Science.gov

Sample records for 23s ribosomal dna

  1. Identification of dairy lactic acid bacteria by tRNAAla-23S rDNA-RFLP.

    PubMed

    Mancini, Andrea; Lazzi, Camilla; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica

    2012-12-01

    The aim of this study was to evaluate the potential of target tRNA(Ala)-23S ribosomal DNA for identification of lactic acid bacteria strains associated with dairy ecosystem. For this purpose tRNA(Ala)-23S ribosomal DNA Restriction Fragment Length Polymorphism (tRNA(Ala)-23S rDNA-RFLP) was compared with two widely used DNA fingerprinting methods - P1 Random Amplified Polymorphic DNA (RAPD), (GTG)5 repetitive extragenic palindromic PCR (rep-PCR) - for their ability to identify different species on a set of 10 type and 34 reference strains. Moreover, 75 unknown isolates collected during different stages of Grana Padano cheese production and ripening were identified using tRNA(Ala)-23S rDNA-RFLP and compared to the RFLP profiles of the strains in the reference database. This study demonstrated that the target tRNA(Ala)-23S rDNA has high potential in bacterial identification and tRNA(Ala)-23S rDNA-RFLP is a promising method for reliable species-level identification of lactic acid bacteria (LAB) in dairy products.

  2. Helix 69 of E. coli 23S ribosomal RNA as a peptide nucleic acid target.

    PubMed

    Kulik, Marta; Markowska-Zagrajek, Agnieszka; Wojciechowska, Monika; Grzela, Renata; Wituła, Tomasz; Trylska, Joanna

    2017-04-07

    A fragment of 23S ribosomal RNA (nucleotides 1906-1924 in E. coli), termed Helix 69, forms a hairpin that is essential for ribosome function. Helix 69 forms a conformationally flexible inter-subunit connection with helix 44 of 16S ribosomal RNA, and the nucleotide A1913 of Helix 69 influences decoding accuracy. Nucleotides U1911 and U1917 are post-transcriptionally modified with pseudouridines () and U1915 with 3-methyl-. We investigated Helix 69 as a target for a complementary synthetic oligonucleotide - peptide nucleic acid (PNA). We determined thermodynamic properties of Helix 69 and its complexes with PNA. We also verified the performance of PNA targeted at Helix 69 in inhibiting translation in cell-free extracts and growth of E. coli cells. First, we examined the interactions of a PNA oligomer complementary to the G1907-A1919 fragment of Helix 69 with the sequences corresponding to human and bacterial species (with or without pseudouridine modifications). PNA invades the Helix 69 hairpin creating stable complexes and PNA binding to the pseudouridylated bacterial sequence is stronger than to Helix 69 without any modifications. Second, we confirmed the binding of PNA to 23S rRNA and 70S ribosomes. Third, we verified the efficiency of translation inhibition of these PNA oligomers in the cell-free translation/transcription E. coli system, which turned out to be in a similar range as tetracycline. Next, we confirmed that PNA conjugated to the (KFF)3K transporter peptide inhibited E. coli growth in micromolar concentrations. Overall, targeting Helix 69 with PNA or other sequence-specific oligomers could be a promising way to inhibit bacterial translation.

  3. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    PubMed

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions.

  4. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease.

    PubMed

    Redko, Yulia; Condon, Ciarán

    2009-03-01

    Ribosomal RNAs (rRNAs) are processed from larger primary transcripts in every living system known. The maturation of 23S rRNA in Bacillus subtilis is catalysed by Mini-III, a member of the RNase III family of enzymes that lacks the characteristic double-stranded RNA binding domain of its relatives. We have previously shown that Mini-III processing of 23S precursor rRNA in assembled 50S ribosomal subunits is much more efficient than a substrate with no ribosomal proteins bound, suggesting that one or more large subunit proteins act as a cofactor for Mini-III cleavage. Here we show that this cofactor is ribosomal protein L3. Stimulation of the Mini-III cleavage reaction is through L3 binding to its normal site at the 3' end of 23S rRNA. We present indirect evidence that suggests that L3 acts at the level of substrate, rather than enzyme conformation. We also discuss the potential implication of using ribosomal protein cofactors in rRNA processing for ribosome quality control.

  5. Coregulation of processing and translation: mature 5' termini of Escherichia coli 23S ribosomal RNA form in polysomes.

    PubMed Central

    Srivastava, A K; Schlessinger, D

    1988-01-01

    In Escherichia coli, the final maturation of rRNA occurs in precursor particles, and recent experiments have suggested that ongoing protein synthesis may somehow be required for maturation to occur. The protein synthesis requirement for the formation of the 5' terminus of 23S rRNA has been clarified in vitro by varying the substrate of the reaction. In cell extracts, pre-23S rRNA in free ribosomes was not matured, but that in polysomes was efficiently processed. The reaction occurred in polysomes without the need for an energy source or other additives required for protein synthesis. Furthermore, when polysomes were dissociated into ribosomal subunits, they were no longer substrates for maturation; but the ribosomes became substrates again when they once more were incubated in the conditions for protein synthesis. All of these results are consistent with the notion that protein synthesis serves to form a polysomal complex that is the true substrate for maturation. Ribosomes in polysomes, possibly in the form of 70S initiation complexes, may more easily adopt a conformation that facilitates maturation cleavage. As a result, the rates of ribosome formation and protein synthesis could be coregulated. Images PMID:3050989

  6. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis.

    PubMed

    Lang, Kathrin; Erlacher, Matthias; Wilson, Daniel N; Micura, Ronald; Polacek, Norbert

    2008-05-01

    Peptide bond formation is a fundamental reaction in biology, catalyzed by the ribosomal peptidyl-transferase ribozyme. Although all active-site 23S ribosomal RNA nucleotides are universally conserved, atomic mutagenesis suggests that these nucleobases do not carry functional groups directly involved in peptide bond formation. Instead, a single ribose 2'-hydroxyl group at A2451 was identified to be of pivotal importance. Here, we altered the chemical characteristics by replacing its 2'-hydroxyl with selected functional groups and demonstrate that hydrogen donor capability is essential for transpeptidation. We propose that the A2451-2'-hydroxyl directly hydrogen bonds to the P-site tRNA-A76 ribose. This promotes an effective A76 ribose C2'-endo conformation to support amide synthesis via a proton shuttle mechanism. Simultaneously, the direct interaction of A2451 with A76 renders the intramolecular transesterification of the peptide from the 3'- to 2'-oxygen unfeasible, thus promoting effective peptide bond synthesis.

  7. Macrolides and lincomycin susceptibility of Mycoplasma hyorhinis and variable mutation of domain II and V in 23S ribosomal RNA.

    PubMed

    Kobayashi, Hideki; Nakajima, Hiromi; Shimizu, Yuka; Eguchi, Masashi; Hata, Eiji; Yamamoto, Koshi

    2005-08-01

    A total of 151 strains of Mycoplasma hyorhinis isolated from porcine lung lesions (weaned pigs, n=71, and finishers, n=80) were investigated for their in vitro susceptibility to 10 antimicrobial agents. Thirty-one strains (28 from weaned pigs and 3 from finishers) showed resistance to 16-membered macrolide antibiotics and lincomycin. The prevalence of the 16-membered macrolide-resistant M. hyorhinis strain in weaned pigs from Japanese herds has approximately quadrupled in the past 10 years. Several of the 31 strains were examined for mutations in the 23S ribosomal RNA (rRNA). All field strains tested showed a transition of A to G at position 2059 of 23S rRNA-rendered Escherichia coli. On the other hand, individual tylosin- and lincomycin-resistant mutants of M. hyorhinis were selected in vitro from the susceptible type strain BTS7 by 3 to 9 serial passages in subinhibitory concentrations of each antibiotic. The 23S rRNA sequences of both tylosin and lincomycin-resistant mutants were compared with that of the radical BTS7 strain. The BTS7 mutant strain selected by tylosin showed the same transition as the field-isolated strains of A2059G. However, the transition selected in lincomycin showed mutations in domains II and V of 23S rRNA, G2597U, C2611U in domain V, and the addition of an adenine at the pentameric adenine loop in domain II. The strain selected by lincomycin showed an additional point mutation of A2062G selected by tylosin.

  8. Decreased Susceptibility to Macrolide-Lincosamide in Mycoplasma synoviae Is Associated with Mutations in 23S Ribosomal RNA.

    PubMed

    Lysnyansky, Inna; Gerchman, Irena; Flaminio, Barbara; Catania, Salvatore

    2015-12-01

    The mechanism responsible for acquired decreased susceptibility to macrolides (14-membered erythromycin [Ery], 16-membered tylosin [Ty] and tilmicosin [Tm]) and to lincosamides (lincomycin [Ln]) was investigated in Mycoplasma synoviae, a pathogen that causes respiratory infections and synovitis in chicken and turkey. Sequence analysis of domains II and V of the two 23S rRNA alleles and ribosomal proteins L4 and L22 was performed on 49 M. synoviae isolates, M. synoviae type strain WVU1853, and reference strain FMT showing minimal inhibitory concentrations (MICs) to Ty (≤ 0.015 to 2 μg/ml), Tm (0.03 to ≥ 8 μg/ml), and Ln (0.125 to 8 μg/ml); MICs to Ery ranged from 32 to ≥ 128 μg/ml. Our results showed that the nucleotide substitution G748A (Escherichia coli numbering) in domain II of one or both 23S rRNA alleles may account for a slight increase in MICs to Ty and Tm (up to 0.5 and 2 μg/ml, respectively). No correlation between the presence of G748A and decreased susceptibility to Ln was found. However, the presence of the point mutations A2058G or A2059G in domain V of one or both alleles of the 23S rRNAs was correlated with a more significant decrease in susceptibility to Ty (1-2 μg/ml), Tm (≥ 8 μg/ml), and Ln (≥ 8 μg/ml). All M. synoviae isolates tested had a G2057A transition in the 23S rRNAs consistent with previously described intrinsic resistance to Ery. Mutations G64E (one isolate) and Q90K/H (two isolates) were identified in the L4 and L22 proteins, respectively, but their impact on decreased susceptibility to macrolides and lincomycin was not clear.

  9. Determination of the nucleotide sequence of the 23S ribosomal RNA and flanking spacers of an Enterococcus faecium strain, reveals insertion-deletion events in the ribosomal spacer 1 of enterococci.

    PubMed

    Naimi, A; Beck, G; Monique, M; Lefèbvre, G; Branlanti, C

    1999-02-01

    The usefulness of 16S-23S (ITS1) and 23S-5S (ITS2) ribosomal spacer nucleotide sequence determination, as a complementary approach to the biochemical tests traditionally used for enterococcal species identification, is shown by its application to the identification of a strain, E27, isolated from a natural bacteria mixture used for cheese production. Using combined approaches we showed, unambiguously, that strain E27 belongs to the Enterococcus faecium species. However, its ITS1 region has an interesting peculiarity. In our previous study of ITS1s from various enterococcal species (NAIMI et al., 1997, Microbiology 143, 823-834), the ITS1s of the two E. faecium strains studied, were found to contain an additional 115-nt long stem-loop structure as compared to the ITS1s of other enterococci, only one out of the 3 ITS1s of E. hirae ATCC 9790, was found to contain a similar 107-nt long stem-loop structure. The ITS1 of strain E27 is 100% identical to that of E. faecium ATCC 19434T, except that the 115-nt additional fragment is absent. This strongly suggests the existence of lateral DNA transfer or DNA recombination events at a hot spot position of the ITS1s from E. faecium and E. hirae. Small and large ITS1 nucleotide sequence determination for strain E27 generalized the notion of two kinds of ITSs in enterococci: one with a tRNA(Ala) gene, one without tRNA gene. To complete strain E27 characterization, its 23S rRNA sequence was established. This is the first complete 23S rRNA nucleotide sequence determined for an enterococcal species.

  10. Rapid and direct detection of clostridium chauvoei by PCR of the 16S-23S rDNA spacer region and partial 23S rDNA sequences.

    PubMed

    Sasaki, Y; Yamamoto, K; Kojima, A; Tetsuka, Y; Norimatsu, M; Tamura, Y

    2000-12-01

    Clostridium chauvoei causes blackleg, which is difficult to distinguish from the causative clostridia of malignant edema. Therefore, a single-step PCR system was developed for specific detection of C. chauvoei DNA using primers derived from the 16S-23S rDNA spacer region and partial 23S rDNA sequences. The specificity of the single-step PCR system was demonstrated by testing 37 strains of clostridia and 3 strains of other genera. A 509 bp PCR product, which is a C. choauvoei-specific PCR product, could be amplified from all of the C. chauvoei strains tested, but not from the other strains. Moreover, this single-step PCR system specifically detected C. chauvoei DNA in samples of muscle from mice 24 hr after inoculation with 100 spores of C. chauvoei, and in clinical materials from a cow affected with blackleg. These results suggest that our single-step PCR system may be useful for direct detection of C. chauvoei in culture and in clinical materials from animals affected with blackleg.

  11. Mini-III, a fourth class of RNase III catalyses maturation of the Bacillus subtilis 23S ribosomal RNA.

    PubMed

    Olmedo, Gabriela; Guzmán, Plinio

    2008-06-01

    Ribonuclease III (RNase III) type of enzymes are double-stranded RNA (dsRNA)-specific endoribonucleases that have important roles in RNA maturation and mRNA decay. They are involved in processing precursors of ribosomal RNA (rRNA) in bacteria as well as precursors of short interfering RNAs (siRNAs) and microRNAs (miRNAs) in eukaryotes. RNase III proteins have been grouped in three major classes according to their domain organization. In this issue of Molecular Microbiology, Redko et al. identified a novel class of bacterial RNase III, named Mini-III, consisting only of the RNase III catalytic domain and functioning in the maturation of the 23S rRNA in Bacillus subtilis. Its absence from proteobacteria reveals that this step is mechanistically different from the corresponding step in Escherichia coli. The fact that Mini-III orthologues are present in unicellular photosynthetic eukaryotes and in plants opens new opportunities for functional studies of this type of RNases.

  12. Identification and characterization of an intervening sequence within the 23S ribosomal RNA genes of Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparison of the 23S rRNA gene sequences of Edwardsiella tarda and Edwardsiella ictaluri confirmed a close phylogenetic relationship between these two fish pathogen species and a distant relation with the 'core' members of the Enterobacteriaceae family. Analysis of the rrl gene for 23S rRNA in E. i...

  13. Functional interaction between bases C1049 in domain II and G2751 in domain VI of 23S rRNA in Escherichia coli ribosomes

    PubMed Central

    Miyoshi, Tomohiro; Uchiumi, Toshio

    2008-01-01

    The factor-binding center within the Escherichia coli ribosome is comprised of two discrete domains of 23S rRNA: the GTPase-associated region (GAR) in domain II and the sarcin–ricin loop in domain VI. These two regions appear to collaborate in the factor-dependent events that occur during protein synthesis. Current X-ray crystallography of the ribosome shows an interaction between C1049 in the GAR and G2751 in domain VI. We have confirmed this interaction by site-directed mutagenesis and chemical probing. Disruption of this base pair affected not only the chemical modification of some bases in domains II and VI and in helix H89 of domain V, but also ribosome function dependent on both EF-G and EF-Tu. Mutant ribosomes carrying the C1049 to G substitution, which show enhancement of chemical modification at G2751, were used to probe the interactions between the regions around 1049 and 2751. Binding of EF-G-GDP-fusidic acid, but not EF-G-GMP-PNP, to the ribosome protected G2751 from modification. The G2751 protection was also observed after tRNA binding to the ribosomal P and E sites. The results suggest that the interactions between the bases around 1049 and 2751 alter during different stages of the translation process. PMID:18252772

  14. Mutations in 23S rRNA and Ribosomal Protein L4 Account for Resistance in Pneumococcal Strains Selected In Vitro by Macrolide Passage

    PubMed Central

    Tait-Kamradt, A.; Davies, T.; Cronan, M.; Jacobs, M. R.; Appelbaum, P. C.; Sutcliffe, J.

    2000-01-01

    The mechanisms responsible for macrolide resistance in Streptococcus pneumoniae mutants, selected from susceptible strains by serial passage in azithromycin, were investigated. These mutants were resistant to 14- and 15-membered macrolides, but resistance could not be explained by any clinically relevant resistance determinant [mef(A), erm(A), erm(B), erm(C), erm(TR), msr(A), mph(A), mph(B), mph(C), ere(A), ere(B)]. An investigation into the sequences of 23S rRNAs in the mutant and parental strains revealed individual changes of C2611A, C2611G, A2058G, and A2059G (Escherichia coli numbering) in four mutants. Mutations at these residues in domain V of 23S rRNA have been noted to confer erythromycin resistance in other species. Not all four 23S rRNA alleles have to contain the mutation to confer resistance. Some of the mutations also confer coresistance to streptogramin B (C2611A, C2611G, and A2058G), 16-membered macrolides (all changes), and clindamycin (A2058G and A2059G). Interestingly, none of these mutations confer high-level resistance to telithromycin (HMR-3647). Further, two of the mutants which had no changes in their 23S rRNA sequences had changes in a highly conserved stretch of amino acids (63KPWRQKGTGRAR74) in ribosomal protein L4. One mutant contained a single amino acid change (G69C), while the other mutant had a 6-base insert, resulting in two amino acids (S and Q) being inserted between amino acids Q67 and K68. To our knowledge, this is the first description of mutations in 23S rRNA genes or ribosomal proteins in macrolide-resistant S. pneumoniae strains. PMID:10898684

  15. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis.

    PubMed

    Redko, Yulia; Bechhofer, David H; Condon, Ciarán

    2008-06-01

    The late steps of both 16S and 5S ribosomal RNA maturation in the Gram-positive bacterium Bacillus subtilis have been shown to be catalysed by ribonucleases that are not present in the Gram-negative paradigm, Escherichia coli. Here we present evidence that final maturation of the 5' and 3' extremities of B. subtilis 23S rRNA is also performed by an enzyme that is absent from the Proteobacteria. Mini-III contains an RNase III-like catalytic domain, but curiously lacks the double-stranded RNA binding domain typical of RNase III itself, Dicer, Drosha and other well-known members of this family of enzymes. Cells lacking Mini-III accumulate precursors and alternatively matured forms of 23S rRNA. We show that Mini-III functions much more efficiently on precursor 50S ribosomal subunits than naked pre-23S rRNA in vitro, suggesting that maturation occurs primarily on assembled subunits in vivo. Lastly, we provide a model for how Mini-III recognizes and cleaves double-stranded RNA, despite lacking three of the four RNA binding motifs of RNase III.

  16. Restriction Profiling of 23S Microheterogenic Ribosomal Repeats for Detection and Characterizing of E. coli and Their Clonal, Pathogenic, and Phylogroups

    PubMed Central

    Jayasree Rajagopalan Nair, Parvathi

    2015-01-01

    Correlating ribosomal microheterogenicity with unique restriction profiles can prove to be an efficacious and cost-effective approach compared with sequencing for microbial identification. An attempt to peruse restriction profiling of 23S ribosomal assemblage was ventured; digestion patterns with Bfa I discriminated E. coli from its colony morphovars, while Hae III profiles assisted in establishing distinct clonal groups. Among the gene pool of 399 ribosomal sequences extrapolated from 57 E. coli genomes, varying degree of predominance (I > III > IV > II) of Hae III pattern was observed. This was also corroborated in samples collected from clinical, commensal, and environmental origin. K-12 and its descendants showed type I pattern whereas E. coli-B and its descendants exhibited type IV, both of these patterns being exclusively present in E. coli. A near-possible association between phylogroups and Hae III profiles with presumable correlation between the clonal groups and different pathovars was established. The generic nature, conservation, and barcode gap of 23S rRNA gene make it an ideal choice and substitute to 16S rRNA gene, the most preferred region for molecular diagnostics in bacteria. PMID:26885397

  17. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.

