241)Am and natural U (molluscs), and (54)Mn, (90)Sr, (137)Cs and (144)Ce (fish) are in good agreement with those previously published, whilst for some of them, in particular, for (32)P and (110)Ag (crustaceans), (35)S (molluscs), (32)P, (35)S, (95)Nb, and (106)Ru (macroalgae) and (60)Co and (239,240)Pu (fish) the data presented here suggest that changes in the default CR reference values presented in recent marine reviews may be required. The data presented here are intended to supplement substantially the CR values being collated within the handbook on Wildlife Transfer Coefficients, coordinated under the IAEA EMRAS II programme.

  13. {sup 237}Np in Hemp-palm leaves of Bontenchiku for fishing gear used by the Fifth Fukuryu-Maru: 40 year after {open_quotes}Bravo{close_quotes}

    SciTech Connect

    Yamamoto, Masayoshi; Komura, Kazuhisa; Ueno, Kaoru

    1996-05-01

    The alpha radioactive components in the Hemp-palm leaves of Bontenchiku were determined with emphasis on the measurement of low-level {sup 237}Np by alpha-ray spectrometry after chemical separation. Bontenchiku is a kind of fishing gear for long-line fishing used by the Fifth Fukuryu-Maru (Lucky Dragon). This gear was exposed to fallout from the second thermonuclear test explosion (Bravo) at Bikini Atoll in March 1954. The {sup 237}Np content in the Bontenchiku sample was determined to be 11.5 {plus_minus}0.8 mBq g{sup {minus}1} with an activity ratio of {sup 237}Np: {sup 239,240}Pu and an atom ratio of {sup 237}Np: {sup 239}Pu estimated to be (2.2 {plus_minus}0.2) x 10{sup {minus}3} and 0.42 {plus_minus}0.04, respectively. The data showed the existence of a chain reaction of {sup 238}U and its ratio to be {sup 237}Np: {sup 239}Pu, as well as the presence of {sup 237}U at the time of fallout from Bravo event in March 1954. 12 refs., 5 figs., 1 tab.

  14. Actinide Measurements by Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory

    SciTech Connect

    Brown, T A; Marchetti, A A; Martinelli, R E; Cox, C C; Knezovich, J P; Hamilton, T F

    2003-09-25

    We report on the development of an accelerator mass spectrometry (AMS) system for the measurement of actinides at Lawrence Livermore National Laboratory. This AMS system is centered on a recently completed heavy isotope beam line that was designed particularly for high sensitivity, robust, high-throughput measurements of actinide concentrations and isotopic ratios. A fast isotope switching capability has been incorporated in the system, allowing flexibility in isotope selection and for the quasi-continuous normalization to a reference isotope spike. Initially, our utilization of the heavy isotope system has concentrated on the measurement of Pu isotopes. Under current operating conditions, background levels equivalent to {approx}1 x 10{sup 5} atoms are observed during routine {sup 239}Pu and {sup 240}Pu measurements. Measurements of samples containing {approx}10{sup 13} {sup 238}U atoms demonstrate that the system provides a {sup 238}U rejection factor during {sup 239}Pu measurements of {approx}10{sup 7}. Measurements of known materials, combined with results from an externally organized inter-comparison program, indicate that our {sup 239}Pu measurements are accurate and precise down to the {micro}Bq level ({approx}10{sup 6} atoms). Recently, we have investigated the performance of our heavy isotope AMS system in measurements of {sup 237}Np and {sup 236}U. Results of these investigations are discussed. The sensitivity shown by our Pu measurements, combined with the high throughput and interference rejection capabilities of our AMS system, demonstrate that AMS can provide a rapid and cost-effective measurement technique for actinides in a wide variety of studies.

  15. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  16. Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations

    PubMed Central

    Schneider, Stephanie; Walther, Clemens; Bister, Stefan; Schauer, Viktoria; Christl, Marcus; Synal, Hans-Arno; Shozugawa, Katsumi; Steinhauser, Georg

    2013-01-01

    The contamination of Japan after the Fukushima accident has been investigated mainly for volatile fission products, but only sparsely for actinides such as plutonium. Only small releases of actinides were estimated in Fukushima. Plutonium is still omnipresent in the environment from previous atmospheric nuclear weapons tests. We investigated soil and plants sampled at different hot spots in Japan, searching for reactor-borne plutonium using its isotopic ratio 240Pu/239Pu. By using accelerator mass spectrometry, we clearly demonstrated the release of Pu from the Fukushima Daiichi power plant: While most samples contained only the radionuclide signature of fallout plutonium, there is at least one vegetation sample whose isotope ratio (0.381 ± 0.046) evidences that the Pu originates from a nuclear reactor (239+240Pu activity concentration 0.49 Bq/kg). Plutonium content and isotope ratios differ considerably even for very close sampling locations, e.g. the soil and the plants growing on it. This strong localization indicates a particulate Pu release, which is of high radiological risk if incorporated. PMID:24136192

  17. Comparative skeletal distribution of americium and plutonium in man, monkey and baboon

    SciTech Connect

    Lynch, T.P.; Dagle, G.E.; Kathren, R.L.; McInroy, J.F.

    1988-10-01

    The skeletal distributions of americium and plutonium in four humans were compared with the skeletal distributions of these radioelements in baboons and monkeys. With respect to the skeletal distribution of these elements, excellent agreement was noted among the four human cases; americium data was available for all four cases and plutonium for three. The human case database was thus adequate for comparison with those of other primates. A statistically significant correlation was found between the /sup 241/Am and /sup 239/Pu + /sup 240/Pu skeletal distributions in the humans and those in non-human primates. Trabecular bone had the highest concentrations of /sup 241/Am and /sup 239 +240/Pu in man, baboon, and monkey. Scaling factors are proposed to convert the percentages of skeletal activity in animal bones to the corresponding percentages in the bones of the human skeleton. However, considerable variation was found between the humans and animals in the percentages of the skeletal activity found in the same bone. 12 refs., 7 tabs.

  18. Vertical distribution and migration of global fallout Pu in forest soils in southwestern China.

    PubMed

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Uchida, Shigeo

    2014-10-01

    Soil samples collected in southwestern China were analyzed for Pu isotopes. The (240)Pu/(239)Pu atom ratios were around 0.18, which indicated the dominant source of global fallout. Consistent sub-surface maximums followed by exponential decline of (239+240)Pu activities in the soil cores were observed. Most of the Pu has still remained in the 0-10 cm layers since its deposition. Convection velocities and dispersion coefficients for Pu migration in the soils were estimated by the convection-dispersion equation (CDE) model. The effective convection velocities and effective dispersion coefficients ranged from 0.05 to 0.11 cm/y and from 0.06 to 0.29 cm(2)/y, respectively. Other factors that control the vertical migration of Pu in soil besides precipitation, soil particle size distribution and organic matter were suggested. Long-term migration behaviors of Pu in the soils were simulated. The results provide the Pu background baseline for further environmental monitoring and source identification of non-global fallout Pu inputs in the future.

  19. Modernizing the Fission Basis

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  20. Main results of the 2012 joint Norwegian-Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya.

    PubMed

    Gwynn, Justin P; Nikitin, Aleksander; Shershakov, Viacheslav; Heldal, Hilde Elise; Lind, Bjørn; Teien, Hans-Christian; Lind, Ole Christian; Sidhu, Rajdeep Singh; Bakke, Gunnar; Kazennov, Alexey; Grishin, Denis; Fedorova, Anastasia; Blinova, Oxana; Sværen, Ingrid; Lee Liebig, Penny; Salbu, Brit; Wendell, Cato Christian; Strålberg, Elisabeth; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Logoyda, Igor; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Pham, Mai Khanh; Sam, Adam; Nies, Hartmut; Rudjord, Anne Liv

    2016-01-01

    This paper reports the main results of the 2012 joint Norwegian-Russian expedition to investigate the radioecological situation of the Stepovogo Fjord on the eastern coast of Novaya Zemlya, where the nuclear submarine K-27 and solid radioactive waste was dumped. Based on in situ gamma measurements and the analysis of seawater and sediment samples taken around the submarine, there was no indication of any leakage from the reactor units of K-27. With regard to the radioecological status of Stepovogo Fjord, activity concentrations of all radionuclides in seawater, sediment and biota in 2012 were in general lower than reported from the previous investigations in the 1990s. However in 2012, the activity concentrations of (137)Cs and, to a lesser extent, those of (90)Sr remained elevated in bottom water from the inner part of Stepovogo Fjord compared with surface water and the outer part of Stepovogo Fjord. Deviations from expected (238)Pu/(239,240)Pu activity ratios and (240)Pu/(239)Pu atom ratios in some sediment samples from the inner part of Stepovogo Fjord observed in this study and earlier studies may indicate the possibility of leakages from dumped waste from different nuclear sources. Although the current environmental levels of radionuclides in Stepovogo Fjord are not of immediate cause for concern, further monitoring of the situation is warranted.

  1. Short term soil erosion dynamics in alpine grasslands - Results from a Fallout Radionuclide repeated-sampling approach

    NASA Astrophysics Data System (ADS)

    Arata, Laura; Meusburger, Katrin; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    Improper land management and climate change has resulted in accelerated soil erosion rates in Alpine grasslands. To efficiently mitigate and control soil erosion and reduce its environmental impact in Alpine grasslands, reliable and validated methods for comprehensive data generation on its magnitude and spatial extent are mandatory. The use of conventional techniques (e.g. sediment traps, erosion pins or rainfall simulations) may be hindered by the extreme topographic and climatic conditions of the Alps. However, the application of the Fallout Radionuclides (FRNs) as soil tracers has already showed promising results in these specific agro-ecosystems. Once deposited on the ground, FRNs strongly bind to fine particles at the surface soil and move across the landscape primarily through physical processes. As such, they provide an effective track of soil and sediment redistribution. So far, applications of FRN in the Alps include 137Cs (half-life: 30.2 years) and 239+240Pu (239Pu [half-life = 24110 years] and 240Pu [half-life = 6561 years]). To investigate short term (4-5 years) erosion dynamics in the Swiss Alps, the authors applied a FRNs repeated sampling approach. Two study areas in the central Swiss Alps have been investigated: the Urseren Valley (Canton Uri), where significant land use changes occurred in the last centuries, and the Piora Valley (Canton Ticino), where land use change plays a minor role. Soil samples have been collected at potentially erosive sites along the valleys over a period of 4-5 years and measured for 137Cs and 239+240Pu activity. The inventory change between the sampling years indicates high erosion and deposition dynamics at both valleys. High spatial variability of 137Cs activities at all sites has been observed, reflecting the heterogeneous distribution of 137Cs fallout after the Chernobyl power plant accident in 1986. Finally, a new modelling technique to convert the inventory changes to quantitative estimates of soil erosion has

  2. Sources and Spatial Distribution of Metal Pollutants in Soils near the El Paso Smelter: A Forensic Study with Pb and Pu Isotopes.

    NASA Astrophysics Data System (ADS)

    Ketterer, Michael; Moan, Matthew; Gremillion, Paul

    2010-05-01

    Pu activities, and hence contain most or all of the cumulative deposition inventory of smelter pollutants, while soils with low 239+240Pu activities can be regarded as 'disturbed', and cannot contain the entire deposition inventory. 240Pu/239Pu atom ratio measurements reveal that the Pu is from stratospheric fallout, precluding other local or regional sources. Our results indicate that 239+240Pu activities are closely correlated with concentrations of smelter pollutants within a specific distance grouping; hence, the soil concentrations of contaminant metals are described by a 'distance' factor and a 'disturbance' factor, the latter being probed using 239+240Pu as an effective proxy measure. Linear correlations (r2 > 0.95) are observed for metal concentrations vs. 239+240Pu activity for a given distance grouping; lines of varying slope are observed for different distance groupings. In desert soils remote from the smelter, the metal constituents are present from other anthropogenic and geogenic sources, and their concentrations are uncorrelated with 239+240Pu activity.

  3. PLANTS AS BIO-MONITORS FOR 137CS, 238PU, 239, 240PU AND 40K AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Caldwell, E.; Duff, M.; Ferguson, C.

    2010-12-16

    The nuclear fuel cycle generates a considerable amount of radioactive waste, which often includes nuclear fission products, such as strontium-90 ({sup 90}Sr) and cesium-137 ({sup 137}Cs), and actinides such as uranium (U) and plutonium (Pu). When released into the environment, large quantities of these radionuclides can present considerable problems to man and biota due to their radioactive nature and, in some cases as with the actinides, their chemical toxicity. Radionuclides are expected to decay at a known rate. Yet, research has shown the rate of elimination from an ecosystem to differ from the decay rate due to physical, chemical and biological processes that remove the contaminant or reduce its biological availability. Knowledge regarding the rate by which a contaminant is eliminated from an ecosystem (ecological half-life) is important for evaluating the duration and potential severity of risk. To better understand a contaminants impact on an environment, consideration should be given to plants. As primary producers, they represent an important mode of contamination transfer from sediments and soils into the food chain. Contaminants that are chemically and/or physically sequestered in a media are less likely to be bio-available to plants and therefore an ecosystem.

