Science.gov

Sample records for 23na nmr spectrum

  1. The molecular environment of intracellular sodium: 23Na NMR relaxation.

    PubMed

    Rooney, W D; Springer, C S

    1991-10-01

    The comprehensive approach described in the accompanying paper is illustrated here with the 23Na signal of a concentrated solution of bovine serum albumin (BSA) in saline and the intracellular (Nai) 23Na resonance of a dense suspension of Na(+)-loaded yeast cells. We use frequency shift reagents to discriminate the latter from the extracellular resonance. We find that the Nai signal corresponds to that of an effective single population of Na+ ions exhibiting a single type c spectrum. This is true despite the fact that the yeast protoplasm is too large and too compartmentalized for a given Na+ ion to sample its entirety on the relevant NMR timescale. Our results show clearly that, in addition to the decay of transverse magnetization, the recovery of longitudinal magnetization is biexponential. This is required for a type c spectrum but has not often been detected. The temperature dependence of the relaxation rate constants of the Nai resonance is not consistent with either a simple Debye process or a discrete exchange mechanism connecting two sites in the fast limit. We have fitted the data using an asymmetric continuous distribution of correlation times for the fluctuations of electric field gradients sensed by the Nai nuclei. The analogous distribution function for the Na+ in a 44% (w/w) BSA solution is quite similar to that of the Nai at the same temperature. This suggests that while the macromolecular environment of the Nai ions is quite congested, it is also isotropic on quite a small spatial scale. Also, one can use the correlation time distribution function, obtained from fitting the relaxation data, to calculate a relaxometry curve. This is useful because experimental 23Na relaxometry is difficult. The calculated curve may be a reasonable model for the mostly extracellular 23Na resonance encountered in vivo. PMID:1751346

  2. 23Na NMR and FT-IR studies of sodium complexes with the ionophore lasalocid in solution

    NASA Astrophysics Data System (ADS)

    Schroeder, G.; Gierczyk, B.; Brzezinski, B.; Różalski, B.; Bartl, F.; Zundel, G.; Sośnicki, J.; Grech, E.

    2000-01-01

    Lasalocid forms 1:1 or 2:2 complexes with sodium ions. The process of complexation was studied in different solvents at various temperatures by 23Na NMR. The formation constants and Δ G values were determined. The nature of the complex between lasalocid and Na + ions was also studied by FT-IR spectroscopy. In chloroform, a 2:2 complex of lasalocid and Na + ions is formed. A continuous absorption is observed in the far FT-IR spectrum of this complex. It indicates the large Na + polarizability due to fast fluctuations of the Na + ions in multiminima potentials, in the dimeric structure.

  3. 23Na NMR study of the effect of organic osmolytes on DNA counterion atmosphere.

    PubMed Central

    Flock, S; Labarbe, R; Houssier, C

    1996-01-01

    The effect of different organic osmolytes on the DNA counterion condensation layer has been investigated by 23Na NMR relaxation measurements. The zwitterionic compounds glycine, beta-alanine, 4-aminobutyric acid, and 6-aminocaproic acid have shown an increasing capacity to decrease the amount of sodium ions in the vicinity of the macromolecule. The experimental data have been correlated with the dielectric constant increase in their corresponding solutions and have been compared with the prediction of counterion condensation theory. Polyols (sorbitol and mannitol) did not display the same effect. These compounds largely increase the relaxation rate of sodium ions in the proximity of DNA, unlike the zwitterionic compounds. This probably results from a perturbation of the water dynamic around the macromolecule, of the primary or secondary hydration shell of the sodium nuclei involved, or both. PMID:8874025

  4. Lead exchange into zeolite and clay minerals: A [sup 29]Si, [sub 27]Al, [sup 23]Na solid-state NMR study

    SciTech Connect

    Liang, J.J.; Sherriff, B.L. )

    1993-08-01

    Chabazite, vermiculite, montmorillonite, hectorite, and kaolinite were used to remove Pb, through ion exchange, from 0.01 M aqueous Pb(NO[sub 3])[sub 2] solutions. These minerals contained 27 (Na-chabazite), 16, 9, 9, and 0.5 wt % of Pb, respectively, after equilibration with the solutions. Ion exchange reached equilibrium within 24 h for Na-chabazite and vermiculite, but in less than 5 min for montmorillonite and hectorite. Na-chabazite took up more Pb than natural (Ca, Na)-chabazite (7 wt % Pb), whereas no such difference was observed in different cation forms of the clay minerals. Calcite impurities, associated with the clay minerals, effectively removed Pb from the aqueous solutions by the precipitation of cerussite (PbCO[sub 3]). [sup 29]Si, [sup 27]Al, and [sup 23]Na magic angle spinning (MAS) nuclear magnetic resonance (NMR), [sup 23]Na double rotation (DOR) NMR, and [sup 23]Na variable-temperature MAS NMR were used to study the ion exchange mechanisms. In Na-chabazite, cations in all three possible sites take part in the fast chemical exchange. The chemical exchange passes from the fast exchange regime to the slow regime at [minus]80 to [minus]100[degrees]C. One site contains a relatively low population of exchangeable cations. The other two more shielded sites contain most of the exchangeable cation. The exchangeable cations in chabazite and vermiculite were found to be close to the SiO[sub 4] and AlO[sub 4] tetrahedra, while those in the other clay minerals were more distant. Two sites (or groups of sites) for exchangeable cations were observed in hectorite. Lead tended to occupy the one which corresponds to the [minus]8 ppM peak on the [sup 23]Na MAS NMR spectrum. The behavior of the exchangeable cations in the interlayer sites was similar in all the clay minerals studied. 27 refs., 7 figs., 4 tabs.

  5. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    SciTech Connect

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E. )

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ((Na+)i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for (Na+)i. Five rat RBC specimens had (Na+)i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing (6,6-2H2)glucose and examined by 2H-NMR. No significant differences in (Na+)i or glucose utilization were found in RBCs from control or septic rats. There were no differences in (Na+)i in the two groups of patients. The (Na+)i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the (Na+)i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism.

  6. Solid-state 23Na and 7Li NMR investigations of sodium- and lithium-reduced mesoporous titanium oxides.

    PubMed

    Lo, Andy Y H; Schurko, Robert W; Vettraino, Melissa; Skadtchenko, Boris O; Trudeau, Michel; Antonelli, David M

    2006-02-20

    Mesoporous titanium oxide synthesized using a dodecylamine template was treated with 0.2, 0.6, and 1.0 equiv of Li- or Na-naphthalene. The composite materials were characterized by nitrogen adsorption, powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, and solid-state 23Na and 7Li NMR spectroscopy. In all cases the wormhole mesoporosity was retained as evidenced by BET surface areas from 400 to 700 m(2)/g, Horvath-Kawazoe pore sizes in the 20 Angstroms range, and a lack of hysteresis in the nitrogen adsorption isotherms. Variable-temperature conductivity studies show that the Li-reduced materials are semiconductors, with conductivity values 3 orders of magnitude higher than those of the Na-reduced materials. Electrochemical measurements demonstrate reversible intercalation/deintercalation of Li+ ions into pristine mesoporous Ti oxides with good cycling capacity. Solid-state 23Na NMR reveals two distinct Na environments: one corresponding to sodium ions in the mesoporous channels and the other corresponding to sodium ions intercalated into the metal framework. 23Na NMR spectra also indicate that the relative population of the framework site increases with increased reduction levels. Solid-state 7Li NMR spectra display a single broad resonance, which increases in breadth with increased reduction levels, though individual resonances inferring the presence of channel and framework Li species are not resolved. Comparisons of the lithium chemical shifts with published values suggests an "anatase-like structure" with no long-range order in the least-reduced samples but a "lithium titanate-like structure" with no long-range order in the higher reduced materials. PMID:16472000

  7. Time course of myocardial sodium accumulation after burn trauma: a (31)P- and (23)Na-NMR study.

    PubMed

    Sikes, P J; Zhao, P; Maass, D L; Horton, J W

    2001-12-01

    In this study, (23)Na- and (31)P- nuclear magnetic resonance (NMR) spectra were examined in perfused rat hearts harvested 1, 2, 4, and 24 h after 40% total body surface area burn trauma and lactated Ringer resuscitation, 4 ml. kg(-1). %(-1) burn. (23)Na-NMR spectroscopy monitored myocardial intracellular Na+ using the paramagnetic shift reagent thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylenephosphonic acid). Left ventricular function, cardiac high-energy phosphates (ATP/PCr), and myocyte intracellular pH were studied by using (31)P NMR spectroscopy to examine the hypothesis that burn-mediated acidification of cardiomyocytes contributes to subsequent Na+ accumulation by this cell population. Intracellular Na+ accumulation was confirmed by sodium-binding benzofuran isophthalate loading and fluorescence spectroscopy in cardiomyocytes isolated 1, 2, 4, 8, 12, 18, and 24 h postburn. This myocyte Na+ accumulation as early as 2 h postburn occurred despite no changes in cardiac ATP/PCr and intracellular pH. Left ventricular function progressively decreased after burn trauma. Cardiomyocyte Na+ accumulation paralleled cardiac contractile dysfunction, suggesting that myocardial Na+ overload contributes, in part, to the progressive postburn decrease in ventricular performance. PMID:11717236

  8. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    PubMed

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas. PMID:26931131

  9. Lanthanide complexes of aminophosphonates as shift reagents for 7Li and 23Na NMR studies in biological systems.

    PubMed

    Ramasamy, R; Castro, M M; de Freitas, D M; Geraldes, C F

    1992-01-01

    A systematic NMR characterization of various Dy(III) complexes of linear and macrocyclic aminophosphonates as 7Li and 23Na NMR shift reagents for biological systems was undertaken. Their efficacy as shift reagents (SR) was tested under constant aqueous solution ionic strength conditions at pH 7.5 as a function of rho = [SR]/[M+]. Further characterization of the two best SRs, Dy(PcPcP)2(7-) and Dy(DOTP)5-, led to the conclusion that, although quite sensitive to solution pH and the presence of alkali metal ions and Mg2+ and Ca2+, these complexes were stable towards hydrolysis by phosphatases. The lack of precipitation of its solutions in the presence of Ca2+, allowed the choice of Dy(DOTP)5- as the best overall SR for biological studies. Other SRs, like Dy(TTHA)3-, although less sensitive to pH and to divalent ions, require significantly higher concentrations to yield the same shifts, leading to large bulk susceptibility artifacts in perfused tissues and organs. PMID:1467337

  10. Positive and Negative Mixed Glass Former Effects in Sodium Borosilicate and Borophosphate Glasses Studied by (23)Na NMR.

    PubMed

    Storek, Michael; Adjei-Acheamfour, Mischa; Christensen, Randilynn; Martin, Steve W; Böhmer, Roland

    2016-05-19

    Glasses with varying compositions of constituent network formers but constant mobile ion content can display minima or maxima in their ion transport which are known as the negative or the positive mixed glass former effect, MGFE, respectively. Various nuclear magnetic resonance (NMR) techniques are used to probe the ion hopping dynamics via the (23)Na nucleus on the microscopic level, and the results are compared with those from conductivity spectroscopy, which are more sensitive to the macroscopic charge carrier mobility. In this way, the current work examines two series of sodium borosilicate and sodium borophosphate glasses that display positive and negative MGFEs, respectively, in the composition dependence of their Na(+) ion conductivities at intermediate compositions of boron oxide substitution for silicon oxide and phosphorus oxide, respectively. A coherent theoretical analysis is performed for these glasses which jointly captures the results from measurements of spin relaxation and central-transition line shapes. On this basis and including new information from (11)B magic-angle spinning NMR regarding the speciation in the sodium borosilicate glasses, a comparison is carried out with predictions from theoretical approaches, notably from the network unit trap model. This comparison yields detailed insights into how a variation of the boron oxide content and thus of either the population of silicon or phosphorus containing network-forming units with different charge-trapping capabilities leads to nonlinear changes of the microscopic transport properties. PMID:27092392

  11. Aggregation of double-tail sulfonate surfactants probed by /sup 23/Na NMR

    SciTech Connect

    Kilpatrick, P.K.; Miller, W.G.

    1984-04-12

    Analysis of sodium-23 NMR chemical shift and line-width data on sodium 4-(1-heptylnonyl)benzenesulfonate (SHBS) in water at 47/sup 0/C indicates the surfactant continuously aggregates in an anti- or weakly cooperative manner up to the surfactant solubility limit, a point beyond which a hydrated lamellar phase is in equilibrium with the surfactant-saturated isotropic solution. By contrast, sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT) shows little if any aggregation up to the point of a highly cooperative micellization. Both chemical shift and line-width data indicate the presence of an isotropic solution-liquid crystal phase boundary; the line shape of a biphasic mixture of isotropic solution and lamellar liquid crystal is not motionally averaged, in contrast to a micellar solution, and thus differentiation between micelle formation and solubility boundary is possible. A multiple equilibrium treatment of stepwise amphiphile aggregate formation is used to model both highly cooperative surfactant association, i.e., micellization, and anti- or noncooperative association. The sodium counterion binding to surfactant aggregates was modelled by assuming the oligomers are spherical and have a constant surface charge density with all anionic head groups residing at the surface of the sphere. It was then assumed that the sodium ion exists in one of two environments: free or bound, each having a characteristic chemical shift and transverse relaxation rate. On the basis of a comparison of the model with experimental data, it was concluded that SHBS aggregate concentration decreases with increasing aggregate size; i.e., the aggregation is non- or weakly anticooperative, while Aerosol OT associates very cooperatively, the large degree of cooperativity being an indication of micelle formation.

  12. 23Na and 35/37Cl as NMR probes of growth and shape of sodium taurodeoxycholate micellar aggregates in the presence of NaCl.

    PubMed

    Asaro, Fioretta; Feruglio, Luigi; Galantini, Luciano; Nardelli, Alessia

    2013-02-15

    The growth of the aggregates of the dihydroxylated bile salt sodium taurodeoxycholate (NaTDC) upon NaCl addition and the involvement of the counterion were investigated by NMR spectroscopy of monoatomic ionic species. (23)Na T(1) values from 0.015, 0.100, and 0.200 mol kg(-1) NaTDC solutions in D(2)O, at variable NaCl content, proved to be sensitive to the transition from primary to secondary aggregates, which occurs in the former sample, and to intermicellar interaction. Some (79)Br NMR measurements were performed on a 0.100 mol kg(-1) NaTDC sample added by NaBr in place of NaCl for comparison purposes. The (23)Na, (35)Cl, and (37)Cl double quantum filtered (DQF) patterns, from the 0.100 mol kg(-1) NaTDC sample, and (23)Na ones also from the 0.200 mol kg(-1) NaTDC one, in the presence of 0.750 mol kg(-1) NaCl, are a clear manifestation of motional anisotropy. Moreover, the DQF spectra of (23)Na and (37)Cl, which possess close quadrupole moments, display a striking similarity. The DQF lineshapes were simulated exploiting the Scilab environment to obtain an estimate of the residual quadrupole splitting magnitude. These results support the description of NaTDC micelles as cylindrical aggregates, strongly interacting at high ionic strengths, and capable of association with added electrolytes. PMID:23127873

  13. Quantification of the Contribution of Extracellular Sodium to 23Na Multiple-Quantum-Filtered NMR Spectra of Suspensions of Human Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Knubovets, Tatyana; Shinar, Hadassah; Navon, Gil

    1998-03-01

    23Na double-quantum-filtered (DQF) NMR enables the detection of anisotropic motion of sodium ions due to their interaction with ordered structures in biological tissues. Using the technique, anisotropic motion was found for sodium ions in mammalian red blood cell suspensions (RBC) and the effect was shown to correlate with the integrity of membrane cytoskeleton. In the present study relative contributions to the DQF and triple-quantum-filtered (TQF) spectra of sodium bound to anisotropic and isotropic binding sites in the intra- and extracellular sodium pools (Na content being 15 and 150 mM, respectively) of human RBC were quantified for different hematocrits. DQF spectra were measured by a modified Jeener-Broekaert pulse sequence which enabled exclusive detection of anisotropically moving sodium ions. The relative contributions of the extracellular sodium to the TQF and DQF spectra decreased as the hematocrit increased, but their efficiency relative to the sodium content increased. The contribution of the extracellular sodium to the TQF signal was found to dominate the spectrum of the RBC suspension at all hematocrits studied. The contribution of the extracellular sodium to the DQF was significantly smaller than that to the TQF and was only 22% at a high hematocrit of about 90%.

  14. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  15. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    SciTech Connect

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.; Ferguson, Brennan O.; Varga, Tamas; Kirkpatrick, Robert J.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line width at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.

  16. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  17. Thermotropic ionic liquid crystals. II. 1H and 23Na NMR study of the smectic mesophase of molten sodium n-butyrate and sodium isovalerate

    NASA Astrophysics Data System (ADS)

    Bonekamp, J. E.; Eguchi, T.; Plesko, S.; Jonas, J.

    1983-08-01

    The 1H and 23Na NMR studies of smectic ionic mesophases of molten sodium n-butyrate and sodium isovalerate are reported over the temperature range of the stability of the liquid crystalline phases. The 1H spin-lattice relaxation times T1 at ν0=9.2, 24.3, and 60 MHz for the anions of both the systems are interpreted in terms of diffusion intermolecular relaxation mechanism. The predicted anion diffusion coefficients are in agreement with those measured directly by spin-echo technique and indicate that the anion diffuses rapidly. In contrast to the T1 relaxation mechanism the results obtained for the proton relaxation times in the rotating coordinate frame T1ρ indicate that the order-fluctuation relaxation mechanism determines the frequency dispersion of T1ρ. The analysis of the T1ρ data provides an approximate measure of the order parameter S as a function of temperature. Fourier transform spectra of the 23Na transitions show that the electric field gradient (EFG) at the Na+ ion is nonaveraged and of such a strength as to produce a second order quadrupole effect in the spectra of the central transition. From the first-order splitting, the quadrupole coupling constant (QCC) is obtained as a function of temperature. The gradual temperature change of QCC demonstrates that only a single liquid crystalline phase exists over the temperature interval of the stability of the smectic mesophase. Using approximate analysis the correlation time τc for the EFG fluctuation is obtained from the 23Na T1 data for the melts of both sodium n-butyrate and sodium isovalerate.

  18. Competition between Na + and Li + for Unsealed and Cytoskeleton-Depleted Human Red Blood Cell Membrane: A 23Na Multiple Quantum Filtered and 7Li NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chandra; Minadeo, Nicole; Toon, Jason; Graham, Daniel; Mota de Freitas, Duarte; Geraldes, Carlos F. G. C.

    1999-09-01

    Evidence for competition between Li+ and Na+ for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li+ upon the 23Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na+-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li+ on the 23Na TQF and DQF signal intensity probed Li+/Na+ competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na+ to isotropic membrane sites, but had no effect on Li+/Na+ competition for those sites. Through the observed 23Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na+ motion, we found anisotropic membrane binding sites for Na+ when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer-tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na+ motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li+ addition initially quenched the isotropic signal the most, indicating preferential Li+/Na+ competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li+ addition competed with Na+ for those sites, quenching the anisotropic signal. 7Li T1 relaxation data for Li+-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na+ at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na+ for the RBC membrane, but increases the affinity of Li+ by 50%. This clearly indicates that cytoskeleton

  19. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by (1)H and (23)Na MRI, (23)Na NMR, low-field NMR and physicochemical analysis.

    PubMed

    Gudjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn; Karlsdóttir, Magnea Gudrún; Arason, Sigurjón

    2015-12-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future. PMID:26041245

  20. Application of 1H and 23Na magic angle spinning NMR spectroscopy to define the HRBC up-taking of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Paleari, Lino; Biondi, Luca; Linati, Laura; De Miranda, Mario; Ghelli, Stefano

    2003-09-01

    The up-take of Gd(III) complexes of BOPTA, DTPA, DOTA, EDTP, HPDO3A, and DOTP in HRBC has been evaluated by measuring the lanthanide induced shift (LIS) produced by the corresponding dysprosium complexes (DC) on the MAS-NMR resonances of water protons and free sodium ions. These complexes are important in their use as MRI contrast agents (MRI-CA) in diagnostics. 1H and 23Na MAS-NMR spectra of HRBC suspension, collected at 9.395 T, show only one signal due to extra- and intra-cellular water (or sodium). In MAS spectra, the presence of DC in a cellular compartment produces the LIS of only the nuclei (water proton or sodium) in that cellular compartment and this LIS can be related to the DC concentrations (by the experimental curves of LIS vs. DC concentrations) collected in the physiological solution. To obtain correct results about LIS, the use of MAS technique is mandatory, because it guarantees the only the nuclei staying in the same cellular compartment where the LC is present show the LIS. In all the cases considered, the addition of the DC to HRBC (100% hematocrit) produced a shift of only the extra-cellular water (or sodium) signal and the gradient of concentration ( GC) between extra- and intra-cellular compartments resulted greater than 100:1, when calculated by means of sodium signals. These high values of GC are direct proofs that none of the tested dysprosium complexes crosses the HRBC membrane. Since the DC are iso-structural to the gadolinium complexes the corresponding gadolinium ones (MRI-CA) do not cross the HRBC membrane and, consequently, they are not up-taken in HRBC. The GC values calculated by means of water proton signals resulted much lower than those obtained by sodium signals. This proves that the choice of the isotope is a crucial step in order to use this method in the best way. In fact, GC value depends on the lowest detectable LIS which, in turn, depends on the nature of the LC (lanthanide complex) and the observed isotopes.

  1. Molecular and electron-spin structures of a ring-shaped mixed-valence polyoxovanadate (IV, V) studied by (11)B and (23)Na solid-state NMR spectroscopy and DFT calculations.

    PubMed

    Iijima, Takahiro; Yamase, Toshihiro; Nishimura, Katsuyuki

    2016-01-01

    (11)B and (23)Na solid-state nuclear magnetic resonance (NMR) spectra of ring-shaped paramagnetic crystals of H15[V7(IV)V5(V)B32O84Na4]·13H2O containing seven d(1) electrons from V(IV) were studied. Magic-angle-spinning (MAS) and multiple-quantum MAS NMR experiments were performed at moderate (9.4T) and ultrahigh magnetic fields (21.6T). The NMR parameters for quadrupole and isotropic chemical shift interactions were estimated by simulation of the NMR spectra and from relativistic density functional theory (DFT) calculations. Four Na ions incorporated into the framework were found to occupy four distinct sites with different populations. The DFT calculation showed that d(1) electrons with effectively one up-spin caused by strong antiferromagnetic interactions were delocalized over the 12V ions. PMID:27018827

  2. NMR relaxation behavior and quadrupole coupling constants of 39K and 23Na ions in glycerol. Comparisons with 39K tissue data

    NASA Astrophysics Data System (ADS)

    Wellard, R. Mark; Shehan, B. Philip; Craik, David J.; Adam, William R.

    The quadrupole coupling constants (qcc) for 39K and 23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of 39K in glycerol is found to be 1.7 MHz, and that of 23Na is 1.6 MHz. The relaxation behavior of 39K and 23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τ c is not simply proportional to the ratio of viscosity/temperature (η T). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T 2 measurements of 39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing 39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of 39K in tissue. Similar results and conclusions are found for 23Na.

  3. {sup 27}Al and {sup 23}Na MAS NMR and powder x-ray diffraction studies of sodium aluminate speciation and the mechanistics of aluminum hydroxide precipitation upon acid hydrolysis

    SciTech Connect

    Bradley, S.M.; Hanna, J.V.

    1994-08-24

    {sup 27}Al and {sup 23}Na MAS NMR, powder X-ray diffraction, and infrared spectroscopic investigations of freeze-dried sodium aluminates and aluminum hydroxides formed through acid hydrolysis have been undertaken, with OH/Al hydrolysis ratios between 5.3 and 2.8 being analyzed. Numerous {sup 27}AlNMR resonances were observed, the intensities of which vary as a function of OH/Al ratio, and these have been assigned to four-, five-, and six-coordinate aluminum species constituting a variety of structural moieties. The dominant species at an OH/Al ratio above 4.4 appears to be a Q{sup o}Na[Al(OH);{sub 4}] salt, as indicated by a {sup 27}Al resonance at 86.6 ppm. In addition, a second, broader resonance at 71.3 ppm demonstrates the simultaneous existence of further four-coordinate aluminum species linked thorough oxo bonds to other four-coordinate aluminums (e.g., Q{sup 2} [Al(OH);{sub 2}(OAl){sub 2}];{sup x-}). At an OH/Al ratio between 4.4 and 4.1, a water-soluble phase forms that contains both four- and six-coordinate aluminum. At OH/Al ratios fo 4.0 and below, a water-soluble phase forms that contains both four-and six-coordinate aluminum. AT OH/Al ratios of 4.0 and below, a water-insoluble phase exists possessing four-, five-, and six-coordinate aluminum. At OH/Al{le}3.9 range exhibits {sup 27}Al chemical shifts similar to those reported for transitional aluminas such as {gamma}-, {eta}-, and 0-Al{sub 2}O{sub 3} and an infrared spectrum similar to pseudo-spinel gels, suggesting that a pseudo-spinel intermediate is the first phase involved in the crystallization of gibbsite. The resonance assigned to five-coordinate aluminum probably results from species involved in the transformation of the pseudo-spinal phase to pseudo-boehmite. The formation of gibbssite on the acid hydrolysis of alkaline sodium aluminate solutions thus appears to follow the pathway pseudo-spinel {r_arrow} pseudo-boehmite {r_arrow} bayerite {r_arrow} gibbsite. 82 refs., 7 figs., 3 tabs.

  4. Spin dynamics in Na4-x Ir3O8 (x  =  0.3 and 0.7) investigated by 23Na NMR and μSR

    NASA Astrophysics Data System (ADS)

    Yoon, Sungwon; Baek, S.-H.; Balodhi, Ashiwini; Lee, W.-J.; Choi, K.-Y.; Watanabe, I.; Lord, J. S.; Büchner, B.; Suh, B. J.; Singh, Yogesh

    2015-12-01

    We report 23Na nuclear magnetic resonance (NMR) and zero-field (ZF) and longitudinal-field (LF) muon spin relaxation (μSR) measurements of the depleted hyperkagome compounds Na4-x Ir3O8 (x  =  0.3 and 0.7), which undergo an insulator-semimetal transition as a function of x. The 23Na spin-lattice relaxation rates, T1-1 , follow a T 2.5 power law behavior at accessible temperatures of T  =  120-350 K. A substantial temperature dependence of T1-1 indicates the presence of gapped excitations at elevated temperatures through the transition to a semimetallic phase. ZF-μSR results reveal that hole-doping leads to a melting of quasi-static order to a dynamically fluctuating state. The very slow muon depolarization rate which varies hardly with temperature indicates that spins are close to an itinerant limit in the largest doping x  =  0.7. The dynamic relaxation rates extracted from the LF-μSR spectra show a three-dimensional diffusive transport. Our combined NMR and μSR results suggest the occurrence of intriguing spin and charge excitations across the insulator-semimetal transition.

  5. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  6. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  7. NMR study in sodium-hydrogen-C{sub 60} superconductor

    SciTech Connect

    Ogata, H.; Miyajima, S.; Imaeda, K.; Inokuchi, H.

    1998-12-31

    {sup 23}Na and {sup 1}H NMR studies have been carried out for a Na{sub x}H{sub y}C{sub 60} superconductor. The peak position of the {sup 23}Na NMR spectrum exhibits discontinuous upfield shift of 30 ppm at about 250 K, indicates a first order phase transition. From the line shape of the {sup 23}Na spectrum obtained at 7 K, the quadrupole coupling constant tensor is evaluated to be {vert_bar}e{sup 2}Qq/h{vert_bar} = 3.7 MHz with the asymmetry parameter {eta} = 0.95. The {sup 1}H NMR spectrum suggests an anionic hydrogen state with weakly delocalized nature.

  8. Nanoscale phase quantification in lead-free (Bi1 /2Na1 /2) TiO3-BaTiO3 relaxor ferroelectrics by means of 23Na NMR

    NASA Astrophysics Data System (ADS)

    Groszewicz, Pedro B.; Breitzke, Hergen; Dittmer, Robert; Sapper, Eva; Jo, Wook; Buntkowsky, Gerd; Rödel, Jürgen

    2014-12-01

    We address the unsolved question on the structure of relaxor ferroelectrics at the atomic level by characterizing lead-free piezoceramic solid solutions (100 -x ) (Bi1 /2Na1 /2) TiO3-x BaTiO3 (BNT -x BT ) (for x =1 ,4 ,6 , and 15). Based on the relative intensity between spectral components in quadrupolar perturbed 23Na nuclear magnetic resonance, we present direct evidence of the coexistence of cubic and polar local symmetries in these relaxor ferroelectrics. In addition, we demonstrate how the cubic phase vanishes whenever a ferroelectric state is induced, either by field cooling or changing the dopant amount, supporting the relation between this cubic phase and the relaxor state.

  9. Detection of thin film NMR spectrum by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Kwon, Sungmin; Lee, Soonchil; Won, Soonho

    2014-03-01

    NMR is widely used in many fields due to its powerful advantages such as nondestructive, chemically selective detection, and local probing. However, because of its low sensitivity, it is difficult to investigate thin film samples by conventional NMR. MRFM is the combined technic of NMR and Scanning Probe Microscopy (SPM), and it enabled exceptional sensitivity increasement of NMR detection. We succeeded in detecting general thin film NMR spectrum for the first time by modifying the MRFM. CaF2 34nm thin film NMR was detected and we observed 20 Gauss spectrum in proximity to bulk spectrum which is about 10 Gauss.

  10. A Pipeline Software Architecture for NMR Spectrum Data Translation

    PubMed Central

    Ellis, Heidi J.C.; Weatherby, Gerard; Nowling, Ronald J.; Vyas, Jay; Fenwick, Matthew; Gryk, Michael R.

    2012-01-01

    The problem of formatting data so that it conforms to the required input for scientific data processing tools pervades scientific computing. The CONNecticut Joint University Research Group (CONNJUR) has developed a data translation tool based on a pipeline architecture that partially solves this problem. The CONNJUR Spectrum Translator supports data format translation for experiments that use Nuclear Magnetic Resonance to determine the structure of large protein molecules. PMID:24634607

  11. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance.

    PubMed Central

    Boulanger, Y; Vinay, P; Desroches, M

    1985-01-01

    The accuracy of the 23Na nuclear magnetic resonance (NMR) method for measuring the sodium concentration in erythrocytes was tested by comparing the NMR results to those obtained by emission-flame photometry. Comparisons were made on aqueous solutions, hemolysates, gels, ghosts, and intact erythrocytes. The intra- and extracellular 23Na NMR signals were distinguished by addition of the dysprosium tripolyphosphate [Dy(PPP)7-2] shift reagent to the extracellular fluid. The intra- and extracellular volumes of ghosts and cells were determined by the isotope dilution method. Our results indicate that greater than 20% of the intracellular signal remains undetected by NMR in ghosts and cells. When the cells are hemolyzed, the amount of NMR-detectable sodium varies depending on the importance of gel formation. In hemolysates prepared by water addition, the NMR and flame photometry results are identical. The loss of signal in ghosts, cells, and undiluted hemolysates is attributed to partial binding of the Na+ ion to intracellular components, this binding being operative only when these components exist in a gel state. In a second part, 31P NMR was used to monitor the penetration of the shift reagent into the cells during incubation. Our data demonstrate that free Dy3+ can slowly accumulate inside the red cell. PMID:3986283

  12. (22)Ne(proton, gamma)(23)Na, (23)Na(proton, gamma)(24)Mg, and globular cluster abundance anomalies

    NASA Astrophysics Data System (ADS)

    Hale, Stephen Earl, Jr.

    Anticorrelations between sodium and oxygen have been observed in red giant stars in globular clusters, contrary to expectations from the standard theory of stellar evolution. It has been proposed that the 23Na is being produced through the NeNa cycle operating in layers above the main hydrogen-burning shell. The (p, γ) reactions that produce and destroy sodium have large uncertainties because of the possible influence of several resonances. We have carried out measurements of the ( 3He, d) proton-stripping reaction on 22Ne and 23Na in order to study these resonances. The upper limits on the resonance strengths of two possible resonances at Ecm = 68 and 100 keV, that account for most of the uncertainty in 22Ne( p, γ)23Na, have been reduced by factors of 10 and 4, respectively. The reaction rate of 23Na(p, γ) 24Mg has been increased dramatically with the observation of the resonance at Ecm = 136 keV with an increased strength from 10 to 6300 times stronger than the previously used value. The effect of these changes is to establish the nuclear reactions that can produce sodium in the red giant hydrogen-burning shell. The production of sodium is seen to coincide with the destruction of oxygen, through the NeNa and the CNO cycle respectively.

  13. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel.

    PubMed Central

    Monoi, H.

    1985-01-01

    Basic nuclear magnetic resonance (NMR) features of 23Na ions bound to the gramicidin channel (packaged into lecithin liposomes) were studied. The first binding constant K1 of Na+ was not significantly dependent on channel models employed. With the two-identical-site model (Model I), K1 was 13.7 (+/- 1.4) molal-1 (in the activity basis) at 25 degrees C; when the binding of a third ion was included (Model II), it was 13.0 (+/- 2.0) molal-1. The second binding constant K2 was model dependent; it was 1.6 (+/- 0.2) and 3-4 molal-1 for Models I and II, respectively. The rate constants, k-1 and k-2, of Na+ for exit from singly and doubly loaded channels, respectively, were 8 X 10(5) s-1 less than or equal to k-1 less than or equal to 3 X 10(6) s-1 and 8 X 10(5) s-1 less than or equal to k-2 less than or equal to 1.0 X 10(7) s-1 at 25 degrees C; the lower bound represents a rough approximation of k-1. The ratio k-2/k-1 was greater than one and did not greatly exceed 20. From the competition experiment, K1 of T1+ was 5.7 (+/- 0.6) X 10(2) molal-1. The longitudinal relaxation time T1 of bound 23Na in the state of single occupancy (T 1B sing) was virtually independent of models, 0.56 (+/- 0.03) and 0.55 (+/- 0.04) ms at 25 degrees C for Models I and II, respectively. For the state of double occupancy, T1 of bound 23Na (T 1B doub) was model dependent: 0.27 (+/- 0.01) and 0.4-0.6 ms for Models I and II. The correlation time tau c of bound 23Na was 2.2 (+/- 0.2) ns at 25 degrees C for single occupancy; tau c for double occupancy was not significantly different from this value. The estimated tau c was found to involve no appreciable contribution of the exchange of 23Na between the channel and the bulk solution. Thé quadrupole coupling constant chi was 1.0 (+/- 0.1) MHz for 23Na in single occupancy; chi for double occupancy was 0.9-1.4 MHz, depending on models. A lower bound of the average quadrupole coupling constant chi alpha was 0.13-0.26 MHz at 25 degrees C for 23Na in single

  14. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800

  15. One- and two-dimensional exchange J-resolved CP-MAS NMR spectrum of adamantane

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; McDowell, C. A.

    1986-02-01

    A combined technique of 1D and 2D exchange NMR and J-resolved CP-MAS NMR of dilute spins in solids and its application to study a spin exchange process of abundant spins in solids is described, and demonstrated for powdered adamantane. A high-resolution J-resolved NMR spectrum of a 13C nucleus obtained by applying homonuclear decoupling and magic angle sample spinning is employed to label the spin states of 1H spins bonded to the 13C nucleus. Perspective 2D exchange spectra are employed to map out connectivity between the proton spin states, and the rate constants for the 1H spin exchange involved are determined by 1D exchange NMR techniques. Discussions based on the total energy conservation enable us to conclude that the observed spin exchange processes are to be ascribed mainly to the flip-flop motion of 1H spins; the spin-lattice process is negligible. The rate constant for the flip-flop motion of the proton spins is determined to be (7±2)×103 s-1 at room temperature.

  16. The (1) H NMR spectrum of pyrazole in a nematic phase.

    PubMed

    Provasi, Patricio; Jimeno, María Luisa; Alkorta, Ibon; Reviriego, Felipe; Elguero, José; Jokisaari, Jukka

    2016-08-01

    The experimental (1) H nuclear magnetic resonance (NMR) spectrum of 1H-pyrazole was recorded in thermotropic nematic liquid crystal N-(p-ethoxybenzylidene)-p-butylaniline (EBBA) within the temperature range of 299-308 K. Two of three observable dipolar DHH -couplings appeared to be equal at each temperature because of fast prototropic tautomerism. Analysis of the Saupe orientational order parameters using fixed geometry determined by computations and experimental dipolar couplings results in a situation in which the molecular orientation relative to the magnetic field (and the liquid crystal director) can be described exceptionally by a single parameter. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26947581

  17. Filtering and parameter estimation of surface-NMR data using singular spectrum analysis

    NASA Astrophysics Data System (ADS)

    Ghanati, Reza; Kazem Hafizi, Mohammad; Mahmoudvand, Rahim; Fallahsafari, Mahdi

    2016-07-01

    Ambient electromagnetic interferences at the site of investigation often degrade the signal quality of the Surface-NMR measurements leading to inaccurate estimation of the signal parameters. This paper proposes a new powerful de-noising method based on singular spectrum analysis (SSA), which is a nonparametric method for analyzing time series. SSA is a relatively simple method and can be understood using basic algebra notations. Singular value decomposition (SVD) plays a crucial role in SSA. As the length of recordings increases, the computational time required for computing SVD raises which restricts the usage of SSA in long-term time series. In order to overcome this drawback, we propose a randomized version of the singular value decomposition to accelerate the decomposition step of the algorithm. To evaluate the performance of the proposed strategy, the method is tested on synthetic signals corrupted by both simulated noise (including Gaussian white noise, spiky events and harmonic noise) and real noise recordings obtained from surface-NMR field surveys and a real data set. Our results show that the proposed algorithm can enhance the signal to noise ratio significantly, and gives an improvement in estimation of the surface-NMR signal parameters.

  18. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  19. Coherent Microwave Control of Ultracold 23Na 4K Molecules

    NASA Astrophysics Data System (ADS)

    Will, Sebastian A.; Park, Jee Woo; Yan, Zoe Z.; Loh, Huanqian; Zwierlein, Martin W.

    2016-06-01

    We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable 23Na 40K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J =1 , we observe lifetimes of more than 3 s, comparable to those in the rovibrational ground state, J =0 . Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements, and quantum information processing.

  20. Assigning the NMR Spectrum of Glycidol: An Advanced Organic Chemistry Exercise

    ERIC Educational Resources Information Center

    Helms, Eric; Arpaia, Nicholas; Widener, Melissa

    2007-01-01

    Various one- and two-dimensional NMR experiments have been found to be extremely useful for assigning the proton and carbon NMR spectra of glycidol. The technique provides extremely valuable information aiding in the complete assignment of the peaks.