    PubMed

    Beringer, Malte; Rodnina, Marina V

    2007-07-01

    The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.

  18. 16S-23S rDNA internal transcribed spacer regions in four Proteus species.

    PubMed

    Cao, Boyang; Wang, Min; Liu, Lei; Zhou, Zhemin; Wen, Shaoping; Rozalski, Antoni; Wang, Lei

    2009-04-01

    Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.

  19. The NMR Structure of an Internal Loop from 23S Ribosomal RNA Differs from its Structure in Crystals of 50S Ribosomal Subunits

    PubMed Central

    Shankar, Neelaabh; Kennedy, Scott D.; Chen, Gang; Krugh, Thomas R.; Turner, Douglas H.

    2014-01-01

    Internal loops play an important role in structure and folding of RNA and in RNA recognition by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5'1009CUAAG10133'3'1168GAAGC11645' and 5'998CUAAG10023'3'1157GAAGC11535' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex, 5'1GGCUAAGAC93'3'18CCGAAGCUG105' The internal loop forms a different structure in solution than in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson–Crick UA pair. PMID:17002278

  20. Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains

    PubMed Central

    Molini, Barbara J.; Tantalo, Lauren C.; Sahi, Sharon K.; Rodriguez, Veronica I.; Brandt, Stephanie L.; Fernandez, Mark C.; Godornes, Charmie B.; Marra, Christina M.; Lukehart, Sheila A.

    2016-01-01

    Background High rates of 23S rDNA mutations implicated in macrolide resistance have been identified in Treponema pallidum samples from syphilis patients in many countries. Nonetheless, some clinicians have been reluctant to abandon azithromycin as a treatment for syphilis, citing the lack of a causal association between these mutations and clinical evidence of drug resistance. Although azithromycin resistance has been demonstrated in vivo for the historical Street 14 strain, no recent T. pallidum isolates have been tested. We used the well-established rabbit model of syphilis to determine the in vivo efficacy of azithromycin against 23S rDNA mutant strains collected in 2004 to 2005 from patients with syphilis in Seattle, Wash. Methods Groups of 9 rabbits were each infected with a strain containing 23S rDNA mutation A2058G (strains UW074B, UW189B, UW391B) or A2059G (strains UW228B, UW254B, and UW330B), or with 1 wild type strain (Chicago, Bal 3, and Mexico A). After documentation of infection, 3 animals per strain were treated with azithromycin, 3 were treated with benzathine penicillin G, and 3 served as untreated control groups. Treatment efficacy was documented by darkfield microscopic evidence of T. pallidum, serological response, and rabbit infectivity test. Results Azithromycin uniformly failed to cure rabbits infected with strains harboring either 23S rDNA mutation, although benzathine penicillin G was effective. Infections caused by wild type strains were successfully treated by either azithromycin or benzathine penicillin G. Conclusions A macrolide resistant phenotype was demonstrated for all strains harboring a 23S rDNA mutation, demonstrating that either A2058G or A2059G mutation confers in vivo drug resistance. PMID:27513385

  1. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  2. Regulation of ribosomal DNA amplification by the TOR pathway

    PubMed Central

    Jack, Carmen V.; Cruz, Cristina; Hull, Ryan M.; Keller, Markus A.; Ralser, Markus; Houseley, Jonathan

    2015-01-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions. PMID:26195783

  3. DnaK-facilitated ribosome assembly in Escherichia coli revisited

    PubMed Central

    ALIX, JEAN-HERVÉ; NIERHAUS, KNUD H.

    2003-01-01

    Assembly helpers exist for the formation of ribosomal subunits. Such a function has been suggested for the DnaK system of chaperones (DnaK, DnaJ, GrpE). Here we show that 50S and 30S ribosomal subunits from an Escherichia coli dnaK-null mutant (containing a disrupted dnaK gene) grown at 30°C are physically and functionally identical to wild-type ribosomes. Furthermore, ribosomal components derived from mutant 30S and 50S subunits are fully competent for in vitro reconstitution of active ribosomal subunits. On the other hand, the DnaK chaperone system cannot circumvent the necessary heat-dependent activation step for the in vitro reconstitution of fully active 30S ribosomal subunits. It is therefore questionable whether the requirement for DnaK observed during in vivo ribosome assembly above 37°C implicates a direct or indirect role for DnaK in this process. PMID:12810912

  4. Homoduplex and Heteroduplex Polymorphisms of the Amplified Ribosomal 16S-23S Internal Transcribed Spacers Describe Genetic Relationships in the “Bacillus cereus Group”

    PubMed Central

    Daffonchio, Daniele; Cherif, Ameur; Borin, Sara

    2000-01-01

    Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides, Bacillus thuringiensis, and Bacillus weihenstephanensis are closely related in phenotype and genotype, and their genetic relationship is still open to debate. The present work uses amplified 16S-23S internal transcribed spacers (ITS) to discriminate between the strains and species and to describe the genetic relationships within the “B. cereus group,” advantage being taken of homoduplex-heteroduplex polymorphisms (HHP) resolved by polyacrylamide gel electrophoresis and silver staining. One hundred forty-one strains belonging to the six species were investigated, and 73 ITS-HHP pattern types were distinguished by MDE, a polyacrylamide matrix specifically designed to resolve heteroduplex and single-strand conformation polymorphisms. The discriminating bands were confirmed as ITS by Southern hybridization, and the homoduplex or heteroduplex nature was identified by single-stranded DNA mung bean nuclease digestion. Several of the ITS-HHP types corresponded to specific phenotypes such as B. anthracis or serotypes of B. thuringiensis. Unweighted pair group method arithmetic average cluster analysis revealed two main groups. One included B. mycoides, B. weihenstephanensis, and B. pseudomycoides. The second included B. cereus and B. thuringiensis, B. anthracis appeared as a lineage of B. cereus. PMID:11097928

  5. The localization of ribosomal DNA in Sciaridae (Diptera: Nematocera) reassessed.

    PubMed

    Madalena, Christiane Rodriguez Gutierrez; Amabis, José Mariano; Stocker, Ann Jacob; Gorab, Eduardo

    2007-01-01

    The chromosomal localization of ribosomal DNA (rDNA) was studied in polytene and diploid tissues of four sciarid species, Trichosia pubescens, Rhynchosciara americana, R. milleri and Schwenkfeldina sp. While hybridization to mitotic chromosomes showed the existence of a single rDNA locus, ribosomal probes hybridized to more than one polytene chromosome region in all the species analyzed as a result of micronucleolar attachment to specific chromosome sites. Micronucleoli are small, round bodies containing transcriptionally active, probably extrachromosomal rDNA. In T. pubescens the rDNA is predominantly localized in chromosome sections X-10 and X-8. In R. americana the rDNA is frequently found associated with centromeric heterochromatin of the chromosomes X, C, B and A, and also with sections X-1 and B-13. Ribosomal probes in R. milleri hybridized with high frequency to pericentric and telomeric regions of its polytene complement. Schwfenkfeldina sp. displays a remarkably unusual distribution of rDNA in polytene nuclei, characterized by the attachment of micronucleoli to many chromosome regions. The results showed that micronucleoli preferentially associate with intercalary or terminal heterochromatin of all sciarid flies analyzed and, depending on the species, are attached to a few (Trichosia), moderate (Rhynchosciara) or a large (Schwenkfeldina sp.) number of polytene chromosome sites.

  6. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  7. DNA fingerprinting of Paenibacillus popilliae and Paenibacillus lentimorbus using PCR-amplified 16S-23S rDNA intergenic transcribed spacer (ITS) regions.

    PubMed

    Dingman, Douglas W

    2009-01-01

    Failure to identify correctly the milky disease bacteria, Paenibacillus popilliae and Paenibacillus lentimorbus, has resulted in published research errors and commercial production problems. A DNA fingerprinting procedure, using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS) regions, has been shown to easily and accurately identify isolates of milky disease bacteria. Using 34 P. popilliae and 15 P. lentimorbus strains, PCR amplification of different ITS regions produced three DNA fingerprints. For P. lentimorbus phylogenic group 2 strains and for all P. popilliae strains tested, electrophoresis of amplified DNA produced a migratory pattern (i.e., ITS-PCR fingerprint) exhibiting three DNA bands. P. lentimorbus group 1 strains also produced this ITS-PCR fingerprint. However, the fingerprint was phase-shifted toward larger DNA sizes. Alignment of the respective P. popilliae and P. lentimorbus group 1 ITS DNA sequences showed extensive homology, except for a 108bp insert in all P. lentimorbus ITS regions. This insert occurred at the same location relative to the 23S rDNA and accounted for the phase-shift difference in P. lentimorbus group 1 DNA fingerprints. At present, there is no explanation for this 108bp insert. The third ITS-PCR fingerprint, produced by P. lentimorbus group 3 strains, exhibited approximately eight DNA bands. Comparison of the three fingerprints of milky disease bacteria to the ITS-PCR fingerprints of other Paenibacillus species demonstrated uniqueness. ITS-PCR fingerprinting successfully identified eight unknown isolates as milky disease bacteria. Therefore, this procedure can serve as a standard protocol to identify P. popilliae and P. lentimorbus.

  8. Relationships between 16S-23S rRNA gene internal transcribed spacer DNA and genomic DNA similarities in the taxonomy of phototrophic bacteria

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Hisada, T.; Takata, K.; Hiraishi, A.

    2013-04-01

    Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similarity as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.

  9. Engineering the ribosomal DNA in a megabase synthetic chromosome.

    PubMed

    Zhang, Weimin; Zhao, Guanghou; Luo, Zhouqing; Lin, Yicong; Wang, Lihui; Guo, Yakun; Wang, Ann; Jiang, Shuangying; Jiang, Qingwen; Gong, Jianhui; Wang, Yun; Hou, Sha; Huang, Jing; Li, Tianyi; Qin, Yiran; Dong, Junkai; Qin, Qin; Zhang, Jiaying; Zou, Xinzhi; He, Xi; Zhao, Li; Xiao, Yibo; Xu, Meng; Cheng, Erchao; Huang, Ning; Zhou, Tong; Shen, Yue; Walker, Roy; Luo, Yisha; Kuang, Zheng; Mitchell, Leslie A; Yang, Kun; Richardson, Sarah M; Wu, Yi; Li, Bing-Zhi; Yuan, Ying-Jin; Yang, Huanming; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Bader, Joel S; Cai, Yizhi; Boeke, Jef D; Dai, Junbiao

    2017-03-10

    We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.

  10. [Specific organization of ribosomal DNA arrays in Squamata].

    PubMed

    Voronov, A S; Shibalev, D V; Kupriianova, N S

    2008-11-01

    A first report on structural organization of ribosomal DNA arrays in some members of the order Squamata is presented. The data obtained point to unusually small (for vertebrates) size of the rDNA repetitive unit (approximately, 10 to 15 kb) in the lizard species examined. Analysis of BAC library of Uta stansburiana (Iguania) showed that haploid genome of this lizard contained a single cluster, consisting of about ten rDNA repeats. Determination of the extent of rDNA unit repetition in some other representatives of the order Squamata, using the method of comparative real-time PCR, showed that the number of rDNA units varied from one or several dozens in Iguanina to several hundred repeats in Scincomorpha and Varonoidea. The results are discussed in terms of an ambiguous position of the family Iguania on the evolutionary trees constructed based on morphological and molecular data.

  11. Structure of cloned ribosomal DNA cistrons from Bacillus thuringiensis.

    PubMed Central

    Klier, A F; Kunst, F; Rapoport, G

    1979-01-01

    A library of B. thuringiensis DNA has been prepared by using the plasmid pBR322 as a cloning vehicle and E. coli as a host cell. By screening this collection with specific probes, 17 clones were identified whose hybrid plasmids contain rRNA genes of B. thuringiensis. Several of these plasmids have been mapped with restriction endonucleases and by DNA-RNA hybridization. By using maps of overlapping fragments, we have been able to establish an overall map of the ribosomal gene cluster. Images PMID:388353

  12. Ribosomal DNA polymorphisms in the yeast Geotrichum candidum.

    PubMed

    Alper, Iraz; Frenette, Michel; Labrie, Steve

    2011-12-01

    The dimorphic yeast Geotrichum candidum (teleomorph: Galactomyces candidus) is commonly used to inoculate washed-rind and bloomy-rind cheeses. However, little is known about the phylogenetic lineage of this microorganism. We have sequenced the complete 18S, 5.8S, 26S ribosomal RNA genes and their internal transcribed spacers (ITS1) and ITS2 regions (5126 nucleotides) from 18 G. candidum strains from various environmental niches, with a focus on dairy strains. Multiple sequence alignments revealed the presence of 60 polymorphic sites, which is generally unusual for ribosomal DNA (rDNA) within a given species because of the concerted evolution mechanism. This mechanism drives genetic homogenization to prevent the divergent evolution of rDNA copies within individuals. While the polymorphisms observed were mainly substitutions, one insertion/deletion (indel) polymorphism was detected in ITS1. No polymorphic sites were detected downstream from this indel site, that is, in 5.8S and ITS2. More surprisingly, many sequence electrophoregrams generated during the sequencing of the rDNA had dual peaks, suggesting that many individuals exhibited intragenomic rDNA variability. The ITS1-5.8S-ITS2 regions of four strains were cloned. The sequence analysis of 68 clones revealed 32 different ITS1-5.8S-ITS2 variants within these four strains. Depending on the strain, from four to twelve variants were detected, indicating that multiple rDNA copies were present in the genomes of these G. candidum strains. These results contribute to the debate concerning the use of the ITS region for barcoding fungi and suggest that community profiling techniques based on rDNA should be used with caution.

  13. Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae).

    PubMed

    Adams, S P; Leitch, I J; Bennett, M D; Chase, M W; Leitch, A R

    2000-11-01

    All Aloe taxa (∼400 species) share a conserved bimodal karyotype with a basic genome of four large and three small submetacentric/acrocentric chromosomes. We investigated the physical organization of 18S-5.8S-26S and 5S ribosomal DNA (rDNA) using fluorescent in situ hybridization (FISH) to 13 Aloe species. The organization was compared with a phylogenetic tree of 28 species (including the 13 used for FISH) constructed by sequence analysis of the internal transcribed spacer (ITS) of 18S-5.8S-26S rDNA. The phylogeny showed little divergence within Aloe, although distinct, well-supported clades were found. FISH analysis of 5S rDNA distribution showed a similar interstitial location on a large chromosome in all species examined. In contrast, the distribution of 18S-5.8S-26S rDNA was variable, with differences in number, location, and size of loci found between species. Nevertheless, within well-supported clades, all species had the same organizational patterns. Thus, despite the striking stability of karyotype structure and location of 5S rDNA, the distribution of 18S-5.8S-26S rDNA is not so constrained and has clearly changed during Aloe speciation.

  14. The use of 16S and 16S-23S rDNA to easily detect and differentiate common Gram-negative orchard epiphytes.

    PubMed

    Jeng, R S; Svircev, A M; Myers, A L; Beliaeva, L; Hunter, D M; Hubbes, M

    2001-02-01

    The identification of Gram-negative pathogenic and non-pathogenic bacteria commonly isolated from an orchard phylloplane may result in a time consuming and tedious process for the plant pathologist. The paper provides a simple "one-step" protocol that uses the polymerase chain reaction (PCR) to amplify intergenic spacer regions between 16S and 23S genes and a portion of 16S gene in the prokaryotic rRNA genetic loci. Amplified 16S rDNA, and restriction fragment length polymorphisms (RFLP) following EcoRI digestion produced band patterns that readily distinguished between the plant pathogen Erwinia amylovora (causal agent of fire blight in pear and apple) and the orchard epiphyte Pantoea agglomerans (formerly E. herbicola). The amplified DNA patterns of 16S-23S spacer regions may be used to differentiate E. amylovora at the intraspecies level. Isolates of E. amylovora obtained from raspberries exhibited two major fragments while those obtained from apples showed three distinct amplified DNA bands. In addition, the size of the 16S-23S spacer region differs between Pseudomonas syringae and Pseudomonas fluorescens. The RFLP pattern generated by HaeIII digestion may be used to provide a rapid and accurate identification of these two common orchard epiphytes.

  15. Development of a PCR assay based on the 16S-23S rDNA internal transcribed spacer for identification of strictly anaerobic bacterium Zymophilus.

    PubMed

    Felsberg, Jurgen; Jelínková, Markéta; Kubizniaková, Petra; Matoulková, Dagmar

    2015-06-01

    PCR-primers were designed for identification of strictly anaerobic bacteria of the genus Zymophilus based on genus-specific sequences of the 16S-23S rDNA internal transcribed spacer region. The specificity of the primers was tested against 37 brewery-related non-target microorganisms that could potentially occur in the same brewery specimens. None DNA was amplified from any of the non-Zymophilus strains tested including genera from the same family (Pectinatus, Megasphaera, Selenomonas), showing thus 100% specificity. PCR assay developed in this study allows an extension of the spectra of detected beer spoilage microorganisms in brewery laboratories.

  16. Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus.

    PubMed

    Hartmann, S; Nason, J D; Bhattacharya, D

    2001-08-01

    Sequence analysis of the hypervariable internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) is commonly used to gain insights into plant and animal population structure and phylogeny. We characterized ITS1, ITS2, and the 5.8S coding region of 18 senita (Lophocereus) individuals from 12 different populations in Baja as well as from closely related cactus species. Analyses of multiple clones demonstrated extensive paralogy in the senita rDNA gene family. We identified at least two putatively non-recombining rDNA operons in senita as well as multiple paralogous sequences within each operon. Usage of PCR, reverse transcriptase (RT)-PCR, Southern blot, primary sequence analyses of the 18S rDNA gene, and secondary structure analyses of the 5.8S rRNA showed that one of the operons encodes rDNA pseudogenes in a low copy-number (Truncated), whereas the second operon encodes an expressed rRNA (Functional). Surprisingly, we found extensive paralogy not only in the ITS regions but also in the 5.8S coding regions in senita both within and between operons. Phylogenetic analyses suggest that the second rDNA operon originated prior to the divergence of Lophocereus. A significant (p < 0.05) divergence-rate acceleration was found in the Lophocereus 5.8S rDNA coding region in the Functional operon in comparison to Pereskiopsis porteri (Cactaceae) and Portulaca molokiniensis (Portulacaceae) with Silene dioica and Spinacia oleracea as the outgroups.

  17. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    PubMed

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.

  18. Amplification of the 16S-23S rDNA spacer region for rapid detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Sasaki, Y; Yamamoto, K; Amimoto, K; Kojima, A; Ogikubo, Y; Norimatsu, M; Ogata, H; Tamura, Y

    2001-12-01

    Amplification of the 16S-23S rDNA spacer region by polymerase chain reaction (PCR) was used for the rapid detection of Clostridium chauvoei and C septicum. To assess its specificity, PCR was performed with total DNA from 42 strains of clostridia and three strains of other genera. PCR products specific to C chauvoei or to C septicum were generated from homologous cultures only. Clostridium chauvoer-specific or C septicum-specific amplicons were also generated from tissues of cows experimentally infected with C chauvoei or C septicum and in DNA samples from cows clinically diagnosed as having blackleg or malignant oedema. These results suggest that a species-specific PCR may be useful for the rapid and direct detection of C chauvoei and C septicum in clinical specimens.

  19. Molecular analysis of the 16S-23S rDNA internal spacer region (ISR) and truncated tRNA(Ala) gene segments in Campylobacter lari.