  4. R-matrix analysis of the {sup 240}Pu neutron cross sections in the thermal to 5700 eV energy range

    SciTech Connect

    Derrien, H.; Bouland, O.; Larson, N.M.; Leal, L.C.

    1997-08-01

    Resonance analysis of high resolution neutron transmission data and of fission cross sections were performed in the neutron energy range from the thermal regions to 5,700 eV by using the Reich-Moore Bayesian code SAMMY. The experimental data base is described and the method of analysis is given. The experimental data were carefully examined in order to identify more resonances than those found in the current evaluated data files. The statistical properties of the resonance parameters are given. A new set of the average values of the parameters is proposed, which could be used for calculation of the average cross sections in the unresolved resonance region. The resonance parameters are available IN ENDF-6 format at the national or international data centers.

  5. Delayed neutron detection with an integrated differential die-away and delayed neutron instrument

    SciTech Connect

    Blanc, Pauline; Tobin, Stephen J; Lee, Taehoon; Hu, Jianwei S; Hendricks, John; Croft, Stephen

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded a multilab/university collaboration to quantify the plutonium (Pu) mass and detect the diversion of pins from spent nuclear fuel. The first two years of this NGSI effort was focused on quantifying the capability of a range of nondestructive assay (NDA) techniques with Monte Carlo (MCNPX) modeling and the second current phase involves measuring Spent Fuel. One of the techniques of interest in this paper involves measuring delayed neutrons. A delayed neutron instrument using 36 fission chambers and a 14 MeV neutron generator so called DT generator (Deuterium + Tritium) surrounding the fuel was previously studied as part of the NGSI effort. This paper will quantify the capability of a standalone delayed neutron instrument using 4 {sup 3}He gas filled tubes and a DT generator with significant spectrum tailoring, located far from the fuel. So that future research can assess how well a delayed neutron instrument will function as part of an integrated NDA system. A new design is going to be used to respond to the need of the techniques. This design has been modeled for a water media and is currently being optimized for borated water and air media as part of ongoing research. This new design was selected in order to minimize the fission of {sup 238}U, to use a more realistic neutron generator design in the model, to reduce cost and facilitate the integration of a delayed neutron (DN) with a differential die-away (DDA) instrument. Since this paper will focus on delayed neutron detection, the goal is to quantify the signal from {sup 235}U, {sup 239}Pu and {sup 241}Pu, which are the isotopes present in Spent Fuel that respond significantly to a neutron interrogation. This report will quantify the capability of this new delayed neutron design to measure the combined mass of {sup 235}U, {sup 239}Pu and {sup 241}Pu for 16 of the 64 assemblies of the NGSI Spent Fuel library in one

  6. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  7. Transuranic waste assay by neutron interrogation and online prompt and delayed neutron measurement

    NASA Astrophysics Data System (ADS)

    Raoux, A.-C.; Lyoussi, A.; Passard, C.; Denis, C.; Loridon, J.; Misraki, J.; Chany, P.

    2003-06-01

    A comprehensive program is currently underway in several laboratories for the development of sensitive and non-destructive techniques for the quantification of transuranics in low and intermediate radioactive waste packages. This paper describes the method being developed to quantify different isotopes separately by using online prompt and delayed neutron measurements from the fission of isotopes such as 235U, 238U, 239Pu and 241Pu. The system uses a new generation 14 MeV pulsed neutron generator the emission of which is about 2×10 9 n s -1. The association of the differential die-away technique technique [W.E. Kunz, J.D. Atencio, J.T. Caldwell, A 1 nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation, INMM Annual meeting, Palm Beach, Florida. LA-UR-90-1794, CONF-800655-4 (1980)] (Differential Die-away Technique) and the SPHINCS method [Nucl. Instr. and Meth. B 160 (2000) 280-289] (Sequential PHoton Interrogation and Neutron Counting Signatures) allows measurement of the prompt and delayed neutrons from thermal and fast-induced fission after each interrogating pulse. This method is demonstrated by the measurement of uranium and plutonium samples. Samples of U + Pu have also been analysed inside a non-active drum of bituminized coating for the purpose of demonstrating the feasibility of the separation of 235U from 239Pu by this method. Moreover, the influence of 238U and the necessity of correcting its effects have been studied. Finally, the purpose is to determine the best estimated value for each mass of interest associated with its own standard deviation and statistical distribution. Hence a specific method, based on the Monte Carlo trials, has been developed to estimate masses and associated uncertainties for each isotope of interest.

  8. Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory

    SciTech Connect

    Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

    2007-06-18

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States

  9. Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968.

    PubMed

    Lind, O C; Salbu, B; Janssens, K; Proost, K; García-León, M; García-Tenorio, R

    2007-04-15

    Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low (239)Pu/(235)U (0.62-0.78) and (240)Pu/(239)Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-ray analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence (micro-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 microm sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy (micro-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO(2) with the presence of U(3)O(8)) and Pu ((III)/(IV), (IV)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.

  10. Risk assessment of soil-based exposures to plutonium at experimental sites located on the Nevada Test Site and adjoining areas

    SciTech Connect

    Layton, D.W.; Anspaugh, L.R.; Bogen, K.T.; Straume, T.

    1993-06-01

    In the late 1950s and early 1960s, a series of tests was conducted at or near the Nevada Test Site to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,240}Pu on the surficial soils at the test locations. Access to the sites is strictly controlled; therefore, it does not constitute a threat to human health at the present time. However, because the residual {sup 239} Pu decays slowly (half-life of 24,110 y), the sites could indeed represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, we defined three basic exposure scenarios that could bring individuals in contact with {sup 239,240}Pu at the sites: (1) a resident living in a subdivision located at a test site, (2) a resident farmer, and (3) a worker at a commercial facility. Our screening analyses indicated that doses to organs are dominated by the intemal deposition of Pu via the inhalation pathway, and thus our risk assessment focused on those factors that affect inhalation exposures and associated doses, including inhalation rates, activity patterns, tenure at a residence or occupation, indoor/outdoor air relationships, and resuspension outdoors. Cancer risks were calculated as a function of lifetime cumulative doses to the key target organs (i.e., bone surface, liver, and lungs) and risk factors for those organs. Uncertainties in the predicted cancer risks were analyzed using Monte-Carlo simulations of the probability distributions used to represent assessment parameters. The principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

  11. Characterization and Source Term Assessments of Radioactive Particles from Marshall Islands Using Non-Destructive Analytical Techniques

    SciTech Connect

    Jernstrom, J; Eriksson, M; Simon, R; Tamborini, G; Bildstein, O; Carlos-Marquez, R; Kehl, S R; Betti, M; Hamilton, T

    2005-06-11

    A considerable fraction of radioactivity entering the environment from different nuclear events is associated with particles. The impact of these events can only be fully assessed where there is some knowledge about the mobility of particle bound radionuclides entering the environment. The behavior of particulate radionuclides is dependent on several factors, including the physical, chemical and redox state of the environment, the characteristics of the particles (e.g., the chemical composition, crystallinity and particle size) and on the oxidative state of radionuclides contained in the particles. Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized using non-destructive analytical and microanalytical methods. By determining the activity of {sup 239,240}Pu and {sup 241}Am isotopes from their gamma peaks structural information related to Pu matrix was obtained, and the source term was revealed. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence (SR-{mu}-XRF) spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector (SEMEDX) and secondary ion mass spectrometer (SIMS) were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups; particles with plain Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogeneously distributed. All of the particles were identified as fragments of initial weapons material. As containing plutonium with low {sup 240}Pu/{sup 239}Pu atomic ratio, {approx}2-6%, which corresponds to weapons grade plutonium, the source term was identified to be among the safety tests conducted in the history of Runit Island.

  12. Isotope ratio analysis of individual sub-micrometer plutonium particles with inductively coupled plasma mass spectrometry.

    PubMed

    Esaka, Fumitaka; Magara, Masaaki; Suzuki, Daisuke; Miyamoto, Yutaka; Lee, Chi-Gyu; Kimura, Takaumi

    2010-12-15

    Information on plutonium isotope ratios in individual particles is of great importance for nuclear safeguards, nuclear forensics and so on. Although secondary ion mass spectrometry (SIMS) is successfully utilized for the analysis of individual uranium particles, the isobaric interference of americium-241 to plutonium-241 makes difficult to obtain accurate isotope ratios in individual plutonium particles. In the present work, an analytical technique by a combination of chemical separation and inductively coupled plasma mass spectrometry (ICP-MS) is developed and applied to isotope ratio analysis of individual sub-micrometer plutonium particles. The ICP-MS results for individual plutonium particles prepared from a standard reference material (NBL SRM-947) indicate that the use of a desolvation system for sample introduction improves the precision of isotope ratios. In addition, the accuracy of the (241)Pu/(239)Pu isotope ratio is much improved, owing to the chemical separation of plutonium and americium. In conclusion, the performance of the proposed ICP-MS technique is sufficient for the analysis of individual plutonium particles.

  13. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    SciTech Connect

    Cormon, S.; Fallot, M. Bui, V.-M.; Cucoanes, A.; Estienne, M.; Lenoir, M.; Onillon, A.; Shiba, T.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-15

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (ν{sup ¯}{sub e}) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of {sup 235}U, {sup 239}Pu and {sup 241}Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.

  14. Sensitivity of the Antineutrino Emission from Reactors to the Fuel Content

    SciTech Connect

    Hayes-Sterbenz, Anna C

    2012-06-25

    We investigated the antineutrino signals for several reactor core designs. In all cases we found that the antineutrino signals are distinct. The signals are distinguishable by the combination of their magnitudes and their rate of change with fuel burn-up. If the thermal power of the reactor is known, the overall uncertainty in the antineutrino flux emitted from the reactor is about 5%. The quoted uncertainty in the number of antineutrinos per fission for {sup 235}U, {sup 239}Pu, and {sup 241}Pu is less than 3% and for {sup 238}U is 8%. When folded with the uncertainty in the thermal power measurement and the uncertainty in converting the thermal power to a fission rate, the total antineutrino flux is typically quoted with an accuracy of 3-5%. This overall uncertainty in the antineutrino flux, together with the calculations presented here, suggests that the differences in fuels for the class of reactor designed considered would be detectable using antineutrino monitoring.

  15. Application of Neutron-Absorbing Structural-Amorphous Metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    SciTech Connect

    Choi, J; Lee, C; Day, D; Wall, M; Saw, C; MoberlyChan, W; Farmer, J; Boussoufl, M; Liu, B; Egbert, H; Branagan, D; D'Amato, A

    2006-11-13

    Spent nuclear fuel contains fissionable materials ({sup 235}U, {sup 239}Pu, {sup 241}Pu, etc.). Neutron multiplication and the potential for criticality are enhanced by the presence of a moderator during cask loading in water, water incursion in accidents conditions during spent fuel storage or transport. To prevent nuclear criticality in spent fuel storage, transportation, and during disposal, neutron-absorbing materials (or neutron poisons, such as borated stainless steel, Boral{trademark}, Metamic{trademark}, Ni-Gd, and others) would have to be applied. The success in demonstrating that the High-Performance Corrosion-Resistant material (HPCRM) can be thermally applied as coating onto base metal to provide for corrosion resistance for many naval applications raises the interest in applying the HPCRM to USDOE/OCRWM spent fuel management program. The fact that the HPCRM relies on the high content of boron to make the material amorphous--an essential property for corrosion resistance--and that the boron has to be homogeneously distributed in the HPCRM qualify the material to be a neutron poison.

  16. Determination of the Sensitivity of the Antineutrino Probe for Reactor Core Monitoring

    NASA Astrophysics Data System (ADS)

    Cormon, S.; Fallot, M.; Bui, V.-M.; Cucoanes, A.; Estienne, M.; Lenoir, M.; Onillon, A.; Shiba, T.; Yermia, F.; Zakari-Issoufou, A.-A.

    2014-06-01

    This paper presents a feasibility study of the use of the detection of reactor-antineutrinos (νbare) for non proliferation purpose. To proceed, we have started to study different reactor designs with our simulation tools. We use a package called MCNP Utility for Reactor Evolution (MURE), initially developed by CNRS/IN2P3 labs to study Generation IV reactors. The MURE package has been coupled to fission product beta decay nuclear databases for studying reactor antineutrino emission. This method is the only one able to predict the antineutrino emission from future reactor cores, which don't use the thermal fission of 235U, 239Pu and 241Pu. It is also the only way to include off-equilibrium effects, due to neutron captures and time evolution of the fission product concentrations during a reactor cycle. We will present here the first predictions of antineutrino energy spectra from innovative reactor designs (Generation IV reactors). We will then discuss a summary of our results of non-proliferation scenarios involving the latter reactor designs, taking into account reactor physics constraints.

