Science.gov

Sample records for 23na nmr spectrum

  1. 23Na and 1H NMR Microimaging of Intact Plants

    NASA Astrophysics Data System (ADS)

    Olt, Silvia; Krötz, Eva; Komor, Ewald; Rokitta, Markus; Haase, Axel

    2000-06-01

    23Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using 23Na as well as 1H NMR microimaging. Experiments were performed at 11.75 T with a double resonant 23Na-1H probehead. The probehead was homebuilt and equipped with a climate chamber. T1 and T2 of 23Na were measured in the cross section of the hypocotyl. Within 85 min 23Na images with an in-plane resolution of 156 × 156 μm were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, 23Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  2. 23Na and (1)H NMR microimaging of intact plants.

    PubMed

    Olt, S; Krötz, E; Komor, E; Rokitta, M; Haase, A

    2000-06-01

    (23)Na NMR microimaging is described to map, for the first time, the sodium distribution in living plants. As an example, the response of 6-day-old seedlings of Ricinus communis to exposure to sodium chloride concentrations from 5 to 300 mM was observed in vivo using (23)Na as well as (1)H NMR microimaging. Experiments were performed at 11.75 T with a double resonant (23)Na-(1)H probehead. The probehead was homebuilt and equipped with a climate chamber. T(1) and T(2) of (23)Na were measured in the cross section of the hypocotyl. Within 85 min (23)Na images with an in-plane resolution of 156 x 156 micrometer were acquired. With this spatial information, the different types of tissue in the hypocotyl can be discerned. The measurement time appears to be short compared to the time scale of sodium uptake and accumulation in the plant so that the kinetics of salt stress can be followed. In conclusion, (23)Na NMR microimaging promises great potential for physiological studies of the consequences of salt stress on the macroscopic level and thus may become a unique tool for characterizing plants with respect to salt tolerance and salt sensitivity.

  3. Computational interpretation of 23Na MQMAS NMR spectra: A comprehensive investigation of the Na environment in silicate glasses

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Charpentier, Thibault; Menziani, Maria Cristina; Pedone, Alfonso

    2014-09-01

    Molecular dynamics, density functional theory calculations and 23Na NMR experiments have been used to inspect the chemical and structural characteristics of the Na environment in soda-lime silicate (CSN) and aluminosilicate (CASN) glasses. The use of an improved 3QMAS pulse sequence has allowed a clear identification of different Na sites. Average coordination numbers have been extracted by fitting the 23Na 3QMAS spectra with the computed NMR parameters. The results show that the 23Na δiso values correlate with the average distances only when the different coordination numbers are explicitly taken into account.

  4. 39K, 23Na, and 31P NMR Studies of Ion Transport in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ogino, T.; den Hollander, J. A.; Shulman, R. G.

    1983-09-01

    The relationship between efflux and influx of K+, Na+, and intracellular pH (pHin) in yeast cells upon energizing by oxygenation was studied by using the noninvasive technique of 39K, 23Na, and 31P NMR spectroscopy. By introducing an anionic paramagnetic shift reagent, Dy3+(P3O105-)2, into the medium, NMR signals of intra- and extracellular K+ and Na+ could be resolved, enabling us to study ion transport processes by NMR. Measurements showed that 40% of the intracellular K+ and Na+ in yeast cells contributed to the NMR intensities. By applying this correction factor, the intracellular ion concentrations were determined to be 130-170 mM K+ and 2.5 mM Na+ for fresh yeast cells. With the aid of a home-built solenoidal coil probe for 39K and a double-tuned probe for 23Na and 31P, we could follow time courses of K+ and Na+ transport and of pHin with a time resolution of 1 min. It was shown that H+ extrusion is correlated with K+ uptake and not with Na+ uptake upon energizing yeast cells by oxygenation. When the cells were deenergized after the aerobic period, K+ efflux, H+ influx, and Na+ influx were calculated to be 1.6, 1.5, and 0.15 μ mol/min per ml of cell water, respectively. Therefore, under the present conditions, K+ efflux is balanced by exchange for H+ with an approximate stoichiometry of 1:1.

  5. /sup 23/Na NMR study of DNA thermal transconformation in presence of cysteamine radioprotector

    SciTech Connect

    Lematre, J.; Mallet, G.; Vasilescu, D.

    1988-01-01

    DNA thermal transconformation is studied in absence and in presence of the cysteamine radioprotector, by observing the delta nu 1/2 variation of /sup 23/Na NMR peaks. The sodium state (Free or Bound) is discussed with the help of a two states model with RF and RB relaxation rates. The delta nu 1/2 behavior during the DNA transconformation shows clearly the electrostatic interaction with cysteamine which is accompanied by an Na+ ejection out of phosphate sites. The temperature dependence of delta nu 1/2 in all cases leads to the conclusion that RBc (the average relaxation rate of sodium nuclei that remain bound in the coil state of DNA) tends to zero.

  6. A selective inversion recovery method for the improvement of 23Na NMR spectral resolution in isolated perfused rat hearts.

    PubMed

    Simor, T; Kim, S K; Chu, W J; Pohost, G M; Elgavish, G A

    1993-01-01

    Shift-reagent-aided 23Na NMR spectroscopy allows differentiation of the intracellular (Na(i)) and extracellular sodium (Na(o)) signals. The goal of the present study has been to develop a 23Na NMR spectroscopic method to minimize the intensity of the shift-reagent-shifted Na(o) signal and thus increase Na(i) resolution. This is achieved by a selective inversion recovery (SIR) method which enhances the resolution between the Na(i) and Na(o) peaks in shift-reagent-aided 23Na NMR spectroscopy. The application of SIR with Dy(TTHA), Tm(DOTP), or with low concentrations of Dy(PPP)2 results in both good spectral resolution and physiologically acceptable contractile function in the isolated, perfused rat heart model.

  7. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  8. 23 Na and 17O NMR studies of hyperkagome Na4Ir3O8

    NASA Astrophysics Data System (ADS)

    Shockley, Abigail; Bert, Fabrice; Orain, Jean-Christophe; Okamoto, Yoshihiko; Mendels, Philippe

    2015-03-01

    Na4Ir3O8 is a unique case of a 3D corner sharing triangular lattice which can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate of a new kind where the Hamiltonian might not be thought in terms of a simple Heisenberg case because of spin orbit coupling on the Ir 5d element. We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We have found that magnetic freezing of all Ir sites sets in below Tf ~ 7.5K ~ 0 . 019 J with a clear hyperfine field transferred from Ir moments and a drastic decrease of 1 /T1 . Above Tf, physical properties are expected to be a landmark of frustration in this exotic geometry. We will discuss our shift and relaxation data in the temperature range of 300K to 7.5 K in the light of published thermodynamic measurements (Y. Okamotoa et al, PRL 99 137207, 2007 and Y. Singh et al, PRB 88 220413(R), 2013) and comment on their implications for the already existing large body of theoretical work.

  9. Triple-Quantum-Filtered 23Na NMR Spectroscopy of Subcutaneously Implanted 9L Gliosarcoma in the Rat in the Presence of TmDOTP 5-

    NASA Astrophysics Data System (ADS)

    Winter, Patrick M.; Bansal, Navin

    2001-09-01

    The utility of triple-quantum (TQ)-filtered 23Na NMR spectroscopy for discriminating between intra- and extracellular Na+(Nai+ and Nae+, respectively) in a solid tumor in vivo was evaluated using TmDOTP5- as a 23Na shift reagent. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved Nai+ and Nae+ peaks in both single-quantum (SQ) and TQ-filtered 23Na spectra. The Nai+ signal represented 22±4% of the SQ spectrum, but 59±10% of the TQ-filtered spectrum. Therefore, the Nai+ contribution in TQ-filtered spectra is much higher than in SQ spectra. Both SQ and TQ-filtered Nai+ signals increased by about 75% 1 h after sacrificing the animal. The TQ-filtered relaxation times did not change during this time, indicating that changes observed in TQ-filtered spectra collected with a preparation time of 3 ms represent changes in the concentration of sodium ions contributing to the TQ-filtered signal. Similar experiments were conducted without TmDOTP5- to determine changes in the Nae+ signal in the absence of the shift reagent. The changes in total SQ and TQ-filtered signals 1 h after sacrificing the animal showed that the SQ Nae+ signal decreased by approximately 35%, while the TQ-filtered Nae+ signal did not change significantly. This demonstrates that the TQ-filtered 23Na signal is relatively insensitive to changes in Nae+ content. To our knowledge, this work represents the first evaluation of multiple-quantum-filtered 23Na spectroscopy to discriminate between intra- and extracellular Na+ in a solid tumor in vivo.

  10. Periodic ab initio calculation of nuclear quadrupole parameters as an assignment tool in solid-state NMR spectroscopy: applications to 23Na NMR spectra of crystalline materials.

    PubMed

    Johnson, Clive; Moore, Elaine A; Mortimer, Michael

    2005-05-01

    Periodic ab initio HF calculations using the CRYSTAL code have been used to calculate (23)Na NMR quadrupole parameters for a wide range of crystalline sodium compounds including Na(3)OCl. An approach is developed that can be used routinely as an alternative to point-charge modelling schemes for the assignment of distinct lines in (23)Na NMR spectra to specific crystallographic sodium sites. The calculations are based on standard 3-21 G and 6-21 G molecular basis sets and in each case the same modified basis set for sodium is used for all compounds. The general approach is extendable to other quadrupolar nuclei. For the 3-21 G calculations a 1:1 linear correlation between experimental and calculated values of C(Q)((23)Na) is obtained. The 6-21 G calculations, including the addition of d-polarisation functions, give better accuracy in the calculation of eta((23)Na). The sensitivity of eta((23)Na) to hydrogen atom location is shown to be useful in testing the reported hydrogen-bonded structure of Na(2)HPO(4).

  11. Magnetic field dependence of 23Na NMR spectra of rat skeletal muscle infused with shift reagent in Vivo

    NASA Astrophysics Data System (ADS)

    Balschi, James A.; Kohler, Susan J.; Bittl, John A.; Springer, Charles S.; Ingwall, Joanne S.

    We obtained 23Na NMR spectra of the gastrocnemius muscle in the living rat before and after infusing the animal with the shift reagent for cations, triethylenetetraminehexaacetate dysprosium (III) (DyTTHA 3-), at field strengths of 8.4, 4.7, and 1.5 T. When plotted on a ppm scale, sodium linewidths both with and without shift reagent showed little field dependence. Thus the spectra obtained in the presence of shift reagent showed almost no change in resolution as the field strength increased. Since the absolute line-widths increased with increasing B0 our results also indicate that both the shifted and the unshifted sodium resonances are inhomogeneously broadened and that the observed linewidths are determined primarily by bulk magnetic susceptibility shifts. These results suggest that cation NMR in conjunction with shift reagent can be used to discriminate between intra- and extracellular sodium pools over a wide range of field strengths.

  12. A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses.

    PubMed

    Holland, D; Bailey, J; Ward, G; Turner, B; Tierney, P; Dupree, R

    2005-01-01

    125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.

  13. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    PubMed

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  14. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    PubMed

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.

  15. Influence of sodium ion dynamics on the 23Na quadrupolar interaction in sodalite: a high-temperature 23Na MAS NMR study.

    PubMed

    Fechtelkord, M

    2000-01-01

    High-temperature 33Na MAS NMR experiments up to 873 K for a number of different sodalites (Na8[AlSiO4]6(NO3)2, Na8[AlSiO4]6(NO2)2, Na8[AlSiO4]6I2, Na7.9[AlSiO4]6(SCN)7.9 x 0.5H2O, Na8[AlGeO4]6(NO3)2, and Na7[AlSiO4]6(H3O2) x 4H2O) were carried out. The spectra of the first five sodalites consist of a quadrupolar MAS pattern with different quadrupolar coupling constants. The quadrupolar interaction for the thiocyanate sodalite, the nitrate aluminosilicate, and germanate sodalite decreases strongly passing a coalescence state on heating, while the quadrupolar interaction of the iodide and nitrite sample shows nearly no change. The basic hydrosodalite shows an asymmetric lineshape at room temperature and, between 350 and 370 K, a second line due to the evaporation of cage-water emerges. The linewidth increases with rising temperature. The temperature dependence of the quadrupolar interaction seems to be a function of the sodalite beta-cage expansion. Two conceivable jump mechanisms are proposed for a tetrahedral two-site jump between occupied and unoccupied tetrahedral sites.

  16. Quantification of the Contribution of Extracellular Sodium to 23Na Multiple-Quantum-Filtered NMR Spectra of Suspensions of Human Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Navon, Gil

    1998-03-01

    23Na double-quantum-filtered (DQF) NMR enables the detection of anisotropic motion of sodium ions due to their interaction with ordered structures in biological tissues. Using the technique, anisotropic motion was found for sodium ions in mammalian red blood cell suspensions (RBC) and the effect was shown to correlate with the integrity of membrane cytoskeleton. In the present study relative contributions to the DQF and triple-quantum-filtered (TQF) spectra of sodium bound to anisotropic and isotropic binding sites in the intra- and extracellular sodium pools (Na content being 15 and 150 mM, respectively) of human RBC were quantified for different hematocrits. DQF spectra were measured by a modified Jeener-Broekaert pulse sequence which enabled exclusive detection of anisotropically moving sodium ions. The relative contributions of the extracellular sodium to the TQF and DQF spectra decreased as the hematocrit increased, but their efficiency relative to the sodium content increased. The contribution of the extracellular sodium to the TQF signal was found to dominate the spectrum of the RBC suspension at all hematocrits studied. The contribution of the extracellular sodium to the DQF was significantly smaller than that to the TQF and was only 22% at a high hematocrit of about 90%.

  17. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i.

    PubMed

    Eykyn, Thomas R; Aksentijević, Dunja; Aughton, Karen L; Southworth, Richard; Fuller, William; Shattock, Michael J

    2015-09-01

    We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.

  18. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  19. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system.

    PubMed

    Rehder, Dieter; Haupt, Erhard T K; Müller, Achim

    2008-01-01

    Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.

  20. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  1. Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

    SciTech Connect

    LANG,DAVID P.; ALAM,TODD M.; BENCOE,DENISE N.

    2000-05-01

    Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

  2. Adsorption of polycations on clays: A comparative in situ study using {sup 133}Cs and {sup 23}Na solution phase NMR

    SciTech Connect

    Billingham, J.; Breen, C.; Rawson, J.O.; Yarwood, J.; Mann, B.E.

    1997-09-15

    {sup 23}Na solution phase NMR has been evaluated as an in situ probe to study the adsorption of tetramethylammonium (TMA{sup +}) and two polycations, FL17 and Magnafloc 1697, onto clays in aqueous suspensions containing 2.5 mass% low iron Texas bentonite. The NMR data shows the effectiveness of the organocations at displacing Na{sup +} from the bentonite surface. This information has been correlated with that obtained from particle-size and electrophoretic measurements in aqueous solution, together with information from adsorption isotherms. These results have been compared to those obtained in parallel studies using {sup 133}Cs solution phase NMR. FL17 and 1697 both exhibited high affinity adsorption isotherms on Na{sup +}- and Cs{sup +}-clay, whereas the adsorption of TMA{sup +}, which represents the cationic portion of the polymers was of lower affinity. Na{sup +}-bentonite adsorbed almost twice the amount of polycation required to fulfill the cation-exchange capacity (CEC) of the bentonite. The electrophoretic and particle size data indicated significant differences in the size of the polycation/clay flocs and the amount of polymer adsorbed on the external faces of the flocs in the presence of Na{sup +}- and Cs{sup +}-exchange ions. Correlation of this data with the NMR results suggests that the Na{sup +}-bentonite/polycation flocs are large, of low density, and that the polycation is concentrated in the interior while the Na{sup +}-ions occupy exchange sites on the external faces.

  3. Competition between Na + and Li + for Unsealed and Cytoskeleton-Depleted Human Red Blood Cell Membrane: A 23Na Multiple Quantum Filtered and 7Li NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chandra; Minadeo, Nicole; Toon, Jason; Graham, Daniel; Mota de Freitas, Duarte; Geraldes, Carlos F. G. C.

    1999-09-01

    Evidence for competition between Li+ and Na+ for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li+ upon the 23Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na+-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li+ on the 23Na TQF and DQF signal intensity probed Li+/Na+ competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na+ to isotropic membrane sites, but had no effect on Li+/Na+ competition for those sites. Through the observed 23Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na+ motion, we found anisotropic membrane binding sites for Na+ when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer-tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na+ motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li+ addition initially quenched the isotropic signal the most, indicating preferential Li+/Na+ competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li+ addition competed with Na+ for those sites, quenching the anisotropic signal. 7Li T1 relaxation data for Li+-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na+ at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na+ for the RBC membrane, but increases the affinity of Li+ by 50%. This clearly indicates that cytoskeleton

  4. Investigation of cation environment and framework changes in silicotitanate exchange materials using solid-state 23Na, 29Si, and 133Cs MAS NMR

    NASA Astrophysics Data System (ADS)

    Cherry, Brian R.; Nyman, May; Alam, Todd M.

    2004-06-01

    Crystalline silicotitanate (CST), HNa 3Ti 4Si 2O 14·4H 2O and the Nb-substituted CST (Nb-CST), HNa 2Ti 3NbSi 2O 14·4H 2O, are highly selective Cs + sorbents, which makes them attractive materials for the selective removal of radioactive species from nuclear waste solutions. The structural basis for the improved Cs + selectivity in the niobium analogs was investigated through a series of solid-state magic angle spinning (MAS) NMR experiments. Changes in the local environment of the Na + and Cs + cations in both CST and Nb-CST materials as a function of weight percent cesium exchange were investigated using 23Na and 133Cs MAS NMR. Framework changes induced by Cs + loading and hydration state were investigated with 29Si MAS NMR. Multiple Cs + environments were observed in the CST and Nb-CST material. The relative population of these different Cs + environments varies with the extent of Cs + loading. Marked changes in the framework Si environment were noted with the initial incorporation of Cs +, however with increased Cs + loading the impact to the Si environment becomes less pronounced. The Cs + environment and Si framework structure were influenced by the Nb-substitution and were greatly affected by the amount of water present in the materials. The increased Cs + selectivity of the Nb-CST materials arises from both the chemistry and geometry of the tunnels and pores.

  5. Structural characterization of hydrated poly(aspartic acid) sodium and poly(aspartic acid) sodium/poly(vinyl alcohol) blends by high-resolution solid-state 23Na NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    The structure of hydrated poly(aspartic acid) sodium (PAANa) and in blended PAANa, which was blended with poly(vinyl alcohol) (PVA), is characterized by means of high-resolution solid-state 23Na NMR. There are two peaks in dried pure PAANa, which are assigned to associated ions (about -16 ppm) and isolated ions or end group ions of PAANa (7.2 ppm), respectively. With an increase in hydration, the 23Na chemical shifts of these two peaks are changed to tend toward 0 ppm, and the line width at half the height of the 23Na resonance decreases. In contrast, in the blended samples, the 23Na resonance shapes and chemical shift values are significantly changed depending on the ratio of the PAANa/PVA blends and the temperature. On the basis of these experimental results, the structure of the blends was elucidated.

  6. In vivo sup 23 Na and sup 31 P NMR measurement of a tonoplast Na sup + /H sup + exchange process and its characteristics in two barley cultivars

    SciTech Connect

    Fan, T.W.M.; Norlyn, J.; Epstein, E. ); Higashi, R.M. )

    1989-12-01

    A Na{sup +} uptake-associated vacuolar alkalinization was observed in roots of two barley cultivars (Arivat and the more salt-tolerant California Mariout) by using {sup 23}Na and {sup 31}P in vivo NMR spectroscopy. A NaCl uptake-associated broadening was also noted for both vacuolar P{sub i} and intracellular Na NMR peaks, consistent with Na{sup +} uptake into the same compartment as the vacuolar P{sub i}. A close coupling of Na{sup +} with H{sup +} transport (presumably the Na{sup +}/H{sup +} antiport) in vivo was evidence by qualitative and quantitative correlations between Na{sup +} accumulation and vacuolar alkalinization for both cultivars. Prolongation of the low NaCl pretreatment (30 mM) increased the activity of the putative antiport in Arivat but reduced it in California Mariout. This putative antiport also showed a dependence on NaCl concentration for California Mariout but not for Arivat. No cytoplasmic acidification accompanied the antiporter activity for either cultivar. The response of adenosine phosphates indicated that ATP utilization exceeded the capacity for ATP synthesis in Arivat, but the two processes seemed balanced in California Mariout. These comparisons provide clues to the role of the tonoplast Na{sup +}/H{sup +} antiport and compensatory cytoplasmic adjustments including pH, osymolytes, and energy phosphates in governing the different salt tolerance of the two cultivars.

  7. A 23Na Multiple-Quantum-Filtered NMR Study of the Effect of the Cytoskeleton Conformation on the Anisotropic Motion of Sodium Ions in Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil

    1996-01-01

    Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.

  8. (Na{sub 4}BH{sub 4}){sup 3+} guests inside aluminosilicate, gallosilicate and aluminogermanate sodalite host frameworks studied by {sup 1}H, {sup 11}B, and {sup 23}Na MAS NMR spectroscopy

    SciTech Connect

    Buhl, J.-Ch.; Murshed, M.M.

    2009-07-01

    We report tetrahydroborate aluminosilicate, gallosilicate and aluminogermanate sodalites studied by {sup 11}B, {sup 1}H and {sup 23}Na MAS NMR spectroscopy. The spectral parameters are consistent with the local environments of each investigated nucleus obtained from the crystal structures. The {sup 11}B MAS NMR spectra exhibit a sharp narrow line at about -49.0 ppm, which is assigned to BH{sub 4}{sup -} enclathrated into the sodalite framework matrix. The lineshape of the signal shows no quadrupolar interactions due to discreteness and high symmetry of the BH{sub 4}{sup -} unit as well as possible fast dynamic site exchange of hydrogen atoms. The {sup 23}Na MAS NMR signals also show a narrow Gaussian lineshape, which clearly indicates a single type of sodium coordination, and a centrosymmetrical charge distribution around the sodium atom. The {sup 1}H MAS NMR spectra can clearly distinguish between hydrogen in BH{sub 4}{sup -} anions (-0.6 ppm), H{sub 3}O{sub 2}{sup -} anions (1.2 ppm) and H{sub 2}O molecules (5.0 ppm). The structural properties of BH{sub 4}{sup -} intercalation into sodalite framework matrix help connect the microporous materials to hydride-containing A, X and Y type zeolites.

  9. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  10. Water and salt distribution in Atlantic salmon (Salmo salar) studied by low-field 1H NMR, 1H and 23Na MRI and light microscopy: effects of raw material quality and brine salting.

    PubMed

    Aursand, Ida G; Veliyulin, Emil; Böcker, Ulrike; Ofstad, Ragni; Rustad, Turid; Erikson, Ulf

    2009-01-14

    The effect of different Atlantic salmon raw materials (prerigor, postrigor and frozen/thawed) on water mobility and salt uptake after brine salting was investigated by using LF 1H NMR T2 relaxation,1H and 23Na MRI and light microscopy. Distributed exponential analysis of the T2 relaxation data revealed two main water pools in all raw materials, T21 and T22, with relaxation times in the range of 20-100 ms and 100-300 ms, respectively. Raw material differences were reflected in the T2 relaxation data. Light microscopy demonstrated structural differences between unsalted and salted raw materials. For prerigor fillets, salting induced a decrease in T21 population coupled with a more open microstructure compared to unsalted fillets, whereas for frozen/thawed fillets, an increase in T21 population coupled with salt-induced swelling of myofibers was observed. The result implies that the T21 population was directly affected by the density of the muscle myofiber lattice. MR imaging revealed significant differences in salt uptake between raw materials, prerigor salted fillets gained least salt (1.3-1.6% NaCl), whereas the frozen/thawed fillets gained most salt (2.7-2.9% NaCl), and obtained the most even salt distribution due to the more open microstructure. This study demonstrates the advantage of LF NMR T2 relaxation and 1H and 23Na MRI as effective tools for understanding of the relationship between the microstructure of fish muscle, its water mobility and its salt uptake.

  11. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites.

  12. Limitation of heavy-ion fusion: Fusion of aligned /sup 23/Na with /sup 23/Na

    SciTech Connect

    Blatt, K.; Becker, K.; Heck, B.; Jaensch, H.; Leucker, H.; Fick, D.; Chacekaplar, R.; Butsch, R.; Kraemer, D.; Moebius, K.h.

    1986-08-18

    The excitation function for fusion of /sup 23/Na with /sup 23/Na was measured in the energy range 40 less than or equal to E/sub c.m./less than or equal to 88.5 MeV. Additionally the tensor analyzing power T/sub 20/ was determined to be T/sub 20/ = -0.0060 +- 0.0125 at E/sub c.m./ = 85 MeV. The results are discussed in terms of an entrance-channel versus a compound-nucleus model for the observed limitation of fusion. A typical entrance-channel model, the surface-friction model, which is able to describe all fusion excitation functions leading to /sup 46/Ti, fails to reproduce the observed value of T/sub 20/. The data are consistent, on the other hand, with the compound-nucleus interpretation.

  13. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure.

  14. Stellar (n ,γ ) cross sections of 23Na

    NASA Astrophysics Data System (ADS)

    Uberseder, E.; Heil, M.; Käppeler, F.; Lederer, C.; Mengoni, A.; Bisterzo, S.; Pignatari, M.; Wiescher, M.

    2017-02-01

    The cross section of the 23Na(n ,γ )24Na reaction was measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at k T =5.1 and 25 keV produced via the 18O(p ,n )18F and 7Li(p ,n )7Be reactions, respectively. The derived capture cross sections <σ> kT =5 keV=9.1 ±0.3 mb and <σ> kT =25 keV=2.03 ±0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first 23Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s -process nucleosynthesis are discussed.

  15. 3D correlation NMR spectrum between three distinct heteronuclei for the characterization of inorganic samples: Application on sodium alumino-phosphate materials.

    PubMed

    Nagashima, Hiroki; Tricot, Grégory; Trébosc, Julien; Lafon, Olivier; Amoureux, Jean-Paul; Pourpoint, Frédérique

    2017-03-22

    We report here an original NMR sequence allowing the acquisition of 3D correlation NMR spectra between three distinct heteronuclei, among which two are half-integer spin quadrupolar nuclei. Furthermore, as two of them exhibit close Larmor frequency, this experiment was acquired using a standard triple-resonance probe equipped with a commercial frequency splitter. This NMR technique was tested and applied to sodium alumino-phosphate compounds with (31)P as the spin-1/2 nucleus and (23)Na and (27)Al as the close Larmor frequencies isotopes. To the best of our knowledge, such experiment with direct (31)P and indirect (27)Al and (23)Na detection is the first example of 3D NMR experiment in solids involving three distinct heteronuclei. This sequence has first been demonstrated on a mixture of Al(PO3)3 and NaAlP2O7 crystalline phases, for which a selective observation of NaAlP2O7 is possible through the 3D map edition. This 3D correlation experiment is then applied to characterize mixing and phase segregation in a partially devitrified glass that has been proposed as a material for the sequestration of radioactive waste. The (31)P-{(23)Na,(27)Al} 3D experiment conducted on the partially devitrified glass material conclusively demonstrates that the amorphous component of the material does not contain aluminum. The as-synthesized material thus presents a poor resistance against water, which is a severe limitation for its application in the radioactive waste encapsulation domain.

  16. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Kazem Hafizi, Mohammad; Mahmoudvand, Rahim; Fallahsafari, Mahdi

    2016-07-01

    Ambient electromagnetic interferences at the site of investigation often degrade the signal quality of the Surface-NMR measurements leading to inaccurate estimation of the signal parameters. This paper proposes a new powerful de-noising method based on singular spectrum analysis (SSA), which is a nonparametric method for analyzing time series. SSA is a relatively simple method and can be understood using basic algebra notations. Singular value decomposition (SVD) plays a crucial role in SSA. As the length of recordings increases, the computational time required for computing SVD raises which restricts the usage of SSA in long-term time series. In order to overcome this drawback, we propose a randomized version of the singular value decomposition to accelerate the decomposition step of the algorithm. To evaluate the performance of the proposed strategy, the method is tested on synthetic signals corrupted by both simulated noise (including Gaussian white noise, spiky events and harmonic noise) and real noise recordings obtained from surface-NMR field surveys and a real data set. Our results show that the proposed algorithm can enhance the signal to noise ratio significantly, and gives an improvement in estimation of the surface-NMR signal parameters.

  17. Subbarrier fusion with aligned /sup 23/Na ions

    SciTech Connect

    Butsch, R.; Jaensch, H.; Kraemer, D.; Moebius, K.h.; Moroz, Z.; Ott, W.; Rusek, K.; Steffens, E.; Suntz, R.; Tungate, G.; and others

    1986-10-20

    Fusion cross sections and second-rank-tensor analyzing powers for fusion have been measured at energies around the fusion barrier for /sup 23/Na+ /sup 48/Ti, /sup 206/Pb with polarized (aligned) projectiles. The data are compared with results from coupled-channels calculations. The energy dependence of the second-rank-tensor analyzing power for fusion is well described for both systems if we take into account coupling to excited states of projectile and target. The same calculations still underpredict the cross section for fusion at subbarrier energies.

  18. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  19. Experimental study of the astrophysically important 23Na(α ,p )26Mg and 23Na(α ,n )26Al reactions

    NASA Astrophysics Data System (ADS)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Ayangeakaa, A. D.; Dickerson, C.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-12-01

    The 23Na(α ,p )26Mg and 23Na(α ,n )26Al reactions are important for our understanding of the 26Al abundance in massive stars. The aim of this work is to report on a direct and simultaneous measurement of these astrophysically important reactions using an active target system. The reactions were investigated in inverse kinematics using 4He as the active target gas in the detector. We measured the excitation functions in the energy range of about 2 to 6 MeV in the center of mass. We have found that the cross sections of the 23Na(α ,p )26Mg and the 23Na(α ,n )26Al reactions are in good agreement with previous experiments and with statistical-model calculations. The astrophysical reaction rate of the 23Na(α ,n )26Al reaction has been reevaluated and it was found to be larger than the recommended rate.

  20. Dipolar cross-relaxation modulates signal amplitudes in the 1H NMR spectrum of hyperpolarized [ 13C]formate

    NASA Astrophysics Data System (ADS)

    Merritt, Matthew E.; Harrison, Crystal; Mander, William; Malloy, Craig R.; Dean Sherry, A.

    2007-12-01

    The asymmetry in the doublet of a spin coupled to hyperpolarized 13C has been used previously to measure the initial polarization of 13C. We tested the hypothesis that a single observation of the 1H NMR spectrum of hyperpolarized 13C formate monitors 13C polarization. Depending on the microwave frequency during the polarization process, in-phase or out-of-phase doublets were observed in the 1H NMR spectrum. Even in this simple two-spin system, 13C polarization was not reflected in the relative area of the JCH doublet components due to strong heteronuclear cross-relaxation. The Solomon equations were used to model the proton signal as a function of time after polarization and to estimate 13C polarization from the 1H NMR spectra.

  1. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.

    PubMed

    Evelhoch, J L; McCoy, C L; Giri, B P

    1989-03-01

    The use of 2H-labeled drugs provides a measure of drug concentration in situ directly from a single 2H NMR spectrum obtained with any antenna by correcting only for differential saturation effects. The limit of detection for a drug labeled with three equivalent deuterons is roughly 0.5 mM.