  1. (39) K and (23) Na relaxation times and MRI of rat head at 21.1 T.

    PubMed

    Nagel, Armin M; Umathum, Reiner; Rösler, Manuela B; Ladd, Mark E; Litvak, Ilya; Gor'kov, Peter L; Brey, William W; Schepkin, Victor D

    2016-06-01

    At ultrahigh magnetic field strengths (B0  ≥ 7.0 T), potassium ((39) K) MRI might evolve into an interesting tool for biomedical research. However, (39) K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of (39) K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared (39) K and sodium ((23) Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. (39) K relaxation times were markedly shorter than those of (23) Na. Compared with the lower field strength, (39) K relaxation times were up to 1.9- (T1 ), 1.4- (T2S ) and 1.9-fold (T2L ) longer at 21.1 T. The increase in the (23) Na relaxation times was less pronounced (up to 1.2-fold). Mono-exponential fits of the (39) K longitudinal relaxation time at 21.1 T revealed T1  = 14.2 ± 0.1 ms for the healthy rat head. The (39) K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S ) and long (T2L ) components, respectively. (23) Na relaxation times were markedly longer (T1  = 41.6 ± 0.4 ms; T2S  = 4.9 ± 0.2 ms; T2L  = 33.2 ± 0.2 ms). (39) K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm(3) within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for (23) Na and (39) K MRI at ultrahigh magnetic field strength. Our results demonstrate that (39) K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27061712

  2. Application of 23Na MRI to Monitor Chemotherapeutic Response in RIF-1 Tumors1

    PubMed Central

    Babsky, Andriy M; Hekmatyar, Shahryar K; Zhang, Hong; Solomon, James L; Bansal, Navin

    2005-01-01

    Abstract Effects of an alkylating anticancer drug, cyclophosphamide (Cp), on 23Na signal intensity (23Na SI) and water apparent diffusion coefficient (ADC) were examined in subcutaneously-implanted radiation-induced fibrosarcoma (RIF-1) tumors by in vivo 23Na and 1H magnetic resonance imaging (MRI). MRI experiments were performed on untreated control (n = 5) and Cp-treated (n = 6) C3H mice, once before Cp injection (300 mg/kg) then daily for 3 days after treatment. Tumor volumes were significantly lower in treated animals 2 and 3 days posttreatment. At the same time points, MRI experiments showed an increase in both 23Na SI and water ADC in treated tumors, whereas control tumors did not show any significant changes. The correlation between 23Na SI and water ADC changes was dramatically increased in the Cp-treated group, suggesting that the observed increases in 23Na SI and water ADC were caused by the same mechanism. Histologic sections showed decreased cell density in the regions of increased 23Na and water ADC SI. Destructive chemical analysis showed that Cp treatment increased the relative extracellular space and tumor [Na+]. We conclude that the changes in water ADC and 23Na SI were largely due to an increase in extracellular space. 23Na MRI and 1H water ADC measurements may provide valuable noninvasive techniques for monitoring chemotherapeutic responses. PMID:16026645

  3. Singular spectrum analysis for an automated solvent artifact removal and baseline correction of 1D NMR spectra

    NASA Astrophysics Data System (ADS)

    De Sanctis, Silvia; Malloni, Wilhelm M.; Kremer, Werner; Tomé, Ana M.; Lang, Elmar W.; Neidig, Klaus-Peter.; Kalbitzer, Hans Robert

    2011-06-01

    NMR spectroscopy in biology and medicine is generally performed in aqueous solutions, thus in 1H NMR spectroscopy, the dominant signal often stems from the partly suppressed solvent and can be many orders of magnitude larger than the resonances of interest. Strong solvent signals lead to a disappearance of weak resonances of interest close to the solvent artifact and to base plane variations all over the spectrum. The AUREMOL-SSA/ALS approach for automated solvent artifact removal and baseline correction has been originally developed for multi-dimensional NMR spectroscopy. Here, we describe the necessary adaptations for an automated application to one-dimensional NMR spectra. Its core algorithm is still based on singular spectrum analysis (SSA) applied on time domain signals (FIDs) and it is still combined with an automated baseline correction (ALS) in the frequency domain. However, both steps (SSA and ALS) have been modified in order to achieve optimal results when dealing with one-dimensional spectra. The performance of the method has been tested on one-dimensional synthetic and experimental spectra including the back-calculated spectrum of HPr protein and an experimental spectrum of a human urine sample. The latter has been recorded with the typically used NOESY-type 1D pulse sequence including water pre-saturation. Furthermore, the fully automated AUREMOL-SSA/ALS procedure includes the managing of oversampled, digitally filtered and zero-filled data and the correction of the frequency domain phase shift caused by the group delay time shift from the digital finite response filtering.

  4. Method and apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise oreintationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions is zero.

  5. Method and sample spinning apparatus for measuring the NMR spectrum of an orientationally disordered sample

    DOEpatents

    Pines, Alexander; Samoson, Ago

    1990-01-01

    An improved NMR apparatus and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus spins the sample about an axis. The angle of the axis is mechanically varied such that the time average of two or more Legendre polynomials are zero.

  6. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  7. High resolution 23Na-nuclear magnetic resonance study of stroke-prone spontaneously hypertensive rat erythrocytes.

    PubMed

    Kwan, C Y; Seo, Y; Ito, H; Murakami, M; Watari, H

    1987-06-01

    The intracellular Na+ content of washed erythrocytes from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto normotensive rats (WKY) was measured by a high resolution 23Na-nuclear magnetic resonance (NMR) technique using a non-permeant aqueous shift reagent, dysprosium triethylenetetramine hexaacetic acid, Dy(TTHA)3-. The initial intracellular Na+ of freshly isolated and washed erythrocytes was very low (approximately 5 mmol/l) and increased progressively with prolonged incubation in isotonic salt solution at 37 degrees C. There was no significant difference in the erythrocyte Na+ concentration between SHRSP and WKY over the entire period of measurement, nor was any difference detected in their osmotic fragility or total cellular volume, although the osmotic fragility decreased with incubation time. The high energy phosphate metabolites were also studied in the same erythrocytes by 31P-NMR. The level of intracellular ATP decreased with incubation at 37 degrees C but showed no difference between the SHRSP and WKY samples. Inclusion of 1 mmol/l ouabain in the incubation medium substantially retarded the breakdown of intracellular ATP and resulted in a concomitant increase in intracellular Na+. However, neither the ouabain-sensitive nor the ouabain-insensitive component of Na+ influx altered in SHRSP erythrocytes compared with WKY erythrocytes in paired experiments. Our results do not support the hypothesis that altered Na+ transport, resulting in an increase in erythrocyte Na+ concentration, is associated with spontaneous hypertension. PMID:3611783

  8. Elastic Scattering between Ultracold 23Na and 85Rb Atoms in the Triplet State

    NASA Astrophysics Data System (ADS)

    Hu, Qiu-Bo; Zhang, Yong-Sheng; Sun, Jin-Feng; Yu, Ke

    2011-04-01

    The elastic scattering properties between ultracold 23Na and 85Rb atoms for the triplet state (a3 Σ+u) are researched. The s-wave scattering lengths of 23Na and 85Rb are calculated by the Numerov and semiclassical method with two kinds of interatomic potentials, which are the interpolation potential and Lennard—Jones potential (LJ12,6) by the same phase Φ. Shape resonances appear clearly in the l = 5 partial waves for the a3 Σ+u state. Moreover, the s-wave scattering cross section, total cross section and energy positions of shape resonances are also discussed.

  9. Multinuclear high-resolution NMR study of compounds from the ternary system NaF-CaF2-AlF3: from determination to modeling of NMR parameters.

    PubMed

    Martineau, C; Body, M; Legein, C; Silly, G; Buzaré, J-Y; Fayon, F

    2006-12-11

    27Al and 23Na NMR satellite transition spectroscopy and 3Q magic-angle-spinning spectra are recorded for three compounds from the ternary NaF-CaF2-AlF3 system. The quadrupolar frequency nuQ, asymmetry parameter etaQ, and isotropic chemical shift deltaiso are extracted from the spectrum reconstructions for five aluminum and four sodium sites. The quadrupolar parameters are calculated using the LAPW-based ab initio code WIEN2k. It is necessary to perform a structure optimization of all compounds to ensure a fine agreement between experimental and calculated parameters. By a comparison of experimental and calculated values, an attribution of all of the 27Al and 23Na NMR lines to the crystallographic sites is achieved. High-speed 19F NMR MAS spectra are recorded and reconstructed for the same compounds, leading to the determination of 18 isotropic chemical shifts. The superposition model developed by Bureau et al. is used, allowing a bijective assignment of the 19F NMR lines to the crystallographic sites. PMID:17140229

  10. Creation of a strongly dipolar gas of ultracold ground-state 23 Na87 Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Wang, Dajun; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier

    2016-05-01

    We report on successful creation of an ultracold sample of ground-state 23 Na87 Rb molecules with a large effective electric dipole moment. Through a carefully designed two-photon Raman process, we have successfully transferred the magneto-associated Feshbach molecules to the singlet ground state with high efficiency, obtaining up to 8000 23 Na87 Rb molecules with peak number density over 1011 cm-3 in their absolute ground-state level. With an external electric field, we have induced an effective dipole moment over 1 Debye, making 23 Na87 Rb the most dipolar ultracold particle ever achieved. Contrary to the expectation, we observed a rather fast population loss even for 23 Na87 Rb in the absolute ground state with the bi-molecular exchange reaction energetically forbidden. The origin for the short lifetime and possible ways of mitigating it are currently under investigation. Our achievements pave the way toward investigation of ultracold bosonic molecules with strong dipolar interactions. This work is supported by the Hong Kong RGC CUHK404712 and the ANR/RGC Joint Research Scheme ACUHK403/13.

  11. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    PubMed

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  12. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  13. 23Na (α,p )26Mg Reaction Rate at Astrophysically Relevant Energies

    NASA Astrophysics Data System (ADS)

    Howard, A. M.; Munch, M.; Fynbo, H. O. U.; Kirsebom, O. S.; Laursen, K. L.; Diget, C. Aa.; Hubbard, N. J.

    2015-07-01

    The production of 26Al in massive stars is sensitive to the 23Na (α,p )26Mg cross section. Recent experimental data suggest the currently recommended cross sections are underestimated by a factor of ˜40 . We present here differential cross sections for the 23Na (α,p )26Mg reaction measured in the energy range Ec .m .=1.7 - 2.5 MeV . Concurrent measurements of Rutherford scattering provide absolute normalizations that are independent of variations in target properties. Angular distributions are measured for both p0 and p1 permitting the determination of total cross sections. The results show no significant deviation from the statistical model calculations upon which the recommended rates are based. We therefore retain the previous recommendation without the increase in cross section and resulting stellar reaction rates by a factor of 40, impacting the 26Al yield from massive stars by more than a factor of 3.

  14. Three New Low-Energy Resonances in the 22Ne (p ,γ )23Na Reaction

    NASA Astrophysics Data System (ADS)

    Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Corvisiero, P.; Davinson, T.; di Leva, A.; Elekes, Z.; Ferraro, F.; Formicola, A.; Fülöp, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Imbriani, G.; Junker, M.; Menegazzo, R.; Mossa, V.; Pantaleo, F. R.; Prati, P.; Scott, D. A.; Somorjai, E.; Straniero, O.; Strieder, F.; Szücs, T.; Takács, M. P.; Trezzi, D.; LUNA Collaboration

    2015-12-01

    The 22Ne (p ,γ )23Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between 20Ne and 27Al in asymptotic giant branch stars and novae. The 22Ne(p ,γ )23Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the 22Ne (p ,γ )23Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless 22Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars.

  15. Creation of an Ultracold Gas of Ground-State Dipolar 23Na 87 Molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Zhu, Bing; Lu, Bo; Ye, Xin; Wang, Fudong; Vexiau, Romain; Bouloufa-Maafa, Nadia; Quéméner, Goulven; Dulieu, Olivier; Wang, Dajun

    2016-05-01

    We report the successful production of an ultracold sample of absolute ground-state 23Na 87Rb molecules. Starting from weakly bound Feshbach molecules formed via magnetoassociation, the lowest rovibrational and hyperfine level of the electronic ground state is populated following a high-efficiency and high-resolution two-photon Raman process. The high-purity absolute ground-state samples have up to 8000 molecules and densities of over 1011 cm-3 . By measuring the Stark shifts induced by external electric fields, we determined the permanent electric dipole moment of the absolute ground-state 23Na 87Rb and demonstrated the capability of inducing an effective dipole moment over 1 D. Bimolecular reaction between ground-state 23Na 87Rb molecules is endothermic, but we still observed a rather fast decay of the molecular sample. Our results pave the way toward investigation of ultracold molecular collisions in a fully controlled manner and possibly to quantum gases of ultracold bosonic molecules with strong dipolar interactions.

  16. Three New Low-Energy Resonances in the ^{22}Ne(p,γ)^{23}Na Reaction.

    PubMed

    Cavanna, F; Depalo, R; Aliotta, M; Anders, M; Bemmerer, D; Best, A; Boeltzig, A; Broggini, C; Bruno, C G; Caciolli, A; Corvisiero, P; Davinson, T; di Leva, A; Elekes, Z; Ferraro, F; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Imbriani, G; Junker, M; Menegazzo, R; Mossa, V; Pantaleo, F R; Prati, P; Scott, D A; Somorjai, E; Straniero, O; Strieder, F; Szücs, T; Takács, M P; Trezzi, D

    2015-12-18

    The ^{22}Ne(p,γ)^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between ^{20}Ne and ^{27}Al in asymptotic giant branch stars and novae. The ^{22}Ne(p,γ)^{23}Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the ^{22}Ne(p,γ)^{23}Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless ^{22}Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars. PMID:26722918

  17. Towards a study of 22Ne(pγ)23Na at LUNA

    NASA Astrophysics Data System (ADS)

    Depalo, R.; LUNA Collaboration

    2016-01-01

    The 22Ne(p,γ)23Na reaction is involved in the NeNa cycle of hydrogen burning. This cycle plays an important role for nucleosynthesis in the Red Giant Branch and Asymptotic Giant Branch phases of stellar evolution, as well as in classical novae and type Ia supernovae explosions. The 22Ne(p,γ)23Na reaction rate is highly uncertain because of a large number of resonances lying in the energy region of the Gamow peak. Several of these resonances have never been studied in either direct or indirect experiments, and only upper limits exist for their strengths. A measurement of the 2Ne(p,γ)23Na cross section is on-going at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso. With the LUNA setup, it will be possible to study the 22Ne+p reaction inside the Gamow window. The results of a feasibility test, as well as the measurement strategy and the setup for the first experimental campaign are discussed

  18. Triple-quantum filtered NMR imaging of sodium in the human brain

    SciTech Connect

    Keltner, J.R.

    1993-04-01

    In the past multiple-quantum filtered imaging of biexponential relaxation sodium-23 nuclei in the human brain has been limited by low signal to noise ratios; this thesis demonstrates that such imaging is feasible when using a modified gradient-selected triple-quantum filter at a repetition time which maximizes the signal to noise ratio. Nuclear magnetic resonance imaging of biexponential relaxation sodium-23 ({sup 23}Na) nuclei in the human brain may be useful for detecting ischemia, cancer, and pathophysiology related to manic-depression. Conventional single-quantum NMR imaging of in vivo biexponential relaxation {sup 23}Na signals is complicated by the presence of single-exponential relaxation {sup 23}Na signals. Multiple-quantum filters may be used to selectively image biexponential relaxation {sup 23}Na signals since these filters suppress single-exponential relaxation {sup 23}Na signals. In this thesis, the typical repetition times (200--300 ms) used for in vivo multiple-quantum filtered {sup 23}Na experiments are shown to be approximately 5 times greater than the optimal repetition time which maximizes multiple-quantum filtered SNR. Calculations and experimental verification show that the gradient-selected triple-quantum (GS3Q) filtered SNR for {sup 23}Na in a 4% agarose gel increases by a factor of two as the repetition time decreases from 300 ms to 55 ms. The measured relaxation times of the {sup 23}Na in the 4% agarose gel were similar to in vivo {sup 23}Na relaxation times.

  19. Geometric Hall Effect of ^{23}Na Condensate in a Time- and Space-Dependent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Zheng, Gong-Ping; Yang, Ling-Ling; Chang, Gao-Zhan; Wu, Zhe

    2016-04-01

    We simulate numerically the dynamics of ^{23}Na condensate in a time- and space-dependent magnetic field with a variational approach. It is shown to be an efficient method to describe the complex dynamics of the system, which may excite the breather mode, the scissor mode, and the dipole mode simultaneously. Our results agree with the experimental observations of Choi et al. (Phys Rev Lett 111:245301, 2013). We reproduce qualitatively the geometric Hall effect and resonance behavior. We also find that the condensate shows a scissor-mode-like motion, which may play the shearing force to deform the condensate and consequently leads to the dynamical nucleation of quantized vortices.

  20. Minimizing the effects of RF inhomogeneity and phase transients allows resolution of two peaks in the (1)H CRAMPS NMR spectrum of adamantane.

    PubMed

    Brouwer, Darren H; Horvath, Matthew

    2015-10-01

    One of the limiting factors to achieving highly resolved (1)H NMR spectra with (1)H homonuclear decoupling sequences is imperfections in the applied radiofrequency (RF) pulses, most notably phase transients and RF inhomogeneity. Through a series of simulations and solid-state NMR experiments, it is demonstrated that the combined effects of phase transients and RF inhomogeneity can be minimized by a combination of (i) restricting the sample to small volume of the rotor, (ii) by employing a super-cycled version of the DUMBO decoupling sequence, and (iii) by carefully adjusting the probe tuning such that the asymmetric component of phase transients is minimized. Under these optimal conditions, it was possible to clearly resolve two signals in the (1)H CRAMPS NMR spectrum of adamantane arising from the CH and CH2 protons in the molecule. It is proposed that adamantane could be a very useful setup sample for (1)H CRAMPS NMR as the two peaks are only resolved when the effects of RF inhomogeneity and phase transients are minimized. PMID:26483329

  1. Direct measurement of the 22Ne(p,γ)23Na reaction cross section at LUNA

    NASA Astrophysics Data System (ADS)

    Ferraro, Federico; LUNA Collaboration

    2016-06-01

    The 22Ne(p, γ)23Na reaction takes part in the NeNa cycle of hydrogen burning, influencing the production of the elements between 20Ne and 27Al in red giant stars, asymptotic giant stars and classical novae. The 22Ne(p,γ)27Na reaction rate is very uncertain because of a large number of tentative resonances in the Gamow window, where only upper limits were quoted in literature. A direct measurement of the 22Ne(p, γ)23Na reaction cross section has been carried out at LUNA using a windowless differential-pumping gas target with two high- purity germanium (HPGe) detectors. A new measurement with a 4π bismuth germanate (BGO) summing detector is ongoing. During the HPGe phase of the experiment the strengths of the resonances at 156.2 keV, 189.5 keV and 259.7 keV have been directly measured for the first time and their contribution to the reaction rate has been calculated. The decay scheme of the newly discovered resonances has been established as well and some improved upper limits on the unobserved resonances have been put. The BGO detector with its 70% γ-detection efficiency allows to measure the cross section at lower energy. In order to further investigate the resonances at 71 keV and 105 keV and the direct-capture component, the data taking is ongoing.

  2. Rotational Spectroscopy on Ultracold 23 Na40 K Ground State Molecules

    NASA Astrophysics Data System (ADS)

    Will, Sebastian; Park, Jee Woo; Yan, Zoe; Loh, Huanqian; Zwierlein, Martin

    2016-05-01

    Ultracold molecules with controllable dipolar long-range interactions will open up new routes for quantum simulation and the creation of novel states of matter. In particular, the molecules' rich internal degrees of freedom allow for versatile control of intermolecular interactions by applying static electric and microwave fields. Starting from an ultracold, spin-polarized ensemble of trapped fermionic 23 Na40 K molecules in the absolute ground state, we perform microwave spectroscopy on the first rotationally excited state for a range of magnetic and electric fields. Extracting the rotational and hyperfine coupling constants, we comprehensively understand the observed spectra. Following the coherent transfer of the entire ensemble of chemically stable 23 Na40 K molecules to the first rotationally excited state, we observe a lifetime of more than 3 sec, comparable to the lifetime in the rovibrational ground state. The collisional stability of excited rotational states opens up intriguing prospects for the control of intermolecular van-der-Waals interactions via electric fields.

  3. Four-dimensional 1H and 23Na imaging using continuously oscillating gradients.

    PubMed

    Star-Lack, J M; Roos, M S; Wong, S T; Schepkin, V D; Budinger, T F

    1997-02-01

    A class of fast magnetic spectroscopic imaging methods using continuously oscillating gradients for four-dimensional (three spatial and one spectral) localization is introduced. Sampling may start immediately following the application of an RF excitation pulse, thus enabling measurement of spin density, chemical shift, and relaxation rates of short-T2 species. For spatial localization, steady-state sinusoidal gradient waveforms are used to sample a ball in k space. The two types of trajectories presented include: (1) continuously oscillating gradients with continuously rotating direction used for steady-state free-precession imaging and (2) continuously oscillating gradients followed by a spoiler directed along discrete projections. Design criteria are given and spatial-spectral and spatial-temporal reconstruction methods are developed. Theoretical point-spread functions and signal-to-noise ratios are derived while considering T2*, off-resonance effects, and RF excitation options. Experimental phantom, in vivo, and in vitro 1H and 23Na images collected at 2.35 T are presented. The 1H images were acquired with isotropic spatial resolution ranging from 0.03 to 0.27 cm3 and gradient-oscillation frequencies ranging from 600 to 700 Hz, thus allowing for the separation of water and lipid signals within a voxel. The 23Na images, acquired with 500 and 800 Hz gradient waveforms and 0.70 cm3 isotropic resolution, were resolved in the time domain, yielding spatially localized FIDs. PMID:9169223

  4. Creating Fermionic Ground State Molecules of 23Na40K with Strong Dipolar Interactions

    NASA Astrophysics Data System (ADS)

    Park, Jee; Wu, Cheng-Hsun; Schloss, Jennifer; Will, Sebastian; Zwierlein, Martin

    2013-05-01

    In our experiment, we work towards creating fermionic ground state molecules of 23Na40K with strong dipolar interactions. These molecules will be chemically stable in the rovibrational ground state, and will carry a large induced dipole moment of 2.72 Debye. Building up on our previous work, we have done photoassociation spectroscopy on the 23Na-40K mixture in order to understand the molecular excited state potentials and identify possible intermediate states for efficient STIRAP transfer of Feshbach molecules down to the absolute rovibrational ground state. In addition, our recent effort in doing two-photon spectroscopy to locate the absolute rovibrational ground state will be presented. Our work paves the way towards creating stable dipolar quantum gases, which will open up new avenues to quantum many-body phases with intriguing properties such as supersolidity and topological phases. This work was supported by the NSF, AFOSR-MURI and -PECASE, ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army Research Office with funding from the DARPA OLE program and the David and Lucille Packard Foundation.

  5. 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Discrimination of intra- and extracellular ions using a shift reagent.

    PubMed Central

    Pike, M M; Frazer, J C; Dedrick, D F; Ingwall, J S; Allen, P D; Springer, C S; Smith, T W

    1985-01-01

    High-resolution 23Na and 39K nuclear magnetic resonance (NMR) spectra of perfused, beating rat hearts have been obtained in the absence and presence of the downfield shift reagent Dy(TTHA)3- in the perfusing medium. Evidence indicates that Dy(TTHA)3- enters essentially all extracellular spaces but does not enter intracellular spaces. It can thus be used to discriminate the resonances of the ions in these spaces. Experiments supporting this conclusion include interventions that inhibit the Na+/K+ pump such as the inclusion of ouabain in and the exclusion of K+ from the perfusing medium. In each of these experiments, a peak corresponding to intracellular sodium increased in intensity. In the latter experiment, the increase was reversed when the concentration of K+ in the perfusing medium was returned to normal. When the concentration of Ca2+ in the perfusing medium was also returned to normal, the previously quiescent heart resumed beating. In the beating heart where the Na+/K+ pump was not inhibited, the intensity of the intracellular Na+ resonance was less than 20% of that expected. Although the data are more sparse, the NMR visibility of the intracellular K+ signal appears to be no more than 20%. PMID:4016206

  6. Neutron Elastic and Inelastic Scattering Cross Sections on ^NatFe and ^23Na

    NASA Astrophysics Data System (ADS)

    Kersting, Luke; Lueck, Collin J.; Hicks, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Vanhoy, J. R.

    2010-10-01

    Neutron elastic and inelastic scattering angular distributions from ^NatFe and ^23Na at incident neutron energies of 3.57 and 3.81 MeV have been measured at the University of Kentucky 7 MV Van de Graaff laboratory using neutron time-of-flight techniques. The neutron beam was produced using the ^3H(p,n)He^3reaction. The scattered neutrons were detected at angles between 20 and 150 in 10 intervals with a hexafluorbenzene detector located approximately 3 m from the scattering samples. Neutron scattering differential cross sections were deduced. These cross sections and their uncertainties are important for understanding neutron-induced reactions in fission reactors and are important for fission reactor criticality calculations.

  7. Methyl tunnelling sidebands in the low-field NMR spectrum of 3-pentanone: Driving A-E transitions using rf irradiation.

    PubMed

    Zhang, Bo; Horsewill, Anthony J

    2015-09-01

    Using magnetic field-cycling at cryogenic temperatures, low-field dipole-dipole driven NMR spectra have been recorded on 3-pentanone (CH3CH2C(O)CH2CH3). The spectra are characterised by tunnelling sidebands arising from the quantum dynamics of the methyl (CH3) rotors. From the sideband frequencies, the CH3 tunnelling frequency is determined to be νt=3.05±0.01MHz. The tunnelling sidebands are characterised by A-E transitions in nuclear spin-symmetry, involving simultaneous changes in tunnelling and nuclear spin states. To gain further insight, a theoretical analysis of the spin Hamiltonian matrix has been used to calculate the sideband transition probabilities. These are subsequently used in a thermodynamic model to simulate the low-field NMR spectrum which is compared with experiment. The level-crossings encountered as part of the magnetic field-cycling NMR sequence are found to play an essential role in determining the tunnelling sideband intensities. PMID:26183303

  8. Low-Energy resonances in the 22Ne(p,γ)23Na reaction directly observed at LUNA

    NASA Astrophysics Data System (ADS)

    Depalo, Rosanna; LUNA Collaboration

    2016-04-01

    The neon-sodium cycle of hydrogen burning influences the synthesis of the elements between 20Ne and 27Al in AGB stars and classical novae explosions. The 22Ne(p,γ)23Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. A new direct study of the 22Ne(p,γ)23Na reaction has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) using a windowless gas target and two HPGe detectors. Several resonances have been observed for the first time in a direct experiment.

  9. Cryptate 13C and 23Na nuclear magnetic relaxation as a probe of counterion dynamics in aqueous polyacrylate solutions

    NASA Astrophysics Data System (ADS)

    Van Der Maarel, J. R. C.; Van Duijn, D.; De Bleijser, J.; Leyte, J. C.

    1987-03-01

    In a series of fully alkali neutralized polyacrylate solutions the counterions are included by a macrobicyclic ligand (cryptand) to form a well-defined coordination shell. Vapor pressure experiments show the polyacrylate-cryptate system to behave osmotically as an ordinary polyelectrolyte solution. Cryptate 13C and 23Na relaxation show that the influence of polyions on the counter-ion reorientational mobility is moderate. The main 23Na relaxation mechanism is found to be the fluctuating electric field gradient caused by the surrounding ligand.

  10. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  11. Differential Cross Sections for Neutron Elastic and Inelastic Scattering on 23Na

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L.; Sigillito, A.; Watts, D. W.; Yates, S. W.

    2014-03-01

    Measurements of neutron elastic and inelastic scattering from 23Na have been performed for sixteen incident neutron energies above 1.5 MeV with the 7-MV University of Kentucky Accelerator using the 3H(p,n) reaction as the neutron source. These measurements were complemented by γ-ray excitation functions using the (n,n'γ) reaction. The time-of-flight technique is employed for background reduction in both neutron and γ- ray measurements and for determining the energy of the scattered neutrons. Cross section determinations support fuel cycle and structural materials research and development. Previous reaction model evaluations [1] relied primarily on total cross sections and four (n,n0) and (n,n1) angular distributions in the En = 5 to 9 MeV range. The inclusion of more inelastic channels at lower neutron energies provides additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining direct collective and statistical properties were performed.

  12. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0. PMID:26894323

  13. Long Hyperfine Coherence Time of Ultracold Fermionic 23 Na40 K Molecules

    NASA Astrophysics Data System (ADS)

    Park, Jee Woo; Yan, Zoe; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold molecules created and trapped at sub uK temperatures allow the full control of the molecule's external and internal degrees of freedom down to a single hyperfine state. In particular, an ensemble of molecules all initialized in a single rotational and hyperfine state can be prepared and be coherently addressed using microwave fields. In this talk, we report on the observation of long coherence time between two hyperfine states of fermionic 23 Na40 K molecules in the ro-vibronic ground state (v = 0 , J = 0). A direct two-photon microwave transition via the J = 1 state is used to prepare a superposition of two lowest hyperfine states of J = 0 , and we perform Ramsey spectroscopy as a direct probe of phase coherence between these states. The fermionic nature of the molecules and the lack of electronic angular momentum in the ro-vibronic ground state heavily suppress the decoherence from collisions and external fields, respectively, and we observe long coherence times upto 0.5 sec for this hyperfine superposition state. The observed long coherence time is a crucial step for applications of trapped dipolar molecules in quantum information processing schemes.

  14. J-Modulation in ID NMR 1H Spectrum of Taurine and Aspartate Using Spin-Echo Technique

    NASA Astrophysics Data System (ADS)

    Oturak, Halil; Sağlam, Adnan; Bahçeli, Semiha

    1999-05-01

    This study reports on a theoretical calculation of Hahn's spin-echo experiment in case of a model A2B2 spin system with a strongly coupling character and gives the experimental results of one-dimension 1H high-resolution NMR spectra of taurine and aspartate. The calculated amplitudes of the spin-echoes for two different proton groups of taurine are given. Using results of our calculations for taurine, the computer simulations of J-modulation are implemented. It is shown that the agreement be-tween the experimental and simulated spectra is good.

  15. Enantiotopic discrimination in the deuterium NMR spectrum of solutes with S4 symmetry in chiral liquid crystalsa)

    NASA Astrophysics Data System (ADS)

    Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev; Lesot, Philippe

    2011-04-01

    Enantiotopic discrimination in the NMR spectra of prochiral rigid solutes in chiral liquid crystals (CLC), by the ordering mechanism, is limited to molecules possessing one of the four, so called, "allowed" symmetries, D2d, C2v, Cs, and S4. So far, such spectral discrimination was demonstrated only for solutes possessing one of the first three symmetries. In this work, we present deuterium NMR measurements on a rigid S4 compound dissolved in a chiral nematic solvent and demonstrate, for the first time, enantiotopic discrimination in such symmetry. The measurements were performed on the isotopically normal icosane derivative (1) and on its isotopomer (1-d8), specifically deuterated in its four core methylene groups. As a CLC solvent, a lyotropic mesophase, consisting of a solution of poly-γ-benzyl-L-glutamate (PBLG) in pyridine, was employed. For comparison with a corresponding achiral liquid crystal (ALC) solvent, a solution of a racemic mixture of poly-γ-benzylglutamate (PBG) of similar composition in the same co-solvent was used. The spectra were recorded at 92.1 MHz using the 2D Q-COSY Fz sequence with proton decoupling. In the CLC solvents they exhibited clear discrimination due to different enantiotopic sites, with components displaced symmetrically, at frequencies below and above those in the corresponding ALC, as expected for discrimination by ordering. Two procedures were employed for correlating the enantiotopic sites in the CLC spectra. For 1-d8 the dipolar cross-peaks in a 2D 2H-2H COSY-90 experiment provided identification of signals belonging to the same methylene (and hence the same enantiotopic) groups. For 1 the correlation was achieved using a least-square-deviation fitting of the experimental quadrupole splittings with respect to those expected from the molecular geometry. These results, with appropriate symmetry considerations were used to determine the symmetric (Szz) and antisymmetric (Sxy and Sxx-Syy) components of the Saupe ordering matrix

  16. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  17. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  18. Exploring the {sup 22}Ne(p,γ){sup 23}Na reaction at LUNA and at HZDR

    SciTech Connect

    Cavanna, Francesca; Collaboration: LUNA Collaboration

    2014-05-09

    The {sup 22}Ne(p,γ){sup 23}Na reaction is involved in the hydrogen burning NeNa cycle. This determines the nucleosynthesis of the Ne and Na isotopes in the Red Giant Branch and Asymptotic Giant Branch phases of stellar evolution. In the energy range relevant for astrophysics (20 keV < E < 600 keV), the {sup 22}Ne(p,γ){sup 23}Na reaction rate is highly uncertain because of the contribution of a large number of resonances never measured directly. A related study is under preparation at the Laboratory for Underground Nuclear Astrophysics (LUNA), in the Gran Sasso National Laboratory, and it will cover the energy range 100 keV < E < 400 keV. Meanwhile, a measurement at higher energies (i.e. 436 keV) has been carried out at the Tandetron accelerator of the HZDR (Helmholtz Zentrum Dresden Rossendorf) in Germany. Some preliminary results will be presented.

  19. Discrimination of intra- and extracellular 23Na + signals in yeast cell suspensions using longitudinal magnetic resonance relaxography

    NASA Astrophysics Data System (ADS)

    Zhang, Yajie; Poirer-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2010-07-01

    This study tested the ability of MR relaxography (MRR) to discriminate intra- (Nai+) and extracellular (Nae+)23Na + signals using their longitudinal relaxation time constant ( T1) values. Na +-loaded yeast cell ( Saccharomyces cerevisiae) suspensions were investigated. Two types of compartmental 23Na +T1 differences were examined: a selective Nae+T1 decrease induced by an extracellular relaxation reagent (RR e), GdDOTP 5-; and, an intrinsic T1 difference. Parallel studies using the established method of 23Na MRS with an extracellular shift reagent (SR e), TmDOTP 5-, were used to validate the MRR measurements. With 12.8 mM RR e, the 23Nae+T1 was 2.4 ms and the 23Nai+T1 was 9.5 ms (9.4T, 24 °C). The Na + amounts and spontaneous efflux rate constants were found to be identical within experimental error whether measured by MRR/RR e or by MRS/SR e. Without RR e, the Na +-loaded yeast cell suspension 23Na MR signal exhibited two T1 values, 9.1 (±0.3) ms and 32.7 (±2.3) ms, assigned to 23Nai+ and 23Nae+, respectively. The Nai+ content measured was lower, 0.88 (±0.06); while Nae+ was higher, 1.43 (±0.12) compared with MRS/SR e measures on the same samples. However, the measured efflux rate constant was identical. T1 MRR potentially may be used for Nai+ determination in vivo and Na + flux measurements; with RR e for animal studies and without RR e for humans.

  20. EASY-GOING deconvolution: Automated MQMAS NMR spectrum analysis based on a model with analytical crystallite excitation efficiencies

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; van Meerten, Bas; Verkuijlen, Margriet H. W.; van Eck, Ernst R. H.; Leo Meerts, W.; Kentgens, Arno P. M.

    2013-03-01

    The EASY-GOING deconvolution (EGdeconv) program is extended to enable fast and automated fitting of multiple quantum magic angle spinning (MQMAS) spectra guided by evolutionary algorithms. We implemented an analytical crystallite excitation model for spectrum simulation. Currently these efficiencies are limited to two-pulse and z-filtered 3QMAS spectra of spin 3/2 and 5/2 nuclei, whereas for higher spin-quantum numbers ideal excitation is assumed. The analytical expressions are explained in full to avoid ambiguity and facilitate others to use them. The EGdeconv program can fit interaction parameter distributions. It currently includes a Gaussian distribution for the chemical shift and an (extended) Czjzek distribution for the quadrupolar interaction. We provide three case studies to illustrate EGdeconv's capabilities for fitting MQMAS spectra. The EGdeconv program is available as is on our website http://egdeconv.science.ru.nl for 64-bit Linux operating systems.

  1. 23Na Magnetic Resonance Imaging of the Lower Leg of Acute Heart Failure Patients during Diuretic Treatment

    PubMed Central

    Hammon, Matthias; Grossmann, Susan; Linz, Peter; Kopp, Christoph; Dahlmann, Anke; Garlichs, Christoph; Janka, Rolf; Cavallaro, Alexander; Luft, Friedrich C.; Uder, Michael; Titze, Jens

    2015-01-01

    Objective Na+ can be stored in muscle and skin without commensurate water accumulation. The aim of this study was to assess Na+ and H2O in muscle and skin with MRI in acute heart failure patients before and after diuretic treatment and in a healthy cohort. Methods Nine patients (mean age 78 years; range 58–87) and nine age and gender-matched controls were studied. They underwent 23Na/1H-MRI at the calf with a custom-made knee coil. Patients were studied before and after diuretic therapy. 23Na-MRI gray-scale measurements of Na+-phantoms served to quantify Na+-concentrations. A fat-suppressed inversion recovery sequence was used to quantify H2O content. Results Plasma Na+-levels did not change during therapy. Mean Na+-concentrations in muscle and skin decreased after furosemide therapy (before therapy: 30.7±6.4 and 43.5±14.5 mmol/L; after therapy: 24.2±6.1 and 32.2±12.0 mmol/L; p˂0.05 and p˂0.01). Water content measurements did not differ significantly before and after furosemide therapy in muscle (p = 0.17) and only tended to be reduced in skin (p = 0.06). Na+-concentrations in calf muscle and skin of patients before and after diuretic therapy were significantly higher than in healthy subjects (18.3±2.5 and 21.1±2.3 mmol/L). Conclusions 23Na-MRI shows accumulation of Na+ in muscle and skin in patients with acute heart failure. Diuretic treatment can mobilize this Na+-deposition; however, contrary to expectations, water and Na+-mobilization are poorly correlated. PMID:26501774

  2. A double species 23Na and 87Rb Bose-Einstein condensate with tunable miscibility via an interspecies Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Wang, Fudong; Li, Xiaoke; Xiong, Dezhi; Wang, Dajun

    2016-01-01

    We have realized a dual-species Bose-Einstein condensate (BEC) of 23Na and 87Rb atoms and observed its immiscibility. Because of the favorable background intra- and inter-species scattering lengths, stable condensates can be obtained via efficient evaporative cooling and sympathetic cooling without the need for fine tuning of the interactions. Our system thus provides a clean platform for studying inter-species interactions-driven effects in superfluid mixtures. With a Feshbach resonance, we have successfully created double BECs with largely tunable inter-species interactions and studied the miscible-immiscible phase transition.