  17. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  18. Biokinetics of sup 237 Pu citrate and nitrate in the rat: Implications for Pu studies in man

    SciTech Connect

    Talbot, R.J.; Knight, D.A.; Morgan, A. )

    1990-08-01

    Plutonium-237 decays mainly by electron capture with a half-life of 45 d. Alpha particles are emitted in only 5 x 10(-3)% of its disintegrations. This nuclide can now be produced with relatively small amounts of alpha-emitting contaminants so that, in principle, {sup 237}Pu can be used for studies of Pu biokinetics in man. However, because of its high specific activity, there was some doubt that its metabolism would be the same as that of the alpha- and beta-emitting isotopes of Pu normally encountered in the nuclear industry. In this study, the biokinetics of nearly pure, high specific activity {sup 237}Pu are compared with those of lower specific activity, impure {sup 237}Pu containing significant amounts of alpha-emitting Pu, following administration to rats by intravenous injection as the citrate. Both the distribution and excretion of the pure and impure {sup 237}Pu used in the two studies were similar and also in good agreement with the results of previously reported studies using {sup 239}Pu and {sup 241}Pu citrate, thus validating the use of {sup 237}Pu for studies of Pu metabolism in man. Data on the biokinetics of {sup 237}Pu nitrate are also included.

  19. Plutonium isotopes as tracers for ocean processes: a review.

    PubMed

    Lindahl, Patric; Lee, Sang-Han; Worsfold, Paul; Keith-Roach, Miranda

    2010-03-01

    Since the first nuclear weapons tests in the 1940s, pulsed inputs of plutonium isotopes have served as excellent tracers for understanding sources, pathways, dynamics and the fate of pollutants and particles in the marine environment. Due to the well-defined spatial and temporal inputs of Pu, the long half-lives of (240)Pu and (239)Pu and its unique chemical properties, Pu is a potential tracer for various physical and biogeochemical ocean processes, including circulation, sedimentation and biological productivity, and hence a means of assessing the impacts of global climate change. Due to the source dependency of the Pu isotopic signature, plutonium isotopes are beginning to be exploited as tools for the evaluation and improvement of regional and global ocean models that will enhance understanding of past and future changes in the oceans. This paper addresses the major sources of Pu and the physical and biogeochemical behaviour in the marine environment. Finally, the use of Pu isotopes as tracers for various oceanic processes (e.g. water mass transport, particle export, and sedimentation) is considered.

  20. The Influence of Hydrothermal Plumes on the Distribution of Anthropogenic Radionuclides Between the Particulate and Dissolved Phases: Results from U.S. Geotraces Equatorial Pacific Zonal Transect GP16

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Villa Alfageme, M.; Casacuberta Arola, N.; Masque, P.

    2014-12-01

    Here we present and discuss the results from the analysis of samples from selected stations collected on the US GEOTRACES Equatorial Pacific Zonal Transect (GP16) completed in 2013. The section, between Peru and Tahiti, encompasses a range of processes that influence the supply, removal, and internal cycling of trace metals and offers the opportunity to gain a better understanding of the drivers of the transport and fate of contaminants in the ocean. The capability to analyze water and filtered particulate samples in the quantities available, allows us to determine the partitioning of selected radionuclides among dissolved and particulate forms (Kd) and estimate Pu-particulate fluxes. The overarching objective of our work is to determine the concentrations of several anthropogenic radionuclides, including 239Pu, 240Pu, 237Np, and 137Cs with sufficient resolution to define their basin-wide distributions in the Pacific Ocean. Data collected in the East Pacific Rise hydrothermal plume allows a discussion on the partitioning behavior of plutonium and neptunium.

  1. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  2. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-07-01

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m2) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The 240Pu/239Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.

  3. Multitracer study of anthropogenic contamination records in the Camargue, Southern France.

    PubMed

    Miralles, J; Radakovitch, O; Cochran, J K; Véron, A; Masqué, P

    2004-03-05

    Contaminants are supplied to the coastal zone by the atmosphere, rivers and point sources like wastewaters or industrial area. Wetlands retain many of these contaminants and can be used to reconstruct sources and magnitudes of contaminant inputs. Radionuclides ((137)Cs, (210)Pb, (239)Pu and (240)Pu) and stable lead isotope ((206)Pb, (207)Pb) profiles were investigated in two cores collected in wetlands of the Rhône River delta, south of France (Camargue), to estimate the recent sediment accumulation rates and reconstruct the deposition of pollutants during the last century. One site was affected by storm or flood deposition from the Rhône river and showed the influence of Marcoule reprocessing plant releases on the plutonium isotopic ratios. The other site appears suitable for the reconstruction, even if mixing is evidenced at the surface by the radionuclides profiles. Plutonium isotopic ratios are characteristic of global fallout and the (210)Pb inventory of 4240 Bq m(-2) is approximately 30% higher than atmospheric deposit estimation. The pollutant lead inventory is 139 microg cm(-2), slightly higher than previous estimation from direct fallout. This difference can be partly due to an over-collection at this site (due to canopy cover) but also to variations with time in the deposition.

  4. Comparative Investigation between In Situ Laser Ablation Versus Bulk Sample (Solution Mode) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Trinitite Post-Detonation Materials.

    PubMed

    Dustin, Megan K; Koeman, Elizabeth C; Simonetti, Antonio; Torrano, Zachary; Burns, Peter C

    2016-09-01

    In the event of the interception of illicit nuclear materials or detonation of a nuclear device, timely and accurate deciphering of the chemical and isotopic composition of pertinent samples is pivotal in enhancing both nuclear security and source attribution. This study reports the results from a first time (to our knowledge), detailed comparative investigation conducted of Trinitite post-detonation materials using both solution mode (SM) and laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) techniques. Trace element abundances determined for bulk Trinitite samples subsequent to digestion and preparation for SM-ICP-MS analysis compare favorably to calculated median concentrations based on LA-ICP-MS analyses for the identical samples. The trace element concentrations obtained by individual LA-ICP-MS analyses indicate a large scatter compared to the corresponding bulk sample SM-ICP-MS results for the same sample; this feature can be attributed to the incorporation into the blast melt of specific, precursor accessory minerals (minerals in small quantities, such as carbonates, sulfates, chlorites, clay, and mafic minerals) present at ground zero. The favorable comparison reported here validates and confirms the use of the LA-ICP-MS technique in obtaining accurate forensic information at high spatial resolution in nuclear materials for source attribution purposes. This investigation also reports device-like (240)Pu/(239)Pu ratios (∼0.022) for Pu-rich regions of the blast melt that are also characterized by higher Ca and U contents, which is consistent with results from previous studies.

  5. Plutonium and uranium contamination in soils from former nuclear weapon test sites in Australia

    NASA Astrophysics Data System (ADS)

    Child, D. P.; Hotchkis, M. A. C.

    2013-01-01

    The British government performed a number of nuclear weapon tests on Australian territory from 1952 through to 1963 with the cooperation of the Australian government. Nine fission bombs were detonated in South Australia at Emu Junction and Maralinga, and a further three fission weapons were detonated in the Monte Bello Islands off the coast of Western Australia. A number of soil samples were collected by the Australian Radiation Laboratories in 1972 and 1978 during field surveys at these nuclear weapon test sites. They were analysed by gamma spectrometry and, for a select few samples, by alpha spectrometry to measure the remaining activities of fission products, activation products and weapon materials. We have remeasured a number of these Montebello Islands and Emu Junction soil samples using the ANTARES AMS facility, ANSTO. These samples were analysed for plutonium and uranium isotopic ratios and isotopic concentrations. Very low 240Pu/239Pu ratios were measured at both sites (∼0.05 for Alpha Island and ∼0.02 for Emu Field), substantially below global fallout averages. Well correlated but widely varying 236U and plutonium concentrations were measured across both sites, but 233U did not correlate with these other isotopes and instead showed correlation with distance from ground zero, indicating in situ production in the soils.

  6. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-05-17

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  7. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y‑1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  8. Confirmation of the calculated breeding ratio for CRBRP

    SciTech Connect

    Collins, P.J.; Liaw, J.; Turski, R.

    1983-01-01

    A breeding ratio of at least 1.2 was a design goal for CRBRP. The value for the initial core (using plutonium with 11% /sup 240/Pu) calculated with ENDF/B-IV data is 1.27. Engineering mock-up studies for CRBRP were made in ZPPR-11. Analysis of ZPPR-11 using ENDF/B-IV data showed consistent underprediction of K/sub eff/ by about 1.5% and overpredictions of the /sup 238/U capture to /sup 239/Pu fission ratio (C8/F9) between 5% and 8%. These results are typical for all LMFBR critical assemblies at ANL. The following approach was used to determine the breeding ratio: sensitivity analysis of a range of fast reactor benchmarks and a fit to the experimental data by data adjustment; tests of the adjusted data against experiments in ZPPR-11; calculations for CRBRP with ENDF/B-IV data and the adjusted data to predict the breeding ratio bias; and estimates of k/sub eff/ and breeding ratio uncertainties using data sensitivities for CRBRP.

  9. DEVELOPMENT OF AN IMPROVED TITANATE-BASED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS UNDER STRONGLY ALKALINE CONDITIONS

    SciTech Connect

    Hobbs, D.; Peters, T.; Taylor-Pashow, K.; Fink, S.

    2010-02-18

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes at SRS include the sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction of {sup 137}Cs. The MST and separated {sup 137}Cs is encapsulated along with the sludge fraction of high-level waste (HLW) into a borosilicate glass waste form for eventual entombment at a federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu; {sup 237}Np; and uranium isotopes, {sup 235}U and {sup 238}U. This paper describes recent results evaluating the performance of an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST.

  10. Progress on Nuclear Data Covariances: AFCI-1.2 Covariance Library

    SciTech Connect

    Oblozinsky,P.; Oblozinsky,P.; Mattoon,C.M.; Herman,M.; Mughabghab,S.F.; Pigni,M.T.; Talou,P.; Hale,G.M.; Kahler,A.C.; Kawano,T.; Little,R.C.; Young,P.G

    2009-09-28

    Improved neutron cross section covariances were produced for 110 materials including 12 light nuclei (coolants and moderators), 78 structural materials and fission products, and 20 actinides. Improved covariances were organized into AFCI-1.2 covariance library in 33-energy groups, from 10{sup -5} eV to 19.6 MeV. BNL contributed improved covariance data for the following materials: {sup 23}Na and {sup 55}Mn where more detailed evaluation was done; improvements in major structural materials {sup 52}Cr, {sup 56}Fe and {sup 58}Ni; improved estimates for remaining structural materials and fission products; improved covariances for 14 minor actinides, and estimates of mubar covariances for {sup 23}Na and {sup 56}Fe. LANL contributed improved covariance data for {sup 235}U and {sup 239}Pu including prompt neutron fission spectra and completely new evaluation for {sup 240}Pu. New R-matrix evaluation for {sup 16}O including mubar covariances is under completion. BNL assembled the library and performed basic testing using improved procedures including inspection of uncertainty and correlation plots for each material. The AFCI-1.2 library was released to ANL and INL in August 2009.

  11. Evaluation of kalman filters and genetic algorithms for delayed neutron nondestructive assay data analyses.

    SciTech Connect

    Aumeier, S. E.; Forsmann, J. H.; Engineering Division

    1998-04-01

    The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting from the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing {sup 238}U, {sup 235}U, {sup 239}Pu, and {sup 240}Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample.

  12. Evaluation of Kalman filters and genetic algorithms for delayed-neutron nondestructive assay data analyses

    SciTech Connect

    Aumeier, S.E.; Forsmann, J.H.

    1998-04-01

    The ability to nondestructively determine the presence and quantity of fissile/fertile nuclei in various matrices is important in several areas of nuclear applications, including international and domestic safeguards, radioactive waste characterization, and nuclear facility operations. An analysis was performed to determine the feasibility of identifying the masses of individual fissionable isotopes from a cumulative delayed-neutron signal resulting form the neutron irradiation of several uranium and plutonium isotopes. The feasibility of two separate data-processing techniques was studied: Kalman filtering and genetic algorithms. The basis of each technique is reviewed, and the structure of the algorithms as applied to the delayed-neutron analysis problem is presented. The results of parametric studies performed using several variants of the algorithms are presented. The effect of including additional constraining information such as additional measurements and known relative isotopic concentration is discussed. The parametric studies were conducted using simulated delayed-neutron data representative of the cumulative delayed-neutron response following irradiation of a sample containing {sup 238}U, {sup 235}U, {sup 239}Pu, and {sup 240}Pu. The results show that by processing delayed-neutron data representative of two significantly different fissile/fertile fission ratios, both Kalman filters and genetic algorithms are capable of yielding reasonably accurate estimates of the mass of individual isotopes contained in a given assay sample.

  13. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, John T.; Kunz, Walter E.; Atencio, James D.

    1984-01-01

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify .sup.233 U, .sup.235 U and .sup.239 Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as .sup.240 Pu, .sup.244 Cm and .sup.252 Cf, and the spontaneous alpha particle emitter .sup.241 Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether "permanent" low-level burial is appropriate for the waste sample.