    PubMed

    Hayashi, K; Tazumi, A; Nakanishi, S; Nakajima, T; Matsubara, K; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-06-01

    Following PCR amplification and sequencing, nucleotide sequence alignment analyses demonstrated the presence of two kinds of 16S-23S rDNA internal spacer regions (ISRs), namely, long length ISRs of 837-844 base pair (bp) [n = six for urease-negative (UN) Campylobacter lari isolates, UN C. lari JCM2530(T), RM2100, 176, 293, 299 and 448] and short length ISRs of 679-725 bp [n = six for UN C. lari: n = 14 for urease-positive thermophilic Campylobacter (UPTC) isolates]. The analyses also indicated that the short length ISRs mainly lacked the 156 bp sequence from the nucleotide positions 122-277 bp in long length ISRs for UN C. lari JCM2530(T). The 156 bp sequences shared 94.9-96.8 % sequence similarity among six isolates. Surprisingly, atypical tRNA(Ala) gene segment (5' end 35 bp), which was extremely truncated, occurred within the 156 bp sequences in the long length ISRs, as an unexpected tRNA(Ala) pseudogene. An order of the intercistronic tRNA genes within the short nucleotide spacer of 5'-16S rDNA-tRNA(Ala)-tRNA(Ile)-23S rDNA-3' occurred in all the C. lari isolates examined.

  20. Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

    PubMed

    Seligmann, Hervé

    2014-11-01

    Assuming systematic exchanges between nucleotides (swinger RNAs) resolves genomic 'parenthood' of some orphan mitochondrial transcripts. Twenty-three different systematic nucleotide exchanges (bijective transformations) exist. Similarities between transcription and replication suggest occurrence of swinger DNA. GenBank searches for swinger DNA matching the 23 swinger versions of human and mouse mitogenomes detect only vertebrate mitochondrial swinger DNA for swinger type AT+CG (from five different studies, 149 sequences) matching three human and mouse mitochondrial genes: 12S and 16S ribosomal RNAs, and cytochrome oxidase subunit I. Exchange A<->T+C<->G conserves self-hybridization properties, putatively explaining swinger biases for rDNA, against protein coding genes. Twenty percent of the regular human mitochondrial 16S rDNA consists of short swinger repeats (from 13 exchanges). Swinger repeats could originate from recombinations between regular and swinger DNA: duplicated mitochondrial genes of the parthenogenetic gecko Heteronotia binoei include fewer short A<->T+C<->G swinger repeats than non-duplicated mitochondrial genomes of that species. Presumably, rare recombinations between female and male mitochondrial genes (and in parthenogenetic situations between duplicated genes), favors reverse-mutations of swinger repeat insertions, probably because most inserts affect negatively ribosomal function. Results show that swinger DNA exists, and indicate that swinger polymerization contributes to the genesis of genetic material and polymorphism.

  1. Molecular Systematics of Dictyostelids: 5.8S Ribosomal DNA and Internal Transcribed Spacer Region Analyses▿

    PubMed Central

    Romeralo, María; Escalante, Ricardo; Sastre, Leandro; Lado, Carlos

    2007-01-01

    The variability and adaptability of the amoebae from the class Dictyosteliomycetes greatly complicate their systematics. The nucleotide sequences of the ribosomal internal transcribed spacers and the 5.8S ribosomal DNA gene have been determined for 28 isolates, and their utility to discriminate between different species and genera has been shown. PMID:17056743

  2. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli.

    PubMed Central

    Alix, J H; Guérin, M F

    1993-01-01

    To determine whether the biogenesis of ribosomes in Escherichia coli is the result of the self-assembly of their different constituents or involves the participation of additional factors, we have studied the influence of a chaperone, the product of the gene dnaK, on ribosome assembly in vivo. Using three thermosensitive (ts) mutants carrying the mutations dnaK756-ts, dnaK25-ts, and dnaK103-ts, we have observed the accumulation at nonpermissive temperature (45 degrees C) of ribosomal particles with different sedimentation constants--namely, 45S, 35S, and 25S along with the normal 30S and 50S ribosomal subunits. This is the result of a defect not in thermostability but in ribosome assembly at the nonpermissive temperature. These abnormal ribosomal particles are rescued if the mutant cells are returned to 30 degrees C. Thus, the product of the dnaK gene is implicated in ribosome biogenesis at high temperature. PMID:8105482

  3. A unique DNA repair and recombination gene (recN) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences.

    PubMed

    Kumar, Aundy; Prameela, Thekkan Puthiyaveedu; Suseelabhai, Rajamma

    2013-06-01

    Ribosomal gene sequences are a popular choice for identification of bacterial species and, often, for making phylogenetic interpretations. Although very popular, the sequences of 16S rDNA and 16-23S intergenic sequences often fail to differentiate closely related species of bacteria. The availability of complete genome sequences of bacteria, in the recent years, has accelerated the search for new genome targets for phylogenetic interpretations. The recently published full genome data of nine strains of R. solanacearum, which causes bacterial wilt of crop plants, has provided enormous genomic choices for phylogenetic analysis in this globally important plant pathogen. We have compared a gene candidate recN, which codes for DNA repair and recombination function, with 16S rDNA/16-23S intergenic ribosomal gene sequences for identification and intraspecific phylogenetic interpretations in R. solanacearum. recN gene sequence analysis of R. solanacearum revealed subgroups within phylotypes (or newly proposed species within plant pathogenic genus, Ralstonia), indicating its usefulness for intraspecific genotyping. The taxonomic discriminatory power of recN gene sequence was found to be superior to ribosomal DNA sequences. In all, the recN-sequence-based phylogenetic tree generated with the Bayesian model depicted 21 haplotypes against 15 and 13 haplotypes obtained with 16S rDNA and 16-23S rDNA intergenic sequences, respectively. Besides this, we have observed high percentage of polymorphic sites (S 23.04%), high rate of mutations (Eta 276) and high codon bias index (CBI 0.60), which makes the recN an ideal gene candidate for intraspecific molecular typing of this important plant pathogen.

  4. Simultaneous discrimination between 15 fish pathogens by using 16S ribosomal DNA PCR and DNA microarrays.

    PubMed

    Warsen, Adelaide E; Krug, Melissa J; LaFrentz, Stacey; Stanek, Danielle R; Loge, Frank J; Call, Douglas R

    2004-07-01

    We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.

  5. Long-Term Stability of Mercury-Reducing Microbial Biofilm Communities Analyzed by 16S-23S rDNA Interspacer Region Polymorphism.

    PubMed

    Canstein, H.F.; Li, Y.; Felske, A.; Wagner-Döbler, I.

    2001-12-01

    The composition of mercury-reducing communities in two bioreactors retaining Hg(II) from chloralkali electrolysis wastewater for 485 days was analyzed based on effluent community DNA. Packed bed bioreactors with lava chips as carrier of the biofilm were inoculated with nine Hg(II)-resistant isolates that belonged to the alpha and gamma subdivisions of the proteobacteria. A rapid DNA-fingerprinting method was applied, using the intergenic spacer region (ISR) of the 16S-23S rDNA for analysis of the community composition. This allowed discrimination of the inoculum strains down to subspecies level. A merA specific PCR permitted the discrimination of the community's merA genes. During the 485 days of operation, the bioreactors were exposed to various physical stresses (mixing, gas bubbles, temperature increase up to 41 degrees C, increased flow velocity) and repeated high mercury inflow concentrations, resulting in reduced bioreactor performance and decreased culturable cell numbers in the reactor effluent. Nevertheless, the composition of the microbial community remained rather stable throughout the investigated time period. Of the inoculum strains, two could be detected throughout, whereas three were sometimes present with varying periods of nondetection. Two inoculum strains were only detected within the first month. Two strains of gamma-proteobacteria that were able to reduce ionic mercury invaded the bioreactor community. They did not outcompete established strains and had no negative effect on the Hg(II)-retention activity of the bioreactors. The community comprised diverse merA genes. The abundance of merA genes matched the abundance of their respective strains as confirmed by ISR community analysis. The continuously high selection pressure for mercury resistance maintained a stable and highly active mercury-reducing microbial community within the bioreactors.

  6. Nucleotide sequencing and analysis of 16S rDNA and 16S-23S rDNA internal spacer region (ISR) of Taylorella equigenitalis, as an important pathogen for contagious equine metritis (CEM).

    PubMed

    Kagawa, S; Nagano, Y; Tazumi, A; Murayama, O; Millar, B C; Moore, J E; Matsuda, M

    2006-05-01

    The primer set for 16S rDNA amplified an amplicon of about 1500 bp in length for three strains of Taylorella equigenitalis (NCTC11184(T), Kentucky188 and EQ59). Sequence differences of the 16S rDNA among the six sequences, including three reference sequences, occurred at only a few nucleotide positions and thus, an extremely high sequence similarity of the 16S rDNA was first demonstrated among the six sequences. In addition, the primer set for 16S-23S rDNA internal spacer region (ISR) amplified two amplicons about 1300 bp and 1200 bp in length for the three strains. The ISRs were estimated to be about 920 bp in length for large ISR-A and about 830 bp for small ISR-B. Sequence alignment of the ISR-A and ISR-B demonstrated about 10 base differences between NCTC11184(T) and EQ59 and between Kentucky188 and EQ59. However, only minor sequence differences were demonstrated between the ISR-A and ISR-B from NCTC11184(T) and Kentucky188, respectively. A typical order of the intercistronic tRNAs with the 29 nucleotide spacer of 5'-16S rDNA-tRNA(Ile)-tRNA(Ala)-23S rDNA-3' was demonstrated in the all ISRs. The ISRs may be useful for the discrimination amongst isolates of T. equigenitalis if sequencing is employed.

  7. Morphology and Small-Subunit Ribosomal DNA Sequence of Henneguya Adiposa (Myxosporea) From Ictalurus punctatus (Siluriformes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The original description of Henneguya adiposa, a myxozoan parasitizing channel catfish Ictalurus punctatus, is supplemented with new data on spore morphology, including photomicrographs and line drawings, as well as 18S small-subunit (SSU) ribosomal DNA (rDNA) sequence. Elongate, translucent, linear...

  8. Role of messenger RNA-ribosome complex in complementary DNA display.

    PubMed

    Naimuddin, Mohammed; Ohtsuka, Isao; Kitamura, Koichiro; Kudou, Motonori; Kimura, Shinnosuke

    2013-07-15

    In vitro display technologies such as ribosome display and messenger RNA (mRNA)/complementary DNA (cDNA) display are powerful methods that can generate library diversities on the order of 10(10-14). However, in mRNA and cDNA display methods, the end use diversity is two orders of magnitude lower than initial diversity and is dependent on the downstream processes that act as limiting factors. We found that in our previous cDNA display protocol, the purification of protein fusions by the use of streptavidin matrices from cell-free translation mixtures had poor efficiency (∼10-15%) that seriously affected the diversity of the purified library. Here, we have investigated and optimized the protocols that provided remarkable purification efficiencies. The stalled ribosome in the mRNA-ribosome complex was found to impede this purification efficiency. Among the various conditions tested, destabilization of ribosomes by appropriate concentration of metal chelating agents in combination with an optimal temperature of 30°C were found to be crucial and effective for nearly complete isolation of protein fusions from the cell-free translation system. Thus, this protocol provided 8- to 10-fold increased efficiency of purification over the previous method and results in retaining the diversity of the library by approximately an order of magnitude-important for directed evolution. We also discuss the possible effects in the fabrication of protein chips.

  9. Ultra-barcoding in cacao (Theobroma spp.; malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...

  10. Molecular cloning and characterization of a cDNA encoding the Paracoccidioides brasiliensis 135 ribosomal protein.

    PubMed

    Jesuino, Rosália S A; Pereira, Maristela; Felipe, M Sueli S; Azevedo, Maristella O; Soares, Célia M A

    2004-06-01

    A 630 bp cDNA encoding an L35 ribosomal protein of Paracoccidioides brasiliensis, designated as Pbl35, was cloned from a yeast expression library. Pbl35 encodes a polypeptide of 125 amino acids, with a predicted molecular mass of 14.5 kDa and a pI of 11.0. The deduced PbL35 shows significant conservation in respect to other described ribosomal L35 proteins from eukaryotes and prokaryotes. Motifs of ribosomal proteins are present in PbL35, including a bipartite nuclear localization signal (NLS) that could be related to the protein addressing to the nucleolus for the ribosomal assembly. The mRNA for PbL35, about 700 nucleotides in length, is expressed at a high level in P. brasiliensis. The PbL35 and the deduced amino acid sequence constitute the first description of a ribosomal protein in P. brasiliensis. The cDNA was deposited in GenBank under accession number AF416509.

  11. Computational and Experimental Characterization of Ribosomal DNA and RNA G-Quadruplexes

    NASA Astrophysics Data System (ADS)

    Cho, Samuel

    DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. Recent studies strongly suggest that guanine (G)-rich genes encoding pre-ribosomal RNA (pre-rRNA) are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis. However, the structures of ribosomal G-quadruplexes at atomic resolution are unknown, and very little biophysical characterization has been performed on them to date. Here, we have modeled two putative rDNA G-quadruplex structures, NUC 19P and NUC 23P, which we observe via circular dichroism (CD) spectroscopy to adopt a predominantly parallel topology, and their counterpart rRNA. To validate and refine the putative ribosomal G-quadruplex structures, we performed all-atom molecular dynamics (MD) simulations using the CHARMM36 force field in the presence and absence of stabilizing K + or Na + ions. We optimized the CHARMM36 force field K + parameters to be more consistent with quantum mechanical calculations (and the polarizable Drude model force field) so that the K + ion is predominantly in the G-quadruplex channel. Our MD simulations show that the rDNA G-quadruplex have more well-defined, predominantly parallel-topology structures than rRNA and NUC 19P is more structured than NUC 23P, which features extended loops. Our study demonstrates that they are both potential targets for the design of novel chemotherapeutics.

  12. A model for regulation of mammalian ribosomal DNA transcription. Co-ordination of initiation and termination.

    PubMed Central

    Nashimoto, M; Mishima, Y

    1988-01-01

    Based on recent experimental data about transcription initiation and termination, a model for regulation of mammalian ribosomal DNA transcription is developed using a simple kinetic scheme. In this model, the existence of the transition pathway from the terminator to the promoter increases the rate of ribosomal RNA precursor synthesis. In addition to this 'non-transcribed spacer' traverse of RNA polymerase I, the co-ordination of initiation and termination allows a rapid on/off switch transition from the minimum to the maximum rate of ribosomal RNA precursor synthesis. Furthermore, taking account of the participation of two factors in the termination event, we propose a plausible molecular mechanism for the co-ordination of initiation and termination. This co-ordination is emphasized by repetition of the terminator unit. PMID:3223915

  13. PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Knowlton, Nancy

    2012-01-01

    Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets

  14. cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca).

    PubMed

    Hou, W R; Hou, Y L; Wu, G F; Song, Y; Su, X L; Sun, B; Li, J

    2011-01-01

    The ribosomal protein L9 (RPL9), a component of the large subunit of the ribosome, has an unusual structure, comprising two compact globular domains connected by an α-helix; it interacts with 23 S rRNA. To obtain information about rpL9 of Ailuropoda melanoleuca (the giant panda) we designed primers based on the known mammalian nucleotide sequence. RT-PCR and PCR strategies were employed to isolate cDNA and the rpL9 gene from A. melanoleuca; these were sequenced and analyzed. We overexpressed cDNA of the rpL9 gene in Escherichia coli BL21. The cloned cDNA fragment was 627 bp in length, containing an open reading frame of 579 bp. The deduced protein is composed of 192 amino acids, with an estimated molecular mass of 21.86 kDa and an isoelectric point of 10.36. The length of the genomic sequence is 3807 bp, including six exons and five introns. Based on alignment analysis, rpL9 has high similarity among species; we found 85% agreement of DNA and amino acid sequences with the other species that have been analyzed. Based on topology predictions, there are two N-glycosylation sites, five protein kinase C phosphorylation sites, one casein kinase II phosphorylation site, two tyrosine kinase phosphorylation sites, three N-myristoylation sites, one amidation site, and one ribosomal protein L6 signature 2 in the L9 protein of A. melanoleuca. The rpL9 gene can be readily expressed in E. coli; it fuses with the N-terminal GST-tagged protein, giving rise to the accumulation of an expected 26.51-kDa polypeptide, which is in good agreement with the predicted molecular weight. This expression product could be used for purification and further study of its function.

  15. Ribosomal DNA spacer probes for yeast identification: studies in the genus Metschnikowia.

    PubMed

    Henriques, M; Sá-Nogueira, I; Giménez-Jurado, G; van Uden, N

    1991-02-01

    To test whether DNA probes derived from ribosomal DNA spacer sequences are suitable for rapid and species-specific yeast identification, a pilot study was undertaken. A 7.7 kb entire ribosomal DNA unit of the type strain of Metschnikowia reukaufii was isolated, cloned and mapped. A 0.65 kb BamHI-HpaI fragment containing non-transcribed spacer sequences was amplified and selected for testing as a 32P hybridization probe with total DNA from the type strains of M. reukaufii, M. pulcherrima, M. lunata, M. bicuspidata, M. australis, M. zobellii, M. krissii, five other strains identified as M. reukaufii and strains of Schizosaccharomyces pombe, Hansenula canadensis, Saccharomyces cerevisiae and Yarrowia lipolytica. The probe hybridized exclusively with DNA from the type strain and four other strains of M. reukaufii. DNA from one strain labelled M. reukaufii did not hybridize with the probe. Subsequent % G + C comparison and DNA-DNA reassociation with the type strain revealed that the non-hybridizing strain does not belong to the species M. reukaufii.

  16. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes

    PubMed Central

    Gibbons, John G.; Branco, Alan T.; Godinho, Susana A.; Yu, Shoukai; Lemos, Bernardo

    2015-01-01

    Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome. PMID:25583482

  17. Combined ribosomal DNA and morphological analysis of individual gyrodactylid monogeneans.

    PubMed

    Harris, P D; Cable, J; Tinsley, R C; Lazarus, C M

    1999-04-01

    A method is presented for the isolation and analysis of hamuli, marginal hooks, and bars from individual gyrodactylid monogeneans using scanning electron microscopy (SEM), while simultaneously processing parasites for rDNA analysis using the polymerase chain reaction (PCR). The haptors of ethanol-fixed gyrodactylids were protease digested to liberate hooks for SEM, whereas DNA extracted from the bodies was used for PCR. The method resulted in hooks and hamuli being prepared from more than 90% of Gyrodactylus turnbulli individuals, a significant improvement on previously published digestion-based SEM techniques. PCR on the same parasites was less successful, but sequence data were obtained from 50% of individuals. Amplification of rDNA internal-transcribed spacer regions from individual worms used for SEM gave PCR products consistent with those predicted from our previous sequence analysis. This method allows the correlation of morphology and DNA sequence from the same individual and can be applied to ethanol-fixed material, such as field collected and museum specimens.

  18. Phylogenetic relationships in Nuphar (Nymphaeaceae): evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA.

    PubMed

    Padgett, D J; Les, D H; Crow, G E

    1999-09-01

    The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically.