  2. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  3. The Na+ transport in gram-positive bacteria defect in the Mrp antiporter complex measured with 23Na nuclear magnetic resonance.

    PubMed

    Górecki, Kamil; Hägerhäll, Cecilia; Drakenberg, Torbjörn

    2014-01-15

    (23)Na nuclear magnetic resonance (NMR) has previously been used to monitor Na(+) translocation across membranes in gram-negative bacteria and in various other organelles and liposomes using a membrane-impermeable shift reagent to resolve the signals resulting from internal and external Na(+). In this work, the (23)Na NMR method was adapted for measurements of internal Na(+) concentration in the gram-positive bacterium Bacillus subtilis, with the aim of assessing the Na(+) translocation activity of the Mrp (multiple resistance and pH) antiporter complex, a member of the cation proton antiporter-3 (CPA-3) family. The sodium-sensitive growth phenotype observed in a B. subtilis strain with the gene encoding MrpA deleted could indeed be correlated to the inability of this strain to maintain a lower internal Na(+) concentration than an external one.

  4. Clean STD-NMR spectrum for improved detection of ligand-protein interactions at low concentration of protein.

    PubMed

    Xia, Youlin; Zhu, Qi; Jun, Kyu-Yeon; Wang, Jingchun; Gao, Xiaolian

    2010-12-01

    Saturation transfer difference (STD)-NMR has been widely used to screen ligand compound libraries for their binding activities to proteins and to determine the binding epitopes of the ligands. We report herein, a Clean STD-NMR method developed to overcome false positives (artifacts) observed in the STD-NMR spectrum due to the power spillover of RF irradiation. The method achieved higher degree of resonance saturation through digital editing of two STD-NMR spectra to generate a concatenated difference spectrum and three times of sensitivity enhancement for a loose binding complex involving DNA oligonucleotide and an RNA-binding protein, CUGBP-1ab (25.2 kDa). The interesting binding characteristics of the complex dCTGTCT-CUGBP1ab were obtained. The method was applied to a mixture of small ligand and bovine serum albumin protein (BSA, 66.3 kDa), and detected the intermolecular contacts at a BSA concentration as low as 0.1 µM, a working concentration useful for the detection of proteins of low solubility at biologically relevant conditions.

  5. Mg NMR in DNA solutions: Dominance of site binding effects.

    PubMed

    Rose, D M; Bleam, M L; Record, M T; Bryant, R G

    1980-11-01

    (25)Mg NMR spectroscopy is applied to a study of magnesium ion interactions with DNA, which is considered as a model for a linear polyelectrolyte. It is demonstrated that the magnesium ion spectrum is complicated by a non-Lorent-zian line shape and is dominated by the effects of chemical exchange with macromolecule binding sites. A distinction is made between specific-site interactions in which the magnesium ion loses a water molecule from the first coordination sphere on binding and those interactions, referred to as territorial binding, in which the ion maintains its first coordination sphere complement of solvent. The first type of site-binding interactions are shown to dominate the magnesium ion NMR spectrum, based on a consideration of the magnitudes of the observed (25)Mg relaxation rates compared with (23)Na relaxation rates, the clear contributions of chemical exchange-limited relaxation, and an ion displacement experiment employing sodium.

  6. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  7. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra.

    PubMed

    De Sanctis, Silvia; Malloni, Wilhelm M; Kremer, Werner; Tomé, Ana M; Lang, Elmar W; Neidig, Klaus-Peter; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in (1)H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  8. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  9. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  10. Characterization of cromolyn sodium hydrates and its formulation by (23) Na-multiquantum and magic-angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Umino, Makoto; Higashi, Kenjirou; Masu, Hyuma; Limwikrant, Waree; Yamamoto, Keiji; Moribe, Kunikazu

    2013-08-01

    We characterized cromolyn sodium (CS) hydrates and evaluated their molecular states in low-dose formulations using Na-multiquantum magic-angle spinning (MQMAS) nuclear magnetic resonance (NMR) analysis. Two CS hydrates, low-water-content hydrated form and high-water-content hydrated form containing 2-3 and 5-6 hydrates, respectively, were prepared by humidification. Single-crystal X-ray diffraction and powder X-ray diffraction analysis revealed that these CS hydrates contained sodium channel structures and that water molecules were adsorbed on the sodium nucleus. (13) C-cross-polarization/MAS NMR spectra of these hydrates revealed similar results, confirming that the water molecules were adsorbed not on the cromolyn skeletons but mainly on the sodium nucleus. In contrast, (23) Na-MQMAS NMR analysis allowed us to clearly distinguish these hydrates without discernible effects from quadrupolar interaction. Thus, MQMAS NMR analysis is a valuable tool for evaluating salt drugs and their formulations.

  11. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications.

    PubMed

    Wiggins, Graham C; Brown, Ryan; Lakshmanan, Karthik

    2016-02-01

    (23)Na RF coil design for brain and MSK applications presents a number of challenges, including poor coil loading for arrays of small coils and SNR penalties associated with providing (1)H capability with the same coil. The basics of RF coil design are described, as well as a review of historical approaches to dual tuning. There follows a review of published high performance coil designs for MSK and brain imaging. Several coil designs have been demonstrated at 7T and 3T which incorporate close-fitting receive arrays and in some cases design features which provide (1)H imaging with little penalty to (23)Na sensitivity. The "nested coplanar loop" approach is examined, in which small transmit-receive (1)H elements are placed within each (23)Na loop, presenting only a small perturbation to (23)Na performance and minimizing RF shielding issues. Other designs incorporating transmit-receive arrays for (23)Na and (1)H are discussed including a 9.4 T (23)Na/(1)H brain coil. Great gains in (23)Na SNR have been made with many of these designs, but simultaneously achieving high performance for 1H remains elusive.

  12. Cation location in microporous zeolite, SSZ-13, probed with xenon adsorption measurement and 129Xe NMR spectrum.

    PubMed

    Shin, Na Ra; Kim, Su Hyun; Shin, Hye Sun; Jang, Ik Jun; Cho, Sung June

    2013-06-01

    The location of metal ion, Ag2+, Ca2+, Cu2+ and Y3+ in the SSZ-13 has been investigated with xenon adsorption measurement and 129Xe NMR spectrum. It was referred that the location of the metal ion varies depending on the corresponding charge. The ion-exchanged Ag ion was located in the alpha-cage to interact directly with xenon. Others multivalent cation contributed little with xenon because these were present near the six membered rings where xenon cannot access.

  13. Theoretical and experimental investigation of the 1H NMR spectrum of putrescine

    NASA Astrophysics Data System (ADS)

    Allouche, A. R.; Graveron-Demilly, D.; Fauvelle, F.; Aubert-Frécon, M.

    2008-12-01

    Chemical shifts δ and spin-spin coupling constants J have been calculated for the putrescine molecule, a polyamine present in prostate tissue, through a DFT/B3LYP/6-311++G(d,p)/PCM/(GIAO) approach, which has been shown to be accurate in previous work. From δ and J values, calculated for the first time for the isolated and the solvated putrescine, the 1H NMR spectra have been simulated. Comparisons between the calculated and the experimental NMR spectra at 400 MHz show a good agreement and allow to propose reliable values for the NMR spin Hamiltonian parameters of putrescine to be used as good starting values for further quantitation methods of metabolites in prostate tissue.

  14. 22Ne and 23Na ejecta from intermediate-mass stars: the impact of the new LUNA rate for 22Ne(p, γ)23Na

    NASA Astrophysics Data System (ADS)

    Slemer, A.; Marigo, P.; Piatti, D.; Aliotta, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Bressan, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Depalo, R.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, G.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.

    2017-03-01

    We investigate the impact of the new LUNA rate for the nuclear reaction 22Ne(p, γ)23Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim, we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0-6.0 M⊙ and metallicities Zi = 0.0005, 0.006 and 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22Ne and 23Na AGB ejecta that drop from factors of ≃10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23Na, the uncertainties that still affect the 22Ne and 23Na AGB ejecta are mainly dominated by the evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anticorrelation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass-loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anticorrelation and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available.

  15. Cross Section Measurements for the 23Na(p,γ)24Mg Reaction at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, Axel; LUNA Collaboration

    2016-02-01

    LUNA, the Laboratory for Underground Nuclear Astrophysics, is an accelerator facility for measurements of nuclear cross sections of astrophysical interest. The greatly reduced cosmic ray background at LUNA's underground location in the Gran Sasso National Laboratory (LNGS) allows direct measurements of weak reactions at low energies. One of the reactions currently under study at LUNA is 23Na(p,γ)24Mg, which links the NeNa and MgAl cycles in stellar burning. The LUNA facility is presented, with a focus on the current experimental efforts to study the reaction 23Na(p,γ)24Mg.

  16. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  17. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment.

    PubMed

    Andreas, Loren B; Stanek, Jan; Le Marchand, Tanguy; Bertarello, Andrea; Cala-De Paepe, Diane; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl; Knott, Benno; Wegner, Sebastian; Engelke, Frank; Felli, Isabella C; Pierattelli, Roberta; Dixon, Nicholas E; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2015-07-01

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  18. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  19. Consistent Data Assimilation of Structural Isotopes: 23Na and 56Fe

    SciTech Connect

    Giuseppe Palmiotti

    2010-09-01

    A new approach is proposed, the consistent data assimilation, that allows to link the integral data experiment results to basic nuclear parameters employed by evaluators to generate ENDF/B point energy files in order to improve them. Practical examples are provided for the structural materials 23Na and 56Fe. The sodium neutron propagation experiments, EURACOS and JANUS-8, are used to improve via modifications of 23Na nuclear parameters (like scattering radius, resonance parameters, Optical model parameters, Statistical Hauser-Feshbach model parameters, and Preequilibrium Exciton model parameters) the agreement of calculation versus experiments for a series of measured reaction rate detectors slopes. For the 56Fe case the EURACOS and ZPR3 assembly 54 are used. Results have shown inconsistencies in the set of nuclear parameters used so that further investigation is needed. Future work involves comparison of results against a more traditional multigroup adjustments, and extension to other isotope of interest in the reactor community.

  20. Two-photon pathway to ultracold ground state molecules of 23Na40K

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Will, Sebastian A.; Zwierlein, Martin W.

    2015-07-01

    We report on high-resolution spectroscopy of ultracold fermionic 23Na40K Feshbach molecules, and identify a two-photon pathway to the rovibrational singlet ground state via a resonantly mixed B1Π ˜ c3Σ+intermediate state. Photoassociation in a 23Na-40K atomic mixture and one-photon spectroscopy on 23Na40K Feshbach molecules reveal about 20 vibrational levels of the electronically excited c3Σ+state. Two of these levels are found to be strongly perturbed by nearby B1Π levels via spin-orbit coupling, resulting in additional lines of dominant singlet character in the perturbed complex {{{B}}}1\\Pi | v=4> ˜ {{{c}}}3{Σ }+| v=25> , or of resonantly mixed character in {{{B}}}1\\Pi | v=12> ˜ {{{c}}}3{Σ }+| v=35> . The dominantly singlet level is used to locate the absolute rovibrational singlet ground state {{{X}}}1{Σ }+| v=0,J=0> via Autler-Townes spectroscopy. We demonstrate coherent two-photon coupling via dark state spectroscopy between the predominantly triplet Feshbach molecular state and the singlet ground state. Its binding energy is measured to be 5212.0447(1) cm-1, a thousand-fold improvement in accuracy compared to previous determinations. In their absolute singlet ground state, 23Na40K molecules are chemically stable under binary collisions and possess a large electric dipole moment of 2.72 Debye. Our work thus paves the way towards the creation of strongly dipolar Fermi gases of NaK molecules.

  1. New measurements of low-energy resonances in the 22Ne(p ,γ )23Na reaction

    NASA Astrophysics Data System (ADS)

    Kelly, K. J.; Champagne, A. E.; Downen, L. N.; Dermigny, J. R.; Hunt, S.; Iliadis, C.; Cooper, A. L.

    2017-01-01

    The 22Ne(p ,γ )23Na reaction is one of the most uncertain reactions in the NeNa cycle and plays a crucial role in the creation of 23Na, the only stable Na isotope. Uncertainties in the low-energy rates of this and other reactions in the NeNa cycle lead to ambiguities in the nucleosynthesis predicted from models of thermally pulsing asymptotic giant branch (AGB) stars. This in turn complicates the interpretation of anomalous Na-O trends in globular cluster evolutionary scenarios. Previous studies of the 22Ne(p ,γ )23Na , 22Ne(3He,d )23Na , and 12C(12C,p )23Na reactions disagree on the strengths, spins, and parities of low-energy resonances in 23Na and the direct-capture 22Ne(p ,γ )23Na reaction rate contains large uncertainties as well. In this work we present new measurements of resonances at Erc.m.=417 , 178, and 151 keV and of the direct-capture process in the 22Ne(p ,γ )23Na reaction. The resulting total 22Ne(p ,γ )23Na rate is approximately a factor of 20 higher than the rate listed in a recent compilation at temperatures relevant to hot-bottom burning in AGB stars. Although our rate is close to that derived from a recent 22Ne(p ,γ )23Na measurement by Cavanna et al. in 2015, we find that this large rate increase results in only a modest 18% increase in the 23Na abundance predicted from a 5 M⊙ thermally pulsing AGB star model from Ventura and D'Antona (2005). The estimated astrophysical impact of this rate increase is in marked contrast to the factor of ˜3 increase in 23Na abundance predicted by Cavanna et al. and is attributed to the interplay between the 23Na(p ,α )20Ne and 20Ne(p ,γ )21Na reactions, both of which remain fairly uncertain at the relevant temperature range.

  2. In vivo39K, 23Na and 1H MR imaging using a triple resonant RF coil setup

    NASA Astrophysics Data System (ADS)

    Augath, Mark; Heiler, Patrick; Kirsch, Stefan; Schad, Lothar R.

    2009-09-01

    The maintenance of a gradient of potassium and sodium ions across the cell membranes is essential for the physiological function of the mammal organism. The measurement of the spatial distribution of pathologically changing ion concentrations of 23Na and 39K with magnetic resonance imaging offers a promising approach in clinical diagnostics to measure tissue viability. Existing studies were focused mainly on 23Na imaging as well as spectroscopy with only one post-mortem study for 39K imaging. In this paper a triple resonant RF coil setup for the rat head at 9.4 T is presented for imaging of both nuclei (23Na and 39K) and the acquisition of anatomical proton images in the same experiment without moving the subject or the RF coil. In vivo MR images of 39K and 23Na in the rat brain were acquired as well as anatomical proton images in the same scanning session.

  3. Three New Low-Energy Resonances in the 22Ne(p, γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Depalo, Rosanna

    The neon-sodium (NeNa) cycle drives the synthesis of the elements between 20Ne and 27Al, through a series of proton capture reactions that start from 20Ne, to end with sodium synthesis. This cycle is active in red giant stars (RGB), asymptotic giant branch stars (AGB), in novae as well as in type Ia supernovae. In order to reproduce the observed elemental abundances, the cross sections of the reactions involved in the nucleosynthesis process should be accurately known. The 22Ne(p, γ )23Na reaction rate was very uncertain because of a large number of unobserved resonances lying in the Gamow window. For proton energies below 400 keV, in the literature there were only upper limits for the resonance strengths. A new direct study of the 22Ne(p, γ )23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso using a windowless gas target and two high-purity germanium detectors. Several resonances have been observed for the first time in a direct experiment.

  4. Direct measurement of the 22Ne(p,γ)23Na reaction cross section at LUNA

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico; LUNA Collaboration

    2016-06-01

    The 22Ne(p, γ)23Na reaction takes part in the NeNa cycle of hydrogen burning, influencing the production of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical novae. The 22Ne(p,γ)27Na reaction rate is very uncertain because of a large number of tentative resonances in the Gamow window, where only upper limits were quoted in literature. A direct measurement of the 22Ne(p, γ)23Na reaction cross section has been carried out at LUNA using a windowless differential-pumping gas target with two high- purity germanium (HPGe) detectors. A new measurement with a 4π bismuth germanate (BGO) summing detector is ongoing. During the HPGe phase of the experiment the strengths of the resonances at 156.2 keV, 189.5 keV and 259.7 keV have been directly measured for the first time and their contribution to the reaction rate has been calculated. The decay scheme of the newly discovered resonances has been established as well and some improved upper limits on the unobserved resonances have been put. The BGO detector with its 70% γ-detection efficiency allows to measure the cross section at lower energy. In order to further investigate the resonances at 71 keV and 105 keV and the direct-capture component, the data taking is ongoing.

  5. Double tuned 23Na 1H nuclear magnetic resonance birdcage for application on mice in vivo

    NASA Astrophysics Data System (ADS)

    Lanz, Titus; Ruff, Jan; Weisser, Alexander; Haase, Axel

    2001-05-01

    The design and the characterization of a double tuned nuclear magnetic birdcage resonator is presented. It abandons quadrature drive and uses the two orthogonal modes of the birdcage for two different frequencies. In order to tune the birdcage to frequencies that are far apart, the number of legs is reduced to only four. This limits the homogeneity of the rf field, but enables the birdcage to be tuned to very different frequencies without further B1 field distortions. Following a brief explanation of the theory of the coil design, a 23Na 1H four leg birdcage for in vivo measurements on mice is presented. The performance of the coil is demonstrated in experiments on both a phantom and a mouse.

  6. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  7. Direct measurement of low-energy 22Ne(p ,γ )23Na resonances

    NASA Astrophysics Data System (ADS)

    Depalo, R.; Cavanna, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Ciani, G. F.; Corvisiero, P.; Davinson, T.; Di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Piatti, D.; Prati, P.; Straniero, O.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2016-11-01

    Background: The 22Ne(p ,γ )23Na reaction is the most uncertain process in the neon-sodium cycle of hydrogen burning. At temperatures relevant for nucleosynthesis in asymptotic giant branch stars and classical novae, its uncertainty is mainly due to a large number of predicted but hitherto unobserved resonances at low energy. Purpose: A new direct study of low-energy 22Ne(p ,γ )23Na resonances has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, Italy. Method: The proton capture on 22Ne was investigated in direct kinematics, delivering an intense proton beam to a 22Ne gas target. γ rays were detected with two high-purity germanium detectors enclosed in a copper and lead shield suppressing environmental radioactivity. Results: Three resonances at 156.2 keV [ω γ =(1.48 ±0.10 ) ×10-7 eV], 189.5 keV [ω γ =(1.87 ±0.06 ) ×10-6 eV] and 259.7 keV [ω γ =(6.89 ±0.16 ) ×10-6 eV] proton beam energy, respectively, have been observed for the first time. For the levels at Ex=8943.5 , 8975.3, and 9042.4 keV excitation energy corresponding to the new resonances, the γ -decay branching ratios have been precisely measured. Three additional, tentative resonances at 71, 105, and 215 keV proton beam energy, respectively, were not observed here. For the strengths of these resonances, experimental upper limits have been derived that are significantly more stringent than the upper limits reported in the literature. Conclusions: Based on the present experimental data and also previous literature data, an updated thermonuclear reaction rate is provided in tabular and parametric form. The new reaction rate is significantly higher than previous evaluations at temperatures of 0.08-0.3 GK.

  8. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0.

  9. Line shapes and widths of MAS sidebands for 27Al satellite transitions. multinuclear MAS NMR of tugtupite Na8Al2Be2Si8O24Cl2.

    PubMed

    Skibsted, J; Norby, P; Bildsøe, H; Jakobsen, H J

    1995-12-01

    A multinuclear 9Be, 23Na, 27Al, and 29Si magic-angle spinning (MAS) NMR study has been performed for the mineral tugtupite (Na8Al2Be2Si8O24Cl2). The extremely well-resolved spectra allow observation of separate spinning sidebands (ssb's) from the inner (+/- 1/2, +/- 3/2) and outer (+/- 3/2, +/- 5/2) 27Al satellite transitions, and are utilized in a detailed analysis of the line shapes and widths of the individual ssb's from simulations. The line widths of the ssb's from the inner and outer 27Al satellite transitions are found to decrease systematically with increasing order of the ssb's across the spectrum. Accurate values for the 9Be, 23Na, and 27Al quadrupole coupling parameters and isotropic chemical shifts are obtained from simulations of the manifolds of ssb's from the satellite transitions. MAS NMR of the 9Be satellite transitions for tugtupite, BeO, and beryl(Al2Be3Si6O18) shows that these transitions are particularly useful for determination of 9Be quadrupole couplings because of the small 9Be quadrupole moment. The 29Si shielding anisotropy of delta sigma = 48 ppm in tugtupite is the largest determined so far for a framework SiO4 tetrahedron. Finally, the crystal structure of the tugtupite sample has been refined by single-crystal X-ray diffraction, and correlations between the multinuclear NMR parameters and structural data are reported.

  10. Enantiotopic discrimination in the deuterium NMR spectrum of solutes with S4 symmetry in chiral liquid crystals.

    PubMed

    Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev; Lesot, Philippe

    2011-04-07

    Enantiotopic discrimination in the NMR spectra of prochiral rigid solutes in chiral liquid crystals (CLC), by the ordering mechanism, is limited to molecules possessing one of the four, so called, "allowed" symmetries, D(2d), C(2v), C(s), and S(4). So far, such spectral discrimination was demonstrated only for solutes possessing one of the first three symmetries. In this work, we present deuterium NMR measurements on a rigid S(4) compound dissolved in a chiral nematic solvent and demonstrate, for the first time, enantiotopic discrimination in such symmetry. The measurements were performed on the isotopically normal icosane derivative (1) and on its isotopomer (1-d(8)), specifically deuterated in its four core methylene groups. As a CLC solvent, a lyotropic mesophase, consisting of a solution of poly-γ-benzyl-L-glutamate (PBLG) in pyridine, was employed. For comparison with a corresponding achiral liquid crystal (ALC) solvent, a solution of a racemic mixture of poly-γ-benzylglutamate (PBG) of similar composition in the same co-solvent was used. The spectra were recorded at 92.1 MHz using the 2D Q-COSY Fz sequence with proton decoupling. In the CLC solvents they exhibited clear discrimination due to different enantiotopic sites, with components displaced symmetrically, at frequencies below and above those in the corresponding ALC, as expected for discrimination by ordering. Two procedures were employed for correlating the enantiotopic sites in the CLC spectra. For 1-d(8) the dipolar cross-peaks in a 2D (2)H-(2)H COSY-90 experiment provided identification of signals belonging to the same methylene (and hence the same enantiotopic) groups. For 1 the correlation was achieved using a least-square-deviation fitting of the experimental quadrupole splittings with respect to those expected from the molecular geometry. These results, with appropriate symmetry considerations were used to determine the symmetric (S(zz)) and antisymmetric (S(xy) and S(xx)-S(yy)) components of

  11. Enantiotopic discrimination in the deuterium NMR spectrum of solutes with S4 symmetry in chiral liquid crystalsa)

    NASA Astrophysics Data System (ADS)

    Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev; Lesot, Philippe

    2011-04-01

    Enantiotopic discrimination in the NMR spectra of prochiral rigid solutes in chiral liquid crystals (CLC), by the ordering mechanism, is limited to molecules possessing one of the four, so called, "allowed" symmetries, D2d, C2v, Cs, and S4. So far, such spectral discrimination was demonstrated only for solutes possessing one of the first three symmetries. In this work, we present deuterium NMR measurements on a rigid S4 compound dissolved in a chiral nematic solvent and demonstrate, for the first time, enantiotopic discrimination in such symmetry. The measurements were performed on the isotopically normal icosane derivative (1) and on its isotopomer (1-d8), specifically deuterated in its four core methylene groups. As a CLC solvent, a lyotropic mesophase, consisting of a solution of poly-γ-benzyl-L-glutamate (PBLG) in pyridine, was employed. For comparison with a corresponding achiral liquid crystal (ALC) solvent, a solution of a racemic mixture of poly-γ-benzylglutamate (PBG) of similar composition in the same co-solvent was used. The spectra were recorded at 92.1 MHz using the 2D Q-COSY Fz sequence with proton decoupling. In the CLC solvents they exhibited clear discrimination due to different enantiotopic sites, with components displaced symmetrically, at frequencies below and above those in the corresponding ALC, as expected for discrimination by ordering. Two procedures were employed for correlating the enantiotopic sites in the CLC spectra. For 1-d8 the dipolar cross-peaks in a 2D 2H-2H COSY-90 experiment provided identification of signals belonging to the same methylene (and hence the same enantiotopic) groups. For 1 the correlation was achieved using a least-square-deviation fitting of the experimental quadrupole splittings with respect to those expected from the molecular geometry. These results, with appropriate symmetry considerations were used to determine the symmetric (Szz) and antisymmetric (Sxy and Sxx-Syy) components of the Saupe ordering matrix

  12. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  13. Exploring the {sup 22}Ne(p,γ){sup 23}Na reaction at LUNA and at HZDR

    SciTech Connect

    Cavanna, Francesca; Collaboration: LUNA Collaboration

    2014-05-09

    The {sup 22}Ne(p,γ){sup 23}Na reaction is involved in the hydrogen burning NeNa cycle. This determines the nucleosynthesis of the Ne and Na isotopes in the Red Giant Branch and Asymptotic Giant Branch phases of stellar evolution. In the energy range relevant for astrophysics (20 keV < E < 600 keV), the {sup 22}Ne(p,γ){sup 23}Na reaction rate is highly uncertain because of the contribution of a large number of resonances never measured directly. A related study is under preparation at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, and it will cover the energy range 100 keV < E < 400 keV. Meanwhile, a measurement at higher energies (i.e. 436 keV) has been carried out at the Tandetron accelerator of the HZDR (Helmholtz Zentrum Dresden Rossendorf) in Germany. Some preliminary results will be presented.

  14. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  15. Discrimination of Intra- and Extracellular 23Na+ Signals in Yeast Cell Suspensions Using Longitudinal Magnetic Resonance Relaxography

    PubMed Central

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A

    2010-01-01

    This study tested the ability of MR Relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+) 23Na+ signals using their longitudinal relaxation time constant (T1) values. Na+-loaded yeast cell (Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na+ T1 differences were examined: a selective Nae+ T1 decrease induced by an extracellular relaxation reagent (RRe), GdDOTP5−; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SRe), TmDOTP5−, were used to validate the MRR measurements. With 12.8 mM RRe, the 23Nae+ T1 was 2.4 ms and the 23Nai+ T1 was 9.5 ms (9.4T, 24°C). The Na+ amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RRe or by MRS/SRe. Without RRe, the Na+-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (± 0.3) ms and 32.7 (± 2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (± 0.06); while Nae+ was higher, 1.43 (± 0.12) compared with MRS/SRe measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na+ flux measurements; with RRe for animal studies and without RRe for humans. PMID:20430659

  16. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    NASA Astrophysics Data System (ADS)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  17. Fusion evaporation and fusion-fission with aligned /sup 23/Na ions at energies near and below the fusion barrier

    SciTech Connect

    Butsch, R.; Jaensch, H.; Kraemer, D.; Moebius, K.; Ott, W.; Steffens, E.; Tungate, G.; Weller, a.A.; Becker, K.; Blatt, K.; and others

    1987-10-01

    Using aligned /sup 23/Na beams, fusion cross sections sigma/sup fus/ and second-rank tensor analyzing powers for fusion T/sub 20//sup fus/ have been measured at energies near and below the fusion barrier for /sup 23/Na+ /sup 48/Ti and for /sup 23/Na+ /sup 206/Pb. At sub-barrier energies, large, nearly maximal, values of T/sub 20//sup fus/ occur, especially for fusion with the heavy target /sup 206/Pb. This reflects the strong influence of the spectroscopic deformation of the projectile on the fusion process at energies below the barrier. However, within a quantum-mechanical coupled-channels calculation this degree of freedom is not enough to describe both the fusion cross section and the second-rank tensor analyzing power for fusion in the energy regime below the fusion barrier. It is shown that the coupling of the fusion channel to inelastic excitations of the projectile and the target can describe the magnitude and energy dependence of T/sub 20//sup fus/ for both heavy ion systems, but fails to reproduce the ''sub-barrier enhancement'' of the fusion cross section for both systems.

  18. Assignment of histidine resonances in the sup 1 H NMR (500 MHz) spectrum of subtilisin BPN prime using site-directed mutagenesis

    SciTech Connect

    Bycroft, M.; Fersht, A.R. )

    1988-09-20

    A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN{prime}. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pK{sub a}'s for the six histidines in this enzyme. The pK{sub a}'s of the histidine residues in subtilisin BPN{prime} have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pK{sub a}'s in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN{prime} can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pK{sub a} in the two enzymes can be assigned to histidine-238. This difference in pK{sub a} has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg.

  19. 23Na Magnetic Resonance Imaging of the Lower Leg of Acute Heart Failure Patients during Diuretic Treatment

    PubMed Central

    Hammon, Matthias; Grossmann, Susan; Linz, Peter; Kopp, Christoph; Dahlmann, Anke; Garlichs, Christoph; Janka, Rolf; Cavallaro, Alexander; Luft, Friedrich C.; Uder, Michael; Titze, Jens

    2015-01-01

    Objective Na+ can be stored in muscle and skin without commensurate water accumulation. The aim of this study was to assess Na+ and H2O in muscle and skin with MRI in acute heart failure patients before and after diuretic treatment and in a healthy cohort. Methods Nine patients (mean age 78 years; range 58–87) and nine age and gender-matched controls were studied. They underwent 23Na/1H-MRI at the calf with a custom-made knee coil. Patients were studied before and after diuretic therapy. 23Na-MRI gray-scale measurements of Na+-phantoms served to quantify Na+-concentrations. A fat-suppressed inversion recovery sequence was used to quantify H2O content. Results Plasma Na+-levels did not change during therapy. Mean Na+-concentrations in muscle and skin decreased after furosemide therapy (before therapy: 30.7±6.4 and 43.5±14.5 mmol/L; after therapy: 24.2±6.1 and 32.2±12.0 mmol/L; p˂0.05 and p˂0.01). Water content measurements did not differ significantly before and after furosemide therapy in muscle (p = 0.17) and only tended to be reduced in skin (p = 0.06). Na+-concentrations in calf muscle and skin of patients before and after diuretic therapy were significantly higher than in healthy subjects (18.3±2.5 and 21.1±2.3 mmol/L). Conclusions 23Na-MRI shows accumulation of Na+ in muscle and skin in patients with acute heart failure. Diuretic treatment can mobilize this Na+-deposition; however, contrary to expectations, water and Na+-mobilization are poorly correlated. PMID:26501774

  20. Sodium-23 magnetic resonance imaging during and after transient cerebral ischemia: multinuclear stroke protocols for double-tuned 23Na/1H resonator systems

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Ansar, Saema; Handwerker, Eva

    2012-11-01

    A double-tuned 23Na/1H resonator system was developed to record multinuclear MR image data during and after transient cerebral ischemia. 1H-diffusion-, 1H perfusion, 1H T2-, 1H arterial blood flow- and 23Na spin density-weighted images were then acquired at three time points in a rodent stroke model: (I) during 90 min artery occlusion, (II) directly after arterial reperfusion and (III) one day after arterial reperfusion. Normal 23Na was detected in hypoperfused stroke tissue which exhibited a low 1H apparent diffusion coefficient (ADC) and no changes in 1H T2 relaxation time during transient ischemia, while 23Na increased and ADC values recovered to normal values directly after arterial reperfusion. For the first time, a similar imaging protocol was set-up on a clinical 3T MRI site in conjunction with a commercial double-tuned 1H/23Na birdcage resonator avoiding a time-consuming exchange of resonators or MRI systems. Multinuclear 23Na/1H MRI data sets were obtained from one stroke patient during both the acute and non-acute stroke phases with an aquisition time of 22 min. The lesion exhibiting low ADC was found to be larger compared to the lesion with high 23Na at 9 h after symptom onset. It is hoped that the presented pilot data demonstrate that fast multinuclear 23Na/1H MRI preclinical and clinical protocols can enable a better understanding of how temporal and regional MRI parameter changes link to pathophysiological variations in ischemic stroke tissue.