  14. Apparatus and method for quantitative assay of generic transuranic wastes from nuclear reactors

    DOEpatents

    Caldwell, J.T.; Kunz, W.E.; Atencio, J.D.

    1982-03-31

    A combination of passive and active neutron measurements which yields quantitative information about the isotopic composition of transuranic wastes from nuclear power or weapons material manufacture reactors is described. From the measurement of prompt and delayed neutron emission and the incidence of two coincidentally emitted neutrons from induced fission of fissile material in the sample, one can quantify /sup 233/U, /sup 235/U and /sup 239/Pu isotopes in waste samples. Passive coincidence counting, including neutron multiplicity measurement and determination of the overall passive neutron flux additionally enables the separate quantitative evaluation of spontaneous fission isotopes such as /sup 240/Pu, /sup 244/Cm and /sup 252/Cf, and the spontaneous alpha particle emitter /sup 241/Am. These seven isotopes are the most important constituents of wastes from nuclear power reactors and once the mass of each isotope present is determined by the apparatus and method of the instant invention, the overall alpha particle activity can be determined to better than 1 nCi/g from known radioactivity data. Therefore, in addition to the quantitative analysis of the waste sample useful for later reclamation purposes, the alpha particle activity can be determined to decide whether permanent low-level burial is appropriate for the waste sample.

  15. MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION

    SciTech Connect

    Sternat, M.; Nichols, T.

    2011-06-09

    Reactor burnup or depletion codes are used thoroughly in the fields of nuclear forensics and nuclear safeguards. Two common codes include MONTEBURNS and MCNPX/CINDER. These are Monte-Carlo depletion routines utilizing MCNP for neutron transport calculations and either ORIGEN or CINDER for burnup calculations. Uncertainties exist in the MCNP steps, but this information is not passed to the depletion calculations or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 150 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. The distributions for each code are a statistical benchmark and comparisons made. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of the results appear to not. Statistical analyses are performed using the {chi}{sup 2} test against a normal distribution for the k-effective results and several isotopes including {sup 134}Cs, {sup 137}Cs, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu.

  16. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  17. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout.

    PubMed

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-07-17

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m(2)) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The (240)Pu/(239)Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China.

  18. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS.

    SciTech Connect

    Greene, J. P.

    1998-11-18

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, {approximately}200 {micro}g/cm{sup 2} thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm{sup 2} Au backing and were covered with 150 {micro}g/cm{sup 2} Au foil. Targets of {sup 239}Pu, {sup 240}Pu, {sup 242}Pu, {sup 244}Pu and {sup 248}Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed.

  19. Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Steier, Peter; Golser, Robin

    2013-11-19

    An automated analytical method implemented in a novel dual-column tandem sequential injection (SI) system was developed for simultaneous determination of (236)U, (237)Np, (239)Pu, and (240)Pu in seawater samples. A combination of TEVA and UTEVA extraction chromatography was exploited to separate and purify target analytes, whereupon plutonium and neptunium were simultaneously isolated and purified on TEVA, while uranium was collected on UTEVA. The separation behavior of U, Np, and Pu on TEVA-UTEVA columns was investigated in detail in order to achieve high chemical yields and complete purification for the radionuclides of interest. (242)Pu was used as a chemical yield tracer for both plutonium and neptunium. (238)U was quantified in the sample before the separation for deducing the (236)U concentration from the measured (236)U/(238)U atomic ratio in the separated uranium target using accelerator mass spectrometry. Plutonium isotopes and (237)Np were measured using inductively coupled plasma mass spectrometry after separation. The analytical results indicate that the developed method is robust and efficient, providing satisfactory chemical yields (70-100%) of target analytes and relatively short analytical time (8 h/sample).

  20. Pu isotopes in soils collected downwind from Lop Nor: regional fallout vs. global fallout

    PubMed Central

    Bu, Wenting; Ni, Youyi; Guo, Qiuju; Zheng, Jian; Uchida, Shigeo

    2015-01-01

    For the first time, soil core samples from the Jiuquan region have been analyzed for Pu isotopes for radioactive source identification and radiological assessment. The Jiuquan region is in downwind from the Lop Nor Chinese nuclear test (CNT) site. The high Pu inventories (13 to 546 Bq/m2) in most of the sampling locations revealed that this region was heterogeneously contaminated by the regional fallout Pu from the CNTs. The contributions of the CNTs to the total Pu in soils were estimated to be more than 40% in most cases. The 240Pu/239Pu atom ratios in the soils ranged from 0.059 to 0.186 with an inventory-weighted average of 0.158, slightly lower than that of global fallout. This atom ratio could be considered as a mixed fingerprint of Pu from the CNTs. In addition, Pu in soils of Jiuquan region had a faster downward migration rate compared with other investigated places in China. PMID:26184740

  1. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  2. Determination of origin and intended use of plutonium metal using nuclear forensic techniques

    DOE PAGES

    Rim, Jung H.; Kuhn, Kevin J.; Tandon, Lav; ...

    2017-04-01

    Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials’ properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modelling feedback andmore » trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. In conclusion, based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.« less

  3. Chemical resolution of Pu+ from U+ and Am+ using a band-pass reaction cell inductively coupled plasma mass spectrometer.

    PubMed

    Tanner, Scott D; Li, Chunsheng; Vais, Vladimir; Baranov, Vladimir I; Bandura, Dmitry R

    2004-06-01

    Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.

  4. Concurrent determination of 237Np and Pu isotopes using ICP-MS: analysis of NIST environmental matrix standard reference materials 4357, 1646a, and 2702.

    PubMed

    Matteson, Brent S; Hanson, Susan K; Miller, Jeffrey L; Oldham, Warren J

    2015-04-01

    An optimized method was developed to analyze environmental soil and sediment samples for (237)Np, (239)Pu, and (240)Pu by ICP-MS using a (242)Pu isotope dilution standard. The high yield, short time frame required for analysis, and the commercial availability of the (242)Pu tracer are significant advantages of the method. Control experiments designed to assess method uncertainty, including variation in inter-element fractionation that occurs during the purification protocol, suggest that the overall precision for measurements of (237)Np is typically on the order of ± 5%. Measurements of the (237)Np concentration in a Peruvian Soil blank (NIST SRM 4355) spiked with a known concentration of (237)Np tracer confirmed the accuracy of the method, agreeing well with the expected value. The method has been used to determine neptunium and plutonium concentrations in several environmental matrix standard reference materials available from NIST: SRM 4357 (Radioactivity Standard), SRM 1646a (Estuarine Sediment) and SRM 2702 (Inorganics in Marine Sediment).

  5. Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms

    NASA Astrophysics Data System (ADS)

    Lujanienė, G.; Valiulis, D.; Byčenkienė, S.; Šakalys, J.; Povinec, P. P.

    2012-12-01

    137Cs, 241Am and Pu isotopes collected in aerosol samples during 1994-2011 were analyzed with special emphasis on better understanding of Pu and Am behavior in the atmosphere. The results from long-term measurements of 240Pu/239Pu atom ratios showed a bimodal frequency distribution with median values of 0.195 and 0.253, indicating two main sources contributing to the Pu activities at the Vilnius sampling station. The low Pu atom ratio of 0.141 could be attributed to the weapon-grade plutonium derived from the nuclear weapon test sites. The frequency of air masses arriving from the North-West and North-East correlated with the Pu atom ratio indicating the input from the sources located in these regions (the Novaya Zemlya test site, Siberian nuclear plants), while no correlation with the Chernobyl region was observed. Measurements carried out during the Fukushima accident showed a negligible impact of this source with Pu activities by four orders of magnitude lower as compared to the Chernobyl accident. The activity concentration of actinides measured in the integrated sample collected in March-April, 2011 showed a small contribution of Pu with unusual activity and atom ratios indicating the presence of the spent fuel of different origin than that of the Chernobyl accident.

  6. AVNG system objectives and concept

    SciTech Connect

    Macarthur, Duncan W; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander; Kondratov, Sergey

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two constraints. First and foremost, no classified information can be released to the monitoring party. At the same time, the monitoring party must gain sufficient confidence from the measurement to believe that the material being measured is consistent with the host's declarations concerning that material. The attribute measurement technique addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The AVNG that we describe is an attribute measurement system built by RFNC-VNIIEF in Sarov, Russia. The AVNG measures the three attributes of 'plutonium presence,' 'plutonium mass >2 kg,' and 'plutonium isotopic ratio ({sup 240}Pu to {sup 239}Pu) <0.1' and was demonstrated in Sarov for a joint US/Russian audience in June 2009. In this presentation, we will outline the goals and objectives of the AVNG measurement system. These goals are driven by the two, sometimes conflicting, requirements mentioned above. We will describe the conceptual design of the AVNG and show how this conceptual design grew out of these goals and objectives.

  7. Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis

    SciTech Connect

    Daniels, J; Hickman, D; Kehl, S; Hamilton, T

    2007-06-11

    measurement. The amount of {sup 137}Cs detected is often reported in activity units of kilo-Becquerel (kBq), where 1 kBq equals 1000 Bq and 1 Bq = 1 nuclear transformation per second (t s{sup -1}). [However, in the United States the Curie (Ci) continues to be used as the unit of radioactivity; where 1 Ci = 3.7 x 10{sup 10} Bq.] The detection of {sup 239}Pu and {sup 240}Pu in bioassay (urine) samples indicates the presence of internally deposited (systemic) plutonium in the body. Urine samples that are collected in the Marshall Islands from volunteers participating in the RSMP are transported to LLNL, where measurements for {sup 239+240}Pu are performed using a state-of-the-art technology based on Accelerator Mass Spectrometry (AMS) (Hamilton et al., 2004, 2007; Brown et al., 2004). The urinary excretion of plutonium by RSMP volunteers is usually described in activity units, expressed as micro-Becquerel ({micro}Bq) of {sup 239+240}Pu (i.e., representing the sum of the {sup 239}Pu and {sup 240}Pu activity) excreted (lost) per day (d{sup -1}), where 1 {micro}Bq d{sup -1} = 10{sup -6} Bq d{sup -1} and 1 Bq = 1 t s{sup -1}. The systemic burden of plutonium is then estimated from biokinetic relationships as described by the International Commission on Radiological Protection (e.g., see ICRP, 1990). In general, nuclear transformations are accompanied by the emission of energy and/or particles in the form of gamma rays ({gamma}), beta particles ({beta}), and/or alpha particles ({alpha}). Tissues in the human body may adsorb these emissions, where there is a potential for any deposited energy to cause biological damage. The general term used to quantify the extent of any radiation exposure is referred to as the dose. The equivalent dose is defined by the average absorbed dose in an organ or tissue weighted by the average quality factor for the type and energy of the emission causing the dose. The effective dose equivalent (EDE; as applied to the whole body), is the sum of the average

  8. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.

    PubMed

    Hare, Dominic; Tolmachev, Sergei; James, Anthony; Bishop, David; Austin, Christine; Fryer, Fred; Doble, Philip

    2010-04-15

    Internal exposure from naturally occurring radionuclides (including the inhaled long-lived actinides (232)Th and (238)U) is a component of the ubiquitous background radiation dose (National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States; NCRP Report No. 160; NCRP: Bethesda, MD, 2009). It is of interest to compare the concentration distribution of these natural alpha-emitters in the lungs and respiratory lymph nodes with those resulting from occupational exposure, including exposure to anthropogenic plutonium and depleted and enriched uranium. This study examines the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantifying and visualizing the mass distribution of uranium and thorium isotopes from both occupational and natural background exposure in human respiratory tissues and, for the first time, extends this application to the direct imaging of plutonium isotopes. Sections of lymphatic and lung tissues taken from deceased former nuclear workers with a known history of occupational exposure to specific actinide elements (uranium, plutonium, or americium) were analyzed by LA-ICPMS. Using a previously developed LA-ICPMS protocol for elemental bio-imaging of trace elements in human tissue and a new software tool, we generated images of thorium ((232)Th), uranium ((235)U and (238)U), and plutonium ((239)Pu and (240)Pu) mass distributions in sections of tissue. We used a laboratory-produced matrix-matched standard to quantify the (232)Th, (235)U, and (238)U concentrations. The plutonium isotopes (239)Pu and (240)Pu were detected by LA-ICPMS in 65 mum diameter localized regions of both a paratracheal lymph node and a sample of lung tissue from a person who was occupationally exposed to refractory plutonium (plutonium dioxide). The average (overall) (239)Pu concentration in the lymph node was 39.2 ng/g, measured by high purity germanium (HPGe) gamma

  9. Sensitivity analysis of Monju using ERANOS with JENDL-4.0

    SciTech Connect

    Tamagno, P.; Van Rooijen, W. F. G.; Takeda, T.; Konomura, M.