  19. Transfection of mouse ribosomal DNA into rat cells: faithful transcription and processing.

    PubMed Central

    Vance, V B; Thompson, E A; Bowman, L H

    1985-01-01

    Truncated mouse ribosomal DNA (rDNA) genes were stably incorporated into rat HTC-5 cells by DNA-mediated cell transfection techniques. The mouse rDNA genes were accurately transcribed in these rat cells indicating that there is no absolute species specificity of rDNA transcription between mouse and rat. No more than 170 nucleotides of the 5' nontranscribed spacer was required for the accurate initiation of mouse rDNA transcription in rat cells. Further, the mouse transcripts were accurately cleaved at the 5' end of the 18S rRNA sequence, even though these transcripts contained neither the 3' end of mouse 18S rRNA nor any other downstream mouse sequences. Thus, cleavage at the 5' end of 18S rRNA is not dependent on long range interactions involving these downstream sequences. Images PMID:2997749

  20. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    PubMed Central

    Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494

  1. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  2. A Promoter Region Mutation Affecting Replication of the Tetrahymena Ribosomal DNA Minichromosome

    PubMed Central

    Gallagher, Renata C.; Blackburn, Elizabeth H.

    1998-01-01

    In the ciliated protozoan Tetrahymena thermophila the ribosomal DNA (rDNA) minichromosome replicates partially under cell cycle control and is also subject to a copy number control mechanism. The relationship between rDNA replication and rRNA gene transcription was investigated by the analysis of replication, transcription, and DNA-protein interactions in a mutant rDNA, the rmm3 rDNA. The rmm3 (for rDNA maturation or maintenance mutant 3) rDNA contains a single-base deletion in the rRNA promoter region, in a phylogenetically conserved sequence element that is repeated in the replication origin region of the rDNA minichromosome. The multicopy rmm3 rDNA minichromosome has a maintenance defect in the presence of a competing rDNA allele in heterozygous cells. No difference in the level of rRNA transcription was found between wild-type and rmm3 strains. However, rmm3 rDNA replicating intermediates exhibited an enhanced pause in the region of the replication origin, roughly 750 bp upstream from the rmm3 mutation. In footprinting of isolated nuclei, the rmm3 rDNA lacked the wild-type dimethyl sulfate (DMS) footprint in the promoter region adjacent to the base change. In addition, a DMS footprint in the origin region was lost in the rmm3 rDNA minichromosome. This is the first reported correlation in this system between an rDNA minichromosome maintenance defect and an altered footprint in the origin region. Our results suggest that a promoter region mutation can affect replication without detectably affecting transcription. We propose a model in which interactions between promoter and origin region complexes facilitate replication and maintenance of the Tetrahymena rDNA minichromosome. PMID:9566921

  3. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis.

    PubMed Central

    Yoon, Y; Sanchez, J A; Brun, C; Huberman, J A

    1995-01-01

    New techniques for mapping mammalian DNA replication origins are needed. We have modified the existing nascent-strand size analysis technique (L. Vassilev and E.M. Johnson, Nucleic Acids Res. 17:7693-7705, 1989) to provide an independent means of studying replication initiation sites. We call the new method nascent-strand abundance analysis. We confirmed the validity of this method with replicating simian virus 40 DNA as a model. We then applied nascent-strand abundance and nascent-strand size analyses to mapping of initiation sites in human (HeLa) ribosomal DNA (rDNA), a region previously examined exclusively by two-dimensional gel electrophoresis methods (R.D. Little, T.H.K. Platt, and C.L. Schildkraut, Mol. Cell. Biol. 13:6600-6613, 1993). Our results partly confirm those obtained by two-dimensional gel electrophoresis techniques. Both studies suggest that replication initiates at relatively high frequency a few kilobase pairs upstream of the transcribed region and that many additional low-frequency initiation sites are distributed through most of the remainder of the ribosomal DNA repeat unit. PMID:7739533

  4. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    PubMed Central

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  5. Phylogenetic information content of Copepoda ribosomal DNA repeat units: ITS1 and ITS2 impact.

    PubMed

    Zagoskin, Maxim V; Lazareva, Valentina I; Grishanin, Andrey K; Mukha, Dmitry V

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals.

  6. Comparison of six simple methods for extracting ribosomal and mitochondrial DNA from Toxocara and Toxascaris nematodes.

    PubMed

    Mikaeili, F; Kia, E B; Sharbatkhori, M; Sharifdini, M; Jalalizand, N; Heidari, Z; Zarei, Z; Stensvold, C R; Mirhendi, H

    2013-06-01

    Six simple methods for extraction of ribosomal and mitochondrial DNA from Toxocara canis, Toxocara cati and Toxascaris leonina were compared by evaluating the presence, appearance and intensity of PCR products visualized on agarose gels and amplified from DNA extracted by each of the methods. For each species, two isolates were obtained from the intestines of their respective hosts: T. canis and T. leonina from dogs, and T. cati from cats. For all isolates, total DNA was extracted using six different methods, including grinding, boiling, crushing, beating, freeze-thawing and the use of a commercial kit. To evaluate the efficacy of each method, the internal transcribed spacer (ITS) region and the cytochrome c oxidase subunit 1 (cox1) gene were chosen as representative markers for ribosomal and mitochondrial DNA, respectively. Among the six DNA extraction methods, the beating method was the most cost effective for all three species, followed by the commercial kit. Both methods produced high intensity bands on agarose gels and were characterized by no or minimal smear formation, depending on gene target; however, beating was less expensive. We therefore recommend the beating method for studies where costs need to be kept at low levels.

  7. Sequence analysis of the ribosomal internal transcribed spacer DNA of the crayfish parasite Psorospermium haeckeli.

    PubMed

    Bangyeekhun, E; Ryynänen, H J; Henttonen, P; Huner, J V; Cerenius, L; Söderhäll, K

    2001-10-08

    Two morphotypes of the crayfish parasite Psorospermium haeckeli were isolated from 2 crayfish species of different geographical origin. The oval-shaped sporocysts were obtained from the epidermal and connective tissue beneath the carapace of the noble crayfish Astacus astacus from Sweden and Finland. Elongated spores were isolated from the abdominal muscle tissue of the red swamp crayfish Procambarus clarkii from USA. To compare genetic divergence of 2 morphotypes of the parasite, the ribosomal internal transcribed spacer (ITS) DNA (ITS 1 and ITS 2) and the 5.8S rRNA gene were cloned and sequenced. The analysed region is variable in length, with the ribosomal ITS sequence of the European morphotype longer than the North American one. Sequence diversity is found mainly in ITS 1 and ITS 2 regions, and there is 66% and 58% similarity between the 2 morphotypes, respectively. Thus, analysis of the ribosomal ITS DNA suggests that P. haeckeli forms obtained from Europe and North America are genetically diverse, which supports the previously reported morphological characteristics.

  8. Routine Molecular Identification of Enterococci by Gene-Specific PCR and 16S Ribosomal DNA Sequencing

    PubMed Central

    Angeletti, Silvia; Lorino, Giulia; Gherardi, Giovanni; Battistoni, Fabrizio; De Cesaris, Marina; Dicuonzo, Giordano

    2001-01-01

    For 279 clinically isolated specimens identified by commercial kits as enterococci, genotypic identification was performed by two multiplex PCRs, one with ddlE. faecalis and ddlE. faecium primers and another with vanC-1 and vanC-2/3 primers, and by 16S ribosomal DNA (rDNA) sequencing. For 253 strains, phenotypic and genotypic results were the same. Multiplex PCR allowed for the identification of 13 discordant results. Six strains were not enterococci and were identified by 16S rDNA sequencing. For 5 discordant and 10 concordant enterococcal strains, 16S rDNA sequencing was needed. Because many supplementary tests are frequently necessary for phenotypic identification, the molecular approach is a good alternative. PMID:11158155

  9. Sequencing of the intergenic 16S-23S rRNA spacer (ITS) region of Mollicutes species and their identification using microarray-based assay and DNA sequencing.

    PubMed

    Volokhov, Dmitriy V; George, Joseph; Liu, Sue X; Ikonomi, Pranvera; Anderson, Christine; Chizhikov, Vladimir

    2006-08-01

    We have completed sequencing the 16S-23S rRNA intergenic transcribed spacer (ITS) region of most known Mycoplasma , Acholeplasma , Ureaplasma , Mesoplasma , and Spiroplasma species. Analysis of the sequence data revealed a significant interspecies variability and low intraspecies polymorphism of the ITS region among Mollicutes . This finding enabled the application of a combined polymerase chain reaction-microarray technology for identifying Mollicutes species. The microarray included individual species-specific oligonucleotide probes for characterizing human Mollicutes species and other species known to be common cell line contaminants. Evaluation of the microarray was conducted using multiple, previously characterized, Mollicutes species. The microarray analysis of the samples used demonstrated a highly specific assay, which is capable of rapid and accurate discrimination among Mollicutes species.

  10. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome

    PubMed Central

    Robicheau, Brent M.; Susko, Edward; Harrigan, Amye M.

    2017-01-01

    Approximately 35% of the human genome can be identified as sequence devoid of a selected-effect function, and not derived from transposable elements or repeated sequences. We provide evidence supporting a known origin for a fraction of this sequence. We show that: 1) highly degraded, but near full length, ribosomal DNA (rDNA) units, including both 45S and Intergenic Spacer (IGS), can be found at multiple sites in the human genome on chromosomes without rDNA arrays, 2) that these rDNA sequences have a propensity for being centromere proximal, and 3) that sequence at all human functional rDNA array ends is divergent from canonical rDNA to the point that it is pseudogenic. We also show that small sequence strings of rDNA (from 45S + IGS) can be found distributed throughout the genome and are identifiable as an “rDNA-like signal”, representing 0.26% of the q-arm of HSA21 and ∼2% of the total sequence of other regions tested. The size of sequence strings found in the rDNA-like signal intergrade into the size of sequence strings that make up the full-length degrading rDNA units found scattered throughout the genome. We conclude that the displaced and degrading rDNA sequences are likely of a similar origin but represent different stages in their evolution towards random sequence. Collectively, our data suggests that over vast evolutionary time, rDNA arrays contribute to the production of junk DNA. The concept that the production of rDNA pseudogenes is a by-product of concerted evolution represents a previously under-appreciated process; we demonstrate here its importance. PMID:28204512

  11. Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda).

    PubMed

    Orosová, Martina; Ivica, Králová-Hromadová; Eva, Bazsalovicsová; Marta, Spakulová

    2010-09-01

    Karyotype and chromosomal characteristics, i.e. number and location of ribosomal DNA (rDNA) clusters, and sequence variation of the ribosomal internal transcribed spacer 2 (ITS2) were studied in a monozoic (unsegmented) tapeworm, Caryophyllaeides fennica (Caryophyllidea), using conventional and Ag-staining, fluorescent in situ hybridization (FISH) with 18S rDNA probe, and PCR amplification, cloning and sequencing of the complete ribosomal ITS2 spacer. The karyotype of this species was composed of ten pairs of metacentric (m) chromosomes (2n=20). All chromosomes except the pair No. 2 displayed DAPI-positive heterochromatin in centromeric regions. In addition, two distinct interstitial DAPI-positive bands were identified on chromosome pair No. 7. FISH with 18S rDNA probe revealed four clusters of major ribosomal genes situated in the pericentromeric region of the short arms in two pairs of metacentric chromosomes Nos. 8 and 9. Hybridization signals were stronger in the pair No. 8, indicating a higher amount of rDNA repeats at this nucleolar organizer region (NOR). Analysis of 15 ITS2 rDNA sequences (five recombinant clones from each of three individuals) showed 13 structurally different ribotypes, distinguished by 26 nucleotide substitutions and variable numbers and combinations of short repetitive motifs that allowed sorting the sequences into four ITS2 variants. These results contribute to recently published evidence for the intraindividual ribosomal ITS sequence variability in basal tapeworms with multiple rDNA loci and imply that both phenomena may be mutually linked.

  12. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster.

    PubMed

    Lyckegaard, E M; Clark, A G

    1989-03-01

    Multigene families on the Y chromosome face an unusual array of evolutionary forces. Both ribosomal DNA and Stellate, the two families examined here, have multiple copies of similar sequences on the X and Y chromosomes. Although the rate of sequence divergence on the Y chromosome depends on rates of mutation, gene conversion and exchange with the X chromosome, as well as purifying selection, the regulation of gene copy number may also depend on other pleiotropic functions, such as maintenance of chromosome pairing. Gene copy numbers were estimated for a series of 34 Y chromosome replacement lines using densitometric measurements of slot blots of genomic DNA from adult Drosophila melanogaster. Scans of autoradiographs of the same blots probed with the cloned alcohol dehydrogenase gene, a single copy gene, served as internal standards. Copy numbers span a 6-fold range for ribosomal DNA and a 3-fold range for Stellate DNA. Despite this magnitude of variation, there was no association between copy number and segregation variation of the sex chromosomes.

  13. Subnuclear relocalization and silencing of a chromosomal region by an ectopic ribosomal DNA repeat

    PubMed Central

    Jakočiūnas, Tadas; Domange Jordö, Marie; Aït Mebarek, Mazhoura; Bünner, Camilla Marie; Verhein-Hansen, Janne; Oddershede, Lene B.; Thon, Geneviève

    2013-01-01

    Our research addresses the relationship between subnuclear localization and gene expression in fission yeast. We observed the relocalization of a heterochromatic region, the mating-type region, from its natural location at the spindle-pole body to the immediate vicinity of the nucleolus. Relocalization occurred in response to a DNA rearrangement replacing a boundary element (IR-R) with a ribosomal DNA repeat (rDNA-R). Gene expression was strongly silenced in the relocalized mating-type region through mechanisms that differ from those operating in wild type. Also different from the wild-type situation, programmed recombination events failed to take place in the rDNA-R mutant. Increased silencing and perinucleolar localization depended on Reb1, a DNA-binding protein with cognate sites in the rDNA. Reb1 was recently shown to mediate long-range interchromosomal interactions in the nucleus through dimerization, providing a mechanism for the observed relocalization. Replacing the full rDNA repeat with Reb1-binding sites, and using mutants lacking the histone H3K9 methyltransferase Clr4, indicated that the relocalized region was silenced redundantly by heterochromatin and another mechanism, plausibly antisense transcription, achieving a high degree of repression in the rDNA-R strain. PMID:24191010

  14. DNA methyltransferase inhibition may limit cancer cell growth by disrupting ribosome biogenesis.

    PubMed

    Moss, Tom

    2011-02-01

    "Mutations" in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene "mutation" and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers, and it has been assumed these effects are due to the reversal of "mutant" gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.

  15. Ribosomal DNA haplotype distribution of Bursaphelenchus xylophilus in Kyushu and Okinawa islands, Japan

    PubMed Central

    Nose, Mine; Miyahara, Fumihiko; Ohira, Mineko; Matsunaga, Koji; Tobase, Masashi; Koyama, Takao; Yoshimoto, Kikuo

    2009-01-01

    Ribosomal DNA region sequences (partial 18S, 28S and complete ITS1, 5.8S, and ITS2) of the pinewood nematode (Bursaphelenchus xylophilus) were obtained from DNA extracted directly from wood pieces collected from wilted pine trees throughout the Kyushu and Okinawa islands, Japan. Either a 2569bp or 2573bp sequence was obtained from 88 of 143 samples. Together with the 45 rDNA sequences of pinewood nematode isolates previously reported, there were eight single nucleotide polymorphisms and two indels of two bases. Based on these mutations, nine haplotypes were estimated. The haplotype frequencies differed among regions in Kyushu island (northwest, northeast and center, southeast, and southwest), and the distribution was consistent with the invasion and spreading routes of the pinewood nematode previously estimated from past records of pine wilt and wood importation. There was no significant difference in haplotype frequencies among the collection sites on Okinawa island. PMID:22736814

  16. Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA.

    PubMed

    Varela, Eduardo S; Lima, João P M S; Galdino, Alexsandro S; Pinto, Luciano da S; Bezerra, Walderly M; Nunes, Edson P; Alves, Maria A O; Grangeiro, Thalles B

    2004-01-01

    The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences.

  17. 18S Ribosomal RNA Evaluation as Preanalytical Quality Control for Animal DNA

    PubMed Central

    Meli, Marina L.; Novacco, Marilisa; Borel, Nicole

    2016-01-01

    The 18S ribosomal RNA (rRNA) gene is present in all eukaryotic cells. In this study, we evaluated the use of this gene to verify the presence of PCR-amplifiable host (animal) DNA as an indicator of sufficient sample quality for quantitative real-time PCR (qPCR) analysis. We compared (i) samples from various animal species, tissues, and sample types, including swabs; (ii) multiple DNA extraction methods; and (iii) both fresh and formalin-fixed paraffin-embedded (FFPE) samples. Results showed that 18S ribosomal RNA gene amplification was possible from all tissue samples evaluated, including avian, reptile, and FFPE samples and most swab samples. A single swine rectal swab, which showed sufficient DNA quantity and the demonstrated lack of PCR inhibitors, nonetheless was negative by 18S qPCR. Such a sample specifically illustrates the improvement of determination of sample integrity afforded by inclusion of 18S rRNA gene qPCR analysis in addition to spectrophotometric analysis and the use of internal controls for PCR inhibition. Other possible applications for the described 18S rRNA qPCR are preselection of optimal tissue specimens for studies or preliminary screening of archived samples prior to acceptance for biobanking projects. PMID:27672657

  18. Specific primers for PCR amplification of the ITS1 (ribosomal DNA) of Trypanosoma lewisi.

    PubMed

    Desquesnes, Marc; Marc, Desquesnes; Kamyingkird, Ketsarin; Ketsarin, Kamyingkird; Yangtara, Sarawut; Sarawut, Yangtara; Milocco, Cristina; Cristina, Milocco; Ravel, Sophie; Sophie, Ravel; Wang, Ming-Hui; Ming-Hui, Wang; Lun, Zhao-Rong; Zhao-Rong, Lun; Morand, Serge; Serge, Morand; Jittapalapong, Sathaporn; Sathaporn, Jittapalapong

    2011-08-01

    Trypanosoma lewisi is a mild or non-pathogenic parasite of the sub-genus Herpetosoma transmitted by fleas to rats. In a previous study we described pan-trypanosome specific primers TRYP1 which amplify the ITS1 of ribosomal DNA by hybridizing in highly conserved regions of 18S and 5.8S genes. These primers proved to be useful for detecting T. lewisi DNA in laboratory rats, but a recent large scale survey in wild rodents demonstrated a lack of specificity. In the present study, we designed and evaluated mono-specific primers LEW1S and LEW1R, for the detection and identification of T. lewisi by a single-step PCR. These primers were designed inside the highly variable region of the ITS1 sequence of T. lewisi ribosomal DNA. The product size of 220 bp is specific to T. lewisi. The sensitivity limit was estimated between 0.055 and 0.55 pg of DNA per reaction, equivalent to 1-10 organisms per reaction. All the PCR products obtained from 6 different T. lewisi isolates were more than 98% similar with each other and similar to the sequences of T. lewisi already published in Genbank. All DNA of 7 T. lewisi stocks from China gave the specific 220 bp product. We showed that LEW1S and LEW1R primers enabled sensitive detection and identification of T. lewisi infection in laboratory and wild rats. This assay is recommended for monitoring T. lewisi infections in rat colonies or for studying infections in the wild fauna. An absence of cross reaction with human DNA means that these primers can be used to investigate atypical trypanosome infections in humans. Given the risk of T. lewisi infection in human, we believe that these primers will be beneficial for public health diagnosis and rodents investigation programmes.

  19. Long-term evolution of 5S ribosomal DNA seems to be driven by birth-and-death processes and selection in Ensis razor shells (Mollusca: Bivalvia).

    PubMed

    Vierna, Joaquín; González-Tizón, Ana M; Martínez-Lage, Andrés

    2009-10-01

    A study of nucleotide sequence variation of 5S ribosomal DNA from six Ensis species revealed that several 5S ribosomal DNA variants, based on differences in their nontranscribed spacers (NTS), occur in Ensis genomes. The 5S rRNA gene was not very polymorphic, compared with the NTS region. The phylogenetic analyses performed showed a between-species clustering of 5S ribosomal DNA variants. Sequence divergence levels between variants were very large, revealing a lack of sequence homogenization. These results strongly suggest that the long-term evolution of Ensis 5S ribosomal DNA is driven by birth-and-death processes and selection.