  1. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  2. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    SciTech Connect

    Wolff, S.D.; Eng, C.; Balaban, R.S. )

    1988-10-01

    The present study characterizes the {sup 31}P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the {sup 31}P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises {approximately}30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by {sup 23}Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content.

  3. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    NASA Astrophysics Data System (ADS)

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  4. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into

  5. Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron.

    PubMed

    Fujibuchi, Toshioh; Yamaguchi, Ichiro; Kasahara, Tetsuharu; Iimori, Takashi; Masuda, Yoshitada; Kimura, Ken-ichi; Watanabe, Hiroshi; Isobe, Tomonori; Sakae, Takeji

    2009-07-01

    A medical compact cyclotron produces about 10(15) neutrons per day along with 100 GBq of (18)F. Therefore, it is important to establish radiation safety guidelines on residual radioactivity for routine operation, maintenance work, and decommissioning. Thus, we developed a simple method for measuring the thermal neutrons in a cyclotron room. In order to verify the feasibility of our proposed method, we measured the thermal neutron distribution around a cyclotron by using the activation of (23)Na in salt. We installed 78 salt dosimeters in the cyclotron room with a 50 cm mesh. The photopeak of (24)Na was measured, and the neutron flux distribution was estimated. Monitoring the neutron flux distribution in a cyclotron room appears to be useful for not only obtaining an accurate estimate of the distribution of induced radioactivity, but also optimizing the shield design for radiation safety in preparation for the decommissioning process.

  6. The 12C(12C,α)20Ne and 12C(12C,p)23Na reactions at the Gamow peak via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Guardo, L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-05-01

    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  7. Sodium Visibility and Quantitation in Intact Bovine Articular Cartilage Using High Field 23Na MRI and MRS

    NASA Astrophysics Data System (ADS)

    Shapiro, Erik M.; Borthakur, Arijitt; Dandora, Rahul; Kriss, Antigone; Leigh, John S.; Reddy, Ravinder

    2000-01-01

    Noninvasive methods of detecting cartilage degeneration can have an impact on identifying the early stages of osteoarthritis. Accurate measurement of sodium concentrations within the cartilage matrix provides a means for analyzing tissue integrity. Here a method is described for quantitating sodium concentration and visibility in cartilage, with general applications to all tissue types. The sodium concentration in bovine patellar cartilage plugs was determined by three different methods: NMR spectroscopy of whole cartilage plugs, NMR spectroscopy of liquefied cartilage in concentrated HCl, and inductively coupled plasma emission spectroscopy. Whole bovine patellae were imaged with relaxation normalized calibration phantoms to ascertain sodium concentrations inside the articular cartilage. Sodium concentrations in intact articular cartilage were found to range from ∼200 mM on the edges to ∼390 mM in the center, with an average of ∼320 mM in five separate bovine patellae studied. In essence, we have created sodium distribution maps of the cartilage, showing for the first time, spatial variations of sodium concentration in intact cartilage. This average concentration measurement correlates very well with the values obtained from the spectroscopic methods. Furthermore, sodium was found to be 100% NMR visible in cartilage plugs. Applications of this method in diagnosing and monitoring treatment of osteoarthritis are discussed.

  8. Multiparametric Magnetic Resonance Imaging, Spectroscopy and Multinuclear (23Na) Imaging Monitoring of Preoperative Chemotherapy for Locally Advanced Breast Cancer

    PubMed Central

    Jacobs, Michael A.; Stearns, Vered; Wolff, Antonio C.; Macura, Katarzyna; Argani, Pedram; Khouri, Nagi; Tsangris, Theodore; Barker, Peter B.; Davidson, Nancy E.; Bhujwalla, Zaver M.; Bluemke, David A.; Ouwerkerk, Ronald

    2010-01-01

    Rationale and Objectives We conducted a prospective study to investigate using multiparametric and multinuclear magnetic resonance imaging(MRI) during preoperative systemic treatment(PST) for locally advanced breast cancer. Methods Women with operable stage II or III breast cancer who received PST were studied using dynamic-contrast-enhanced(DCE)-MRI, spectroscopy(MRS), and (23Na)sodium MR. Quantitative metrics of choline peak signal-to-noise ratios(SNR), total sodium concentration(TSC;mM), tumor volumes and Response Evaluation Criteria In Solid Tumors (RECIST) were determined and compared to final pathological result with ROC analysis. Hormonal markers were investigated. Statistical significance was set at p<0.05. Results Eighteen(n=18) eligible women were studied. Fifteen(n=15) responded to therapy, four(22%) with pathological-complete-response(pCR) and eleven(61%) with a pathological-partial-response(pPR). Three patients(17%) had no response(pNR). Among ER+, HER2+, and Triple Negative(TN) phenotypes, observed frequencies of pCR, pPR, and pNR were 2/5/0, 1/4/0, and 1/1/3, respectively. Responders(pCR and pPR) had the largest reduction in choline SNR (35%:7.2±2.3 to 4.6±2;p<0.01) compared to pNR(11%:8.4±2.7 to 7.5±3.6;p=0.13) after the first cycle. TSC significantly decreased in responders(27%:66±18 to 48.4±8mM;p=0.01), while there was little change in non-responders(51.7±7.6 to 56.5±1.6;p=0.50). Lesion volume decreased in responders(40%:78±78 to 46±51mm3;p=0.01) and nonresponders(21%:100±104 to 79.2±87 mm3;p=0.23) after the first cycle. The largest reduction in RECIST occurred after the first treatment in responders(18%:24.5±20 to 20.2±18mm;p=0.01) with a slight decrease in tumor diameter noted in nonresponders(17%;23±19 to 19.2±19.1mm;p=0.80). Conclusion Multiparametric and Multinuclear imaging parameters were significantly reduced after the first cycle of PST in responders, specifically, Choline SNR and Sodium. These new surrogate radiological

  9. Sub-millisecond (125)Te NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum.

    PubMed

    Levin, E M; Cui, J-F; Schmidt-Rohr, K

    2016-09-01

    (125)Te NMR spectra and spin-lattice relaxation times, T1, have been measured for several GeTe-based materials with Te excess. The spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excess of Te, about 15% of the material exhibits a Knight shift of ≥4500ppm and a T1 of only 0.3ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.

  10. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  11. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-06

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry.

  12. High-resolution solid-state NMR of quadrupolar nuclei

    PubMed Central

    Meadows, Michael D.; Smith, Karen A.; Kinsey, Robert A.; Rothgeb, T. Michael; Skarjune, Robert P.; Oldfield, Eric

    1982-01-01

    We report the observation of high-resolution solid-state NMR spectra of 23Na (I = [unk]), 27Al (I = [unk]) and 51V (I = [unk]) in various inorganic systems. We show that, contrary to popular belief, relatively high-resolution (≈10 ppm linewidth) spectra may be obtained from quadrupolar systems, in which electric quadrupole coupling constants (e2qQ/h) are in the range ≈1-5 MHz, by means of observation of the (½, -½) spin transition. The (½, -½) transition for all nonintegral spin quadrupolar nuclei (I = [unk], [unk], [unk], or [unk]) is only normally broadened by dipolar, chemical shift (or Knight shift) anisotropy or second-order quadrupolar effects, all of which are to a greater or lesser extent averaged under fast magic-angle sample rotation. In the case of 23Na and 27Al, high-resolution spectra of 23NaNO3 (e2qQ/h ≈300 kHz) and α-27Al2O3 (e2qQ/h ≈2-3 MHz) are presented; in the case of 51V2O5 (e2qQ/h ≈800 kHz), rotational echo decays are observed due to the presence of a ≈103-ppm chemical shift anisotropy. The observation of high-resolution solid-state spectra of systems having spins I = [unk], [unk], and [unk] in asymmetric environments opens up the possibility of examining about two out of three nuclei by solid-state NMR that were previously thought of as “inaccessible” due to the presence of large (a few megahertz) quadrupole coupling constants. Preliminary results for an I = [unk] system, 93Nb, having e2qQ/h ≈19.5 MHz, are also reported. PMID:16593165

  13. Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy.

    PubMed

    Wang, Sen; Sun, Peng; Zhang, Rongrong; Lu, Ang; Liu, Maili; Zhang, Lina

    2017-03-06

    As a breakthrough to the traditional (1)H diffusometry, the interaction of cations with cellulose is investigated via(7)Li and (23)Na PFG-SE NMR. The diffusion coefficient of Li(+) decreases more than that of Na(+) with the addition of cellulose, which indicates a stronger binding of LiOH with the macromolecule. Therefore, a new, facile, accurate and repeatable method to characterize ion/polymer interactions is established.

  14. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  15. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  16. Chemical Twinning of Salt and Metal in the Subnitridometalates Ba23 Na11 (MN4 )4 with M=V, Nb, Ta.

    PubMed

    Wörsching, Matthias; Tambornino, Frank; Datz, Stefan; Hoch, Constantin

    2016-08-26

    The subnitridometalates Ba23 Na11 (MN4 )4 (M=V, Nb, Ta) crystallize in a new structure type, which shows ionic ortho-nitridometalate anions and motifs from simple (inter)metallic packings: Na-centered [Na8 ] cubes as cutouts of the bcc structure of elemental Na and Na-centered [Ba10 Na2 ] icosahedra as found in Laves phases, for example. Single-crystal and powder X-ray diffraction studies in combination with quantum-chemical calculations of the electronic structure and Raman spectroscopy support the characterization of the subnitridometalates as "chemical twins". They consist of independent building units with locally prevalent ionic or metallic bonding in an overall metallic compound.

  17. 20 Ne(p, γ)22Na and 22Ne(p, γ)23Na Reaction Study with 5U-4 St. Ana Accelerator

    NASA Astrophysics Data System (ADS)

    Lyons, Stephanie; Goerres, Joachim; Jung, Hyo Soon; Robertson, Dan; Setoodehnia, Kiana; Stech, Ed; Wiescher, Michael; Kontos, Antonios

    2014-09-01

    Hydrogen burning can proceed via the NeNa cycle in stars whose stellar temperature is greater than 0.05GK. The NeNa cycle is important for the nucleosynthesis of Ne, Na, and Mg isotopes. Direct capture and the high energy tail of a subthreshold resonance dominate the stellar reaction rate for 20Ne(p, γ)21Na. The strength of the non-resonant contributions were measured relative to the resonance at 1.17 MeV. Due to conflicting results, we have remeasured the strength of this resonance relative to the 1.28 MeV resonance in 22Ne(p, γ)23Na using implanted neon targets. Study of this reaction has continued using the newly commissioned 5U-4 St. Ana Accelerator and re-furbished Rhinoceros Gas Target.

  18. Low-Background, High-Efficiency Setup for the Study of 22Ne(p, γ)23Na Reaction at Low Energy

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico

    Measuring cross sections of astrophysical interest requires a low-background, high-efficiency setup and a very pure target. The Laboratory for Underground Nuclear Astrophysics (LUNA) developed a dedicated setup for the cross section measurement of the 22Ne(p, γ)23Na reaction. A windowless gas target and a six-fold, optically segmented BGO detector surrounding the interaction volume were used. A calorimetric system was developed for the real-time measurement of the beam current. Three recently measured resonances at 156.2, 189.5, and 259.7 keV and the possible resonances at 71 and 105 keV have been investigated with high statistics. Direct capture measurements were carried out as well.

  19. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  20. A microcoil NMR probe for coupling microscale HPLC with on-line NMR spectroscopy.

    PubMed

    Subramanian, R; Kelley, W P; Floyd, P D; Tan, Z J; Webb, A G; Sweedler, J V

    1999-12-01

    An HPLC NMR system is presented that integrates a commercial microbore HPLC system using a 0.5-mm column with a 500-MHz proton NMR spectrometer using a custom NMR probe with an observe volume of 1.1 microL and a coil fill factor of 68%. Careful attention to capillary connections and NMR flow cell design allows on-line NMR detection with no significant loss in separation efficiency when compared with a UV chromatogram. HPLC NMR is performed on mixtures of amino acids and small peptides with analyte injection amounts as small as 750 ng; the separations are accomplished in less than 10 min and individual NMR spectra are acquired with 12 s time resolution. Stopped-flow NMR is achieved by diversion of the chromatographic flow after observation of the beginning of the analyte band within the NMR flow cell. Isolation of the compound of interest within the NMR detection cell allows multidimensional experiments to be performed. A stopped-flow COSY spectrum of the peptide Phe-Ala is acquired in 3.5 h with an injected amount of 5 micrograms.

  1. Monitoring of neoadjuvant chemotherapy using multiparametric, 23Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advanced breast cancer

    PubMed Central

    Ouwerkerk, Ronald; Wolff, Antonio C.; Gabrielson, Edward; Warzecha, Hind; Jeter, Stacie; Bluemke, David A.; Wahl, Richard; Stearns, Vered

    2011-01-01

    We prospectively investigated using advanced magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) to identify radiological biomarkers for treatment response in patients receiving preoperative systemic therapy (PST) for locally advanced breast cancer. Patients with a stage II or III breast cancer receiving PST were selected and underwent positron emission tomography (PET), magnetic resonance imaging (MRI), and breast biopsies at baseline and after the first cycle of PST (days 7–8) during the full course of treatment. PET/CT was acquired after injection of 2-deoxy-2-[18F]-fluoro-D-glucose (18FDG, 0.22 mCi/kg) and quantified with standardized uptake value assessment (SUV). Diagnostic breast MRI and sodium (23Na) was acquired at 1.5 T. Total tissue sodium concentration (TSC), response criteria in solid tumors (RECIST), and volumes were quantified. Treatment response was determined by pathological assessment at surgery. Immunohistochemistry values of the proliferative index (Ki-67) were performed on biopsy specimens. Six of nineteen eligible women (43 ± 11 years) who received PST underwent radiological imaging of 18FDG-PET/CT and MRI for at least two cycles of treatment. Five patients had a pathological partial response (pPR) and one had pathological non-response (pNR). TSC decreased 21% in responders with increases in the non-responder (P = 0.03). Greater reduction in SUV was observed in responders (38%) compared to the non-responder (22%; P = 0.03). MRI volumes decreased after cycle 1 by 42% (responders) and 35% (non-responder; P = 0.11). Proliferation index Ki-67 declined in responders in the first cycle (median = 47%, range = 29–20%), but increased (4%) in the non-responder. Significant decreases in TSC, SUV, and Ki-67 were observed in responders with increases in TSC and Ki-67 in non-responders. Our results demonstrate the feasibility of using multi-modality proton, 23Na MRI, and PET/CT metrics as radiological

  2. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  3. Hyperpolarized 131Xe NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented.

  4. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  5. Introducing the gNMR Program in an Introductory NMR Spectrometry Course to Parallel Its Use by Spectroscopists

    ERIC Educational Resources Information Center

    Rummey, Jackie M.; Boyce, Mary C.

    2004-01-01

    An approach that is useful to any introductory nuclear magnetic resonance (NMR) spectroscopy course is developed. This approach to teaching NMR spectrometry includes spectral simulation along with the traditional elements of hands-on instrument use and structure elucidation to demonstrate the connection between simulating a spectrum and structure…

  6. NMR characterization of polymers: Review and update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  7. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  8. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  9. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    NASA Astrophysics Data System (ADS)

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-01

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as 7Li+, 23Na+, 25Mg2+, 35Cl-, 39K+, or 133Cs+. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  10. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water.

    PubMed

    Carof, Antoine; Salanne, Mathieu; Charpentier, Thibault; Rotenberg, Benjamin

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as (7)Li(+), (23)Na(+), (25)Mg(2+), (35)Cl(-), (39)K(+), or (133)Cs(+). Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  11. NMR studies of hydrofluorocarbon-cation interactions and cation migrations on adsorption of hydrofluorocarbon-134 on zeolites NaY and CsY

    SciTech Connect

    Grey, C.P.; Poshni, F.I.; Ba, Y.; Corbin, D.R.

    1996-12-31

    Unlike the syntheses of the CFC refrigerants and blowing agents, the syntheses of the more environmentally-friendly hydrofluorocarbons (HFCs) are more complex, and involve many more steps. Unwanted HFC/hydrochlorofluorocarbons (HCFCs) are often produced during the reactions and the purification of the products remains a concern. {sup 23}Na and {sup 23}Na/{sup 19}F double resonance MAS NMR methods have been used to study the binding of hydrofluorocarbon-134 (CF{sub 2}HCF{sub 2}H) in zeolites NaY and CsY. The interaction of HFC-134 with the sodium cations is so strong that the sodium cations in the sodalite cages (site I{prime}) migrate into the supercages to bind to the hydrofluorocarbon molecules.

  12. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  13. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  14. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  15. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  16. Decay Properties of {sup 266}Bh and {sup 262}Db Produced in the {sup 248}Cm+{sup 23}Na Reaction - Further Confirmation of the {sup 278}113 Decay Chain

    SciTech Connect

    Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Ozeki, K.; Kudou, Y.; Yoneda, A.; Ichikawa, T.; Katori, K.; Yoshida, A.; Sato, N.; Sumita, T.; Fujimori, Y.; Tokanai, F.; Goto, S.; Ideguchi, E.; Kasamatsu, Y.; Koura, H.; Tsukada, K.; Komori, Y.

    2010-06-01

    Decay properties of an isotope {sup 266}Bh and its daughter nucleus {sup 262}Db produced by the {sup 248}Cm({sup 23}Na,5n) reaction were studied by using a gas-filled recoil separator coupled with a position-sensitive semiconductor detector. {sup 266}Bh was clearly identified from the correlation of the known nuclide, {sup 262}Db. The obtained decay properties of {sup 266}Bh and {sup 262}Db are consistent with those observed in the {sup 278}113 chain by RIKEN collaboration, which provided further confirmation of the discovery of {sup 278}113.

  17. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  18. Combining insights from solid-state NMR and first principles calculation: applications to the 19F NMR of octafluoronaphthalene.

    PubMed

    Robbins, Andrew J; Ng, William T K; Jochym, Dominik; Keal, Thomas W; Clark, Stewart J; Tozer, David J; Hodgkinson, Paul

    2007-05-21

    Advances in solid-state NMR methodology and computational chemistry are applied to the (19)F NMR of solid octafluoronaphthalene. It is demonstrated experimentally, and confirmed by density functional theory (DFT) calculations, that the spectral resolution in the magic-angle spinning spectrum is limited by the anisotropy of the bulk magnetic susceptibility (ABMS). This leads to the unusual observation that the resolution improves as the sample is diluted. DFT calculations provide assignments of each of the peaks in the (19)F spectrum, but the predictions are close to the limits of accuracy and correlation information from 2-D NMR is invaluable in confirming the assignments. The effects of non-Gaussian lineshapes on the use of 2-D NMR for mapping correlations of spectral frequencies (e.g. due to the ABMS) are also discussed.

  19. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy.

    PubMed

    Stintzing, Florian C; Conrad, Jürgen; Klaiber, Iris; Beifuss, Uwe; Carle, Reinhold

    2004-02-01

    Four betacyanin pigments were analysed by LC NMR and subjected to extensive NMR characterisation after isolation. Previously, low pH values were applied for NMR investigations of betalains resulting in rapid degradation of the purified substances thus preventing extensive NMR studies. Consequently, up to now only one single (13)C NMR spectrum of a betalain pigment, namely that of neobetanin (=14,15-dehydrobetanin), was available. Because of its sufficient stability under highly acidic conditions otherwise detrimental for betacyanins, this pigment remained an exemption. Since betalains are most stable in the pH range of 5-7, a new solvent system has been developed allowing improved data acquisition through improved pigment stability at near neutral pH. Thus, not only (1)H, but for the first time also partial (13)C data of betanin, isobetanin, phyllocactin and hylocerenin isolated from red-purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose, Cactaceae] could be indirectly obtained by gHSQC- and gHMQC-NMR experiments.

  20. Topotactic transformations of sodalite cages: synthesis and NMR study of mixed salt-free and salt-bearing sodalites.

    PubMed

    Trill, Henning; Eckert, Hellmut; Srdanov, Vojislav I

    2002-07-17

    A series of mixed sodalite samples, Na(8)[Al(6)Si(6)O(24)]Br(x).(H(3)O(2))(2-x), with the unit cell stoichiometries varying in the 0 < x <2 region, was made by hydrothermal synthesis and subsequently transformed into Na(6+x)[Al(6)Si(6)O(24)]Br(x).(4H(2)O)(2-x) and Na(6+x)[Al(6)Si(6)O(24)]Br(x).circle(2-x) sodalites. Here, circle refers to an empty sodalite cage. The three series, referred hereafter to as the Br/basic, Br/hydro, and Br/dry series, were characterized by powder diffraction X-ray and by (23)Na, (27)Al, and (81)Br magic angle spinning (MAS) NMR and high-resolution triple quantum (TQ) MAS NMR spectroscopy. We determined that incorporation of Br(-) anions is 130 times more preferred than incorporation of H(3)O(2)(-) anions during the formation of sodalite cages, which permitted precise control of the halide content in the solid. Monotonic trends in chemical shifts were observed as a function of cage occupancy, reflecting continuous changes in structural parameters. A linear correlation between (81)Br chemical shift and lattice constant with a slope of -86 ppm/A was observed for all three series. Likewise, (23)Na chemical shifts for Na(+) cations in salt-bearing sodalite cages correlate linearly with the lattice constant. Both results indicate a universal dependence of the (23)Na and (81)Br chemical shifts on the Na-Br distance. The (27)Al chemical shifts of Br/basic and Br/hydro sodalites obey an established relation between delta(cs) and the average T-O-T bond angle of 0.72 ppm/degrees. Br/dry sodalites show two aluminum resonances, characterized by significantly different chemical shifts and quadrupolar interaction parameters. In that series, local symmetry distortions are evident from strong quadrupolar perturbations in the NMR spectra. P(Q) values for (27)Al vary between 0.8 MHz in Br/basic sodalites and 4.4 MHz in the Br/dry series caused by deviations from the tetrahedral symmetry of the salt-free sodalite cages. For (23)Na, P(Q) values of 0.8, 0

  1. Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation

    NASA Astrophysics Data System (ADS)

    Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.

    1989-05-01

    IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.

  2. Development of a magnetic resonance sensor for on-line monitoring of {sup 99}Tc and {sup 23}Na in tank waste cleanup processes: Final report and implementation plan

    SciTech Connect

    Dieckman, S. L.; Jendrzejczyk, J. A.; Raptis, A. C.

    2000-02-24

    In response to US Department of Energy (DOE) requirements for advanced cross-cutting technologies, Argonne National Laboratory is developing an on-line sensor system for the real-time monitoring of {sup 99}Tc and {sup 23}Na in various locations throughout radioactive-waste processing facilities. Based on nuclear magnetic resonance spectroscopy, the highly automated sensor system can provide near-real-time response with minimal sampling. The technology, in the form of a flow-through nuclear-magnetic-resonance-based on-line process sensing and control system, can rapidly monitor {sup 99}Tc speciation and concentration (from 0.1 molar to 10 micro molar) in the feedstocks and eluents of radioactive-waste treatment processes. The system is nonintrusive, capable of withstanding harsh plant environments, and reasonably immune to contaminants. Furthermore, the system is capable of operating over large variations in pH, conductivity, and salinity. This document describes design parameters, results from sensitivity studies, and initial results obtained from oxidation-reduction studies that were conducted on technetium standards and waste specimens obtained from DOE's Hanford site. A cursory investigation of the system's capabilities to monitor {sup 23}Na at high concentrations are also reported, as are descriptions of site requirements, implementation recommendations, and testing techniques.

  3. High radio-frequency field strength nutation NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Franssen, W. M. J.; Rezus, Y. L. A.; Kentgens, A. P. M.

    2016-12-01

    Owing to the introduction of microcoils, high RF field strength nutation NMR is a viable candidate for the study of quadrupolar nuclei with strong quadrupolar couplings, not accessible using contemporary NMR techniques. We show powder 23 Na nutation spectra on sodium nitrite for RF field strengths of up to 1170 kHz, that conform to theoretical predictions. For lanthanum fluoride powder, 139 La nutation spectra taken at elevated RF field amplitudes show clear discrepancies when compared to the theory. These errors are shown to be mainly caused by pulse transients at the end of the pulse, which proved to be detrimental to the shape of the nutation spectra. Using a nutation pulse which ends in a sudden frequency jump, we show that these errors can be reduced, and nutation spectra that conform to theory can be readily acquired. This enables nutation NMR for the study of quadrupolar nuclei with a strong quadrupolar coupling, bridging the gap between NMR, which can only analyse nuclei with a weak to medium quadrupolar coupling, and NQR, were extensive searching for the right quadrupolar frequency is the limiting factor.

  4. The Effect of Magnetic Field Inhomogeneity on the Transverse Relaxation of Quadrupolar Nuclei Measured by Multiple Quantum Filtered NMR

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Kushnir, T.; Knubovets, T.; Itzchak, Y.; Navon, G.

    1997-09-01

    The effects of magnetic fieldsB0andB1inhomogeneities on techniques which are commonly used for the measurements of triple-quantum-filtered (TQF) NMR spectroscopy of23Na in biological tissues are analyzed. The results of measurements by pulse sequences with and without refocusing ofB0inhomogeneities are compared. It is shown that without refocusing the errors in the measurement of the transverse relaxation times by TQF NMR spectroscopy may be as large as 100%, and thus, refocusing of magnetic field inhomogeneity is mandatory. Theoretical calculations demonstrate that without refocusingB0inhomogeneities the spectral width and phase depend on the interpulse time intervals, thus, leading to errors in the measured relaxation times. It is shown that pulse sequences that were used for the refocusing of the magnetic field (B0) inhomogeneity also reduce the sensitivity of the experimental results to radiofrequency (B1) magnetic field inhomogeneity.

  5. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.

    PubMed

    Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P

    2016-02-24

    Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.

  6. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  7. 13C NMR of tunnelling methyl groups

    NASA Astrophysics Data System (ADS)

    Detken, A.

    The dipolar interactions between the protons and the central 13C nucleus of a 13CH3 group are used to study rotational tunnelling and incoherent dynamics of such groups in molecular solids. Single-crystal 13C NMR spectra are derived for arbitrary values of the tunnel frequency upsilon t. Similarities to ESR and 2H NMR are pointed out. The method is applied to three different materials. In the hydroquinone/acetonitrile clathrate, the unique features in the 13C NMR spectra which arise from tunnelling with a tunnel frequency that is much larger than the dipolar coupling between the methyl protons and the 13C nucleus are demonstrated, and the effects of incoherent dynamics are studied. The broadening of the 13C resonances is related to the width of the quasi-elastic line in neutron scattering. Selective magnetization transfer experiments for studying slow incoherent dynamics are proposed. For the strongly hindered methyl groups of L-alanine, an upper limit for upsilon is derived from the 13C NMR spectrum. In aspirinTM (acetylsalicylic acid), incoherent reorientations dominate the spectra down to the lowest temperatures studied; their rate apparently increases with decreasing temperature below 25K.

  8. Planar microcoil-based microfluidic NMR probes

    NASA Astrophysics Data System (ADS)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N. F.; Popovic, R. S.

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 μg sucrose in D 2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  9. Planar microcoil-based microfluidic NMR probes.

    PubMed

    Massin, C; Vincent, F; Homsy, A; Ehrmann, K; Boero, G; Besse, P-A; Daridon, A; Verpoorte, E; de Rooij, N F; Popovic, R S

    2003-10-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120, and 470 nL. The achieved sensitivity enables acquisition of an 1H spectrum of 160 microg sucrose in D2O, corresponding to a proof-of-concept for on-chip NMR spectroscopy. Increase of mass-sensitivity with coil diameter reduction is demonstrated experimentally for planar microcoils. Models that enable quantitative prediction of the signal-to-noise ratio and of the influence of microfluidic channel geometry on spectral resolution are presented and successfully compared to the experimental data. The main factor presently limiting sensitivity for high-resolution applications is identified as being probe-induced static magnetic field distortions. Finally, based on the presented model and measured data, future performance of planar microcoil-based microfluidic NMR probes is extrapolated and discussed.

  10. Optimizing Adiabaticity in NMR

    NASA Astrophysics Data System (ADS)

    Vandermause, Jonathan; Ramanathan, Chandrasekhar

    We demonstrate the utility of Berry's superadiabatic formalism for numerically finding control sequences that implement quasi-adiabatic unitary transformations. Using an iterative interaction picture, we design a shortcut to adiabaticity that reduces the time required to perform an adiabatic inversion pulse in liquid state NMR. We also show that it is possible to extend our scheme to two or more qubits to find adiabatic quantum transformations that are allowed by the control algebra, and demonstrate a two-qubit entangling operation in liquid state NMR. We examine the pulse lengths at which the fidelity of these adiabatic transitions break down and compare with the quantum speed limit.

  11. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  12. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  13. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  14. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  15. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  16. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  17. Autonomous driving in NMR.

    PubMed

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Zellweger Spectrum

    MedlinePlus

    ... Resources Conference News Contact Us Donate The Zellweger Spectrum Zellweger Syndrome, Neonatal Adrenoleukodystrophy (NALD), and Infantile Refsum’s ... of severity of disease. What causes the Zellweger spectrum of diseases? As we mentioned, disorders of the ...

  19. Simultaneously cycled NMR spectroscopy.

    PubMed

    Parish, David M; Szyperski, Thomas

    2008-04-09

    Simultaneously cycled (SC) NMR was introduced and exemplified by implementing a set of 2-D [1H,1H] SC exclusive COSY (E.COSY) NMR experiments, that is, rf pulse flip-angle cycled (SFC), rf pulse phase cycled (SPC), and pulsed field gradient (PFG) strength cycled (SGC) E.COSY. Spatially selective 1H rf pulses were applied as composite pulses such that all steps of the respective cycles were affected simultaneously in different slices of the sample. This increased the data acquisition speed for an n-step cycle n-fold. A high intrinsic sensitivity was achieved by defining the cycles in a manner that the receiver phase remains constant for all steps of the cycle. Then, the signal resulting from applying the cycle corresponded to the sum of the signals from all steps of the cycle. Hence, the detected free induction decay did not have to be separated into the contributions arising from different slices, and read-out PFGs, which not only greatly reduce sensitivity but also negatively impact lineshapes in the direct dimension, were avoided. The current implementation of SFC E.COSY reached approximately 65% of the intrinsic sensitivity of the conventional phase cycled congener, making this experiment highly attractive whenever conventional data acquisition is sampling limited. Highly resolved SC E.COSY yielding accurate 3J-coupling values was recorded for the 416 Da plant alkaloid tomatidine within 80 min, that is, 12 times faster than with conventional phase cycled E.COSY. SC NMR is applicable for a large variety of NMR experiments and thus promises to be a valuable addition to the arsenal of approaches for tackling the NMR sampling problem to avoid sampling limited data acquisition.

  20. The NMR investigation of the electromagnetic irradiation effects on bacteria

    NASA Astrophysics Data System (ADS)

    Drokina, T. V.; Lisin, V. V.; Popova, L. U.; Balandina, A. N.; Bitekhtina, M. A.