    2012-07-01

    This paper deals with sensitivity analysis using JENDL-4.0 nuclear data applied to the Monju reactor. In 2010 the Japan Atomic Energy Agency - JAEA - released a new set of nuclear data: JENDL-4.0. This new evaluation is expected to contain improved data on actinides and covariance matrices. Covariance matrices are a key point in quantification of uncertainties due to basic nuclear data. For sensitivity analysis, the well-established ERANOS [1] code was chosen because of its integrated modules that allow users to perform a sensitivity analysis of complex reactor geometries. A JENDL-4.0 cross-section library is not available for ERANOS. Therefore a cross-section library had to be made from the original nuclear data set, available as ENDF formatted files. This is achieved by using the following codes: NJOY, CALENDF, MERGE and GECCO in order to create a library for the ECCO cell code (part of ERANOS). In order to make sure of the accuracy of the new ECCO library, two benchmark experiments have been analyzed: the MZA and MZB cores of the MOZART program measured at the ZEBRA facility in the UK. These were chosen due to their similarity to the Monju core. Using the JENDL-4.0 ECCO library we have analyzed the criticality of Monju during the restart in 2010. We have obtained good agreement with the measured criticality. Perturbation calculations have been performed between JENDL-3.3 and JENDL-4.0 based models. The isotopes {sup 239}Pu, {sup 238}U, {sup 241}Am and {sup 241}Pu account for a major part of observed differences. (authors)

  10. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    SciTech Connect

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  11. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    SciTech Connect

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  12. Report on INL Activities for Uncertainty Reduction Analysis of FY11

    SciTech Connect

    G. Plamiotti; H. Hiruta; M. Salvatores

    2011-09-01

    This report presents the status of activities performed at INL under the ARC Work Package on 'Uncertainty Reduction Analyses' that has a main goal the reduction of uncertainties associated with nuclear data on neutronic integral parameters of interest for the design of advanced fast reactors under consideration by the ARC program. First, an analysis of experiments was carried out. For both JOYO (the first Japanese fast reactor) and ZPPR-9 (a large size zero power plutonium fueled experiment performed at ANL-W in Idaho) the performance of ENDF/B-VII.0 is quite satisfying except for the sodium void configurations of ZPPR-9, but for which one has to take into account the approximation of the modeling. In fact, when one uses a more detailed model (calculations performed at ANL in a companion WP) more reasonable results are obtained. A large effort was devoted to the analysis of the irradiation experiments, PROFIL-1 and -2 and TRAPU, performed at the French fast reactor PHENIX. For these experiments a pre-release of the ENDF/B-VII.1 cross section files was also used, in order to provide validation feedback to the CSWEG nuclear data evaluation community. In the PROFIL experiments improvements can be observed for the ENDF/B-VII.1 capture data in 238Pu, 241Am, 244Cm, 97Mo, 151Sm, 153Eu, and for 240Pu(n,2n). On the other hand, 240,242Pu, 95Mo, 133Cs and 145Nd capture C/E results are worse. For the major actinides 235U and especially 239Pu capture C/E's are underestimated. For fission products, 105,106Pd, 143,144Nd and 147,149Sm are significantly underestimated, while 101Ru and 151Sm are overestimated. Other C/E deviations from unity are within the combined experimental and calculated statistical uncertainty. From the TRAPU analysis, the major improvement is in the predicted 243Cm build-up, presumably due to an improved 242Cm capture evaluation. The COSMO experiment was also analyzed in order to provide useful feedback on fission cross sections. It was found out that ENDF

  13. Inorganic, radioisotopic and organic analysis of 241-AP-101 tank waste

    SciTech Connect

    SK Fiskum; PR Bredt; JA Campbell; LR Greenwood; OT Farmer; GJ Lumetta; GM Mong; RT Ratner; CZ Soderquist; RG Swoboda; MW Urie; JJ Wagner

    2000-06-28

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids. The characterization of the 241-AP-101 composite samples included: (1) Inductively-coupled plasma spectrometry for Ag, Al, Ba, Bi, Ca, Cd, Cr, Cu, Fe, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Pd, Ru, Rh, Si, Sr, Ti, U, Zn, and Zr (Note: Although not specified in the test plan, As, B, Be, Co, Li, Mo, Sb, Se, Sn, Tl, V, W, and Y were also measured and reported for information only) (2) Radioisotopic analyses for total alpha and total beta activities, {sup 3}H, {sup 14}C, {sup 60}Co, {sup 79}Se, {sup 90}Sr, {sup 99}Tc as pertechnetate, {sup 106}Ru/Rh, {sup 125}Sb, {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 154}Eu, {sup 155}Eu, {sup 238}Pu, {sup 239+240}Pu, {sup 241}Am, {sup 242}Cm, and {sup 243+244}Cm; (3) Inductively-coupled plasma mass spectrometry for {sup 237}Np, {sup 239}Pu, {sup 240}Pu, {sup 99}Tc, {sup 126}Sn, {sup 129}I, {sup 231}Pa, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 241}AMU, {sup 242}AMU, {sup 243}AMU, As, B, Be, Ce, Co, Cs, Eu, I, Li, Mo, Pr, Rb, Sb, Se, Ta, Te, Th, Tl, V, and W; (4) total U by kinetic phosphorescence analysis; (5) Ion chromatography for Cl, F, NO{sub 2}, NO{sub 3}, PO{sub 4}, SO{sub 4}, acetate, formate, oxalate, and citrate; (6) Density, inorganic carbon and organic carbon by two different methods, mercury, free hydroxide, ammonia, and cyanide. The 241-AP-101 composite met all

  14. The 129iodine bomb pulse recorded in Mississippi River Delta sediments: results from isotopes of I, Pu, Cs, Pb, and C

    NASA Astrophysics Data System (ADS)

    Oktay, S. D.; Santschi, P. H.; Moran, J. E.; Sharma, P.

    2000-03-01

    129I ( t1/2 = 1.56 × 10 7 yr) has both natural as well as anthropogenic sources. Anthropogenic sources from nuclear reprocessing discharges and bomb test fallout have completely overwhelmed the natural signal on the surface of the earth in the last 50 years. However, the transfer functions in and out of environmental compartments are not well known due to temporal variations in the sources of 129I and to a lack of knowledge regarding the forms of iodine. From a vertical profile of 129I/ 127I ratios in sediments located in the Mississippi Delta region in approximately 60 meters water depth, the 129I input function to this region was reconstructed. Dates in the core were assigned based on the plutonium peak at 20 cm depth (assumed to have been deposited in 1963) and the excess 210Pb profile in the same depth interval, and below that, based on the steadily decreasing 240Pu/ 239Pu ratios from a ratio of 0.18 at 22 cm to 0.05 at 57 cm depth, the 1953 horizon. These low 240Pu/ 239Pu values are attributed to low yield, close-in, tropospherically transported bomb fallout produced from the Nevada test site in the early 1950s, which had a value of about 0.035, and strongly suggest a terrestrial source for Pu isotopes. 129I/ 127I ratios increased from 2 × 10 -10 at 3 cm to 4 × 10 -10 at 20 cm, and from there decreased monotonously to pre-anthropogenic values at 53 cm and below. 129I concentrations ranged from 8-13 × 10 6 atoms/g in the top 20 cm, and decreased to values of less than 1 × 10 6 atoms/g below 50 cm. Atom ratios of 129I/ 137Cs, decay corrected to 1962, the year of maximum radionuclide production, are about 0.3, very close to the production ratios of about 0.2 during atomic bomb tests. This evidence, combined with other observations, strongly suggests that 129I in Mississippi River Delta sediments originates from atomic bomb fallout eroded from soils of the Mississippi River drainage basin, with little alteration of the isotopic ratios during transport from

  15. Biomedical aspects of natural and manufactured environmental radioactivity

    SciTech Connect

    Hodge, V.

    1996-12-31

    While weapons testing has altered natural radioactivity background, manufactured radioactivity in most parts of the world constitutes but a very small fraction of the total alpha, beta, and gamma radioactivity in soil, air, water, and the biota. For example, in the early 1970s, we found what appeared to be the highest natural concentration of radioactivity ever reported in fish while attempting to measure the manufactured plutonium ({sup 239}Pu and {sup 240}Pu) in organs of oceanic tuna. The natural alpha emitter polonium ({sup 210}Po) was discovered in the same organs at orders of magnitude higher concentrations. In particular, the caecum, which is a digestive organ composed of many small closed-ended sacs, contained concentrations of polonium as high as 79 pCi/g of wet tissue and lesser amounts of two manufactured isotopes: 0.0001 pCi/g of plutonium and 0.01 pCi/g of radiocesium ({sup 137}Cs). This equates to {approximately}80 rem/yr of radiation dose to this organ, overwhelmingly from the natural polonium, or {approximately}5000 times higher than is found in the human liver, the highest polonium concentration in man. The average background radiation for humans, for comparison, is {approximately}0.2 rem/yr, but the dose for Japanese, whose diet is high in seafood, is {approximately}15 rem/yr. The question arose: {open_quotes}Are these high concentrations of natural polonium limited to oceanic fish?{close_quotes} To answer this question, polonium was determined in the organs of striped bass and catfish from Lake Mead. In a related study, the plutonium and radiocesium ({sup 137}Cs) distributions in soils were determined to ascertain the impact of weapons testing on the natural background radioactivity of soils.

  16. Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and northern Alaska

    SciTech Connect

    Efurd, D.W.; Miller, G.G.; Rokop, D.J.

    1997-07-01

    This study was performed to establish a quality controlled data set about the levels of radio nuclide activity in the environment and in selected biota in the U.S. Arctic. Sediment and biota samples were collected by the National Oceanic and Atmospheric Administration (NOAA), the National Biological Service, and the North Slope Borough`s Department of Wildlife Management to determine the impact of anthropogenic radionuclides in the Arctic. The results summarized in this report are derived from samples collected in northwest Alaska with emphasis on species harvested for subsistence in Barrow, Alaska. Samples were analyzed for the anthropogenic radionuclides {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu and {sup 241}Am. The naturally occurring radionuclides {sup 40}K, {sup 212}Pb and {sup 214}Pb were also measured. One goal of this study was to determine the amounts of anthropogenic radionuclides present in the Beaufort Sea. Sediment samples were isotopically fingerprinted to determine the sources of radio nuclide activities. Biota samples of subsistence and ecological value were analyzed to search for evidence of bio-accumulation of radionuclides and to determine the radiation exposures associated with subsistence living in northern Alaska. The anthropogenic radio nuclide content of sediments collected in the Beaufort Sea was predominantly the result of the deposition of global fallout. No other sources of anthropogenic radionuclides could be conclusively identified in the sediments. The anthropogenic radio nuclide concentrations in fish, birds and mammals were very low. Assuming that ingestion of food is an important pathway leading to human contact with radioactive contaminants and given the dietary patterns in coastal Arctic communities, it can be surmised that marine food chains are presently not significantly affected.

  17. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios.

  18. Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado.

    PubMed

    Litaor, M I

    1999-02-01

    Spatial analysis of the 240Pu:239Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152+/-0.003 to 0.169+/-0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio > or = 0.155, thus were minimally impacted by the plant activity; (2) the study area east of Rocky Flats Plant (approximately 120 km2) exhibited a plutonium isotopic ratio < or = 0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

  19. Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil

    SciTech Connect

    Rothe, R.E.

    1997-05-01

    Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.

  20. Rapid multisample analysis for simultaneous determination of anthropogenic radionuclides in marine environment.

    PubMed

    Qiao, Jixin; Shi, Keliang; Hou, Xiaolin; Nielsen, Sven; Roos, Per

    2014-04-01

    An automated multisample processing flow injection (FI) system was developed for simultaneous determination of technetium, neptunium, plutonium, and uranium in large volume (200 L) seawater. Ferrous hydroxide coprecipitation was used for the preliminary sample treatment providing the merit of simultaneous preconcentration of all target radionuclides. Technetium was separated from the actinides via valence control of technetium (as Tc(VII)) in a ferric hydroxide coprecipitation. A novel preseparation protocol between uranium and neptunium/plutonium fractions was developed based on the observation of nearly quantitative dissolution of uranium in 6 mol/L sodium hydroxide solution. Automated extraction (TEVA for technetium and UTEVA for uranium) and anion exchange (AGMP-1 M for plutonium and neptunium) chromatographic separations were performed for further purification of each analyte within the FI system where four samples were processed in parallel. Analytical results indicate that the proposed method is robust and straightforward, providing chemical yields of 50-70% and improved sample throughput (3-4 d/sample). Detection limits were 8 mBq/m(3) (0.013 pg/L), 0.26 μBq/m(3) (0.010 fg/L), 23 μBq/m(3) (0.010 fg/L), 84 μBq/m(3) (0.010 fg/L) and 0.6 mBq/m(3) (0.048 ng/L) for (99)Tc, (237)Np, (239)Pu, (240)Pu and (238)U for 200 L seawater, respectively. The unique feature of multiradionuclide and multisample simultaneous processing vitalizes the developed method as a powerful tool in obtaining reliable data with reduced analytical cost in both radioecology studies and nuclear emergency preparedness.