  20. Diversity and recombination of dispersed ribosomal DNA and protein coding genes in microsporidia.

    PubMed

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  1. Diversity and Recombination of Dispersed Ribosomal DNA and Protein Coding Genes in Microsporidia

    PubMed Central

    Ironside, Joseph Edward

    2013-01-01

    Microsporidian strains are usually classified on the basis of their ribosomal DNA (rDNA) sequences. Although rDNA occurs as multiple copies, in most non-microsporidian species copies within a genome occur as tandem arrays and are homogenised by concerted evolution. In contrast, microsporidian rDNA units are dispersed throughout the genome in some species, and on this basis are predicted to undergo reduced concerted evolution. Furthermore many microsporidian species appear to be asexual and should therefore exhibit reduced genetic diversity due to a lack of recombination. Here, DNA sequences are compared between microsporidia with different life cycles in order to determine the effects of concerted evolution and sexual reproduction upon the diversity of rDNA and protein coding genes. Comparisons of cloned rDNA sequences between microsporidia of the genus Nosema with different life cycles provide evidence of intragenomic variability coupled with strong purifying selection. This suggests a birth and death process of evolution. However, some concerted evolution is suggested by clustering of rDNA sequences within species. Variability of protein-coding sequences indicates that considerable intergenomic variation also occurs between microsporidian cells within a single host. Patterns of variation in microsporidian DNA sequences indicate that additional diversity is generated by intragenomic and/or intergenomic recombination between sequence variants. The discovery of intragenomic variability coupled with strong purifying selection in microsporidian rRNA sequences supports the hypothesis that concerted evolution is reduced when copies of a gene are dispersed rather than repeated tandemly. The presence of intragenomic variability also renders the use of rDNA sequences for barcoding microsporidia questionable. Evidence of recombination in the single-copy genes of putatively asexual microsporidia suggests that these species may undergo cryptic sexual reproduction, a

  2. An unusual case of Streptococcus anginosus group pyomyositis diagnosed using direct 16S ribosomal DNA sequencing.

    PubMed

    Walkty, Andrew; Embil, John M; Nichol, Kim; Karlowsky, James

    2014-01-01

    Bacteria belonging to the Streptococcus anginosus group (Streptococcus intermedius, Streptococcus constellatus and Streptococcus anginosus) are capable of causing serious pyogenic infections, with a tendency for abscess formation. The present article reports a case of S anginosus group pyomyositis in a 47-year-old man. The pathogen was recovered from one of two blood cultures obtained from the patient, but speciation was initially not performed because the organism was considered to be a contaminant (viridans streptococci group). The diagnosis was ultimately confirmed using 16S ribosomal DNA sequencing of purulent fluid obtained from a muscle abscess aspirate. The present case serves to emphasize that finding even a single positive blood culture of an organism belonging to the S anginosus group should prompt careful evaluation of the patient for a pyogenic focus of infection. It also highlights the potential utility of 16S ribosomal DNA amplification and sequencing in direct pathogen detection from aspirated fluid in cases of pyomyositis in which antimicrobial therapy was initiated before specimen collection.

  3. Systematic analysis and evolution of 5S ribosomal DNA in metazoans

    PubMed Central

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-01-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690

  4. Efficacy of Leishmania donovani ribosomal P1 gene as DNA vaccine in experimental visceral leishmaniasis.

    PubMed

    Masih, Shet; Arora, Sunil K; Vasishta, Rakesh K

    2011-09-01

    The acidic ribosomal proteins of the protozoan parasites have been described as prominent antigens during human disease. We present here data showing the molecular cloning and protective efficacy of P1 gene of Leishmania donovani as DNA vaccine. The PCR amplified complete ORF cloned in either pQE or pVAX vector was used either as peptide or DNA vaccine against experimentally induced visceral leishmaniasis in hamsters. The recombinant protein rLdP1 was given along with Freund's adjuvant and the plasmid DNA vaccine, pVAX-P1 was used alone either as single dose or double dose (prime and boost) in different groups of hamsters which were subsequently challenged with a virulent dose of 1×10(7) L. donovani (MHOM/IN/DD8/1968 strain) promastigotes by intra-cardiac route. While the recombinant protein rLdP1 or DNA vaccine pVAX-P1 in single dose format were not found to be protective, DNA vaccine in a prime-boost mode was able to induce protection with reduced mortality, a significant (75.68%) decrease in splenic parasite burden and increased expression of Th1 type cytokines in immunized hamsters. Histopathology of livers and spleens from these animals showed formation of mature granulomas with compact arrangement of lymphocytes and histiocytes, indicating its protective potential as vaccine candidate.

  5. Chromosomal localization of ribosomal and telomeric DNA provides new insights on the evolution of gomphocerinae grasshoppers.

    PubMed

    Jetybayev, I E; Bugrov, A G; Karamysheva, T V; Camacho, J P M; Rubtsov, N B

    2012-01-01

    Chromosome location of ribosomal DNA (rDNA) and telomeric repeats was analysed in mitotic chromosomes of 15 species of Gomphocerinae grasshoppers belonging to the tribes Arcypterini, Gomphocerini, Stenobothrini, and Chrysochraontini. Two types of rDNA distribution were found in the Gomphocerini tribe. Type 1, found in 9 species, was characterized by the presence of rDNA in the short arm of the long biarmed chromosomes 2 and 3 and, in some species, also in the X chromosome. Type 2 was found only in Aeropus sibiricus and Stauroderus scalaris and consisted in the presence of pericentromeric rDNA blocks in all chromosomes. A comparison of rDNA distribution in Gomphocerini species with 2n ♂ = 23, 2n ♂ = 21, and 2n ♂ = 17 suggested the possible involvement of chromosome 6 in the ancestral karyotype (2n ♂ = 23) in 1 of the 3 centric fusions that decreased the chromosome number in these species. In the tribe Stenobothrini, Stenobothrus eurasius carried a single rDNA cluster in the X chromosome, likewise 2 Spanish species previously analysed, but Omocestus viridulus unusually showed a single rDNA cluster in the longest autosome. Telomeric repeats were located primarily on the ends of chromosome arms. In 2 species, however, we observed the presence of interstitial clusters outside telomeric regions. The first one, Aeropus sibiricus, exhibited a polymorphic interstitial site of telomeric repeats in chromosome 6 as a consequence of a paracentric inversion. Most remarkably, Chorthippus jacobsoni showed the presence of telomeric repeats in the pericentric regions of the 3 biarmed chromosome pairs originated by centric fusion, thus suggesting that these rearrangements were not of the Robertsonian type but true centric fusion with a probable generation of dicentric chromosomes.

  6. An abundant nucleolar phosphoprotein is associated with ribosomal DNA in Tetrahymena macronuclei.

    PubMed Central

    McGrath, K E; Smothers, J F; Dadd, C A; Madireddi, M T; Gorovsky, M A; Allis, C D

    1997-01-01

    An abundant 52-kDa phosphoprotein was identified and characterized from macronuclei of the ciliated protozoan Tetrahymena thermophila. Immunoblot analyses combined with light and electron microscopic immunocytochemistry demonstrate that this polypeptide, termed Nopp52, is enriched in the nucleoli of transcriptionally active macronuclei and missing altogether from transcriptionally inert micronuclei. The cDNA sequence encoding Nopp52 predicts a polypeptide whose amino-terminal half consists of multiple acidic/serine-rich regions alternating with basic/proline-rich regions. Multiple serines located in these acidic stretches lie within casein kinase II consensus motifs, and Nopp52 is an excellent substrate for casein kinase II in vitro. The carboxyl-terminal half of Nopp52 contains two RNA recognition motifs and an extreme carboxyl-terminal domain rich in glycine, arginine, and phenylalanine, motifs common in many RNA processing proteins. A similar combination and order of motifs is found in vertebrate nucleolin and yeast NSR1, suggesting that Nopp52 is a member of a family of related nucleolar proteins. NSR1 and nucleolin have been implicated in transcriptional regulation of rDNA and rRNA processing. Consistent with a role in ribosomal gene metabolism, rDNA and Nopp52 colocalize in situ, as well as by cross-linking and immunoprecipitation experiments, demonstrating an association between Nopp52 and rDNA in vivo. Images PMID:9017598

  7. Large-scale organization of ribosomal DNA chromatin is regulated by Tip5

    PubMed Central

    Zillner, Karina; Filarsky, Michael; Rachow, Katrin; Weinberger, Michael; Längst, Gernot; Németh, Attila

    2013-01-01

    The DNase I accessibility and chromatin organization of genes within the nucleus do correlate to their transcriptional activity. Here, we show that both serum starvation and overexpression of Tip5, a key regulator of ribosomal RNA gene (rDNA) repression, dictate DNase I accessibility, facilitate the association of rDNA with the nuclear matrix and thus regulate large-scale rDNA chromatin organization. Tip5 contains four AT-hooks and a TAM (Tip5/ARBP/MBD) domain, which were proposed to bind matrix-attachment regions (MARs) of the genome. Remarkably, the TAM domain of Tip5 functions as nucleolar localization and nuclear matrix targeting module, whereas AT-hooks do not mediate association with the nuclear matrix, but they are required for nucleolar targeting. These findings suggest a dual role for Tip5’s AT-hooks and TAM domain, targeting the nucleolus and anchoring to the nuclear matrix, and suggest a function for Tip5 in the regulation of higher-order rDNA chromatin structure. PMID:23580549

  8. [Identification of fish species based on ribosomal DNA ITS2 locus].

    PubMed

    Yuan, Wan-An

    2010-04-01

    To prevent illegal fishing and sale, the most difficult problem is identification of marketed fish species, especially the parts that are difficult to be differentiated with morphological method (e.g., larval, eggs, scales, meat, products etc. To assist conservation and management of fishery resources, this paper reported a molecular genetic approach based on ribosomal internal transcribed spacer 2 locus. The method includes two steps: (1) the order general primers were designed according to the conservative nature of 5.8SrRAN and 28SrRNA genes within an order, and the DNA ribosomal internal transcribed spacer 2 locus fragment were then amplified and sequenced. (2) The species-specific ladders and the species-specific primers for each species were designed according to the sequencing results. The map of molecular taxonomy was constructed. This approach employs multiplex PCR that is formatted for fish species identification. We tested 210 single-species samples and 40 mix-species samples from different regions of China. The approach distinguished accurately and sensitively samples from each of the five species. This genetic and molecular approach will be useful for fish conservation, assessment, management and exploitation, strengthen in law enforcement of fishery manager, combat rare and endangered fish smuggling, and prevent commercial fraud and biological invasion by harmful nonnative species.

  9. Alpha-momorcharin: a ribosome-inactivating protein from Momordica charantia, possessing DNA cleavage properties.

    PubMed

    Wang, Shuzhen; Zheng, Yinzhen; Yan, Junjie; Zhu, Zhixuan; Wu, Zhihua; Ding, Yi

    2013-11-01

    Ribosome-inactivating proteins (RIPs) function to inhibit protein synthesis through the removal of specific adenine residues from eukaryotic ribosomal RNA and rending the 60S subunit unable to bind elongation factor 2. They have received much attention in biological and biomedical research due to their unique activities toward tumor cells, as well as the important roles in plant defense. Alpha-momorcharin (α-MC), a member of the type I family of RIPs, is rich in the seeds of Momordica charantia L. Previous studies demonstrated that α-MC is an effective antifungal and antibacterial protein. In this study, a detailed analysis of the DNase-like activity of α-MC was conducted. Results showed that the DNase-like activity toward plasmid DNA was time-dependent, temperature-related, and pH-stable. Moreover, a requirement for divalent metal ions in the catalytic domain of α-MC was confirmed. Additionally, Tyr(93) was found to be a critical residue for the DNase-like activity, while Tyr(134), Glu(183), Arg(186), and Trp(215) were activity-related residues. This study on the chemico-physical properties and mechanism of action of α-MC will improve its utilization in scientific research, as well as its potential industrial uses. These results may also assist in the characterization and elucidation of the DNase-like enzymatic properties of other RIPs.

  10. Structure and chromosomal localization of DNA sequences related to ribosomal subrepeats in Vicia faba.

    PubMed

    Maggini, F; Cremonini, R; Zolfino, C; Tucci, G F; D'Ovidio, R; Delre, V; DePace, C; Scarascia Mugnozza, G T; Cionini, P G

    1991-05-01

    Subrepeating sequences of 325 bp found in the ribosomal intergenic spacer (IGS) of Vicia faba and responsible for variations in the length of the polycistronic units for rRNA were isolated and used as probes for in situ hybridization. Hybridization occurs at many regions of the metaphase chromosomes besides those bearing rRNA genes, namely chromosome ends and all the heterochromatic regions revealed by enhanced fluorescence after quinacrine staining. The DNA homologous to the 325 bp repeats that does not reside in the IGS was isolated, cloned and sequenced. It is composed of tandemly arranged 336 bp elements, each comprising two highly related 168 bp sequences. This structure is very similar to that of the IGS repeats and ca. 75% nucleotide sequence identity can be observed between these and the 168 bp doublets. The most obvious difference lies in the deletion, in the former, of a 14 bp segment from one of the two related sequences. It is hypothesized that the IGS repeats are derived from the 336 bp elements and have been transposed to ribosomal cistrons from other genome fractions. The possible relations between these sequences and others with similar structural features found in other species are discussed.

  11. Intraspecific Variation in Ribosomal DNA in Populations of the Potato Cyst Nematode Globodera pallida

    PubMed Central

    Blok, V. C.; Malloch, G.; Harrower, B.; Phillips, M. S.; Vrain, T. C.

    1998-01-01

    The relationships among a number of populations of Globodera pallida from Britian, the Netherlands, Germany, Switzerland, and South America were examined using PCR amplification of the ribosomal cistron between the 18S and 28S genes that include the two intergenic spacer regions (ITS1 and ITS2) and the 5.8S gene. Amplifications produced a similar-sized product of 1150 bp from all populations. Digestion of the amplified fragment with a number of restriction enzymes showed differences among the populations. The restriction enzyme RsaI distinguished the most populations. The RFLP patterns revealed by this enzyme were complex and could have arisen from heterogeneity between individuals within populations and from differences between the repeats of an individual. Sequence analysis from six of the populations, together with RFLP analysis of PCR products, shows that there is intraspecific variation in the rDNA of G. pallida. PMID:19274220

  12. 18S ribosomal DNA genotypes of Acanthamoeba species isolated from contact lens cases in the Philippines.

    PubMed

    Rivera, Windell L; Adao, Davin Edric V

    2009-10-01

    This study was carried out to document the genotypes of Acanthamoeba present in contact lens cases from 50 randomly selected contact lens wearers living in Quezon City, Metro Manila, Philippines. Acanthamoeba species were isolated from eight (16%) in 50 contact lens cases examined. We analyzed partial 18S ribosomal DNA (Rns) sequences of the eight isolates and found that the sequence differences were sufficient to distinguish the genotypes. After the isolates were genotyped, using the Basic Local Alignment Search Tool program, their phylogenetic positions relative to known Acanthamoeba isolates were determined. The model-based (GTR+Gamma+Iota) neighbor-joining, maximum likelihood, and Bayesian inference analyses, as well as the non-model-based maximum parsimony analysis were used. Results showed that of the eight isolates, six were Rns genotype T5 while two were Rns genotype T4. This present study indicates that genotype T5 is also a common contaminant in contact lens storage cases.

  13. Species identification of spiny lobster phyllosome larvae via ribosomal DNA analysis.

    PubMed

    Silberman, J D; Walsh, P J

    1992-06-01

    Within the tropical northwestern Atlantic, Panulirus argus, P. guttatus, and P. laevicauda (Palinuridae family), are sympatric. Numerous studies have examined the distribution and abundance of planktonic phyllosome larvae with respect to recruitment of spiny lobsters to the benthic population, but the data are of limited use because larvae of these species cannot yet be distinguished from one another by morphological characteristics. A simple molecular method that unambiguously differentiates adults or larvae of P. argus, P. guttatus, and P. laevicauda is described: a 5' region of 28s ribosomal DNA is amplified in vitro and then cut with a diagnostic restriction enzyme to identify each species. Data are also presented from the application of this method to representative plankton tows.

  14. Repetitive sequences in the ITS1 region of ribosomal DNA in congeneric microphallid species (Trematoda: Digenea).

    PubMed

    Warberg, Rikke; Jensen, K Thomas; Frydenberg, Jane

    2005-11-01

    In searching for species-specific DNA sequences of microphallid species (Digenea, Trematoda) we examined the ribosomal internal transcribed spacer regions (ITS) of three closely related species (Levinseniella group) hosted by mud snails (first intermediate host) and marine crustaceans (second intermediate host). In the ITS1 region we found consistent patterns of repeating sequences of 130 bp. Within each main repeat there was a varying number of subrepeats specific for each of the species. All repeats including subrepeats were identified by a similar starting sequence: 5'-CCTGTGG-3'. As this sequence has close resemblance to the chi sequence 5'-GCTGGTGG-3' found in phage lambda we speculate if it serves the same function as a recombination hotspot. Alternatively but less likely, it could be an inactive, mutational relic of a sequence that once served this purpose.

  15. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes.

    PubMed Central

    Kambhampati, S

    1995-01-01

    Cockroaches are among the most ancient winged insects, the earliest fossils dating back to about 400 million years. Several conflicting phylogenies for cockroach families, subfamilies, and genera have been proposed in the past. In addition, the relationship of Cryptocercidae to other cockroach families and the relationship between the cockroach, Cryptocercus punctulatus, and the termite, Mastotermes darwiniensis, have generated debate. In this paper, a phylogeny for cockroaches, mantids, and termites based on DNA sequence of the mitochondrial ribosomal RNA genes is presented. The results indicated that cockroaches are a monophyletic group, whose sister group is Mantoidea. The inferred relationship among cockroach families was in agreement with the presently accepted phylogeny. However, there was only partial congruence at the subfamily and the generic levels. The phylogeny inferred here does not support a close relationship between C. punctulatus and M. darwiniensis. The apparent synapomorphies of these two species are likely a manifestation of convergent evolution because there are similarities in biology and habitat. PMID:7534409

  16. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome

    PubMed Central

    Yu, Shoukai; Lemos, Bernardo

    2016-01-01

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. PMID:27797956

  17. Giant panda ribosomal protein S14: cDNA, genomic sequence cloning, sequence analysis, and overexpression.

    PubMed

    Wu, G-F; Hou, Y-L; Hou, W-R; Song, Y; Zhang, T

    2010-10-13

    RPS14 is a component of the 40S ribosomal subunit encoded by the RPS14 gene and is required for its maturation. The cDNA and the genomic sequence of RPS14 were cloned successfully from the giant panda (Ailuropoda melanoleuca) using RT-PCR technology and touchdown-PCR, respectively; they were both sequenced and analyzed. The length of the cloned cDNA fragment was 492 bp; it contained an open-reading frame of 456 bp, encoding 151 amino acids. The length of the genomic sequence is 3421 bp; it contains four exons and three introns. Alignment analysis indicates that the nucleotide sequence shares a high degree of homology with those of Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus laevis, and Danio rerio (93.64, 83.37, 92.54, 91.89, 87.28, 84.21, and 84.87%, respectively). Comparison of the deduced amino acid sequences of the giant panda with those of these other species revealed that the RPS14 of giant panda is highly homologous with those of B. taurus, R. norvegicus and D. rerio (85.99, 99.34 and 99.34%, respectively), and is 100% identical with the others. This degree of conservation of RPS14 suggests evolutionary selection. Topology prediction shows that there are two N-glycosylation sites, three protein kinase C phosphorylation sites, two casein kinase II phosphorylation sites, four N-myristoylation sites, two amidation sites, and one ribosomal protein S11 signature in the RPS14 protein of the giant panda. The RPS14 gene can be readily expressed in Escherichia coli. When it was fused with the N-terminally His-tagged protein, it gave rise to accumulation of an expected 22-kDa polypeptide, in good agreement with the predicted molecular weight. The expression product obtained can be purified for studies of its function.