    2006-12-01

    The luminous marine bacteria (Photobacterium leiognathi, strain 54) are influenced by a nonthermal-intensity millimeter electromagnetic field, which was studied by nuclear magnetic resonance (NMR). It is shown that the proton spectrum of luminous bacteria depends on the electromagnetic irradiation effect (v = 42.2 GHz).

  1. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C.; Earl, W.L.

    1992-09-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  2. Vibrational and NMR probe studies of S Az-1 montmorillonite

    SciTech Connect

    Johnston, C.T.; Erickson, C. . Dept. of Soil Science); Earl, W.L. )

    1992-01-01

    This paper reports a study of the interactions of exchangeable metal cations with mineral surfaces using a combined spectroscopic/macroscopic approach. Objectives were to examine the use of water molecules and metal cations as molecular probes of smectite water interactions. The {nu}{sub 2} mode of water is used as a diagnostic vibrational band. An FTIR-gravimetric cell is used to examine the FTIR spectra of water on homoionic smectites. The {sup 23}Na NMR resonance is used to probe metal-water interactions on the surface. Results show that there are strong changes in both position and absorption coefficient of the H-O-H bending mode of water sorbed on SAz-1 montmorillonite as a function of water content. These changes are attributed to strong electrostatic forces and mobility changes that occur when the water in the interlammelar space is associated with the metal ion. The clay surface is viewed as having at least two distinct sites to which a hydrated Na{sup +} can bind. 32 refs, 5 figs. (DLC)

  3. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  4. Pulse Electron Double Resonance Detected Multinuclear NMR Spectra of Distant and Low Sensitivity Nuclei and Its Application to the Structure of Mn(II) Centers in Organisms.

    PubMed

    Bruch, Eduardo M; Warner, Melissa T; Thomine, Sébastien; Tabares, Leandro C; Un, Sun

    2015-10-29

    The ability to characterize the structure of metal centers beyond their primary ligands is important to understanding their chemistry. High-magnetic-field pulsed electron double resonance detected NMR (ELDOR-NMR) is shown to be a very sensitive approach to measuring the multinuclear NMR spectra of the nuclei surrounding Mn(II) ions. Resolved spectra of intact organisms with resonances arising from (55)Mn, (31)P, (1)H, (39)K, (35)Cl, (23)Na, and (14)N nuclei surrounding Mn(2+) centers were obtained. Naturally abundant cellular (13)C could be routinely measured as well. The amplitudes of the (14)N and (2)H ELDOR-NMR spectra were found to be linearly dependent on the number of nuclei in the ligand sphere. The evolution of the Mn(II) ELDOR-NMR spectra as a function of excitation time was found to be best described by a saturation phenomenon rather than a coherently driven process. Mn(II) ELDOR-NMR revealed details about not only the immediate ligands to the Mn(II) ions but also more distant nuclei, providing a view of their extended structures. This will be important for understanding the speciation and chemistry of the manganese complexes as well as other metals found in organisms.

  5. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  6. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  7. β-NMR

    NASA Astrophysics Data System (ADS)

    Morris, Gerald D.

    2014-01-01

    The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li + ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2-200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3-300 K) and magnetic fields (0-9 T).

  8. 125Te NMR study of IrTe 2

    NASA Astrophysics Data System (ADS)

    Mizuno, Kiyoshi; Magishi, Ko-ichi; Shinonome, Yasuaki; Saito, Takahito; Koyama, Kuniyuki; Matsumoto, Nobuhiro; Nagata, Shoichi

    2002-03-01

    We have measured 125Te NMR of IrTe2 in order to elucidate the origin of the anomalous behaviors in electrical and magnetic properties around 270 K. In high-temperature region, the NMR spectrum exhibits a sharp line. On the other hand, in low-temperature region, the spectrum shifts to higher magnetic field and splits into three lines. Also, the nuclear spin-lattice relaxation rate, 1/T1, is proportional to the temperature in both temperature sides; Korringa-like behavior which is characteristic of a metallic state. From the T dependences of the spectrum and 1/T1 around 270 K, it is suggested that these anomalous behaviors may not be due to the charge density wave formation but be caused by a kind of lattice distortion at low temperature.

  9. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  10. BetaNMR Experiments on Liquid Samples

    NASA Astrophysics Data System (ADS)

    Gottberg, A.; Stachura, M.; Hemmingsen, L.; Macfarlane, W. A.; Bio-Beta-Nmr Collaboration; Collaps Collaboration

    2016-09-01

    In 2012 betaNMR spectroscopy was successfully applied on liquid samples; an achievement which opens new opportunities in the fields of chemistry and biochemistry. This project was motivated by the need for finding a new experimental approach to directly study biologically highly relevant metal ions, such as Mg(II), Cu(I), Ca(II), and Zn(II), which are silent in most spectroscopic techniques. The resonance spectrum recorded for Mg-31 implanted into an ionic liquid sample showed two resonances which originate from Mg ions occupying two different coordination geometries, illustrating that this technique can discriminate between different structures. This proof-of-principle result lays the foundation for studies of these metal ions at low concentrations and in environments of biological relevance where other methods are silent. The prototype chamber for bio-betaNMR allows for experiments not only on different samples such as: liquids, gels and solids, but also operates at different vacuum environments. In order to exploit the potential of betaNMR on liquid samples, tests with polarized beams of Mg-29 and Mg-31 have recently been performed at the ISAC facility at TRIUMF.

  11. NMR studies of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Lewis E.

    2011-12-01

    Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.

  12. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  13. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  14. 31P NMR spectroscopy of in vivo tumors

    NASA Astrophysics Data System (ADS)

    Ng, T. C.; Evanochko, W. T.; Hiramoto, R. N.; Ghanta, V. K.; Lilly, M. B.; Lawson, A. J.; Corbett, T. H.; Durant, J. R.; Glickson, J. D.

    A probe, suitable for any wide-bore NMR spectrometer, was constructed for monitoring high-resolution spectra of in vivo subcutaneously implanted tumors in mice. Preliminary studies of a variety of murine tumors (MOPC 104E myeloma, Dunn osteosarcoma, colon-26, ovarian M5, and mammary adenocarcinoma as well as human colon, mammary, and lung tumors in athymic mice) indicate that the 31P NMR spectrum is a sensitive monitor of progressive metabolic changes that occur during untreated tumor growth and an early indicator of tumor response to chemotherapy, hyperthermia, and X radiation. Response to each of these therapeutic modalities is accompanied by distinctly different spectral changes.

  15. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  16. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  17. Magic Angle Spinning NMR Metabolomics

    SciTech Connect

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  18. Irreducible Tensor Operators and Multiple-Quantum NMR.

    NASA Astrophysics Data System (ADS)

    Hutchison, Wayne Douglas

    The aim of the work detailed in this thesis, is to provide a concise, and illuminating, mathematical description of multiple quantum nuclear magnetic resonance (MQNMR) experiments, on essentially isolated (non-coupled) nuclei. The treatment used is based on irreducible tensor operators, which form an orthonormal basis set. Such operators can be used to detail the state of the nuclear ensemble (density matrix) during every stage, preparation, evolution and detection, of a MQNMR experiment. Moreover, such operators can be also used to provide a rigorous analysis of pulsed NMR experiments, on oriented nuclei at low temperatures, where the initial density matrix is far from trivial. The specific topics dealt with in this thesis are as follows. In the first place the properties of irreducible tensor operators are discussed in some detail. In particular, symmetric and anti-symmetric combinations of tensor operators are introduced, to reflect the Hermitian nature of the nuclear Hamiltonian and density matrix. Secondly, the creation of multipolar nuclear states using hard, non-selective rf pulses, is detailed for spin I = 1, 3/2, 2 and 5/2 nuclei, subject to an axially symmetric quadrupole interaction. Results are also given for general I. Thirdly, some experimental results, verifying the production of a triple quantum NMR state, for the I = 3/2 ^{23}Na nuclei in a single crystal of NaIO_4 are presented and discussed. Fourthly, the treatment of MQNMR experiments is extended to the low temperature regime where the initial density matrix includes Fano statistical tensors other than rank one. In particular, it is argued that MQNMR techniques could be used to enhance the anisotropy of gamma-ray emission from oriented nuclei at low temperatures. Fifthly, the effect of a more general quadrupole Hamiltonian (including an asymmetry term) on MQNMR experiments is considered for spins I = 1 and 3/2. In particular, it is shown that double quantum states evolve to give longitudinal NMR

  19. Heteronuclear NMR studies of cobalamins. 11. sup 15 N NMR studies of the axial nucleotide and amide side chains of cyanocobalamin and dicyanocobamides

    SciTech Connect

    Brown, K.; Brooks, H.B.; Xiang, Zou ); Victor, M.; Ray, A. ); Timkovich, R. )

    1990-11-28

    Spectroscopic and thermodynamic evidence for the structure of cobalamines and dicyanocobalamin (CN){sub 2}Cbl have been previously reported. The structure indicated the occurrence of the so-called tuck-in species. Further observations and characterization of the tuck-in species of (CN){sub 2}Cbl by {sup 15}N NMR spectroscopy are presented herein. These results represent the first observation of the {sup 15}N NMR spectrum of benzimidazole nucleotide of cobalamins. The first NMR observation of the amide protons of cobalamins and their connectivity to the amide nitrogens are also reported. 50 refs., 2 figs., 2 tabs.

  20. NMR study of black-phase in SmS

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yamada, H.; Ueda, K.; Mito, T.; Haga, Y.

    2015-03-01

    We report the result of the 33S nuclear magnetic resonance (NMR) measurement on the nonmagnetic semiconductor SmS at ambient pressure. For this measurement, the 33S isotope enriched powder sample of SmS was prepared to increase the 33S NMR intensity. We have attempted 33S NMR measurement on SmS and successfully observed the signal of it. With decreasing temperature, the spectrum measured at the constant magnetic field shifted to lower frequency and became weakly temperature dependent below 50 K. The presence of the energy gap was microscopically established by the rapid decrease in the nuclear spin-lattice relaxation rate 1/T1. The activation energy was deduced to be 625 K from an Arrhenius plot of T1.

  1. Automatic analysis of quantitative NMR data of pharmaceutical compound libraries.

    PubMed

    Liu, Xuejun; Kolpak, Michael X; Wu, Jiejun; Leo, Gregory C

    2012-08-07

    In drug discovery, chemical library compounds are usually dissolved in DMSO at a certain concentration and then distributed to biologists for target screening. Quantitative (1)H NMR (qNMR) is the preferred method for the determination of the actual concentrations of compounds because the relative single proton peak areas of two chemical species represent the relative molar concentrations of the two compounds, that is, the compound of interest and a calibrant. Thus, an analyte concentration can be determined using a calibration compound at a known concentration. One particularly time-consuming step in the qNMR analysis of compound libraries is the manual integration of peaks. In this report is presented an automated method for performing this task without prior knowledge of compound structures and by using an external calibration spectrum. The script for automated integration is fast and adaptable to large-scale data sets, eliminating the need for manual integration in ~80% of the cases.

  2. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  3. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  4. Pulse-assisted homonuclear dipolar recoupling of half-integer quadrupolar spins in magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Edén, Mattias; Annersten, Hans; Zazzi, Åsa

    2005-07-01

    We demonstrate numerically and experimentally that zero-quantum homonuclear dipolar recoupling techniques employing rotor-synchronized 180° pulses, previously introduced for spin-1/2 applications, are useful also for magnetization transfers between half-integer quadrupolar nuclei in rotating solids. The recoupling sequences are incorporated as mixing periods in two-dimensional experimental protocols, that correlate either single-quantum coherences of coupled spins, or triple-quantum with single-quantum coherences for improving spectral resolution. We present 23Na and 27Al NMR experiments on powders of sodium sulphite [Na 2SO 3], YAG [Y 3Al 5O 12] and a synthetic chlorite mineral [Mg 4.5Al 3Si 2.5O 10(OH) 8].

  5. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  6. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  7. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  8. NMR study of strontium binding by a micaceous mineral.

    PubMed

    Bowers, Geoffrey M; Ravella, Ramesh; Komarneni, Sridhar; Mueller, Karl T

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na(4)Mg(6)Al(4)Si(4)O(20)F(4). Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 degrees C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a (1)H-(87)Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by (87)Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct (87)Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  9. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  10. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries.

    PubMed

    Pecher, Oliver; Bayley, Paul M; Liu, Hao; Liu, Zigeng; Trease, Nicole M; Grey, Clare P

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  11. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  12. Frequency-domain method based on the singular value decomposition for frequency-selective NMR spectroscopy.

    PubMed

    Stoica, Petre; Sandgren, Niclas; Selén, Yngve; Vanhamme, Leentje; Van Huffel, Sabine

    2003-11-01

    In several applications of NMR spectroscopy the user is interested only in the components lying in a small frequency band of the spectrum. A frequency selective analysis deals precisely with this kind of NMR spectroscopy: parameter estimation of only those spectroscopic components that lie in a preselected frequency band of the NMR data spectrum, with as little interference as possible from the out-of-band components and in a computationally efficient way. In this paper we introduce a frequency-domain singular value decomposition (SVD)-based method for frequency selective spectroscopy that is computationally simple, statistically accurate, and which has a firm theoretical basis. To illustrate the good performance of the proposed method we present a number of numerical examples for both simulated and in vitro NMR data.

  13. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project during the past reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have been reinvestigating the prospects of using zero field NMR types of techniques for two dimensional NMR structural analysis of complex organic solids such as coals. Currently MAS spin rates are not sufficiently high to permit zero field in high field NMR for protons in typical organic solids, however they are compatible with {sup 13}C-{sup 13}C dipolar couplings. In collaboration with Dr. Robert Tycko of AT T Bell Laboratories, inventor of the zero field in high field NMR method, the authors have performed the first zero field in high field {sup 13}C NMR experiments. These results are described. 9 refs., 2 figs.

  14. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  15. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  16. Understanding NMR Chemical Shifts

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.

    1996-10-01

    The NMR chemical shift serves as a paradigm for molecular electronic properties. We consider the factors that determine the general magnitudes of the shifts, the state of the art in theoretical calculations, the nature of the shielding tensor, and the multidimensional shielding surface that describes the variation of the shielding with nuclear positions. We also examine the nature of the intermolecular shielding surface as a general example of a supermolecule property surface. The observed chemical shift in the zero-pressure limit is determined not only by the value of the shielding at the equilibrium geometry, but the dynamic average over the multidimensional shielding surface during rotation and vibration of the molecule. In the gas, solution, or adsorbed phase it is an average of the intermolecular shielding surface over all the configurations of the molecule with its neighbors. The temperature dependence of the chemical shift in the isolated molecule, the changes upon isotopic substitution, the changes with environment, are well characterized experimentally so that quantum mechanical descriptions of electronic structure and theories related to dynamics averaging of any electronic property can be subjected to stringent test.

  17. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  18. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  19. Saturation transfer double-difference NMR spectroscopy using a dual solenoid microcoil difference probe.

    PubMed

    Bergeron, Scott J; Henry, Ian D; Santini, Robert E; Aghdasi, Abdollah; Raftery, Daniel

    2008-10-01

    An experiment designed to collect a saturation transfer double difference (STDD) NMR spectrum using a solenoid microcoil NMR difference probe is reported. STDD-NMR allows the investigation of ligand-biomolecule binding, with moderate concentration requirements for unlabeled molecular targets and the ability to discern binding events in the presence of non-binding ligands. The NMR difference probe acquires the signals from two different samples at once, and cancels common signals automatically through a mechanism of switching between parallel excitation and serial acquisition of the sample signals. STDD spectra were acquired on a system consisting of human serum albumin and two ligands, octanoic acid and glucose. The non-binding ligand, glucose, was cancelled internally through phase cycling, while the protein signal was subtracted automatically by the difference probe. The proton NMR resonance signal from octanoic acid remained in the double difference spectrum. This work demonstrates that the double difference can be performed both internally and automatically through the utilization of the solenoid microcoil NMR difference probe and STDD-NMR pulse sequence, resulting in a clean signal from the binding ligand with good protein background subtraction and an overall favorable result when compared to the conventional approach.

  20. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  1. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  2. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  3. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  4. NMR Imaging of Elastomeric Materials

    DTIC Science & Technology

    1990-11-30

    on ’everse if necessary and identify by block number) FIELD GROUP SUB-GROUP nuclear magnetic resonance , imaging, elastomers, tires, composites, porous...correspondence should be addressed 1i ABSTRACT Nuclear magnetic resonance images have been obtained for four porous glass disks of different porosities...INDEX HEADINGS: NMR imaging Porous materials Spin relaxation 2. I0J INTRODUCTION Nuclear magnetic resonance (NMR) imaging has seen increasing use in the

  5. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  6. Selectively labeling the heterologous protein in Escherichia coli for NMR studies: a strategy to speed up NMR spectroscopy.

    PubMed

    Almeida, F C; Amorim, G C; Moreau, V H; Sousa, V O; Creazola, A T; Américo, T A; Pais, A P; Leite, A; Netto, L E; Giordano, R J; Valente, A P

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The (1)H/(15)N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective (15)N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good (1)H/(15)N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The (15)N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the (1)H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  7. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  8. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    PubMed Central

    2016-01-01

    Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  9. Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift assignment of aromatic side chains in proteins.

    PubMed

    Peti, Wolfgang; Norcross, James; Eldridge, Gary; O'Neil-Johnson, Mark

    2004-05-12

    A specially designed microcoil probe for use in biomolecular NMR spectroscopy is presented. The microcoil probe shows a mass-based sensitivity increase of a minimal factor of 7.5, allowing for the first time routine biomolecular NMR spectroscopy with microgram amounts of proteins. In addition, the exceptional radio frequency capabilities of this probe allowed us to record an aliphatic-aromatic HCCH-TOCSY spectrum for the first time. Using this spectrum, the side chains of aliphatic and aromatic amino acids can be completely assigned using only a single experiment. Using the conserved hypothetical protein TM0979 from Thermotoga maritima, we demonstrate the capabilities of this microcoil NMR probe to completely pursue the sequence specific backbone assignment with less than 500 microg of (13)C,(15)N labeled protein.

  10. Zero-field NMR of small-amplitude motions in a polycrystalline solid

    SciTech Connect

    Millar, J.M.; Thayer, A.M.; Zax, D.B.; Pines, A.

    1986-08-20

    The librational motions of the water molecules in polycrystalline barium chlorate monohydrate have been studied by using proton and deuterium zero-field NMR. In contrast to high-field NMR, subtle molecular motions produce readily observable changes in the zero-field spectrum. Computer simulations and application of a novel-pulsed zero-field technique confirm that the splitting observed in the zero-field spectrum of the hydrate results from the motionally induced asymmetry of the magnetic dipole-dipole coupling tensor.

  11. Reactivity ratios and sequence determination of methacrylonitrile/butyl acrylate copolymers by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brar, A. S.; Pradhan, D. R.; Hooda, Sunita

    2004-08-01

    Methacrylonitrile/butyl acrylate (M/B) copolymers were prepared by bulk polymerization using benzoyl peroxide as an initiator. The Distortionless Enhancement by Polarization Transfer spectra were used to differentiate between the carbon resonance signals of methyl, methine, methylene and oxymethylene groups in the 13C{ 1H} NMR spectrum of the copolymer (M/B). Comonomer reactivity ratios were determined using Kelen-Tudos and non-linear error in variable methods. Two-dimensional Heteronuclear Single Quantum Coherence and Total Correlated Spectroscopy were used to resolve the complex 1H NMR spectrum and to determine the compositional and configurational sequences of M/B copolymers.

  12. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  13. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focused on variable temperature spin lattice relaxation measurements for several of the Argonne coals. 5 figs.

  14. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1988-01-01

    This report covers the progress made on the title project during the current reporting period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. This quarter we have focussed on spin lattice relaxation measurements for several of the Argonne coals. 2 figs., 1 tab.

  15. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  16. Amplification of Xenon NMR and MRI by remote detection

    SciTech Connect

    Moule, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, JulietteA.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-03-31

    A novel technique is proposed in which a nuclear magneticresonance (NMR) spectrum or magnetic resonance image (MRI) is encoded andstored as spin polarization and is then moved to a different physicallocation to be detected. Remote detection allows the separateoptimization of the encoding and detection steps, permitting theindependent choice of experimental conditions, and excitation anddetection methodologies. In the first experimental demonstration of thistechnique, we show that NMR signal can be amplified by taking diluted129Xe from a porous sample placed inside a large encoding coil, andconcentrating it into a smaller detection coil. In general, the study ofNMR active molecules at low concentration that have low physical fillingfactor is facilitated by remote detection. In the second experiment, MRIinformation encoded in a very low field magnet (4-7mT) is transferred toa high field magnet (4.2 T) in order to be detected under optimizedconditions. Furthermore, remote detection allows the utilization ofultra-sensitive optical or superconducting detection techniques, whichbroadens the horizon of NMR experimentation.

  17. Solution NMR conformation of glycosaminoglycans.

    PubMed

    Pomin, Vitor H

    2014-04-01

    Nuclear magnetic resonance (NMR) spectroscopy has been giving a pivotal contribution to the progress of glycomics, mostly by elucidating the structural, dynamical, conformational and intermolecular binding aspects of carbohydrates. Particularly in the field of conformation, NOE resonances, scalar couplings, residual dipolar couplings, and chemical shift anisotropy offsets have been the principal NMR parameters utilized. Molecular dynamics calculations restrained by NMR-data input are usually employed in conjunction to generate glycosidic bond dihedral angles. Glycosaminoglycans (GAGs) are a special class of sulfated polysaccharides extensively studied worldwide. Besides regulating innumerous physiological processes, these glycans are also widely explored in the global market as either clinical or nutraceutical agents. The conformational aspects of GAGs are key regulators to the quality of interactions with the functional proteins involved in biological events. This report discusses the solution conformation of each GAG type analyzed by one or more of the above-mentioned methods.

  18. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  19. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1990-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines the authors are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. The authors have concentrated on a theoretical treatment of pairs of tightly coupled spin {1/2} nuclei under magic angle spinning conditions. The average Hamiltonian theory developed here is required for a quantitative understanding of two dimensional NMR experiments of such spin pairs in solids. These experiments in turn provide a means of determining connectivities between resonances in solid state NMR spectra. Development of these techniques will allow us to establish connectivities between functional components in coals. The complete description of these spin dynamics has turned out to be complex, and is necessary to provide a foundation upon which such experiments may be quantitatively interpreted in complex mixtures such as coals. 25 refs., 4 figs., 3 tabs.

  20. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concern how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coals model. Along the same lines we are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors have concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the magic angle spinning (MAS) rate. In order to be able to use fields the order of 7.0 T or higher, CP efficiency must be maintained at MAS rates of over 10 kHz. The standard sequences have severe limitations at these rates which lead to intensity distortions in {sup 13}C CPMAS spectra. Thus in order to be able to take advantage of the increases in sensitivity and resolution that accompany high field operation, improvements in the NMR methods are required. The new sequences the authors are developing will be especially important for quantitative analysis of coal structure by {sup 13}C solid state NMR at high field strengths. 13 refs., 7 figs., 2 tabs.

  1. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition

    DTIC Science & Technology

    2015-05-01

    Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NMR signals. Virtually extracting the proton spectrum of the plasticizers only (using their characteristic binding to serum albumin protein) enables...difference (STD) Differentiation Specific binding Nuclear magnetic resonance (NMR) Semtex C-4 plastic explosive 16. SECURITY CLASSIFICATION OF

  2. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  3. Computer Simulation of NMR Spectra.

    ERIC Educational Resources Information Center

    Ellison, A.

    1983-01-01

    Describes a PASCAL computer program which provides interactive analysis and display of high-resolution nuclear magnetic resonance (NMR) spectra from spin one-half nuclei using a hard-copy or monitor. Includes general and theoretical program descriptions, program capability, and examples of its use. (Source for program/documentation is included.)…

  4. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  5. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  6. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  7. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  8. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  9. 125Te NMR in the single crystal of CeTe3: Spin polarized CDW

    NASA Astrophysics Data System (ADS)

    Chudo, H.; Michioka, C.; Itoh, Y.; Yoshimura, K.

    2007-03-01

    We report 125Te NMR studies for single crystals of CeTe3 between 22 and 307 K, under an applied field of H=7.4847 T along a- or b-axis. The 125Te NMR spectrum consists of superposition of broad and sharp peaks, which are assigned to the signals of 125Te(1) in Te(1) sheets and 125Te(2) in CeTe(2) bi-layers, respectively. The broad 125Te(1) NMR spectrum consists of three distinguishable lines, regarded as an evidence for the presence of the incommensurate charge-density wave (ICDW) modulation. The Knight shifts of 125Te(1) widely distribute from -0.16% to +0.58% at 110 K and the temperature dependence of each Knight shift is proportional to the bulk susceptibility, indicating that the conduction electron spin density is polarized by the Ce local moments in the CDW state.

  10. Micro-spectrometer for NMR: analysis of small quantities in vitro

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Pitaval, M.; Chahboune, H.; Favre, B.; Briguet, A.; Morin, P.

    2004-05-01

    This paper reports the design, fabrication and preliminary tests of planar microcoils associated with a micromachined channel in silicon. These microcoils are used as nuclear magnetic resonance (NMR) radio frequency detection coils. They allow in vitro NMR analysis of small quantities introduced into the microchannel. It is a real challenging task to develop microsystems for NMR spectrum extraction for smaller and smaller sample volumes. Moreover, it is advantageous that these microsystems could be integrated in a micro total analysing system (µ-TAS) as an analysing stage. In this paper the description, fabrication process and electrical characterization of planar microcoil receivers are described. Results obtained on NMR microspectroscopy experiments have been performed in water and ethanol, using a 500 µm × 500 µm planar microcoil tuned and matched at 85.13 MHz (proton frequency at 2 T).

  11. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K.

  12. [Optimizing the method for 31P-NMR analysis of organic phosphorus from wetland sediments].

    PubMed

    Lu, Jin; Wang, Hai-Wen; Hao, Hong; Gao, Bo; Jia, Jian-Li

    2013-11-01

    Solution 31P-Nuclear Magnetic Resonance (NMR) is an analysis technology which has been an effective means for the analysis of environmental organic phosphorus. However, the method is rarely applied in the study of wetlands so that the corresponding researches about wetland sediment sample preparation method also very deficient. The present study was aimed to find the most suitable sample preparation method for 31P-NMR analysis of the artificial wetland sediments, using different extractant (NaOH or 0.25 mol x L(-1) NaOH + 0.05 mol x L(-1) EDTA as main extractant, and 1M HCl as pre-extractant or not), sample to extractant ratio (1 : 8 or 1 : 10), centrifugation conditions and scans time and so on. The results showed that the best 31P-NMR spectrum could be obtained with freeze-ried, ground and sieved sediments, 1M HCl as pre-extractant for 16 h, NaOH + 0.05 mol x L(-1) EDTA as main extractant for 16 h, extraction ratio of 1 : 8, and low temperature and high-speed centrifugation (4 degrees C, 10 000 r x min(-1) for 30 min) for avoiding hydrolysis of certain components. Besides, choosing much longer NMR scan time, as 14-16 h (scans about 25 000 times), could get more complete spectral signals spectrum. And finally, four kinds of P-compounds (orthophosphate, orthophosphate monoesters, orthophosphate diesters and pyrophosphate) were detected in the NMR spectrum. But neither polyphosphate nor phosphonates was not found in all these experiments, which need further study. Compared with the traditional chemical analysis method, 31P-NMR method of sample preparation is relatively simple. Then it is less destructive with components distinguished completely. Using 31P-NMR technology, the cognition of wetland phosphorus cycle, especially organophosphate, will be expected to get new breakthrough.

  13. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  14. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  15. A Step-by-Step Picture of Pulsed (Time-Domain) NMR.

    ERIC Educational Resources Information Center

    Schwartz, Leslie J.

    1988-01-01

    Discusses a method for teaching time pulsed NMR principals that are as simple and pictorial as possible. Uses xyz coordinate figures and presents theoretical explanations using a Fourier transformation spectrum. Assumes no previous knowledge of quantum mechanics for students. Usable for undergraduates. (MVL)

  16. Quadrupole-Echo Techniques in Multiple-Quantum-Filtered NMR Spectroscopy of Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Navon, G.

    Multiple-quantum-filtered quadrupole-echo pulse sequences for spin I = 1 and I = {3}/{2} are suggested. A general condition for obtaining simultaneously Zeeman and quadrupolar echo is formulated. A theoretical analysis of the various pulse sequences was performed on the basis of second-order perturbation approximation of the Liouville equation for the density matrix. The extent of refocusing as a function of the ratio of the residual quadrupolar interaction and the relaxation rates was calculated. Experimental results are presented for 2H and 23Na in cartilage as an example of a heterogeneous system with residual quadrupolar interaction. The difference between relaxation times measured by the multiple-quantum-filtered echo techniques and those measured by conventional multiple-quantum-filtered NMR spectroscopy is a simple diagnostic of anisotropic motion that leads to a residual quadrupolar interaction. The results of the echo experiments are compared with the relaxation times computed on the basis of lineshape analysis of double-quantum-filtered spectra of a heterogeneous system.

  17. Sensitivity enhancement of remotely coupled NMR detectors using wirelessly powered parametric amplification.

    PubMed

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2012-09-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D(2) O phantom, (23) Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection.

  18. Sensitivity Enhancement of Remotely Coupled NMR Detectors using Wirelessly Powered Parametric Amplification

    PubMed Central

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2011-01-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D2O phantom, 23Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection. PMID:22246567

  19. Structural investigations of borosilicate glasses containing MoO 3 by MAS NMR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D.

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO 2-B 2O 3-Na 2O-CaO-MoO 3 system was studied by 29Si, 11B, 23Na MAS NMR and Raman spectroscopies by increasing MoO 3 or B 2O 3 concentrations. Increasing MoO 3 amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO4- units and on the distribution of Na + cations in glass structure. By increasing B 2O 3 concentration, a strong evolution of the distribution of Na + cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO 4 or Na 2MoO 4) formed during melt cooling.

  20. Water Solvent Effect on Theoretical Evaluation of (1)H NMR Chemical Shifts: o-Methyl-Inositol Isomer.

    PubMed

    Dos Santos, Hélio F; Chagas, Marcelo A; De Souza, Leonardo A; Rocha, Willian R; De Almeida, Mauro V; Anconi, Cleber P A; De Almeida, Wagner B

    2017-04-13

    In this paper, density functional theory calculations of nuclear magnetic resonance (NMR) chemical shifts for l-quebrachitol isomer, previously studied in our group, are reported with the aim of investigating in more detail the water solvent effect on the prediction of (1)H NMR spectra. In order to include explicit water molecules, 20 water-l-quebrachitol configurations obtained from Monte Carlo simulation were selected to perform geometry optimizations using the effective fragment potential method encompassing 60 water molecules around the solute. The solvated solute optimized geometries were then used in B3LYP/6-311+G(2d,p) NMR calculations with PCM-water. The inclusion of explicit solvent in the B3LYP NMR calculations resulted in large changes in the (1)H NMR profiles. We found a remarkable improvement in the agreement with experimental NMR profiles when the explicit hydrated l-quebrachitol structure is used in B3LYP (1)H NMR calculations, yielding a mean absolute error (MAE) of only 0.07 ppm, much lower than reported previously for the gas phase optimized structure (MAE = 0.11 ppm). In addition, a very improved match between theoretical and experimental (1)H NMR spectrum measured in D2O was achieved with the new hydrated optimized l-quebrachitol structure, showing that a fine-tuning of the theoretical NMR spectra can be accomplished once solvent effects are properly considered.