  1. A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes

    NASA Astrophysics Data System (ADS)

    Warneke, Thorsten; Croudace, Ian W.; Warwick, Phillip E.; Taylor, Rex N.

    2002-11-01

    Plutonium and uranium isotope ratios can be used to differentiate the sources of nuclear contamination from nuclear weapon establishments (Environ. Sci. Technol. 34 (2000) 4496; Internal Report for AWRE Aldermaston, UK (1961)), weapon fallout (Geochim. Cosmochim. Acta 51 (1987) 2623; Earth Planet. Sci. Lett. 63 (1983) 202; Earth Planet. Sci. Lett. 22 (1974) 111; Geochim. Cosmochim. Acta 64 (2000) 989), reprocessing plants, reactor or satellite accidents (Science 105 (1979) 583; Science 238 (1987) 512) and in addition they provide markers for post-1952 geochronology of environmental systems. A good record of plutonium and uranium isotope ratios of the background resulting from atmospheric nuclear testing is essential for source characterisation studies. Using recently developed mass spectrometric techniques (J. Anal. At. Spectrom. 16 (2001) 279) we present here the first complete records between 1952 and the present day of northern temperate latitude 240Pu/ 239Pu and 238U/ 235U atom ratios for atmospheric deposition. Such information was not derived directly during the period of atmospheric testing because suitable mass spectrometric capability was not available. The currently derived records are based on an annual herbage archive and a core from an Alpine glacier. These studies reveal hitherto unseen fluctuations in the 238U/ 235U atmospheric fallout record, some of which are directly related to nuclear testing. In addition, they also provide the first evidence that plutonium contamination originating from Nevada Desert atmospheric weapon tests in 1952 and 1953 extended eastwards as far as northwestern Europe. The results presented here demonstrate that we now have the capability to detect and precisely identify sources of plutonium in the environment with implications for the development of atmospheric transport models, recent geochronology and environmental studies.

  2. Investigating Pu and U isotopic compositions in sediments: a case study in Lake Obuchi, Rokkasho Village, Japan using sector-field ICP-MS and ICP-QMS.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2005-08-01

    The objectives of the present work were to study isotope ratios and the inventory of plutonium and uranium isotope compositions in sediments from Lake Obuchi, which is in the vicinity of several nuclear fuel facilities in Rokkasho, Japan. Pu and its isotopes were determined using sector-field ICP-MS and U and its isotopes were determined with ICP-QMS after separation and purification with a combination of ion-exchange and extraction chromatography. The observed (240)Pu/(239)Pu atom ratio (0.186 +/- 0.016) was similar to that of global fallout, indicating that the possible early tropospheric fallout Pu did not deliver Pu from the Pacific Proving Ground to areas above 40 degrees N. The previously reported higher Pu inventory in the deep water area of Lake Obuchi could be attributed to the lateral transportation of Pu deposited in the shallow area which resulted from the migration of deposited global fallout Pu from the land into the lake by river runoff and from the Pacific Ocean by tide movement and sea water scavenging, as well as from direct soil input by winds. The (235)U/(238)U atom ratios ranged from 0.00723 to 0.00732, indicating the natural origin of U in the sediments. The average (234)U/(238)U activity ratio of 1.11 in a sediment core indicated a significant sea water U contribution. No evidence was found for the release of U containing wastes from the nearby nuclear facilities. These results will serve as a reference baseline on the levels of Pu and U in the studied site so that any further contamination from the spent nuclear fuel reprocessing plants, the radioactive waste disposal and storage facilities, and the uranium enrichment plant can be identified, and the impact of future release can be rapidly assessed.

  3. Determining Sources and Transport of Nuclear Contamination in Hudson River Sediments with Plutonium, Neptunium, and Cesium isotope ratios

    NASA Astrophysics Data System (ADS)

    Kenna, T. C.; Chillrud, S. N.; Chaky, D. A.; Simpson, H. J.; McHugh, C. M.; Shuster, E. L.; Bopp, R. F.

    2004-12-01

    Different sources of radioactive contamination contain characteristic and identifiable isotopic signatures, which can be used to study sediment transport. We focus on Pu-239, Pu-240, Np-237 and Cs-137, which are strongly bound to fine grained sediments. The Hudson River drainage basin has received contamination from at least three separate sources: 1) global fallout from atmospheric testing of nuclear weapons, which contributed Pu, Np and Cs; 2) contamination resulting from reactor releases at the Indian Point Nuclear Power Plant (IPNPP) located on the Hudson River Estuary ˜70km north of New York Harbor, where records document releases of Cs-137; 3) contamination resulting from activities at the Knolls Atomic Power Laboratory (KAPL) located on the Mohawk River, where incomplete records document releases of Cs-137 but no mention is made of Pu or Np. Here we report measurements of Pu isotopes, Np-237 and Cs-137 for a series of sediment cores collected from various locations within the drainage basin: 1) Mohawk River downstream of KAPL, 2) Hudson River upstream of its confluence with the Mohawk River, and 3) lower Hudson River at a location in close proximity to IPNPP. In addition, we present data from selected samples from two other lower Hudson River locations: One site located ˜30km downstream of IPNPP and another ˜30km upstream of IPNPP. By comparing the isotopic ratios Pu-240/Pu-239, Np-237/Pu-239, and Cs-137/Pu-239, measured in fluvial sediments to mean global fallout values, it is possible to identify and resolve different sources of non-fallout contamination. To date, isotopic data for sediments indicate non-fallout sources of Pu-239, Pu-240, and Cs-137; Np-237, however, appears to originate from global fallout only. Mohawk River sediments downstream of KAPL exhibit enrichments in Pu-239, Pu-240, and Cs-137 that are 7 to 20 times higher than levels expected from global fallout as indicated from Np-237. The elevated levels, non-fallout isotopic signatures

  4. Doubles counting of highly multiplying items in reflective surroundings

    SciTech Connect

    Croft, Stephen; Evans, Louise G; Schear, Melissa A; Tobin, Stephen J

    2010-11-18

    When a neutrons are counted from a spontaneously fissile multiplying item in a reflecting environment the temporal behavior of the correlated signal following neutron birth is complex. At early times the signal is dominated by prompt fission events coming from spontaneous fission bursts and also from prompt fast-neutron induced fission events. At later times neutrons 'returning' from the surroundings induce fission and give rise to an additional chain of correlated events. The prompt and returning components probe the fissile and fertile constituents of the item in different ways and it is potentially beneficial to exploit this fact. In this work we look at how the two components can be represented using a linear combination of two simple functions. Fitting of the composite function to the capture time distribution represents one way of quantifying the proportion of each contribution. Another approach however is to use a dual shift register analysis where after each triggering event two coincidence gates are opened, one close to the trigger that responds preferentially to the prompt dynamics and one later in time which is more sensitive to the returning neutron induced events. To decide on the best gate positions and gate widths and also to estimate the counting precision we can use the analytical fit to work out the necessary gate utilization factors which are required in both these calculations. In this work, we develop the approach. Illustrative examples are given using spent Low Enriched Uranium (LEU) Pressurized light Water Reactor (LWR) fuel assemblies submersed in borated water and counted in a ring of {sup 3}He gas-filled proportional counters. In this case the prompt component is dominated by {sup 244}Cm spontaneous fission and induced fast neutron fission in for example {sup 238}U while the returning low energy neutrons induce fission mainly in the fissile nuclides such as {sup 239}Pu, {sup 241}Pu and {sup 235}U. One requirement is to calculate the Random

  5. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  6. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    SciTech Connect

    Warren, Glen A.; Casella, Andrew M.; Haight, R. C.; Anderson, Kevin K.; Danon, Yaron; Hatchett, D.; Becker, Bjorn; Devlin, M.; Imel, G. R.; Beller, D.; Gavron, A.; Kulisek, Jonathan A.; Bowyer, Sonya M.; Gesh, Christopher J.; O'Donnell, J. M.

    2011-08-01

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are

  7. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  8. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  9. Activity measurements of a suite of radionuclides (241Am, 239,240Pu, 238Pu, 238U, 234U, 235U, 232Th, 230Th, 228Th, 228Ra, 137Cs, 210Pb, 90Sr and 40K) in biota reference material (Ocean Shellfish): CCRI(II)-S3

    NASA Astrophysics Data System (ADS)

    Nour, S.; Karam, L. R.; Inn, K. G. W.

    2012-01-01

    In 2005, the CCRI decided that a comparison undertaken from 2002 to 2008 by the NIST (under the auspices of the Inter-America Metrology System [SIM]) in the development of a new biota (Ocean Shellfish) standard reference material (SRM) was sufficiently well constructed that it could be converted into a supplementary comparison under CCRI(II), with comparison identifier CCRI(II)-S3. This would enable the comparison to be used to support calibration and measurement capability (CMC) claims for radionuclide measurements in reference materials (specifically, animal-based organic materials). Previous comparisons of radionuclides have been of single or multiple nuclides in non-complex matrices and results of such could not be extended to support capabilities to measure the same nuclides in reference materials. The results of this comparison have been used to determine the certified reference value of the SRM. The key comparison working group (KCWG) of the CCRI(II) has approved this approach as a mechanism to link all the results to certified 'reference values' in lieu of the key comparison reference value (KCRV) of these specified radionuclides in this type of matrix (shellfish) so as to support CMCs of similar materials submitted by the present participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. SUPPLEMENTARY COMPARISON: Activity measurements of a suite of radionuclides (90Sr, 137Cs, 210Pb, 210Po, 228Ra, 234U, 235U, 238U, 238Pu, 239,240Pu) in soil reference material (Rocky Flats II): CCRI(II)-S2

    NASA Astrophysics Data System (ADS)

    Nour, S.; Inn, K. G. W.; Karam, L. R.

    2009-01-01

    In 2005, the CCRI decided that a comparison undertaken from 2002 to 2007 by the NIST (SIM) in the development of a new soil (Rocky Flats II) standard reference material (SRM) was sufficiently well constructed that it could be converted into a supplementary comparison under CCRI(II), with comparison identifier CCRI(II)-S2, so as to support calibration and measurement capability (CMC) claims for radionuclide measurements in reference material (specifically, low calcium-content soils). Previous comparisons of radionuclides have been of single or multiple nuclides in non-complex matrices and results of such could not be extended to support capabilities to measure the same nuclides in reference materials. The results of this comparison have been reported to the participants, and have been used to determine the certified reference value of the SRM. The key comparison working group (KCWG) of the CCRI(II) has approved this approach as a mechanism to link all the results to certified 'reference values' in lieu of the key comparison reference value (KCRV) of these specified radionuclides in this type of matrix (soil) so as to support CMCs of similar materials. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section II, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  11. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and

  12. The {sup 129}Iodine bomb pulse recorded in Mississippi River Delta sediments: Results from isotopes of I, Pu, Cs, Pb, and C

    SciTech Connect

    Oktay, S.D.; Santschi, P.H.; Moran, J.E.; Sharma, P.

    2000-03-01

    Anthropogenic sources from nuclear reprocessing discharges and bomb test fallout have completely overwhelmed the natural signal on the surface of the earth in the last 50 years. However, the transfer functions in and out of environmental compartments are not well known due to temporal variations in the sources of {sup 129}I and to a lack of knowledge regarding the forms of iodine. From a vertical profile of {sup 129}I/{sup 127}I ratios in sediments located in the Mississippi Delta region in approximately 60 meters water depth, the {sup 129}I input function to this region was reconstructed. Dates in the core were assigned based on the plutonium peak at 20 cm depth (assumed to have been deposited in 1963) and the excess {sup 210}Pb profile in the same depth interval, and below that, based on the steadily decreasing {sup 240}Pu/{sup 239}Pu ratios from a ratio of 0.18 at 22 cm to 0.05 at 57 cm depth, the 1953 horizon. Atom ratios of {sup 129}I/{sup 137}I Cs, decay corrected to 1962, the year of maximum radionuclide production, are about 0.3, very close to the production ratios of about 0.2 during atomic bomb tests. This evidence, combined with other observations, strongly suggests that {sup 129}I in Mississippi River Delta sediments originates from atomic bomb fallout eroded from soils of the Mississippi River drainage basin, with little alteration of the isotopic ratios during transport from watershed to coastal deposits. Based on these observations and on laboratory evidence, the authors propose a conceptual model which explains this correspondence and the low {sup 129}I/{sup 127}I ratios. Differences in mobilities of the different chemical forms of {sup 129}I and {sup 127}I, as well as the variances in chemical forms of {sup 129}I from nuclear bomb fallout versus nuclear fuel reprocessing, are proposed to have created such a correspondence between I-isotope ratios and bomb fallout nuclides, without revealing recent inputs from nuclear fuel reprocessing releases to

  13. A review of measurements of radionuclides in members of the public in the UK.

    PubMed

    Hodgson, S A; Ham, G J; Youngman, M J; Etherington, G; Stradling, G N

    2004-12-01

    This paper summarises a comprehensive review of radio-analytical data from autopsy, whole or partial body monitoring and the assay of teeth, foetuses and urine for non-occupationally exposed members of the public in the UK between 1957 and 2003. Most attention has been given to measurements of artificial radionuclides formed in the nuclear fuel cycle, uranium and thorium. The review concentrates on measurements on people in the UK who live or have lived in the vicinity of nuclear power sites. When UK data are unavailable, or for the purposes of comparison, information has been included from studies in other countries. Highlights of key findings of the document are listed: The concentrations of strontium-90 in bone and teeth have reflected changes in the amounts present in the environment due to fallout from nuclear testing. There are higher concentration levels of 239+240Pu in samples from West Cumbria compared with the rest of the UK. However, the levels are so low that any increase in risk of induced skeletal tumours (including leukaemia) would be very small compared with those arising from the intake of natural radionuclides. As expected there have been only a few published autopsy studies. Both tissue sample mass and radionuclide concentrations were low, leading to relatively large measurement uncertainties. Whole body measurements of 137Cs in residents in Berkshire and Oxfordshire clearly show the effect of atmospheric testing of nuclear weapons and of the Chernobyl accident. A survey of whole body 137Cs and 134Cs content following the Chernobyl accident showed that residents of Central Scotland, North-West England and North Wales had twice the radiocaesium content of residents in the rest of England and Wales. Measurements of 131I in the thyroid have been reported following the accidents at Windscale and Chernobyl for most regions of the UK. Few excretion studies have been reported although this does not diminish their importance. One study on the urinary

  14. Measurements of actinides in soil, sediments, water and vegetation in Northern New Mexico

    SciTech Connect

    Gallaher, B. M.; Efurd, D. W.