  18. Ribosomal DNA sequence of Nucleospora salmonis Hedrick, Groff and Baxa, 1991 (Microsporea:Enterocytozoonidae): implications for phylogeny and nomenclature.

    PubMed

    Docker, M F; Kent, M L; Hervio, D M; Khattra, J S; Weiss, L M; Cali, A; Devlin, R H

    1997-01-01

    Rules of zoological nomenclature, morphological data, and ribosomal DNA sequence data support the validity of the genus Nucleospora, and its placement in the family Enterocytozoonidae. Although Nucleospora exhibits most of the distinguishing morphological characteristics of the family Enterocytozoonidae Cali and Owen, 1990, the distinctively different hosts (fish and humans, respectively) and sites of development (the nuclei of immature blood cells and the cytoplasm of enterocytes) support the placement of Nucleospora and Enterocytozoon into separate genera. Ribosomal DNA sequence comparisons between Nucleospora salmonis and Enterocytozoon bieneusi showed 19.8% genetic divergence in the large and small subunit regions. Although more inter- and intrageneric comparisons are needed before percent homology of ribosomal DNA can be used as a criterion for the separation of genera, the genetic divergence between the two species is sufficiently large to deter suppression of the genus Nucleospora as a junior synonym of Enterocytozoon. A polymerase chain reaction test for the detection of N. salmonis in chinook salmon (Oncorhynchus tshawytscha), based on N. salmonis-specific ribosomal DNA sequence, is described.

  19. DNA structural variation affects complex formation and promoter melting in ribosomal RNA transcription.

    PubMed

    Marilley, M; Radebaugh, C A; Geiss, G K; Laybourn, P J; Paule, M R

    2002-08-01

    Eukaryotic ribosomal RNA promoters exhibit an unusual conservation of non-canonical DNA structure (curvature, twist angle and duplex stability) despite a lack of primary sequence conservation. This raises the possibility that rRNA transcription factors might utilize structural anomalies in their sequence recognition process. We have analyzed in detail the interaction of the polymerase I transcription factor TIF-IB from Acanthmoeba castellanii with the CORE promoter. TIF-IB interacts primarily with the minor groove of the promoter. By correlating the effects on transcription and on DNA structure of promoter point mutations, we show that the TIF-IB interaction is strongly inhibited by increases in minor groove width. This suggests that a particular DNA structure is required for interaction with the transcription factor. In addition, TIF-IB induces a small bend in the promoter upon binding. Modeling of this bend reveals that it requires an additional narrowing of the minor groove, which would favor binding to mutants with narrower grooves. We also discuss how this narrowing would induce a small destabilization of the helix upstream of the transcription start site. Telestability predicts this would result in destabilization of the sequence that melts during initiation, suggesting that TIF-IB may have a role in stimulating melting.

  20. Identification of Clinical Isolates of Actinomyces Species by Amplified 16S Ribosomal DNA Restriction Analysis

    PubMed Central

    Hall, Val; Talbot, P. R.; Stubbs, S. L.; Duerden, B. I.

    2001-01-01

    Amplified 16S ribosomal DNA (rDNA) restriction analysis (ARDRA), using enzymes HaeIII and HpaII, was applied to 176 fresh and 299 stored clinical isolates of putative Actinomyces spp. referred to the Anaerobe Reference Unit of the Public Health Laboratory Service for confirmation of identity. Results were compared with ARDRA results obtained previously for reference strains and with conventional phenotypic reactions. Identities of some strains were confirmed by analysis of partial 16S rDNA sequences. Of the 475 isolates, 331 (70%) were clearly assigned to recognized Actinomyces species, including 94 isolates assigned to six recently described species. A further 52 isolates in 12 ARDRA profiles were designated as apparently resembling recognized species, and 44 isolates, in 18 novel profiles, were confirmed as members of genera other than Actinomyces. The identities of 48 isolates in nine profiles remain uncertain, and they may represent novel species of Actinomyces. For the majority of species, phenotypic results, published reactions for the species, and ARDRA profiles concurred. However, of 113 stored isolates originally identified as A. meyeri or resembling A. meyeri by phenotypic tests, only 21 were confirmed as A. meyeri by ARDRA; 63 were reassigned as A. turicensis, 7 as other recognized species, and 22 as unidentified actinomycetes. Analyses of incidence and clinical associations of Actinomyces spp. add to the currently sparse knowledge of some recently described species. PMID:11574572

  1. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    PubMed Central

    Elbrecht, Vasco; Taberlet, Pierre; Dejean, Tony; Valentini, Alice; Usseglio-Polatera, Philippe; Beisel, Jean-Nicolas; Coissac, Eric; Boyer, Frederic

    2016-01-01

    Cytochrome c oxidase I (COI) is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate. PMID:27114891

  2. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists.

  3. Phylogeography of East Asian Lespedeza buergeri (Fabaceae) based on chloroplast and nuclear ribosomal DNA sequence variations.

    PubMed

    Jin, Dong-Pil; Lee, Jung-Hyun; Xu, Bo; Choi, Byoung-Hee

    2016-09-01

    The dynamic changes in land configuration during the Quaternary that were accompanied by climatic oscillations have significantly influenced the current distribution and genetic structure of warm-temperate forests in East Asia. Although recent surveys have been conducted, the historical migration of forest species via land bridges and, especially, the origins of Korean populations remains conjectural. Here, we reveal the genetic structure of Lespedeza buergeri, a warm-temperate shrub that is disjunctively distributed around the East China Sea (ECS) at China, Korea, and Japan. Two non-coding regions (rpl32-trnL, psbA-trnH) of chloroplast DNA (cpDNA) and the internal transcribed spacer of nuclear ribosomal DNA (nrITS) were analyzed for 188 individuals from 16 populations, which covered almost all of its distribution. The nrITS data demonstrated a genetic structure that followed geographic boundaries. This examination utilized AMOVA, comparisons of genetic differentiation based on haplotype frequency/genetic mutations among haplotypes, and Mantel tests. However, the cpDNA data showed contrasting genetic pattern, implying that this difference was due to a slower mutation rate in cpDNA than in nrITS. These results indicated frequent migration by this species via an ECS land bridge during the early Pleistocene that then tapered gradually toward the late Pleistocene. A genetic isolation between western and eastern Japan coincided with broad consensus that was suggested by the presence of other warm-temperate plants in that country. For Korean populations, high genetic diversity indicated the existence of refugia during the Last Glacial Maximum on the Korean Peninsula. However, their closeness with western Japanese populations at the level of haplotype clade implied that gene flow from western Japanese refugia was possible until post-glacial processing occurred through the Korea/Tsushima Strait land bridge.

  4. A ribosomal DNA fragment of Listeria monocytogenes and its use as a genus-specific probe in an aqueous-phase hybridization assay.

    PubMed Central

    Emond, E; Fliss, I; Pandian, S

    1993-01-01

    cDNAs were prepared from the total RNA of Listeria monocytogenes ATCC 19118 and used as probes to screen a genomic library of the same strain. Four clones were identified which contained ribosomal DNA fragments. Recombinant DNA from one of them was fractionated and differentially hybridized with the cDNA probes to RNA of L. monocytogenes and Kurthia zopfii. The resulting hybridization pattern revealed an HpaII fragment of 0.8 kb that was specific for the L. monocytogenes strain. The nucleotide sequence of this fragment showed 159 bases of the 3' end of the 16S rRNA gene, 243 bases of the spacer region, and 382 bases of the 5' end of the 23S rRNA gene. In dot blot hybridization assays, the 32P-labeled 784-bp fragment was specific only for Listeria species. Dot blot assays revealed that the 32P-labeled fragment can easily detect > or = 10 pg of total nucleic acids from pure cultures of L. monocytogenes, which corresponds to approximately 300 bacteria. This fragment was also used as a probe in an assay named the heteroduplex nucleic acid (HNA) enzyme-linked immunosorbent assay. In this system, the biotinylated DNA probe is hybridized in the aqueous phase with target RNA molecules and then specific HNAs are captured by HNA-specific antibodies. Captured HNA molecules are revealed with an enzyme conjugate of streptavidin. In a preliminary HNA enzyme-linked immunosorbent assay, the 784-bp fragment maintained its specificity for Listeria spp. and could detect 5 x 10(2) cells in artificially contaminated meat homogenate. Images PMID:8368854

  5. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    NASA Astrophysics Data System (ADS)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  6. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study.

    PubMed

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources.

  7. Application of the Ribosomal DNA ITS2 Region of Physalis (Solanaceae): DNA Barcoding and Phylogenetic Study

    PubMed Central

    Feng, Shangguo; Jiang, Mengying; Shi, Yujun; Jiao, Kaili; Shen, Chenjia; Lu, Jiangjie; Ying, Qicai; Wang, Huizhong

    2016-01-01

    Recently, commercial interest in Physalis species has grown worldwide due to their high nutritional value, edible fruit, and potential medicinal properties. However, many Physalis species have similar shapes and are easily confused, and consequently the phylogenetic relationships between Physalis species are poorly understood. This hinders their safe utilization and genetic resource conservation. In this study, the nuclear ribosomal ITS2 region was used to identify species and phylogenetically examine Physalis. Eighty-six ITS2 regions from 45 Physalis species were analyzed. The ITS2 sequences were aligned using Clustal W and genetic distances were calculated using MEGA V6.0. The results showed that ITS2 regions have significant intra- and inter-specific divergences, obvious barcoding gaps, and higher species discrimination rates (82.2% for both the BLASTA1 and nearest distance methods). In addition, the secondary structure of ITS2 provided another way to differentiate species. Cluster analysis based on ITS2 regions largely concurred with the relationships among Physalis species established by many previous molecular analyses, and showed that most sections of Physalis appear to be polyphyletic. Our results demonstrated that ITS2 can be used as an efficient and powerful marker in the identification and phylogenetic study of Physalis species. The technique provides a scientific basis for the conservation of Physalis plants and for utilization of resources. PMID:27486467

  8. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates.

    PubMed

    Laila, Rawnak; Robin, Arif Hasan Khan; Yang, Kiwoung; Choi, Gyung Ja; Park, Jong-In; Nou, Ill-Sup

    2017-01-04

    Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae). It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates), collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY). The nuclear ribosomal DNA (rDNA) sequence of P. brassicae, comprising 6932 base pairs (bp), was cloned and sequenced and found to include the small subunits (SSUs) and a large subunit (LSU), internal transcribed spacers (ITS1 and ITS2), and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs), oligonucleotide polymorphisms, and insertions/deletions (InDels). A combination of three markers was able to distinguish the geographical isolates into two groups.

  9. Detection of Ribosomal DNA Sequence Polymorphisms in the Protist Plasmodiophora brassicae for the Identification of Geographical Isolates

    PubMed Central

    Laila, Rawnak; Robin, Arif Hasan Khan; Yang, Kiwoung; Choi, Gyung Ja; Park, Jong-In; Nou, Ill-Sup

    2017-01-01

    Clubroot is a soil-borne disease caused by the protist Plasmodiophora brassicae (P. brassicae). It is one of the most economically important diseases of Brassica rapa and other cruciferous crops as it can cause remarkable yield reductions. Understanding P. brassicae genetics, and developing efficient molecular markers, is essential for effective detection of harmful races of this pathogen. Samples from 11 Korean field populations of P. brassicae (geographic isolates), collected from nine different locations in South Korea, were used in this study. Genomic DNA was extracted from the clubroot-infected samples to sequence the ribosomal DNA. Primers and probes for P. brassicae were designed using a ribosomal DNA gene sequence from a Japanese strain available in GenBank (accession number AB526843; isolate NGY). The nuclear ribosomal DNA (rDNA) sequence of P. brassicae, comprising 6932 base pairs (bp), was cloned and sequenced and found to include the small subunits (SSUs) and a large subunit (LSU), internal transcribed spacers (ITS1 and ITS2), and a 5.8s. Sequence variation was observed in both the SSU and LSU. Four markers showed useful differences in high-resolution melting analysis to identify nucleotide polymorphisms including single- nucleotide polymorphisms (SNPs), oligonucleotide polymorphisms, and insertions/deletions (InDels). A combination of three markers was able to distinguish the geographical isolates into two groups. PMID:28054984

  10. A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases.

    PubMed

    Xie, Ping

    2015-09-07

    DNA helicases are enzymes that use the chemical energy to separate DNA duplex into their single-stranded forms. The ribosome, which catalyzes the translation of messenger RNAs (mRNAs) into proteins, can also unwind mRNA duplex. According to their structures, the DNA helicases can fall broadly into hexameric and monomeric forms. A puzzling issue for the monomeric helicases is that although they have similar structures, in vitro biochemical data showed convincingly that in the monomeric forms some have very weak DNA unwinding activities, some have relatively high unwinding activities while others have high unwinding activities. However, in the dimeric or oligomeric forms all of them have high unwinding activities. In addition, in the monomeric forms all of them can translocate efficiently along the single-stranded DNA (ssDNA). Here, we propose a model of the translocation along the ssDNA and DNA unwinding by the monomeric helicases, providing a consistent explanation of these in vitro experimental data. Moreover, by comparing the present model for the monomeric helicases with the model for the hexameric helicases and that for the ribosome which were proposed before, a unified model of nucleic acid unwinding by the three enzymes is proposed.

  11. Characterisation of Fasciola species from Mainland China by ITS-2 ribosomal DNA sequence.

    PubMed

    Huang, W Y; He, B; Wang, C R; Zhu, X Q

    2004-02-26

    Isolates of Fasciola (Platyhelminthes: Trematoda: Digenea) from different host species and geographical locations in Mainland China were characterised genetically. The second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) was amplified from individual trematodes by polymerase chain reaction (PCR), and the representative amplicons were cloned and sequenced. The length of the ITS-2 sequences was 361-362bp for all Chinese Fasciola specimens sequenced. While there was no variation in length or composition of the ITS-2 sequences among multiple specimens from France, Sichuan and Guangxi, sequence difference of 1.7% (6/362) was detected between specimens from France and Sichuan, and those from Guangxi. Based on ITS-2 sequence data, it was concluded that the Fasciola from Sichuan represented Fasciola hepatica, the one from Guangxi represented Fasciola gigantica and the one from sheep from Heilongjiang may represent an "intermediate genotype", as its ITS-2 sequences were unique in that two different ITS-2 sequences exist in the rDNA array within a single Fasciola worm. One of the sequences is identical to that of F. hepatica, and the other is almost identical to that of F. gigantica in that nucleotides at five of the six polymorphic positions represent F. gigantica. This microheterogeneity is possibly due to sequence polymorphism among copies of the ITS-2 array within the same worm. Based on the sequence differences, a PCR-linked restriction fragment length polymorphism (PCR-RFLP) assay was established for the unequivocal delineation of the Fasciola spp. from Mainland China using restriction endonuclease Hsp92II or RcaI. This assay should provide a valuable tool for the molecular identification and for studying the ecology and population genetic structures of Fasciola spp. from Mainland China and elsewhere.

  12. Identification of novel fusion genes with 28S ribosomal DNA in hematologic malignancies.

    PubMed

    Kobayashi, Satoru; Taki, Tomohiko; Nagoshi, Hisao; Chinen, Yoshiaki; Yokokawa, Yuichi; Kanegane, Hirokazu; Matsumoto, Yosuke; Kuroda, Junya; Horiike, Shigeo; Nishida, Kazuhiro; Taniwaki, Masafumi

    2014-04-01

    Fusion genes are frequently observed in hematologic malignancies and soft tissue sarcomas, and are usually associated with chromosome abnormalities. Many of these fusion genes create in-frame fusion transcripts that result in the production of fusion proteins, and some of which aid tumorigenesis. These fusion proteins are often associated with disease phenotype and clinical outcome, and act as markers for minimal residual disease and indicators of therapeutic targets. Here, we identified the 28S ribosomal DNA (RN28S1) gene as a novel fusion partner of the B-cell leukemia/lymphoma 11B gene (BCL11B), the immunoglobulin κ variable 3-20 gene (IGKV3-20) and the component of oligomeric Golgi complex 1 gene (COG1) in hematologic malignancies. The RN28S1-BCL11B fusion transcript was identified in a case with mixed-lineage (T/myeloid) acute leukemia having t(6;14)(q25;q32) by cDNA bubble PCR using BCL11B primers; however, the gene fused to BCL11B on 14q32 was not on 6q25. IGKV3-20-RN28S1 and COG1-RN28S1 fusion transcripts were identified in the Burkitt lymphoma cell line HBL-5, and the multiple myeloma cell line KMS-18. RN28S1 would not translate, and the breakpoints in partner genes of RN28S1 were within the coding exons, suggesting that disruption of fusion partners by fusion to RN28S1 is the possible mechanism of tumorigenesis. Although further analysis is needed to elucidate the mechanism(s) through which these RN28S1-related fusions play roles in tumorigenesis, our findings provide important insights into the role of rDNA function in human genomic architecture and tumorigenesis.

  13. Prevalence and Dynamics of Ribosomal DNA Micro-heterogeneity Are Linked to Population History in Two Contrasting Yeast Species

    PubMed Central

    James, Stephen A.; West, Claire; Davey, Robert P.; Dicks, Jo; Roberts, Ian N.

    2016-01-01

    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker’s yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species’ contrasting population histories. PMID:27345953

  14. DNA systematics. Volume II

    SciTech Connect

    Dutta, S.K.

    1986-01-01

    This book discusses the following topics: PLANTS: PLANT DNA: Contents and Systematics. Repeated DNA Sequences and Polyploidy in Cereal Crops. Homology of Nonrepeated DNA Sequences in Phylogeny of Fungal Species. Chloropast DNA and Phylogenetic Relationships. rDNA: Evolution Over a Billion Years. 23S rRNA-derived Small Ribosomal RNAs: Their Structure and Evolution with Reference to Plant Phylogeny. Molecular Analysis of Plant DNA Genomes: Conserved and Diverged DNA Sequences. A Critical Review of Some Terminologies Used for Additional DNA in Plant Chromosomes and Index.

  15. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.

    PubMed

    Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar

    2011-11-01

    Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S

  16. Analysis of the relationship between ribosomal DNA ITS sequences and active components in Rhodiola plants.

    PubMed

    Zhang, D J; Yuan, W T; Li, M T; Zhang, Y H

    2016-12-23

    Rhodiola plants are a valuable resource in traditional Chinese medicine. The objective of this study was to evaluate the correlation between ribosomal DNA internal transcribed spacer (ITS) sequences and the three active components in Rhodiola plants. For this, we determined ITS sequence polymorphisms and the concentrations of active components salidroside, tyrosol, and gallic acid in different Rhodiola species from the Tibetan Plateau. In a total of 23 Rhodiola samples, 16 different haplotypes were defined based on their ITS sequences. Analysis of the active components in these same samples revealed that salidroside was not detected in species with haplotypes H4, H5, or H10, tyrosol was not detected with haplotypes H3, H5, H7, H10, H14, or H15, and gallic acid was detected in with all haplotypes except H14 and H15. In addition, the concentrations of salidroside, tyrosol and gallic acid varied between samples with different haplotypes as well as those with the same haplotype, implying that no significant correlation exists between haplotype and salidroside, tyrosol or gallic acid concentrations. However, a statistically significant positive correlation was observed for among these three active components.