  1. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  2. Metal-insulator transition in the Hollandite vanadate K2V8O16 investigated by 51V NMR measurements

    NASA Astrophysics Data System (ADS)

    Okai, Katsunori; Itoh, Masayuki; Shimizu, Yasuhiro; Isobe, Masahiko; Yamaura, Jun-Ichi; Ueda, Yutaka

    2009-03-01

    51V NMR measurements have been made on powdered samples to investigate the metal-insulator (MI) transition and the local magnetic properties of the Hollandite vanadate K2V8O16 which undergoes the MI transition at TMI~170 K. An asymmetric 51V NMR spectrum in the metallic phase has the T-dependent negative Knight shift K. The two NMR spectra appears around TMI, showing the coexistence of the metallic and insulating phases in consistent with the two-step first-order transition. The temperature dependence of K and the 51V nuclear spin-lattice relaxation rate indicates the presence of the ferromagnetic spin fluctuations in the metallic phase. A 51V NMR spectrum observed below TMI has the temperature-independent K~0.35%, showing the presence of the nonmagnetic ground state.

  3. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data.

  4. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  5. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  6. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1989-01-01

    This report covers the progress made on the title project and summarizes the accomplishments for the project period. Four major areas of inquiry have been pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups in coals that determine the reactivity of coals. Other methods are being developed which will also determine how these functional groups are linked together. A third area of investigation concerns how molecular mobility in coals impacts NMR relaxation times, which is important for interpretation of such data in terms of the mobile phase in coal models. Along the same lines the author are also using these studies to establish protocols for obtaining the best quantitative response from coals in solid state C-13 NMR spectra. The effects of very high MAS rates (>10 kHz) on cross polarization dynamics are also being investigated for similar reasons. During the last quarter the authors has concentrated on improvements in cross polarization (CP) sequences with a goal of making the CP process insensitive to experimental conditions such as the Hartmann-Hahn mismatch. It has been found that the usual theories of CP are incorrect, and that the CP process is very heterogeneous in nature. This has significant implications on methods typically used in quantifying {sup 13}C CPMAS spectra of coals. 19 refs., 11 figs.

  7. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  8. Sorption isotherm measurements by NMR.

    PubMed

    Leisen, Johannes; Beckham, Haskell W; Benham, Michael

    2002-01-01

    An experimental setup is described for the automated recording of sorption isotherms by NMR experiments at precisely defined levels of relative humidity (RH). Implementation is demonstrated for a cotton fabric; Bloch decays. T1 and T2* relaxation times were measured at predefined steps of increasing and decreasing relative humidities (RHs) so that a complete isotherm of NMR properties was obtained. Bloch decays were analyzed by fitting to relaxation functions consisting or a slow- and a fast-relaxing component. The fraction of slow-relaxing component was greater than the fraction of sorbed moisture determined from gravimetric sorption data. The excess slow-relaxing component was attributed to plasticized segments of the formerly rigid cellulose matrix. T1 and T2* sorption isotherms exhibit hysteresis similar to gravimetric sorption isotherms. However, correlating RH to moisture content (MC) reveals that both relaxation constants depend only on MC, and not on the history of moisture exposure.

  9. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  10. Recognition of lumbar disk herniation with NMR

    SciTech Connect

    Chafetz, N.I.; Genant, H.K.; Moon, K.L.; Helms, C.A.; Morris, J.M.

    1983-12-01

    Fifteen nuclear magnetic resonance (NMR) studies of 14 patients with herniated lumbar intervertebral disks were performed on the UCSF NMR imager. Computed tomographic (CT) scans done on a GE CT/T 8800 or comparable scanner were available at the time of NMR scan interpretation. Of the 16 posterior disk ruptures seen at CT, 12 were recognized on NMR. Diminished nucleus pulposus signal intensity was present in all ruptured disks. In one patient, NMR scans before and after chymopapain injection showed retraction of the protruding part of the disk and loss of signal intensity after chemonucleolysis. Postoperative fibrosis demonstrated by CT in one patient and at surgery in another showed intermediate to high signal intensity on NMR, easily distinguishing it from nearby thecal sac and disk. While CT remains the method of choice for evaluation of the patient with suspected lumbar disk rupture, the results of this study suggest that NMR may play a role in evaluating this common clinical problem.

  11. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  12. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  13. Study of phase transition mechanisms in [N(CH3)4]2ZnCl4 by static NMR and MAS NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran; Lim, Kye-Young

    2014-05-01

    The temperature dependences of chemical shifts, intensities, the spin-lattice relaxation time in laboratory frame T1, and in rotating frame T1ρ were measured for 1H and 13C in [N(CH3)4]2ZnCl4 by single-crystal NMR and MAS NMR. The unit cell in phase I contains two chemically inequivalent types of N(CH3)4 ions. However, the two chemically different ions N(CH3)4 cannot be practically identified from the 13C NMR spectrum. The structural changes for 1H and 13C were measured near Ti and TC4. The existence of chemically equivalent N(CH3)4 ions in phase I and the existence of the ferroelastic characteristic of the N(CH3)4 ions in phases IV and V are discussed.

  14. Microcoil NMR spectroscopy: a novel tool for biological high throughput NMR spectroscopy.

    PubMed

    Hopson, Russell E; Peti, Wolfgang

    2008-01-01

    Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.

  15. Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.

    PubMed

    Odedra, Smita; Wimperis, Stephen

    2016-11-30

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking (23)Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites.

  16. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  17. Solid-state NMR of inorganic semiconductors.

    PubMed

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  18. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  19. NMR monitoring of the SELEX process to confirm enrichment of structured RNA.

    PubMed

    Amano, Ryo; Aoki, Kazuteru; Miyakawa, Shin; Nakamura, Yoshikazu; Kozu, Tomoko; Kawai, Gota; Sakamoto, Taiichi

    2017-03-21

    RNA aptamers are RNA molecules that bind to a target molecule with high affinity and specificity using uniquely-folded tertiary structures. RNA aptamers are selected from an RNA pool typically comprising up to 10(15) different sequences generated by iterative steps of selection and amplification known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Over several rounds of SELEX, the diversity of the RNA pool decreases and the aptamers are enriched. Hence, monitoring of the enrichment of these RNA pools is critical for the successful selection of aptamers, and several methods for monitoring them have been developed. In this study, we measured one-dimensional imino proton NMR spectra of RNA pools during SELEX. The spectrum of the initial RNA pool indicates that the RNAs adopt tertiary structures. The structural diversity of the RNA pools was shown to depend highly on the design of the primer-binding sequence. Furthermore, we demonstrate that enrichment of RNA aptamers can be monitored using NMR. The RNA pools can be recovered from the NMR tube after measurement of NMR spectra. We also can monitor target binding in the NMR tubes. Thus, we propose using NMR to monitor the enrichment of structured aptamers during the SELEX process.

  20. Generalized indirect covariance NMR formalism for establishment of multidimensional spin correlations.

    PubMed

    Snyder, David A; Brüschweiler, Rafael

    2009-11-19

    Multidimensional nuclear magnetic resonance (NMR) experiments measure spin-spin correlations, which provide important information about bond connectivities and molecular structure. However, direct observation of certain kinds of correlations can be very time-consuming due to limitations in sensitivity and resolution. Covariance NMR derives correlations between spins via the calculation of a (symmetric) covariance matrix, from which a matrix-square root produces a spectrum with enhanced resolution. Recently, the covariance concept has been adopted to the reconstruction of nonsymmetric spectra from pairs of 2D spectra that have a frequency dimension in common. Since the unsymmetric covariance NMR procedure lacks the matrix-square root step, it does not suppress relay effects and thereby may generate false positive signals due to chemical shift degeneracy. A generalized covariance formalism is presented here that embeds unsymmetric covariance processing within the context of the regular covariance transform. It permits the construction of unsymmetric covariance NMR spectra subjected to arbitrary matrix functions, such as the square root, with improved spectral properties. This formalism extends the domain of covariance NMR to include the reconstruction of nonsymmetric NMR spectra at resolutions or sensitivities that are superior to the ones achievable by direct measurements.

  1. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  2. Photosensitized Peroxidation of Lipids: An Experiment Using 1H-NMR

    NASA Astrophysics Data System (ADS)

    Smith, Marion W.; Brown, Renee; Smullin, Steven; Eager, Jon

    1997-12-01

    The photoperoxidation of methyl linoleate, using 5,10,15,20-tetraphenyl porphyrin as photosensitizer, was monitored by 60 MHz 1H-NMR. Samples were irradiated for 10-24 hours in front of a 15 W fluorescent light, and NMR signals in the 5-6 ppm and 10-11 ppm region of the spectrum indicated peroxidation products were formed. The absorption of oxygen from the air was measured by attaching the sample tube to a gas burette. When vitamin E was added to the mixture the extent of peroxidation was reduced, showing the protective effect of the antioxidant. These experiments are appropriate for students of biochemistry

  3. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Takashi Shibanuma; Toshiji Matsui

    1985-05-01

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3C) proposed by Kesmodel et al. or the multiple-bonded species (CH 2CH) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaes, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  4. Proton-NMR study on chemisorption of ethylene on platinum powder

    NASA Astrophysics Data System (ADS)

    Shibanuma, Takashi; Matsui, Toshiji

    The high-temperature phase of ethylene on surfaces of Pt powder has been studied by proton-NMR in order to decide whether the surface species is the ethylidyne species (CH 3-C≡) proposed by Kesmodel et al. or the multiple-bonded species (-CH 2-CH=) proposed by Demuth. The observed NMR spectrum is not attributable to CH 3-groups on the surfaces, but can be interpreted as the superposition of two signals, one originating from CH 2-groups and the other from CH-groups. In other words, the results suggest that the surface species is the multiple-bonded species.

  5. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.

    PubMed

    Hassanieh, Haitham; Mayzel, Maxim; Shi, Lixin; Katabi, Dina; Orekhov, Vladislav Yu

    2015-09-01

    Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum.

  6. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  7. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  8. Combined MAS NMR and X-ray powder diffraction structural characterization of hydrofluorocarbon-134 adsorbed on zeolite NaY: Observation of cation migration and strong sorbate-cation interactions

    SciTech Connect

    Grey, C.P.; Poshni, F.I.; Gualtieri, A.F.; Norby, P. |; Hanson, J.C.; Corbin, D.R.

    1997-02-26

    {sup 23}Na MAS NMR and synchrotron X-ray powder diffraction methods have been used to study the binding of hydrofluorocarbon-134 (HFC-134, CF{sub 2}HCF{sub 2}H) in zeolite NaY. A contraction of the volume of the unit cell is observed on gas adsorption, and the interaction of HFC-134 with the extraframework sodium cations is so strong that extraframework sodium cations in the sodalite cages (site I`) migrate into the supercages. These sodium cations are found on positions close to the site III` positions of zeolite NaX. Both ends of the HFC molecules are bound sodium cations, the HFC molecule bridging the site II and III` cations in the supercages. The strong cation-HFC interaction results in a considerable displacement of the sodium site II cation along the [111] direction into the supercage and an increase in the T-O-T bond angle for the three oxygen atoms coordinated to this cation. A decrease in the {sup 23}Na quadrupole coupling constant on HFC adsorption from 4.4 to less than 2.8 MHz, for the sodium cations originally located in the sodalite cages (site I`), is consistent with the sodium cation migrations. 26 refs., 7 figs., 5 tabs.

  9. NMR characterization of pituitary tumors

    SciTech Connect

    Osbakken, M.; Gonzales, J.; Page, R.

    1984-01-01

    Twelve patients (5 male, 7 female, mean age 37.9 +- 20) with pituitary tumors were extensively evaluated with NMR imaging using a 1.5K gauss resistive magnet. Saturation recovery (SR), inversion recovery (IR) and spin echo (SE) pulse sequences were used for qualitative characterization of the lesions. T/sub 1/ calculations were also performed for brain and pituitary. Tumor histology and endocrine status were correlated with NMR data. All tumors were large with suprasellar extension (6 with prolactin secretion, 6 without). Pituitary T/sub 1/'s ranged from .2 to .64, the mean T/sub 1/ being longer than that of brain (Brain = .4 +- .04; Pit = .48 +- .14). 3 patients with histological evidence of homogeneous adenomas had long T/sub 1/'s (0.58 +- .05). 3 patients with evidence of recent or old hemorhage into the pituitary had much shorter T/sub 1/'s (0.29 +- .12). There was no relationship between prolactin secretion and T/sub 1/. Qualitative T/sub 1/ and T/sub 2/ information can be obtained by using a combination of SR, IR, and SE images. Using this method in the patients, homogeneous adenomas had similar T/sub 1/'s and longer T/sub 2/'s compared to the brain, while patients with bleeds had shorter T/sub 1/'s and T/sub 2/'s. Image T/sub 1/ characteristics correlated well with the calculated T/sub 1/ values. The range of T/sub 1/ (and potentially T/sub 2/) values which occur in apparently similar lesions are most likely due to anatomical and pathophysiological variations in these lesions. It may be ultimately possible to separate different types of pathological processes based on NMR image T/sub 1/ and T/sub 2/ characteristics after careful comparative studies of NMR and histological data are completed. The combination of calculated T/sub 1/ and T/sub 2/ with image T/sub 1/ and T/sub 2/ information may also be useful in further characterization of lesions.

  10. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and “hidden” dimensions

    PubMed Central

    Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747

  11. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  12. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  13. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  14. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  15. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  16. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  17. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced.

  18. Tissue targeted metabonomics: metabolic profiling by microdialysis sampling and microcoil NMR.

    PubMed

    Price, Kristin E; Vandaveer, Shannon S; Lunte, Craig E; Larive, Cynthia K

    2005-08-10

    The concentration of low molecular weight compounds in tissues can yield valuable information about the metabolic state of an organism. Studies of changes in the metabolic state or metabonomics can reflect disease pathways, drug action, or toxicity. This research aims to develop a new approach, tissue targeted metabonomics. Microdialysis sampling and microcoil NMR analysis are employed to compare basal and ischemic metabolic states of various tissues (blood, brain, and heart) of Sprague-Dawley rats. Microdialysis sampling is localized, making the metabolic profile tissue specific. Coupling to NMR analysis is highly advantageous, because a complete metabolic profile is obtained in a single spectrum. However, small sample volumes and low analyte concentrations make analysis of microdialysis samples challenging. Microcoil NMR uses low sample volumes and has improved mass sensitivity, relative to standard 5 mm probes. The coupling of these techniques is a potentially powerful tool for metabonomics analysis.

  19. FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes.

    PubMed

    Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo

    2016-10-19

    Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D₂O) and 131 hydrophobic (extracted in CDCl₃) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide.

  20. FoodPro: A Web-Based Tool for Evaluating Covariance and Correlation NMR Spectra Associated with Food Processes

    PubMed Central

    Chikayama, Eisuke; Yamashina, Ryo; Komatsu, Keiko; Tsuboi, Yuuri; Sakata, Kenji; Kikuchi, Jun; Sekiyama, Yasuyo

    2016-01-01

    Foods from agriculture and fishery products are processed using various technologies. Molecular mixture analysis during food processing has the potential to help us understand the molecular mechanisms involved, thus enabling better cooking of the analyzed foods. To date, there has been no web-based tool focusing on accumulating Nuclear Magnetic Resonance (NMR) spectra from various types of food processing. Therefore, we have developed a novel web-based tool, FoodPro, that includes a food NMR spectrum database and computes covariance and correlation spectra to tasting and hardness. As a result, FoodPro has accumulated 236 aqueous (extracted in D2O) and 131 hydrophobic (extracted in CDCl3) experimental bench-top 60-MHz NMR spectra, 1753 tastings scored by volunteers, and 139 hardness measurements recorded by a penetrometer, all placed into a core database. The database content was roughly classified into fish and vegetable groups from the viewpoint of different spectrum patterns. FoodPro can query a user food NMR spectrum, search similar NMR spectra with a specified similarity threshold, and then compute estimated tasting and hardness, covariance, and correlation spectra to tasting and hardness. Querying fish spectra exemplified specific covariance spectra to tasting and hardness, giving positive covariance for tasting at 1.31 ppm for lactate and 3.47 ppm for glucose and a positive covariance for hardness at 3.26 ppm for trimethylamine N-oxide. PMID:27775560

  1. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  2. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  3. Microslot NMR probe for metabolomics studies.

    PubMed

    Krojanski, Hans Georg; Lambert, Jörg; Gerikalan, Yilmaz; Suter, Dieter; Hergenröder, Roland

    2008-11-15

    A NMR microprobe based on microstrip technology suitable for investigations of volume-limited samples in the low nanoliter range was designed. NMR spectra of sample quantities in the 100 pmol range can be obtained with this probe in a few seconds. The planar geometry of the probe is easily adaptable to the size and geometry requirements of the samples.

  4. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  5. NMR-Profiles of Protein Solutions

    PubMed Central

    Pedrini, Bill; Serrano, Pedro; Mohanty, Biswaranjan; Geralt, Michael; Wüthrich, Kurt

    2014-01-01

    NMR-Profiles are quantitative one-dimensional presentations of two-dimensional [15N,1H]-correlation spectra used to monitor the quality of protein solutions prior to and during NMR structure determinations and functional studies. In our current use in structural genomics projects, a NMR-Profile is recorded at the outset of a structure determination, using a uniformly 15N-labeled micro-scale sample of the protein. We thus assess the extent to which polypeptide backbone resonance assignments can be achieved with given NMR techniques, for example, conventional triple resonance experiments or APSY-NMR. With the availability of sequence-specific polypeptide backbone resonance assignments in the course of the structure determination, an “Assigned NMR-Profile” is generated, which visualizes the variation of the 15N–1H correlation cross peak intensities along the sequence and thus maps the sequence locations of polypeptide segments for which the NMR line shapes are affected by conformational exchange or other processes. The Assigned NMR-Profile provides a guiding reference during later stages of the structure determination, and is of special interest for monitoring the protein during functional studies, where dynamic features may be modulated during physiological functions. PMID:23839514

  6. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  7. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  8. Challenges and perspectives in quantitative NMR.

    PubMed

    Giraudeau, Patrick

    2017-01-01

    This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches.

  10. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    SciTech Connect

    Walker, Lawrence R.; Hoyt, David W.; Walker, S. Michael; Ward, Joy K.; Nicora, Carrie D.; Bingol, Kerem

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  11. A new salen base 5-(phenylazo)-N-(2-amino pyridine) salicyliden Schiff base ligand: synthesis, experimental and density functional studies on its crystal structure, FTIR, 1H NMR and 13C NMR spectra.

    PubMed

    Sheikhshoaie, Iran; Saheb, Vahid

    2010-12-01

    A novel Schiff base ligand 5-(phenylazo)-N-(2-amino pyridine) salicyliden is prepared through the condensation of 5-(phenylazo) salicylaldehyde and 2-amino pyridine in methanol at room temperature. The orange crystalline precipitate is used for X-ray crystallography and measuring Fourier transform (FTIR), 1H NMR and 13C NMR spectra. Density functional theory (DFT) calculations at the B3LYP, MPWB1K and B3PW91 levels of theory is used to optimize the geometry and calculate the FTIR, 1H NMR and 13C NMR spectra of the compound. The vibrational frequencies determined experimentally are compared with those obtained theoretically and a vibrational assignment and analysis of the fundamental modes of the compound is performed. We found that the MPWB1K method predicts low vibrational frequencies better than the commonly used B3LYP method. Although the B3PW91 method overestimates the 1H NMR chemical shifts, the values computed at the B3LYP level of theory are in accordance with experimental 1H NMR spectrum. However, both B3LYP and B3PW91 methods tend to overestimate 13C NMR chemical shifts. In addition, a few quantum descriptors of the molecule are calculated and conformational analysis is performed and the result was compared with crystallographic data.

  12. High Resolution H-1 NMR Spectroscopy in a Live Mouse subjected to 1.5 Hz Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Rommereim, Donald N.

    2003-12-03

    It is demonstrated that the resolution of the 1H NMR metabolite spectrum in a live mouse can be significantly enhanced by an ultra-slow magic angle spinning of the animal combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in about one hour in a 2T field, while spinning the animal at a speed of 1.5 Hz. It was found that even in this relatively low field with PHORMAT an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. It is concluded that in vivo PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for biochemical and biomedical animal research.

  13. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology.

  14. 31P Solid State NMR Studies of ZrP, Mg3P2, and CdPS3

    DTIC Science & Technology

    1988-01-01

    valence , in contrast to that in ZrP, Mg3P2, and MgP4. The 3 1 p solid state NMR spectra are shown in Figure 9. The MAS spectrum reveals a single...orange crystals were recovered from hot concentrated HCa . In one experi- RESULTS AND DISCUSSION ment, brilliant black polyhedral crystals of ZnSnP, were

  15. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  16. A flow microslot NMR probe coupled with a capillary isotachophoresis system exhibits improved properties compared to solenoid designs.

    PubMed

    Gogiashvili, Mikheil; Telfah, Ahmad; Lambert, Jörg; Hergenröder, Roland

    2017-03-01

    We report on the hyphenation of capillary isotachophoresis (cITP) separations with online nuclear magnetic resonance (NMR) detection using a planar microslot waveguide probe design. While cITP is commonly coupled with a solenoidal microcoil NMR probe, the structural information provided is limited by broad resonances and poor spectral resolution due to the magnetic field created by the separation current. The microslot probe design described herein allows the separation capillary to be oriented parallel to the static magnetic field, B 0, eliminating the spectral broadening produced by the secondary magnetic field induced by the separation current. This allows high-resolution nuclear magnetic resonance spectra of the charged analytes to be obtained in online mode, whereas conventional solenoidal capillary NMR designs must resort to the stopped flow mode. The potential of the microslot probe for hyphenated electrophoretic separations is demonstrated by performing cITP focusing and online NMR detection of the (1)H NMR spectrum of a system containing spermine and aniline. Graphical Abstract High resolution NMR spectra in flow capillarelectrophoretic separations with microslot NMR probe.

  17. Development of a small-scale bioreactor: application to in vivo NMR measurement.

    PubMed

    Gmati, Dorra; Chen, Jingkui; Jolicoeur, Mario

    2005-01-20

    A perfused bioreactor allowing in vivo NMR measurement was developed and validated for Eschscholtzia californica cells. The bioreactor was made of a 10-mm NMR tube. NMR measurement of the signal-to-noise ratio was optimized using a sedimented compact bed of cells that were retained in the bioreactor by a supporting filter. Liquid medium flow through the cell bed was characterized from a mass balance on oxygen and a dispersive hydrodynamic model. Cell bed oxygen demand for 4 h perfusion required a minimal medium flow rate of 0.8 mL/min. Residence time distribution assays at 0.8-2.6 mL/min suggest that the cells are subjected to a uniform nutrient environment along the cell bed. Cell integrity was maintained for all culture conditions since the release of intracellular esterases was not significant even after 4 h of perfusion. In vivo NMR was performed for (31)P NMR and the spectrum can be recorded after only 10 min of spectral accumulation (500 scans) with peaks identified as G-6P, F-6P, cytoplasmic Pi, vacuolar Pi, ATP(gamma) and ADP(beta), ATP(alpha) and ADP(alpha), NADP and NDPG, NDPG and ATP(beta). Cell viability was shown to be maintained as (31)P chemical shifts were constant with time for all the identified nuclei, thus suggesting constant intracellular pH.

  18. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  19. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  20. Denoising NMR time-domain signal by singular-value decomposition accelerated by graphics processing units.

    PubMed

    Man, Pascal P; Bonhomme, Christian; Babonneau, Florence

    2014-01-01

    We present a post-processing method that decreases the NMR spectrum noise without line shape distortion. As a result the signal-to-noise (S/N) ratio of a spectrum increases. This method is called Cadzow enhancement procedure that is based on the singular-value decomposition of time-domain signal. We also provide software whose execution duration is a few seconds for typical data when it is executed in modern graphic-processing unit. We tested this procedure not only on low sensitive nucleus (29)Si in hybrid materials but also on low gyromagnetic ratio, quadrupole nucleus (87)Sr in reference sample Sr(NO3)2. Improving the spectrum S/N ratio facilitates the determination of T/Q ratio of hybrid materials. It is also applicable to simulated spectrum, resulting shorter simulation duration for powder averaging. An estimation of the number of singular values needed for denoising is also provided.

  1. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  2. An introduction to biological NMR spectroscopy.

    PubMed

    Marion, Dominique

    2013-11-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP).

  3. Identify bipolar spectrum disorders.

    PubMed

    Mynatt, Sarah; Cunningham, Patricia; Manning, J Sloan

    2002-06-01

    Patients with bipolar spectrum disorders commonly present with depressive symptoms to primary care clinicians. This article details bipolar spectrum disorder assessment, treatment, and treatment response. By intervening early in the course of depressive and hypomanic episodes, you can help decrease the morbidity and suffering associated with bipolar spectrum disorders.

  4. NMR reaction monitoring in flow synthesis

    PubMed Central

    Gomez, M Victoria

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed. PMID:28326137

  5. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  6. An Inversion Recovery NMR Kinetics Experiment.

    PubMed

    Williams, Travis J; Kershaw, Allan D; Li, Vincent; Wu, Xinping

    2011-05-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples.

  7. An Inversion Recovery NMR Kinetics Experiment

    PubMed Central

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a convenient template with which to acquire inversion recovery data on research samples. PMID:21552343

  8. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  9. Engineered solubility tag for solution NMR of proteins.

    PubMed

    Ruschak, Amy M; Rose, Justine D; Coughlin, Michael P; Religa, Tomasz L

    2013-11-01

    The low solubility of many proteins hinders large scale expression and purification as well as biophysical measurements. Here, we devised a general strategy to solubilize a protein by conjugating it at a solvent-exposed position to a 6 kDa protein that was re-engineered to be highly soluble. We applied this method to the CARD domain of Apoptosis-associated speck-like protein containing a CARD (ASC), which represents one member of a class of proteins that are notoriously prone to aggregation. Attachment of the tag to a cysteine residue, introduced by site-directed mutagenesis at its self-association interface, improved the solubility of the ASC CARD over 50-fold under physiological conditions. Although it is not possible to use nuclear magnetic resonance (NMR) to obtain a high quality 2D correlation spectrum of the wild type domain under physiological conditions, we demonstrate that NMR relaxation parameters of the solubilized variant are sufficiently improved to facilitate virtually any demanding measurement. The method shown here represents a straightforward approach for dramatically increasing protein solubility, enabled by ease of labeling as well as flexibility in tag placement with minimal perturbation to the target.

  10. Low-cost, pseudo-Halbach dipole magnets for NMR

    NASA Astrophysics Data System (ADS)

    Tayler, Michael C. D.; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.

  11. A simple method for NMR t1 noise suppression

    NASA Astrophysics Data System (ADS)

    Mo, Huaping; Harwood, John S.; Yang, Danzhou; Post, Carol Beth

    2017-03-01

    t1 noise appears as random or semi-random spurious streaks along the indirect t1 (F1) dimension of a 2D or nD NMR spectrum. It can significantly downgrade spectral quality, especially for spectra with strong diagonal signals such as NOESY, because useful and weak cross-peaks can be easily buried under t1 noise. One of the significant contributing factors to t1 noise is unwanted and semi-random F2 signal modulation during t1 acquisition. As such, t1 noise from different acquisitions is unlikely to correlate with each other strongly. In the case of NOESY, co-addition of multiple spectra significantly reduces t1 noise compared with conventional acquisition with the same amount of total acquisition time and resolution.

  12. Low-cost, pseudo-Halbach dipole magnets for NMR.

    PubMed

    Tayler, Michael C D; Sakellariou, Dimitrios

    2017-04-01

    We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5mm bore size and field up to nearly 2T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1mL of pure [(13)C]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10(-10)T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency (1)JCH=140.7(1)Hz.

  13. How to tickle spins with a fourier transform NMR spectrometer.

    PubMed

    Segawa, Takuya F; Carnevale, Diego; Bodenhausen, Geoffrey

    2013-02-04

    In the long bygone days of continuous-wave nuclear magnetic resonance (NMR) spectroscopy, a selected transition within a multiplet of a high-resolution spectrum could be irradiated by a highly selective continuous-wave (CW) radio-frequency (rf) field with a very weak amplitude ω(2)/(2π)≤J. This causes splittings of connected transitions, allowing one to map the connectivities of all transitions within the energy-level diagram of the spin system. Such "tickling" experiments stimulated the invention of two-dimensional spectroscopy, but seem to have been forgotten for nearly 50 years. We show that tickling can readily be achieved in homonuclear systems with Fourier transform spectrometers by applying short pulses in the intervals between the sampling points. Extensions to heteronuclear systems are even more straightforward since they can be carried out using very weak CW rf fields.

  14. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  15. Two dimensional NMR of liquids and oriented molecules

    SciTech Connect

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  16. A ferromagnetic shim insert for NMR magnets - Towards an integrated gyrotron for DNP-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryan, Herbert; van Bentum, Jan; Maly, Thorsten

    2017-04-01

    In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400 MHz 1H NMR, ⩾9.4 T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet.

  17. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  18. A nanoliter volume nuclear magnetic resonance (NMR) system using tunneling magneto-resistive (TMR) sensors to recognize biomolecules

    NASA Astrophysics Data System (ADS)

    Gomez, Pablo

    The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities. With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups. This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters. The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results. In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.

  19. QUEST-QUadrupolar Exact SofTware: a fast graphical program for the exact simulation of NMR and NQR spectra for quadrupolar nuclei.

    PubMed

    Perras, Frédéric A; Widdifield, Cory M; Bryce, David L

    2012-01-01

    We present a new program for the exact simulation of solid-state NMR spectra of quadrupolar nuclei in stationary powdered samples which employs diagonalization of the combined Zeeman-quadrupolar Hamiltonian. The program, which we call QUEST (QUadrupolar Exact SofTware), can simulate NMR spectra over the full regime of Larmor and quadrupolar frequency ratios, which encompasses scenarios ranging from high-field NMR to nuclear quadrupole resonance (NQR, where the Larmor frequency is zero) and does not make use of approximations when treating the quadrupolar interaction. With the use of the fast powder averaging scheme of Alderman, Solum, and Grant, exact NMR spectral simulations are only marginally slower than the second-order perturbation theory counterpart. The program, which uses a graphical user interface, also incorporates chemical shift anisotropy and non-coincident chemical shift and quadrupolar tensor frames. The program is validated against newly-acquired experimental data through several examples including: the low-field (79/81)Br NMR spectra of CaBr(2), the (14)N overtone NMR spectrum of glycine, the (187)Re NQR spectra of Re(2)(CO)(10), and lastly the (127)I overtone NQR spectrum of SrI(2), which, to the best of our knowledge, represents the first direct acquisition of an overtone NQR spectrum for a powdered sample.

  20. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  1. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  2. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  3. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  4. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates.

  5. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  6. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  7. WHNMR--a universal NMR application package.

    PubMed

    Xiaodong, Z; Hongbin, H; Nian, H; Lianfang, S; Chaohui, Y

    1996-06-01

    A PC-based NMR off-line data processing system is developed and described in detail. With this software system, one-dimensional (1D), two-dimensional (2D), and NMR imaging (MRI) data can be processed easily, and give reliable results. By the applications of this system, a versatile software interface is set up to achieve data exchanging and integrated usage with other PC application software and aids the PC to become an effective and powerful workstation.