  3. A double-tuned 1H/23Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Tabbert, Martin; Junge, Sven; Gallagher, Lindsay; Mhairi Macrae, I.; Fagan, Andrew J.

    2010-12-01

    A method for quantifying the tissue sodium concentration (TSC) in the rat brain from 23Na-MR images was developed. TSC is known to change in a variety of common human diseases and holds considerable potential to contribute to their study; however, its accurate measurement in small laboratory animals has been hindered by the extremely low signal to noise ratio (SNR) in 23Na images. To address this, the design, construction and characterization of a double-tuned 1H/23Na dual resonator system for 1H-guided quantitative 23Na-MRI are described. This system comprises an SNR-optimized surface detector coil for 23Na image acquisition, and a volume resonator producing a highly homogeneous B1 field (<5% inhomogeneity) for the Na channel across the rat head. The resonators incorporated channel-independent balanced matching and tuning capabilities with active decoupling circuitry at the 23Na resonance frequency. A quantification accuracy of TSC of <10 mM was achieved in Na-images with 1.2 µl voxel resolution acquired in 10 min. The potential of the quantification technique was demonstrated in an in vivo experiment of a rat model of cerebral stroke, where the evolution of the TSC was successfully monitored for 8 h after the stroke was induced.

  4. Measurement of 23Na(α,p)26Mg at Energies Relevant to 26Al Production in Massive Stars.

    PubMed

    Tomlinson, J R; Fallis, J; Laird, A M; Fox, S P; Akers, C; Alcorta, M; Bentley, M A; Christian, G; Davids, B; Davinson, T; Fulton, B R; Galinski, N; Rojas, A; Ruiz, C; de Séréville, N; Shen, M; Shotter, A C

    2015-07-31

    26Al is an important radioisotope in astrophysics that provides evidence of ongoing nucleosynthesis in the Galaxy. The 23Na(α, p)26Mg reaction has been identified by a sensitivity study as being one of the most important reactions for the production of 26Al in the convective C/Ne burning shell of massive stars. Owing to large uncertainties in previous experimental data, model calculations are used for the reaction rate of 23Na(α, p)26Mg in this sensitivity study. Current experimental data suggest a reaction rate a factor of ∼40 higher than model calculations. However, a new measurement of this reaction cross section has been made in inverse kinematics in the energy range E(c.m.)=1.28-3.15  MeV at TRIUMF, and found to be in reasonable agreement with the model calculation. A new reaction rate is calculated and tight constraints on the uncertainty in the production of 26Al, due to this reaction, are determined. PMID:26274415

  5. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  6. The quantitative spectrum of inositol phosphate metabolites in avian erythrocytes, analysed by proton n.m.r. and h.p.l.c. with direct isomer detection.

    PubMed Central

    Radenberg, T; Scholz, P; Bergmann, G; Mayr, G W

    1989-01-01

    The spectrum of inositol phosphate isomers present in avian erythrocytes was investigated in qualitative and quantitative terms. Inositol phosphates were isolated in micromolar quantities from turkey blood by anion-exchange chromatography on Q-Sepharose and subjected to proton n.m.r. and h.p.l.c. analysis. We employed a h.p.l.c. technique with a novel, recently described complexometric post-column detection system, called 'metal-dye detection' [Mayr (1988) Biochem. J. 254, 585-591], which enabled us to identify non-radioactively labelled inositol phosphate isomers and to determine their masses. The results indicate that avian erythrocytes contain the same inositol phosphate isomers as mammalian cells. Denoted by the 'lowest-locant rule' [NC-IUB Recommendations (1988) Biochem. J. 258, 1-2] irrespective of true enantiomerism, these are Ins(1,4)P2, Ins(1,6)P2, Ins(1,3,4)P3, Ins(1,4,5)P3, Ins(1,3,4,5)P4, Ins(1,3,4,6)P4, Ins(1,4,5,6)P4, Ins(1,3,4,5,6)P5, and InsP6. Furthermore, we identified two inositol trisphosphate isomers hitherto not described for mammalian cells, namely Ins(1,5,6)P3 and Ins(2,4,5)P3. The possible position of these two isomers in inositol phosphate metabolism and implications resulting from absolute abundances of inositol phosphates are discussed. PMID:2604720

  7. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain

    NASA Astrophysics Data System (ADS)

    Alecci, M.; Romanzetti, S.; Kaffanke, J.; Celik, A.; Wegener, H. P.; Shah, N. J.

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides 1H and 23Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the 1H frequency and a smaller co-planar loop tuned to the 23Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned 23Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the 23Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent 1H and 23Na rat brain images showing good SNR ( 23Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ( 23Na: 1.25 × 1.25 × 5 mm 3) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  8. Computational prediction and analysis of the (27)Al solid-state NMR spectrum of methylaluminoxane (MAO) at variable temperatures and field strengths.

    PubMed

    Falls, Zackary; Zurek, Eva; Autschbach, Jochen

    2016-09-14

    Calculations of NMR shielding tensors and nuclear quadrupole coupling (NQC) tensors at the Kohn-Sham density functional level are used to simulate (27)Al magic-angle spinning (MAS) NMR spectra of the important olefin polymerization co-catalyst methylaluminoxane (MAO) at 77, 298, 398, and 498 K and spectrometer magnetic field inductions B ranging from 14.1 to 23.5 T. The calculations utilize the temperature (T) dependent distribution of species present in MAO determined recently by Zurek and coworkers from first-principles theory [Macromolecules, 2014, 47, 8556]. The NMR calculations suggest that variable-T and variable-B NMR measurements are able to quantify the ratio of free versus bound trimethyl-aluminum (TMA) in MAO via characteristic spectral features assigned to 3-coordinate and 4-coordinate Al sites in MAO as well as spectral features arising from free TMA or its dimer. The T-dependent distribution of species causes other characteristic features in the NMR spectra to appear/disappear that can be associated with different aluminum environments such as square vs. hexagonal faces in cage and tubular structures. The simulated spectra at 298 K and 19.6 T are in reasonably good agreement with the experimental solid-state NMR (SSNMR) spectra obtained previously for MAO gel. The promise and limitations of solid-state NMR to unravel the enigma surrounding the structure(s) of MAO are discussed. PMID:27526292

  9. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  10. Fast production of large {sup 23}Na Bose-Einstein condensates in an optically plugged magnetic quadrupole trap

    SciTech Connect

    Heo, Myoung-Sun; Choi, Jae-yoon; Shin, Yong-il

    2011-01-15

    We demonstrate a fast production of large {sup 23}Na Bose-Einstein condensates in an optically plugged magnetic quadrupole trap. A single global minimum of the trapping potential is generated by slightly displacing the plug beam from the center of the quadrupole field. With a dark magneto-optical trap and a simple rf evaporation, our system produces a condensate with N{approx_equal}10{sup 7} atoms every 17 s. The Majorana loss rates and the resultant heating rates for various temperatures are measured with and without plugging. The average energy of a spin-flipped atom is almost linearly proportional to temperature and determined to be about 60% of the average energy of a trapped atom. We present a numerical study of the evaporation dynamics in a plugged linear trap.

  11. Neutron scattering differential cross sections for 23Na from 1.5 to 4.5 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Hicks, S. F.; Chakraborty, A.; Champine, B. R.; Combs, B. M.; Crider, B. P.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; Liu, S. H.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Sidwell, L. C.; Sigillito, A. J.; Watts, D. W.; Yates, S. W.

    2015-07-01

    Measurements of neutron elastic and inelastic scattering cross sections from 23Na have been performed for sixteen incident neutron energies between 1.5 and 4.5 MeV. These measurements were complemented by γ-ray excitation functions using the (n ,n‧ γ) reaction to include excited levels not resolved in the neutron detection measurements. The time-of-flight (TOF) technique was employed for background reduction in both neutron and γ-ray measurements and for energy determination in neutron detection measurements. Previous reaction model evaluations relied primarily on neutron total cross sections and four (n, n0) and (n, n1) angular distributions in the 5 to 9 MeV range. The inclusion of more inelastic channels and measurements at lower incident neutron energies provide additional information on direct couplings between elastic and inelastic scattering as a function of angular momentum transfer. Reaction model calculations examining collective direct-coupling and compound absorption components were performed.

  12. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  13. Direct measurement of the (23)Na(α,p)(26)Mg reaction cross section at energies relevant for the production of galactic (26)Al.

    PubMed

    Almaraz-Calderon, S; Bertone, P F; Alcorta, M; Albers, M; Deibel, C M; Hoffman, C R; Jiang, C L; Marley, S T; Rehm, K E; Ugalde, C

    2014-04-18

    The 1809-keV γ ray from the decay of (26)Al(g) is an important target for γ-ray astronomy. In the convective C/Ne burning shell of massive presupernova stars, the (23)Na(α,p)(26)Mg reaction directly influences the production of (26)Al. We have performed a direct measurement of the (23)Na(α,p)(26)Mg reaction cross section at the appropriate astrophysically important energies. The stellar rate calculated in the present work is larger than the recommended rate by nearly a factor of 40 and could strongly affect the production of (26)Al in massive stars. PMID:24785033

  14. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  15. Short-T2 Imaging for Quantifying Concentration of Sodium (23Na) of Bi-Exponential T2 Relaxation

    PubMed Central

    Qian, Yongxian; Panigrahy, Ashok; Laymon, Charles M.; Lee, Vincent K.; Drappatz, Jan; Lieberman, Frank S.; Boada, Fernando E.; Mountz, James M.

    2014-01-01

    Purpose This work intends to demonstrate a new method for quantifying concentration of sodium (23Na) of bi-exponential T2 relaxation in patients on MRI scanners at 3.0 Tesla. Theory Two single-quantum (SQ) sodium images acquired at very-short and short echo times (TE=0.5 and 5.0ms) are subtracted to produce an image of the short-T2 component of the bi-exponential (or bound) sodium. An integrated calibration on the SQ and short-T2 images quantifies both total and bound sodium concentrations. Methods Numerical models were used to evaluate signal response of the proposed method to the short-T2 components. MRI scans on agar phantoms and brain tumor patients were performed to assess accuracy and performance of the proposed method, in comparison with a conventional method of triple-quantum filtering. Results A good linear relation (R2=0.98) was attained between the short-T2 image intensity and concentration of bound sodium. A reduced total scan time of 22min was achieved under the SAR restriction for human studies in quantifying both total and bound sodium concentrations. Conclusion The proposed method is feasible for quantifying bound sodium concentration in routine clinical settings at 3.0 Tesla. PMID:25078966

  16. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  17. Spatial Mapping of Flow-Induced Molecular Alignment in a Noncrystalline Biopolymer Fluid Using Double Quantum Filtered (DQF) (23)Na MRI.

    PubMed

    Pavlovskaya, Galina E; Meersmann, Thomas

    2014-08-01

    Flow-induced molecular alignment was observed experimentally in a non-liquid-crystalline bioplymeric fluid during developed tubular flow. The fluid was comprised of rigid rods of the polysaccharide xanthan and exhibited shear-thinning behavior. Without a requirement for optical transparency or the need for an added tracer, (23)Na magic angle (MA) double quantum filtered (DQF) magnetic resonance imaging (MRI) enabled the mapping of the anisotropic molecular arrangement under flow conditions. A regional net molecular alignment was found in areas of high shear values in the vicinity of the tube wall. Furthermore, the xanthan molecules resumed random orientations after the cessation of flow. The observed flow-induced molecular alignment was correlated with the rheological properties of the fluid. The work demonstrates the ability of (23)Na MA DQF magnetic resonance to provide a valuable molecular-mechanical link. PMID:26277955

  18. Experimental determination of the {sup 26}Al(n,{alpha}){sup 23}Na reaction cross section and calculation of the Maxwellian averaged cross section at stellar temperatures

    SciTech Connect

    Smet, L. de; Wagemans, C.; Wagemans, J.; Heyse, J.; Gils, J. van

    2007-10-15

    The {sup 26}Al(n,{alpha}){sup 23}Na reaction cross section has been studied at the linear accelerator GELINA of the Institute for Reference Materials and Measurements in Geel, Belgium, and has been determined up to a neutron energy of about 100 keV using the time-of-flight technique. Six resonances could be observed in this energy region, whereas before only one had been identified experimentally. For four of them, resonance parameters such as resonance energy, total width, area, and spin of the state could be determined. From the obtained {sup 26}Al(n,{alpha}){sup 23}Na cross section data, Maxwellian averaged cross section (MACS) values were calculated by numerical integration. Since neutron induced reactions are among the major destruction mechanisms of {sup 26}Al in our Galaxy, these new MACS values contribute to a better understanding of the observed {sup 26}Al abundance.

  19. The 12C(12C,α)20Ne and 12C(12C,p)23Na reactions at the Gamow peak via the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Guardo, L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-05-01

    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  20. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na Between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Chakraborty, A.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Hicks, S. F.; Kersting, L. J.; Luke, C. J.; McDonough, P. J.; Sigillito, A. J.; Vanhoy, J. R.

    2013-03-01

    Elastic and inelastic neutron scattering angular distributions have been measured from 23Na for incident neutron energies between 2 and 4 MeV at the University of Kentucky using neutron time-of-flight techniques. The cross sections obtained are important for applications in nuclear reactor development and other areas, and they are an energy region in which existing data are very sparse. Absolute cross sections were obtained by normalizing Na angular distributions to the well-known np cross sections.

  1. Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds.

    PubMed

    Deblonde, Gauthier J-P; Coelho-Diogo, Cristina; Chagnes, Alexandre; Cote, Gérard; Smith, Mark E; Hanna, John V; Iuga, Dinu; Bonhomme, Christian

    2016-06-20

    This work determines the potential of solid-state NMR techniques to probe proton, alkali, and niobium environments in Lindqvist salts. Na7HNb6O19·15H2O (1), K8Nb6O19·16H2O (2), and Na8Ta6O19·24.5H2O (3) have been studied by solid-state static and magic angle spinning (MAS) NMR at high and ultrahigh magnetic field (16.4 and 19.9 T). (1)H MAS NMR was found to be a convenient and straightforward tool to discriminate between protonated and nonprotonated clusters AxH8-xM6O19·nH2O (A = alkali ion; M = Nb, Ta). (93)Nb MAS NMR studies at different fields and MAS rotation frequencies have been performed on 1. For the first time, the contributions of NbO5Oμ2H sites were clearly distinguished from those assigned to NbO6 sites in the hexaniobate cluster. The strong broadening of the resonances obtained under MAS was interpreted by combining chemical shift anisotropy (CSA) with quadrupolar effects and by using extensive fitting of the line shapes. In order to obtain the highest accuracy for all NMR parameters (CSA and quadrupolar), (93)Nb WURST QCPMG spectra in the static mode were recorded at 16.4 T for sample 1. The (93)Nb NMR spectra were interpreted in connection with the XRD data available in the literature (i.e., fractional occupancies of the NbO5Oμ2H sites). 1D (23)Na MAS and 2D (23)Na 3QMAS NMR studies of 1 revealed several distinct sodium sites. The multiplicity of the sites was again compared to structural details previously obtained by single-crystal X-ray diffraction (XRD) studies. The (23)Na MAS NMR study of 3 confirmed the presence of a much larger distribution of sodium sites in accordance with the 10 sodium sites predicted by XRD. Finally, the effect of Nb/Ta substitutions in 1 was also probed by multinuclear MAS NMR ((1)H, (23)Na, and (93)Nb). PMID:27245403

  2. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7.

    PubMed

    Smith, A L; Raison, P E; Martel, L; Charpentier, T; Farnan, I; Prieur, D; Hennig, C; Scheinost, A C; Konings, R J M; Cheetham, A K

    2014-01-01

    The valence state of uranium has been confirmed for the three sodium uranates NaU(V)O3/[Rn](5f(1)), Na4U(VI)O5/[Rn](5f(0)), and Na2U(VI)2O7/[Rn](5f(0)), using X-ray absorption near-edge structure (XANES) spectroscopy. Solid-state (23)Na magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been performed for the first time, yielding chemical shifts at -29.1 (NaUO3), 15.1 (Na4UO5), and -14.1 and -19 ppm (Na1 8-fold coordinated and Na2 7-fold coordinated in Na2U2O7), respectively. The [Rn]5f(1) electronic structure of uranium in NaUO3 causes a paramagnetic shift in comparison to Na4UO5 and Na2U2O7, where the electronic structure is [Rn]5f(0). A (23)Na multi quantum magic angle spinning (MQMAS) study on Na2U2O7 has confirmed a monoclinic rather than rhombohedral structure with evidence for two distinct Na sites. DFT calculations of the NMR parameters on the nonmagnetic compounds Na4UO5 and Na2U2O7 have permitted the differentiation between the two Na sites of the Na2U2O7 structure. The linear thermal expansion coefficients of all three compounds have been determined using high-temperature X-ray diffraction: αa = 22.7 × 10(-6) K(-1), αb = 12.9 × 10(-6) K(-1), αc = 16.2 × 10(-6) K(-1), and αvol = 52.8 × 10(-6) K(-1) for NaUO3 in the range 298-1273 K; αa = 37.1 × 10(-6) K(-1), αc = 6.2 × 10(-6) K(-1), and αvol = 81.8 × 10(-6) K(-1) for Na4UO5 in the range 298-1073 K; αa = 6.7 × 10(-6) K(-1), αb = 14.4 × 10(-6) K(-1), αc = 26.8 × 10(-6) K(-1), αβ = -7.8 × 10(-6) K(-1), and αvol = -217.6 × 10(-6) K(-1) for Na2U2O7 in the range 298-573 K. The α to β phase transition reported for the last compound above about 600 K was not observed in the present studies, either by high-temperature X-ray diffraction or by differential scanning calorimetry. PMID:24350659

  3. Status of the direct measurements of 18O(p,γ)19F and 23Na(p,γ)24Mg cross sections at astrophysical energies at LUNA

    NASA Astrophysics Data System (ADS)

    Boeltzig, A.; Pantaleo, F. R.; Best, A.; Imbriani, G.; Junker, M.

    2016-04-01

    18O(p, γ)19F and 23Na(p,γ)24Mg are reactions of astrophysical interest for example in AGB star scenarios. The rates of both reactions are potentially influenced by low-energy resonances for whose strengths either exist only values with large uncertainties, upper limits or even contradictory claims. Measurements at the Laboratory for Underground Nuclear Astrophysics (LUNA) aim at a direct observation of these low-energy resonances, and additional cross section measurements to aid a more precise determination of the reaction rates in astrophysical scenarios. We report the experimental setup and the status of the ongoing measurements of the two reactions at LUNA.

  4. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  5. Atomic masses of {sup 6}Li,{sup 23}Na,{sup 39,41}K,{sup 85,87}Rb, and {sup 133}Cs

    SciTech Connect

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.

    2010-10-15

    The atomic masses of the alkali-metal isotopes {sup 6}Li,{sup 23}Na,{sup 39,41}K,{sup 85,87}Rb, and {sup 133}Cs have been obtained from measurements of cyclotron frequency ratios of pairs of ions simultaneously trapped in a Penning trap. The results, with one standard deviation uncertainty, are: M({sup 6}Li)=6.015 122 887 4(16)u,M({sup 23}Na)=22.989769 282 8(26)u,M({sup 39}K)=38.963 706 485 6(52)u,M({sup 41}K)=40.961 825 257 4(48)u,M({sup 85}Rb)=84.911 789739(9)u,M({sup 87}Rb)=86.909 180 535(10)u, and M({sup 133}Cs)=132.905 451 963(13)u. Our mass of {sup 6}Li yields an improved neutron separation energy for {sup 7}Li of 7251.1014(45) keV.

  6. Strengths of the resonances at 436, 479, 639, 661, and 1279 keV in the 22Ne(p ,γ ) 23Na reaction

    NASA Astrophysics Data System (ADS)

    Depalo, Rosanna; Cavanna, Francesca; Ferraro, Federico; Slemer, Alessandra; Al-Abdullah, Tariq; Akhmadaliev, Shavkat; Anders, Michael; Bemmerer, Daniel; Elekes, Zoltán; Mattei, Giovanni; Reinicke, Stefan; Schmidt, Konrad; Scian, Carlo; Wagner, Louis

    2015-10-01

    The 22Ne(p ,γ )23Na reaction is included in the neon-sodium cycle of hydrogen burning. A number of narrow resonances in the Gamow window dominate the thermonuclear reaction rate. Several resonance strengths are only poorly known. As a result, the 22Ne(p ,γ )23Na thermonuclear reaction rate is the most uncertain rate of the cycle. Here, a new experimental study of the strengths of the resonances at 436, 479, 639, 661, and 1279 keV proton beam energy is reported. The data have been obtained using a tantalum target implanted with 22Ne. The strengths ω γ of the resonances at 436, 639, and 661 keV have been determined with a relative approach, using the 479- and 1279-keV resonances for normalization. Subsequently, the ratio of resonance strengths of the 479- and 1279-keV resonances were determined, improving the precision of these two standards. The new data are consistent with, but more precise than, the literature with the exception of the resonance at 661 keV, which is found to be less intense by one order of magnitude. In addition, improved branching ratios have been determined for the gamma decay of the resonances at 436, 479, and 639 keV.

  7. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  8. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  9. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket.

    PubMed

    Martineau, L; Craescu, C T

    1993-06-01

    We constructed an artificial holoprotein as a complex between alpha globin from human adult hemoglobin and the protoporphyrin IX-Zn(II). The prosthetic group is bound in a single conformation to the apoglobin via a coordinative bond between Zn(II) ion and the proximal histidine (His87). The complex is diamagnetic and does not bind either CO nor O2 thus representing a diamagnetic model of deoxygenated alpha chains. In the present paper we report extensive resonance assignment in the proton nuclear magnetic resonance spectrum of the Zn-substituted alpha chains in phosphate buffer pH 5.6. A large number of aromatic and aliphatic side chain spin systems were identified in the two-dimensional homonuclear COSY spectra. Based on the assigned resonances of heme substituent protons and their NOE cross-peaks, we assigned the majority of resonances representing the heme pocket side chains. Using the main-chain-directed assignment strategy, we could establish several continuous patterns of sequential assignment and identify partial or total spin systems for a large number of side chains. The final assignment corresponds to 73% of the amino acids. Analysis of chemical shift of assigned resonances and of nuclear Overhauser enhancement connectivities provides structural information on the global and local tertiary conformation in solution and on the ligand-induced conformational changes. Comparison of observed and calculated ring current shifts enabled us to compare the solution structure with the X-ray crystal structure of alpha subunits in deoxy and carbonmonoxy hemoglobin. The global tertiary structure of unliganded chains is highly similar to both ligand and unliganded counterparts in the crystalline state. On the distal side of the heme pocket. Val62 is significantly closer to the heme center, in agreement with its conformation in the crystallographic structure. In contrast, the position of the proximal histidine (His87) relative to the heme is clearly more closely related

  10. Arterial metabolism as studied in vitro by NMR: preliminary results in normotensive and hypertensive aortas.

    PubMed

    Carlier, P G; Grandjean, J; Michel, P; D'Orio, V; Rorive, G L

    1985-12-01

    Arterial tissue has been analysed by 31P-, 13C-, 23Na- and 1H-NMR spectroscopy. Rabbit thoracic aortas were mounted on a system with perfusate circulation and studied in basal conditions. Phosphorus spectra remained stable for hours and showed low levels of phosphocreatine (PCr) compared to skeletal, cardiac or even to nonvascular smooth muscle. Significant levels of sugar-phosphates (SP), phosphodiesters (PDE) were detected, as well as occasionnally a peak in the diphosphodiester region. Experiments with phosphate-free perfusate demonstrated a very low level of intracellular inorganic phosphate. As expected from previous data, free ADP levels in tonic arterial tissue were found much higher than in any other muscle. Addition of norepinephrine into the perfusate induced transient decrease in ATP and PCr levels, associated with an increased production of phosphorylated intermediates. At the early stage of renovascular hypertension, aortic energetic pattern was characterized by an increased ADP/ATP ratio. Natural abundant 13C spectra were recorded from dog aortic fragments and showed mainly resonances attributed to fatty components. After addition of a shift-reagent, dysprosium tripolyphosphate, 23Na-NMR allowed separation of intra- and extracellular Na of perfused rabbits aortas. Proton NMR of lyophilized aortic fragments revealed several peaks originating from biologically relevant molecules, lactate, creatine, taurine... These preliminary data demonstrate the feasability of multinuclear NMR spectroscopy of vascular tissue and are suggestive of the potential of the method when it will be combined with monitoring of functional parameters. PMID:2424380

  11. Measurement of the Absolute Elastic and Inelastic Differential Neutron Cross Sections for 23Na between 2 and 4 MeV

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; McEllistrem, M. T.; Crider, B. P.; Peters, E. E.; Prados-Estevez, F. M.; Chakraborty, A.; Yates, S. W.; Sigillito, A.; McDonough, P. J.; Kersting, L. J.; Luke, C. J.; Hicks, S. F.; Vanhoy, J. R.

    2011-10-01

    Elastic and inelastic neutron scattering angular distributions for 23Na sample were measured at the University of Kentucky using the time-of-flight (ToF) technique, between 2 and 4 MeV incident neutron energies.Normalization of yields into scattering cross sections was accomplished by comparison of Na yields to the yields obtained from hydrogen in polyethylene samples via the well-known n-p scattering cross sections.The 3H(p,n) differential cross sections are used to determine the energy-dependent efficiency of the main detector. Because the efficiency of this detector appears as a ratio in the comparison of scattered yields from different samples, the absolute values of the 3H(p,n) cross sections are not critical, but their energy dependence is. This work is supported by the U.S. DOE contract no. DE-AC07-051D14517.

  12. Theoretical evaluation of the reaction rates for {sup 26}Al(n,p){sup 26}Mg and {sup 26}Al(n,{alpha}){sup 23}Na

    SciTech Connect

    Oginni, B. M.; Iliadis, C.; Champagne, A. E.

    2011-02-15

    The reactions that destroy {sup 26}Al in massive stars have significance in a number of astrophysical contexts. We evaluate the reaction rates of {sup 26}Al(n,p){sup 26}Mg and {sup 26}Al(n,{alpha}){sup 23}Na using cross sections obtained from the codes empire and talys. These have been compared to the published rates obtained from the non-smoker code and to some experimental data. We show that the results obtained from empire and talys are comparable to those from non-smoker. We also show how the theoretical results vary with respect to changes in the input parameters. Finally, we present recommended rates for these reactions using the available experimental data and our new theoretical results.

  13. A Guided Inquiry Approach to NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Parmentier, Laura E.; Lisensky, George C.; Spencer, Brock

    1998-04-01

    We present a novel way to introduce NMR spectroscopy into the general chemistry curriculum as part of a week-long aspirin project in our one-semester introductory course. Aspirin is synthesized by reacting salicylic acid and acetic anhydride. Purity is determined by titration and IR and NMR spectroscopy. Students compare IR and NMR spectra of their aspirin product to a series of reference spectra obtained by the class. Students are able to interpret the IR spectra of their aspirin using IR data from previous experiments. NMR is introduced by having students collect 1H NMR spectra of a series of reference compounds chosen to include some of the structural features of aspirin and compare spectra and structures of the reference compounds to develop a correlation chart for chemical shifts. This process is done in small groups using shared class data and is guided by a series of questions designed to relate the different kinds of hydrogen atoms to number and position of peaks in the NMR spectrum. Students then identify the peaks in the NMR spectrum of their aspirin product and relate percent purity by titration with spectral results and percent yield. This is an enjoyable project that combines the synthesis of a familiar material with a guided inquiry-based introduction to NMR spectroscopy.

  14. Magic-angle spinning solid-state multinuclear NMR on low-field instrumentation

    NASA Astrophysics Data System (ADS)

    Sørensen, Morten K.; Bakharev, Oleg; Jensen, Ole; Jakobsen, Hans J.; Skibsted, Jørgen; Nielsen, Niels Chr.

    2014-01-01

    Mobile and cost-effective NMR spectroscopy exploiting low-field permanent magnets is a field of tremendous development with obvious applications for arrayed large scale analysis, field work, and industrial screening. So far such demonstrations have concentrated on relaxation measurements and lately high-resolution liquid-state NMR applications. With high-resolution solid-state NMR spectroscopy being increasingly important in a broad variety of applications, we here introduce low-field magic-angle spinning (MAS) solid-state multinuclear NMR based on a commercial ACT 0.45 T 62 mm bore Halbach magnet along with a homebuilt FPGA digital NMR console, amplifiers, and a modified standard 45 mm wide MAS probe for 7 mm rotors. To illustrate the performance of the instrument and address cases where the low magnetic field may offer complementarity to high-field NMR experiments, we demonstrate applications for 23Na MAS NMR with enhanced second-order quadrupolar coupling effects and 31P MAS NMR where reduced influence from chemical shift anisotropy at low field may facilitate determination of heteronuclear dipole-dipole couplings.

  15. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  16. NMR quadrupolar system described as Bose-Einstein-condensate-like system

    SciTech Connect

    Auccaise, R.; Oliveira, I. S.; Sarthour, R. S.; Teles, J.; Bonagamba, T. J.; Azevedo, E. R. de

    2009-04-14

    This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ({sup 23}Na) and I=7/2 ({sup 133}Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.

  17. X-ray CT and NMR imaging of rocks

    SciTech Connect

    Vinegar, H.J.

    1986-03-01

    In little more than a decade, X-ray computerized tomography (CT) and nuclear magnetic resonance (NMR) imaging have become the premier modalities of medical radiology. Both of these imaging techniques also promise to be useful tools in petrophysics and reservoir engineering, because CT and NMR can nondestructively image a host of physical and chemical properties of porous rocks and multiple fluid phases contained within their pores. The images are taken within seconds to minutes, at reservoir temperatures and pressures, with spatial resolution on the millimeter and submillimeter level. The physical properties imaged by the two techniques are complementary. CT images bulk density and effective atomic number. NMR images the nuclide concentration, M/sub 0/, of a variety of nuclei (/sup 1/H, /sup 19/F, /sup 23/Na, /sup 31/P, etc.), their longitudinal and transverse relaxation-time curves (t/sub 1/ and t/sub 2/), and their chemical shift spectra. In rocks, CT images both rock matrix and pore fluids, while NMR images only mobile fluids and the interactions of these mobile fluids with the confining surfaces of the pores.

  18. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  19. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy.

    PubMed

    Laurencin, Danielle; Wong, Alan; Chrzanowski, Wojciech; Knowles, Jonathan C; Qiu, Dong; Pickup, David M; Newport, Robert J; Gan, Zhehong; Duer, Melinda J; Smith, Mark E

    2010-02-01

    Despite the numerous studies of bone mineral, there are still many questions regarding the exact structure and composition of the mineral phase, and how the mineral crystals become organised with respect to each other and the collagen matrix. Bone mineral is commonly formulated as hydroxyapatite, albeit with numerous substitutions, and has previously been studied by (31)P and (1)H NMR, which has given considerable insight into the complexity of the mineral structure. However, to date, there has been no report of an NMR investigation of the other major component of bone mineral, calcium, nor of common minority cations like sodium. Here, direct analysis of the local environment of calcium in two biological apatites, equine bone (HB) and bovine tooth (CT), was carried out using both (43)Ca solid state NMR and Ca K-edge X-ray absorption spectroscopy, revealing important structural information about the calcium coordination shell. The (43)Ca delta(iso) in HB and CT is found to correlate with the average Ca-O bond distance measured by Ca K-edge EXAFS, and the (43)Ca NMR linewidths show that there is a greater distribution in chemical bonding around calcium in HB and CT, compared to synthetic apatites. In the case of sodium, (23)Na MAS NMR, high resolution 3Q-MAS NMR, as well as (23)Na{(31)P} REDOR and (1)H{(23)Na} R(3)-HMQC correlation experiments give the first direct evidence that some sodium is located inside the apatite phase in HB and CT, but with a greater distribution of environments compared to a synthetic sodium substituted apatite (Na-HA). PMID:20094673

  20. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, χ, equals cos-1(1/ 3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to ±1° via coherence transfer between the two different satellite transitions ST +( mI=+3/2↔+1/2) and ST -( mI=-1/2↔-3/2) midway through the t1 period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na ( I=3/2), 87Rb ( I=3/2), 27Al ( I=5/2), and 59Co ( I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less " t1 noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third

  1. Ferrocene-like iron bis(dicarbollide), [3-Fe(III)-(1,2-C(2)B(9)H(11))(2)](-). The first experimental and theoretical refinement of a paramagnetic (11)B NMR spectrum.

    PubMed

    Pennanen, Teemu O; Machácek, Jan; Taubert, Stefan; Vaara, Juha; Hnyk, Drahomír

    2010-07-14

    Nuclear magnetic resonance (NMR) of paramagnetic molecules (pNMR) provides detailed information on the structure and bonding of metallo-organic systems. The physical mechanisms underlying chemical shifts are considerably more complicated in the presence of unpaired electrons than in the case of diamagnetic compounds. We report for the first time a combined first-principles theoretical as well as experimental liquid-state (11)B NMR study of a paramagnetic compound, applied on the [3-Fe(III)-(1,2-C(2)B(9)H(11))(2)](-) metallaborane, which is an electronically open-shell structure where the iron centre binds two hemispherical boron-carbon cages. We show that this combined theoretical and experimental analysis constitutes a firm basis for the assignment of experimental (11)B NMR chemical shifts in paramagnetic metallaboranes. In the calculations, the roles of the different physical contributions to the pNMR chemical shift are elaborated, and the performance of different popular exchange-correlation functionals of density-functional theory as well as basis sets, are evaluated. A dynamic correction to the calculated shifts via first-principles molecular dynamics simulations is found to be important. Solvent effects on the chemical shifts were computed and found to be of minor significance. PMID:20464023

  2. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  3. 7Li double quantum filtered NMR and multinuclear relaxation rates of clay suspensions: the effect of clay concentration and nonionic surfactants

    PubMed

    Grandjean; Robert

    1999-05-01

    7Li double quantum NMR spectra were used to investigate ordering process of synthetic Li+-saponites dispersed in water. Synthetic clays suspended in aqueous solutions of poly(ethylene glycol) monoalkyl ethers were also studied by 7Li, 23Na, and 13C NMR techniques. The strongest surfactant-Li+-saponite interaction occurs with the lowest charged clay. Laponite interacts more strongly with organic molecules than does a similarly charged saponite. The number of oxyethylene units rather than the chain length seems to govern the solid-surfactant interaction. Copyright 1999 Academic Press. PMID:10329224

  4. Multiplet-separated heteronuclear two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Levitt, Malcolm H.; Sørensen, O. W.; Ernst, R. R.

    1983-02-01

    Techniques are described for the identification and separation of peaks of different multiplicity in heteronuclear two-dimensional NMR spectroscopy. The methods are applied to the two-dimensional 13C- 1H shift correlation spectrum of menthol.

  5. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  6. NMR study of new ruthenates with high magnetic ordering

    NASA Astrophysics Data System (ADS)

    Paulose, P. L.; Chakrabarty, Tanmoy

    The Ru based compounds, Ca3LiRuO6 and Ca3NaRuO6 show unusually high magnetic ordering temperature. Extended super exchange model is invoked to explain the magnetic behavior in the isostructural compound Ca3LiOsO6. We have carried out NMR investigation on these two Ru-based compounds. Ca3LiRuO6 is a weak ferromagnet with a magnetic ordering temperature (TC) of 115 K which is explored by the temperature dependence of 7Li NMR line shift, line-width and spin-lattice relaxation rate (1/T1) . Above TC, a broad maximum is observed in the evolution of line-width of the spectra. We speculate that this feature might be attributed to some low-dimensional magnetic behavior. Contrastingly, Ca3NaRuO6 with similar structure and local geometry of the Ru5+ ions is a conventional antiferromagnet with a transition temperature of 90 K. The temperature dependence of 23Na NMR line shift and 1/T1 is studied across magnetic transition in Ca3NaRuO6. The temperature variation of line-width is found to be different compared to Ca3LiRuO6. In both these systems, 1/T1 decreases significantly below ordering temperature, characteristic of many antiferromagnetic systems.

  7. Introducing the gNMR Program in an Introductory NMR Spectrometry Course to Parallel Its Use by Spectroscopists

    ERIC Educational Resources Information Center

    Rummey, Jackie M.; Boyce, Mary C.

    2004-01-01

    An approach that is useful to any introductory nuclear magnetic resonance (NMR) spectroscopy course is developed. This approach to teaching NMR spectrometry includes spectral simulation along with the traditional elements of hands-on instrument use and structure elucidation to demonstrate the connection between simulating a spectrum and structure…

  8. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  9. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  10. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect

    NASA Astrophysics Data System (ADS)

    Schmidt, B. C.; Riemer, T.; Kohn, S. C.; Holtz, F.; Dupree, R.

    2001-09-01

    To study the effects of total water content and alkali substitution on the structure of aluminosilicate glasses, two series of glasses belonging to the ternary system Quartz (Qz)-Albite (Ab)-Orthoclase (Or) were synthesized and investigated with nuclear magnetic resonance (NMR) spectroscopy. Series I consisted of seven glasses with normative composition Ab 39Or 32Qz 29 (AOQ) and water contents ranging from 0 to 6 wt%. Series II consisted of dry and hydrous glasses (˜2.0 wt% H 2O) with five compositions along the join Qz 37Ab 63-Qz 34Or 66 (AQ-OQ) varying the alkali content (Na/K) at constant Si/Al ratio. All glasses were investigated with 1H, 23Na, 27Al and 29Si magic angle spinning (MAS) NMR. 29Si MAS spectra of AOQ glasses showed no change upon hydration, suggesting little variation of the Si environments although the large linewidth of the 29Si signal may hide the presence of some Si Q 3-OH. The isotropic chemical shift (δ iso) of 27Al showed no change upon hydration, regardless of the amount of dissolved water. The 27Al mean quadrupolar coupling constant (C q) decreased with increasing water content, indicating a general increase of symmetry of the charge distribution around Al, which suggests the absence of significant amounts of Al Q 3-OH. Nonetheless, the evolution of C q upon hydration suggests a correlation with OH concentration in the quenched glass. The evolution of 23Na isotropic chemical shifts upon hydration appears to be correlated with total water content or with the concentration of dissolved H 2O molecules. In general, the NMR data are consistent with the water solubility model of Kohn et al. (1989), involving the exchange of charge balancing cations by protons. However, in addition to the presence of molecular water, 1H-NMR results showed at least two types of OH groups of which one may be related to Al-OH. Although the small intensity of this signal indicates that only a minor fraction of OH groups is present in this species, it demonstrates

  11. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear.