    2002-01-01

    This study was undertaken during 1991 - 1998 to identify the origin of plutonium uranium in northern New Mexico Rio Grande and tributary stream sediments. Isotopic fingerprinting techniques help distinguish radioactivity from Los Alamos National Laboratory (LANL) and from global fallout or natural sources. The geographic area covered by the study extended from the headwaters of the Rio Grande in southern Colorado to Elephant Butte Reservoir in southern New Mexico. Over 100 samples of stream channel and reservoir bottom sediments were analyzed for the atom ratios of plutonium and uranium isotopes using thermal ionization mass spectrometry (TIMS). Comparison of these ratios against those for fallout or natural sources allowed for quantification of the Laboratory impact. Of the seven major drainages crossing LANL, movement of LANL plutonium into the Rio Grande can only be traced via Los Alamos Canyon. The majority of sampled locations within and adjacent to LANL have little or no input of plutonium from the Laboratory. Samples collected upstream and distant to L A N show an average (+ s.d.) fallout 240Pu/239Pauto m ratio of 0.169 + 0.012, consistent with published worldwide global fallout values. These regional background ratios differ significantly from the 240Pu/239Pu atom ratio of 0.015 that is representative of LANL-derived plutonium entering the Rio Grande at Los Alamos Canyon. Mixing calculations of these sources indicate that the largest proportion (60% to 90%) of the plutonium in the Rio Grande sediments is from global atmospheric fallout, with an average of about 25% from the Laboratory. The LANL plutonium is identifiable intermittently along the 35-km reach of the Rio Grande to Cochiti Reservoir. The source of the LANL-derived plutonium in the Rio Grande was traced primarily to pre-1960 discharges of liquid effluents into a canyon bottom at a distance approximately 20 km upstream of the river. Plutonium levels decline exponentially with distance downstream

  15. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  16. Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.

    SciTech Connect

    Klann, R. T.

    1998-11-25

    A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests using a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.

  17. Plutonium in human urine: Normal levels in the US public. 1991 Annual report, Volume 2

    SciTech Connect

    Wrenn, M.E.; Singh, N.P.; Xue, Ying-Hua

    1997-03-01

    A neutron induced fission track method was successfully developed for assaying {sup 239}Pu in human urine with a detection limit below 20 aCi/sample. The technique involves the co-precipitation of {sup 239}Pu with rhodizonic acid, separation of {sup 239}Pu from potentially interfering natural uranium and other inorganic materials by ion-exchange techniques, collection of the sample onto lexan detectors, irradiation of sample in MIT reactor at a fluence of 1.1 x 10{sup 17} n/cm{sup 2}, etching of the lexan slide and counting the track either manually or by some automated counting system.

  18. Corrections for Exchange and Screening Effects in Low-energy Beta Decays

    SciTech Connect

    Mougeot, X. Bé, M.-M.; Bisch, C.; Loidl, M.

    2014-06-15

    The beta spectra of {sup 241}Pu and {sup 63}Ni have been recently measured using metallic magnetic calorimeters. This powerful experimental technique allows theoretical beta spectra calculations to be tested at low energy with an accuracy never before achievable. Their comparison with classical beta calculations exhibits a significant deviation below 4 keV for {sup 241}Pu and 8 keV for {sup 63}Ni. The atomic exchange effect explains the main part of this deviation in the {sup 63}Ni beta spectrum. This effect has a significant contribution, equivalent to the magnitude of the screening, in the {sup 241}Pu beta spectrum.

  19. Seaborg's Plutonium? A Case Study in Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Norman, Eric B.; Thomas, Keenan J.; Telhami, Kristina E.

    2015-10-01

    Passive X-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain 239Pu. No other radioactive isotopes were observed. The mass of 239Pu contained in this object was determined to be 2.0 +- 0.3 μg. These observations are consistent with the identification of this object as containing the 2.77- μg PuO2 (2.44 μg 239Pu) sample produced in 1942 and described by Glenn Seaborg and his collaborators as the first sample of 239Pu that was large enough to be weighed. This work was supported in part by the U.S. Dept. of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  20. Seaborg's plutonium? A case study in nuclear forensics

    NASA Astrophysics Data System (ADS)

    Norman, Eric B.; Thomas, Keenan J.; Telhami, Kristina E.

    2015-10-01

    Passive X-ray and gamma-ray analysis was performed on a curious sample from UC Berkeley's Hazardous Material Facility inventory, and the object was found to contain 239Pu. No other radioactive isotopes were observed. The mass of 239Pu contained in this object was determined to be 2.0 ± 0.3 μg. These observations are consistent with the identification of this object as containing the 2.77-μg PuO2 (2.44 μg 239Pu) sample produced in 1942 and described by Seaborg and his collaborators as the first sample of 239Pu that was large enough to be weighed.

  1. Fusion-breeder program

    SciTech Connect

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  2. Fabrication of a 238Pu target

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D

    2010-11-16

    higher neutron incident energy. However, it indicates that a cross section of less than one barn can be measured. The second phase of this experiment will be carried out in 2011 by assembling a PPAC with the {sup 238}Pu target to extend the measurement to higher neutron incident energies by distinguishing the capture from fission events. The fission cross section becomes dominant for neutron incident energies above 30 keV. This PPAC was developed in FY2010 under the NA22 funding and performed very well for the {sup 239}Pu and {sup 241}Pu measurements. A new {sup 238}Pu target will be fabricated for the phase II measurement using the same electroplating technique.

  3. a Microscopic Theory of Low Energy Fission:. Fragment Properties

    NASA Astrophysics Data System (ADS)

    Younes, W.; Gogny, D.; Schunck, N.

    2014-09-01

    We present fully microscopic time-dependent calculations of fission-fragment properties (mass distributions, pre-scission energies, total kinetic and excitation energies) for the 235U(n, f) and 239Pu (n, f) reactions. The mass distributions for both reactions have been obtained as a function of incident neutron energy from thermal to 5 MeV. The various energies have been calculated for the thermal 239Pu (n, f) reaction. We compare our calculations to experimental results, wherever possible.

  4. Evaluating criticality safety of TRU waste with NDA measurements and risk analyses

    SciTech Connect

    Hochel, R.C.; Hofstetter, K.J.; Sigg, R.A.; Winn, W.G.; Chay, S.C.

    1994-09-01

    The criticality safety of {sup 239}Pu in 55-gal. drums stored in TRU waste containers (concrete culverts) was evaluated using NDA neutron and gamma measurements and risk analyses. The neutron measurements yielded a {sup 239}Pu mass and k{sub eff} for a culvert, which contains up to 14 drums. The gamma measurements helped reveal and correct for any interfering neutron sources in the waste. Conservation probabilistic risk analyses were developed for both drums and culverts.

  5. Plutonium, (137)Cs and uranium isotopes in Mongolian surface soils.

    PubMed

    Hirose, K; Kikawada, Y; Igarashi, Y; Fujiwara, H; Jugder, D; Matsumoto, Y; Oi, T; Nomura, M

    2017-01-01

    Plutonium ((238)Pu and (239,240)Pu), (137)Cs and plutonium activity ratios ((238)Pu/(239,240)Pu) as did uranium isotope ratio ((235)U/(238)U) were measured in surface soil samples collected in southeast Mongolia. The (239,240)Pu and (137)Cs concentrations in Mongolian surface soils (<53 μm of particle size) ranged from 0.42 ± 0.03 to 3.53 ± 0.09 mBq g(-1) and from 11.6 ± 0.7 to 102 ± 1 mBq g(-1), respectively. The (238)Pu/(239,240)Pu activity ratios in the surface soils (0.013-0.06) coincided with that of global fallout. The (235)U/(238)U atom ratios in the surface soil show the natural one. There was a good correlation between the (239,240)Pu and (137)Cs concentrations in the surface soils. We introduce the migration depth to have better understanding of migration behaviors of anthropogenic radionuclides in surface soil. We found a difference of the migration behavior between (239,240)Pu and (137)Cs from (137)Cs/(239,240)Pu - (137)Cs plots for the Mongolian and Tsukuba surface soils; plutonium in surface soil is migrated easier than (137)Cs.

  6. Plutonium and americium behavior in coral atoll environments

    SciTech Connect

    Noshkin, V.E.; Wong, K.M.; Jokela, T.A.; Brunk, J.L.; Eagle, R.J.

    1984-02-01

    Inventories of /sup 239 +240/Pu and /sup 241/Am greatly in excess of global fallout levels persist in the benthic environments of Bikini and Enewetak Atolls. Quantities of /sup 239 +240/Pu and lesser amounts of /sup 241/Am are continuously mobilizing from these sedimentary reservoirs. The amount of /sup 239 +240/Pu mobilized to solution at any time represents 0.08 to 0.09% of the sediment inventories to a depth of 16 cm. The mobilized /sup 239 +240/Pu has solute-like characteristics and different valence states coexist in solution - the largest fraction of the soluble plutonium is in an oxidized form (+V,VI). The adsorption of plutonium to sediments is not completely reversible because of changes that occur in the relative amounts of the mixed oxidation states in solution with time. Further, any characteristics of /sup 239 +240/Pu described at one location may not necessarily be relevant in describing its behavior elsewhere following mobilization and migration. The relative amounts of /sup 241/Am to /sup 239 +240/Pu in the sedimentary deposits at Enewetak and Bikini may be altered in future years because of mobilization and radiological decay. Mobilization of /sup 239 +240/Pu is not a process unique to these atolls, and quantities in solution derived from sedimentary deposits can be found at other global sites. These studies in the equatorial Pacific have significance in assessing the long-term behavior of the transuranics in any marine environment. 22 references, 1 figure, 13 tables.

  7. REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)

    SciTech Connect

    Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

    2011-12-20

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently, radiological decay and in

  8. Determination of Reportable Radionuclides for DWPF Sludge Batch 3 (Macrobatch 4)

    SciTech Connect

    Bannochie, C

    2005-05-01

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that ''The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115''. As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, IAEA Safeguards Reporting for HLW, requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The Defense Waste Processing Facility (DWPF) is receiving radioactive sludge slurry from High Level Waste Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the previous contents of Tank 40 (Sludge Batch 2) and the sludge that was transferred to Tank 40 from Tank 51. The blend of sludge from Tank 51 and Tank 40 defines Macrobatch 4 (also referred to as Sludge Batch 3). This report develops the list of reportable radionuclides and associated activities and determines the radionuclide activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the

  9. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  10. A preliminary study for the development of reference material using oyster for determination of (137)Cs, (90)Sr and plutonium isotopes.

    PubMed

    Lee, Sang-Han; Oh, Jung-Suk; Lee, Jong-Man; Lee, Kyung-Bum; Park, Tae-Soon; Lee, Min-Kie; Kim, Seung-Hwan; Choi, Jong-Ki

    2016-03-01

    A new reference material for the determination of (137)Cs, (90)Sr and Pu isotopes ((238)Pu and (239,240)Pu) is being developed using dried oyster matrix by Korea Research Institute of Standards and Science (KRISS). The oyster was collected from Tongyoung harbour, southern part of Korea and the artificial radionuclides ((137)Cs, (90)Sr, (238)Pu and (239,240)Pu) were spiked into the material. After pretreatment and processing, the material was tested for homogeneity and massic activities were determined by measuring (137)Cs, (90)Sr, (238)Pu and (239,240)Pu. The reference value and extended uncertainty for those isotopes will be reported later.