  8. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  9. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  10. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  11. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  12. High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples.

    PubMed

    Olson, D L; Lacey, M E; Sweedler, J V

    1998-02-01

    An improved nanoliter-volume NMR probe design places the microcoil and capillary at the magic angle (57.7 degrees) with respect to the external magnetic field. Using an NMR probe which requires a total sample volume of just 200 nL, high-resolution 300-MHz 1H-NMR spectra (line width, 0.6 Hz) are presented of 10 mM alpha-bag cell peptide for an observe quantity of 45 ng (50 pmol in 5 nL). For the volume of sample inside the microcoil (the observe volume, Vobs), the 3 sigma limit of detection (LOD) is 9 ng (10 pmol, 2mM) for data obtained in 15 h. To reduce the data acquisition time, a probe with a greater Vobs is developed. As an example of a rapid, mass-limited analysis, a concentration corresponding to 400 ng of menthol dissolved in Vobs = 31 nL (82.6 mM) yields a spectrum in 9 min (LOD = 6.9 ng, 44 pmol, 1.4 mM). To illustrate improvements in concentration sensitivity, a spectrum is acquired in 45 min for 400 ng of menthol dissolved in a total sample volume of 200 nL (12.8 mM). Compared to a commercial nanoprobe for the same mass of menthol, these two examples reduce data acquisition time by at least 95%. Both model compounds demonstrate substantially improved concentration LODs compared to those obtained in previous high-resolution, microcoil NMR work. These advances illustrate the utility of enhanced sensitivity provided by NMR microcoils applied to nanoliter volumes of mass-limited samples.

  13. Hypothesis driven assessment of an NMR curriculum

    NASA Astrophysics Data System (ADS)

    Cossey, Kimberly

    The goal of this project was to develop a battery of assessments to evaluate an undergraduate NMR curriculum at Penn State University. As a chemical education project, we sought to approach the problem of curriculum assessment from a scientific perspective, while remaining grounded in the education research literature and practices. We chose the phrase hypothesis driven assessment to convey this process of relating the scientific method to the study of educational methods, modules, and curricula. We began from a hypothesis, that deeper understanding of one particular analytical technique (NMR) will increase undergraduate students' abilities to solve chemical problems. We designed an experiment to investigate this hypothesis, and data collected were analyzed and interpreted in light of the hypothesis and several related research questions. The expansion of the NMR curriculum at Penn State was funded through the NSF's Course, Curriculum, and Laboratory Improvement (CCLI) program, and assessment was required. The goal of this project, as stated in the grant proposal, was to provide NMR content in greater depth by integrating NMR modules throughout the curriculum in physical chemistry, instrumental, and organic chemistry laboratory courses. Hands-on contact with the NMR spectrometer and NMR data and repeated exposure of the analytical technique within different contexts (courses) were unique factors of this curriculum. Therefore, we maintained a focus on these aspects throughout the evaluation process. The most challenging and time-consuming aspect of any assessment is the development of testing instruments and methods to provide useful data. After key variables were defined, testing instruments were designed to measure these variables based on educational literature (Chapter 2). The primary variables measured in this assessment were: depth of understanding of NMR, basic NMR knowledge, problem solving skills (HETCOR problem), confidence for skills used in class (within

  14. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  15. Triple-Quantum Filtered NMR Imaging of Sodium -23 in the Human Brain

    NASA Astrophysics Data System (ADS)

    Keltner, John Robinson

    In the past multiple-quantum filtered imaging of biexponential relaxation sodium-23 nuclei in the human brain has been limited by low signal to noise ratios; this thesis demonstrates that such imaging is feasible when using a modified gradient-selected triple-quantum filter at a repetition time which maximizes the signal to noise ratio. Nuclear magnetic resonance imaging of biexponential relaxation sodium-23 (^{23}Na) nuclei in the human brain may be useful for detecting ischemia, cancer, and pathophysiology related to manic-depression. Multiple -quantum filters may be used to selectively image biexponential relaxation ^{23}Na signals since these filters suppress single-exponential relaxation ^{23}Na signals. In this thesis, the typical repetition times (200 -300 ms) used for in vivo multiple-quantum filtered ^{23}Na experiments are shown to be approximately 5 times greater than the optimal repetition time which maximizes multiple-quantum filtered SNR. Calculations and experimental verification show that the gradient-selected triple-quantum (GS3Q) filtered SNR for ^ {23}Na in a 4% agarose gel increases by a factor of two as the repetition time decreases from 300 ms to 55 ms. It is observed that a simple reduction of repetition time also increases spurious single-quantum signals from GS3Q filtered experiments. Irreducible superoperator calculations have been used to design a modified GS3Q filter which more effectively suppresses the spurious single-quantum signals. The modified GS3Q filter includes a preparatory crusher gradient and two-step-phase cycling. Using the modified GS3Q filter and a repetition time of 70 ms, a three dimensional triple-quantum filtered image of a phantom modelling ^{23} Na in the brain was obtained. The phantom consisted of two 4 cm diameter spheres inside of a 8.5 cm x 7 cm ellipsoid. The two spheres contained 0.012 and 0.024 M ^{23}Na in 4% agarose gel. Surrounding the spheres and inside the ellipsoid was 0.03 M aqueous ^{23}Na. The image

  16. (19)F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin.

    PubMed

    Kitamura, Keisuke; Omran, Ahmed A; Takegami, Shigehiko; Tanaka, Rumi; Kitade, Tatsuya

    2007-04-01

    The interaction of a non-steroidal anti-inflammatory drug, niflumic acid (NFA), with human serum albumin (HSA) has been investigated by (19)F nuclear magnetic resonance (NMR) spectroscopy. A (19)F NMR spectrum of NFA in a buffered (pH 7.4) solution of NaCl (0.1 mol L(-1)) contained a single sharp signal of its CF(3) group 14.33 ppm from the internal reference 2,2,2-trifluoroethanol. Addition of 0.6 mmol L(-1) HSA to the NFA buffer solution caused splitting of the CF(3) signal into two broadened signals, shifted to the lower fields of 14.56 and 15.06 ppm, with an approximate intensity ratio of 1:3. Denaturation of HSA by addition of 3.0 mol L(-1) guanidine hydrochloride (GU) restored a single sharp signal of CF(3) at 14.38 ppm, indicating complete liberation of NFA from HSA as a result of its denaturation. These results suggest that the binding is reversible and occurs in at least two HSA regions. Competitive (19)F NMR experiments using warfarin, dansyl-L: -asparagine, and benzocaine (site I ligands), and L: -tryptophan and ibuprofen (site II ligands) revealed that NFA binds to site I at two different regions, Ia and Ib, in the ratio 1:3. By use of (19)F NMR with NFA as an (19)F NMR probe the nonfluorinated site I-binding drugs sulfobromophthalein and iophenoxic acid were also found to bind sites Ia and Ib, respectively. These results illustrate the usefulness and convenience of (19)F NMR for investigation of the HSA binding of both fluorinated and nonfluorinated drugs.

  17. Expanding the Limits of Human Blood Metabolite Quantitation Using NMR Spectroscopy

    PubMed Central

    2015-01-01

    A current challenge in metabolomics is the reliable quantitation of many metabolites. Limited resolution and sensitivity combined with the challenges associated with unknown metabolite identification have restricted both the number and the quantitative accuracy of blood metabolites. Focused on alleviating this bottleneck in NMR-based metabolomics, investigations of pooled human serum combining an array of 1D/2D NMR experiments at 800 MHz, database searches, and spiking with authentic compounds enabled the identification of 67 blood metabolites. Many of these (∼1/3) are new compared with those reported previously as a part of the Human Serum Metabolome Database. In addition, considering both the high reproducibility and quantitative nature of NMR as well as the sensitivity of NMR chemical shifts to altered sample conditions, experimental protocols and comprehensive peak annotations are provided here as a guide for identification and quantitation of the new pool of blood metabolites for routine applications. Further, investigations focused on the evaluation of quantitation using organic solvents revealed a surprisingly poor performance for protein precipitation using acetonitrile. One-third of the detected metabolites were attenuated by 10–67% compared with methanol precipitation at the same solvent-to-serum ratio of 2:1 (v/v). Nearly 2/3 of the metabolites were further attenuated by up to 65% upon increasing the acetonitrile-to-serum ratio to 4:1 (v/v). These results, combined with the newly established identity for many unknown metabolites in the NMR spectrum, offer new avenues for human serum/plasma-based metabolomics. Further, the ability to quantitatively evaluate nearly 70 blood metabolites that represent numerous classes, including amino acids, organic acids, carbohydrates, and heterocyclic compounds, using a simple and highly reproducible analytical method such as NMR may potentially guide the evaluation of samples for analysis using mass spectrometry

  18. NMR lineshape equations for hindered methyl group: a comparison of the semi-classical and quantum mechanical models.

    PubMed

    Bernatowicz, P; Szymański, S

    2003-09-01

    The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.

  19. Temperature imaging by 1H NMR and suppression of convection in NMR probes

    PubMed

    Hedin; Furo

    1998-03-01

    A simple arrangement for suppressing convection in NMR probes is tested experimentally. Diffusion experiments are used to determine the onset of convection and 1H temperature imaging helps to rationalize the somewhat surprising results. A convenient new 1H NMR thermometer, CH2Br2 dissolved in a nematic thermotropic liquid crystal, is presented. Copyright 1998 Academic Press.

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    PubMed

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  1. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  2. NMR Spectra through the Eyes of a Student: Eye Tracking Applied to NMR Items

    ERIC Educational Resources Information Center

    Topczewski, Joseph J.; Topczewski, Anna M.; Tang, Hui; Kendhammer, Lisa K.; Pienta, Norbert J.

    2017-01-01

    Nuclear magnetic resonance spectroscopy (NMR) plays a key role in introductory organic chemistry, spanning theory, concepts, and experimentation. Therefore, it is imperative that the instruction methods for NMR are both efficient and effective. By utilizing eye tracking equipment, the researchers were able to monitor how second-semester organic…

  3. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    PubMed

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound.

  4. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method.

    PubMed

    Jia, Jian-Bo; Wang, Ying; Li, Feng-Hai; Yi, Gui-Yun; Zeng, Fan-Gui; Guo, Hong-Yu

    2014-01-01

    The structure of coal needs to be understood from a molecular point of view for clean, effective and high value-added utilization of coal. In the literature, molecular structure model of Shendong coal vitrinite (SV) was established by the authors on the basis of experimental results of ultimate analysis and 13C NMR, and the calculated 13C NMR spectrum of SV model was consistent with the experimental spectrum. In order to further verify the accuracy of SV structure model established by the authors, the infrared spectrum of SV structure model was calculated using quantum chemistry semi-empirical VAMP in this thesis. The results showed that the peak shape of calculated IR spectrum of SV structure model was similar to the experiment's, but the wave number of calculated IR spectrum was obviously higher than that of experimental spectrum. According to the calculated results for model compounds by using the same method, calculated vibrational frequency was higher than that of experiment for the same functional groups. Hence, the calculated IR spectrum should be corrected. After correction the calculated IR spectrum of SV structure model matched well with the experimental spectrum. In other words, the SV structure model can truly reflect the structure characteristics of SV.

  5. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    PubMed

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  6. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  7. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  8. NMR methodologies in the analysis of blueberries.

    PubMed

    Capitani, Donatella; Sobolev, Anatoly P; Delfini, Maurizio; Vista, Silvia; Antiochia, Riccarda; Proietti, Noemi; Bubici, Salvatore; Ferrante, Gianni; Carradori, Simone; De Salvador, Flavio Roberto; Mannina, Luisa

    2014-06-01

    An NMR analytical protocol based on complementary high and low field measurements is proposed for blueberry characterization. Untargeted NMR metabolite profiling of blueberries aqueous and organic extracts as well as targeted NMR analysis focused on anthocyanins and other phenols are reported. Bligh-Dyer and microwave-assisted extractions were carried out and compared showing a better recovery of lipidic fraction in the case of microwave procedure. Water-soluble metabolites belonging to different classes such as sugars, amino acids, organic acids, and phenolic compounds, as well as metabolites soluble in organic solvent such as triglycerides, sterols, and fatty acids, were identified. Five anthocyanins (malvidin-3-glucoside, malvidin-3-galactoside, delphinidin-3-glucoside, delphinidin-3-galactoside, and petunidin-3-glucoside) and 3-O-α-l-rhamnopyranosyl quercetin were identified in solid phase extract. The water status of fresh and withered blueberries was monitored by portable NMR and fast-field cycling NMR. (1) H depth profiles, T2 transverse relaxation times and dispersion profiles were found to be sensitive to the withering.

  9. Radiation damping in microcoil NMR probes

    NASA Astrophysics Data System (ADS)

    Krishnan, V. V.

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-μL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  10. Radiation damping in microcoil NMR probes.

    PubMed

    Krishnan, V V

    2006-04-01

    Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.

  11. Magic angle spinning NMR of paramagnetic proteins.

    PubMed

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  12. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  13. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  14. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  15. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  16. Communication: molecular dynamics and (1)H NMR of n-hexane in liquid crystals.

    PubMed

    Weber, Adrian C J; Burnell, E Elliott; Meerts, W Leo; de Lange, Cornelis A; Dong, Ronald Y; Muccioli, Luca; Pizzirusso, Antonio; Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  17. Computer-assisted structural analysis of regular glycopolymers on the basis of 13C NMR data.

    PubMed

    Toukach, F V; Shashkov, A S

    2001-09-28

    A computer-assisted approach to the prediction of the primary structures of regular glycopolymers is described. The analysis is based on comparing the calculated 13C NMR spectra of all the possible structures of the repeating unit (for the given monomeric composition) to an experimental 13C NMR spectrum. The spectra generation is based on the spectral database containing information on the 13C chemical shifts of monomers, di- and trimeric fragments. If the required data are missing from this database, the special database for average glycosylation effects is used. The analysis reveals those structures with the calculated 13C NMR spectrum most close to observed. The structures of repeating units of any topology containing up to six residues linked by glycosidic, amidic or phospho-diester bridges can be predicted. Unambiguous selection of the proper structure from the output list of possible structures may require additional experimental data. Testing the created program and databases on bacterial polysaccharides and their derivatives containing up to three non-sugar residues (alditols, amino acids, phosphate groups etc.) per repeating unit revealed the good convergence of prediction with independently obtained structural data.

  18. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  19. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGES

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  20. An optimised detector for in-situ high-resolution NMR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Finch, Graeme; Yilmaz, Ali; Utz, Marcel

    2016-01-01

    Integration of high-resolution nuclear magnetic resonance (NMR) spectroscopy with microfluidic lab-on-a-chip devices is challenging due to limited sensitivity and line broadening caused by magnetic susceptibility inhomogeneities. We present a novel double-stripline NMR probe head that accommodates planar microfluidic devices, and obtains the NMR spectrum from a rectangular sample chamber on the chip with a volume of 2 μ l. Finite element analysis was used to jointly optimise the detector and sample volume geometry for sensitivity and RF homogeneity. A prototype of the optimised design has been built, and its properties have been characterised experimentally. The performance in terms of sensitivity and RF homogeneity closely agrees with the numerical predictions. The system reaches a mass limit of detection of 1.57 nmol √{ s } , comparing very favourably with other micro-NMR systems. The spectral resolution of this chip/probe system is better than 1.75 Hz at a magnetic field of 7 T, with excellent line shape.

  1. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  2. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  3. The Emperor's new clothes: Myths and truths of in-cell NMR.

    PubMed

    Pastore, Annalisa; Temussi, Piero Andrea

    2017-03-01

    In-cell NMR is a technique developed to study the structure and dynamical behavior of biological macromolecules in their natural environment, circumventing all isolation and purification steps. In principle, the potentialities of the technique are enormous, not only for the possibility of bypassing all purification steps but, even more importantly, for the wealth of information that can be gained from directly monitoring interactions among biological macromolecules in a natural cell. Here, we review critically the promises, successes and limits of this technique as it stands now. Interestingly, many of the problems of NMR in bacterial cells stem from the artificially high concentration of the protein under study whose overexpression is anyway necessary to select it from the background. This has, as a consequence, that when overexpressed, most globular proteins, do not show an NMR spectrum, limiting the applicability of the technique to intrinsically unfolded or specifically behaving proteins. The outlook for in-cell NMR of eukaryotic cells is more promising and is possibly the most attracting aspect for the future.

  4. Solid state NMR methods for coal science. Progress report, October 1, 1983-December 31, 1984

    SciTech Connect

    Zilm, K.W.

    1984-12-01

    This report covers the progress made on the title project during the last quarter. While a good deal of our time has been spent setting up our new NMR laboratory, we have made several significant advances in solid state NMR techniques development that will have important applications in structure determination of coal, coal products and other fossil fuels. We have developed a CP/MAS probe that is routinely capable of producing decoupling fields in excess of 100 KHz without excessive power consumption and that has a very homogeneous frequency field. This piece of equipment has proven crucial to the success of a number of new techniques we are developing. In addition to increasing our sensitivity, the intensity, and homogeneity of the R.F. field, this probe now makes a number of multiple pulse techniques feasible. One avenue has been pursued this quarter is to use multiple pulse decoupling to make 2-D spectroscopy feasible in solids and this has resulted in the first proton-carbon chemical shift correlation spectrum of coal. The homogeneity of the R.F. field has also been helpful in some relaxation studies of coals aimed at an improved understanding of the quantitative aspects of /sup 13/C CP/MAS of coals, i.e., are all the carbons observed. Other techniques being investigated include high field /sup 2/D NMR and /sup 2/D zero field NMR. 8 figures, 1 table.

  5. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  6. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy.

    PubMed

    Devience, Stephen J; Walsworth, Ronald L; Rosen, Matthew S

    2013-10-01

    Nuclear magnetic resonance (NMR) spectra of complex chemical mixtures often contain unresolved or hidden spectral components, especially when strong background signals overlap weaker peaks. In this article we demonstrate a quantum filter utilizing nuclear spin singlet states, which allows undesired NMR spectral background to be removed and target spectral peaks to be uncovered. The quantum filter is implemented by creating a nuclear spin singlet state with spin quantum numbers j = 0, mz  = 0 in a target molecule, applying a continuous RF field to both preserve the singlet state and saturate the magnetization of undesired molecules and then mapping the target molecule singlet state back into an NMR observable state so that its spectrum can be read out unambiguously. The preparation of the target singlet state can be carefully controlled with pulse sequence parameters, so that spectral contrast can be achieved between molecules with very similar structures. We name this NMR contrast mechanism 'Suppression of Undesired Chemicals using Contrast-Enhancing Singlet States' (SUCCESS) and we demonstrate it in vitro for three target molecules relevant to neuroscience: aspartate, threonine and glutamine.

  7. Review of NMR characterization of pyrolysis oils

    SciTech Connect

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.

  8. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  9. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  10. NMR Spectroscopy: Processing Strategies (by Peter Bigler)

    NASA Astrophysics Data System (ADS)

    Mills, Nancy S.

    1998-06-01

    Peter Bigler. VCH: New York, 1997. 249 pp. ISBN 3-527-28812-0. $99.00. This book, part of a four-volume series planned to deal with all aspects of a standard NMR experiment, is almost the exact book I have been hoping to find. My department has acquired, as have hundreds of other undergraduate institutions, high-field NMR instrumentation and the capability of doing extremely sophisticated experiments. However, the training is often a one- or two-day experience in which the material retained by the faculty trained is garbled and filled with holes, not unlike the information our students seem to retain. This text, and the accompanying exercises based on data contained on a CD-ROM, goes a long way to fill in the gaps and clarify misunderstandings about NMR processing.

  11. Contact replacement for NMR resonance assignment

    PubMed Central

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-01-01

    Motivation: Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein–protein and protein–ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. Results: We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1–2 AA), noise (250–600%) and missings (10–40%). Our algorithm achieves very good overall assignment accuracy, above 80% in α-helices, 70% in β-sheets and 60% in loop regions. Availability: Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors. Contact: gopal@cs.purdue.edu; cbk@cs.dartmouth.edu PMID:18586716

  12. Solid-state NMR of proteins sedimented by ultracentrifugation

    PubMed Central

    Bertini, Ivano; Luchinat, Claudio; Parigi, Giacomo; Ravera, Enrico; Reif, Bernd; Turano, Paola

    2011-01-01

    Relatively large proteins in solution, spun in NMR rotors for solid samples at typical ultracentrifugation speeds, sediment at the rotor wall. The sedimented proteins provide high-quality solid-state-like NMR spectra suitable for structural investigation. The proteins fully revert to the native solution state when spinning is stopped, allowing one to study them in both conditions. Transiently sedimented proteins can be considered a novel phase as far as NMR is concerned. NMR of transiently sedimented molecules under fast magic angle spinning has the advantage of overcoming protein size limitations of solution NMR without the need of sample crystallization/precipitation required by solid-state NMR. PMID:21670262

  13. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  14. New Designs for NMR Core Scanning

    NASA Astrophysics Data System (ADS)

    Bluemich, B.; Anferova, S.; Talnishnikh, E.; Arnold, J.; Clauser, C.

    2006-12-01

    Within the last ten years, mobile magnetic resonance has moved from the oil field to many new areas of application. While the focus of mobile NMR in the past was on single-sided or inside-out NMR, the advent of tube-shaped Halbach magnets has introduced the conventional outside-in NMR concept to mobile NMR where the object is inside a magnet. Our Halbach magnet is constructed from small magnet blocks at light weight and low cost with a magnetic field sufficiently homogeneous. To automatize NMR measurements, the Halbach magnet is mounted on a sliding table to scan long core sections without human interaction. In homogeneous magnetic fields, the longitudinal relaxation time T1 and even the transverse relaxation time T2 are proportional to the pore diameters of rocks. Hence, the T1 and T2 signals map the pore-size distribution of the studied rock cores. For fully saturated samples the integral of the distribution curve is proportional to porosity. The porosity values from NMR measurements with the Halbach magnet are used to estimate permability. The Halbach magnet can be used for certain sample geometries in combination with exchangeable radio frequency (rf) coils with different diameters from 24 mm up to 80 mm. To measure standard Ocean Drilling Program (ODP)/Integrated Ocean Drilling Program (IODP) cores, which have a standard diameter of 60 mm and are split lengthwise after recovery, we use a surface figure-8 rf coil with an inner diameter of 60 mm. Besides 1D T2 measurements, we perform relaxation-relaxation correlation experiments, where T1 and T2 are measured in parallel. In this way, the influence of diffusion on the shape of the T2 distribution function is probed. A gradient coil system was designed to perform Pulsed Field Gradients (PFG) experiments. As the gradient coils restrict the axial access to the magnet, only cylindrical core plugs with 20 mm in diameter can be analysed by PFG NMR methods. The homogeneity of the magnetic field in the sensitive volume

  15. Complete (1) H NMR assignment of cedranolides.

    PubMed

    Perez-Hernandez, Nury; Gordillo-Roman, Barbara; Arrieta-Baez, Daniel; Cerda-Garcia-Rojas, Carlos M; Joseph-Nathan, Pedro

    2017-03-01

    Complete and unambiguous (1) H NMR chemical shift assignment of α-cedrene (2) and cedrol (9), as well as for α-pipitzol (1), isocedrol (10), and the six related compounds 3-8 has been established by iterative full spin analysis using the PERCH NMR software (PERCH Solutions Ltd., Kuopio, Finland). The total sets of coupling constants are described and correlated with the conformational equilibria of the five-membered ring of 1-10, which were calculated using the complete basis set method. Copyright © 2015 John Wiley & Sons, Ltd.

  16. (13)C NMR Metabolomics: INADEQUATE Network Analysis.

    PubMed

    Clendinen, Chaevien S; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S

    2015-06-02

    The many advantages of (13)C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, (13)C NMR offers a straightforward measurement of these compounds. Two-dimensional (13)C-(13)C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semiautomated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE data sets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures.

  17. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  18. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  19. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  20. A thorough study on the use of quantitative 1H NMR in Rioja red wine fermentation processes.

    PubMed

    López-Rituerto, Eva; Cabredo, Susana; López, Martina; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2009-03-25

    In this study, we focused our attention on monitoring the levels of important metabolites of wine during the alcoholic and malolactic fermentation processes by quantitative nuclear magnetic resonance (qNMR). Therefore, using (1)H NMR, the method allows the simultaneous quantification of ethanol, acetic, malic, lactic, and succinic acids, and the amino acids proline and alanine, besides the ratio proline/arginine through fermentation of must of grapes corresponding to the Tempranillo variety. Each (1)H NMR spectrum gives direct and visual information concerning these metabolites, and the effectiveness of each process was assessed and compared by carrying out analyses using infrared spectroscopy to ethanol and acetic acid. The quantitative data were explained with the aid of chemometric algorithms.

  1. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin.

  2. (1)H NMR spectra dataset and solid-state NMR data of cowpea (Vigna unguiculata).

    PubMed

    Alves Filho, Elenilson G; Silva, Lorena M A; Teofilo, Elizita M; Larsen, Flemming H; de Brito, Edy S

    2017-04-01

    In this article the NMR data from chemical shifts, coupling constants, and structures of all the characterized compounds were provided, beyond a complementary PCA evaluation for the corresponding manuscript (E.G. Alves Filho, L.M.A. Silva, E.M. Teofilo, F.H. Larsen, E.S. de Brito, 2017) [3]. In addition, a complementary assessment from solid-state NMR data was provided. For further chemometric analysis, numerical matrices from the raw (1)H NMR data were made available in Microsoft Excel workbook format (.xls).

  3. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  4. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  5. The Initial State of Optically Polarized 8Li+ from the β-NMR in Bismuth

    NASA Astrophysics Data System (ADS)

    MacFarlane, W. A.; Levy, C. D. P.; Pearson, M. R.; Buck, T.; Chow, K. H.; Hariwal, A. N.; Kiefl, R. F.; McGee, F. H.; Morris, G. D.; Wang, D.

    2014-12-01

    Unlike the positive muon, β-NMR probe nuclei must be actively polarized. At the TRIUMF ISAC facility this is accomplished by in-flight collinear optical pumping with resonant circularly polarized laser light. This reliably produces a high degree of polarization, but the detailed state populations in the beam emerging from the optical polarizer are not well known. These populations are significant as they represent the initial state of the ensemble of probe spins implanted in a β-NMR experiment. Here we use the well-resolved quadrupolar split spectrum of 8Li+ in a high purity single crystal of bismuth to extract the sublevel populations under typical polarizer operating conditions, accounting for the spin relaxation in this semimetal.

  6. NMR Study of Layered Transition Metal Ditelluride (Ir,Pt)Te2

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Saito, T.; Koyama, K.; Matsumoto, N.; Nagata, S.

    2012-12-01

    We report the results of 125Te and 195Pt NMR measurements on (Ir,Pt)Te2 in order to elucidate the characteristic electronic states. For PtTe2, the NMR spectrum exhibits a sharp line, which shows the uniaxially symmetric powder pattern due to the anisotropic Knight shift. The Knight shift is almost independent of temperature and is larger than that for IrTe2. Also, the nuclear spin-lattice relaxation rate 1/T1 of PtTe2 is proportional to the temperature in a wide temperature range, that is, obeys the Korringa relation as expected for simple metallic systems. From the analyses of the Knight shift and 1/T1, it is suggested that the antiferromagnetic correlations slightly exist.

  7. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  8. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  9. Exact NMR simulation of protein-size spin systems using tensor train formalism

    NASA Astrophysics Data System (ADS)

    Savostyanov, D. V.; Dolgov, S. V.; Werner, J. M.; Kuprov, Ilya

    2014-08-01

    We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a N15 NMR spectrum of ubiquitin—a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.

  10. Characterization of ofloxacin-oxalic acid complex by PXRD, NMR, and THz spectroscopy.

    PubMed

    Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2009-12-01

    A novel ofloxacin-oxalic acid complex was prepared by the cogrinding method. The obtained complex was characterized by powder X-ray diffraction (PXRD), infrared (IR), solid-state nuclear magnetic resonance (NMR), and terahertz (THz) spectroscopy. The PXRD measurement revealed that the ofloxacin-oxalic acid complex induced by cogrinding was formed at a molar ratio of 1:2. Weak interaction between two components, not a hydrogen bonding, was found by IR and solid-state NMR spectroscopy. The distinctive THz spectrum showed that the vibrational modes of the complex were different from those of the starting materials, suggesting that THz spectroscopy is an alternative tool to evaluate complex formation through weak interactions.

  11. Fluorine-19 or phosphorus-31 NMR spectroscopy: a suitable analytical technique for quantitative in vitro metabolic studies of fluorinated or phosphorylated drugs.

    PubMed

    Martino, Robert; Gilard, Véronique; Desmoulin, Franck; Malet-Martino, Myriam

    2005-08-10

    Fluorine-19 or phosphorus-31 NMR (19F NMR or 31P NMR) spectroscopy provides a highly specific tool for identification of fluorine- or phosphorus-containing drugs and their metabolites in biological media as well as a suitable analytical technique for their absolute quantification. This article focuses on the application of in vitro 19F or 31P NMR to the quantitative metabolic studies of some fluoropyrimidine or oxazaphosphorine drugs in clinical use. The first part presents an overview of the advantages (non-destructive and non-selective direct quantitative study of the biological matrices) and limitations (expensive cost of the spectrometers, limited mass or concentration sensitivity) of NMR spectroscopy. The second part deals with the criteria to be considered for successful quantification by NMR (uniform excitation over the entire spectral width of the spectrum, resonance signals properly characterised by taking into account T1 values and avoiding NOE enhancements, optimisation of the data processing, choice of a suitable standard reference). The third and fourth parts report some examples of quantification of 5-fluorouracil, its prodrug capecitabine, 5-fluorocytosine and their metabolites in bulk solutions (biofluids, tissue extracts, perfusates and culture media) and heterogeneous media (excised tissues and packed intact cells) as well as cyclophosphamide and ifosfamide in biofluids. These two parts emphasise the high potential of in vitro 19F or 31P NMR for absolute quantification, in a single run, of all the fluorine- or phosphorus-containing species in the matrices analysed. The limit of quantification in bulk solutions is 1-3 microM for 19F NMR and approximately 10 microM for 31P NMR. In heterogeneous media analysed with 19F NMR, it is 2-5 nmol in excised tissues and cell pellets.

  12. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  13. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations.

    PubMed

    Toukach, Filip V; Ananikov, Valentine P

    2013-11-07

    All living systems are comprised of four fundamental classes of macromolecules--nucleic acids, proteins, lipids, and carbohydrates (glycans). Glycans play a unique role of joining three principal hierarchical levels of the living world: (1) the molecular level (pathogenic agents and vaccine recognition by the immune system, metabolic pathways involving saccharides that provide cells with energy, and energy accumulation via photosynthesis); (2) the nanoscale level (cell membrane mechanics, structural support of biomolecules, and the glycosylation of macromolecules); (3) the microscale and macroscale levels (polymeric materials, such as cellulose, starch, glycogen, and biomass). NMR spectroscopy is the most powerful research approach for getting insight into the solution structure and function of carbohydrates at all hierarchical levels, from monosaccharides to oligo- and polysaccharides. Recent progress in computational procedures has opened up novel opportunities to reveal the structural information available in the NMR spectra of saccharides and to advance our understanding of the corresponding biochemical processes. The ability to predict the molecular geometry and NMR parameters is crucial for the elucidation of carbohydrate structures. In the present paper, we review the major NMR spectrum simulation techniques with regard to chemical shifts, coupling constants, relaxation rates and nuclear Overhauser effect prediction applied to the three levels of glycomics. Outstanding development in the related fields of genomics and proteomics has clearly shown that it is the advancement of research tools (automated spectrum analysis, structure elucidation, synthesis, sequencing and amplification) that drives the large challenges in modern science. Combining NMR spectroscopy and the computational analysis of structural information encoded in the NMR spectra reveals a way to the automated elucidation of the structure of carbohydrates.