  12. Decay Properties of {sup 266}Bh and {sup 262}Db Produced in the {sup 248}Cm+{sup 23}Na Reaction - Further Confirmation of the {sup 278}113 Decay Chain

    SciTech Connect

    Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Ozeki, K.; Kudou, Y.; Yoneda, A.; Ichikawa, T.; Katori, K.; Yoshida, A.; Sato, N.; Sumita, T.; Fujimori, Y.; Tokanai, F.; Goto, S.; Ideguchi, E.; Kasamatsu, Y.; Koura, H.; Tsukada, K.; Komori, Y.

    2010-06-01

    Decay properties of an isotope {sup 266}Bh and its daughter nucleus {sup 262}Db produced by the {sup 248}Cm({sup 23}Na,5n) reaction were studied by using a gas-filled recoil separator coupled with a position-sensitive semiconductor detector. {sup 266}Bh was clearly identified from the correlation of the known nuclide, {sup 262}Db. The obtained decay properties of {sup 266}Bh and {sup 262}Db are consistent with those observed in the {sup 278}113 chain by RIKEN collaboration, which provided further confirmation of the discovery of {sup 278}113.

  13. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  14. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  15. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  16. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  17. NMR Spectroscopy for Thin Films by Magnetic Resonance Force Microscopy

    PubMed Central

    Won, Soonho; Saun, Seung-Bo; Lee, Soonchil; Lee, SangGap; Kim, Kiwoong; Han, Yunseok

    2013-01-01

    Nuclear magnetic resonance (NMR) is a fundamental research tool that is widely used in many fields. Despite its powerful applications, unfortunately the low sensitivity of conventional NMR makes it difficult to study thin film or nano-sized samples. In this work, we report the first NMR spectrum obtained from general thin films by using magnetic resonance force microscopy (MRFM). To minimize the amount of imaging information inevitably mixed into the signal when a gradient field is used, we adopted a large magnet with a flat end with a diameter of 336 μm that generates a homogeneous field on the sample plane and a field gradient in a direction perpendicular to the plane. Cyclic adiabatic inversion was used in conjunction with periodic phase inversion of the frequency shift to maximize the SNR. In this way, we obtained the 19F NMR spectrum for a 34 nm-thick CaF2 thin film. PMID:24217000

  18. Solid-state NMR in the analysis of drugs and naturally occurring materials.

    PubMed

    Paradowska, Katarzyna; Wawer, Iwona

    2014-05-01

    This article presents some of the solid-state NMR (SSNMR) techniques used in the pharmaceutical and biomedical research. Solid-state magic angle spinning (MAS) NMR provides structural information on powder amorphous solids for which single-crystal diffraction structures cannot be obtained. NMR is non-destructive; the powder sample may be used for further studies. Quantitative results can be obtained, although solid-state NMR spectra are not normally quantitative. As compared with other techniques, MAS NMR is insensitive and requires a significant amount of the powder sample (2-100mg) to fill the 1.3-7 mm ZrO2 rotor. This is its main drawback, since natural compounds isolated from plants, microorganisms or cell cultures are difficult to obtain in quantities higher than a few milligrams. Multinuclear MAS NMR routinely uses (1)H and (13)C nuclei, less frequently (15)N, (19)F, (31)P, (77)Se, (29)Si, (43)Ca or (23)Na. The article focuses on the pharmaceutical applications of SSNMR, the studies were aimed to control over manufacturing processes (e.g. crystallization and milling) investigation of chemical and physical stability of solid forms both as pure drug and in a formulated product. SSNMR is used in combination with some other analytical methods (DSC, XRD, FT-IR) and theoretical calculations of NMR parameters. Biologically active compounds, such as amino acids and small peptides, steroids and flavonoids were studied by SSNMR methods (part 4) providing valuable structural information. The SSNMR experiments performed on biopolymers and large natural products like proteins, cellulose and lipid layers are commented upon briefly in part 5. PMID:24173236

  19. Rapid characterization of molecular diffusion by NMR spectroscopy.

    PubMed

    Pudakalakatti, Shivanand M; Chandra, Kousik; Thirupathi, Ravula; Atreya, Hanudatta S

    2014-11-24

    An NMR-based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D (13)C and (1)H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self-assembly to form nanotubular structures. PMID:25331210

  20. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  1. High resolution NMR measurements using a 400 MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR

    NASA Astrophysics Data System (ADS)

    Piao, R.; Iguchi, S.; Hamada, M.; Matsumoto, S.; Suematsu, H.; Saito, A. T.; Li, J.; Nakagome, H.; Takao, T.; Takahashi, M.; Maeda, H.; Yanagisawa, Y.

    2016-02-01

    Use of high-temperature superconducting (HTS) inner coils in combination with conventional low-temperature superconducting (LTS) outer coils for an NMR magnet, i.e. a LTS/HTS NMR magnet, is a suitable option to realize a high-resolution NMR spectrometer with operating frequency >1 GHz. From the standpoint of creating a compact magnet, (RE: Rare earth) Ba2Cu3O7-x (REBCO) HTS inner coils which can tolerate a strong hoop stress caused by a Lorentz force are preferred. However, in our previous work on a first-generation 400 MHz LTS/REBCO NMR magnet, the NMR resolution and sensitivity were about ten times worse than that of a conventional LTS NMR magnet. The result was caused by a large field inhomogeneity in the REBCO coil itself and the shielding effect of a screening current induced in that coil. In the present paper, we describe the operation of a modified 400 MHz LTS/REBCO NMR magnet with an advanced field compensation technology using a combination of novel ferromagnetic shimming and an appropriate procedure for NMR spectrum line shape optimization. We succeeded in obtaining a good NMR line shape and 2D NOESY spectrum for a lysozyme aqueous sample. We believe that this technology is indispensable for the realization of a compact super-high-field high-resolution NMR.

  2. RUBIDIUM, a program for computer-aided assignment of two-dimensional NMR spectra of polypeptides.

    PubMed

    Yu, C; Hwang, J F; Chen, T B; Soo, V W

    1992-01-01

    Taking advantage of the rule-based expert system technology, a program named RUBIDIUM (Rule-Based Identification In 2D NMR Spectrum) was developed to accomplish the automatic 1H NMR resonance assignments of polypeptides. Besides noise elimination and peak selection capabilities, RUBIDIUM detects the cross-peak patterns of amino acid residues in the COSY spectrum, assigning these patterns to amino acid types, performing sequential assignments using combined COSY/NOESY spectra, and finally, achieving the total assignment of the 1H NMR spectrum. PMID:1607394

  3. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  4. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  5. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  6. Correlations between 11B NMR parameters and structural characters in borate and borosilicate minerals investigated by high-resolution MAS NMR and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Sun, Zhaohua; Yao, Yefeng; Pan, Yuanming

    2012-05-01

    Borates consisting of diverse fundamental building blocks (FBB) formed from complex polymerization of planar triangular [Bϕ3] groups and tetrahedral [Bϕ4] groups, where ϕ = O and OH, provide an excellent opportunity for investigation of correlations between the NMR parameters and local structures. However, previous studies suggested that the 11B NMR parameters in borates are insensitive to local structural environments other than the B coordination number, in contrast to those documented for 29Si, 23Na and 27Al in silicates, and no correlation between 11B chemical shifts and the sum of bond valences has been established for borate minerals with hydroxyl groups or molecular water in the structures. In this study, high-resolution NMR spectra have been acquired at the ultra high field of 21 T as well as at 14 T for selected borate and borosilicate minerals, and have been used to extract high-precision NMR parameters by using combined ab initio theoretical calculations and spectral simulations. These new NMR parameters reveal subtle correlations with various structural characters, especially the effects of the 11B chemical shifts from the bridging oxygen atom(s), site symmetry, symmetry of FBB, the sum of bond valences, as well as the next-nearest-neighbor cations and hydrogen bonding. Also, these results provide new insights into the shielding mechanism for 11B in borate and borosilicate minerals. In particular, this study demonstrates that the small variation in 11B chemical shifts can still be used to probe the local structural environments and that the established correlations can be used to investigate the structural details in borates and amorphous materials.

  7. Frozen State and Spin Liquid Physics in Na4 Ir3 O8 : An NMR Study

    NASA Astrophysics Data System (ADS)

    Shockley, A. C.; Bert, F.; Orain, J.-C.; Okamoto, Y.; Mendels, P.

    2015-07-01

    Na4Ir3 O8 is a unique case of a hyperkagome 3D corner sharing triangular lattice that can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate. We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We show that disordered magnetic freezing of all Ir sites sets in below Tf˜7 K , well below J =300 K , with a drastic slowing down of fluctuations to a static state revealed by our T1 measurements. Above typically 2 Tf, physical properties are relevant to the spin liquid state induced by this exotic geometry. While the shift data show that the susceptibility levels off below 80 K, 1 /T1 has little variation from 300 K to 2 Tf. We discuss the implication of our results in the context of published experimental and theoretical work.

  8. High resolution 1H NMR of a lipid cubic phase using a solution NMR probe

    NASA Astrophysics Data System (ADS)

    Boyle-Roden, E.; Hoefer, N.; Dey, K. K.; Grandinetti, P. J.; Caffrey, M.

    2007-11-01

    The cubic mesophase formed by monoacylglycerols and water is an important medium for the in meso crystallogenesis of membrane proteins. To investigate molecular level lipid and additive interactions within the cubic phase, a method was developed for improving the resolution of 1H NMR spectra when using a conventional solution state NMR probe. Using this approach we obtained well-resolved J-coupling multiplets in the one-dimensional NMR spectrum of the cubic-Ia3d phase prepared with hydrated monoolein. A high resolution t-ROESY two-dimensional 1H NMR spectrum of the cubic-Ia3d phase is also reported. Using this new methodology, we have investigated the interaction of two additive molecules, L-tryptophan and ruthenium-tris(2,2-bipyridyl) dichloride (rubipy), with the cubic mesophase. Based on the measured chemical shift differences when changing from an aqueous solution to the cubic phase, we conclude that L-tryptophan experiences specific interactions with the bilayer interface, whereas rubipy remains in the aqueous channels and does not associate with the lipid bilayer.

  9. DFT and NMR parameterized conformation of valeranone.

    PubMed

    Torres-Valencia, J Martín; Meléndez-Rodríguez, Myriam; Alvarez-García, Rocío; Cerda-García-Rojas, Carlos M; Joseph-Nathan, Pedro

    2004-10-01

    A Monte Carlo random search using molecular mechanics, followed by geometry optimization of each minimum energy structure employing density functional theory (DFT) calculations at the B3LYP/6-31G* level and a Boltzmann analysis of the total energies, generated accurate molecular models which describe the conformational behavior of the antispasmodic bicyclic sesquiterpene valeranone (1). The theoretical H-C-C-H dihedral angles gave the corresponding 1H, 1H vicinal coupling constants using a generalized Karplus-type equation. In turn, the 3J(H,H) values were used as initial input data for the spectral simulation of 1, which after iteration provided an excellent correlation with the experimental 1H NMR spectrum. The calculated 3J(H,H) values closely predicted the experimental values, excepting the coupling constant between the axial hydrogen alpha to the carbonyl group and the equatorial hydrogen beta to the carbonyl group (J(2beta, 3beta)). The difference is explained in terms of the electron density distribution found in the highest occupied molecular orbital (HOMO) of 1. The simulated spectrum, together with 2D NMR experiments, allowed the total assignment of the 1H and 13C NMR spectra of 1. PMID:15366065

  10. NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine.

    PubMed

    Bingol, Kerem; Brüschweiler, Rafael

    2015-06-01

    A novel metabolite identification strategy is presented for the combined NMR/MS analysis of complex metabolite mixtures. The approach first identifies metabolite candidates from 1D or 2D NMR spectra by NMR database query, which is followed by the determination of the masses (m/z) of their possible ions, adducts, fragments, and characteristic isotope distributions. The expected m/z ratios are then compared with the MS(1) spectrum for the direct assignment of those signals of the mass spectrum that contain information about the same metabolites as the NMR spectra. In this way, the mass spectrum can be assigned with very high confidence, and it provides at the same time validation of the NMR-derived metabolites. The method was first demonstrated on a model mixture, and it was then applied to human urine collected from a pool of healthy individuals. A number of metabolites could be detected that had not been reported previously, further extending the list of known urine metabolites. The new analysis approach, which is termed NMR/MS Translator, is fully automated and takes only a few seconds on a computer workstation. NMR/MS Translator synergistically uses the power of NMR and MS, enhancing the accuracy and efficiency of the identification of those metabolites compiled in databases. PMID:25881480

  11. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  12. Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory

    ERIC Educational Resources Information Center

    Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.

    2015-01-01

    A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…

  13. A Solid-State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses

    ERIC Educational Resources Information Center

    Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin

    2004-01-01

    An experiment that can be used to directly study the local chemical environments of phosphorus in solid amorphous materials is demonstrated. The experiment aims at familiarizing the students of chemistry with the principles of solid-state NMR, by having them synthesize a simple phosphate glass, and making them observe the (super 31)P NMR spectrum,…

  14. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  15. Multifunctional pulse sequence generator for pulse NMR

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng

    1988-06-01

    A new multifunctional pulse sequence generator has been designed and constructed. It can conveniently generate various pulse sequences used in nuclear-magnetic resonance (NMR) to measure the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the spin-locking relaxation time T1 ρ. It can also be used in pulse Fourier transform NMR and double resonance. The intervals of pulses can increase automatically with sequence repetitions and the generator can be used in two-dimensional spectrum measurement and spin-density imaging research. The sequences can be generated through four different triggering methods and there are two synchronous pulse outputs and fifteen auxiliary pulse outputs, so the generator can be conveniently interfaced with a computer or other instruments. The circuitry, functions, and features of the generator are described in this article.

  16. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  17. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  18. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  19. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  20. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  1. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  2. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  3. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  4. Detection of Taurine in Biological Tissues by 33S NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Musio, Roberta; Sciacovelli, Oronzo

    2001-12-01

    The potential of 33S NMR spectroscopy for biochemical investigations on taurine (2-aminoethanesulfonic acid) is explored. It is demonstrated that 33S NMR spectroscopy allows the selective and unequivocal identification of taurine in biological samples. 33S NMR spectra of homogenated and intact tissues are reported for the first time, together with the spectrum of a living mollusc. Emphasis is placed on the importance of choosing appropriate signal processing methods to improve the quality of the 33S NMR spectra of biological tissues.

  5. Determination of intramolecular hydrogen bonds in amikacin in water solution by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaggelli, Elena; Gaggelli, Nicola; Maccotta, Antonella; Valensin, Gianni; Marini, Domenico; Di Cocco, Maria Enrica; Delfini, Maurizio

    1995-10-01

    An NMR investigation has been carried out on amikacin in water solution in the physiological pH range. Two-dimenstional heterocorrelated maps provide 1H NMR chemical shifts from the unambiguous assignment of the 13C NMR spectrum. Reorientational dynamics at the molecular level are interpreted in terms of a pseudoisotropic motion with a correlation time of 0.17 ns at 300 K. The pH and temperature dependences of 13C NMR chemical shifts are interpreted to delineate protonation equilibria (all p Ks are determined) and to assess the occurrence of two intermolecular hydrogen bonds, which are confirmed by molecular modelling.

  6. 7-T (35)Cl and (23)Na MR Imaging for Detection of Mutation-dependent Alterations in Muscular Edema and Fat Fraction with Sodium and Chloride Concentrations in Muscular Periodic Paralyses.

    PubMed

    Weber, Marc-André; Nagel, Armin M; Marschar, Anja M; Glemser, Philip; Jurkat-Rott, Karin; Wolf, Maya B; Ladd, Mark E; Schlemmer, Heinz-Peter; Kauczor, Hans-Ulrich; Lehmann-Horn, Frank

    2016-09-01

    Purpose To determine whether altered sodium (Na(+)) and chloride (Cl(-)) homeostasis can be visualized in periodic paralyses by using 7-T sodium 23 ((23)Na) and chlorine 35 ((35)Cl) magnetic resonance (MR) imaging. Materials and Methods Institutional review board approval and informed consent of all participants were obtained. (23)Na (repetition time msec/echo time msec, 160/0.35) and (35)Cl (40/0.6) MR imaging of both lower legs was performed with a 7-T whole-body system in patients with genetically confirmed hypokalemic periodic paralysis (Cav1.1-R1239H mutation, n = 5; Cav1.1-R528H mutation, n = 8) and Andersen-Tawil syndrome (n = 3) and in 16 healthy volunteers. Additionally, each participant underwent 3-T proton MR imaging on the same day by using T1-weighted, short-tau inversion-recovery, and Dixon-type sequences. Muscle edema was assessed on short-tau inversion-recovery images, fatty degeneration was assessed on T1-weighted images, and muscular fat fraction was quantified with Dixon-type imaging. Na(+) and Cl(-) were quantified in the soleus muscle by using three phantoms that contained 10-, 20-, and 30-mmol/L NaCl solution and 5% agarose gel as a reference. Parametric data for all subpopulations were tested by using one-way analysis of variance with the Dunnett test, and correlations were assessed with the Spearman rank correlation coefficient. Results Median muscular (23)Na concentration was higher in patients with Cav1.1-R1239H (34.7 mmol/L, P < .001), Cav1.1-R528H (32.0 mmol/L, P < .001), and Kir2.1 (24.3 mmol/L, P = .035) mutations than in healthy volunteers (19.9 mmol/L). Median muscular normalized (35)Cl signal intensity was higher in patients with Cav1.1-R1239H (27.6, P < .001) and Cav1.1-R528H (23.6, P < .001) than in healthy volunteers (12.6), but not in patients with the Kir2.1 mutation (14.3, P = .517). When compared with volunteers, patients with Cav1.1-R1239H and Cav1.1-R528H showed increased muscular edema (P < .001 and P = .003, respectively

  7. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  8. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  9. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  10. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  11. Synthesis, characterization, crystal structure and NLO properties of a new mixed crystal potassium sodium ammonium dihydrogenphosphate K0.23Na0.23(NH4)0.54H2PO4

    NASA Astrophysics Data System (ADS)

    Ramasamy, G.; Meenakshisundaram, Subbiah

    2012-08-01

    Potassium sodium ammonium dihydrogenphosphate K0.23Na0.23(NH4)0.54H2PO4 (KSADP), a new mixed crystal has been grown in aqueous medium by the slow evaporation of equimolar mixture of ammonium dihydrogenphosphate (ADP), potassium dihydrogenphosphate (KDP) and sodium dihydrogenphosphate (SDP). Crystal composition as determined by single crystal X-ray diffraction analysis reveals that it belongs to the tetragonal system with noncentrosymmetric space group I-42d and it is structurally similar to ADP with cell parameter values, a=7.4794(4) Å; b=7.4794(4) Å; c=7.2974(11) Å; υ=408.23(7) Å3; z=4. The presence of sodium and potassium in ADP matrix was confirmed by inductively coupled plasma emission spectrometry and energy dispersive X-ray spectroscopy. The partial cationic substitution results in defect centers influencing the physical properties. Slight shifts in vibrational patterns could be attributed to strains in the lattice. Refinement of structure by single crystal XRD analysis reveals that potassium, sodium and ammonium coexist in the mixed crystal. The surface morphology of the as-grown specimen, which is changed as a result of cationic incorporation, was studied by scanning electron microscopy. The relative second harmonic generation (SHG) efficiency measurements revealed that the mixed crystal has a superior NLO activity than ADP.

  12. NMR at the Picomole Level of a DNA Adduct

    PubMed Central

    Kautz, Roger; Wang, Poguang; Giese, Roger W.

    2014-01-01

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the pmol level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene 5′-monophosphate (AAF-dGMP), in 1.5 μL of D2O with 10% methanol-d4, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid, and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a several-fold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample into the observed volume realizes the full theoretical mass sensitivity of a microcoil, comparable to a micro-cryo probe. With 80 ng, an NMR spectrum acquired over 40 hr showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a S/N of at least 10, despite broadening due to previously-noted effects of conformational exchange. Also a 2D TOCSY spectrum (total correlation spectroscopy) was acquired on 1.6 μg in 18 hr. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct. PMID:24028148

  13. Localized double-quantum-filtered 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Hetherington, H. P.; Meyerhoff, D. J.; Twieg, D. B.

    The image-guided in vivo spectroscopic (ISIS) pulse sequence has been combined with a double-quantum-filter scheme in order to obtain localized and water-suppressed 1H NMR spectra of J-coupled metabolites. The coherence-transfer efficiency associated with the DQ filter for AX and A 3X spin systems is described. Phantom results of carnosine, alanine, and ethanol in aqueous solution are presented. For comparison, the 1H NMR spectrum of alanine in aqueous solution with the binomial (1331, 2662) spin-echo sequence is also shown.

  14. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  15. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  16. Site-assignment of 17O-NMR signals in itinerant metamagnetic compound Sr 3Ru 2O 7

    NASA Astrophysics Data System (ADS)

    Kitagawa, Kentaro; Ishida, Kenji; Perry, Robin S.; Maeno, Yoshiteru

    2006-05-01

    We have performed an 17O-NMR measurement in the bilayered perovskite ruthenate Sr 3Ru 2O 7 which shows itinerant metamagnetism at low temperatures. Three oxygen sites are identified in the 17O-NMR spectrum. NMR lines arising from the outer-apical O site are observable in the vicinity of a metamagnetic quantum critical point in spite of strong spin fluctuations. The field dependence of the Knight shift scales with the bulk magnetization.

  17. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  18. A multinuclear solid-state NMR study of alkali metal ions in tetraphenylborate salts, M[BPh4] (M = Na, K, Rb and Cs): what is the NMR signature of cation-pi interactions?

    PubMed

    Wu, Gang; Terskikh, Victor

    2008-10-16

    We report a multinuclear solid-state ( (23)Na, (39)K, (87)Rb, (133)Cs) NMR study of tetraphenylborate salts, M[BPh 4] (M = Na, K, Rb, Cs). These compounds are isostructural in the solid state with the alkali metal ion surrounded by four phenyl groups resulting in strong cation-pi interactions. From analyses of solid-state NMR spectra obtained under stationary and magic-angle spinning (MAS) conditions at 11.75 and 21.15 T, we have obtained the quadrupole coupling constants, C Q, and the chemical shift tensor parameters for the alkali metal ions in these compounds. We found that the observed quadrupole coupling constant for M (+) in M[BPh 4] is determined by a combination of nuclear quadrupole moment, Sternheimer antishielding factor, and unit cell dimensions. On the basis of a comparison between computed paramagnetic and diamagnetic contributions to the total chemical shielding values for commonly found cation-ligand interactions, we conclude that cation-pi interactions give rise to significantly lower paramagnetic shielding contributions than other cation-ligand interactions. As a result, highly negative chemical shifts are expected to be the NMR signature for cations interacting exclusively with pi systems. PMID:18816043

  19. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Pecher, Oliver; Bayley, Paul M.; Liu, Hao; Liu, Zigeng; Trease, Nicole M.; Grey, Clare P.

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep 7Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, 31P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. 31P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000 ppm. The experiments show a significant shift and changes in the number as well as intensities of 31P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC 23Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  20. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries.

    PubMed

    Pecher, Oliver; Bayley, Paul M; Liu, Hao; Liu, Zigeng; Trease, Nicole M; Grey, Clare P

    2016-04-01

    We have developed and explored the use of a new Automatic Tuning Matching Cycler (ATMC) in situ NMR probe system to track the formation of intermediate phases and investigate electrolyte decomposition during electrochemical cycling of Li- and Na-ion batteries (LIBs and NIBs). The new approach addresses many of the issues arising during in situ NMR, e.g., significantly different shifts of the multi-component samples, changing sample conditions (such as the magnetic susceptibility and conductivity) during cycling, signal broadening due to paramagnetism as well as interferences between the NMR and external cycler circuit that might impair the experiments. We provide practical insight into how to conduct ATMC in situ NMR experiments and discuss applications of the methodology to LiFePO4 (LFP) and Na3V2(PO4)2F3 cathodes as well as Na metal anodes. Automatic frequency sweep (7)Li in situ NMR reveals significant changes of the strongly paramagnetic broadened LFP line shape in agreement with the structural changes due to delithiation. Additionally, (31)P in situ NMR shows a full separation of the electrolyte and cathode NMR signals and is a key feature for a deeper understanding of the processes occurring during charge/discharge on the local atomic scale of NMR. (31)P in situ NMR with "on-the-fly" re-calibrated, varying carrier frequencies on Na3V2(PO4)2F3 as a cathode in a NIB enabled the detection of different P signals within a huge frequency range of 4000ppm. The experiments show a significant shift and changes in the number as well as intensities of (31)P signals during desodiation/sodiation of the cathode. The in situ experiments reveal changes of local P environments that in part have not been seen in ex situ NMR investigations. Furthermore, we applied ATMC (23)Na in situ NMR on symmetrical Na-Na cells during galvanostatic plating. An automatic adjustment of the NMR carrier frequency during the in situ experiment ensured on-resonance conditions for the Na metal and

  1. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Martin, Gary E.; Parella, Teodor

    2016-05-01

    The current Pros and Cons of a processing protocol to generate pure chemical shift NMR spectra using Generalized Indirect Covariance are presented and discussed. The transformation of any standard 2D homonuclear and heteronuclear spectrum to its pure shift counterpart by using a reference DIAG spectrum is described. Reconstructed pure shift NMR spectra of NOESY, HSQC, HSQC-TOCSY and HSQMBC experiments are reported for the target molecule strychnine.

  2. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  3. THz Dynamic Nuclear Polarization NMR.

    PubMed

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  4. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  5. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  6. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  7. Studies of electrolyte penetration in carbon anodes by NMR techniques.

    SciTech Connect

    Sandi, G.

    1998-12-09

    A toroid cavity nuclear magnetic resonance (NMR) detector capable of recording radial concentration profiles, diffusion constants, and displacements of charge carriers was employed to investigate the lithium ion distribution in an electrochemical cell containing a carbonaceous material synthesized from pyrene and pillared clays as inorganic templates. A carbon rod was used in a control experiment to assign the Li{sup +} spectrum and to calibrate the one dimensional radial images.

  8. Spin dynamics in Na(4-x)Ir₃O₈ (x  =  0.3 and 0.7) investigated by ²³Na NMR and μSR.

    PubMed

    Yoon, Sungwon; Baek, S-H; Balodhi, Ashiwini; Lee, W-J; Choi, K-Y; Watanabe, I; Lord, J S; Büchner, B; Suh, B J; Singh, Yogesh

    2015-12-01

    We report (23)Na nuclear magnetic resonance (NMR) and zero-field (ZF) and longitudinal-field (LF) muon spin relaxation (μSR) measurements of the depleted hyperkagome compounds Na(4-x)Ir3O8 (x  =  0.3 and 0.7), which undergo an insulator-semimetal transition as a function of x. The (23)Na spin-lattice relaxation rates, T1(-1), follow a T(2.5) power law behavior at accessible temperatures of T  =  120-350 K. A substantial temperature dependence of T1(-1) indicates the presence of gapped excitations at elevated temperatures through the transition to a semimetallic phase. ZF-μSR results reveal that hole-doping leads to a melting of quasi-static order to a dynamically fluctuating state. The very slow muon depolarization rate which varies hardly with temperature indicates that spins are close to an itinerant limit in the largest doping x  =  0.7. The dynamic relaxation rates extracted from the LF-μSR spectra show a three-dimensional diffusive transport. Our combined NMR and μSR results suggest the occurrence of intriguing spin and charge excitations across the insulator-semimetal transition. PMID:26571207

  9. Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy.

    PubMed

    Pucar, Darko; Dzeja, Petras P; Bast, Peter; Gumina, Richard J; Drahl, Carmen; Lim, Lynette; Juranic, Nenad; Macura, Slobodan; Terzic, Andre

    2004-01-01

    Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress. PMID:14977188

  10. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.

    PubMed

    Allan, Phoebe K; Griffin, John M; Darwiche, Ali; Borkiewicz, Olaf J; Wiaderek, Kamila M; Chapman, Karena W; Morris, Andrew J; Chupas, Peter J; Monconduit, Laure; Grey, Clare P

    2016-02-24

    Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  11. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy

    PubMed Central

    2016-01-01

    Operando pair distribution function (PDF) analysis and ex situ 23Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from 23Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na3–xSb (x ≈ 0.4–0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na1.7Sb, a highly amorphous structure featuring some Sb–Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na3–xSb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na1.7Sb, then a-Na3–xSb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na3–xSb without the formation of a-Na1.7Sb. a-Na3–xSb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature 23Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes. PMID:26824406

  12. Practical model fitting approaches to the direct extraction of NMR parameters simultaneously from all dimensions of multidimensional NMR spectra.

    PubMed

    Chylla, R A; Volkman, B F; Markley, J L

    1998-08-01

    A maximum likelihood (ML)-based approach has been established for the direct extraction of NMR parameters (e.g., frequency, amplitude, phase, and decay rate) simultaneously from all dimensions of a D-dimensional NMR spectrum. The approach, referred to here as HTFD-ML (hybrid time frequency domain maximum likelihood), constructs a time-domain model composed of a sum of exponentially-decaying sinusoidal signals. The apodized Fourier transform of this time-domain signal is a model spectrum that represents the 'best-fit' to the equivalent frequency-domain data spectrum. The desired amplitude and frequency parameters can be extracted directly from the signal model constructed by the HTFD-ML algorithm. The HTFD-ML approach presented here, as embodied in the software package CHIFIT, is designed to meet the challenges posed by model fitting of D-dimensional NMR data sets, where each consists of many data points (10(8) is not uncommon) encoding information about numerous signals (up to 10(5) for a protein of moderate size) that exhibit spectral overlap. The suitability of the approach is demonstrated by its application to the concerted analysis of a series of ten 2D 1H-15N HSQC experiments measuring 15N T1 relaxation. In addition to demonstrating the practicality of performing maximum likelihood analysis on large, multidimensional NMR spectra, the results demonstrate that this parametric model-fitting approach provides more accurate amplitude and frequency estimates than those obtained from conventional peak-based analysis of the FT spectrum. The improved performance of the model fitting approach derives from its ability to take into account the simultaneous contributions of all signals in a crowded spectral region (deconvolution) as well as to incorporate prior knowledge in constructing models to fit the data. PMID:9751999

  13. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  14. Access to experimentally infeasible spectra by pure-shift NMR covariance.

    PubMed

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments. PMID:27494746

  15. Perfluoroalkyl Grignard Reagents: NMR Study of 1-Heptafluoropropylmagnesium Chloride in Solution.

    PubMed

    Guang, Jie; Hopson, Russell; Williard, Paul G; Fujiu, Motohiro; Negishi, Kazuyuki; Mikami, Koichi

    2016-07-15

    We report on the generation of a perfluoroalkyl Grignard reagent ((F)RMgX) by exchange reaction between a perfluoroalkyl iodide ((F)R-I) and a Grignard reagent (RMgX). (19)F NMR was applied to monitor the generation of n-C3F7MgCl. Additional NMR techniques, including (19)F COSY, NOESY, and pulsed gradient spin-echo (PGSE) diffusion NMR, were invoked to assign peaks observed in (19)F spectrum. Schlenk equilibrium was observed and was significantly influenced by solvent, diethyl ether, or THF. PMID:27295419

  16. Access to experimentally infeasible spectra by pure-shift NMR covariance

    NASA Astrophysics Data System (ADS)

    Fredi, André; Nolis, Pau; Cobas, Carlos; Parella, Teodor

    2016-09-01

    Covariance processing is a versatile processing tool to generate synthetic NMR spectral representations without the need to acquire time-consuming experimental datasets. Here we show that even experimentally prohibited NMR spectra can be reconstructed by introducing key features of a reference 1D CHn-edited spectrum into standard 2D spectra. This general procedure is illustrated with the calculation of experimentally infeasible multiplicity-edited pure-shift NMR spectra of some very popular homonuclear (ME-psCOSY and ME-psTOCSY) and heteronuclear (ME-psHSQC-TOCSY and ME-psHMBC) experiments.

  17. NMR assessment on bone simulated under microgravity

    NASA Astrophysics Data System (ADS)

    Ni, Q.; Qin, Y.

    Introduction Microgravity-induced bone loss has been suggested to be similar to disuse-osteoporosis on Earth which constitutes a challenging public health problem No current non-destructive method can provide the microstructural changes in bone particularly on cortical bone Recently the authors have applied low field nuclear magnetic resonance NMR spin-spin relaxation technique and computational analysis method to determine the porosity pore size distribution and microdamage of cortical bone 1-3 The studies by the authors have shown that this technology can be used to characterize microstructural changes as well as bone water distribution bound and mobile water changes of weightless treated simulating a microgravity condition turkey and mouse cortical bone We further determinate that the NMR spin-spin relaxation time T 2 spectrum derived parameters can be used as descriptions of bone quality e g matrix water distribution and porosity size distributions and alone or in combination with current techniques bone mineral density measurements more accurately predict bone mechanical properties Methods underline Bone sample preparation Two kinds of animal samples were collected and prepared for designed experiments from SUNY Cortical bones of the mid-diaphyses of the ulnae of 1-year-old male turkeys were dissected from freshly slaughtered animals Eight samples were categorized from normal or control and four samples were 4-week disuse treated by functionally isolated osteotomies disuse A total of 12

  18. NMR measurements in solutions of dialkylimidazolium haloaluminates

    SciTech Connect

    Takahashi, S.; Saboungi, M.L.; Klingler, R.J.; Chen, M.J.; Rathke, J.W.

    1992-06-01

    {sup 27}Al and {sup 35}Cl NMR spectra of AlCl{sub 3}-1-ethyl-3-methyl imidazolium chloride (EMIC) melts were measured for initial compositions ranging from 50 to 67 mol % AlCl{sub 3} at various temperatures. It was shown by changing the preaquisition delay time (DE value) that the dominant aluminum species are AlCl{sub 4}{sup {minus}} in the melt formed by mixing 50 mol % with EMIC and Al{sub 2}Cl{sub 7}{sup {minus}} in the 67 mol % AlCl{sub 3} melt. In the equimolar mixture, the chemical shift of {sup 27}Al NMR spectrum is 103.28 ppm and the line width is 22.83Hz. In the 67 mol % AlCl{sub 3} mixture, the chemical shift is 103.41 ppm and the line width is 2624Hz. A third species observed at 97 ppm in the {sup 27}Al spectra for the 55 and 60 mol % AlCl{sub 3} mixtures is identified to be a product of the reaction with residual water. The relaxation rates for each species in the melts were determined.

  19. The registration of signals from the nuclei other than protons at 0.5 T MRI scanner

    NASA Astrophysics Data System (ADS)

    Anisimov, N.; Volkov, D.; Gulyaev, M.; Pavlova, O.; Pirogov, Yu

    2016-02-01

    The practical aspects of the adaptation of the medical MRI scanner for multinuclear applications are considered. Examples of high resolution NMR spectra for nuclei 19F, 31P, 23Na, 11B, 13C, 2H, and also NQR spectrum for 35Cl are given. Possibilities of MRI for nuclei 19F, 31P, 23Na, 11B are shown. Experiments on registration of signals 19F from the fluorocarbons injected in laboratory animals are described.

  20. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ). PMID:27023095

  1. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  2. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  3. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  4. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  5. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. Selectively Labeling the Heterologous Protein in Escherichia coli for NMR Studies: A Strategy to Speed Up NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Almeida, F. C. L.; Amorim, G. C.; Moreau, V. H.; Sousa, V. O.; Creazola, A. T.; Américo, T. A.; Pais, A. P. N.; Leite, A.; Netto, L. E. S.; Giordano, R. J.; Valente, A. P.

    2001-01-01

    Nuclear magnetic resonance is an important tool for high-resolution structural studies of proteins. It demands high protein concentration and high purity; however, the expression of proteins at high levels often leads to protein aggregation and the protein purification step can correspond to a high percentage of the overall time in the structural determination process. In the present article we show that the step of sample optimization can be simplified by selective labeling the heterologous protein expressed in Escherichia coli by the use of rifampicin. Yeast thioredoxin and a coix transcription factor Opaque 2 leucine zipper (LZ) were used to show the effectiveness of the protocol. The 1H/15N heteronuclear correlation two-dimensional NMR spectrum (HMQC) of the selective 15N-labeled thioredoxin without any purification is remarkably similar to the spectrum of the purified protein. The method has high yields and a good 1H/15N HMQC spectrum can be obtained with 50 ml of M9 growth medium. Opaque 2 LZ, a difficult protein due to the lower expression level and high hydrophobicity, was also probed. The 15N-edited spectrum of Opaque 2 LZ showed only the resonances of the protein of heterologous expression (Opaque 2 LZ) while the 1H spectrum shows several other resonances from other proteins of the cell lysate. The demand for a fast methodology for structural determination is increasing with the advent of genome/proteome projects. Selective labeling the heterologous protein can speed up NMR structural studies as well as NMR-based drug screening. This methodology is especially effective for difficult proteins such as hydrophobic transcription factors, membrane proteins, and others.

  8. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  9. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  10. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  11. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations.

    PubMed

    Zhang, Zhiyong; Smith, Pieter E S; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets. PMID:26723664

  12. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    SciTech Connect

    Zhang, Zhiyong; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan E-mail: lylfj2005@xmu.edu.cn; Chen, Zhong E-mail: lylfj2005@xmu.edu.cn; Smith, Pieter E. S.

    2015-12-28

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials’ structure and dynamics. Because 2D NMR relies on systematic changes in coherences’ phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, “ultrafast” NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  13. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Smith, Pieter E. S.; Cai, Shuhui; Zheng, Zhenyao; Lin, Yulan; Chen, Zhong

    2015-12-01

    A half-century quest for higher magnetic fields has been an integral part of the progress undergone in the Nuclear Magnetic Resonance (NMR) study of materials' structure and dynamics. Because 2D NMR relies on systematic changes in coherences' phases as a function of an encoding time varied over a series of independent experiments, it generally cannot be applied in temporally unstable fields. This precludes most NMR methods from being used to characterize samples situated in hybrid or resistive magnets that are capable of achieving extremely high magnetic field strength. Recently, "ultrafast" NMR has been developed into an effective and widely applicable methodology enabling the acquisition of a multidimensional NMR spectrum in a single scan; it can therefore be used to partially mitigate the effects of temporally varying magnetic fields. Nevertheless, the strong interference of fluctuating fields with the spatial encoding of ultrafast NMR still severely restricts measurement sensitivity and resolution. Here, we introduce a strategy for obtaining high resolution NMR spectra that exploits the immunity of intermolecular zero-quantum coherences (iZQCs) to field instabilities and inhomogeneities. The spatial encoding of iZQCs is combined with a J-modulated detection scheme that removes the influence of arbitrary field inhomogeneities during acquisition. This new method can acquire high-resolution one-dimensional NMR spectra in large inhomogeneous and fluctuating fields, and it is tested with fields experimentally modeled to mimic those of resistive and resistive-superconducting hybrid magnets.