  11. Methods for the assessment of long-lived radionuclides in humans resulting from nuclear activities or accidents: Fission track analysis of trace amounts plutonium-239 and a copper hexacyanoferrate kit for monitoring radiocaesium

    NASA Astrophysics Data System (ADS)

    Johansson, Lena Camilla

    Fission track analysis (FTA) was developed to be applied to ultra-low levels of 239Pu in bioassay samples. An analytical protocol was established for the FTA processing. The detection limit was determined to 1.5 μBq and the calibration constant was 24 fission fragments per μBq 239Pu. Naturally occurring nuclides of thorium and uranium, present in biological and environmental samples, did not interfere in the determination of 239Pu. Self-absorption of fission fragments was shown to be insignificant. The study included the determination of 239Pu in urine samples from twenty Chernobyl clean-up workers. All urine samples contained activities below the detection limit for radioanalytical analysis using alpha spectrometry (0.5 mBq). Seven of the samples were further investigated using a thermal ionization mass spectrometer with a sensitivity of 106 atoms 239Pu. The content of 239Pu in the samples showed to be below 1μBq (106 atoms), with only one exception. It was not possible to draw any major conclusions from the 239Pu results, regarding the clean-up workers' exposure from radionuclides released by the Chernobyl accident. A kit was designed for selective adsorption of radiocaesium in urine samples to be used in situ by contaminated subjects. The kit consisted of copper hexacyanoferrate impregnated cotton filters held by filter holders for sample flow-through. After use, the adsorbed fraction of caesium was >=90% in urine samples. The kit facilitates the screening of a population exposed to radiocaesium. Parameters influencing the adsorption efficiency, such as potassium, sodium and calcium concentration of the sample and the sample pH, were investigated and shown to be insignificant for urine samples.

  12. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    SciTech Connect

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the /sup 239/Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant /sup 239/Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total /sup 239/Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the /sup 239/Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the /sup 239/Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the /sup 239/Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the /sup 239/Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables.

  13. [Influence of Professional Contact with Plutonium-239 on Indicators of the Immune Status of the Personnel at Siberian Chemical Plant].

    PubMed

    Oradovskaya, I V; Radzivil, T T

    2015-01-01

    The results of the examination and monitoring of the personnel at the Siberian Chemical Plant (SChP) and adult population of Seversk are presented. The results of primary examination of the personnel who professionally contact the ionizing radiation (IR) from external sources and incorporated 239Pu showed that clinical symptoms of dysfunction of the immune system manifested themselves with a frequency of 75.30%. Infectious-inflammatory diseases (46.95%) and the combined pathology of infectious and allergic character (20.12%) were the most widespread. The allergic diseases (AD) without manifestations of an infectious component were observed not often (7.62%). The monitoring which was carried out for 10 years revealed a decrease in a percentage of persons with clinical signs of disorders of the immune system up to 60.68% among the personnel at the Chemical-Steel Plant and even more among the whole group of the studied personnel at SChP--49.68% (389 : 783). Among the population their frequency made up 51.78%. Features of clinical manifestations of dysfunction ofthe immune system depending on accumulation of 239Pu in the organism are established. Similar dynamics of infectious and infectious and allergic syndromes is revealed when the activity of 239Pu is 40 nCi. AD frequency reliably increased .when the activity of 239Pu is 20 nCi, but if accumulation is higher than 20-40 nCi it decreases and again increases when the activity is over 40 nCi. Pathologies of infectious and allergic genesis are most often observed when the content of 239Pu in an organism is over 40 nCi. Indicators of the immune status (IS) of the personnel at SChP with incorporated 239Pu are analyzed. 59 people--carriers of 239Pu and 408 people without 239Pu accumulated in an organism are examined. In comparison with the control, IS indicators characteristic for all dose loading groups are revealed: increase of lymphocytes, existence of dissociation in indicators of relative and absolute values of the T

  14. Efficacy of orally administered amphipathic polyaminocarboxylic acid chelators for the removal of plutonium and americium: comparison with injected Zn-DTPA in the rat.

    PubMed

    Miller, Scott C; Liu, Gang; Bruenger, Fred W; Lloyd, Ray D

    2006-01-01

    Chelators are used to promote excretion of actinides and some other metals, but few are orally effective. The relative efficacies of orally administered triethylenetetraminepentaacetic acids (TT) with varying lipophilic properties on the removal of 241Am and 239Pu and comparison with parenteral Zn-DTPA was determined. The actinides were administered to adult rats 2 weeks prior to initiation of 30 d of chelation treatment. The TT compounds were given orally while Zn-DTPA was given twice weekly by injection. Total body content of 241Am was measured before and during the treatment period and organ contents of 241Am and 239Pu were measured at the end of the study. Significant reductions in 241Am occurred within the first week, with Zn-DTPA being the most effective. By 3 weeks, the most lipophilic chelator, C22TT was as effective as Zn-DTPA. After 30 d, reductions in organ content of 239Pu and 241Am directly correlated with increasing lipophilicity of the TT chelators. Oral C22TT was as effective as injected Zn-DTPA in liver and bone, the major organs of actinide deposition. The removal of 239Pu from the liver and reduction of redeposition of 239Pu in newly formed bone by C22TT was confirmed by neutron-induced autoradiographs. The amphipathic TT chelators may be useful as orally administered alternatives to current parenteral DTPA for the removal of actinide elements from the body, particularly for longer-term therapeutic applications.

  15. Possible differences in biological availability of isotopes of plutonium: Report of a workshop

    SciTech Connect

    Kercher, J.R.; Gallegos, G.M.

    1993-09-01

    This paper presents the results of a workshop conducted on the apparent different bioavailability of isotopes {sup 238}Pu and {sup 239}Pu. There is a substantial body of evidence that {sup 238}Pu as commonly found in the environment is more biologically available than {sup 239}Pu. Studies of the Trinity Site, Nevada Test Site from nonnuclear and nuclear events, Rocky Flats, Enewetak and Bikini, and the arctic tundra support this conclusion and indicate that the bioavailability of {sup 238}Pu is more than an order of magnitude greater than that of {sup 239}Pu. Plant and soil studies from controlled environments and from Savannah River indicate no isotopic difference in availability of Pu to plants; whereas studies at the Trinity Site do suggest a difference. While it is possible that these observations can be explained by problems in the experimental procedure and analytical techniques, this possibility is remote given the ubiquitous nature of the observations. Studies of solubility of Pu in the stomach contents of cattle grazing at the Nevada Test Site and from fish from Bikini Atoll both found that {sup 238}Pu was more soluble than {sup 239}Pu. Studies of the Los Alamos effluent stream indicate that as particle size decreases, the content of {sup 238}Pu relative to {sup 239}Pu increases.

  16. Assessment of Degree of Applicability of Benchmarks for Gadolinium Using KENO V.a and the 238-Group SCALE Cross-Section Library

    SciTech Connect

    Goluoglu, S.

    2003-12-01

    A review of the degree of applicability of benchmarks containing gadolinium using the computer code KENO V.a and the gadolinium cross sections from the 238-group SCALE cross-section library has been performed for a system that contains {sup 239}Pu, H{sub 2}O, and Gd{sub 2}O{sub 3}. The system (practical problem) is a water-reflected spherical mixture that represents a dry-out condition on the bottom of a sludge receipt and adjustment tank around steam coils. Due to variability of the mixture volume and the H/{sup 239}Pu ratio, approximations to the practical problem, referred to as applications, have been made to envelop possible ranges of mixture volumes and H/{sup 239}Pu ratios. A newly developed methodology has been applied to determine the degree of applicability of benchmarks as well as the penalty that should be added to the safety margin due to insufficient benchmarks.

  17. The effect of isotope on the dosimetry of inhaled plutonium oxide

    SciTech Connect

    Guilmette, R.A., Griffith, W.C.; Hickman, A.W.

    1991-12-31

    Results of experimental studies in which animals inhaled {sup 238}PuO{sub 2} or {sup 239}PuO{sub 2} aerosols have shown that the biokinetics and associated radiation dose patterns for these two isotopes differ significantly due to differences in in-vivo solubility caused by the 260-fold difference in specific activity between {sup 238}PuO{sub 2} and {sup 239}PuO{sub 2}. We have adapted a biokinetics and dosimetry model derived from results of the ITRI dog studies to humans and have calculated dose commitments and annual limits on intake (ALI) for both Pu isotopes. Our results show that the ALI calculated in this study is one-third that for class Y {sup 238}Pu from ICRP 30, and one-half or equal to that for class Y {sup 239}Pu, depending on how activity in the thoracic lymph nodes is treated dosimetrically.

  18. Effects of combined exposure of F344 rats to radiation and chronically inhaled cigarette smoke

    SciTech Connect

    Finch, G.L.; Nikula, K.J.; Barr, E.B.

    1995-12-01

    Nuclear workers may be exposed to radiation in various forms, such as low-LET {gamma}-irradiation or {alpha}-irradiation from inhaled {sup 239}PuO{sub 2} particles. These workers may then have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radiation and other carcinogens may increase the risk of cancer induction, compared to the risks from either type of agent alone. An important and common lung carcinogen is cigarette smoke. The purpose of this project is to better determine the combined effects of chronically inhaled cigarette smoke and either inhaled {sup 239}PuO{sub 2} or external, thoracic X-irradiation on the induction of lung cancer in rats. Histologic and dosimetric evaluations of rats in the CS + {sup 239}PuO{sub 2} study continue, and the study of CS + X rays is beginning.

  19. Active and passive CT for waste assay using LaBr3(Ce) detector

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; More, M. R.; Ratheesh, Jilju; Sinha, Amar

    2017-01-01

    An active and passive computed tomography system has been developed that localizes and quantifies 239Pu in a waste drum. The active (transmission) measurement uses an external gamma source and LaBr3(Ce) detector to determine the attenuation map of waste drum contents at different selected energies. The passive (emission) measurement uses multiple LaBr3(Ce) detectors to record the spectra of gamma-rays emitted from within the drum. The active and passive data sets are then coupled to quantitatively assay drum contents for 239Pu.

  20. Nuclear waste forms for actinides.

    PubMed

    Ewing, R C

    1999-03-30

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The "mineralogic approach" is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.

  1. Applications of Photonuclear Physics for International Safeguards and Security

    SciTech Connect

    Johnson, M S; Hall, J M; McNabb, D P; McFarland, J; Norman, E; Bertozzi, W; Korbly, S; Ledoux, R; Park, W

    2010-04-16

    Studies of nuclear resonance fluorescence based applications are presented. Important for these applications are data for isotopes such as {sup 239}Pu. Nuclear resonance fluorescence measurements of {sup 239}Pu were performed at the free electron laser facility at UC Santa Barbara using photons from a bremsstrahlung beam with an endpoint energies between 4.0 MeV and 5.5 MeV. Though no discrete states with significant confidence level were measured, we have excluded the region above 27(3) eV-barns, or 4-sigma, where we would expect only a small chance of false positives. Details of the measurements and the results are presented here.

  2. Subchronic inhalation of carbon tetrachloride alters the tissue retention of acutely inhaled plutonium-239 nitrate in F344 rats and syrian golden hamsters

    SciTech Connect

    Benson, J.M.; Barr, E.B.; Lundgren, D.L.

    1995-12-01

    Carbon tetrachloride (CCl{sub 4}) has been used extensively in the nuclear weapons industry, so it is likely that nuclear plant workers have been exposed to both CCl{sub 4} and plutonium compounds. Future exposures may occur during {open_quotes}cleanup{close_quotes} operations at weapons productions sites such as the Hanford, Washington, and Rocky Flats, Colorado, facilities. Inhalation of 20 and 100 ppm CCl{sub 4} by hamsters reduces uptake of {sup 239}Pu solubilized from lung, shunting the {sup 239}Pu to the skeleton.

  3. Excess plutonium in soil near the Nevada Test Site, USA.

    PubMed

    Turner, Mary; Rudin, Mark; Cizdziel, James; Hodge, Vernon

    2003-01-01

    Two soil profiles were collected from undisturbed areas near the Nevada Test Site (NTS). The activity of 137Cs in the surface layer of the downwind Queen City Summit profile is three times higher than at the upwind site at Searchlight, NV (41.1+/-0.6 mBq/g vs. 13.0+/-0.4 mBq/g), and the 239,240Pu activity is 100 times greater (51+/-2 mBq/g vs. 0.52+/-0.03 mBq/g). An examination of the literature suggests that the 137Cs/239,240Pu and the 239,240Pu/238Pu activity ratios in soils and sediments from the northern hemisphere, due to fallout from atmospheric atomic weapons testing, have generalized values of 36+/-4 and 30+/-4, respectively (as of 1 July 1995). Deviations from these values may indicate possible contamination by sources other than fallout. Data from the surface soil of the downwind Queen City Summit profile yield a 137Cs/239,240Pu ratio of 0.81+/-0.02 and a 239,240Pu/238Pu ratio of 78+/-6. Clearly, an increase in 239,240Pu relative to 137Cs or 238Pu can account for these observations. There is compelling evidence that t