  17. Comparison of ribosomal DNA length and restriction site polymorphisms in Gremmeniella and Ascocalyx isolates.

    PubMed Central

    Bernier, L; Hamelin, R C; Ouellette, G B

    1994-01-01

    The small subunit (SSU) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA genes from 27 specimens of the fungal genera Gremmeniella and Ascocalyx were amplified by PCR. Length polymorphisms were observed in the SSU and allowed the differentiation of four groups among the isolates tested: (i) Ascocalyx abietis; (ii) Gremmeniella isolates from Picea spp.; (iii) Gremmeniella isolates from Abies balsamea; and (iv) Gremmeniella isolates from Abies sacchalinensis, Larix spp., and Pinus spp. The amplified ITS was the same length for all Gremmeniella specimens and was 60 bp longer in A. abietis. Phylogenetic analysis of length polymorphisms and of 24 restriction sites in the SSU and ITS showed that Gremmeniella isolates were more related to each other than to the Ascocalyx isolate. Furthermore, seven groups were evident within the genus Gremmeniella. Our results confirm that Gremmeniella and Ascocalyx should be kept as different taxa and suggest that the taxonomy of the former could be revised to consider isolates from Abies balsamea and from Picea spp. to be two different varieties while incorporating Gremmeniella laricina into G. abietina, as a new variety. Images PMID:7912501

  18. Identification of dendrobium species used for herbal medicines based on ribosomal DNA internal transcribed spacer sequence.

    PubMed

    Takamiya, Tomoko; Wongsawad, Pheravut; Tajima, Natsuko; Shioda, Nao; Lu, Jun Feng; Wen, Chi Luan; Wu, Jin Bin; Handa, Takashi; Iijima, Hiroshi; Kitanaka, Susumu; Yukawa, Tomohisa

    2011-01-01

    Stems of genus Dendrobium (Orchidaceae) have been traditionally used as an herbal medicine (Dendrobii Herba) in Eastern Asia. Although demand for Dendrobium is increasing rapidly, wild resources are decreasing due to over-collection. This study aimed to identify plant sources of Dendrobii Herba on the market based on sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. We constructed an ITS1-5.8S-ITS2 sequence database of 196 Dendrobium species, and the database was employed to identify 21 herbal samples. We found that 13 Dendrobium species (D. catenatum, D. cucullatum, D. denudans, D. devonianum, D. eriiflorum, D. hancockii, D. linawianum, D. lituiflorum, D. loddigesii, D. polyanthum, D. primulinum, D. regium, and D. transparens) were possibly used as plant sources of Dendrobii Herba, and unidentified species allied to D. denudans, D. eriiflorum, D. gregulus, or D. hemimelanoglossum were also used as sources. Furthermore, it is clear that D. catenatum is one of the most important sources of Dendrobii Herba (5 out of 21 samples).

  19. Sequence polymorphism in the ribosomal DNA internal transcribed spacers differs among Theileria species.

    PubMed

    Aktas, Münir; Bendele, Kylie G; Altay, Kürsat; Dumanli, Nazir; Tsuji, Masayoshi; Holman, Patricia J

    2007-07-20

    The genomic region spanning the two ribosomal RNA internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene was cloned and sequenced from sixteen Theileria isolates. Each Theileria species possessed ITS1 and ITS2 of unique size(s) and species specific nucleotide sequences. Varying degrees of ITS1 and ITS2 intra- and inter-species sequence polymorphism were found among ruminant Theileria species. The spacers were most polymorphic in the agent of tropical theileriosis, Theileria annulata, and were more conserved in two benign species, Theileria buffeli and Theileria sergenti Chitose. Phylogenetic analysis of the rDNA ITS1-5.8S rRNA gene-ITS2 region clearly separated each taxon, placing them in three clusters. One held T. annulata, Theileria parva, and Theileria mutans, with the latter two most closely related. The second held T. sergenti Ikeda, T. sergenti Chitose, and T. buffeli, with the latter two most closely related. The third cluster held the Theileria ovis isolates.

  20. Studies of the Inheritance of Human Ribosomal DNA Variants Detected in Two-Dimensional Separations of Genomic Restriction Fragments

    PubMed Central

    Kuick, R.; Asakawa, J. I.; Neel, J. V.; Kodaira, M.; Satoh, C.; Thoraval, D.; Gonzalez, I. L.; Hanash, S. M.

    1996-01-01

    We have investigated the variation in human ribosomal DNA repeat units as revealed in two-dimensional electrophoretic separations of genomic restriction fragments that were end-labeled at NotI cleavage sites. The transcribed portion of the ribosomal DNA results in ~20 labeled fragments visible on each gel as multicopy spots. We have mapped these spots to the sequences responsible for their appearance on the gels, based on their migration positions and direct sequencing of spots, and describe several previously unreported sources of variation. By studying mother/father/child families we gained information on how much of the between-repeats variation is due to differences between and within repeat arrays on homologous chromosomes. Two instances in which a child exhibited more copies of a particular fragment than were present in the parents are described and hypothesized to be due to events such as multiple unequal sister-chromatid exchanges or gene conversions. PMID:8878694

  1. Phylogenetic relationships of Central European wolf spiders (Araneae: lycosidae) inferred from 12S ribosomal DNA sequences.

    PubMed

    Zehethofer, K; Sturmbauer, C

    1998-12-01

    We have analyzed a sequence dataset of a portion of mitochondrial 12S rRNA gene of the ribosomal small subunit for 27 species of the family Lycosidae (wolf spiders) from Central Europe, belonging to six genera (Alopecosa, Arctosa, Pardosa, Pirata, Trochosa, and Xerolycosa) and four subfamilies (Evippinae, Lycosinae, Pardosinae and Venoniinae). Phylogenetic analyses were performed in two steps and corroborate the monophyly of all the genera analyzed with strong bootstrap support. In the first step focusing on the most ancestral splits the genus Pirata consistently emerged as the most ancestral branch, followed by the two genera Arctosa and Xerolycosa, with conflicting branching order, however. The second step of analysis placed Xerolycosa more ancestral than Arctosa. Arctosa appeared as sister group to the genera Alopecosa, Trochosa, and Pardosa. The palearctic genus Xerolycosa was not yet included in previous studies derived from morphological characters, but its placement based on mtDNA sequences is in good agreement to that according to current diagnostic morphological features. Further, the single representative of the genus Arctosa examined in our study was placed at a more ancestral position than in a previous investigation based on phenotypic characters. The superimposition of the currently used diagnostic phenotypic characters on the DNA-based phylogeny shows that both character sets are widely congruent; only 3 out of 16 phenotypic characters were resolved as homoplasious, suggesting their parallel evolution and/or reversal. Among the three different styles of predation found in the Lycosids, tube builders appear to be the most ancestral from which burrow dwellers descended and from which two groups of vagrant hunters evolved in parallel.

  2. Identical ribosomal DNA sequence data from Pfiesteria piscicida (Dinophyceae) isolates with different toxicity phenotypes.

    PubMed

    Tengs, Torstein; Bowers, Holly A; Glasgow, Howard B; Burkholder, JoAnn M; Oldach, David W

    2003-09-01

    Complete small subunit ribosomal RNA, internal transcribed spacer 1 and 2, 5.8S, and partial large subunit ribosomal RNA gene sequences were generated from multiple isolates of Pfiesteria piscicida. Sequences were derived from isolates that have been shown to be ichthyotoxic as well as isolates that have no history of toxic behavior. All of the sequences generated were identical for the different cultures, and we therefore conclude that differences in toxicity seen between isolates of P. piscicida are linked to factors other than genetic strain variation detectable by ribosomal gene sequence analyses.

  3. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers

    PubMed Central

    Vershinina, Alisa O.; Anokhin, Boris A.; Lukhtanov, Vladimir A.

    2015-01-01

    Abstract Ribosomal DNA clusters and telomeric repeats are important parts of eukaryotic genome. However, little is known about their organization and localization in karyotypes of organisms with holocentric chromosomes. Here we present first cytogenetic study of these molecular structures in seven blue butterflies of the genus Polyommatus Latreille, 1804 with low and high chromosome numbers (from n=10 to n=ca.108) using fluorescence in situ hybridization (FISH) with 18S rDNA and (TTAGG)n telomeric probes. FISH with the 18S rDNA probe showed the presence of two different variants of the location of major rDNA clusters in Polyommatus species: with one or two rDNA-carrying chromosomes in haploid karyotype. We discuss evolutionary trends and possible mechanisms of changes in the number of ribosomal clusters. We also demonstrate that Polyommatus species have the classical insect (TTAGG)n telomere organization. This chromosome end protection mechanism probably originated de novo in small chromosomes that evolved via fragmentations. PMID:26140159

  4. Phylogenetic Relationships in Bupleurum (Apiaceae) Based on Nuclear Ribosomal DNA ITS Sequence Data

    PubMed Central

    NEVES, SUSANA S.; WATSON, MARK F.

    2004-01-01

    • Backgroud and Aims The genus Bupleurum has long been recognized as a natural group, but its infrageneric classification is controversial and has not yet been studied in the light of sequence data. • Methods Phylogenetic relationships among 32 species (35 taxa) of the genus Bupleurum were investigated by comparative sequencing of the ITS region of the 18–26S nuclear ribosomal DNA repeat. Exemplar taxa from all currently accepted sections and subsections of the genus were included, along with outgroups from four other early branching Apioideae genera (Anginon, Heteromorpha, Physospermum and Pleurospermum). • Key Results Phylogenies generated by maximum parsimony, maximum likelihood, and neighbour‐joining methods show similar topologies, demonstrating monophyly of Bupleurum and the division of the genus into two major clades. This division is also supported by analysis of the 5.8S coding sequence alone. The first branching clade is formed by all the species of the genus with pinnate‐reticulate veined leaves and B. rigidum with a unique type of leaf venation. The other major clade includes the remaining species studied, all of which have more or less parallel‐veined leaves. • Conclusions These phylogenetic results do not agree with any previous classifications of the genus. Molecular data also suggest that the endemic Macaronesian species B. salicifolium is a neoendemic, as the sequence divergence between the populations in Madeira and Canary Islands, and closer mainland relatives in north‐west Africa is small. All endemic north‐west African taxa are included in a single unresolved but well‐supported clade, and the low nucleotide variation of ITS suggests a recent radiation within this group. The only southern hemisphere species, B. mundii (southern Africa), is shown to be a neoendemic, apparently closely related to B. falcatum, a Eurasian species. PMID:14980972

  5. Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing

    PubMed Central

    James, Stephen A.; O'Kelly, Michael J.T.; Carter, David M.; Davey, Robert P.; van Oudenaarden, Alexander; Roberts, Ian N.

    2009-01-01

    Ribosomal DNA (rDNA) plays a key role in ribosome biogenesis, encoding genes for the structural RNA components of this important cellular organelle. These genes are vital for efficient functioning of the cellular protein synthesis machinery and as such are highly conserved and normally present in high copy numbers. In the baker's yeast Saccharomyces cerevisiae, there are more than 100 rDNA repeats located at a single locus on chromosome XII. Stability and sequence homogeneity of the rDNA array is essential for function, and this is achieved primarily by the mechanism of gene conversion. Detecting variation within these arrays is extremely problematic due to their large size and repetitive structure. In an attempt to address this, we have analyzed over 35 Mbp of rDNA sequence obtained from whole-genome shotgun sequencing (WGSS) of 34 strains of S. cerevisiae. Contrary to expectation, we find significant rDNA sequence variation exists within individual genomes. Many of the detected polymorphisms are not fully resolved. For this type of sequence variation, we introduce the term partial single nucleotide polymorphism, or pSNP. Comparative analysis of the complete data set reveals that different S. cerevisiae genomes possess different patterns of rDNA polymorphism, with much of the variation located within the rapidly evolving nontranscribed intergenic spacer (IGS) region. Furthermore, we find that strains known to have either structured or mosaic/hybrid genomes can be distinguished from one another based on rDNA pSNP number, indicating that pSNP dynamics may provide a reliable new measure of genome origin and stability. PMID:19141593

  6. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    DOE PAGES

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; ...

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA genemore » sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.« less

  7. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria

    SciTech Connect

    Denef, Vincent J.; Fujimoto, Masanori; Berry, Michelle A.; Schmidt, Marian L.

    2016-04-29

    Relative abundance profiles of bacterial populations measured by sequencing DNA or RNA of marker genes can widely differ. These differences, made apparent when calculating ribosomal RNA:DNA ratios, have been interpreted as variable activities of bacterial populations. However, inconsistent correlations between ribosomal RNA:DNA ratios and metabolic activity or growth rates have led to a more conservative interpretation of this metric as the cellular protein synthesis potential (PSP). Little is known, particularly in freshwater systems, about how PSP varies for specific taxa across temporal and spatial environmental gradients and how conserved PSP is across bacterial phylogeny. Here, we generated 16S rRNA gene sequencing data using simultaneously extracted DNA and RNA from fractionated (free-living and particulate) water samples taken seasonally along a eutrophic freshwater estuary to oligotrophic pelagic transect in Lake Michigan. In contrast to previous reports, we observed frequent clustering of DNA and RNA data from the same sample. Analysis of the overlap in taxa detected at the RNA and DNA level indicated that microbial dormancy may be more common in the estuary, the particulate fraction, and during the stratified period. Across spatiotemporal gradients, PSP was often conserved at the phylum and class levels. PSPs for specific taxa were more similar across habitats in spring than in summer and fall. This was most notable for PSPs of the same taxa when located in the free-living or particulate fractions, but also when contrasting surface to deep, and estuary to Lake Michigan communities. Our results show that community composition assessed by RNA and DNA measurements are more similar than previously assumed in freshwater systems. Furthermore, the similarity between RNA and DNA measurements and taxa-specific PSPs that drive community-level similarities are conditional on spatiotemporal factors.

  8. Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH.

    PubMed

    Ksiazczyk, T; Taciak, M; Zwierzykowski, Z

    2010-01-01

    This study focuses on the variability of chromosomal location and number of ribosomal DNA (rDNA) sites in some diploid and autotetraploid Festuca pratensis and Lolium perenne cultivars, as well as on identification of rDNA-bearing chromosomes in their triploid and tetraploid F. pratensis × L. perenne hybrids. The rDNA loci were mapped using fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes, and the origin of parental genomes was verified by genomic in situ hybridization (GISH) with L. perenne genomic DNA as a probe, and F. pratensis genomic DNA as a block. FISH detected variation in the number and chromosomal location of both 5S and 45S rDNA sites. In F. pratensis mostly additional signals of 5S rDNA loci occurred, as compared with standard F. pratensis karyotypes. Losses of 45S rDNA loci were more frequent in L. perenne cultivars and intergeneric hybrids. Comparison of the F. pratensis and L. perenne genomes approved a higher number of rDNA sites as well as variation in chromosomal rDNA location in L. perenne. A greater instability of F. pratensis-genome-like and L. perenne-genome-like chromosomes in tetraploid hybrids was revealed, indicating gains and losses of rDNA loci, respectively. Our data indicate that the rDNA loci physically mapped on chromosomes 2 and 3 in F. pratensis and on chromosome 3 in L. perenne are useful markers for these chromosomes in intergeneric Festuca × Lolium hybrids.

  9. Salmonella detection using 16S ribosomal DNA/RNA probe-gold nanoparticles and lateral flow immunoassay.

    PubMed

    Liu, Cheng-Che; Yeung, Chun-Yan; Chen, Po-Hao; Yeh, Ming-Kung; Hou, Shao-Yi

    2013-12-01

    An ultrasensitive, simple, and fast lateral flow immunoassay for Salmonella detection using gold nanoparticles conjugated with a DNA probe, which is complementary to the 16S ribosomal RNA and DNA of Salmonella, has been developed. The detection limit is 5 fmol for the synthetic single-stranded DNA. For the Salmonella cultured samples, the nucleic acids from 10(7) bacteria were rapidly detected in 30 min. After silver enhancement, the detection limit was as low as 10(4) cells which is lower than 10(5) bacteria cells, the human infective dose of food-borne Salmonella. Furthermore, the probes used in this study are specific to Salmonella compared to several other Enterobacteriaceae. This approach would be a useful tool for microbial detection regarding food safety or clinical diagnosis. It is also suitable for large-scale screening in developing countries because it is low-cost, sensitive, specific and convenient.

  10. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA

    PubMed Central

    Gloor, Gregory B.; Lindo, Zoë

    2016-01-01

    Metabarcoding has become an important tool in the discovery of biodiversity, including fungi, which are the second most speciose group of eukaryotes, with diverse and important ecological roles in terrestrial ecosystems. We have designed and tested new PCR primers that target the D1 variable region of nuclear large subunit (LSU) ribosomal DNA; one set that targets the phylum Ascomycota and another that recovers all other fungal phyla. The primers yield amplicons compatible with the Illumina MiSeq platform, which is cost-effective and has a lower error rate than other high throughput sequencing platforms. The new primer set LSU200A-F/LSU476A-R (Ascomycota) yielded 95–98% of reads of target taxa from environmental samples, and primers LSU200-F/LSU481-R (all other fungi) yielded 72–80% of target reads. Both primer sets have fairly low rates of data loss, and together they cover a wide variety of fungal taxa. We compared our results with these primers by amplifying and sequencing a subset of samples using the previously described ITS3_KYO2/ITS4_KYO3 primers, which amplify the internal transcribed spacer 2 (ITS2) of Ascomycota and Basidiomycota. With approximately equivalent read depth, our LSU primers recovered a greater number and phylogenetic diversity of sequences than the ITS2 primers. For instance, ITS3_KYO2/ITS4_KYO3 primers failed to pick up any members of Eurotiales, Mytilinidiales, Pezizales, Saccharomycetales, or Venturiales within Ascomycota, or members of Exobasidiomycetes, Microbotryomycetes, Pucciniomycetes, or Tremellomycetes within Basidiomycota, which were retrieved in good numbers from the same samples by our LSU primers. Among the OTUs recovered using the LSU primers were 127 genera and 28 species that were not obtained using the ITS2 primers, although the ITS2 primers recovered 10 unique genera and 16 species that were not obtained using either of the LSU primers These features identify the new primer sets developed in this study as useful

  11. Clinostomum complanatum and Clinostomum marginatum (Rudolphi, 1819) (Digenea: Clinostomidae) are separate species based on differences in ribosomal DNA.

    PubMed

    Dzikowski, R; Levy, M G; Poore, M F; Flowers, J R; Paperna, I

    2004-04-01

    Infections by metacercariae of Clinostomum (Leidy, 1856) species adversely affect aquacultured fish and are potentially transmissible to humans. Molecular methodologies are efficient tools, which enable diagnosis of all life-history stages of trematodes in their diverse hosts. The small subunit of ribosomal DNA genes of adults of the Old World Clinostomum complanatum (Rudolphi, 1819) and the New World Clinostomum marginatum (Rudolphi, 1819), obtained from a little egret Egretta garzetta (Linnaeus, 1766) and the great blue heron Ardea herodias (Linnaeus, 1758), respectively, were amplified, sequenced, and aligned. The resulting alignment was used to develop a genetic assay to differentiate between these species.

  12. Identification and detection of Trypanosoma cruzi by using a DNA amplification fingerprint obtained from the ribosomal intergenic spacer.