  14. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  15. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  16. Amplification of Xenon NMR and MRI by remote detection

    SciTech Connect

    Moule, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, JulietteA.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-03-31

    A novel technique is proposed in which a nuclear magneticresonance (NMR) spectrum or magnetic resonance image (MRI) is encoded andstored as spin polarization and is then moved to a different physicallocation to be detected. Remote detection allows the separateoptimization of the encoding and detection steps, permitting theindependent choice of experimental conditions, and excitation anddetection methodologies. In the first experimental demonstration of thistechnique, we show that NMR signal can be amplified by taking diluted129Xe from a porous sample placed inside a large encoding coil, andconcentrating it into a smaller detection coil. In general, the study ofNMR active molecules at low concentration that have low physical fillingfactor is facilitated by remote detection. In the second experiment, MRIinformation encoded in a very low field magnet (4-7mT) is transferred toa high field magnet (4.2 T) in order to be detected under optimizedconditions. Furthermore, remote detection allows the utilization ofultra-sensitive optical or superconducting detection techniques, whichbroadens the horizon of NMR experimentation.

  17. PR-CALC: A program for the reconstruction of NMR spectra from projections

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2013-01-01

    Projection-reconstruction NMR (PR-NMR) has attracted growing attention as a method for collecting multidimensional NMR data rapidly. The PR-NMR procedure involves measuring lower-dimensional projections of a higher-dimensional spectrum, which are then used for the mathematical reconstruction of the full spectrum. We describe here the program PR-CALC, for the reconstruction of NMR spectra from projection data. This program implements a number of reconstruction algorithms, highly optimized to achieve maximal performance, and manages the reconstruction process automatically, producing either full spectra or subsets, such as regions or slices, as requested. The ability to obtain subsets allows large spectra to be analyzed by reconstructing and examining only those subsets containing peaks, offering considerable savings in processing time and storage space. PR-CALC is straightforward to use, and integrates directly into the conventional pipeline for data processing and analysis. It was written in standard C++ and should run on any platform. The organization is flexible, and permits easy extension of capabilities, as well as reuse in new software. PR-CALC should facilitate the widespread utilization of PR-NMR in biomedical research. PMID:16604426

  18. Structural investigations of borosilicate glasses containing MoO 3 by MAS NMR and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majérus, O.; Fadel, E.; Quintas, A.; Gervais, C.; Charpentier, T.; Neuville, D.

    2010-01-01

    High molybdenum concentration in glass compositions may lead to alkali and alkaline-earth molybdates crystallization during melt cooling that must be controlled particularly during the preparation of highly radioactive nuclear glassy waste forms. To understand the effect of molybdenum addition on the structure of a simplified nuclear glass and to know how composition changes can affect molybdates crystallization tendency, the structure of two glass series belonging to the SiO 2-B 2O 3-Na 2O-CaO-MoO 3 system was studied by 29Si, 11B, 23Na MAS NMR and Raman spectroscopies by increasing MoO 3 or B 2O 3 concentrations. Increasing MoO 3 amount induced an increase of the silicate network reticulation but no significant effect was observed on the proportion of BO4- units and on the distribution of Na + cations in glass structure. By increasing B 2O 3 concentration, a strong evolution of the distribution of Na + cations was observed that could explain the evolution of the nature of molybdate crystals (CaMoO 4 or Na 2MoO 4) formed during melt cooling.

  19. Sensitivity enhancement of remotely coupled NMR detectors using wirelessly powered parametric amplification.

    PubMed

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2012-09-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D(2) O phantom, (23) Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection. PMID:22246567

  20. Sensitivity Enhancement of Remotely Coupled NMR Detectors using Wirelessly Powered Parametric Amplification

    PubMed Central

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2011-01-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D2O phantom, 23Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection. PMID:22246567

  1. Improving NMR Structures of RNA.

    PubMed

    Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D

    2016-05-01

    Here, we show that modern solution nuclear magnetic resonance (NMR) structures of RNA exhibit more steric clashes and conformational ambiguities than their crystallographic X-ray counterparts. To tackle these issues, we developed RNA-ff1, a new force field for structure calculation with Xplor-NIH. Using seven published NMR datasets, RNA-ff1 improves covalent geometry and MolProbity validation criteria for clashes and backbone conformation in most cases, relative to both the previous Xplor-NIH force field and the original structures associated with the experimental data. In addition, with smaller base-pair step rises in helical stems, RNA-ff1 structures enjoy more favorable base stacking. Finally, structural accuracy improves in the majority of cases, as supported by complete residual dipolar coupling cross-validation. Thus, the reported advances show great promise in bridging the quality gap that separates NMR and X-ray structures of RNA. PMID:27066747

  2. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  3. Analysis of organic matter at the soil-water interface by NMR spectroscopy: Implications for contaminant sorption processes

    NASA Astrophysics Data System (ADS)

    Simpson, M.; Simpson, A.

    2009-05-01

    Contaminant sorption to soil organic matter (OM) is the main fate of nonionic, hydrophobic organic contaminants in terrestrial environments and a number of studies have suggested that both soil OM structure and physical conformation (as regulated by the clay mineral phase) govern contaminant sorption processes. To investigate this further, a number of soil samples were characterized by both solid-state 13 C Cross Polarization Magic Angle Spinning (CPMAS) NMR and 1H High Resolution Magic Angle Spinning (HR- MAS) NMR. HR-MAS NMR is an innovative NMR method that allows one to examine samples that are semi- solid using liquid state NMR methods (ie: observe 1H which is more sensitive than 13C). With HR-MAS NMR, only those structures that are in contact with the solvent are NMR visible thus one can probe different components within a mixture using different solvents. The 1H HR-MAS NMR spectrum of a grassland soil swollen in water (D2O) is dominated by signals from alkyl and O-alkyl structures but signals from aromatic protons are negligible (the peak at ~8.2ppm is attributed to formic acid). When the soil is swollen in DMSO-d6, a solvent which is more penetrating and capable of breaking hydrogen bonds, aromatic signals are visible suggesting that the aromatic structures are buried within the soil matrix and do not exist at the soil-water interface. The 13C solid-state NMR data confirms that aromatic carbon is present in substantial amounts (estimated at ~40% of the total 13C signal) therefore, the lack of 1H aromatic signals in the HR-MAS NMR spectrum indicates that aromatic structures are buried and that the soil-water interface is dominated by aliphatic chains, carbohydrates, and peptides. The NMR data indicates that the mineral component of soils governs the physical conformation of OM at the soil-water interface.

  4. Molecular structure by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Freeman, R.

    Two examples are presented of the use of two-dimensional NMR spectroscopy to solve molecular structure problems. The first is called correlation spectroscopy (COSY) and it allows us to disentangle a complex network of spin-spin couplings. By dispersing the NMR information in two frequency dimensions, it facilitates the analysis of very complex spectra of organic and biochemical molecules, normally too crowded to be tractable. The second application exploits the special properties of multiple-quantum coherence to explore the molecular framework one CC linkage at a time. The natural product panamine is used as a test example; with some supplementary evidence, the structure of this six-ringed heterocyclic molecule is elucidated from the double-quantum filtered two-dimensional spectrum.

  5. A SENSITIVE NMR THERMOMETER FOR MULTINUCLEI FT NMR

    EPA Science Inventory

    A pernicious problem in multinuclei FT NMR is accurate measurement of sample temperature. This arises from several factors including widespread use of high-power decoupling, large sample tubes (with potentially large temperature gradients across the sample volume), and lack of su...

  6. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I = 3/2

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I = 3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments.

  7. Prediction of (19)F NMR Chemical Shifts in Labeled Proteins: Computational Protocol and Case Study.

    PubMed

    Isley, William C; Urick, Andrew K; Pomerantz, William C K; Cramer, Christopher J

    2016-07-01

    The structural analysis of ligand complexation in biomolecular systems is important in the design of new medicinal therapeutic agents; however, monitoring subtle structural changes in a protein's microenvironment is a challenging and complex problem. In this regard, the use of protein-based (19)F NMR for screening low-molecular-weight molecules (i.e., fragments) can be an especially powerful tool to aid in drug design. Resonance assignment of the protein's (19)F NMR spectrum is necessary for structural analysis. Here, a quantum chemical method has been developed as an initial approach to facilitate the assignment of a fluorinated protein's (19)F NMR spectrum. The epigenetic "reader" domain of protein Brd4 was taken as a case study to assess the strengths and limitations of the method. The overall modeling protocol predicts chemical shifts for residues in rigid proteins with good accuracy; proper accounting for explicit solvation of fluorinated residues by water is critical. PMID:27218275

  8. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  9. Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I=3/2.

    PubMed

    Sun, Cheng; Wang, Xuefeng; Wang, Zhixiao

    2016-07-01

    In this work, the effects of various instrumental artifacts on the triple quantum filtered NMR spectra for spin I=3/2 nuclei are investigated. The studied artifacts include finite pulse widths, phase errors, radio frequency field inhomogeneity and pulse transients, which are commonly encountered in practice. The triple quantum filtered spectra are numerically simulated, based on the evolution of the spin density operator under the Hamiltonian for the artifacts. The results show that the presence of the artifacts introduces a shape distortion in the spectrum as well as a variation in the peak intensity, compared with the spectrum without any artifacts. This work indicates that the existence of the instrumental artifacts may cause a misunderstanding of the triple quantum filtered NMR spectra in experiments. The results suggest that one be aware of the instrumental artifacts when performing the triple quantum filtered NMR experiments. PMID:27149654

  10. Lattice simulation method to model diffusion and NMR spectra in porous materials.

    PubMed

    Merlet, Céline; Forse, Alexander C; Griffin, John M; Frenkel, Daan; Grey, Clare P

    2015-03-01

    A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques. PMID:25747093

  11. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  12. Synthesis of stereospecifically deuterated desoxypodophyllotoxins and 1H-nmr assignment of desoxypodophyllotoxin

    NASA Technical Reports Server (NTRS)

    Pullockaran, A. J.; Kingston, D. G.; Lewis, N. G.

    1989-01-01

    [4 beta- 2H1]Desoxypodophyllotoxin [3], [4 alpha- 2H1]desoxypodophyllotoxin [4], and [4, 4- 2 H2]desoxypodophyllotoxin [9] were prepared from podophyllotoxin [1] via its chloride [5]. A complete assignment of the 1H-nmr spectrum of desoxypodophyllotoxin [2] was made on the basis of the spectra of the deuterated compounds [3] and [4].

  13. Scalable synthesis of quaterrylene: solution-phase 1H NMR spectroscopy of its oxidative dication.

    PubMed

    Thamatam, Rajesh; Skraba, Sarah L; Johnson, Richard P

    2013-10-14

    Quaterrylene is prepared in a single reaction and high yield by Scholl-type coupling of perylene, utilizing trifluoromethanesulfonic acid as catalyst and DDQ or molecular oxygen as oxidant. Dissolution in 1 M triflic acid/dichloroethane with sonication yields the aromatic quaterrylene oxidative dication, which is characterized by its (1)H NMR spectrum. PMID:23999880

  14. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  15. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  16. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  17. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  18. Maximum entropy signal processing in practical NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sibisi, Sibusiso; Skilling, John; Brereton, Richard G.; Laue, Ernest D.; Staunton, James

    1984-10-01

    NMR spectroscopy is intrinsically insensitive, a frequently serious limitation especially in biochemical applications where sample size is limited and compounds may be too insoluble or unstable for data to be accumulated over long periods. Fourier transform (FT) NMR was developed by Ernst1 to speed up the accumulation of useful data, dramatically improving the quality of spectra obtained in a given observing time by recording the free induction decay (FID) data directly in time, at the cost of requiring numerical processing. Ernst also proposed that more information could be obtained from the spectrum if the FID was multiplied by a suitable apodizing function before being Fourier transformed. For example (see ref. 2), an increase in sensitivity can result from the use of a matched filter1, whereas an increase in resolution can be achieved by the use of gaussian multiplication1,3, application of sine bells4-8 or convolution difference9. These methods are now used routinely in NMR data processing. The maximum entropy method (MEM)10 is theoretically capable of achieving simultaneous enhancement in both respects11, and this has been borne out in practice in other fields where it has been applied. However, this technique requires relatively heavy computation. We describe here the first practical application of MEM to NMR, and we analyse 13C and 1H NMR spectra of 2-vinyl pyridine. Compared with conventional spectra, MEM gives considerable suppression of noise, accompanied by significant resolution enhancement. Multiplets in the 1H spectra are resolved better leading to improved visual clarity.

  19. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  20. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K. PMID:9650797

  1. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  2. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  3. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  4. Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Ruhayel, Rasha A.; Berners-Price, Susan J.

    2010-01-01

    2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…

  5. New insights into the bonding arrangements of L- and D-glutamates from solid state 17O NMR

    NASA Astrophysics Data System (ADS)

    Lemaitre, V.; Pike, K. J.; Watts, A.; Anupold, T.; Samoson, A.; Smith, M. E.; Dupree, R.

    2003-03-01

    Magic angle spinning (MAS) from L- and D-glutamic acid-HCl at 14.1 T produces highly structured and very similar NMR spectra. Lines from all 4 oxygen sites are readily distinguished and assigned. These 17O NMR spectra are very different from the previously reported 17O spectrum of the D, L-form presumably because that was a racemic crystal. 17O NMR from L-monosodium glutamate-HCl is very different again requiring the application of double angle rotation and 3 quantum MAS NMR to provide resolution of 5 different sites. Hence high resolution 17O solid state NMR techniques offer possible new insight into biochemical bonding processes.

  6. Graphical interpretation of Boolean operators for protein NMR assignments.

    PubMed

    Verdegem, Dries; Dijkstra, Klaas; Hanoulle, Xavier; Lippens, Guy

    2008-09-01

    We have developed a graphics based algorithm for semi-automated protein NMR assignments. Using the basic sequential triple resonance assignment strategy, the method is inspired by the Boolean operators as it applies "AND"-, "OR"- and "NOT"-like operations on planes pulled out of the classical three-dimensional spectra to obtain its functionality. The method's strength lies in the continuous graphical presentation of the spectra, allowing both a semi-automatic peaklist construction and sequential assignment. We demonstrate here its general use for the case of a folded protein with a well-dispersed spectrum, but equally for a natively unfolded protein where spectral resolution is minimal. PMID:18762868

  7. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  8. Study of chemically inequivalent N(CH3)4 ions in [N(CH3)4]2ZnBr4 near the phase transition temperature using 1H MAS NMR, 13C CP/MAS NMR, and 14N NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-02-01

    The temperature dependences of the chemical shifts and intensities of 1H, 13C, and 14N nuclei in tetramethylammonium tetrabromozincate, [N(CH3)4]2ZnBr4, were investigated using single-crystal nuclear magnetic resonance (NMR) and magic angle spinning (MAS) NMR spectroscopy to elucidate the structural geometry near the phase transition temperature. Based on the analysis of the 13C cross-polarization (CP)/MAS NMR and 14N NMR spectra, the two chemically inequivalent N(1) (CH3)4 and N(2) (CH3)4 ions were distinguished. Furthermore, the 14N NMR spectrum at the phase transition temperature indicated the existence of the ferroelastic characteristics of the N(CH3)4 ions.

  9. High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection.

    PubMed

    Eghbalnia, Hamid R; Bahrami, Arash; Tonelli, Marco; Hallenga, Klaas; Markley, John L

    2005-09-14

    We describe a novel approach to the rapid collection and processing of multidimensional NMR data: "high-resolution iterative frequency identification for NMR" (HIFI-NMR). As with other reduced dimensionality approaches, HIFI-NMR collects n-dimensional data as a set of two-dimensional (2D) planes. The HIFI-NMR algorithm incorporates several innovative features. (1) Following the initial collection of two orthogonal 2D planes, tilted planes are selected adaptively, one-by-one. (2) Spectral space is analyzed in a rigorous statistical manner. (3) An online algorithm maintains a model that provides a probabilistic representation of the three-dimensional (3D) peak positions, derives the optimal angle for the next plane to be collected, and stops data collection when the addition of another plane would not improve the data model. (4) A robust statistical algorithm extracts information from the plane projections and is used to drive data collection. (5) Peak lists with associated probabilities are generated directly, without total reconstruction of the 3D spectrum; these are ready for use in subsequent assignment or structure determination steps. As a proof of principle, we have tested the approach with 3D triple-resonance experiments of the kind used to assign protein backbone and side-chain resonances. Peaks extracted automatically by HIFI-NMR, for both small and larger proteins, included approximately 98% of real peaks obtained from control experiments in which data were collected by conventional 3D methods. HIFI-NMR required about one-tenth the time for data collection and avoided subsequent data processing and peak-picking. The approach can be implemented on commercial NMR spectrometers and is extensible to higher-dimensional NMR. PMID:16144400

  10. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  11. Metabolic engineering applications of in vivo sup 31 P and sup 13 C NMR studies of Saccharomyces cerevisiae

    SciTech Connect

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo {sup 31}P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the {sup 31}P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, {beta}-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the {sup 31}P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP{sub 1}) is established. Transient measurements provided by {sup 31}P NMR are applied to reg1 mutant and standard strains. {sup 31}P and {sup 13}C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered.

  12. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  13. Solution NMR of large molecules and assemblies†

    PubMed Central

    Foster, Mark P.; McElroy, Craig A.; Amero, Carlos D.

    2008-01-01

    Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D–4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics and interactions of smaller macromolecules (< ~25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes, and provide a perspective on the wide range of applications of NMR to biochemical problems. PMID:17209543

  14. Two-dimensional NMR spectrometry

    SciTech Connect

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  15. NMR investigation of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Kwanghyo; Jang, Zeehoon

    2013-01-01

    109Ag nuclear magnetic resonance (NMR) and relaxation measurements have been performed on two powder samples of Ag nanoparticles with average sizes of 20 nm and 80 nm. The measurements have been done in an external field of 9.4 T and in the temperature range 10 K < T < 280 K. The 109Ag NMR spectra for both samples have close to Lorentzian shapes and turn out to be mixtures of homogeneous and inhomogeneous lines. The linewidth Δ ν at room temperature is 1.3 kHz for both samples and gradually increases with decreasing temperature. Both the Knight shift ( K) and the nuclear spin-lattice relaxation rate (1/ T 1) are observed to be almost identical to the values reported for the bulk Ag metal, whereby the Korringa ratio R(= K 2 T 1 T/S) is found to be 2.0 for both samples in the investigated temperature range.

  16. REDOR NMR for Drug Discovery

    PubMed Central

    Cegelski, Lynette

    2014-01-01

    Rotational-Echo DOuble-Resonance (REDOR) NMR is a powerful and versatile solid-state NMR measurement that has been recruited to elucidate drug modes of action and to drive the design of new therapeutics. REDOR has been implemented to examine composition, structure, and dynamics in diverse macromolecular and whole-cell systems, including taxol-bound microtubules, enzyme-cofactor-inhibitor ternary complexes, and antibiotic-whole-cell complexes. The REDOR approach involves the integrated design of specific isotopic labeling strategies and the selection of appropriate REDOR experiments. By way of example, this digest illustrates the versatility of the REDOR approach, with an emphasis on the practical considerations of experimental design and data interpretation. PMID:24035486

  17. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  18. Measurement of deformations by NMR

    NASA Astrophysics Data System (ADS)

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2015-12-01

    Two NMR data acquisition protocols together with corresponding data processing algorithms for locating macroscopic objects, measuring distances between them or monitoring their displacements or deformations with microscopic precision are presented and discussed. The performance of the methods is demonstrated by applying them to the measurement of deformations of a freely supported beam under loading. We believe that our methods will find their applications in mechanics, civil engineering and medicine.

  19. Solution NMR of polypeptides hyperpolarized by dynamic nuclear polarization.

    PubMed

    Ragavan, Mukundan; Chen, Hsueh-Ying; Sekar, Giridhar; Hilty, Christian

    2011-08-01

    Hyperpolarization of nuclear spins through techniques such as dynamic nuclear polarization (DNP) can greatly increase the signal-to-noise ratio in NMR measurements, thus eliminating the need for signal averaging. This enables the study of many dynamic processes which would otherwise not be amenable to study by NMR spectroscopy. A report of solid- to liquid-state DNP of a short peptide, bacitracin A, as well as of a full-length protein, L23, is presented here. The polypeptides are hyperpolarized at low temperature and dissolved for NMR signal acquisition in the liquid state in mixtures of organic solvent and water. Signal enhancements of 300-2000 are obtained in partially deuterated polypeptide when hyperpolarized on (13)C and of 30-180 when hyperpolarized on (1)H. A simulated spectrum is used to identify different resonances in the hyperpolarized (13)C spectra, and the relation between observed signal enhancement for various groups in the protein and relaxation parameters measured from the hyperpolarized samples is discussed. Thus far, solid- to liquid-state DNP has been used in conjunction with small molecules. The results presented here, however, demonstrate the feasibility of hyperpolarizing larger proteins, with potential applications toward the study of protein folding or macromolecular interactions. PMID:21651293

  20. Improved spin-echo-edited NMR diffusion measurements.

    PubMed

    Otto, W H; Larive, C K

    2001-12-01

    The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the (1)H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin. PMID:11740906

  1. Classification of commercial Catuaba samples by NMR, HPLC and chemometrics.

    PubMed

    Daolio, Cristina; Beltrame, Flávio L; Ferreira, Antonio G; Cass, Quezia B; Cortez, Diógenes Aparício Garcia; Ferreira, Márcia M C

    2008-01-01

    For over a century, Catuaba has been used in Brazilian folk medicine as an aphrodisiac even though the identity of the plant material employed is often uncertain. The species recommended by the Brazilian Pharmacopeia is Anemopaegma arvense (Bignoniaceae), but many other plants, regionally known as Catuaba, are commercialised. Frequently, the quality control of such a complex system is based on chemical markers that do not supply a general idea of the system. With the advent of the metabolomics approach, a global analysis of samples becomes possible. It appears that (1)H-NMR is the most useful method for such application, since it can be used as a wide-spectrum chemical analysis technique. Unfortunately, the generated spectra is complex so a possible approach is to look at the metabolite profile as a whole using multivariate methods, for example, by application of principal component analysis (PCA). In the present paper, we describe for the first time a proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H-HR-MAS NMR) method coupled with PCA for the metabolomic analysis of some commercial Catuaba samples, which provided a reduction in the time required for such analysis. A comparative study of HPLC, HR-MAS and liquid-NMR techniques is also reported. PMID:17890569

  2. NMR studies of magnetic properties in Heusler-type Mn 3 Si

    NASA Astrophysics Data System (ADS)

    Niki, H.; Yogi, M.; Nakamura, S.; Uechi, A.; Tomiyoshi, S.

    2013-05-01

    In order to microscopically investigate the magnetic properties of both paramagnetic and antiferromagnetic phases in Mn3Si ( T N = 23 K), the 55Mn NMR has been carried out at temperatures between 2.2 K and 300 K. The temperature dependences of the spectrum, Knight shift (or resonance frequency shift) and spin-lattice relaxation time T 1 of 55Mn NMR have been measured. In the paramagnetic phase, only one resonance spectrum can be obtained. The observed spectrum is identified to be a signal corresponding to the Mn(II) site. In the antiferromagnetic phase, two different spectra corresponding to the Mn(I) and Mn(II) sites are found at the resonance frequencies of 145 and 6 MHz, respectively, by the zero field NMR at 4.2 K. From these results, the internal magnetic fields on the 55Mn(I) and 55Mn(II) nuclei are found to be 13.6 and 0.6 T, respectively. According to the NMR results, the helical structure in incommensurate Mn spin states is better explained compared with the transverse sinusoidal structure.

  3. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E. S.; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method’s potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet’s homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy’s capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences’ performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  4. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools.

    PubMed

    Cuny, M; Vigneau, E; Le Gall, G; Colquhoun, I; Lees, M; Rutledge, D N

    2008-01-01

    To discriminate orange juice from grapefruit juice in a context of fraud prevention, (1)H NMR data were submitted to different treatments to extract informative variables which were then analysed using multivariate techniques. Averaging contiguous data points of the spectrum followed by logarithmic transformation improved the results of the data analysis. Moreover, supervised variable selection methods gave better rates of classification of the juices into the correct groups. Last, independent-component analysis gave better classification results than principal-component analysis. Hence, ICA may be an efficient chemometric tool to detect differences in the (1)H NMR spectra of similar samples, and so may be useful for authentication of foods. PMID:18026939

  5. Thin film NMR T1 measurement by MRFM using cyclic adiabatic inversion

    NASA Astrophysics Data System (ADS)

    Kwon, Sungmin; Saun, Seung-Bo; Lee, Soonchil; Won, Soonho

    2014-03-01

    We obtained the NMR spectrum and the spin lattice relaxation time (T1) for thin film samples using Magnetic Resonance Force Microscopy (MRFM). The samples were Alq3, which is widely used as an organic light emitting diode (OLED), thin films of 150 nm thick and a bulk crystal. T1 was measured by using the cyclic adiabatic inversion method at a fixed frequency of 297 MHz and at 12 K. To confirm the reliability of our measurement technique we compared the result with that obtained by conventional NMR method. T1 of thin film samples was measured and compared with that of the bulk sample. thin film, MRFM.

  6. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.

    PubMed

    Hassanieh, Haitham; Mayzel, Maxim; Shi, Lixin; Katabi, Dina; Orekhov, Vladislav Yu

    2015-09-01

    Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum. PMID:26123316

  7. Scalable NMR spectroscopy with semiconductor chips

    PubMed Central

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-01-01

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm2 silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  8. Scalable NMR spectroscopy with semiconductor chips.

    PubMed

    Ha, Dongwan; Paulsen, Jeffrey; Sun, Nan; Song, Yi-Qiao; Ham, Donhee

    2014-08-19

    State-of-the-art NMR spectrometers using superconducting magnets have enabled, with their ultrafine spectral resolution, the determination of the structure of large molecules such as proteins, which is one of the most profound applications of modern NMR spectroscopy. Many chemical and biotechnological applications, however, involve only small-to-medium size molecules, for which the ultrafine resolution of the bulky, expensive, and high-maintenance NMR spectrometers is not required. For these applications, there is a critical need for portable, affordable, and low-maintenance NMR spectrometers to enable in-field, on-demand, or online applications (e.g., quality control, chemical reaction monitoring) and co-use of NMR with other analytical methods (e.g., chromatography, electrophoresis). As a critical step toward NMR spectrometer miniaturization, small permanent magnets with high field homogeneity have been developed. In contrast, NMR spectrometer electronics capable of modern multidimensional spectroscopy have thus far remained bulky. Complementing the magnet miniaturization, here we integrate the NMR spectrometer electronics into 4-mm(2) silicon chips. Furthermore, we perform various multidimensional NMR spectroscopies by operating these spectrometer electronics chips together with a compact permanent magnet. This combination of the spectrometer-electronics-on-a-chip with a permanent magnet represents a useful step toward miniaturization of the overall NMR spectrometer into a portable platform. PMID:25092330

  9. Advanced NMR technology for bioscience and biotechnology

    SciTech Connect

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J.; Boumenthal, D.K.; Kennedy, M.A.; Moore, G.J.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  10. New applications and perspectives of fast field cycling NMR relaxometry.

    PubMed

    Steele, Rebecca M; Korb, Jean-Pierre; Ferrante, Gianni; Bubici, Salvatore

    2016-06-01

    The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of the magnetic field are used) allows determination of the spin-lattice relaxation time (T1 ) continuously over five decades of Larmor frequency. The method can be exploited to observe the T1 frequency dependence of protons, as well as any other NMR-sensitive nuclei, such as (2) H, (13) C, (31) P, and (19) F in a wide range of substances and materials. The information obtained is directly correlated with the physical/chemical properties of the compound and can be represented as a 'nuclear magnetic resonance dispersion' curve. We present some recent academic and industrial applications showing the relevance of exploiting FFC NMR relaxometry in complex materials to study the molecular dynamics or, simply, for fingerprinting or quality control purposes. The basic nuclear magnetic resonance dispersion features are outlined in representative examples of magnetic resonance imaging (MRI) contrast agents, porous media, proteins, and food stuffs. We will focus on the new directions and perspectives for the FFC technique. For instance, the introduction of the latest Wide Bore FFC NMR relaxometers allows probing, for the first time, of the dynamics of confined surface water contained in the macro-pores of carbonate rock cores. We also evidence the use of the latest field cycling technology with a new cryogen-free variable-field electromagnet, which enhances the range of available frequencies in the 2D T1 -T2 correlation spectrum for separating oil and water in crude oil. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25855084

  11. The Use of Dodecylphosphocholine Micelles in Solution NMR

    NASA Astrophysics Data System (ADS)

    Kallick, D. A.; Tessmer, M. R.; Watts, C. R.; Li, C. Y.

    Dodecylphosphocholine (DPC) micelles are useful as a model membrane system for solution NMR. Several new observations on dodecylphosphocholine micelles and their interactions with opioid peptides are described. The optimal lipid concentration has been investigated for small peptide NMR studies in DPC micelles for two opioid peptides, a 5-mer and a 17-mer. In contrast to reports in the literature, identical 2D spectra have been observed at low and high lipid concentrations. The chemical shift of resolved peptide proton resonances has been followed as a function of added lipid and indicates that there are changes in the chemical shifts above the critical micelle concentration and up to a ratio of 7:1 (lipid:peptide) for the 17-mer, and 9.6:1 for the 5-mer. These results suggest that conformational changes occur in the peptide significantly above the critical micelle concentration, up to a lipid:peptide ratio which is dependent upon the peptide, here ranging from 7:1 to 9.6:1. To address the stoichiometry more directly, the diffusion coefficients of the lipid alone and the lipid with peptide have been measured using pulsed-field gradient spin-echo NMR experiments. These data have been used to calculate the hydrodynamic radius and the aggregation number of the micelle with and without peptide and show that the aggregation number of the peptide-lipid complex increases at high lipid concentrations without a concomitant change in the peptide conformation. Last, several protonated impurities have been observed in the commercial preparation of DPC which resonate in the amide proton region of the NMR spectrum. These results are significant for researchers using DPC micelles and illustrate that both care in sample preparation and the stoichiometry are important issues with the use of DPC as a model membrane.

  12. Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy.

    PubMed

    Rachocki, A; Latanowicz, L; Tritt-Goc, J

    2012-12-01

    Proton nuclear magnetic resonance (NMR) techniques, such as field-cycling relaxometry, wide-line NMR spectroscopy, and magic angle spinning NMR spectroscopy, were applied to study the seeds of cress, Lepidium sativum. Field-cycling NMR relaxometry was used for the first time to investigate the properties of the whole molecular system of dry cress seeds. This method not only allowed the dynamics to be studied, but was also successful in the differentiation among the solid (i.e., carbohydrates, proteins, or fats forming a solid form of lipids) and liquid-like (oil compounds) components of the seeds. The (1)H NMR relaxation dispersion of oils was interpreted as a superposition of intramolecular and intermolecular contributions. The intramolecular part was described in terms of a Lorentzian spectral density function, whereas a log-Gaussian distribution of correlation times was applied for the intermolecular dipole-dipole contribution. The models applied led to very good agreement with the experimental data and demonstrate that the contribution of the intermolecular relaxation to the overall relaxation should not be disregarded, especially at low frequencies. A power-law frequency dependence of the proton relaxation dispersion was used for the interpretation of the solid components. From the analysis of the (1)H wide-line NMR spectra of the liquid-like component of hydrated cress seeds, we can conclude that the contribution of oil protons should always be taken into account when evaluating the spin-lattice relaxation times values or measuring the moisture and oil content. The application of (1)H magic angle spinning NMR significantly improves resolution in the liquid-like spectrum of seeds and allows the determination of the chemical composition of cress seeds. PMID:23001307

  13. Investigation of Ti-doped NaAlH4 by solid-state NMR

    SciTech Connect

    Maxwell, R; Majzoub, E; Herberg, J

    2003-11-24

    In recent years, the development of Ti-doped NaAlH{sub 4} as a hydrogen storage material has gained attention because of its large weight percentage of hydrogen ({approx}5%) compared to traditional interstitial hydrides. The addition of transition-metal dopants, in the form of Ti-halides, such as TiCl{sub 3}, dramatically improves the kinetics of the absorption and desorption of hydrogen from NaAlH{sub 4}. However, the role that Ti plays in enhancing the absorption and desorption of H{sub 2} is still unknown. In the present study, {sup 27}Al, {sup 23}Na, and {sup 1}H MAS (Magic Angle Spinning) NMR (Nuclear Magnetic Resonance) has been performed to understand the titanium speciation in Ti-doped NaAlH{sub 4}. All experiments were performed on a sample of crushed single crystals exposed to Ti during growth, a sample of solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, a reacted sample of solvent-mixed TiCl{sub 3} + {sup 3}NaAlH{sub 4} with THF, and a reacted sample of ball-milled TiCl3 + 3NaAlH{sub 4}. The {sup 27}Al MAS NMR has shown differences in compound formation between solvent-mixed TiCl{sub 3} + 3NaAlH{sub 4} with THF and the mechanically ball-milled TiCl{sub 3} + 3NaAlH{sub 4}. {sup 27}Al MAS NMR of the mechanically ball-milled mixture of fully-reacted TiCl{sub 3} + 3NaAlH{sub 4} showed spectral signatures of TiAl{sub 3} while, the solvent-mixed 4TiCl{sub 3} + 112NaAlH{sub 4}, which is totally reacted, does not show the presences of TiAl{sub 3}, but shows the existence of Al{sub 2}O{sub 3}.

  14. High-Resolution Iterative Frequency Identification for NMR as a General Strategy for Multidimensional Data Collection

    PubMed Central

    Bahrami, Arash; Tonelli, Marco; Hallenga, Klaas; Markley, John L.

    2015-01-01

    We describe a novel approach to the rapid collection and processing of multidimensional NMR data: “high-resolution iterative frequency identification for NMR” (HIFI–NMR). As with other reduced dimensionality approaches, HIFI–NMR collects n-dimensional data as a set of two-dimensional (2D) planes. The HIFI–NMR algorithm incorporates several innovative features. (1) Following the initial collection of two orthogonal 2D planes, tilted planes are selected adaptively, one-by-one. (2) Spectral space is analyzed in a rigorous statistical manner. (3) An online algorithm maintains a model that provides a probabilistic representation of the three-dimensional (3D) peak positions, derives the optimal angle for the next plane to be collected, and stops data collection when the addition of another plane would not improve the data model. (4) A robust statistical algorithm extracts information from the plane projections and is used to drive data collection. (5) Peak lists with associated probabilities are generated directly, without total reconstruction of the 3D spectrum; these are ready for use in subsequent assignment or structure determination steps. As a proof of principle, we have tested the approach with 3D triple-resonance experiments of the kind used to assign protein backbone and side-chain resonances. Peaks extracted automatically by HIFI–NMR, for both small and larger proteins, included ~98% of real peaks obtained from control experiments in which data were collected by conventional 3D methods. HIFI–NMR required about one-tenth the time for data collection and avoided subsequent data processing and peak-picking. The approach can be implemented on commercial NMR spectrometers and is extensible to higher-dimensional NMR. PMID:16144400

  15. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  16. Pseudogap in Fe2VGa: NMR evidence

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Ross, Joseph H.

    2001-02-01

    We report the results of a 51V and 69Ga nuclear magnetic resonance (NMR) study of Fe2VGa at temperatures between 4 and 450 K. The presence of magnetic antisite defects is deduced from the NMR linewidth, which displays a Curie-law temperature dependence. The absence of associated NMR shifts indicates the material to be intrinsically nonmagnetic. At low temperatures the NMR spin-lattice relaxation rate exhibits Korringa behavior, indicating a small carrier density at the Fermi level. At elevated temperatures, the Knight shifts and NMR relaxation rates go over to a thermally activated response, a semiconductor-like behavior. These results are consistent with pseudogap features identified by recent band structure calculations. The Fermi level density of states deduced from NMR is considerably smaller than given by the specific heat coefficient, γ. The electronic properties are compared to the isostructural semimetal Fe2VAl.

  17. Autism Spectrum Disorder

    MedlinePlus

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a ... and pervasive developmental disorders. It is called a "spectrum" disorder because people with ASD can have a ...

  18. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral ... for autism spectrum disorder (ASD) and other developmental disabilities. More E-mail Your Friends "Children with autism ...

  19. Applications of NMR in Dairy Research

    PubMed Central

    Maher, Anthony D.; Rochfort, Simone J.

    2014-01-01

    NMR is a robust analytical technique that has been employed to investigate the properties of many substances of agricultural relevance. NMR was first used to investigate the properties of milk in the 1950s and has since been employed in a wide range of studies; including properties analysis of specific milk proteins to metabolomics techniques used to monitor the health of dairy cows. In this brief review, we highlight the different uses of NMR in the dairy industry. PMID:24958391

  20. Hyphenated low-field NMR techniques: combining NMR with NIR, GPC/SEC and rheometry.

    PubMed

    Räntzsch, Volker; Wilhelm, Manfred; Guthausen, Gisela

    2016-06-01

    Hyphenated low-field NMR techniques are promising characterization methods for online process analytics and comprehensive offline studies of soft materials. By combining different analytical methods with low-field NMR, information on chemical and physical properties can be correlated with molecular dynamics and complementary chemical information. In this review, we present three hyphenated low-field NMR techniques: a combination of near-infrared spectroscopy and time-domain NMR (TD-NMR) relaxometry, online (1) H-NMR spectroscopy measured directly after size exclusion chromatographic (SEC, also known as GPC) separation and a combination of rheometry and TD-NMR relaxometry for highly viscous materials. Case studies are reviewed that underline the possibilities and challenges of the different hyphenated low-field NMR methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25854997

  1. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Stark, S. C.; Strange, J. H.

    2005-06-01

    To further expand on the understanding of surface interactions at the liquid/solid interface on pore walls, the nuclear magnetic resonance (NMR) techniques of cryoporometry and relaxometry have been combined. The combination of these techniques allows variations in NMR relaxation parameters from pore surface to volume ratio changes and from surface interaction changes to be distinguished. By studying a range of sol-gel silicas from two different sources, it was noted that the relaxation time measurements were not consistent with the pore diameters determined by cryoporometry and N2 gas adsorption. Instead distinctly different relaxivity constants were determined for each absorbate in each of the two brands of silica. It was clear that the relaxation times were modified by more than just the pore geometry. Independent experiments on the two brands of silica suggested that the relaxometry results were heavily influenced by the concentration of paramagnetic relaxation centres in the silica gels. The strength of surface interaction, and hence surface affinity, was seen to depend on the liquid in the pores. Using this difference in surface affinities, binary mixtures of alkanes placed in sol-gel silicas were separated via preferential absorption and their components identified using cryoporometry, whereas the components could not be distinguished in the bulk liquid.