  14. Strategies for the use of lanthanide NMR shift probes in the determination of protein structure in solution

    SciTech Connect

    Lee, L.; Sykes, B.D.

    1980-10-01

    The homologous sequences observed for many calcium binding proteins such as parvalbumin, troponin c, the myosin light chains, and calmodulin has leand to the hypothesis that these proteins have homologous structures at the level of their calcium binding sites. This paper discusses the development of a nuclear magnetic resonance (NMR) technique which will enable us to test this structural hypothesis in solution. The technique involves the substitution of a paramagnetic lanthanide ion for the calcium ion which results in lanthanide induced shifts and broadening in the /sup 1/H NMR spectrum of the protein. These shifts are sensitive monitors of the precise geometrical orientation of each proton nucleus relative to the metal. The interaction of the lanthanide ytterbium with parvalbumin results in high resolution NMR spectra exhibiting a series of resonances with shifts spread over the range 32 to -19 ppM. The orientation and principal elements of the ytterbium magnetic susceptibility tensor have been determined using three assigned NMR resonances, the His-26 C2 and C4 protons and the amino terminal acetyl protons, and seven methyl groups; all with known geometry relative to the EF calcium binding site. The elucidation of these parameters has allowed us to compare the observed spectrum of the nuclei surrounding the EF calcium binding site of parvalbumin with that calculated from the x-ray struture. A significant number of the calculated shifts are larger than any of the observed shifts. We feel that a refinement of the x-ray based proton coordinates will be possible utilizing the geometric information contained in the lanthanide shifted NMR spectrum.

  15. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  16. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra.

  17. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  18. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  19. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  20. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  1. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  2. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  3. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  4. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... essential data on ASD, search for factors that put children at risk for ASD and possible causes, ... United States to help identify factors that may put children at risk for autism spectrum disorder (ASD) ...

  5. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Autism Spectrum Disorder (ASD): Condition Information Skip sharing on ... Restricted interests and repetitive behaviors Different people with autism can have different symptoms. For this reason, autism ...

  6. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR.

  7. Selective Detection of 1H NMR Resonances of CH n Groups Using a Heteronuclear Maximum-Quantum Filter and Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Liu, M.; Farrant, R. D.; Nicholson, J. K.; Lindon, J. C.

    A number of approaches are described for the provision of separate one-dimensional 1H NMR spectra of CH, CH 2, and CH 3 groups utilizing the natural-abundance 13C spins and based upon the selection of the maximum multiple-quantum coherences of the various groups, This sequence is termed edited maximum-quantum proton spectroscop y (MAXY) spectroscopy, The replacement of phase cycling with the application of z magnetic field gradient pulses is also demonstrated, The editing approach is demonstrated using the 1H NMR spectrum of dexamethasone in DMSO- d6 solution, Extension to a complex mixture biofluid is exemplified by the CH 3-only 1H NMR spectrum of human seminal plasma. This aid to the assignment of endogenous metabolite resonances is demonstrated to result in dramatic spectral simplification.

  8. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMR-MOLE.

    PubMed

    Manz, B; Coy, A; Dykstra, R; Eccles, C D; Hunter, M W; Parkinson, B J; Callaghan, P T

    2006-11-01

    A new portable NMR sensor with a novel one-sided access magnet design, termed NMR-MOLE (MObile Lateral Explorer), has been characterised in terms of sensitivity and depth penetration. The magnet has been designed to be portable and create a volume with a relatively homogeneous magnetic field, 15,000 ppm over a region from 4 to 16 mm away from the probe, with maximum sensitivity at a depth of 10 mm. The proton NMR frequency is 3.3 MHz. We have demonstrated that with this approach a highly sensitive, portable, unilateral NMR sensor can be built. Such a design is especially suited for the characterisation of liquids in situations where unilateral or portable access is required.

  9. Partitioning of aluminum atoms in crystallographically non-equivalent tetrahedral sites of the zeolite offretite by 29Si MAS NMR

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Wang, K. X.; Luo, W. L.; Yuan, Z. Y.; Wang, J. Z.; Ding, D. T.; Li, H. X.; Hu, C.

    1996-04-01

    For the zeolite offretite, a formula is proposed which includes the framework Si/Al ratio ( R), the partitioning ratio of Al over two crystallographically non-equivalent tetrahedral sites ( r) and intensities of the observed peaks in the 29Si MAS NMR spectrum. By this formula, the framework Si/Al ratio of offretite can be estimated from the 29Si MAS NMR spectrum. Combined with chemical analysis of the Si/Al ratio, Al partitioning in two kinds of T sites can also be deduced. It is concluded that the T B sites are favored by Al atoms in parent offretites and Al atoms at T B sites can more easily be substituted isomorphously by Si when treated with (NH 4) 2SiF 6. The formula proposed here is based only on experiments and may be used to testify some statistical models of Al distributions in offretites.

  10. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  11. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  12. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints

    PubMed Central

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-01-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint PMID:20513646

  13. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  14. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint.

  15. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  16. OPENCORE NMR: Open-source core modules for implementing an integrated FPGA-based NMR spectrometer

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments.

  17. First NMR Experiments in the Hybrid, 40T and beyond: A challenge to traditional NMR instrumentation

    NASA Astrophysics Data System (ADS)

    Reyes, Arneil P.

    2001-03-01

    The recent commissioning of the continuous 45T hybrid magnet at NHMFL has opened new horizon for science but carried with it new challenges that forced NMR spectroscopists to reevaluate the traditional approach to NMR instrumentation. Very recently, a world record frequency at 1.5GHz has been achieved, signaling the new era of NMR probe designs that may someday blur the distinction between the classic NMR and millimeter-wave spectroscopies. No longer can we ignore stray capacitances and exposed leads in the terrain where every millimeter of cable counts. The challenge brought about by ever increasing fields and consequently, frequency, requirements has stimulated ingenuity among scientists. This is eased by accelerated growth in RF communications and computing technologies that made available advanced devices with more speed, power, bandwidth, noise immunity, flexibility, and complexity in small space at very low costs. Utilization of these devices have been paramount consideration in cutting-edge designs at NHMFL for Condensed Matter NMR and will be described in this talk. I will also discuss a number of first >33T NMR experiments to date utilizing the strength of the field to expose, as well as to induce occurrence of, new physical phenomena in condensed matter and which resulted in better understanding of the physics of materials. This work has been a result of continuing collaboration with P. L Kuhns, W. G. Moulton, W. P. Halperin (NU), and W. G. Clark (UCLA). The NHMFL is supported through the National Science Foundation and the State of Florida.

  18. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  19. Advances in NMR-based biofluid analysis and metabolite profiling.

    PubMed

    Zhang, Shucha; Nagana Gowda, G A; Ye, Tao; Raftery, Daniel

    2010-07-01

    Significant improvements in NMR technology and methods have propelled NMR studies to play an important role in a rapidly expanding number of applications involving the profiling of metabolites in biofluids. This review discusses recent technical advances in NMR spectroscopy based metabolite profiling methods, data processing and analysis over the last three years.

  20. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  1. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  2. A constraint-based assignment system for automating long side chain assignments in protein 2D NMR spectra

    SciTech Connect

    Leishman, S.; Gray, P.; Fothergill, J.E.

    1995-12-31

    The sequential assignment of protein 2D NMR data has been tackled by many automated and semi-automated systems. One area that these systems have not tackled is the searching of the TOCSY spectrum looking for cross peaks and chemical shift values for hydrogen nuclei that are at the end of long side chains. This paper describes our system for solving this problem using constraint logic programming and compares our constraint satisfaction algorithm to a standard backtracking version.

  3. Application of a microcoil probe head in NMR analysis of chemicals related to the chemical weapons convention.

    PubMed

    Koskela, Harri; Vanninen, Paula

    2008-07-15

    A 1.7-mm microcoil probe head was tested in the analysis of organophosphorus compounds related to the Chemical Weapons Convention. The microcoil probe head demonstrated a high mass sensitivity in the detection of traces of organophosphorus compounds in samples. Methylphosphonic acid, the common secondary degradation product of sarin, soman, and VX, was detected at level 50 ng (0.52 nmol) from a 30-microL water sample using proton-observed experiments. Direct phosphorus observation of methylphosphonic acid with (31)P{(1)H} NMR experiment was feasible at the 400-ng (4.17 nmol) level. Application of the microcoil probe head in the spiked sample analysis was studied with a test water sample containing 2-10 microg/mL of three organophosphorus compounds. High-quality (1)H NMR, (31)P{(1)H} NMR, 2D (1)H-(31)P fast-HMQC, and 2D TOCSY spectra were obtained in 3 h from the concentrated 1.7-mm NMR sample prepared from 1 mL of the water solution. Furthermore, a 2D (1)H-(13)C fast-HMQC spectrum with sufficient quality was possible to measure in 5 h. The microcoil probe head demonstrated a considerable sensitivity improvement and reduction of measurement times for the NMR spectroscopy in identification of chemicals related to the Chemical Weapons Convention.

  4. The long time tail of molecular velocity correlation in a confined fluid: observation by modulated gradient spin-echo NMR

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Callaghan, Paul T.

    2000-11-01

    In addition to the fast correlation for local stochastic motion the molecular velocity correlation function in a fluid enclosed within the pore boundaries features a slow long time tail decay [1,2]. This article presents a study by the NMR modulated gradient spin-echo method (MGSE) [3] on a system of water trapped in the space between the closely packed polystyrene beads. The results prove that the obtained dependence of spin-echo attenuation on time, gradient strength and modulation frequency nicely corresponds to the recently developed NMR approach, which is able to describe the effects of arbitrarily shaped gradient pulse sequence on the spin-echo attenuation [4,5]. With an MGSE pulse sequence, a repetitive train of RF pulses with interspersed gradient pulses periodically modulates the spin-phase, giving the spin-echo attenuation proportional to a value of the velocity correlation spectrum at the modulation frequency. It enables to extract the low-frequency correlation spectrum of confined water molecules. The function exhibits a negative long time tail characteristic (a low-frequency decay of the spectrum), that can be well fitted with the spectrum calculated from the solution of the Langevin equation for restricted diffusion (which exhibits an exponential decay) as well as with the spectrum obtained when simulating the hydrodynamics of molecular motion constrained by capillary walls (which gives an algebraic decay).

  5. Hydrogen bonding. Part 17. IR and NMR study of the lower hydrates of choline chloride

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Avci, Günsel F.

    1984-09-01

    Choline chloride forms two lower hydrates — a dihydrate and a monohydrate — with quite unusual properties. The dihydrate is a highly structured liquid salt; the IR spectrum is similar to that of a crystalline framework clathrate hydrate, and there are separate 1H-NMR signals for the cation hydroxyl and water protons. The dihydrate is a crystalline solid at reduced pressure. The crystalline monohydrate only exists at reduced pressure; at atmospheric pressure it disproportionates to liquid dihydrate and anhydrous choline chloride. The anhydrous choline chloride thus formed is a previously unreported crystal modification of choline chloride.

  6. Analysis of NMR self-diffusion measurements by a density matrix calculation

    NASA Astrophysics Data System (ADS)

    Stepišnik, J.

    1981-04-01

    The density matrix formalism with the Magnus expansion of the time evolution operator is used to study the nmr response in a pulsed magnetic field gradient (mfg) spin-echo experiment. The results show that the spin-echo cannot only measure the self-diffusion coefficient but can determine the spectrum of the single-particle velocity autocorrelation function as well. The proper combination of rf and mfg pulse sequences are proposed for measuring self-diffusion in spin systems with strong dipolar coupling where the classical method fails.

  7. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  8. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  9. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  10. ABCs of FT NMR, (by John D. Roberts)

    NASA Astrophysics Data System (ADS)

    Shibata, John H.

    2002-11-01

    In summary, there are several good books on NMR that I have read and used in preparing lectures on NMR, and in comparison to these books, this would not be the first book that I would take from my bookshelf to learn NMR. It is an elementary book that does have explanations that may help clarify some topics. For that reason, it may be useful to have in a chemistry library collection. I could envision an NMR course based on this book, but not without using other books to supplement the course. To this end, this book has a very useful appendix that describes several excellent NMR books and journals.

  11. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  14. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  15. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  16. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  17. An unusual meteor spectrum

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Hemenway, C. L.; Millman, P. M.; Swider, A.

    1973-01-01

    An extraordinary spectrum of a meteor at a velocity of about 18.5 + or - 1.0 km/s was observed with an image orthicon camera. The radiant of the meteor was at an altitude of about 49 deg. It was first seen showing a yellow red continuous spectrum alone at a height of 137 + or - 8 km which is ascribed to the first positive group of nitrogen bands. After the meteor had descended to 116 + or - 6 km above sea level it brightened rapidly from its previous threshold brightness into a uniform continuum, the D-line of neutral sodium appeared, and at height 105 + or - 5 km all the other lines of the spectrum also appeared. The continuum remained dominant to the end. Water of hydration and entrained carbon flakes of characteristic dimension about 0.2 micron or less are proposed as constituents of the meteoroid to explain these phenomena.

  18. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  19. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  20. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  1. (129)Xe NMR of Mesoporous Silicas

    SciTech Connect

    Anderson, M.T.; Asink, R.A.; Kneller, J.M.; Pietrass, T.

    1999-04-23

    The porosities of three mesoporous silica materials were characterized with {sup 129}Xe NMR spectroscopy. The materials were synthesized by a sol-gel process with r = 0, 25, and 70% methanol by weight in an aqueous cetyltrimethylammonium bromide solution. Temperature dependent chemical shifts and spin lattice relaxation times reveal that xenon does not penetrate the pores of the largely disordered (r= 70%) silica. For both r = 0 and 25%, temperature dependent resonances corresponding to physisorbed xenon were observed. An additional resonance for the r = 25% sample was attributed to xenon between the disordered cylindrical pores. 2D NMR exchange experiments corroborate the spin lattice relaxation data which show that xenon is in rapid exchange between the adsorbed and the gas phase.

  2. High Resolution non-Markovianity in NMR

    NASA Astrophysics Data System (ADS)

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-09-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.

  3. Protein structure determination from NMR chemical shifts.

    PubMed

    Cavalli, Andrea; Salvatella, Xavier; Dobson, Christopher M; Vendruscolo, Michele

    2007-06-05

    NMR spectroscopy plays a major role in the determination of the structures and dynamics of proteins and other biological macromolecules. Chemical shifts are the most readily and accurately measurable NMR parameters, and they reflect with great specificity the conformations of native and nonnative states of proteins. We show, using 11 examples of proteins representative of the major structural classes and containing up to 123 residues, that it is possible to use chemical shifts as structural restraints in combination with a conventional molecular mechanics force field to determine the conformations of proteins at a resolution of 2 angstroms or better. This strategy should be widely applicable and, subject to further development, will enable quantitative structural analysis to be carried out to address a range of complex biological problems not accessible to current structural techniques.

  4. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  5. Extending the scope of NMR spectroscopy with microcoil probes.

    PubMed

    Schroeder, Frank C; Gronquist, Matthew

    2006-11-06

    Capillary NMR (CapNMR) spectroscopy has emerged as a major breakthrough for increasing the mass-sensitivity of NMR spectroscopic analysis and enabling the combination of NMR spectroscopy with other analytical techniques. Not only is the acquisition of high-sensitivity spectra getting easier but the quality of CapNMR spectra obtained in many small-molecule applications exceeds what can be accomplished with conventional designs. This Minireview discusses current CapNMR technology and its applications for the characterization of mass-limited, small-molecule and protein samples, the rapid screening of small-molecule or protein libraries, as well as hyphenated techniques that combine CapNMR with other analytical methods.

  6. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  7. NREL Spectrum of Innovation

    ScienceCinema

    None

    2016-07-12

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  8. Spectrum of wormholes

    SciTech Connect

    Hawking, S.W. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW ); Page, D.N. Department of Physics, Pennsylvania State University, University Park, PA Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB )

    1990-10-15

    Wormholes have been studied mainly in the semiclassical approximation as solutions of the classical Euclidean field equations. However, such solutions are rather special, and exist only for certain kinds of matter. On the other hand, one can represent wormholes in a more general manner as solutions of the Wheeler-DeWitt equation with appropriate boundary conditions. Minisuperspace models with massless minimal or conformal scalar fields have a discrete spectrum of these solutions. The Giddings-Strominger instanton solution corresponds to a sum of an infinite number of these solutions. Minisuperspace models with a massive scalar field also appear to have a discrete spectrum of such solutions, whose asymptotic form is given.

  9. Improving VHF Spectrum Utilization

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Orr, Richard; Foore, Larry; Sheehe, Charles; Freeman, Mark; Nguyen, Thanh; Bretmersky, Steven; Laberge, Chuck; Buchanan, David

    2004-01-01

    Limited VHF communications system capacity and increasing air traffic results in congestion of the aviation VHF spectrum. The voice communications errors and delayed channel access create system congestion and air traffic delays. Regulatory subdivision of bands for specific functions limits flexibility in the frequency usage. The objective of this viewgraph presentation is to identify near/mid/far term technologies to improve the performance and spectrum efficiency of current and emerging VHF communications systems. Select technologies with the highest potential, perform research and development to bring them to implementation stage.

  10. NREL Spectrum of Innovation

    SciTech Connect

    2011-01-01

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  11. Flat-spectrum speech.

    PubMed

    Schroeder, M R; Strube, H W

    1986-05-01

    Flat-spectrum stimuli, consisting of many equal-amplitude harmonics, produce timbre sensations that can depend strongly on the phase angles of the individual harmonics. For fundamental frequencies in the human pitch range, many realizable timbres have vowel-like perceptual qualities. This observation suggests the possibility of constructing intelligible voiced speech signals that have flat-amplitude spectra. This paper describes a successful experiment of creating several different diphthongs by judicious choice of the phase angles of a flat-spectrum waveform. A possible explanation of the observed vowel timbres lies in the dependence of the short-time amplitude spectra on phase changes.

  12. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  13. Hypoxia-sensitive NMR contrast agents

    SciTech Connect

    Swartz, H.M.; Chen, K.; Pals, M.; Sentjurc, M.; Morse, P.D. 2d.

    1986-02-01

    The rate of reduction of nitroxides is shown to be more rapid in hypoxic cells. The rate of reduction and the effect of hypoxia on the reduction rate vary for different nitroxides. These findings indicate that it may be feasible to develop in vivo NMR contrast agents that selectively will indicate areas of hypoxia and thereby aid in the detection of disease processes such as neoplasia, ischemia, and inflammation.

  14. NMR in Copper-Oxide Metals

    SciTech Connect

    Varma, C.M.

    1996-10-01

    The anomalous part of the NMR relaxation rate of copper nuclei in the normal state of copper-oxide metals is calculated using the orbital magnetic parts of the fluctuations derived in a recent theory to explain the long wavelength transport anomalies. Oxygen and yttrium reside on lattice sites at which the anomalous contribution is absent at all hole densities. The frequency, momentum dependence, and the form factor of the fluctuations is predicted. {copyright} {ital 1996 The American Physical Society.}

  15. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Watson, A. Ted; Phan, Jack; Uh, Jinsoo; Michalak, Rudi; Xue, Song

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. Completed the facilities to house our new NMR imager, the equipment has been delivered and installed. New experimental designs will provide for more reliable estimation of permeability distributions were evaluated. Designed and built a new core holder to incorporate one of the new experimental designs.

  16. The effect of experimental cryptorchidism on the phosphorus NMR spectrum of the rat testis.

    PubMed

    van der Grond, J; Dijkstra, G; van Echteld, C J

    1994-06-01

    Magnetic resonance (MR) spectroscopy of the cryptorchid rat testis was used to test whether changes in the MR spectra of the rat testis might be a more sensitive indicator of changes in the metabolic status of germ cells in the testis rather than simply the cell types present. Testes of adult Wistar rats before and during 42 days of experimental cryptorchidism were investigated by in-vivo 31P MR spectroscopy. Results were compared to MR studies of the synchronized developing testis. The testicular phosphomonoester/ATP (PM/ATP) ratio was dependent only on the cell types present, and showed the same characteristics for each cell type present in the degenerating testis as in the developing testis. The testicular phosphodiester/ATP (PD/ATP) ratio decreased rapidly when the number of round and elongated spermatids was reduced. Similar effects, although less pronounced, were seen in the developing testis. The pH decreased rapidly after cryptorchidism, and was related inversely to the PM/ATP ratio, which was also observed in the developing testis. This study demonstrates that MR spectroscopy monitors the cell types present in the rat testis rather than its metabolic status.

  17. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  18. NMR quantum computation with optically polarized molecules

    NASA Astrophysics Data System (ADS)

    Verhulst, Anne; Yannoni, Constantino; Sherwood, Mark; Pomerantz, Drew; Vandersypen, Lieven; Chuang, Isaac

    2000-03-01

    Current methods for bulk NMR quantum computation rely on nuclear spin polarization present at high temperature equilibrium. This presents a challenging obstacle as the probability to find a spin in a specific state decreases exponentially in the number of spins used as qubits, causing a corresponding decrease in the signal to noise ratio of the desired NMR signal. One way to address this problem is to provide an artificial source of high polarization, such as optically pumped ^129Xe. For comparison, thermal equilibrium polarizations are only about 10-3% for ^1H in a typical NMR experiment at room temperature and in a 10 Tesla magnetic field, but with ^129Xe polarizations as high as 18% have been achieved [Happer et. al., Chem.Phys.Lett., 284, p.87-92, Feb 1998]. Using this technique, we prepare hyperpolarized liquid Xe and use it as a solvent for chloroform molecules (CHCl_3). Cross polarization (SPINOE) between ^129Xe and ^1H results in measured enhancements of the proton signal of over 300%, and evidence of transfer to ^13C. These results provide hope for the scalability of quantum computation.

  19. In-cell NMR: a topical review

    PubMed Central

    Banci, Lucia

    2017-01-01

    Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells. PMID:28250949

  20. Earth's field NMR; a surface moisture detector?

    NASA Astrophysics Data System (ADS)

    Fukushima, Eiichi; Altobelli, Stephen; McDowell, Andrew; Zhang, Tongsheng

    2012-10-01

    Earth's field NMR (EFNMR), being free of magnets, would be an ideal teaching medium as well as a mobile NMR technique except for its weak S/N. The common EFNMR apparatus uses a powerful prepolarization field to enhance the spin magnetization before the experiment. We introduce a coil design geared to larger but manageable samples with sufficient sensitivity without prepolarization to move EFNMR closer to routine use and to provide an inexpensive teaching tool. Our coil consists of parallel wires spread out on a plywood to form a current sheet with the current return wires separated so they will not influence the main part of the coil assembly. The sensitive region is a relatively thin region parallel to the coil and close to it. A single turn of the coil is wound to be topologically equivalent to a figure-8. The two crossing segments in the center of a figure-8 form two of the parallel wires of the flat coil. Thus, a two-turn figure-8 has four crossing wires so its topologically equivalent coil will have four parallel wires with currents in phase. Together with the excellent sensitivity, this coil offers outstanding interference rejection because of the figure-8 geometry. An example of such a coil has 328 parallel wires covering a ˜1 meter square plywood which yields a good NMR signal from 26 liters of water spread out roughly over the area of the coil in less than one minute in a nearby park.

  1. Protein NMR structures refined without NOE data.

    PubMed

    Ryu, Hyojung; Kim, Tae-Rae; Ahn, SeonJoo; Ji, Sunyoung; Lee, Jinhyuk

    2014-01-01

    The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal "width" parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.

  2. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    PubMed Central

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano

    2016-01-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases 15N-1H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include 1) using a global metric of structural accuracy, the Discriminating Power (DP) score, for guiding model selection during the iterative NOE interpretation process, and 2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  3. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis.

    PubMed

    Skinner, Simon P; Fogh, Rasmus H; Boucher, Wayne; Ragan, Timothy J; Mureddu, Luca G; Vuister, Geerten W

    2016-10-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  4. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    DOE PAGES

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; ...

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore » predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  5. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  6. Spread Spectrum Frequency Management

    DTIC Science & Technology

    1989-06-01

    theoretically predicted behavior of the new system. Thp experimental program must include field tests in real propagation and interference environments...technological developments and without adequate overall knowledge of propagation characteristics or of other important uses that might require... propagation characteristics at the different frequency levels. The history of major spectrum allocations is then a 7 record of decisions primarily

  7. Stellar Spectrum Synthesizer

    ERIC Educational Resources Information Center

    Landegren, G. F.

    1975-01-01

    Describes a device which employs two diffraction gratings and three or four simple lenses to produce arbitrary absorption or emission spectra that may be doppler shifted and spectroscopically examined by students some distance away. It may be regarded as a sort of artificial star whose spectrum may be analyzed as an undergraduate laboratory…

  8. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  9. Battlefield spectrum management

    NASA Astrophysics Data System (ADS)

    Sivakumar, C.

    1997-06-01

    Modern tactical communications systems rely on radios to support network and user connectivity. One of the challenges for network planners and managers is to make best use of scarce and vulnerable frequency spectrum resources to support the communication needs of war fighters. With the wide variety of Iris radio types typically to be deployed in the battlefield (ranging from high frequency to super high frequency), a comprehensive suite of tools is necessary to ensure that frequency interference is kept minimum. Without a sophisticated frequency spectrum management system, the most advanced tactical communications systems could be rendered useless, jeopardizing human life and national security. For these reasons, it is important to develop an Iris wide battlefield spectrum management capability that takes full advantage of current frequency spectrum management research and development (R&D), related tools, and supporting technology for assigning frequencies. This session briefly describes various assignment strategies being adopted in the Iris BFSM for overcoming cosite/collocated/farsite interferences along with the propagation models [from high frequency (HF) to super high frequency (SHF)] used for the assignment of frequencies. Also a brief thread outlining the process for generating frequency allocation/assignment request and analysis of frequency interference is discussed.

  10. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    SciTech Connect

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A. |

    1999-04-14

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of {sup 129}Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved {sup 1}H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the {sup 1}H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective {sup 1}H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon.

  11. Solution-State One- and Two-Dimensional NMR Spectroscopy of High-Molecular-Weight Cellulose.

    PubMed

    Holding, Ashley J; Mäkelä, Valtteri; Tolonen, Lasse; Sixta, Herbert; Kilpeläinen, Ilkka; King, Alistair W T

    2016-04-21

    High-molecular-weight celluloses (which even include bacterial cellulose) can be dissolved fully in methyltrioctylphosphonium acetate/[D6 ]DMSO solutions to allow the measurement of resonance-overlap-free 1 D and 2 D NMR spectra. This is achieved by a simple and non-destructive dissolution method, without solvent suppression, pre-treatment or deuteration of the ionic component. We studied a range of cellulose samples by using various NMR experiments to make an a priori assignment of the cellulose resonances. Chain-end resonances are also visible in the (1) H NMR spectrum. This allows the rough determination of the degree of polymerisation (DP) of a sample for low-DP celluloses by the integration of non-reducing chain ends C1 versus polymeric cellobiose C1. Low-DP celluloses show a good agreement with the gel-permeation chromatography (GPC) values, but high-DP pulps show more deviation. For high-purity pulps (pre-hydrolysis kraft and sulfite), residual xyloses and mannoses can also be identified from the (1) H-(13) C heteronuclear single-quantum coherence (HSQC) spectra. Resonances are thus assigned for the common polymeric polysaccharides found in chemical pulps.

  12. NMR in pulsed high-field magnets and application to high-T(C) superconductors.

    PubMed

    Stork, H; Bontemps, P; Rikken, G L J A

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-T(C) superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The (63)Cu/(65)Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the (63)Cu center line and high-frequency satellites as well as the (65)Cu center line are identified and are compared with results in literature.

  13. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes.

    PubMed

    Zabow, G; Dodd, S J; Koretsky, A P

    2015-04-02

    Fluorescent and plasmonic labels and sensors have revolutionized molecular biology, helping visualize cellular and biomolecular processes. Increasingly, such probes are now being designed to respond to wavelengths in the near-infrared region, where reduced tissue autofluorescence and photon attenuation enable subsurface in vivo sensing. But even in the near-infrared region, optical resolution and sensitivity decrease rapidly with increasing depth. Here we present a sensor design that obviates the need for optical addressability by operating in the nuclear magnetic resonance (NMR) radio-frequency spectrum, where signal attenuation and distortion by tissue and biological media are negligible, where background interferences vanish, and where sensors can be spatially located using standard magnetic resonance imaging (MRI) equipment. The radio-frequency-addressable sensor assemblies presented here comprise pairs of magnetic disks spaced by swellable hydrogel material; they reversibly reconfigure in rapid response to chosen stimuli, to give geometry-dependent, dynamic NMR spectral signatures. The sensors can be made from biocompatible materials, are themselves detectable down to low concentrations, and offer potential responsive NMR spectral shifts that are close to a million times greater than those of traditional magnetic resonance spectroscopies. Inherent adaptability should allow such shape-changing systems to measure numerous different environmental and physiological indicators, thus providing broadly generalizable, MRI-compatible, radio-frequency analogues to optically based probes for use in basic chemical, biological, medical and engineering research.

  14. Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.

    PubMed

    Mobli, Mehdi; Hoch, Jeffrey C

    2014-11-01

    Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records using the DFT were already well understood, however. Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of non-Fourier methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. The first part of this review discusses the many approaches to data sampling in multidimensional NMR, the second part highlights commonly used methods for signal processing of such data, and the review concludes with a discussion of other approaches to speeding up data acquisition in NMR.

  15. Solid state NMR methods for coal science. Progress report, July 1, 1985-September 30, 1985

    SciTech Connect

    Zilm, K.W.

    1986-02-01

    This report covers the progress made on the title project during the last quarter. During the last three months we have concentrated on further developing a new 2-D NMR method that should be useful for coals. As outlined in a previous report this new technique separates the contribution of methines, methylenes and methyl or quaternary carbons to the carbon-13 CPMAS spectra of coals. In contrast to the heteronuclear shift correlation method, which observes only protonated carbons, this method observes all carbon centers seen in a standard CPMAS spectrum. The method has been successfully applied to polystyrene in which a methylene and methine resonance overlap. In this system we have a worst case as the interpretation is somewhat complicated by molecular motion in the solid. The results are still close to quantitative even with this complication. We have also investigated a new series of pulse sequences that we call Echo train NMR that were discovered in our earlier studies on decoupling methods. These sequences will be principally useful in enhancing the sensitivity of powder NMR spectra. In many cases the peak signal to noise of powder spectra can be enhanced by factors of up to 100. 6 figs.

  16. A Critical Evaluation of the Quality of Published (13)C NMR Data in Natural Product Chemistry.

    PubMed

    Robien, Wolfgang

    2017-01-01

    Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to (13)C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

  17. LARGE SCALE PRODUCTION, PURIFICATION, AND 65CU SOLID STATE NMR OF AZURIN

    SciTech Connect

    Gao, A.; Heck, R.W.