  2. Spin-Exchange-Pumped NMR Gyros

    NASA Astrophysics Data System (ADS)

    Walker, T. G.; Larsen, M. S.

    We present the basic theory governing spin-exchange pumped NMR gyros. We review the basic physics of spin-exchange collisions and relaxation as they pertain to precision NMR. We present a simple model of operation as an NMR oscillator and use it to analyze the dynamic response and noise properties of the oscillator. We discuss the primary systematic errors (differential alkali fields, quadrupole shifts, and offset drifts) that limit the bias stability, and discuss methods to minimize them. We give with a brief overview of a practical implementation and performance of an NMR gyro built by Northrop-Grumman Corporation, and conclude with some comments about future prospects.

  3. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  4. Solid-state NMR and Membrane Proteins

    PubMed Central

    Opella, Stanley J.

    2015-01-01

    The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers. PMID:25681966

  5. NMR exposure sensitizes tumor cells to apoptosis.

    PubMed

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies. PMID:16528477

  6. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  7. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    ERIC Educational Resources Information Center

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which spectral…

  8. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-01

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach. PMID:20681586

  9. Improved Carbohydrate Structure Generalization Scheme for (1)H and (13)C NMR Simulations.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2015-07-21

    The improved Carbohydrate Structure Generalization Scheme has been developed for the simulation of (13)C and (1)H NMR spectra of oligo- and polysaccharides and their derivatives, including those containing noncarbohydrate constituents found in natural glycans. Besides adding the (1)H NMR calculations, we improved the accuracy and performance of prediction and optimized the mathematical model of the precision estimation. This new approach outperformed other methods of chemical shift simulation, including database-driven, neural net-based, and purely empirical methods and quantum-mechanical calculations at high theory levels. It can process structures with rarely occurring and noncarbohydrate constituents unsupported by the other methods. The algorithm is transparent to users and allows tracking used reference NMR data to original publications. It was implemented in the Glycan-Optimized Dual Empirical Spectrum Simulation (GODESS) web service, which is freely available at the platform of the Carbohydrate Structure Database (CSDB) project ( http://csdb.glycoscience.ru). PMID:26087011

  10. NMR difference spectroscopy with a dual saddle-coil difference probe.

    PubMed

    Macnaughtan, Megan A; Smith, Aaron P; Goldsbrough, Peter B; Santini, Robert E; Raftery, Daniel

    2004-03-01

    A new difference probe for nuclear magnetic resonance (NMR) spectroscopy is presented. The difference probe uses two saddle-shaped coils to excite and detect two samples simultaneously. The samples are held in a specially modified 3-mm NMR tube with an Ultem plastic disk to separate the samples. The probe's resonant circuit contains two crossed diodes that passively switch the relative phase of each coil during the NMR experiment. The result is a difference spectrum from the two samples. The degree of cancellation of common signals was determined to be approximately 90%, and the application of the probe to relaxation-edited difference spectroscopy for identifying protein-ligand interactions was demonstrated using glutathione and glutathione S-transferase binding protein. PMID:15214412

  11. Spin fluctuations in La2-xSrxCuO4: NMR versus inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barzykin, V.; Pines, D.; Thelen, D.

    1994-12-01

    We use a one-component description to analyze the current experimental situation for the low-frequency magnetic properties of La1.85Sr0.15CuO4 as determined by NMR and neutron-scattering experiments. We show that the measured 17O spin-lattice relaxation rate is in sharp conflict with the incommensurate-magnetic-structure interpretation of neutron-scattering experiments, but is quantitatively explained if the local-spin-fluctuation spectrum (measured by NMR) possesses a commensurate peak. We conclude that the formation of domains, as suggested by Slichter and Phillips, represents the best (and, quite possibly, only) way of reconciling NMR and neutron-scattering experiments on La1.85Sr0.15CuO4.

  12. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  13. Diamagnetic lanthanide tris beta-diketonates as organic-soluble chiral NMR shift reagents.

    PubMed

    Wenzel, Thomas J; Wenzel, Bradford T

    2009-01-01

    Diamagnetic lanthanium(III) and lutetium(III) tris beta-diketonate complexes of 3-(trifluoroacetyl)-d-camphor, 3-(heptafluorobutyryl)-d-camphor, and d,d-dicampholylmethane are shown to be effective chiral NMR shift reagents for determining the enantiomeric purity of compounds with hard Lewis base functional groups. These include substrates with amine, alcohol, epoxide, sulfoxide, and oxaxolidine moieties. Enantiomeric discrimination is observed in the (1)H NMR spectrum. Diamagnetic lanthanide complexes represent an alternative to paramagnetic varieties that often cause too much line broadening in the NMR spectra. The choice of which metal to use varies with substrate. Similarly, there is no consistent trend with ligand as not one of the complexes is consistently better than the others for all substrates. The enantiomeric discrimination also varies with solvent. Comparisons show that the chiral recognition was usually larger in benzene-d(6) than in chloroform-d or cyclohexane-d(12). PMID:18506837

  14. Magnetic susceptibility effects on 13C MAS NMR spectra of carbon materials and graphite.

    PubMed

    Freita, J C; Emmerich, F G; Cernicchiaro, G R; Sampaio, L C; Bonagamba, T J

    2001-01-01

    13C high-resolution solid-state nuclear magnetic resonance (NMR) was employed to study carbon materials prepared through the thermal decomposition of four different organic precursors (rice hulls, endocarp of babassu coconut, peat, and PVC). For heat treatment temperatures (HTTs) above about 600 C, all materials presented 13C NMR spectra composed of a unique resonance line associated with carbon atoms in aromatic planes. With increasing HTT a continuous broadening of this resonance and a diamagnetic shift in its central frequency were verified for all samples. The evolution of the magnitude and anisotropy of the magnetic susceptibility of the heat-treated carbon samples with HTT explains well these findings. It is shown that these results are better understood when a comparison is made with the features of the 13C NMR spectrum of polycrystalline graphite, for which the magnetic susceptibility effect is also present and is much more pronounced. PMID:11529420

  15. Verwey transition of nano-sized magnetite crystals investigated by 57Fe NMR

    NASA Astrophysics Data System (ADS)

    Lim, Sumin; Choi, Baek Soon; Lee, Soon Chil; Hong, Jaeyoung; Lee, Jisoo; Hyeon, Taeghwan; Kim, Taehun; Jeong, Jaehong; Park, Je-Geun

    It is well known that magnetite crystals undergo a metal-insulator transition at the Verwey transition temperature, TV = 123 K. In this work, we studied the Verwey transition of nano-sized crystals with 57Fe NMR. In the metallic state above Tv, the NMR spectrum shows a single sharp peak, which broadens below TV indicating the Verwey transition. We measured the spectra of the nano-crystals with radii of 16 nm, 25 nm, and 40 nm and compared with that of a bulk. The transition temperature obtained from the NMR spectra depends on both the crystal size and crystallinity. When the crystal size decreases from bulk to 16 nm, the transition temperature drops from 123 K to 100 K. The transition temperature of the samples kept dry air decrease due to aging.

  16. 103Rh-NMR studies in the superconductor Rh17S15

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Kanda, K.; Ueda, K.; Mito, T.; Kohara, T.; Nakamura, H.

    2010-01-01

    103Rh nuclear magnetic resonance (NMR) measurements have been performed in the superconductor Rh17S15 with the transition temperature TC=5.4 K. The observed 103Rh-NMR spectrum shows an asymmetric shape with several peaks, reflecting the local symmetry around each Rh site. We have identified the observed NMR lines corresponding to four different Rh sites and obtained the temperature (T) dependence of the Knight shift of 24m site. The isotropic part of the Knight shift Kiso decreases with decreasing T, indicating the existence of the electron correlation in Rh17S15. In the superconducting state, the resonance lines shift to higher frequencies owing to a decrease of the spin part of the Knight shift with negative hyperfine coupling.

  17. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  18. Picoliter H-1 NMR Spectroscopy

    SciTech Connect

    Minard, Kevin R. ); Wind, Robert A. )

    2002-02-01

    A RF probe that fits inside the bore of a small gradient coil package is described for routine 1H-NMR microscopy measurements on small samples. The probe operates at 500 MHz and houses a 267-um-diameter solenoid transceiver. When used in three dimensional chemical shift imaging (3D-CSI) experiments, the measured signal-to-noise ratio (SNR) is shown to be within 20-30 percent of theoretical limits formulated by only considering the solenoid's resistive losses. This is illustrated using a 100-um-diameter globule of triacylglycerols ({approx}900mM) that may be an oocyte precursor in young Xenopus Laevis frogs, and water sample containing choline at a concentration often found in live cells ({approx}33mM). In chemical shift images generated using a few thousand scans, the choline methyl line is found to have an acceptable SNR in resolved from just 5 picoliters in the Xenopus globule. It is concluded that the probe's sensitivity is sufficient for performing 1H-NMR on picoliter-scale volumes in biological cells and tissues.

  19. NMR Spectroscopy and Its Value: A Primer

    ERIC Educational Resources Information Center

    Veeraraghavan, Sudha

    2008-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is widely used by chemists. Furthermore, the use of NMR spectroscopy to solve structures of macromolecules or to examine protein-ligand interactions is popular. Yet, few students entering graduate education in biological sciences have been introduced to this method or its utility. Over the last six…

  20. An Integrated Laboratory Project in NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Hudson, Reggie L.; Pendley, Bradford D.

    1988-01-01

    Describes an advanced NMR project that can be done with a 60-MHz continuous-wave proton spectrometer. Points out the main purposes are to give students experience in second-order NMR analysis, the simplification of spectra by raising the frequency, and the effect of non-hydrogen nuclei on proton resonances. (MVL)

  1. An Inversion Recovery NMR Kinetics Experiment

    ERIC Educational Resources Information Center

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  2. Using Cloud Storage for NMR Data Distribution

    ERIC Educational Resources Information Center

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  3. Large NMR signals and polarization asymmetries.

    SciTech Connect

    Penttila, S. I.

    1998-11-25

    A large modulation in the series Q-meter can lead to nonlinear NMR signals and asymmetric polarization values. With a careful circuit analysis the nonlinearity can be estimated and corrections to polarization can be determined as a function of the strength of the modulation. We describe the recent LAMPF polarized proton target experiment, its NMR measurement and corrections to the measured polarizations.

  4. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.

    PubMed

    Yang, Lu; Moreno, Aitor; Fieber, Wolfgang; Brauchli, Robert; Sommer, Horst

    2015-04-01

    Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation. PMID:25616134

  5. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    PubMed

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  6. Total (1)H NMR assignment of 3β-acetoxypregna-5,16-dien-20-one.

    PubMed

    Becerra-Martinez, Elvia; Ramírez-Gualito, Karla E; Pérez-Hernández, Nury; Joseph-Nathan, Pedro

    2015-12-01

    This work describes the total and unambiguous assignment of the 750 MHz (1)H NMR spectrum of 3β-acetoxypregna-5,16-dien-20-one or 16-DPA (1), the well-known intermediate utilized in the synthesis of biological important commercial steroids. The task was accomplished by extracting the coupling constant values in the overlapped spectrum region by HSQC, and using these values in the (1)H iterative full spin analysis integrated in the PERCH NMR software. Comparison of the experimental vicinal coupling constants of 1 with the values calculated using Altona provides an excellent correlation. The same procedure, when applied to the published data of progesterone (2) and testosterone (3), afforded an acceptable correlation for 2 and a poor correlation for 3. In the last case, this suggested the reassignment of all four vicinal coupling constants for the methylene signals at the C-15 and C-16 positions, demonstrating the utility of this methodology. PMID:26476187

  7. Robust, integrated computational control of NMR experiments to achieve optimal assignment by ADAPT-NMR.

    PubMed

    Bahrami, Arash; Tonelli, Marco; Sahu, Sarata C; Singarapu, Kiran K; Eghbalnia, Hamid R; Markley, John L

    2012-01-01

    ADAPT-NMR (Assignment-directed Data collection Algorithm utilizing a Probabilistic Toolkit in NMR) represents a groundbreaking prototype for automated protein structure determination by nuclear magnetic resonance (NMR) spectroscopy. With a [(13)C,(15)N]-labeled protein sample loaded into the NMR spectrometer, ADAPT-NMR delivers complete backbone resonance assignments and secondary structure in an optimal fashion without human intervention. ADAPT-NMR achieves this by implementing a strategy in which the goal of optimal assignment in each step determines the subsequent step by analyzing the current sum of available data. ADAPT-NMR is the first iterative and fully automated approach designed specifically for the optimal assignment of proteins with fast data collection as a byproduct of this goal. ADAPT-NMR evaluates the current spectral information, and uses a goal-directed objective function to select the optimal next data collection step(s) and then directs the NMR spectrometer to collect the selected data set. ADAPT-NMR extracts peak positions from the newly collected data and uses this information in updating the analysis resonance assignments and secondary structure. The goal-directed objective function then defines the next data collection step. The procedure continues until the collected data support comprehensive peak identification, resonance assignments at the desired level of completeness, and protein secondary structure. We present test cases in which ADAPT-NMR achieved results in two days or less that would have taken two months or more by manual approaches. PMID:22427982

  8. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  9. Probing Cancer Cell Metabolism Using NMR Spectroscopy.

    PubMed

    Hollinshead, Kate E R; Williams, Debbie S; Tennant, Daniel A; Ludwig, Christian

    2016-01-01

    Altered cellular metabolism is now accepted to be at the core of many diseases including cancer. Over the past 20 years, NMR has become a core technology to study these metabolic perturbations in detail. This chapter reviews current NMR-based methods for steady-state metabolism and, in particular, the use of non-radioactive stable isotope-enriched tracers. Opportunities and challenges for each method, such as 1D (1)H NMR spectroscopy and (13)C carbon-based NMR spectroscopic methods, are discussed. Ultimately, the combination of NMR and mass spectra as orthogonal technologies are required to compensate for the drawbacks of each technique when used singly are discussed. PMID:27325263

  10. Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; Chen, Shuo

    2010-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin-spin relaxation measurement and inversion spin-spin spectral analysis methods. The spin-spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17-67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique.

  11. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization.

    PubMed

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from (1)H and (19)F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions. PMID:27423094

  12. Negative impact of noise on the principal component analysis of NMR data

    NASA Astrophysics Data System (ADS)

    Halouska, Steven; Powers, Robert

    2006-01-01

    Principal component analysis (PCA) is routinely applied to the study of NMR based metabolomic data. PCA is used to simplify the examination of complex metabolite mixtures obtained from biological samples that may be composed of hundreds or thousands of chemical components. PCA is primarily used to identify relative changes in the concentration of metabolites to identify trends or characteristics within the NMR data that permits discrimination between various samples that differ in their source or treatment. A common concern with PCA of NMR data is the potential over emphasis of small changes in high concentration metabolites that would over-shadow significant and large changes in low-concentration components that may lead to a skewed or irrelevant clustering of the NMR data. We have identified an additional concern, very small and random fluctuations within the noise of the NMR spectrum can also result in large and irrelevant variations in the PCA clustering. Alleviation of this problem is obtained by simply excluding the noise region from the PCA by a judicious choice of a threshold above the spectral noise.

  13. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Chen, Chia-Hsiu; Wilson, Zechariah; Savukov, Igor; Hilty, Christian

    2016-09-01

    Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7 mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from 1H and 19F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.

  14. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  15. Background suppression in MAS NMR

    NASA Astrophysics Data System (ADS)

    White, Jeffery L.; Beck, Larry W.; Ferguson, David B.; Haw, James F.

    Pulse sequences for suppressing background signals from spinning modules used in magic-angle spinning NMR are described. These pulse sequences are based on spatially selective composite 90° pulses originally reported by Bax, which provide for no net excitation of spins outside the homogeneous region of the coil. We have achieved essentially complete suppression of background signals originating from our Vespel spinning module (which uses a free-standing coil) in both 1H and 13C spectra without notable loss in signal intensity. Successful modification of both Bloch decay and cross-polarization pulse sequences to include spatially selective pulses was essential to acquire background-free spectra for weak samples. Background suppression was also found to be particularly valuable for both T1 and T1 ϱ, relaxation measurements.

  16. Tetrahedral site ordering in synthetic gallium albite: A 29Si MAS NMR study

    NASA Astrophysics Data System (ADS)

    Sherriff, Barbara L.; Fleet, Michael E.; Burns, Peter C.

    1991-09-01

    The ordering of Si in the tetrahedral sites of gallium albite (NaGaSi 3O 8) has been studied by MAS NMR and Rietveld structure refinement of X-ray powder diffraction data. Low structural state (ordered) material was annealed at about 800°C under a load pressure of 1 kbar, and by Rietveld refinement has tetrahedral-site occupancies for Si of T1O = 0.24(3), T1m = 0.89(2), T2O = 0.98(2), and T2m = 0.89(2), respectively. Corresponding Si occupancies for high structural state (disordered) material are 0.71(2), 0.78(1), 0.76(2), and 0.74(2), respectively. The 29Si MAS NMR spectra of low gallium albite is equivalent to the three-peak spectrum of natural (Amelia) albite, with resonances at -89.6, -96.4, and -104.2 ppm but with relative peak areas of 0.79:1.0:0.77. The tetrahedral-site occupancies derived from the MAS NMR spectrum are in good agreement with those obtained by Rietveld refinement and, in particular, indicate that the -96.4 ppm peak must correspond to Si in T2O. This is the first independent assignment of the 29Si peak at -96 ppm in the spectrum of ordered albite to the T2O site. A peak at -96 ppm is also resolved in the spectrum of high gallium albite. The systematic differences in peak position between the 29Si MAS NMR spectra of low gallium albite and those of Amelia albite cannot be explained simply by the direct replacement of Al by Ga, without a change in angle at the bridging oxygen atoms.

  17. High-resolution J-resolved NMR spectra of dilute spins in solids

    NASA Astrophysics Data System (ADS)

    Terao, T.; Miura, H.; Saika, A.

    1981-08-01

    A technique for obtaining J-resolved NMR spectra of dilute spins in solids has been developed. It is based on the observation that a combination of magic-angle irradiation and magic-angle spinning removes dipolar broadening, but leaves indirect spin-spin coupling. A preliminary application of this technique to adamantane clearly reveals the AX (J = 121 Hz) and AX (J = 135 Hz) multiplets in the methylene and methyne 13C spectrum, respectively.

  18. NMR solution structure of butantoxin.

    PubMed

    Holaday, S K; Martin, B M; Fletcher, P L; Krishna, N R

    2000-07-01

    The NMR structure of a new toxin, butantoxin (BuTX), which is present in the venoms of the three Brazilian scorpions Tityus serrulatus, Tityus bahiensis, and Tityus stigmurus, has been investigated. This toxin was shown to reversibly block the Shaker B potassium channels (K(d) approximately 660 nM) and inhibit the proliferation of T-cells and the interleukin-2 production of antigen-stimulated T-helper cells. BuTX is a 40 amino acid basic protein stabilized by the four disulfide bridges: Cys2-Cys5, Cys10-Cys31, Cys16-Cys36, and Cys20-Cys38. The latter three are conserved among all members of the short-chain scorpion toxin family, while the first is unique to BuTX. The three-dimensional structure of BuTX was determined using (1)H-NMR spectroscopy. NOESY, phase sensitive COSY (PH-COSY), and amide hydrogen exchange data were used to generate constraints for molecular modeling calculations. Distance geometry and simulated annealing calculations were performed to generate a family of 49 structures free of constraint violations. The secondary structure of BuTX consists of a short 2(1/2) turn alpha-helix (Glu15-Phe23) and a beta-sheet. The beta-sheet is composed of two well-defined antiparallel strands (Gly29-Met32 and Lys35-Cys38) connected by a type-I' beta-turn (Asn33-Asn34). Residues Cys5-Ala9 form a quasi-third strand of the beta-sheet. The N-terminal C2-C5 disulfide bridge unique to this toxin does not appear to confer stability to the protein. PMID:10864437

  19. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  20. 1H, 13C and 15N NMR assignments of the E. coli peptide deformylase in complex with a natural inhibitor called actinonin.

    PubMed

    Larue, Valéry; Seijo, Bili; Tisne, Carine; Dardel, Frédéric

    2009-06-01

    In eubacteria, the formyl group of nascent polypeptides is removed by peptide deformylase protein (PDF). This is the reason why PDF has received special attention in the course of the search for new antibacterial agents. We observed by NMR that actinonin, a natural inhibitor, induced drastic changes in the HSQC spectrum of E. coli PDF. We report here the complete NMR chemical shift assignments of PDF resonances bound to actinonin. PMID:19636969

  1. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  2. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  3. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  4. SQUID-detected NMR in Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Qiu, L. Q.; Zhang, Y.; Krause, H.-J.; Braginski, A. I.

    2008-02-01

    Under the highly homogeneous Earth's magnetic field (EMF), nuclear magnetic resonance experiments were performed utilizing a nitrogen-cooled superconducting quantum interference device (SQUID). The Larmor frequency fL of protons is around 2060 Hz in our environment. The sensitivity of our SQUID magnetometer in EMF reached about 70 fT/√Hz near this fL. Free induction decay curves were obtained with a high signal-to-noise ratio. The amplitude of the NMR signal agreed with the theoretical value. The 1H spectra of some samples, for instance, tap water, benzene, ethanol and toluene were studied. The hetero-nuclear J coupling spectrum of 2,2,2-trifluoroethanol was clearly obtained. The influence of EMF fluctuations on the linewidth is also observed.

  5. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  6. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  7. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  8. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  9. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  10. An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data

    PubMed Central

    2011-01-01

    Background Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique to reveal and compare quantitative metabolic profiles of biological tissues. However, chemical and physical sample variations make the analysis of the data challenging, and typically require the application of a number of preprocessing steps prior to data interpretation. For example, noise reduction, normalization, baseline correction, peak picking, spectrum alignment and statistical analysis are indispensable components in any NMR analysis pipeline. Results We introduce a novel suite of informatics tools for the quantitative analysis of NMR metabolomic profile data. The core of the processing cascade is a novel peak alignment algorithm, called hierarchical Cluster-based Peak Alignment (CluPA). The algorithm aligns a target spectrum to the reference spectrum in a top-down fashion by building a hierarchical cluster tree from peak lists of reference and target spectra and then dividing the spectra into smaller segments based on the most distant clusters of the tree. To reduce the computational time to estimate the spectral misalignment, the method makes use of Fast Fourier Transformation (FFT) cross-correlation. Since the method returns a high-quality alignment, we can propose a simple methodology to study the variability of the NMR spectra. For each aligned NMR data point the ratio of the between-group and within-group sum of squares (BW-ratio) is calculated to quantify the difference in variability between and within predefined groups of NMR spectra. This differential analysis is related to the calculation of the F-statistic or a one-way ANOVA, but without distributional assumptions. Statistical inference based on the BW-ratio is achieved by bootstrapping the null distribution from the experimental data. Conclusions The workflow performance was evaluated using a previously published dataset. Correlation maps, spectral and grey scale plots show clear improvements in comparison to other

  11. MAS NMR of HIV-1 protein assemblies

    NASA Astrophysics Data System (ADS)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  12. Scalar operators in solid-state NMR

    SciTech Connect

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  13. Probing porous media with gas diffusion NMR.

    PubMed

    Mair, R W; Wong, G P; Hoffmann, D; Hurlimann, M D; Patz, S; Schwartz, L M; Walsworth, R L

    1999-10-18

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks. PMID:11543587

  14. MAS NMR of HIV-1 protein assemblies.

    PubMed

    Suiter, Christopher L; Quinn, Caitlin M; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates. PMID:25797001

  15. On electrophoretic NMR. Exploring high conductivity samples

    NASA Astrophysics Data System (ADS)

    Bielejewski, Michał; Giesecke, Marianne; Furó, István

    2014-06-01

    The performance of a new electrophoretic NMR (eNMR) method that uses a Carr-Purcell-Meiboom-Gill echo train with repeated electric field reversal is investigated. We show that this pulse sequence, with acronym CPMGER, yields strongly reduced artifacts from convective flow effects caused by the simultaneous presence of electroosmotic and thermal driving forces. We demonstrate the achieved improvements in various aqueous solutions. Ultimately, the method can be used for obtaining electrophoretic mobilities by eNMR without relying on uncharged reference molecules, otherwise a significant limitation for electrophoretic experiments performed with nuclei other than 1H.

  16. Probing porous media with gas diffusion NMR

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Wong, G. P.; Hoffmann, D.; Hurlimann, M. D.; Patz, S.; Schwartz, L. M.; Walsworth, R. L.

    1999-01-01

    We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.

  17. NMR data handbook for biomedical applications

    SciTech Connect

    Beall, P.T.; Amtey, S.R.; Kasturi, S.R.

    1984-01-01

    The text is divided into 10 chapters, each of which covers a specific block of material and has its own references. The volume is meant to serve as a laboratory handbook and a desk reference, containing basic NMR theory, useful formulae and physical constants, and compiled data from the NMR literature. The volume attempts to cover the development of biological NMR through several decades of in vitro experiments that have laid the groundwork for and pointed to profitable areas of investigation for new in vivo techniques.

  18. IR spectrum simulation of molecular structure model of Shendong coal vitrinite by using quantum chemistry method.

    PubMed

    Jia, Jian-Bo; Wang, Ying; Li, Feng-Hai; Yi, Gui-Yun; Zeng, Fan-Gui; Guo, Hong-Yu

    2014-01-01

    The structure of coal needs to be understood from a molecular point of view for clean, effective and high value-added utilization of coal. In the literature, molecular structure model of Shendong coal vitrinite (SV) was established by the authors on the basis of experimental results of ultimate analysis and 13C NMR, and the calculated 13C NMR spectrum of SV model was consistent with the experimental spectrum. In order to further verify the accuracy of SV structure model established by the authors, the infrared spectrum of SV structure model was calculated using quantum chemistry semi-empirical VAMP in this thesis. The results showed that the peak shape of calculated IR spectrum of SV structure model was similar to the experiment's, but the wave number of calculated IR spectrum was obviously higher than that of experimental spectrum. According to the calculated results for model compounds by using the same method, calculated vibrational frequency was higher than that of experiment for the same functional groups. Hence, the calculated IR spectrum should be corrected. After correction the calculated IR spectrum of SV structure model matched well with the experimental spectrum. In other words, the SV structure model can truly reflect the structure characteristics of SV. PMID:24783531

  19. Two dimensional NMR of liquids and oriented molecules

    SciTech Connect

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  20. NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens.

    PubMed

    Stark, Jaime L; Eghbalnia, Hamid R; Lee, Woonghee; Westler, William M; Markley, John L

    2016-04-01

    NMR ligand affinity screening is a powerful technique that is routinely used in drug discovery or functional genomics to directly detect protein-ligand binding events. Binding events can be identified by monitoring differences in the 1D (1)H NMR spectrum of a compound with and without protein. Although a single NMR spectrum can be collected within a short period (2-10 min per sample), one-by-one screening of a protein against a library of hundreds or thousands of compounds requires a large amount of spectrometer time and a large quantity of protein. Therefore, compounds are usually evaluated in mixtures ranging in size from 3 to 20 compounds to improve the efficiency of these screens in both time and material. Ideally, the NMR signals from individual compounds in the mixture should not overlap so that spectral changes can be associated with a particular compound. We have developed a software tool, NMRmix, to assist in creating ideal mixtures from a large panel of compounds with known chemical shifts. Input to NMRmix consists of an (1)H NMR peak list for each compound, a user-defined overlap threshold, and additional user-defined parameters if default settings are not used. NMRmix utilizes a simulated annealing algorithm to optimize the composition of the mixtures to minimize spectral peak overlaps so that each compound in the mixture is represented by a maximum number of nonoverlapping chemical shifts. A built-in graphical user interface simplifies data import and visual evaluation of the results. PMID:26965640

  1. NMRmix: A Tool for the Optimization of Compound Mixtures in 1D 1H NMR Ligand Affinity Screens

    PubMed Central

    2016-01-01

    NMR ligand affinity screening is a powerful technique that is routinely used in drug discovery or functional genomics to directly detect protein–ligand binding events. Binding events can be identified by monitoring differences in the 1D 1H NMR spectrum of a compound with and without protein. Although a single NMR spectrum can be collected within a short period (2—10 min per sample), one-by-one screening of a protein against a library of hundreds or thousands of compounds requires a large amount of spectrometer time and a large quantity of protein. Therefore, compounds are usually evaluated in mixtures ranging in size from 3 to 20 compounds to improve the efficiency of these screens in both time and material. Ideally, the NMR signals from individual compounds in the mixture should not overlap so that spectral changes can be associated with a particular compound. We have developed a software tool, NMRmix, to assist in creating ideal mixtures from a large panel of compounds with known chemical shifts. Input to NMRmix consists of an 1H NMR peak list for each compound, a user-defined overlap threshold, and additional user-defined parameters if default settings are not used. NMRmix utilizes a simulated annealing algorithm to optimize the composition of the mixtures to minimize spectral peak overlaps so that each compound in the mixture is represented by a maximum number of nonoverlapping chemical shifts. A built-in graphical user interface simplifies data import and visual evaluation of the results. PMID:26965640

  2. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  3. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    PubMed

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  4. Automatic NMR-Based Identification of Chemical Reaction Types in Mixtures of Co-Occurring Reactions

    PubMed Central

    Latino, Diogo A. R. S.; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of the

  5. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  6. Epitope mapping by solution NMR spectroscopy.

    PubMed

    Bardelli, M; Livoti, E; Simonelli, L; Pedotti, M; Moraes, A; Valente, A P; Varani, L

    2015-06-01

    Antibodies play an ever more prominent role in basic research as well as in the biotechnology and pharmaceutical sectors. Characterizing their epitopes, that is, the region that they recognize on their target molecule, is useful for purposes ranging from molecular biology research to vaccine design and intellectual property protection. Solution NMR spectroscopy is ideally suited to the atomic level characterization of intermolecular interfaces and, as a consequence, to epitope discovery. Here, we illustrate how NMR epitope mapping can be used to rapidly and accurately determine protein antigen epitopes. The basic concept is that differences in the NMR signal of an antigen free or bound by an antibody will identify epitope residues. NMR epitope mapping provides more detailed information than mutagenesis or peptide mapping and can be much more rapid than X-ray crystallography. Advantages and drawbacks of this technique are discussed together with practical considerations. PMID:25726811

  7. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  8. A New Microcell Technique for NMR Analysis.

    ERIC Educational Resources Information Center

    Yu, Sophia J.

    1987-01-01

    Describes a new laboratory technique for working with small samples of compounds used in nuclear magnetic resonance (NMR) analysis. Demonstrates how microcells can be constructed for each experiment and samples can be recycled. (TW)

  9. NMR and optical studies of piezoelectric polymers

    SciTech Connect

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF[sub 2]) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done.

  10. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  11. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  12. Rheology of Blood by NMR

    NASA Astrophysics Data System (ADS)

    Han, Song-I.; Marseille, Oliver; Gehlen, Christa; Blümich, Bernhard

    2001-09-01

    Pipe flow of blood in tubes of 1 and 7 mm inner diameter, respectively, was investigated employing two-dimensional NMR velocity imaging and PFG propagator measurements at different Reynolds numbers between 10 and 3500. The results are compared to flow of a water/glycerol mixture of matching viscosity under identical conditions. The transition from laminar to turbulent flow is observed by both a flattening of the velocity profile and a change of the propagator shape. For blood flow this transition is found to be shifted toward higher Reynolds numbers as compared to the transition of the water/glycerol mixture. This observation is in agreement with predictions from hydraulic measurements and is a consequence of the non-Newtonian flow characteristics of blood as a suspension of erythrocytes and plasma. Likewise, a deviation from the laminar flow condition is observed for blood at low Reynolds numbers between 10 and 100. This phenomenon is unknown for Newtonian liquids and is explained by the onset of a geometrical arrangement of the erythrocytes, the so-called rouleaux effect.

  13. Rheology of blood by NMR.

    PubMed

    Han, S I; Marseille, O; Gehlen, C; Blümich, B

    2001-09-01

    Pipe flow of blood in tubes of 1 and 7 mm inner diameter, respectively, was investigated employing two-dimensional NMR velocity imaging and PFG propagator measurements at different Reynolds numbers between 10 and 3500. The results are compared to flow of a water/glycerol mixture of matching viscosity under identical conditions. The transition from laminar to turbulent flow is observed by both a flattening of the velocity profile and a change of the propagator shape. For blood flow this transition is found to be shifted toward higher Reynolds numbers as compared to the transition of the water/glycerol mixture. This observation is in agreement with predictions from hydraulic measurements and is a consequence of the non-Newtonian flow characteristics of blood as a suspension of erythrocytes and plasma. Likewise, a deviation from the laminar flow condition is observed for blood at low Reynolds numbers between 10 and 100. This phenomenon is unknown for Newtonian liquids and is explained by the onset of a geometrical arrangement of the erythrocytes, the so-called rouleaux effect. PMID:11531367

  14. Consecutive combined response spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Longjun; Zhao, Guochen; Liu, Qingyang; Xie, Yujian; Xie, Lili

    2014-12-01

    Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function f( T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.

  15. Observation by flow sup 1 H NMR and dimerization kinetics and products of reactive ortho-quinodimethanes and benzocyclobutadiene

    SciTech Connect

    Fischer, D.

    1990-09-21

    The reactive o-quinodimethanes, 1,2-dimethylene-1,2-dihydronaphthalene (9) and o-xylylene (1) were observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum of 9 was obtained in the absence of precursor and dimers. However, the {sup 1}H NMR spectrum of the more reactive 1, generated in a similar manner from (o-((trimethylsilyl)methyl)benzyl)trimethylammonium iodide (5.) could be obtained only in the presence of its stable (4 + 2) and (4 + 4) dimers. The dimerization kinetics of 3-methyl- (5{prime}), 3,6-dimethyl- (11), 3-isopropyl- (12), and 3,6-diisoproply-1,2-xylylene (13) in acetonitrile (CH{sub 3}CN) were studied by stopped-flow UV-visible spectroscopy. Fluoride ion induced 1,2-elimination from 2-elimination from 2-trimethylsilylbenzocyclobutenyl-1 mesylate (26) was used to generate the reactive molecule benzocyclobutadiene (1{prime}) in CD{sub 3}CN, which was observed by flow {sup 1}H NMR spectroscopy at room temperature. The {sup 1}H NMR spectrum (in CD{sub 3}CN) of 1,2-dimethylene-1,2-dihydrothiophene (1{double prime}), obtained by fluoride ion induced 1,4-elimination from 3-(trimethylammoniummethyl)-2-(trimethylsilylmethyl)thiophene iodine was observed by flow {sup 1}H NMR spectroscopy at room temperature. The dimerization rate of 1{double prime} in CH{sub 3}CN, generated in the same manner, was measured by UV-visible spectroscopy. 166 refs., 7 figs., 7 tabs.

  16. Modern NMR spectroscopy: a guide for chemists

    SciTech Connect

    Sanders, J.K.M.; Hunter, B.K.

    1988-01-01

    The aim of the authors of Modern NMR Spectroscopy is to bridge the communication gap between the chemist and the spectroscopist. The approach is nonmathematical, descriptive, and pictorial. To illustrate the ideas introduced in the text, the authors provide original spectra obtained specially for this purpose. Examples include spectroscopy of protons, carbon, and less receptive nuclei of interest to inorganic chemists. The authors succeed in making high-resolution NMR spectroscopy comprehensible for the average student or chemist.

  17. Frontiers of NMR in Molecular Biology

    SciTech Connect

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  18. NMR of Membrane Proteins: Beyond Crystals.

    PubMed

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B

    2016-01-01

    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  19. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  20. Shuttle spectrum despreader

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of the spread spectrum despreader project are reported and three principal products are designed and tested. The products are, (1) a spread spectrum despreader breadboard, (2) associated test equipment consisting of a spectrum spreader and bit reconstruction/error counter and (3) paper design of a Ku-band receiver which would incorporate the despreader as a principal subsystem. The despreader and test set are designed for maximum flexibility. A choice of unbalanced quadriphase or biphase shift keyed data modulation is available. Selectable integration time and threshold voltages on the despreader further lend true usefulness as laboratory test equipment to the delivered hardware.

  1. Multidimensional NMR spectroscopy in a single scan.

    PubMed

    Gal, Maayan; Frydman, Lucio

    2015-11-01

    Multidimensional NMR has become one of the most widespread spectroscopic tools available to study diverse structural and functional aspects of organic and biomolecules. A main feature of multidimensional NMR is the relatively long acquisition times that these experiments demand. For decades, scientists have been working on a variety of alternatives that would enable NMR to overcome this limitation, and deliver its data in shorter acquisition times. Counting among these methodologies is the so-called ultrafast (UF) NMR approach, which in principle allows one to collect arbitrary multidimensional correlations in a single sub-second transient. By contrast to conventional acquisitions, a main feature of UF NMR is a spatiotemporal manipulation of the spins that imprints the chemical shift and/or J-coupling evolutions being sought, into a spatial pattern. Subsequent gradient-based manipulations enable the reading out of this information and its multidimensional correlation into patterns that are identical to those afforded by conventional techniques. The current review focuses on the fundamental principles of this spatiotemporal UF NMR manipulation, and on a few of the methodological extensions that this form of spectroscopy has undergone during the years. PMID:26249041

  2. Insights into Equilibrium Dynamics of Proteins from Comparison of NMR and X-Ray Data with Computational Predictions

    PubMed Central

    Yang, Lee-Wei; Eyal, Eran; Chennubhotla, Chakra; Jee, JunGoo; Gronenborn, Angela M.; Bahar, Ivet

    2009-01-01

    SUMMARY For a representative set of 64 nonhomologous proteins, each containing a structure solved by NMR and X-ray crystallography, we analyzed the variations in atomic coordinates between NMR models, the temperature (B) factors measured by X-ray crystallography, and the fluctuation dynamics predicted by the Gaussian network model (GNM). The NMR and X-ray data exhibited a correlation of 0.49. The GNM results, on the other hand, yielded a correlation of 0.59 with X-ray data and a distinctively better correlation (0.75) with NMR data. The higher correlation between GNM and NMR data, compared to that between GNM and X-ray B factors, is shown to arise from the differences in the spectrum of modes accessible in solution and in the crystal environment. Mainly, large-amplitude motions sampled in solution are restricted, if not inaccessible, in the crystalline environment of X-rays. Combined GNM and NMR analysis emerges as a useful tool for assessing protein dynamics. PMID:17562320

  3. 1H NMR study of proton dynamics in the inorganic solid acid Rb3 H( SO4 )2

    NASA Astrophysics Data System (ADS)

    Suzuki, Koh-Ichi; Hayashi, Shigenobu

    2006-01-01

    Proton dynamics in Rb3H(SO4)2 has been studied by means of H1 NMR. The H1 magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) at Larmor frequency of 400.13MHz . H1 static NMR spectra were measured at frequencies of 200.13MHz and 400.13MHz in the ranges of 165-513 and 300-513K , respectively. H1 spin-lattice relaxation times, T1 , were measured at 200.13 and 19.65MHz in the ranges of 260-513 and 260-470K , respectively. The H1 MAS NMR spectrum at 294K has an isotropic chemical shift of 16.3ppm from tetramethylsilane, demonstrating very strong hydrogen bonds. In RT phase, a wobbling motion of the O-H axis in one direction at the fast motional limit takes place above 400K , being supported by the H1 static NMR spectral line shapes and by the H1 T1 values. In the high temperature (HT) phase, the sharp H1 static NMR spectra indicate translational proton diffusion. From the analysis of H1 T1 , protons diffuse with the inverse of the frequency factor (τ0) of 9.5×10-13s and the activation energy (Ea) of 25kJmol-1 . These parameters can well explain the macroscopic electric conductivity in HT phase.

  4. 33S NMR cryogenic probe for taurine detection

    NASA Astrophysics Data System (ADS)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  5. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  6. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  7. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  8. Sensitivity of nonuniform sampling NMR.

    PubMed

    Palmer, Melissa R; Suiter, Christopher L; Henry, Geneive E; Rovnyak, James; Hoch, Jeffrey C; Polenova, Tatyana; Rovnyak, David

    2015-06-01

    Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS. PMID:25901905

  9. Use of NMR and NMR Prediction Software to Identify Components in Red Bull Energy Drinks

    ERIC Educational Resources Information Center

    Simpson, Andre J.; Shirzadi, Azadeh; Burrow, Timothy E.; Dicks, Andrew P.; Lefebvre, Brent; Corrin, Tricia

    2009-01-01

    A laboratory experiment designed as part of an upper-level undergraduate analytical chemistry course is described. Students investigate two popular soft drinks (Red Bull Energy Drink and sugar-free Red Bull Energy Drink) by NMR spectroscopy. With assistance of modern NMR prediction software they identify and quantify major components in each…

  10. Multiple-quantum dynamics in solid state NMR

    NASA Astrophysics Data System (ADS)

    Baum, J.; Munowitz, M.; Garroway, A. N.; Pines, A.

    1985-09-01

    Recently developed solid state multiple-quantum NMR methods are applied to extended coupling networks, where direct dipole-dipole interactions can be used to create coherences of very high order (˜100). The progressive development of multiple-quantum coherence over time depends upon the formation of multiple-spin correlations, a phenomenon which also accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time development and the observed distributions of coherence can be approached statistically, with the spin system described by a time-dependent density operator whose elements are completely uncorrelated at sufficiently long times. With this point of view, we treat the distribution of coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for a given preparation time by its variance. The variance of the distribution is associated roughly with the number of coupled spins effectively interacting, and its steady growth with time reflects the continual expansion of the system under the action of the dipolar interactions. The increase in effective system ``size'' is accounted for by a random walk model for the time development of the density operator. Experimental results are presented for hexamethylbenzene, adamantane, and squaric acid. The formation of coherence in systems containing physically isolated clusters is also investigated, and a simple method for estimating the number of spins involved is demonstrated.

  11. Multiple-quantum dynamics in solid state NMR

    SciTech Connect

    Baum, J.; Munowitz, M.; Garroway, A.N.; Pines, A.

    1985-09-01

    Recently developed solid state multiple-quantum NMR methods are applied to extended coupling networks, where direct dipole--dipole interactions can be used to create coherences of very high order (approx. 100). The progressive development of multiple-quantum coherence over time depends upon the formation of multiple-spin correlations, a phenomenon which also accompanies the normal decay to equilibrium of the free induction signal in a solid. Both the time development and the observed distributions of coherence can be approached statistically, with the spin system described by a time-dependent density operator whose elements are completely uncorrelated at sufficiently long times. With this point of view, we treat the distribution of coherence in a multiple-quantum spectrum as Gaussian, and characterize a spectrum obtained for a given preparation time by its variance. The variance of the distribution is associated roughly with the number of coupled spins effectively interacting, and its steady growth with time reflects the continual expansion of the system under the action of the dipolar interactions. The increase in effective system ''size'' is accounted for by a random walk model for the time development of the density operator. Experimental results are presented for hexamethylbenzene, adamantane, and squaric acid. The formation of coherence in systems containing physically isolated clusters is also investigated, and a simple method for estimating the number of spins involved is demonstrated.

  12. Molecular structure of crude beeswax studied by solid-state 13C NMR

    PubMed Central

    Kameda, Tsunenori

    2004-01-01

    13C Solid-state NMR experiments were performed to investigate the structure of beeswax in the native state (crude beeswax) for the first time. From quantitative direct polarization 13C MAS NMR spectrum, it was found that the fraction of internal-chain methylene (int-(CH2)) component compared to other components of crude beeswax was over 95%. The line shape of the int-(CH2) carbon resonance region was comprehensively analyzed in terms of NMR chemical shift. The 13C broad peak component covering from 31 to 35ppm corresponds to int-(CH2) carbons with trans conformation in crystalline domains, whereas the sharp signal at 30.3 ppm corresponds to gauche conformation in the non-crystalline domain. From peak deconvolution of the aliphatic region, it was found that over 85% of the int-(CH2) has a crystal structure and several kinds of molecular packing for int-(CH2), at least three, exist in the crystalline domain. Abbreviation: NMR nuclear magnetic resonance int-(CH2) internal-chain methylene CP cross-polarization MAS magic angle spinning PMID:15861244

  13. NMR imaging and spectroscopy of the mammalian central nervous system after heavy ion radiation

    SciTech Connect

    Richards, T.

    1984-09-01

    NMR imaging, NMR spectroscopic, and histopathologic techniques were used to study the proton relaxation time and related biochemical changes in the central nervous system after helium beam in vivo irradiation of the rodent brain. The spectroscopic observations reported in this dissertation were made possible by development of methods for measuring the NMR parameters of the rodent brain in vivo and in vitro. The methods include (1) depth selective spectroscopy using an optimization of rf pulse energy based on a priori knowledge of N-acetyl aspartate and lipid spectra of the normal brain, (2) phase-encoded proton spectroscopy of the living rodent using a surface coil, and (3) dual aqueous and organic tissue extraction technique for spectroscopy. Radiation induced increases were observed in lipid and p-choline peaks of the proton spectrum, in vivo. Proton NMR spectroscopy measurements on brain extracts (aqueous and organic solvents) were made to observe chemical changes that could not be seen in vivo. Radiation-induced changes were observed in lactate, GABA, glutamate, and p-choline peak areas of the aqueous fraction spectra. In the organic fraction, decreases were observed in peak area ratios of the terminal-methyl peaks, the N-methyl groups of choline, and at a peak at 2.84 ppM (phosphatidyl ethanolamine and phosphatidyl serine resonances) relative to TMS. With histology and Evans blue injections, blood-brain barrier alternations were seen as early as 4 days after irradiation. 83 references, 53 figures.

  14. An optimised detector for in-situ high-resolution NMR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Finch, Graeme; Yilmaz, Ali; Utz, Marcel

    2016-01-01

    Integration of high-resolution nuclear magnetic resonance (NMR) spectroscopy with microfluidic lab-on-a-chip devices is challenging due to limited sensitivity and line broadening caused by magnetic susceptibility inhomogeneities. We present a novel double-stripline NMR probe head that accommodates planar microfluidic devices, and obtains the NMR spectrum from a rectangular sample chamber on the chip with a volume of 2 μ l. Finite element analysis was used to jointly optimise the detector and sample volume geometry for sensitivity and RF homogeneity. A prototype of the optimised design has been built, and its properties have been characterised experimentally. The performance in terms of sensitivity and RF homogeneity closely agrees with the numerical predictions. The system reaches a mass limit of detection of 1.57 nmol √{ s } , comparing very favourably with other micro-NMR systems. The spectral resolution of this chip/probe system is better than 1.75 Hz at a magnetic field of 7 T, with excellent line shape.

  15. Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy

    DOE PAGESBeta

    Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek

    2015-06-22

    Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H–17O cross-polarization greatly improves the sensitivity and enables the facile measurementmore » of undistorted line shapes and two-dimensional 1H–17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less

  16. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  17. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene.

    PubMed

    Nagashima, Toshio; Ueda, Keisuke; Nishimura, Chiaki; Yamazaki, Toshio

    2015-11-17

    Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules. PMID:26479462

  18. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  19. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and μXRCT

    SciTech Connect

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO₂ storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (μXRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectly predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.

  20. Communication: Molecular dynamics and {sup 1}H NMR of n-hexane in liquid crystals

    SciTech Connect

    Weber, Adrian C. J.; Burnell, E. Elliott; Meerts, W. Leo; Lange, Cornelis A. de; Dong, Ronald Y.; Muccioli, Luca Pizzirusso, Antonio Zannoni, Claudio

    2015-07-07

    The NMR spectrum of n-hexane orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy (CMA-ES). The spectrum contains over 150 000 transitions, with many sharp features appearing above a broad, underlying background signal that results from the plethora of overlapping transitions from the n-hexane as well as from the liquid crystal. The CMA-ES requires initial search ranges for NMR spectral parameters, notably the direct dipolar couplings. Several sets of such ranges were utilized, including three from MD simulations and others from the modified chord model that is specifically designed to predict hydrocarbon-chain dipolar couplings. In the end, only inaccurate dipolar couplings from an earlier study utilizing proton-proton double quantum 2D-NMR techniques on partially deuterated n-hexane provided the necessary estimates. The precise set of dipolar couplings obtained can now be used to investigate conformational averaging of n-hexane in a nematic environment.

  1. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    PubMed Central

    Peterson, Gregory W.; Wagner, George W.; Balboa, Alex; Mahle, John; Sewell, Tara; Karwacki, Christopher J.

    2009-01-01

    Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu3(BTC)2 framework. Indeed, 1H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu3(BTC)2 occurs to generate a composite spectrum consistent with Cu(OH)2 and (NH4)3BTC species under humid conditions—the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu3(BTC)2 structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in 1H and 13C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu3(BTC)2, much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity. PMID:20161144

  2. 60 MHz (1)H NMR spectroscopy for the analysis of edible oils.

    PubMed

    Parker, T; Limer, E; Watson, A D; Defernez, M; Williamson, D; Kemsley, E Kate

    2014-05-01

    We report the first results from a new 60 MHz (1)H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar's performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm(-1), attributable to a double-bond vibration. PMID:24850979

  3. BOOK REVIEW: NMR Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2003-09-01

    Magnetic resonance imaging (MRI) of materials is a field of increasing importance. Applications extend from fundamental science like the characterization of fluid transport in porous rock, catalyst pellets and hemodialysers into various fields of engineering for process optimization and product quality control. While the results of MRI imaging are being appreciated by a growing community, the methods of imaging are far more diverse for materials applications than for medical imaging of human beings. Blümich has delivered the first book in this field. It was published in hardback three years ago and is now offered as a paperback for nearly half the price. The text provides an introduction to MRI imaging of materials covering solid-state NMR spectroscopy, imaging methods for liquid and solid samples, and unusual MRI in terms of specialized approaches to spatial resolution such as an MRI surface scanner. The book represents an excellent and thorough treatment which will help to grow research in materials MRI. Blümich developed the treatise over many years for his research students, graduates in chemistry, physics and engineering. But it may also be useful for medical students looking for a less formal discussion of solid-state NMR spectroscopy. The structure of this book is easy to perceive. The first three chapters cover an introduction, the fundamentals and methods of solid-state NMR spectroscopy. The book starts at the ground level where no previous knowledge about NMR is assumed. Chapter 4 discusses a wide variety of transformations beyond the Fourier transformation. In particular, the Hadamard transformation and the 'wavelet' transformation are missing from most related books. This chapter also includes a description of noise-correlation spectroscopy, which promises the imaging of large objects without the need for extremely powerful radio-frequency transmitters. Chapters 5 and 6 cover basic imaging methods. The following chapter about the use of relaxation and

  4. Theoretical NMR correlations based Structure Discussion

    PubMed Central

    2011-01-01

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction. PMID:21797997

  5. NMR structural studies on antifreeze proteins.

    PubMed

    Sönnichsen, F D; Davies, P L; Sykes, B D

    1998-01-01

    Antifreeze proteins (AFPs) are a structurally diverse class of proteins that bind to ice and inhibit its growth in a noncolligative manner. This adsorption-inhibition mechanism operating at the ice surface results in a lowering of the (nonequilibrium) freezing point below the melting point. A lowering of approximately 1 degree C, which is sufficient to prevent fish from freezing in ice-laden seawater, requires millimolar AFP levels in the blood. The solubility of AFPs at these millimolar concentrations and the small size of the AFPs (typically 3-15 kDa) make them ideal subjects for NMR analysis. Although fish AFPs are naturally abundant, seasonal expression, restricted access to polar fishes, and difficulties in separating numerous similar isoforms have made protein expression the method of choice for producing AFPs for structural studies. Expression of recombinant AFPs has also facilitated NMR analysis by permitting isotopic labeling with 15N and 13C and has permitted mutations to be made to help with the interpretation of NMR data. NMR analysis has recently solved two AFP structures and provided valuable information about the disposition of ice-binding side chains in a third. The potential exists to solve other AFP structures, including the newly described insect AFPs, and to use solid-state NMR techniques to address fundamental questions about the nature of the interaction between AFPs and ice. PMID:9923697

  6. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  7. Action spectrum for photocarcinogenesis.

    PubMed

    de Gruijl, F R

    1995-01-01

    The wavelength dependence of the carcinogenicity of ultraviolet (UV) radiation needs to be known in order to assess the carcinogenic risks of various UV sources, most notably the different solar UV spectra at ground level under depleting stratospheric ozone. This wavelength dependence cannot be extracted from human data (e.g., from epidemiology); it can, however, be directly obtained from animal experiments. Precise information on the wavelength dependence, the so-called action spectrum, was not available until recently: erythemal or mutagenic action spectra have been used as substitutes. However, experimental data on skin tumors induced in hairless mice (Skh:HR1) with various polychromatic sources have been building up. Our group has found that none of the substitute action spectra yield a statistically acceptable description of our data, and we have, therefore, derived a new action spectrum, dubbed the SCUP action spectrum (SCUP stands for Skin Cancer Utrecht-Philadelphia, because the action spectrum also fits experimental data from the former Skin and Cancer Hospital in Philadelphia). The SCUP action spectrum has a maximum at 293 nm, and in the UVA region above 340 nm the relative carcinogenicity per J/m2 drops to about 10(-4) of this maximum. The effects of an ozone depletion on solar UV doses weighted with these different action spectra are compared: the erythemal and SCUP weighted dose come out as least sensitive with a 1.3% and 1.4% increase, respectively, for every 1% decrease in ozone. PMID:7597292

  8. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. PMID:25727157

  9. From crystalline to glassy gallium fluoride materials: an NMR study of 69Ga and 71Ga quadrupolar nuclei.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y; Legein, C; Massiot, D

    1999-11-01

    Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nuQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum. PMID:10670905

  10. From crystalline to glassy gallium fluoride materials: an NMR study of 69Ga and 71Ga quadrupolar nuclei.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y; Legein, C; Massiot, D

    1999-09-01

    Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nu(Q) up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum. PMID:10499664

  11. NMR Spectra Transformed by Electron-Nuclear Coupling as Indicator of Structural Peculiarities of Magnetically Active Molecular Systems.

    PubMed

    Voronov, Vladimir K

    2016-09-01

    The peculiarities of nuclear spin relaxation in the paramagnetic systems have been analyzed taking into account the exchange processes. The analysis is based on the modified Solomon-Bloembergen equations. In this line, the conditions of detecting of the NMR signals of samples are discussed depending on resonance frequency of the NMR spectrometer and characteristic relaxation time. On this basis, (1)H NMR spectra of cobalt semiquinolate complex have been analyzed. It has been shown that the satellite signals observed in the spectrum are caused by hyperfine coupling of the tert-butyl group protons with α and β states (localized on pz orbital of the aromatic carbon) of unpaired electron spin. The relaxation process of the resonance protons is controlled by paramagnetic dipole-dipole coupling. The contact hyperfine coupling does not contribute to the paramagnetic broadening. A mechanism involving paramagnetic molecular structures, which are responsible for intramolecular exchange processes in the cobalt semiquinolate complex, is given. PMID:27513208

  12. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  13. Wide-line NMR and protein hydration.

    PubMed

    Tompa, K; Bokor, M; Tompa, P

    2012-01-01

    In this chapter, the reader is introduced to the basics of wide-line NMR, with particular focus on the following: (1) basic theoretical and experimental NMR elements, necessary before switching the spectrometer and designing the experiment, (2) models/theories for the interpretation of measured data, (3) definition of wide-line NMR spectrometry, the description of the measurement and evaluation variants, useful hints for the novice, (4) advice on selecting the solvent, which is not a trivial task, (5) a note of warning that not all data are acceptable in spite of the statistical confidence. Finally, we wrap up the chapter with the results on two proteins (a globular and an intrinsically disordered). PMID:22760320

  14. Remote tuning of NMR probe circuits.

    PubMed

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. PMID:10783273

  15. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  16. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  17. NREL Spectrum of Innovation

    ScienceCinema

    None

    2013-05-29

    There are many voices calling for a future of abundant clean energy. The choices are difficult and the challenges daunting. How will we get there? The National Renewable Energy Laboratory integrates the entire spectrum of innovation including fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. The innovation process at NREL is interdependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.

  18. Bottomonium spectrum revisited

    NASA Astrophysics Data System (ADS)

    Segovia, Jorge; Ortega, Pablo G.; Entem, David R.; Fernández, Francisco

    2016-04-01

    We revisit the bottomonium spectrum motivated by the recently exciting experimental progress in the observation of new bottomonium states, both conventional and unconventional. Our framework is a nonrelativistic constituent quark model which has been applied to a wide range of hadronic observables from the light to the heavy quark sector, and thus the model parameters are completely constrained. Beyond the spectrum, we provide a large number of electromagnetic, strong and hadronic decays in order to discuss the quark content of the bottomonium states and give more insights about a better way to determine their properties experimentally.

  19. Improving VHF Spectrum Utilization

    NASA Technical Reports Server (NTRS)

    Andro, Monty; Orr, Richard; Foore, Larry; Sheehe, Charles; Freeman, Mark; Nguyen, Thanh; Bretmersky, Steven; Laberge, Chuck; Buchanan, David

    2004-01-01

    Limited VHF communications system capacity and increasing air traffic results in congestion of the aviation VHF spectrum. The voice communications errors and delayed channel access create system congestion and air traffic delays. Regulatory subdivision of bands for specific functions limits flexibility in the frequency usage. The objective of this viewgraph presentation is to identify near/mid/far term technologies to improve the performance and spectrum efficiency of current and emerging VHF communications systems. Select technologies with the highest potential, perform research and development to bring them to implementation stage.

  20. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  1. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  2. Practical aspects of NMR signal assignment in larger and challenging proteins

    PubMed Central

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  3. 13C and 1H NMR (Nuclear Magnetic Resonance) studies of solid polyolefines

    NASA Technical Reports Server (NTRS)

    Cudby, M. E. A.; Harris, R. K.; Metcalfe, K.; Packer, K. J.; Smith, P. W. R.

    1983-01-01

    The basis of H-1 and C-13 high-resolution NMR investigations of solid polymers is outlined. The C-13 NMR spectra of solid syndiotactic and isotactic polypropene are discussed and their interpretation in terms of conformation and chain-packing effects are reviewed. The effects of decreasing temperature on the C-13 high-resolution spectrum of an annealed sample of isotactic polypropene is described and interpreted in terms of the crystal structure. The question of the proportion of the sample giving rise to C-13 signals is addressed and some results reported. The main cause for observing only part of the total sample is shown to be the H-1 rotating frame spin-lattice relaxation behavior. The H-1 spin-lattice relaxation and spectral characteristics of a number of polyolefin samples are summarized and the role of spin-diffusion discussed.

  4. NMR Detection Using Laser-Polarized Xenon as a DipolarSensor

    SciTech Connect

    Granwehr, Josef; Urban, Jeffry T.; Trabesinger, Andreas H.; Pines, Alexander

    2005-02-28

    Hyperpolarized Xe-129 can be used as a sensor to indirectly detect NMR spectra of heteronuclei that are neither covalently bound nor necessarily in direct contact with the Xe atoms, but coupled through long-range intermolecular dipolar couplings. In order to reintroduce long-range dipolar couplings the sample symmetry has to be broken. This can be done either by an asymmetric sample arrangement, or by breaking the symmetry of the spin magnetization with field gradient pulses. Experiments are performed where only a small fraction of the available Xe-129 magnetization is used for each point, so that a single batch of xenon suffices for the point-by-point acquisition of a heteronuclear NMR spectrum. Examples with H-1 as analyte nucleus show that these methods have the potential to obtain spectra with a resolution that is high enough to determine homonuclear J couplings. The applicability of this technique with remote detection is discussed.

  5. Exact NMR simulation of protein-size spin systems using tensor train formalism

    NASA Astrophysics Data System (ADS)

    Savostyanov, D. V.; Dolgov, S. V.; Werner, J. M.; Kuprov, Ilya

    2014-08-01

    We introduce a new method, based on alternating optimization, for compact representation of spin Hamiltonians and solution of linear systems of algebraic equations in the tensor train format. We demonstrate the method's utility by simulating, without approximations, a N15 NMR spectrum of ubiquitin—a protein containing several hundred interacting nuclear spins. Existing simulation algorithms for the spin system and the NMR experiment in question either require significant approximations or scale exponentially with the spin system size. We compare the proposed method to the Spinach package that uses heuristic restricted state space techniques to achieve polynomial complexity scaling. When the spin system topology is close to a linear chain (e.g., for the backbone of a protein), the tensor train representation is more compact and can be computed faster than the sparse representation using restricted state spaces.

  6. 2H-DNP-enhanced 2H–13C solid-state NMR correlation spectroscopy

    PubMed Central

    Maly, Thorsten; Andreas, Loren B.; Smith, Albert A.

    2015-01-01

    Perdeuteration of biological macromolecules for magic angle spinning solid-state NMR spectroscopy can yield high-resolution 2H–13C correlation spectra and the method is therefore of great interest for the structural biology community. Here we demonstrate that the combination of sample deuteration and dynamic nuclear polarization yields resolved 2H–13C correlation spectra with a signal enhancement of ε ≥ 700 compared to a spectrum recorded with microwaves off and otherwise identical conditions. To our knowledge, this is the first time that 2H-DNP has been employed to enhance MAS-NMR spectra of a biologically relevant system. The DNP process is studied using several polarizing agents and the technique is applied to obtain 2H–13C correlation spectra of U-[2H, 13C] proline. PMID:20458422

  7. An optical NMR spectrometer for Larmor-beat detection and high-resolution POWER NMR

    NASA Astrophysics Data System (ADS)

    Kempf, J. G.; Marohn, J. A.; Carson, P. J.; Shykind, D. A.; Hwang, J. Y.; Miller, M. A.; Weitekamp, D. P.

    2008-06-01

    Optical nuclear magnetic resonance (ONMR) is a powerful probe of electronic properties in III-V semiconductors. Larmor-beat detection (LBD) is a sensitivity optimized, time-domain NMR version of optical detection based on the Hanle effect. Combining LBD ONMR with the line-narrowing method of POWER (perturbations observed with enhanced resolution) NMR further enables atomically detailed views of local electronic features in III-Vs. POWER NMR spectra display the distribution of resonance shifts or line splittings introduced by a perturbation, such as optical excitation or application of an electric field, that is synchronized with a NMR multiple-pulse time-suspension sequence. Meanwhile, ONMR provides the requisite sensitivity and spatial selectivity to isolate local signals within macroscopic samples. Optical NMR, LBD, and the POWER method each introduce unique demands on instrumentation. Here, we detail the design and implementation of our system, including cryogenic, optical, and radio-frequency components. The result is a flexible, low-cost system with important applications in semiconductor electronics and spin physics. We also demonstrate the performance of our systems with high-resolution ONMR spectra of an epitaxial AlGaAs /GaAs heterojunction. NMR linewidths down to 4.1Hz full width at half maximum were obtained, a 103-fold resolution enhancement relative any previous optically detected NMR experiment.

  8. 13C NMR Metabolomics: INADEQUATE Network Analysis

    PubMed Central

    Clendinen, Chaevien S.; Pasquel, Christian; Ajredini, Ramadan; Edison, Arthur S.

    2015-01-01

    The many advantages of 13C NMR are often overshadowed by its intrinsically low sensitivity. Given that carbon makes up the backbone of most biologically relevant molecules, 13C NMR offers a straightforward measurement of these compounds. Two-dimensional 13C-13C correlation experiments like INADEQUATE (incredible natural abundance double quantum transfer experiment) are ideal for the structural elucidation of natural products and have great but untapped potential for metabolomics analysis. We demonstrate a new and semi-automated approach called INETA (INADEQUATE network analysis) for the untargeted analysis of INADEQUATE datasets using an in silico INADEQUATE database. We demonstrate this approach using isotopically labeled Caenorhabditis elegans mixtures. PMID:25932900

  9. 14 N NMR of tetrapropylammonium based crystals

    NASA Astrophysics Data System (ADS)

    Dib, E.; Mineva, T.; Gaveau, P.; Alonso, B.

    2015-07-01

    We have investigated using 14N NMR different types of materials containing tetrapropylammonium cations. We consider the tetrapropylammonium bromide crystal as well as two different microporous materials silicalite-1 and AlPO-5, with MFI and AFI topology respectively, where the tetrapropylammonium cation plays the role of structure directing agent. 14N NMR quadrupolar coupling parameters were determined experimentally for all the crystals. In addition calculations based on Density Functional Theory with empirical dispersion (DFT-D) were performed on the MFI type zeolite. The sensitivity of the 14N quadrupolar coupling parameters to the spatial distribution of the anions in the zeolite's framework is emphasized.

  10. 1H NMR relaxation in urea

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Bacher, Alfred D.; Dybowski, C.

    2007-11-01

    Proton NMR spin-lattice relaxation times T1 were measured for urea as a function of temperature. An activation energy of 46.3 ± 4.7 kJ/mol was extracted and compared with the range of 38-65 kJ/mol previously reported in the literature as measured by different magnetic resonance techniques. In addition, proton NMR spin-lattice relaxation times in the rotating frame T1 ρ were measured as a function of temperature. These measurements provide acquisition conditions for the 13C and 15N CP/MAS spectra of pure urea in the crystalline phase.

  11. Tritiation methods and tritium NMR spectroscopy

    SciTech Connect

    Jaiswal, D.K.; Morimoto, H.; Salijoughian, M.; Williams, P.G.

    1991-09-01

    We have used a simple process for the production of highly tritiated water and characterized the product species by {sup 1}H and {sup 3}H NMR spectroscopy. The water is readily manipulated and used in subsequent reactions either as T{sub 2}O, CH{sub 3}COOT or CF{sub 3}COOT. Development of tritiated diimide has progressed to the point where cis-hydrogenated products at 1-20 Ci/mmole S.A. are possible. Tri-n-butyl tin tritide has been produced at >95% tritium content and well characterized by multinuclear NMR techniques. 27 refs., 3 figs.

  12. NMR investigation of the quantum pigeonhole effect

    NASA Astrophysics Data System (ADS)

    V. S., Anjusha; Hegde, Swathi S.; Mahesh, T. S.

    2016-02-01

    NMR quantum simulators have been used for studying various quantum phenomena. Here, using a four-qubit NMR quantum simulator, we investigate the recently postulated quantum pigeonhole effect. In this phenomenon, a set of three particles in a two-path interferometer often appears to be in such a superposition that no two particles can be assigned a single path, thus exhibiting the nonclassical behavior. In our experiments, quantum pigeons are emulated by three nuclear qubits whose states are probed jointly and noninvasively by an ancillary spin. The experimental results are in good agreement with quantum theoretical predictions.

  13. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    Nuclear Magnetic Resonance Imaging (MRI) has been developed into a powerful and widely used diagnostic tool since the invention of techniques using linear magnetic field gradients in 1973. The variety of imaging contrasts obtainable in MRI, such as spin density, relaxation times and flow rate, gives MRI a significant advantage over other imaging techniques. For common diagnostic applications, image resolutions have been in the order of millimeters with slice thicknesses in centimeters. For many research applications, however, resolutions in the order of tens of microns or smaller are needed. NMR Imaging in these high resolution disciplines is known as NMR microscopy. Compared with conventional microscopy, NMR microscopy has the advantage of being non-invasive and non-destructive. The major obstacles of NMR microscopy are low signal-to-noise ratio and effects due to spin diffusion. To overcome these difficulties, more sensitive RF probes and very high magnetic field gradients have to be used. The most effective way to increase sensitivity is to build smaller probes. Microscope probes of different designs have been built and evaluated. Magnetic field gradient coils that can produce linear field gradients up to 450 Gauss/cm were also assembled. In addition, since microscope probes often employ remote capacitors for RF tuning, the associated signal loss in the transmission line was studied. Imaging experiments have been carried out in a 2.1 Tesla small bore superconducting magnet using the typical two-dimensional spin warp imaging technique. Images have been acquired for both biological and non-biological samples. The highest resolution was obtained in an image of a nerve bundle from the spinal cord of a racoon and has an in-plane resolution of 4 microns. These experiments have demonstrated the potential application of NMR microscopy to pathological research, nervous system study and non -destructive testings of materials. One way to further improve NMR microscopy is

  14. Magic Angle Spinning NMR of Viruses

    PubMed Central

    Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-01-01

    Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197

  15. Sensitive detection of NMR for thin films.

    PubMed

    Lee, Soonchil

    2015-10-01

    NMR can provide valuable information about thin films, but its relatively low sensitivity allows data acquisition only from bulk samples. The sensitivity problem is circumvented by detection schemes with higher sensitivity and/or enhanced polarization. In most of these ingenious techniques, electrons play a central role through hyperfine interactions with the nuclei of interest or the conversion of the spin orientation to an electric charge. The state of the art in NMR is the control of a single nuclear spin state, the complete form of which is one of the ultimate goals of nanotechnology. PMID:26549846

  16. The Quiet Renaissance of Protein NMR

    PubMed Central

    Barrett, Paul J.; Chen, Jiang; Cho, Min-Kyu; Kim, Ji-Hun; Lu, Zhenwei; Mathew, Sijo; Peng, Dungeng; Song, Yuanli; Van Horn, Wade D.; Zhuang, Tiandi; Sönnichsen, Frank D.; Sanders, Charles R.

    2013-01-01

    From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 80s. “Without receivers fitted and kept in order, the air may tingle and thrill with the message, but it will not reach my spirit and consciousness.” Mary Slessor, Calabar, circa 1910 PMID:23368985

  17. Coexistence of multiple charge-density waves and superconductivity in SrPt2As2 revealed by 75As-NMR /NQR and 195Pt-NMR

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing

    2015-02-01

    The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.

  18. Molecular Mechanics and Variable-Temperature 1H NMR Studies on N,N-Diethyl-m-toluamide. An Undergraduate NMR and Molecular Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Jensen, Bruce L.; Fort, Raymond C., Jr.

    2001-04-01

    A combination of molecular modeling and variable-temperature NMR experiments is used to analyze the barrier to rotation about the amide bond of N,N-diethyl-m-toluamide (DEET). This approach utilizes the ability of computers to calculate the potential energy of a set of conformations obtained from a dihedral drive around the N-CO bond. The results of this experiment demonstrate a substantial barrier of 15.9 kcal/mol. These data are applied to a set of 1H NMR spectra taken over a range of temperatures from 9 to 85 °C. At very low temperatures the conformation is "locked" and the spectrum displays two sets of triplets and two sets of quartets for the two nonequivalent ethyl groups. However, at high temperature the rapid rotation about the amide linkage produces only one quartet and one triplet, characteristic of two indistinguishable ethyl groups. The experiment offers students hands-on experience with two important laboratory instruments and allows for both qualitative and quantitative analysis of the data. This experiment is scheduled to coincide with lecture discussion of NMR spectroscopy, after the fundamentals of bond rotation have been presented.

  19. NMR Stark Spectroscopy: New Methods to Calibrate NMR Sensitivity to Electric Fields

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.

    The influence of electrostatics on NMR parameters is well accepted. Thus, NMR is a promising route to probe electrical features within molecules and materials. However, applications of NMR Stark effects (E-field induced changes in spin energy levels) have been elusive. I have developed new approaches to resolve NMR Stark effects from an applied E field. This calibrates nuclear probes whose spectral response might later be used to evaluate internal E fields that are critical to function, such as those due to local charge distributions or sample structure. I will present two novel experimental approaches for direct calibration of NMR quadrupolar Stark effects (QSEs). In the first, steady-state (few-second) excitation by an E field at twice the NMR frequency (2ω 0) is used to saturate spin magnetization. The extent of saturation vs. E-field amplitude calibrates the QSE response rate, while measurements vs sample orientation determine tensorial character. The second method instead synchronizes short (few µs) pulses of the 2ω0 E field with a multiple-pulse NMR sequence. This, “POWER” (Perturbations Observed With Enhanced Resolution) approach enables more accurate measure of small QSEs (i.e. few Hz spectral changes). A 2nd key advantage is the ability to define tensorial response without reorienting the sample, but instead varying the phase of the 2ω0 field. I will describe these experiments and my home-built NMR “Stark probe”, employed on a conventional wide-bore solid-state NMR system. Results with GaAs demonstrate each method, while extensions to a wider array of molecular and material systems may now be possible using these methods.

  20. Selective Detection of 1H NMR Resonances of CH n Groups Using a Heteronuclear Maximum-Quantum Filter and Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Liu, M.; Farrant, R. D.; Nicholson, J. K.; Lindon, J. C.

    A number of approaches are described for the provision of separate one-dimensional 1H NMR spectra of CH, CH 2, and CH 3 groups utilizing the natural-abundance 13C spins and based upon the selection of the maximum multiple-quantum coherences of the various groups, This sequence is termed edited maximum-quantum proton spectroscop y (MAXY) spectroscopy, The replacement of phase cycling with the application of z magnetic field gradient pulses is also demonstrated, The editing approach is demonstrated using the 1H NMR spectrum of dexamethasone in DMSO- d6 solution, Extension to a complex mixture biofluid is exemplified by the CH 3-only 1H NMR spectrum of human seminal plasma. This aid to the assignment of endogenous metabolite resonances is demonstrated to result in dramatic spectral simplification.

  1. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  2. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  3. Liquid crystal orientational order in confined geometries: A NMR perspective

    NASA Astrophysics Data System (ADS)

    Zeng, Huairen

    .265 g/cc. In Aerogel, the pore size changes from 1000 to 100 A. Aerosil are small SiO2 particles of roughly 70 A diameter. Samples will be prepared with density ranging from 0.015 to 0.3 g/cc. These three porous media offer large surface to volume ratio, so they are suitable to study the surface effect. Measurement will be performed as a function of temperature from 0 to 50°C, covering the isotropic, nematic and smectic phases, as a function of the host media size or the density. The aim of these systematic measurements and analysis is to study how the different type of confinements: voids, pores or a chain of spherical particles, or spheres, introduce order or disorder in the liquid crystal near the surface and affects the over all liquid crystal alignment. We will explore the possibility of confining size-driven configurational transitions and determine the size dependence for the existence of certain phases. With this study we will determine the effect of different morphologies on the phase transitions of liquid crystal, and particularly, how a size-dependent critical behavior affects the orientational order. The research will be complemented by numerical simulations of the obtained NMR spectrum patterns. (Abstract shortened by UMI.)

  4. Identification of fucans from four species of sea cucumber by high temperature 1H NMR

    NASA Astrophysics Data System (ADS)

    Wu, Nian; Chen, Shiguo; Ye, Xingqian; Li, Guoyun; Yin, Li'ang; Xue, Changhu

    2014-10-01

    Acidic polysaccharide, which has various biological activities, is one of the most important components of sea cucumber. In the present study, crude polysaccharide was extracted from four species of sea cucumber from three different geographical zones, Pearsonothuria graeffei ( Pg) from Indo-Pacific, Holothuria vagabunda ( Hv) from Norwegian Coast, Stichopus tremulu ( St) from Western Indian Ocean, and Isostichopus badionotu ( Ib) from Western Atlantic. The polysaccharide extract was separated and purified with a cellulose DEAE anion-exchange column to obtain corresponding sea cucumber fucans (SC-Fucs). The chemical property of these SC-Fucs, including molecular weight, monosaccharide composition and sulfate content, was determined. Their structure was compared simply with fourier infrared spectrum analyzer and identified with high temperature 1H nuclear magnetic resonance spectrum analyzer (NMR) and room temperature 13C NMR. The results indicated that Fuc- Pg obtained from the torrid zone mainly contained 2,4-O-disulfated and non-sulfated fucose residue, whereas Fuc- Ib from the temperate zone contained non-, 2-O- and 2,4-O-disulfated fucose residue; Fuc- St from the frigid zone and Fuc- Hv from the torrid zone contained mainly non-sulfated fucose residue. The proton of SC-Fucs was better resolved via high temperature 1H NMR than via room temperature 1H NMR. The fingerprint of sea cucumber in different sea regions was established based on the index of anomer hydrogen signal in SC-Fucs. Further work will help to understand whether there exists a close relationship between the geographical area of sea cucumber and the sulfation pattern of SC-Fucs.

  5. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  6. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  7. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  8. Battlefield spectrum management

    NASA Astrophysics Data System (ADS)

    Sivakumar, C.

    1997-06-01

    Modern tactical communications systems rely on radios to support network and user connectivity. One of the challenges for network planners and managers is to make best use of scarce and vulnerable frequency spectrum resources to support the communication needs of war fighters. With the wide variety of Iris radio types typically to be deployed in the battlefield (ranging from high frequency to super high frequency), a comprehensive suite of tools is necessary to ensure that frequency interference is kept minimum. Without a sophisticated frequency spectrum management system, the most advanced tactical communications systems could be rendered useless, jeopardizing human life and national security. For these reasons, it is important to develop an Iris wide battlefield spectrum management capability that takes full advantage of current frequency spectrum management research and development (R&D), related tools, and supporting technology for assigning frequencies. This session briefly describes various assignment strategies being adopted in the Iris BFSM for overcoming cosite/collocated/farsite interferences along with the propagation models [from high frequency (HF) to super high frequency (SHF)] used for the assignment of frequencies. Also a brief thread outlining the process for generating frequency allocation/assignment request and analysis of frequency interference is discussed.