    2008-01-01

    This paper details a way to produce azurin with an effi ciency over 10 times greater than previously described and demonstrates the fi rst solid state nuclear magnetic resonance spectrum of 65Cu(I) in a metalloprotein. A synthetic gene for azurin based upon the DNA sequence from Pseudomonas aeruginosa including the periplasmic targeting sequence was subcloned into a T7 overexpression vector to create the plasmid pGS-azurin, which was transformed into BL21 (DE3) competent cells. The leader sequence on the expressed protein causes it to be exported to the periplasmic space of Escherichia coli. Bacteria grown in a fermentation unit were induced to overexpress the azurin, which was subsequently purifi ed through an endosmotic shock procedure followed by high performance liquid chromatography (HPLC). 1,500 mg of azurin were purifi ed per liter of culture. 65Cu(II) was added to apo-azurin and then reduced. The 65Cu metal cofactor in azurin was observed with solid state nuclear magnetic resonance (NMR) to determine any structural variations that accompanied copper reduction. This is the fi rst solid state NMR spectra of a copper(I) metalloprotein. Analysis of the NMR spectra is being used to complement hypotheses set forth by x-ray diffraction and computational calculations of electron transfer mechanisms in azurin.

  18. Structural characterization of lignins isolated from Caragana sinica using FT-IR and NMR spectroscopy.

    PubMed

    Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang; Mohanty, Amar K

    2011-09-01

    In order to efficiently explore and use woody biomass, six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions. The lignin structures were characterized by Fourier transform infrared spectroscopy (FT-IR) and 1D and 2D Nuclear Magnetic Resonance (NMR). FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given. The results of 1H and 13C NMR demonstrated that the lignin fraction L2, isolated with 70% ethanol containing 1% NaOH, was mainly composed of beta-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit. Based on the 2D HSQC NMR spectrum, the ethanol organosolv lignin fraction L1, extracted with 70% ethanol, presents a predominance of beta-O-4' aryl ether linkages (61% of total side chains), and a low abundance of condensed carbon-carbon linked structures (such as beta-beta', beta-1', and beta-5') and a lower S/G ratio. Furthermore, a small percentage (ca. 9%) of the linkage side chain was found to be acylated at the gamma-carbon.

  19. An NMR study of structure and dynamics of hydrated poly (aspartic acid) sodium salt

    NASA Astrophysics Data System (ADS)

    Wang, Pixin; Ando, Isao

    1998-06-01

    High-resolution 13C CP/MAS NMR and pulse 1H NMR experiments were carried out for hydrated poly(aspartic acid) sodium salt, in order to investigate the conformation and molecular motion of the polymer. From these experimental results, it is found that the main-chain conformation of poly(aspartic acid) sodium salt which takes an α-helix form in the dry state is not drastically affected by an addition of water. In the 13C CP/MAS NMR spectrum, a new peak at ca. 184 ppm appears, which comes from the formation of hydrogen bond between the carbonyl carbon of the side chains and water, and the intensity of the peak is associated with the water content. The 13C spin-lattice relaxation time ( T1) experiments show that the T1 values for the individual carbons of the polymer are decreased with an increase in the water content. This shows that the mobility of the polymer is increased with an increase in the water content. Further, the 1H spin-spin relaxation time ( T2) experiments show that the polymer has the two or three components with different molecular motion. With an increase in the water content or temperature, the T2 values of hydrated PAANa are increased. This shows that the molecular motion is increased. In the high water content, the polymer has a signal component in the molecular motion. This shows that the polymer is uniformly hydrated.

  20. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  1. NMR spectroscopy of experimentally shocked single crystal quartz: A reexamination of the NMR shock barometer

    NASA Technical Reports Server (NTRS)

    Fiske, P. S.; Gratz, A. J.; Nellis, W. J.

    1993-01-01

    Cygan and others report a broadening of the Si-29 nuclear magnetic resonance (NMR) peak for synthetic quartz powders with increasing shock pressure which they propose as a shock wave barometer for natural systems. These results are expanded by studying single crystal quartz shocked to 12 and 33 GPa using the 6.5 m two-stage light-gas gun at Lawrence Livermore National Laboratories. Our NMR results differ substantially from those of Cygan and others and suggest that the proposed shock wave barometer may require refinement. The difference in results between this study and that of Cygan and others is most likely caused by different starting materials (single crystal vs. powder) and different shock loading histories. NMR results from single crystal studies may be more applicable to natural systems.

  2. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  3. Portable microcoil NMR detection coupled to capillary electrophoresis.

    PubMed

    Diekmann, Joana; Adams, Kristl L; Klunder, Gregory L; Evans, Lee; Steele, Paul; Vogt, Carla; Herberg, Julie L

    2011-02-15

    High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system.

  4. Analysis of organic matter at the soil-water interface by NMR spectroscopy: Implications for contaminant sorption processes

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Simpson, A. J.

    2009-04-01

    Contaminant sorption to soil organic matter (OM) is the main fate of nonionic, hydrophobic organic contaminants in terrestrial environments and a number of studies have suggested that both soil OM structure and physical conformation (as regulated by the clay mineral phase) govern contaminant sorption processes. A great deal of this evidence has come from macroscopic observations with contaminants and soil fractions as well as a recent mass balance approach where the sum of the parts exceeded the whole suggesting that the physical arrangement of OM in organo-mineral complexes may be more important than OM structure in sorption processes (1). In addition, recent studies with constructed organo-mineral complexes have suggested that aliphatic OM is preferred over aromatic moieties and suggests that clay minerals play an indirect role by governing the sorption of organic contaminants by controlling the surface accessibility of OM at the soil-water interface (2,3). To investigate this further, a number of soil samples were characterized by both solid-state 13C Cross Polarization Magic Angle Spinning (CPMAS) NMR and 1H High Resolution Magic Angle Spinning (HR-MAS) NMR. HR-MAS NMR is an innovative NMR method that allows one to examine samples that are semi-solid using liquid state NMR methods (ie: observe 1H which is more sensitive than 13C). With HR-MAS NMR, only those structures that are in contact with the solvent are NMR visible thus one can probe different components within a mixture using different solvents. The 1H HR-MAS NMR spectrum of a grassland soil swollen in water (D2O) is dominated by signals from alkyl and O-alkyl structures but signals from aromatic protons are negligible (the peak at ~8.2ppm is attributed to formic acid). When the soil is swollen in DMSO-d6, a solvent which is more penetrating and capable of breaking hydrogen bonds, aromatic signals are visible suggesting that the aromatic structures are buried within the soil matrix and do not exist at

  5. On the role of experimental imperfections in constructing (1)H spin diffusion NMR plots for domain size measurements.

    PubMed

    Nieuwendaal, Ryan C

    2016-01-01

    We discuss the precision of 1D chemical-shift-based (1)H spin diffusion NMR experiments as well as straightforward experimental protocols for reducing errors. The (1)H spin diffusion NMR experiments described herein are useful for samples that contain components with significant spectral overlap in the (1)H NMR spectrum and also for samples of small mass (<1mg). We show that even in samples that display little spectral contrast, domain sizes can be determined to a relatively high degree of certainty if common experimental variability is accounted for and known. In particular, one should (1) measure flip angles to high precision (≈±1° flip angle), (2) establish a metric for phase transients to ensure their repeatability, (3) establish a reliable spectral deconvolution procedure to ascertain the deconvolved spectra of the neat components in the composite or blend spin diffusion spectrum, and (4) when possible, perform 1D chemical-shift-based (1)H spin diffusion experiments with zero total integral to partially correct for errors and uncertainties if these requirements cannot fully be implemented. We show that minimizing the degree of phase transients is not a requirement for reliable domain size measurement, but their repeatability is essential, as is knowing their contribution to the spectral offset (i.e. the J1 coefficient). When performing experiments with zero total integral in the spin diffusion NMR spectrum with carefully measured flip angles and known phase transient effects, the largest contribution to error arises from an uncertainty in the component lineshapes which can be as high as 7%. This uncertainty can be reduced considerably if the component lineshapes deconvolved from the composite or blend spin diffusion spectra adequately match previously acquired pure component spectra.

  6. Reducing seed dependent variability of non-uniformly sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Mobli, Mehdi

    2015-07-01

    The application of NMR spectroscopy to study the structure, dynamics and function of macromolecules requires the acquisition of several multidimensional spectra. The one-dimensional NMR time-response from the spectrometer is extended to additional dimensions by introducing incremented delays in the experiment that cause oscillation of the signal along "indirect" dimensions. For a given dimension the delay is incremented at twice the rate of the maximum frequency (Nyquist rate). To achieve high-resolution requires acquisition of long data records sampled at the Nyquist rate. This is typically a prohibitive step due to time constraints, resulting in sub-optimal data records to the detriment of subsequent analyses. The multidimensional NMR spectrum itself is typically sparse, and it has been shown that in such cases it is possible to use non-Fourier methods to reconstruct a high-resolution multidimensional spectrum from a random subset of non-uniformly sampled (NUS) data. For a given acquisition time, NUS has the potential to improve the sensitivity and resolution of a multidimensional spectrum, compared to traditional uniform sampling. The improvements in sensitivity and/or resolution achieved by NUS are heavily dependent on the distribution of points in the random subset acquired. Typically, random points are selected from a probability density function (PDF) weighted according to the NMR signal envelope. In extreme cases as little as 1% of the data is subsampled. The heavy under-sampling can result in poor reproducibility, i.e. when two experiments are carried out where the same number of random samples is selected from the same PDF but using different random seeds. Here, a jittered sampling approach is introduced that is shown to improve random seed dependent reproducibility of multidimensional spectra generated from NUS data, compared to commonly applied NUS methods. It is shown that this is achieved due to the low variability of the inherent sensitivity of the

  7. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers

    NASA Astrophysics Data System (ADS)

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C.; Markley, John L.

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-13C, U-15N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D 1H-15N and 1H-13C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of 1H, 13C, and 15N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  8. Fast automated protein NMR data collection and assignment by ADAPT-NMR on Bruker spectrometers.

    PubMed

    Lee, Woonghee; Hu, Kaifeng; Tonelli, Marco; Bahrami, Arash; Neuhardt, Elizabeth; Glass, Karen C; Markley, John L

    2013-11-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) supports automated NMR data collection and backbone and side chain assignment for [U-(13)C, U-(15)N]-labeled proteins. Given the sequence of the protein and data for the orthogonal 2D (1)H-(15)N and (1)H-(13)C planes, the algorithm automatically directs the collection of tilted plane data from a variety of triple-resonance experiments so as to follow an efficient pathway toward the probabilistic assignment of (1)H, (13)C, and (15)N signals to specific atoms in the covalent structure of the protein. Data collection and assignment calculations continue until the addition of new data no longer improves the assignment score. ADAPT-NMR was first implemented on Varian (Agilent) spectrometers [A. Bahrami, M. Tonelli, S.C. Sahu, K.K. Singarapu, H.R. Eghbalnia, J.L. Markley, PLoS One 7 (2012) e33173]. Because of broader interest in the approach, we present here a version of ADAPT-NMR for Bruker spectrometers. We have developed two AU console programs (ADAPT_ORTHO_run and ADAPT_NMR_run) that run under TOPSPIN Versions 3.0 and higher. To illustrate the performance of the algorithm on a Bruker spectrometer, we tested one protein, chlorella ubiquitin (76 amino acid residues), that had been used with the Varian version: the Bruker and Varian versions achieved the same level of assignment completeness (98% in 20 h). As a more rigorous evaluation of the Bruker version, we tested a larger protein, BRPF1 bromodomain (114 amino acid residues), which yielded an automated assignment completeness of 86% in 55 h. Both experiments were carried out on a 500 MHz Bruker AVANCE III spectrometer equipped with a z-gradient 5 mm TCI probe. ADAPT-NMR is available at http://pine.nmrfam.wisc.edu/ADAPT-NMR in the form of pulse programs, the two AU programs, and instructions for installation and use.

  9. Solid H2 and D2: Remarkable differences in some NMR properties

    NASA Astrophysics Data System (ADS)

    Harris, A. B.; Meyer, H.; Qin, X.

    1994-02-01

    The differences in the observed properties of solid H2 and D2 are reviewed, and in particular those encountered in NMR experiments. The failure to detect a sharp NMR (I=1) impurity ``isolated pair'' spectrum in p-D2 is discussed in terms of a larger crystalline field than in H2, where an intense and sharp pair spectrum has been observed. Furthermore, we discuss the dramatic (I=1) solid echo signal loss with decreasing temperature which is observed in solid D2, but not for solid H2. A theory of the solid echo damping through orientational fluctuations is developed. This theory accounts for the observed solid echo decay in D2 as a function of the pulse spacing time τ and leads to an estimation of the order parameter fluctuation amplitude and the correlation time τc. However, the theory cannot account for the loss of spin (as determined from Curie's law), which must occur for very small values of τ that are not covered by the theory.

  10. Development and characterization of an NMR microsensor for nanoliter sample volumes

    NASA Astrophysics Data System (ADS)

    Dechow, Joern; Forchel, Alfred W. B.; Lanz, Titus; Haase, Axel

    1999-11-01

    The fabrication and performance of a micro-sensor for NMR- spectroscopy of nanoliter-sample volumes is presented. On both glass and GaAs-substrate. Planar coils with inner diameter from 50 micrometers to 400 micrometers including a coplanar wave-guide leading to the bonding pads were fabricated. A chamber for the liquid samples of 200 - 500 micrometers diameter was etched isotropically on the backside of the substrate, located under the coil. In initial experiments, the spectrum of a 20 - 50 nl-volumes of pure silicon-oil is analyzed in a 1H-NMR experiment in a 11T spectrometer (500 MHz). The microcoil serves as a receiver, while the RF-power was transmitted by a macroscopic coil perpendicular to the receiver coil. We observe characteristic lines from the silicon-oil spectrum which clearly indicates the high sensitivity of the microcoil. Additional signal from different materials in the experiment are suppressed by gradient fields and an adequate design of the sensor.

  11. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  12. IR and NMR analyses of hardening and maturation of glass-ionomer cement.

    PubMed

    Matsuya, S; Maeda, T; Ohta, M

    1996-12-01

    It has been reported that the silicate phase as well as the cross-linking of the polycarboxylic acid by aluminum and calcium ions played an important role in the hardening of glass-ionomer cement. The objective of this study was to investigate the structural change during hardening of the cements by means of infrared (IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy and to confirm the role of the silica phase in the hardening of the cement. For that purpose, we measured the change in compressive strength of an experimental glass-ionomer cement, two commercial glass-ionomer cements, and a polycarboxylate cement and carried out 29Si and 27Al NMR analyses of the cement samples after the strength measurement. In the IR spectra during hardening, a characteristic band of the silicate network around 1000 cm-1 shifted toward high frequency with time. The spectrum after hardening was similar to that for a hydrated amorphous silica structure. The 27Al NMR analysis showed that Al3+ ion was tetrahedrally coordinated by oxygen in the original glass, but a part of the Al3+ ion was octahedrally coordinated after hardening to form Al polyacrylate gel. The chemical shift of Si in the 29Si NMR spectra also changed during hardening. The variation in the chemical shift reflected the structural change in the silicate network. The initial increase in compressive strength of the cement was mainly caused by polycarboxylate gel formation. However, it was concluded that the reconstruction of the silicate network contributed to the increase in strength with time during the period after the gelation by cross-linking was completed.

  13. Temperature and pressure based NMR studies of detergent micelle phase equilibria.

    PubMed

    Alvares, Rohan; Gupta, Shaan; Macdonald, Peter M; Prosser, R Scott

    2014-05-29

    Bulk thermodynamic and volumetric parameters (ΔGmic°, ΔHmic°, ΔSmic°, ΔCp,mic°, ΔVmic°, and Δκmic°) associated with the monomer–micelle equilibrium, were directly determined for a variety of common detergents [sodium n-dodecyl sulfate (SDS), n-dodecyl phosphocholine (DPC), n-dodecyl-β-d-maltoside (DDM), and 7-cyclohexyl-1-heptyl phosphocholine (CyF)] via 1H NMR spectroscopy. For each temperature and pressure point, the critical micelle concentration (cmc) was obtained from a single 1H NMR spectrum at a single intermediate concentration by referencing the observed chemical shift to those of pure monomer and pure micellar phases. This permitted rapid measurements of the cmc over a range of temperatures and pressures. In all cases, micelle formation was strongly entropically favored, while enthalpy changes were all positive, with the exception of SDS, which exhibited a modestly negative enthalpy of micellization. Heat capacity changes were also characteristically negative, while partial molar volume changes were uniformly positive, as expected for an aggregation process dictated by hydrophobic effects. Isothermal compressibility changes were found to be consistent with previous measurements using other techniques. Thermodynamic measurements were also related to spectroscopic studies of topology and micelle structure. For example, paramagnetic effects resulting from the addition of dioxygen provided microscopic topological details concerning the hydrophobicity gradient along the detergent chains within their respective micelles as detected by 1H NMR. In a second example, combined 13C and 1H NMR chemical shift changes arising from application of high pressure, or upon micellization, of CyF provided site-specific details regarding micelle topology. In this fashion, bulk thermodynamics could be related to microscopic topological details within the detergent micelle.

  14. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    PubMed Central

    Liu, Yang; Liu, Zhaoxia; Yang, Huaxin

    2016-01-01

    Quantitative nuclear magnetic resonance (qNMR) is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR) and only a few fluorine qNMR (19F qNMR) were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes. PMID:27688925

  15. On-line NMR detection of microgram quantities of heparin-derived oligosaccharides and their structure elucidation by microcoil NMR.

    PubMed

    Korir, Albert K; Larive, Cynthia K

    2007-08-01

    The isolation and purification of sufficient quantities of heparin-derived oligosaccharides for characterization by NMR is a tedious and time-consuming process. In addition, the structural complexity and microheterogeneity of heparin makes its characterization a challenging task. The improved mass-sensitivity of microcoil NMR probe technology makes this technique well suited for characterization of mass-limited heparin-derived oligosaccharides. Although microcoil probes have poorer concentration sensitivity than conventional NMR probes, this limitation can be overcome by coupling capillary isotachophoresis (cITP) with on-line microcoil NMR detection (cITP-NMR). Strategies to improve the sensitivity of on-line NMR detection through changes in probe design and in the cITP-NMR experimental protocol are discussed. These improvements in sensitivity allow acquisition of cITP-NMR survey spectra facilitating tentative identification of unknown oligosaccharides. Complete structure elucidation for microgram quantities of the purified material can be carried out through acquisition of 2D NMR spectra using a CapNMR microcoil probe.

  16. Incorporation of FT-NMR into Research Infrastructure and Chemistry Curriculum at Bowie State University

    DTIC Science & Technology

    2014-01-09

    undergraduate research education. The Eft FT NMR software system consist of two programs: WinPNMR, a data acquisition program and NUTS (Acorn NMR Inc.) A NMR...3 2. Equipment Purchased I. Eft -GENII : The basic proton only EFT90 Fourier Transform NMR includes 1H observation at 90 MHz. It uses an Anasazi...c. Software- The Eft FT NMR software operating systems consist of two NMR programs: i. WinPNMR (Anasazi Instruments Inc.) - A NMR data

  17. Lithium Polymer Electrolytes and Solid State NMR

    NASA Technical Reports Server (NTRS)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  18. A geomagnetic field spectrum

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1982-01-01

    A spherical harmonic model of the earth's internal magnetic field of degree and order 23 is derived from selected Magsat data, and its power spectrum, computed with terms developed by Mauersberger (1956) and Lowes (1974), is found to exhibit a change of a slope at n = 14 which is interpreted as an indication that the core field dominates at values lower than 13 while the crust field dominates above a value of 15. The representations of the two portions of the spectrum obtained can be used to establish order-of-magnitude inaccuracies due to both crustal fields and the inability to observe core field wavelengths beyond n = 13, at which point they are obscured by the crustal field, in core field models.

  19. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.

  20. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  1. Multitaper Spectrum Estimates

    NASA Astrophysics Data System (ADS)

    Fodor, I. K.; Stark, P. B.

    Multitapering is a statistical technique developed to improve on the notorious periodogram estimate of the power spectrum (Thomson, 1982; Percival, Walden 1993). We show how to obtain orthogonal tapers for time series observed with gaps, and how to use statistical resampling techniques (Efron, Tibshirani 1993) to calculate realistic uncertainty estimates for multitaper estimates. We introduce multisegment multitapering. Multitapering can also be extended to the 2D case. We indicate how to construct tapers that minimize the spatial leakage in estimates of the spherical harmonic decomposition of the velocity images. Spatial multitapering followed by the temporal tapering of the estimated spherical harmonic time series is expected to result in improved spectrum and subsequent solar oscillation mode parameter estimates.

  2. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  3. NMR of platinum catalysts: Double NMR of chemisorbed carbon monoxide and a model for the platinum NMR line shape

    NASA Astrophysics Data System (ADS)

    Makowka, Claus D.; Slichter, Charles P.; Sinfelt, J. H.

    1985-05-01

    The authors report observation of the NMR line of 195Pt atoms in the surface layer of small platinum-metal particles on which 13CO has been chemisorbed. The surface 195Pt atoms are resolved from those of 195Pt atoms deeper in the particle by spin-echo double resonance between 195Pt and 13C. The particles, supported on η-alumina, had dispersions (fraction of the atoms that are on the surface) of 26% and 76%. Comparison with 195Pt resonance in Pt carbonyls suggests that the magnitude of the Knight shift of the surface Pt is less than 0.2%. Analysis of the 195Pt spin-lattice relaxation indicates that the small surface Knight shift results from cancellation of 6s and 5d core-polarization contributions as was found theoretically by Weinert and Freeman for clean Pt surfaces. The 13-195Pt indirect spin coupling is found to be very similar to those in diamagnetic platinum carbonyl molecules. The results show that CO bonds via the C atom and verify that concepts from studies of large single crystals are valid for the small particles. The key features of the 195Pt line shapes in these small platinum particles are described by a simple phenomenological model of the spatial Knight-shift variation inside these particles. The model successfully describes the major structure seen in the NMR line shapes of samples with dispersions ranging from 5% to 76%.

  4. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  5. Radio spectrum surveillance station

    NASA Technical Reports Server (NTRS)

    Hersey, D. R.

    1979-01-01

    The paper presents a general and functional description of a low-cost surveillance station designed as the first phase of NASA's program to develop a radio spectrum surveillance capability for deep space stations for identifying radio frequency interference sources. The station described has identified several particular interferences and is yielding spectral signature data which, after cataloging, will serve as a library for rapid identification of frequently observed interference. Findings from the use of the station are discussed.

  6. NMR measurements of intracellular ions in hypertension

    NASA Astrophysics Data System (ADS)

    Veniero, Joseph C.; Gupta, R. K.

    1993-08-01

    The NMR methods for the measurement of intracellular free Na+, K+, Mg2+, Ca2+, and H+ are introduced. The recent literature is then presented showing applications of these methods to cells and tissues from hypertensive animal model systems, and humans with essential hypertension. The results support the hypothesis of consistent derangement of the intracellular ionic environment in hypertension. The theory that this derangement may be a common link in the disease states of high blood pressure and abnormal insulin and glucose metabolism, which are often associated clinically, is discussed.

  7. Quenched Hydrogen Exchange NMR of Amyloid Fibrils.

    PubMed

    Alexandrescu, Andrei T

    2016-01-01

    Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular β-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.

  8. NMR Characterizations of Properties of Heterogeneous Media

    SciTech Connect

    Uh, Jinsoo; Phan, Jack; Xue, Dong; Watson, A. Ted

    2003-01-28

    The overall goal of this project was to develop reliable methods for resolving macroscopic properties important for describing the flow of one or more fluid phases in reservoirs from formation measurements. During this reporting period, the determination of surface relaxivity from NMR data was investigated. A new method for determining the surface relaxivity from measured data was developed and tested with data obtained from an Exxon sample. The new method avoids the use of a certain mathematical short-time approximation in the data analysis, which has been shown to be unsuitable.

  9. NMR observation of Tau in Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Bodart, Jean-François; Wieruszeski, Jean-Michel; Amniai, Laziza; Leroy, Arnaud; Landrieu, Isabelle; Rousseau-Lescuyer, Arlette; Vilain, Jean-Pierre; Lippens, Guy

    2008-06-01

    The observation by NMR spectroscopy of microinjected 15N-labelled proteins into Xenopus laevis oocytes might open the way to link structural and cellular biology. We show here that embedding the oocytes into a 20% Ficoll solution maintains their structural integrity over extended periods of time, allowing for the detection of nearly physiological protein concentrations. We use these novel conditions to study the neuronal Tau protein inside the oocytes. Spectral reproducibility and careful comparison of the spectra of Tau before and after cell homogenization is presented. When injecting Tau protein into immature oocytes, we show that both its microtubule association and different phosphorylation events can be detected.

  10. In vivo NMR imaging of deuterium

    NASA Astrophysics Data System (ADS)

    Müller, S.; Seelig, J.

    D 2O is used as a contrast agent for studying anatomical images and flow in vivo by deuterium NMR. A deuterium image of the head of a living rat after administration of D 2O (5% v/v) in the drinking water is shown. It was obtained in 14 min with a surface coil and has a spatial resolution of about one millimeter. The application of D 2O as a tracer is discussed and the inflow of heavy water into the brain of a rat is recorded in a time series of deuterium images. Spatially resolved inflow time constants have been determined.

  11. Understanding NMR T2 spectral uncertainty

    NASA Astrophysics Data System (ADS)

    Prange, Michael; Song, Yi-Qiao

    2010-05-01

    NMR relaxation and diffusion data analysis commonly uses a wide range of methods from simple exponential fitting to Laplace inversions. The pros and cons of these methods are often the subject of intense debate. We show that the ill-conditioned nature of such analysis gives rise to a range of solutions for every method resulting in uncertainty in the spectral solution. Such uncertainty is in fact characteristic of the inversion method. We show a simple method of sparse spectral representation can be used to improve the statistics of multiple-exponential-based inversion schemes.

  12. Measurement of vorticity diffusion by NMR microscopy.

    PubMed

    Brown, Jennifer R; Callaghan, Paul T

    2010-05-01

    In a Newtonian fluid, vorticity diffuses at a rate determined by the kinematic viscosity. Here we use rapid NMR velocimetry, based on a RARE sequence, to image the time-dependent velocity field on startup of a fluid-filled cylinder and therefore measure the diffusion of vorticity. The results are consistent with the solution to the vorticity diffusion equation where the angular velocity on the outside surface of the fluid, at the cylinder's rotating wall, is fixed. This method is a means of measuring kinematic viscosity for low viscosity fluids without the need to measure stress.

  13. NMR-based quantification of organic diphosphates

    PubMed Central

    Lenevich, Stepan

    2010-01-01

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogues have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using 31P NMR spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking. PMID:20833124

  14. Complete NMR analysis of oxytocin in phosphate buffer.

    PubMed

    Ohno, Akiko; Kawasaki, Nana; Fukuhara, Kiyoshi; Okuda, Haruhiro; Yamaguchi, Teruhide

    2010-02-01

    Complete NMR analysis of oxytocin (OXT) in phosphate buffer was elucidated by one-dimensional (1D)- and two-dimensional (2D)-NMR techniques, which involve the assignment of peptide amide NH protons and carbamoyl NH(2) protons. The (1)H-(15)N correlation of seven amide NH protons and three carbamoyl NH(2) protons were also shown by HSQC NMR of OXT without (15)N enrichment.

  15. Avoiding Problems with Suspensions in NMR Sample Tubes

    NASA Astrophysics Data System (ADS)

    Ali, Saqib; Danish, M.; Mazhar, M.

    1995-07-01

    Many times during the sample preparation for NMR studies solid samples form suspension due to low solubility in duterated solvents. We developed a technique to get rid of this problem easily. Just tighten the lid on the NMR sample tube and seal it with parafilm. Invert the tube and centrifuge it for five minutes. Now the suspension is collected in the lid and the clear sample is ready for NMR analysis in the tube.

  16. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  17. Touch NMR: An NMR Data Processing Application for the iPad

    ERIC Educational Resources Information Center

    Li, Qiyue; Chen, Zhiwei; Yan, Zhiping; Wang, Cheng; Chen, Zhong

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has become one of the most powerful technologies to aid research in numerous scientific disciplines. With the development of consumer electronics, mobile devices have played increasingly important roles in our daily life. However, there is currently no application available for mobile devices able to…

  18. Microgram-scale protein structure determination by NMR.

    PubMed

    Aramini, James M; Rossi, Paolo; Anklin, Clemens; Xiao, Rong; Montelione, Gaetano T

    2007-06-01

    Using conventional triple-resonance nuclear magnetic resonance (NMR) experiments with a 1 mm triple-resonance microcoil NMR probe, we determined near complete resonance assignments and three-dimensional (3D) structure of the 68-residue Methanosarcina mazei TRAM protein using only 72 mug (6 microl, 1.4 mM) of protein. This first example of a complete solution NMR structure determined using microgram quantities of protein demonstrates the utility of microcoil-probe NMR technologies for protein samples that can be produced in only limited quantities.

  19. Understanding NMR relaxometry of partially water-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Jorand, R.; Nordlund, C.; Klitzsch, N.

    2015-06-01

    Nuclear magnetic resonance (NMR) relaxometry measurements are commonly used to characterize the storage and transport properties of water-saturated rocks. Estimations of these properties are based on the direct link of the initial NMR signal amplitude to porosity (water content) and of the NMR relaxation time to pore size. Herein, pore shapes are usually assumed to be spherical or cylindrical. However, the NMR response at partial water saturation for natural sediments and rocks may differ strongly from the responses calculated for spherical or cylindrical pores, because these pore shapes do not account for water menisci remaining in the corners of desaturated angular pores. Therefore, we consider a bundle of pores with triangular cross sections. We introduce analytical solutions of the NMR equations at partial saturation of these pores, which account for water menisci of desaturated pores. After developing equations that describe the water distribution inside the pores, we calculate the NMR response at partial saturation for imbibition and drainage based on the deduced water distributions. For this pore model, the NMR amplitudes and NMR relaxation times at partial water saturation strongly depend on pore shape, i.e., arising from the capillary pressure and pore shape-dependent water distribution in desaturated pores with triangular cross sections. Even so, the NMR relaxation time at full saturation only depends on the surface-to-volume ratio of the pore. Moreover, we show the qualitative agreement of the saturation-dependent relaxation-time distributions of our model with those observed for rocks and soils.

  20. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Qiu, Long-Qing; Liu, Chao; Dong, Hui; Xu, Lu; Zhang, Yi; Hans-Joachim, Krause; Xie, Xiao-Ming; Andreas, Offenhäusser

    2012-10-01

    Using a second-order helium-cooled superconducting quantum interference device gradiometer as the detector, ultra-low-field nuclear magnetic resonance (ULF-NMR) signals of protons are recorded in an urban environment without magnetic shielding. The homogeneity and stability of the measurement field are investigated. NMR signals of protons are studied at night and during working hours. The Larmor frequency variation caused by the fluctuation of the external magnetic field during daytime reaches around 5 Hz when performing multiple measurements for about 10 min, which seriously affects the results of averaging. In order to improve the performance of the averaged data, we suggest the use of a data processor, i.e. the so-called time-domain frequency correction (TFC). For a 50-times averaged signal spectrum, the signal-to-noise ratio is enhanced from 30 to 120 when applying TFC while preserving the NMR spectrum linewidth. The TFC is also applied successfully to the measurement data of the hetero-nuclear J-coupling in 2,2,2-trifluoroethanol.