  9. Charging for Spectrum Use.

    ERIC Educational Resources Information Center

    Geller, Henry; Lampert, Donna

    This paper, the third in a series exploring future options for public policy in the communications and information arenas, argues that the communications spectrum--e.g., public mobile service, private radio, and domestic satellites--is a valuable but limited resource that should benefit all Americans. After a background discussion, it is…

  10. Sinclair ZX Spectrum.

    ERIC Educational Resources Information Center

    Rodwell, Peter

    1982-01-01

    Describes and evaluates the hardware, software, peripheral devices, performance capabilities, and programing capacity of the Sinclair ZX Spectrum microcomputer. The computer's display system, its version of the BASIC programing language, its graphics capabilities, and the unique features of its data entry keyboard are discussed. (JL)

  11. Conformational changes of alamethicin induced by solvent and temperature. A 13C-NMR and circular-dichroism study.

    PubMed

    Jung, G; Dubischar, N

    1975-06-01

    13C nuclear magnetic resonance (NMR) and circular dichroism (CD) have been used for studies on the conformation of alamethicin. The 13C NMR spectrum is assigned with the aid of signals of synthetic partial sequences and selective proton decoupling. The solvent and temperature-dependence of the 13C NMR spectra, T1 measurements and the use of lanthanide-shift reagents allow the differentiation between the amino acids belonging to a rigid alpha-helical portion of the alamethicin sequence and those belonging to a more flexible part. The 13C NMR results are in agreement with results obtained from extended solvent and temperature-dependent CD studies which indicate a highly stabilized nonpolar and intrachenar alpha-helical part. The concentration-dependence of the CD spectrum of alamethicin in a nematic phase revealed aggregation phenomena which might simulate those observed in natural and synthetic membranes. After dissolving alamethicin in aqueous alcohol there is a time-dependence of the ellipticity of the Cotton effects showing a sort of memory effect on the mode of dissolution. Four different conformations can be characterized by CD spectra depending on the solvent and concentration. A model illustrating the dynamic conformations and aggregation phenomena within a membrane is proposed. PMID:1175592

  12. Characterization and quantification of microstructures of a fluorinated terpolymer by both homonuclear and heteronuclear two-dimensional NMR spectroscopy.

    PubMed

    Ok, Salim

    2015-02-01

    Fluoropolymers are usually insoluble in organic solvents. Insolubility of fluoropolymers limits basic characterization such as microstructural investigations. In the family of fluoropolymers, terpolymer of tetrafluorethylene (TFE), hexafluoropropylene (HFP), and vinylidene fluoride (VDF), named THV is one of the newest members. There are nine grades of THV available. Among the nine grades, THV-221 G is an ideal model polymer for basic characterization purposes. THV-221 G is soluble in solvents such as acetone and ethyl acetate. In the current report, both homonuclear and heteronuclear 2D NMR experiments were employed in solution on THV-221 G. The homonuclear gradient correlation spectroscopy NMR measurement revealed that THV has two adjacent TFE units in addition to TFE-HFP sequence orders. The fraction of the microstructures is quantified by the analysis of 1D solution (19)F NMR spectrum. Further, the gradient heteronuclear single quantum coherence experiment helped with the clarification of chemical environments of the units TFE, HFP, and VDF. The 1D solution (13)C NMR spectrum was helpful in clarifying sequence assignments of VDF. It is concluded that THV is a random polymer with a limited fraction of TFE-TFE and TFE-HFP sequence orders in addition to head-to-tail polymerization of VDF unit. PMID:25327292

  13. HYDROGEN AND DEUTERIUM NMR OF SOLIDS BY MAGIC ANGLE SPINNING

    SciTech Connect

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large spectral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. For example, the homonuclear dipolar broadening, HD, for hydrogen is usually several tens of kilohertz. For deuterium, HD is relatively small; however, the quadrupole interaction causes a broadening which can be hundreds of kilohertz in polycrystalline or amorphous solids. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, {beta}{sub m} = Arccos(3{sup -1/2}), with respect to the direction of the external magnetic field. Two approaches have been developed for each nucleus. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of {beta}. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H{sub D} was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal

  14. Characterization of Devonian oil shales by hydrogen pulse NMR. Project report for 1983-84

    SciTech Connect

    Harrell, J.W. Jr.

    1984-09-01

    NMR and ESR measurements have been used to characterize eastern and western United States oil shales. T/sub 1/ measurements which were made at 90 MHz as a function of temperature, together with previously reported 36 MHz results, suggest that paramagnetic centers contribute strongly to the relaxation in some of the shales. A careful study of the ESR spectrum at both X-band and K-band frequencies suggests that a part of the spectrum may be due to naturally irradiated silicates in the shales. Laboratory irradiation experiments suggest a method for determining the age of the oil shale deposits. A new technique has been developed for measuring second moments of the NMR power spectrum. Measurements made on a Colorado shale show a rapid decrease with increasing temperature in the vicinity of a previously reported T/sub 1r/ minimum. Unpaired electron spin concentrations and room temperature T/sub 1/ values were measured in 60 oil shale samples from north Alabama and south Tennessee. No correlation between spin concentration and oil Fischer assay was observed except for samples from a 100 ft bore hole in Etowah Co., AL, where a linear correlation was observed. Room temperature T/sub 1/'s were found to approximately increase with increasing spin concentration, supporting the contention that relaxation due to interactions with paramagnetic centers is important. 11 references, 14 figures.

  15. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.

    PubMed

    Wei, Qingtao; Chen, Jiajing; Mi, Juan; Zhang, Jiahai; Ruan, Ke; Wu, Jihui

    2016-07-01

    Nuclear magnetic resonance (NMR) is a powerful tool to interrogate protein structure and dynamics residue by residue. However, the prerequisite chemical-shift assignment remains a bottleneck for large proteins due to the fast relaxation and the frequency degeneracy of the (13) Cα nuclei. Herein, we present a covariance NMR strategy to assign the backbone chemical shifts by using only HN(CO)CA and HNCA spectra that has a high sensitivity even for large proteins. By using the peak linear correlation coefficient (LCC), which is a sensitive probe even for tiny chemical-shift displacements, we correctly identify the fidelity of approximately 92 % cross-peaks in the covariance spectrum, which is thus a significant improvement on the approach developed by Snyder and Brüschweiler (66 %) and the use of spectral derivatives (50 %). Thus, we calculate the 4D covariance spectrum from HN(CO)CA and HNCA experiments, in which cross-peaks with LCCs above a universal threshold are considered as true correlations. This 4D covariance spectrum enables the sequential assignment of a 42 kDa maltose binding protein (MBP), in which about 95 % residues are successfully assigned with a high accuracy of 98 %. Our LCC approach, therefore, paves the way for a residue-by-residue study of the backbone structure and dynamics of large proteins. PMID:27276173

  16. Use of acetimidation in the NMR identification of neurophysin lysine protons

    SciTech Connect

    Sardana, V.; Breslow, E.

    1986-05-01

    Acetimidation of the two lysine residues of neurophysin (NP) results in localized changes in the proton magnetic resonance spectrum, allowing identification of lysine side-chain resonances. Neither peptide-binding nor protein self-association appeared to be significantly altered by acetimidation. Additionally, no significant effect of either peptide-binding or self-association on lysine epsilon-CH/sub 2/ protons was seen. However, dimerization-induced NMR changes in the 1.6-1.8 ppm region, associated with lysine ..beta..,..gamma..,sigma protons, were altered in the acetimidated protein. In particular, while the spectrum of the acetimidated NP monomer was almost identical to that of the native protein, a shoulder at 1.72 ppm in the native protein dimer was shifted upfield in the modified dimer. Additionally the direction of NMR shifts in the 1.6-1.8 ppm region normally associated with peptide binding to the NP dimer appeared to be reversed in the acetimidated protein. Binding-induced and dimerization-induced changes in all other regions of the spectrum were identical in the native and modified proteins. These results suggest that one or both NP lysine residues may be near the dimer subunit interface and indicate an effect of peptide-binding on lysine side-chain environment.

  17. Optimization and stabilization of Rho small GTPase proteins for solution NMR studies: The case of Rnd1.

    PubMed

    Cao, Shufen; Buck, Matthias

    2011-11-01

    Rho GTPases of the Ras superfamily have important roles in regulating the organization of the actin filament system, morphogenesis and migration of cells. Structural details for these proteins are still emerging, and information on their dynamics in solution is much needed to understand the mechanisms underlying their signaling functions. This report reviews conditions for solution NMR studies of Rho GTPases and describes our optimization and stabilization of Rnd1 for such experiments. Rnd1 belongs to the Rnd protein subfamily branch of Rho small GTPases and functions in neurite outgrowth, dendrite development and in axon guidance. However, as we report here, solution NMR studies of this protein are challenging. Multiple methods have been employed to enhance the stability of Rnd1, including by cleavage of an N-terminal His expression tag and by addition of non-hydrolysable GMPPNP (β: γ-imidoguanosine 5'-triphosphate) nucleotide. Further stabilization of Rnd1 against aggregation was achieved through a structure informed point mutation while maintaining its conformation and binding affinity for a partner protein. The NMR spectrum of the optimized protein reveals significant improvement in NMR signal dispersion and intensity. This work paves the way for structural and protein-protein/protein-ligand interaction studies of Rnd1 by solution NMR and also provides a guide for optimization and stabilization of other Rho GTPases. PMID:22545226

  18. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase

    SciTech Connect

    Lukat, G.S.; Goff, H.M.

    1986-12-15

    The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin.

  19. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase.

    PubMed

    Lukat, G S; Goff, H M

    1986-12-15

    The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin. PMID:3023353

  20. An NMR study of pyridine associated with DMPC liposomes and magnetically ordered DMPC-surfactant mixed micelles.

    PubMed Central

    Henderson, J M; Iannucci, R M; Petersheim, M

    1994-01-01

    With molecular dynamics simulations of phospholipid membranes becoming a reality, there is a growing need for experiments that provide the molecular details necessary to test these computational results. Pyridine is used here to explore the interaction of planar aromatic groups with the water-lipid interface of membranes. It is shown by magic angle spinning 13C nuclear magnetic resonance (NMR) to bind between the glycerol and choline groups of dimyristoylphosphatidylcholine (DMPC) liposomes. The axial pattern for the 31P NMR spectrum of DMPC liposomes is preserved even with more than half of the interfacial sites occupied, indicating that pyridine does not disrupt the lamellar phase of this lipid. 2H NMR experiments of liposomes in deuterium oxide demonstrate that pyridine might promote greater penetration of water into restricted regions in the interface. Magnetically oriented DMPC/surfactant micelles were investigated as a means for improving resolution and sensitivity in NMR studies of species bound to bilayers. The quadrupolar splittings in the 2H NMR spectra of d5-pyridine in DMPC liposomes and magnetically oriented DMPC/Trixon X-100 micelles indicate a common bound state for the two bilayer systems. The well resolved quadrupolar splittings of d5-pyridine in oriented micelles were used to establish the tilt of the pyridine ring relative to the bilayer plane. PMID:7918992

  1. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  2. Hyperpolarized NMR Probes for Biological Assays

    PubMed Central

    Meier, Sebastian; Jensen, Pernille R.; Karlsson, Magnus; Lerche, Mathilde H.

    2014-01-01

    During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments. PMID:24441771

  3. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  4. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  5. Solid-state NMR imaging system

    SciTech Connect

    Gopalsami, N.; Dieckman, S.L.; Ellingson, W.A.

    1990-01-01

    An accessory for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  6. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  7. Increasing the quantitative bandwidth of NMR measurements.

    PubMed

    Power, J E; Foroozandeh, M; Adams, R W; Nilsson, M; Coombes, S R; Phillips, A R; Morris, G A

    2016-02-18

    The frequency range of quantitative NMR is increased from tens to hundreds of kHz by a new pulse sequence, CHORUS. It uses chirp pulses to excite uniformly over very large bandwidths, yielding accurate integrals even for nuclei such as (19)F that have very wide spectra. PMID:26789115

  8. NMR analysis of a fluorocarbon copolymer

    SciTech Connect

    Smith, R.E.; Smith, C.H.

    1987-10-01

    Vinylidene fluoride (VF/sub 2/) can be copolymerized with chlorotrifluoroethylene (CTFE) in an aqueous emulsion using a peroxide chain initiator. The physical properties of the resulting fluorocarbon polymer depend on the ratio of VF/sub 2/ to CTFE and the randomness of the copolymerization. When CTFE and VF are polymerized in an approximately 3:1 mole ratio, the resulting polymer is soluble in acetone (and other solvents) at room temperature. Using proton and fluorine-19 NMR, the mole ratio of CTFE to VF/sub 2/, the emulsifier (perfluorodecanoate) concentration, and the randomness of copolymerization can be determined. A trifluorotoluene internal standard is added to a d/sub 6/-acetone solution of the fluoropolymer. Proton NMR is used to determine the amount of VF/sub 2/. Fluorine-19 NMR is used to measure the amount of emulsifier and the randomness of copolymerization. Each analysis requires about 5 minutes, and is quite precise, with relative standard deviations from 3 to 10% (10 replicates analyzed). In addition, the results from NMR analyses agree well with wet chemical analyses. 4 refs., 3 figs., 3 tabs.

  9. SQUID detected NMR in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Matlachov, Andrei N.; Volegov, Petr L.; Espy, Michelle A.; George, John S.; Kraus, Robert H.

    2004-09-01

    We have built an NMR system that employs a superconducting quantum interference device (SQUID) detector and operates in measurement fields of 2-25 μT. The system uses a pre-polarizing field from 4 to 30 mT generated by simple room-temperature wire-wound coils that are turned off during measurements. The instrument has an open geometry with samples located outside the cryostat at room-temperature. This removes constraints on sample size and allows us to obtain signals from living tissue. We have obtained 1H NMR spectra from a variety of samples including water, mineral oil, and a live frog. We also acquired gradient encoded free induction decay (FID) data from a water-plastic phantom in the μT regime, from which simple projection images were reconstructed. NMR signals from samples inside metallic containers have also been acquired. This is possible because the penetration skin depth is much greater at the low operating frequencies of this system than for conventional systems. Advantages to ultra-low field NMR measurements include lower susceptibility artifacts caused by high strength polarizing and measurement fields, and negligible line width broadening due to measurement field inhomogeneity, reducing the burden of producing highly homogeneous fields.

  10. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  11. Quantitative determination of lead in mixtures of lead(II) halides using solid-state 207Pb NMR spectroscopy.

    PubMed

    Glatfelter, Alicia; Stephenson, Nicole; Bai, Shi; Dybowski, Cecil; Perry, Dale L

    2006-11-01

    We demonstrate a multi-spectrum technique for facile, quantitative determination of lead in solid materials using solid-state (207)Pb NMR that avoids the major problem of uniform excitation across a wide spectral range; the method can be employed without chemical separation or other chemical manipulations and without any prior sample preparation, resulting in a non-destructive analysis, and producing results that are in agreement with gravimetric analyses of mixed samples of the lead halides. PMID:17066187

  12. Combining solid-state NMR spectroscopy with first-principles calculations - a guide to NMR crystallography.

    PubMed

    Ashbrook, Sharon E; McKay, David

    2016-06-01

    Recent advances in the application of first-principles calculations of NMR parameters to periodic systems have resulted in widespread interest in their use to support experimental measurement. Such calculations often play an important role in the emerging field of "NMR crystallography", where NMR spectroscopy is combined with techniques such as diffraction, to aid structure determination. Here, we discuss the current state-of-the-art for combining experiment and calculation in NMR spectroscopy, considering the basic theory behind the computational approaches and their practical application. We consider the issues associated with geometry optimisation and how the effects of temperature may be included in the calculation. The automated prediction of structural candidates and the treatment of disordered and dynamic solids are discussed. Finally, we consider the areas where further development is needed in this field and its potential future impact. PMID:27117884

  13. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the

  14. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  15. Applications of Diffusion Ordered Spectroscopy (DOSY-NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffusion-ordered NMR (DOSY-NMR) is a powerful, but under-utilized, technique for the investigation of mixtures based on translational diffusion rates. DOSY spectra allow for determination by NMR of components that may differ in molecular weight, geometry or complexation. Typical applications coul...

  16. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  17. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR

    NASA Astrophysics Data System (ADS)

    Lim, Ae Ran

    2016-03-01

    The ferroelastic phase transition of tetraethylammonium compound [N(C2H5)4]2ZnBr4 at the phase transition temperature (TC) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near TC was studied in terms of the chemical shifts and the spin-lattice relaxation times T1ρ in the rotating frame for 1H MAS NMR and 13C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the 13C NMR spectrum, and the T1ρ results indicate that they undergo tumbling motion above TC in a coupled manner. From the 14N NMR results, the two nitrogen nuclei in the N(C2H5)4+ ions were distinguishable above TC, and the splitting in the spectra below TC was related to the ferroelastic domains with different orientations.

  18. NMR Constraints Analyser: a web-server for the graphical analysis of NMR experimental constraints.

    PubMed

    Heller, Davide Martin; Giorgetti, Alejandro

    2010-07-01

    Nuclear magnetic resonance (NMR) spectroscopy together with X-ray crystallography, are the main techniques used for the determination of high-resolution 3D structures of biological molecules. The output of an NMR experiment includes a set of lower and upper limits for the distances (constraints) between pairs of atoms. If the number of constraints is high enough, there will be a finite number of possible conformations (models) of the macromolecule satisfying the data. Thus, the more constraints are measured, the better defined these structures will be. The availability of a user-friendly tool able to help in the analysis and interpretation of the number of experimental constraints per residue, is thus of valuable importance when assessing the levels of structure definition of NMR solved biological macromolecules, in particular, when high-quality structures are needed in techniques such as, computational biology approaches, site-directed mutagenesis experiments and/or drug design. Here, we present a free publicly available web-server, i.e. NMR Constraints Analyser, which is aimed at providing an automatic graphical analysis of the NMR experimental constraints atom by atom. The NMR Constraints Analyser server is available from the web-page http://molsim.sci.univr.it/constraint. PMID:20513646

  19. OPENCORE NMR: open-source core modules for implementing an integrated FPGA-based NMR spectrometer.

    PubMed

    Takeda, Kazuyuki

    2008-06-01

    A tool kit for implementing an integrated FPGA-based NMR spectrometer [K. Takeda, A highly integrated FPGA-based nuclear magnetic resonance spectrometer, Rev. Sci. Instrum. 78 (2007) 033103], referred to as the OPENCORE NMR spectrometer, is open to public. The system is composed of an FPGA chip and several peripheral boards for USB communication, direct-digital synthesis (DDS), RF transmission, signal acquisition, etc. Inside the FPGA chip have been implemented a number of digital modules including three pulse programmers, the digital part of DDS, a digital quadrature demodulator, dual digital low-pass filters, and a PC interface. These FPGA core modules are written in VHDL, and their source codes are available on our website. This work aims at providing sufficient information with which one can, given some facility in circuit board manufacturing, reproduce the OPENCORE NMR spectrometer presented here. Also, the users are encouraged to modify the design of spectrometer according to their own specific needs. A home-built NMR spectrometer can serve complementary roles to a sophisticated commercial spectrometer, should one comes across such new ideas that require heavy modification to hardware inside the spectrometer. This work can lower the barrier of building a handmade NMR spectrometer in the laboratory, and promote novel and exciting NMR experiments. PMID:18374613

  20. Interference of homonuclear decoupling and exchange in the solid-state NMR of perfluorocyclohexane

    NASA Astrophysics Data System (ADS)

    McMillan, Deborah E.; Hazendonk, Paul; Hodgkinson, Paul

    2003-04-01

    We observe an interference between RF irradiation used for homonuclear decoupling of 19F and conformational exchange in the 13C spectrum of perfluorocyclohexane. We show that these effects can be readily reproduced in simulation, and characterise their dependence on the various NMR and experimental parameters. Their application to observing exchange rates on the kHz timescale is evaluated with respect to T1 ρ measurements and the connections between the two approaches established. The implications for experiments that use homonuclear decoupling of 1H to resolve 1J CH couplings in the solid-state are also evaluated in detail.

  1. Automated recognition and assessment of cross peaks in two-dimensional NMR spectra of macromolecules

    NASA Astrophysics Data System (ADS)

    Glaser, S.; Kalbitzer, H. R.

    A generally applicable procedure for the automated recognition of cross peaks in two-dimensional NMR spectra is presented which exploits local and global spectral properties. It is mainly based on general symmetry considerations which apply for the two-dimensional homonuclear techniques commonly used for structural determination of macromolecules in solution. The corresponding PASCAL program has been tested on a double-quantumfiltered COSY spectrum of a small protein; the results show that the recognition of cross peaks and their assessment works effectively even on spectra with intense 1 noise and experimental artifacts as are typically obtained for biological macromolecules with relatively low solubility.

  2. Economics of spectrum allocation

    NASA Astrophysics Data System (ADS)

    Melody, W. H.

    The effective and efficient allocation and use of the spectrum can be ensured only by a set of sharing rules that will reflect the interests, values, and power of all affected parties. What is now happening is that the new interests and different values of the developing countries are pressing to change the international sharing rules established by a small group of high-technology nations. It is noted that the latter have established a massive telecommunications infrastructure on the basis of inherited sharing rules that reflect only their interests and a much simplified scarcity problem. Once long-term goals and underlying principles of allocation are established, communication technologies and markets can be directed, through a series of adjustment policies, to achieve them. A crucial first step in the creation of an international information environment in which 'free' flows will be balanced flows is the establishment of a balanced and equitable set of sharing rules for the radio spectrum.

  3. Spread spectrum image steganography.

    PubMed

    Marvel, L M; Boncelet, C R; Retter, C T

    1999-01-01

    In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking. PMID:18267522

  4. Sensors across the Spectrum

    NASA Astrophysics Data System (ADS)

    Neese, Christopher F.; De Lucia, Frank C.; Medvedev, Ivan R.

    2011-06-01

    A resurgence of interest in spectroscopic sensors has been fueled by increases in performance made possible by technological advancements and applications in medicine, environmental monitoring, and national security. Often this research is technology driven, without enough consideration of the spectroscopic signatures available to be probed. We will compare several current spectroscopic sensors across the electromagnetic spectrum, with an eye towards the fundamental spectroscopic considerations important at each wavelength.

  5. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  6. Squid detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  7. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  8. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  9. Squid detected NMR and MRI at ultralow fields

    SciTech Connect

    Clarke, John; Pines, Alexander; McDermott, Robert F.; Trabesinger, Andreas H.

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  10. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    NASA Astrophysics Data System (ADS)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  11. NMR CHARACTERIZATIONS OF PROPERTIES OF HETEROGENEOUS MEDIA

    SciTech Connect

    C.T. Philip Chang; Changho Choi; Jeromy T. Hollenshead; Rudi Michalak; Jack Phan; Ramon Saavedra; John C. Slattery; Jinsoo Uh; Randi Valestrand; A. Ted Watson; Song Xue

    2005-01-01

    A critical and long-standing need within the petroleum industry is the specification of suitable petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs (i.e., reservoir characterization). The development of accurate reservoir characterizations is extremely challenging. Property variations may be described on many scales, and the information available from measurements reflect different scales. In fact, experiments on laboratory core samples, well-log data, well-test data, and reservoir-production data all represent information potentially valuable to reservoir characterization, yet they all reflect information about spatial variations of properties at different scales. Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous potential for developing new descriptions and understandings of heterogeneous media. NMR has the rare capability to probe permeable media non-invasively, with spatial resolution, and it provides unique information about molecular motions and interactions that are sensitive to morphology. NMR well-logging provides the best opportunity ever to resolve permeability distributions within petroleum reservoirs. We develop MRI methods to determine, for the first time, spatially resolved distributions of porosity and permeability within permeable media samples that approach the intrinsic scale: the finest resolution of these macroscopic properties possible. To our knowledge, this is the first time that the permeability is actually resolved at a scale smaller than the sample. In order to do this, we have developed a robust method to determine of relaxation distributions from NMR experiments and a novel implementation and analysis of MRI experiments to determine the amount of fluid corresponding to imaging regions, which are in turn used to determine porosity and saturation distributions. We have developed a novel MRI experiment to determine velocity distributions within flowing experiments, and

  12. Fetal Alcohol Spectrum Disorders (FASDs)

    MedlinePlus

    ... FASD Cancel Submit Search The CDC Fetal Alcohol Spectrum Disorders (FASDs) Note: Javascript is disabled or is ... Recommend on Facebook Tweet Share Compartir Fetal alcohol spectrum disorders (FASDs) are a group of conditions that ...

  13. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  14. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  15. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors. PMID:12470051

  16. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  17. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  18. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  19. NMR Relaxation and Diffusion Study of Ultrasound Recycling of Polyurethanes

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Ghose, S.; Isayev, A. I.

    2004-04-01

    We have examined the effect of intense ultrasound on unfilled polyurethane foam and rubber using proton NMR transverse relaxation and pulsed-gradient diffusion studies, sol extraction, GPC characterization, and glass transition measurements. Results correlate well with ultrasound amplitude. The proton T2 relaxation at 70.5 deg. C exhibits three discrete components, due to heavily entangled sol and crosslinked network; unentangled polymeric sol plus dangling network chain ends; and oligomer remnants. Devulcanizing produces heavy sol, increases segmental mobility of all species, and generates more dangling chain ends. In foams, but not in rubber, additional light sol is generated at the expense of network. All mobilities are significantly lower than in the other rubbers we have studied, an effect unrelated to the glass transition, nearly constant at -60 deg. C. Diffusion measurements, possible only in foams, show a bimodal spectrum whose fast component slows markedly with ultrasound amplitude, attesting to the production of fragments heavier than the original oligomers, as confirmed by GPC analysis. This work is the first to study ultrasound devulcanization in industrial rubbery foams.

  20. Sensitive, quantitative carbon-13 NMR spectra by mechanical sample translation

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Allen, Mary; Martin, Rachel W.; Shaka, A. J.

    2009-04-01

    Collecting a truly quantitative carbon-13 spectrum is a time-consuming chore. Very long relaxation delays, required between transients to allow the z-magnetization, M z, of the spin with the longestT1 to return to the equilibrium value, M0, must precede each transient. These long delays also reduce sensitivity, as fewer transients per unit time can be acquired. In addition, sometimes T1 is not known to within even a factor of two: a conservative guess for the relaxation delay then leads to very low sensitivity. We demonstrate a fresh method to bypass these problems and collect quantitative carbon-13 spectra by swapping the sample volume after each acquisition with a different portion where the magnetization is already equilibrated to M0. Loading larger sample volumes of 10-20 mL into an unusually long (1520 mm) 5 mm OD. NMR tube and vertically sliding the tube between acquisitions accomplishes the swap. The relaxation delay can then be skipped altogether. The spectra are thus both quantitative, and far more sensitive. We demonstrate the moving tube technique on two small molecules (thymol and butylhydroxytoluene) and show good carbon-13 quantification. The gain in sensitivity can be as much as 10-fold for slowly-relaxing 13C resonances. These experiments show that quantitative, sensitive carbon-13 spectra are possible whenever sufficient sample volumes are available. The method is applicable to any slow-relaxing nuclear spin species, such as 29Si, 15N and other low-γ nuclei.

  1. NMR studies of nucleic acid dynamics

    PubMed Central

    Al-Hashimi, Hashim M.

    2014-01-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner. PMID:24149218

  2. NMR with excitation modulated by Frank sequences.

    PubMed

    Blümich, Bernhard; Gong, Qingxia; Byrne, Eimear; Greferath, Marcus

    2009-07-01

    Miniaturized NMR is of growing importance in bio-, chemical, and -material sciences. Other than the magnet, bulky components are the radio-frequency power amplifier and the power supply or battery pack. We show that constant flip-angle excitation with phase modulation following a particular type of polyphase perfect sequences results in low peak excitation power at high response peak power. It has ideal power distribution in both the time domain and the frequency domain. A savings in peak excitation power of six orders of magnitude has been realized compared to conventionally pulsed excitation. Among others, the excitation promises to be of use for button-cell operated miniature NMR devices as well as for complying with specific-absorption-rate regulations in high-field medical imaging. PMID:19386525

  3. NMR-based diffusion lattice imaging.

    PubMed

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles. PMID:27078384

  4. Nuclear spin noise in NMR revisited

    SciTech Connect

    Ferrand, Guillaume; Luong, Michel

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  5. NMR spectral analysis using prior knowledge

    NASA Astrophysics Data System (ADS)

    Kasai, Takuma; Nagata, Kenji; Okada, Masato; Kigawa, Takanori

    2016-03-01

    Signal assignment is a fundamental step for analyses of protein structure and dynamics with nuclear magnetic resonance (NMR). Main-chain signal assignment is achieved with a sequential assignment method and/or an amino-acid selective stable isotope labeling (AASIL) method. Combinatorial selective labeling (CSL) methods, as well as our labeling strategy, stable isotope encoding (SiCode), were developed to reduce the required number of labeled samples, since one of the drawbacks of AASIL is that many samples are needed. Signal overlapping in NMR spectra interferes with amino-acid determination by CSL and SiCode. Since spectral deconvolution by peak fitting with a gradient method cannot resolve closely overlapped signals, we developed a new method to perform both peak fitting and amino acid determination simultaneously, with a replica exchange Monte Carlo method, incorporating prior knowledge of stable-isotope labeling ratios and the amino-acid sequence of the protein.

  6. NMR-based diffusion lattice imaging

    NASA Astrophysics Data System (ADS)

    Laun, Frederik Bernd; Müller, Lars; Kuder, Tristan Anselm

    2016-03-01

    Nuclear magnetic resonance (NMR) diffusion experiments are widely employed as they yield information about structures hindering the diffusion process, e.g., about cell membranes. While it has been shown in recent articles that these experiments can be used to determine the shape of closed pores averaged over a volume of interest, it is still an open question how much information can be gained in open well-connected systems. In this theoretical work, it is shown that the full structure information of connected periodic systems is accessible. To this end, the so-called "SEquential Rephasing by Pulsed field-gradient Encoding N Time intervals" (SERPENT) sequence is used, which employs several diffusion encoding gradient pulses with different amplitudes. Two two-dimensional solid matrices that are surrounded by an NMR-visible medium are considered: a hexagonal lattice of cylinders and a rectangular lattice of isosceles triangles.

  7. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  8. Nuclear spin noise in NMR revisited

    NASA Astrophysics Data System (ADS)

    Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé

    2015-09-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

  9. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  10. Deuteron NMR spectra of ND4ClO4 single crystal at low temperatures.

    PubMed

    Birczyński, A; Lalowicz, Z T; Ingman, L P; Punkkinen, M; Ylinen, E E

    1993-03-01

    2H NMR spectra of ND4ClO4 single crystal were obtained at v0 = 44 MHz. Orientation and temperature (1.9-75 K) dependences were measured. Fitting the spectra gives the effective quadrupole coupling constants for all deuterons and the ground torsional level structure. The isotope reduction of the (A-T) and (A-E) tunnelling splittings, i.e., the ratios of the respective splittings for NH4+ and ND4+, were found to be different. The splittings at T = 24 K are about 60% of the helium temperature values. The spectrum undergoes intermediate narrowing by reorientations between 26 and 34 K and tunnelling related features in the spectra are eradicated. After reaching the extreme narrowing limit, a doublet with gradually decreasing separation was observed, what was attributed to averaging by torsional oscillations of increasing amplitude. At high temperatures (T > 75 K), the narrow spectrum reflects fast multiaxial reorientation of the ammonium ion. PMID:7834308

  11. Velocity autocorrelation spectra in molten polymers measured by NMR modulated gradient spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Mattea, Carlos; Stapf, Siegfried; Serša, Igor

    2014-04-01

    The segmental dynamics in molten linear polymers is studied by the NMR method of modulated gradient spin-echo, which directly probes a spectrum of molecular velocity autocorrelation function. Diffusion spectra of mono-disperse poly(isoprene-1.4) with different molecular masses, measured in the frequency range 0.1-10 kHz at a temperature of 26\\ ^{\\circ}\\text{C} , have a form similar to the spectrum of Rouse chain dynamics, which implicates the tube-Rouse motion as the dominant dynamic process in this frequency range. The scaling of the center-of-mass diffusion coefficient, given from the fitting parameters, changes from N^{-1} into N^{-2.4} at around N \\approx 3\\text{-}5 Kuhn steps, which is less than predicted by theory and simulations, while the correlation times of the tube-Rouse mode do not follow the anticipated scaling.

  12. IQMNMR: Open source software using time-domain NMR data for automated identification and quantification of metabolites in batches

    PubMed Central

    2011-01-01

    Background One of the most promising aspects of metabolomics is metabolic modeling and simulation. Central to such applications is automated high-throughput identification and quantification of metabolites. NMR spectroscopy is a reproducible, nondestructive, and nonselective method that has served as the foundation of metabolomics studies. However, the automated high-throughput identification and quantification of metabolites in NMR spectroscopy is limited by severe spectral overlap. Although numerous software programs have been developed for resolving overlapping resonances, as well as for identifying and quantifying metabolites, most of these programs are frequency-domain methods, considerably influenced by phase shifts and baseline distortions, and effective only in small-scale studies. Almost all these programs require multiple spectra for each application, and do not automatically identify and quantify metabolites in batches. Results We created IQMNMR, an R package that integrates a relaxation algorithm, digital filter, and similarity search algorithm. It differs from existing software in that it is a time-domain method; it uses not only frequency to resolve overlapping resonances but also relaxation time constants; it requires only one NMR spectrum per application; is uninfluenced by phase shifts and baseline distortions; and most important, yields a batch of quantified metabolites. Conclusions IQMNMR provides a solution that can automatically identify and quantify metabolites by one-dimensional proton NMR spectroscopy. Its time-domain nature, stability against phase shifts and baseline distortions, requirement for only one NMR spectrum, and capability to output a batch of quantified metabolites are of considerable significance to metabolic modeling and simulation. IQMNMR is available at http://cran.r-project.org/web/packages/IQMNMR/. PMID:21838867

  13. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Idehara, T.; Khutoryan, E. M.; Tatematsu, Y.; Yamaguchi, Y.; Kuleshov, A. N.; Dumbrajs, O.; Matsuki, Y.; Fujiwara, T.

    2015-09-01

    The high-speed frequency modulation of a 460-GHz Gyrotron FU CW GVI (the official name in Osaka University is Gyrotron FU CW GOI) was achieved by modulation of acceleration voltage of beam electrons. The modulation speed f m can be increased up to 10 kHz without decreasing the modulation amplitude δ f of frequency. The amplitude δ f was increased almost linearly with the modulation amplitude of acceleration voltage Δ V a. At the Δ V a = 1 kV, frequency spectrum width df was 50 MHz in the case of f m < 10 kHz. The frequency modulation was observed as both the variation of the IF frequency in the heterodyne detection system measured by a high-speed oscilloscope and the widths of frequency spectra df measured on a frequency spectrum analyzer. Both results well agree reasonably. When f m exceeds 10 kHz, the amplitude δ f is decreased gradually with increasing f m because of the degradation of the used amplifier in response for high-speed modulation. The experiment was performed successfully for both a sinusoidal wave and triangle wave modulations. We can use the high-speed frequency modulation for increasing the enhancement factor of the dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy, which is one of effective and attractive methods for the high-frequency DNP-NMR spectroscopy, for example, at 700 MHz. Because the sensitivity of NMR is inversely proportional to the frequency, high-speed frequency modulation can compensate the decreasing the enhancement factor in the high-frequency DNP-NMR spectroscopy and keep the factor at high value. In addition, the high-speed frequency modulation is useful for frequency stabilization by a PID control of an acceleration voltage by feeding back of the fluctuation of frequency. The frequency stabilization in long time is also useful for application of a DNP-NMR spectroscopy to the analysis of complicated protein molecules.

  14. Highly flexible pulse programmer for NMR applications

    NASA Technical Reports Server (NTRS)

    Dart, J.; Burum, D. P.; Rhim, W. K.

    1980-01-01

    A pulse generator for NMR application is described. Eighteen output channels are provided to allow use in single and double resonance experiments. Complex pulse sequences may be generated by loading instructions into a 256-word by 16-bit program memory. Features of the pulse generator include programmable time delays from 0.5 micros to 1000 s, branching and looping instructions, and the ability to be loaded and operated either manually or from a PDP-11/10 computer.

  15. Quantitative calibration of radiofrequency NMR Stark effects

    NASA Astrophysics Data System (ADS)

    Tarasek, Matthew R.; Kempf, James G.

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω0). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C14 (the response parameter in cubic crystals) were obtained for both 69Ga and 75As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω0 amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω0 circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω0 excitation to presaturate NMR spectra yielded C14 = (2.59 ± 0.06) × 1012 m-1 for 69Ga at room-temperature and 14.1 T. For 75As, we obtained (3.1 ± 0.1) × 1012 m-1. Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω0 field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  16. Theory of NMR in Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro; Fukuyama, Hidetoshi

    1988-09-01

    Motivated by experiments of NMR on superconductor(S)-normal-metal(N) multi-layer system, we have calculated the nuclear spin-lattice relaxation rate, T1-1, for both N and S layers based on the bilayer model of McMillan for the proximity effect. The results of calculation are in essential agreement with experiments by Aoki et al. and Imai et al.

  17. Theory of NMR for superconducting superlattices

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro; Fukuyama, Hidetoshi

    1988-06-01

    Motivated by experiments of NMR on superconductor(S)-normal-metal(N) multilayer system, we have calculated the nuclear spin-lattice relaxation rate,T1-1, for both N and S metals based on the bilayer model of McMillan for the proximity effect. The results of calculations are in essential agreement with experiments by Aoki et al. and Imai et al.

  18. Multiple-quantum NMR in solids

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Sze; Pines, A.

    1983-03-01

    Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum 1H absorption in solid adamantane is observed.

  19. Multiple-quantum NMR in solids

    SciTech Connect

    Yen, Y.; Pines, A.

    1983-03-15

    Multiple-quantum NMR has typically been observed in small groups of spins in isolated molecules. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation of high quantum transitions by normal schemes is thus difficult. To ensure that overlapping lines add constructively and to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum /sup 1/H absorption in solid adamantane is observed.

  20. Acoustooptical spectrum analysis modeling

    NASA Astrophysics Data System (ADS)

    Carmody, M. J.

    1981-06-01

    A summary of Bragg deflection theory and various approaches to direct detection acoustooptic spectrum analysis (AOSA) modeling is presented. A suitable model is chosen and extended to include the effects of diffraction efficiency, transducer efficiency, irradiance profiles of incident laser illumination, aperture size of the Bragg cell, and the acoustic attenuation experienced by the acoustic wavetrain generated by the input r-f signal. A FORTRAN program is developed to model the AOSA and predict the output image plane intensity profiles. A second version of the program includes a time variable permitting dynamic simulation of the system response.