    PubMed Central

    González, N; Galindo, I; Guevara, P; Novak, E; Scorza, J V; Añez, N; Da Silveira, J F; Ramírez, J L

    1994-01-01

    We designed a PCR assay targeted on repeated elements of the ribosomal intergenic spacer which produces highly polymorphic DNA band patterns for different strains of Trypanosoma cruzi. By labeling the PCR products with digoxigenin and by chemiluminescence detection, we improved the assay sensitivity by three orders of magnitude to get T. cruzi strain fingerprints in feces of the trypanosome-infected triatomine bug vector. We also developed a capture assay for the digoxigenin-labeled PCR products that allowed us to detect T. cruzi in triatomine bug vector feces and in human serum samples with a solid support. Images PMID:8126172

  13. Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events.

    PubMed

    Rosato, Marcela; Moreno-Saiz, Juan C; Galián, José A; Rosselló, Josep A

    2015-11-16

    Several genome duplications have been identified in the evolution of seed plants, providing unique systems for studying karyological processes promoting diversification and speciation. Knowledge about the number of ribosomal DNA (rDNA) loci, together with their chromosomal distribution and structure, provides clues about organismal and molecular evolution at various phylogenetic levels. In this work, we aim to elucidate the evolutionary dynamics of karyological and rDNA site-number variation in all known taxa of subtribe Vellinae, showing a complex scenario of ancestral and more recent polyploid events. Specifically, we aim to infer the ancestral chromosome numbers and patterns of chromosome number variation, assess patterns of variation of both 45S and 5S rDNA families, trends in site-number change of rDNA loci within homoploid and polyploid series, and reconstruct the evolutionary history of rDNA site number using a phylogenetic hypothesis as a framework. The best-fitting model of chromosome number evolution with a high likelihood score suggests that the Vellinae core showing x = 17 chromosomes arose by duplication events from a recent x = 8 ancestor. Our survey suggests more complex patterns of polyploid evolution than previously noted for Vellinae. High polyploidization events (6x, 8x) arose independently in the basal clade Vella castrilensis-V. lucentina, where extant diploid species are unknown. Reconstruction of ancestral rDNA states in Vellinae supports the inference that the ancestral number of loci in the subtribe was two for each multigene family, suggesting that an overall tendency towards a net loss of 5S rDNA loci occurred during the splitting of Vellinae ancestors from the remaining Brassiceae lineages. A contrasting pattern for rDNA site change in both paleopolyploid and neopolyploid species was linked to diversification of Vellinae lineages. This suggests dynamic and independent changes in rDNA site number during speciation processes and a

  14. Group I introns in small subunit ribosomal DNA of several Phaeosphaeria species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a study of small subunit ribosomal RNA (SSU-rRNA) gene sequences in Phaeosphaeria species, group I introns were found in 9 of 10 P. avenaria f.sp. avenaria (Paa) isolates, 1 of 2 Phaeosphaeria sp. (P-rye) isolates from Polish rye (Sn48-1), 1 Phaeosphaeria sp. from dallis grass (P-dg) (S-93-48) an...

  15. Transition mutations in the 23S rRNA of erythromycin-resistant isolates of Mycoplasma pneumoniae.

    PubMed Central

    Lucier, T S; Heitzman, K; Liu, S K; Hu, P C

    1995-01-01

    Erythromycin is the drug of choice for treatment of Mycoplasma pneumoniae infections due to its susceptibility to low levels of this antibiotic. After exposure of susceptible strains to erythromycin in vitro and in vivo, mutants resistant to erythromycin and other macrolides were isolated. Their phenotypes have been characterized, but the genetic basis for resistance has never been determined. We isolated two resistant mutants (M129-ER1 and M129-ER2) by growing M. pneumoniae M129 on agar containing different amounts of erythromycin. In broth dilution tests both strains displayed resistance to high levels of several macrolide-lincosamide-streptogramin B (MLS) antibiotics. In binding studies, ribosomes isolated from the resistant strains exhibited significantly lower affinity for [14C]erythromycin than did ribosomes from the M129 parent strain. Sequencing of DNA amplified from the region of the 2S rRNA gene encoding domain V revealed an A-to-G transition in the central loop at position 2063 of M129-ER1 and a similar A-to-G transition at position 2064 in M129-ER2. Transitions at homologous locations in the 23S rRNA from other organisms have been shown to result in resistance to MLS antibiotics. Thus, MLS-like resistance can occur in M. pneumoniae as the result of point mutations in the 23S rRNA gene which reduce the affinity of these antibiotics for the ribosome. Since they involve only single-base changes, development of resistance to erythromycin in vivo by these mechanisms could be relatively frequent event. PMID:8593017

  16. Overexpression of Ribosomal RNA in the Development of Human Cervical Cancer Is Associated with rDNA Promoter Hypomethylation

    PubMed Central

    Zhou, Hong; Wang, Yapei; Lv, Qiongying; Zhang, Juan; Wang, Qing; Gao, Fei; Hou, Haoli; Zhang, Hao; Zhang, Wei; Li, Lijia

    2016-01-01

    The ribosomal RNA (rRNA) gene encodes rRNA for protein synthesis. Aberrant expression of the rRNA gene has been generally observed in tumor cells and levels of its promoter methylation as an epigenetic regulator affect rRNA gene transcription. The possible relationship between expression and promoter methylation of rDNA has not been examined in human clinical cervical cancer. Here we investigate rRNA gene expression by quantitative real time PCR, and promoter methylation levels by HpaII/MspI digestion and sodium bisulfite sequencing in the development of human cervical cancer. We find that indeed rRNA levels are elevated in most of cervical intraepithelial neoplasia (CIN) specimens as compared with non-cancer tissues. The rDNA promoter region in cervical intraepithelial neoplasia (CIN) tissues reveals significant hypomethylation at cytosines in the context of CpG dinucleotides, accompanied with rDNA chromatin decondensation. Furthermore treatment of HeLa cells with the methylation inhibitor drug 5-aza-2’-deoxycytidine (DAC) demonstrates the negative correlation between the expression of 45S rDNA and the methylation level in the rDNA promoter region. These data suggest that a decrease in rDNA promoter methylation levels can result in an increase of rRNA synthesis in the development of human cervical cancer. PMID:27695092

  17. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis.

    PubMed

    Benitez, Alvaro; Priest, Jeffrey W; Ehigiator, Humphrey N; McNair, Nina; Mead, Jan R

    2011-11-15

    The Cryptosporidium parvum acidic ribosomal protein P2 (CpP2) is an important immunodominant marker in C. parvum infection. In this study, the CpP2 antigen was evaluated as a vaccine candidate using a DNA vaccine model in adult C57BL/6 IL-12 knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding CpP2 (CpP2-DNA) cloned into the pUMVC4b vector induced a significant anti-CpP2 IgG antibody response that was predominantly of the IgG1 isotype. Compared to control KO mice immunized with plasmid alone, CpP2-immunized mice demonstrated specific in vitro spleen cell proliferation as well as enhanced IFN-γ production to recombinant CpP2. Further, parasite loads in CpP2 DNA-immunized mice were compared to control mice challenged with C. parvum oocysts. Although a trend in reduction of infection was observed in the CpP2 DNA-immunized mice, differences between groups were not statistically significant. These results suggest that a DNA vaccine encoding the C. parvum P2 antigen is able to provide an effective means of eliciting humoral and cellular responses and has the potential to generate protective immunity against C. parvum infection but may require using alternative vectors or adjuvant to generate a more potent and balanced response.

  18. Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships.

    PubMed

    Ro, K E; Keener, C S; McPheron, B A

    1997-10-01

    There are only a small number of molecular markers currently proven to be useful for phylogenetic inference within the flowering plants. We demonstrate that the 5' end of the 26S ribosomal DNA (ca. 1100 bp) is of great value for investigating generic to subfamilial relationships. We analyzed DNA sequences from 31 species of the Ranunculaceae and four species of the Berberidaceae to test phylogenetic relationships within the Ranunculaceae. The inferred phylogeny strongly supports the concept that the Thalictrum chromosome group is not monophyletic, but consists of three independent lineages: (1) Hydrastis, (2) Xanthorhiza and Coptis, and (3) Thalictrum, Aquilegia, and Enemion. Based on comparison with conventional taxonomic characters, we propose a hypothesis that the third group also includes the rest of the Thalictrum chromosome taxa that have a base chromosome number of seven. For the Ranunculus chromosome group, our study suggests several relationships that have not been recognized by conventional systematics. The inferred 26S rDNA topology is compared with results from two previously published molecular data sets: DNA sequences from rbcL, atpB, and 18S rDNA genes and restriction fragment length polymorphism data from chloroplast DNA. The three topologies are highly congruent and agree with karyological characters, but not with fruit type, both of which have often been used for the higher classification of the Ra- nunculaceae.

  19. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae)

    PubMed Central

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Abstract Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 ‘Azul’, Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies. PMID:24260700

  20. Phylogenetic Relationships of Globodera millefolii, G. artemisiae, and Cactodera salina Based on ITS Region of Ribosomal DNA

    PubMed Central

    Ferris, V. R.; Krall, E.; Faghihi, J.; Ferris, J. M.

    1999-01-01

    Globodera millefolii and G. artemisiae are interesting because their type localities (Estonia and Russia, respectively) are geographically distant from those of the potato cyst nematodes and other Globodera species that seem to have originated in the Western world, and because the type host for each is a member of Compositae rather than Solanaceae. Sequence data for ITS1, ITS2, and 5.8S ribosomal DNA (ITS rDNA) for G. millefolii and G. artemisiae were nearly identical to sequence data for Cactodera salina from the rhizosphere of the estuary plant Salicornia bigelovii in Sonora, Mexico. The ITS rDNA sequences of these three species were all about 94% similar to those of two other Cactodera species for which ITS rDNA data were obtained. Phylogenetic analysis indicated that, based on the ITS rDNA data, G. millefolii and G. artemisiae are more closely related phylogenetically to the Cactodera species than to other nominal Globodera species. The molecular data further suggest that the genus Cactodera may comprise two or more morphologically similar but separate groups. PMID:19270922

  1. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA gene.

    PubMed Central

    Kurtzman, C P; Robnett, C J

    1997-01-01

    Clinically important species of Candida and related organisms were compared for extent of nucleotide divergence in the 5' end of the large-subunit (26S) ribosomal DNA (rDNA) gene. This rDNA region is sufficiently variable to allow reliable separation of all known clinically significant yeast species. Of the 204 described species examined, 21 appeared to be synonyms of previously described organisms. Phylogenetic relationships among the species are presented. PMID:9114410

  2. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    PubMed

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  3. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing

    PubMed Central

    Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D.

    2004-01-01

    The bacterial community of maple sap was characterized by analysis of samples obtained at the taphole of maple trees for the 2001 and 2002 seasons. Among the 190 bacterial isolates, 32 groups were formed according to the similarity of the banding patterns obtained by amplified ribosomal DNA restriction analysis (ARDRA). A subset of representative isolates for each ARDRA group was identified by 16S rRNA gene fragment sequencing. Results showed a wide variety of organisms, with 22 different genera encountered. Pseudomonas and Ralstonia, of the γ- and β-Proteobacteria, respectively, were the most frequently encountered genera. Gram-positive bacteria were also observed, and Staphylococcus, Plantibacter, and Bacillus were the most highly represented genera. The sampling period corresponding to 50% of the cumulative sap flow percentage presented the greatest bacterial diversity according to its Shannon diversity index value (1.1). γ-Proteobacteria were found to be dominant almost from the beginning of the season to the end. These results are providing interesting insights on maple sap microflora that will be useful for further investigation related to microbial contamination and quality of maple products and also for guiding new strategies on taphole contamination control. PMID:15066796

  4. Phylogenetic relationship of Perkinsus olseni from the Ebro Delta, Spain, to other Perkinsus species, based on ribosomal DNA sequences.

    PubMed

    Elandaloussi, Laurence; Carrasco, Noèlia; Furones, Dolores; Roque, Ana

    2009-09-23

    The phylogenetic relationship of Perkinsus olseni originating from the Ebro Delta, Spain, to other Perkinsus spp. was investigated using the nontranscribed spacer (NTS) region and the internal transcribed spacer (ITS) region (including ITS1, 5.8S and ITS2) of the ribosomal DNA sequences. These 2 molecular markers (NTS and ITS) were sequenced from prezoosporangia of Perkinsus sp. originating from Manila clam Ruditapes philippinarum from the Ebro Delta. The sequence of the 5.8S ITS region of the ribosomal RNA gene was 100% similar to that of P. olseni. Higher genetic variability was found for the NTS sequence, with 80.7 to 81.8% similarity to P. olseni. The NTS sequence of a P. olseni isolate previously detected in R. decussatus from the same area was also obtained and showed 81% identity with our isolate. Evidence obtained from phylogenetic analysis of the 5.8S ITS and NTS aligned sequences appears to indicate that P. olseni strains group together according to their host rather than their geographic origins within a well-resolved P. olseni clade.

  5. Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events

    PubMed Central

    Rosato, Marcela; Moreno-Saiz, Juan C.; Galián, José A.; Rosselló, Josep A.

    2015-01-01

    Several genome duplications have been identified in the evolution of seed plants, providing unique systems for studying karyological processes promoting diversification and speciation. Knowledge about the number of ribosomal DNA (rDNA) loci, together with their chromosomal distribution and structure, provides clues about organismal and molecular evolution at various phylogenetic levels. In this work, we aim to elucidate the evolutionary dynamics of karyological and rDNA site-number variation in all known taxa of subtribe Vellinae, showing a complex scenario of ancestral and more recent polyploid events. Specifically, we aim to infer the ancestral chromosome numbers and patterns of chromosome number variation, assess patterns of variation of both 45S and 5S rDNA families, trends in site-number change of rDNA loci within homoploid and polyploid series, and reconstruct the evolutionary history of rDNA site number using a phylogenetic hypothesis as a framework. The best-fitting model of chromosome number evolution with a high likelihood score suggests that the Vellinae core showing x = 17 chromosomes arose by duplication events from a recent x = 8 ancestor. Our survey suggests more complex patterns of polyploid evolution than previously noted for Vellinae. High polyploidization events (6x, 8x) arose independently in the basal clade Vella castrilensis–V. lucentina, where extant diploid species are unknown. Reconstruction of ancestral rDNA states in Vellinae supports the inference that the ancestral number of loci in the subtribe was two for each multigene family, suggesting that an overall tendency towards a net loss of 5S rDNA loci occurred during the splitting of Vellinae ancestors from the remaining Brassiceae lineages. A contrasting pattern for rDNA site change in both paleopolyploid and neopolyploid species was linked to diversification of Vellinae lineages. This suggests dynamic and independent changes in rDNA site number during speciation processes and a

  6. Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae)

    PubMed Central

    Straub, Shannon C.K.; Fishbein, Mark; Liston, Aaron

    2015-01-01

    Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual’s consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the “noncoding” ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming). PMID:25653903

  7. A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA.

    PubMed

    Cook, Lyn G; Gullan, Penny J; Trueman, Holly E

    2002-10-01

    Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic.

  8. Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA.

    PubMed

    Li, J; Bogle, A L; Klein, A S

    1999-07-01

    Intergeneric relationships in the Hamamelidaceae have long been controversial. In this study, sequences of the internal transcribed spacers of nuclear ribosomal DNA were used to reconstruct the phylogeny for the Hamamelidaceae. Three major clades were recognized in the ITS-based phylogenetic tree: (1) Mytilaria-Exbucklandia-Rhodoleia, (2) Disanthus, and (3) the Hamamelidoideae. Within the Hamamelidoideae there were three well-supported lineages: (1) Corylopsis-Loropetalum-Tetrathyrium-Maingaya-Matudaea, (2) Eustigmateae sensu Endress, plus Molinadendron-Dicoryphinae, and (3) Hamamelis-Fothergilleae sensu Endress, excluding Matudaea and Molinadendron. The Exbucklandioideae sensu Endress were not monophyletic, nor were the tribes in the Hamamelidoideae in their current circumscriptions except for the Corylopsideae. Strap-shaped petals, apetaly, and wind pollination have evolved three times independently in the Hamamelidaceae s.s. (Hamamelidaceae minus Altingioideae), suggesting that homoplasy should be considered in future classifications of the family.

  9. Ribosomal DNA analysis of tsetse and non-tsetse transmitted Ethiopian Trypanosoma vivax strains in view of improved molecular diagnosis.

    PubMed

    Fikru, Regassa; Matetovici, Irina; Rogé, Stijn; Merga, Bekana; Goddeeris, Bruno Maria; Büscher, Philippe; Van Reet, Nick

    2016-04-15

    Animal trypanosomosis caused by Trypanosoma vivax (T. vivax) is a devastating disease causing serious economic losses. Most molecular diagnostics for T. vivax infection target the ribosomal DNA locus (rDNA) but are challenged by the heterogeneity among T. vivax strains. In this study, we investigated the rDNA heterogeneity of Ethiopian T. vivax strains in relation to their presence in tsetse-infested and tsetse-free areas and its effect on molecular diagnosis. We sequenced the rDNA loci of six Ethiopian (three from tsetse-infested and three from tsetse-free areas) and one Nigerian T. vivax strain. We analysed the obtained sequences in silico for primer-mismatches of some commonly used diagnostic PCR assays and for GC content. With these data, we selected some rDNA diagnostic PCR assays for evaluation of their diagnostic accuracy. Furthermore we constructed two phylogenetic networks based on sequences within the smaller subunit (SSU) of 18S and within the 5.8S and internal transcribed spacer 2 (ITS2) to assess the relatedness of Ethiopian T. vivax strains to strains from other African countries and from South America. In silico analysis of the rDNA sequence showed important mismatches of some published diagnostic PCR primers and high GC content of T. vivax rDNA. The evaluation of selected diagnostic PCR assays with specimens from cattle under natural T. vivax challenge showed that this high GC content interferes with the diagnostic accuracy of PCR, especially in cases of mixed infections with T. congolense. Adding betain to the PCR reaction mixture can enhance the amplification of T. vivax rDNA but decreases the sensitivity for T. congolense and Trypanozoon. The networks illustrated that Ethiopian T. vivax strains are considerably heterogeneous and two strains (one from tsetse-infested and one from tsetse-free area) are more related to the West African and South American strains than to the East African strains. The rDNA locus sequence of six Ethiopian T. vivax

  10. 16S Ribosomal DNA Sequence Analysis of a Large Collection of Environmental and Clinical Unidentifiable Bacterial Isolates

    PubMed Central

    Drancourt, Michel; Bollet, Claude; Carlioz, Antoine; Martelin, Rolland; Gayral, Jean-Pierre; Raoult, Didier

    2000-01-01

    Some bacteria are difficult to identify with phenotypic identification schemes commonly used outside reference laboratories. 16S ribosomal DNA (rDNA)-based identification of bacteria potentially offers a useful alternative when phenotypic characterization methods fail. However, as yet, the usefulness of 16S rDNA sequence analysis in the identification of conventionally unidentifiable isolates has not been evaluated with a large collection of isolates. In this study, we evaluated the utility of 16S rDNA sequencing as a means to identify a collection of 177 such isolates obtained from environmental, veterinary, and clinical sources. For 159 isolates (89.8%) there was at least one sequence in GenBank that yielded a similarity score of ≥97%, and for 139 isolates (78.5%) there was at least one sequence in GenBank that yielded a similarity score of ≥99%. These similarity score values were used to defined identification at the genus and species levels, respectively. For isolates identified to the species level, conventional identification failed to produce accurate results because of inappropriate biochemical profile determination in 76 isolates (58.7%), Gram staining in 16 isolates (11.6%), oxidase and catalase activity determination in 5 isolates (3.6%) and growth requirement determination in 2 isolates (1.5%). Eighteen isolates (10.2%) remained unidentifiable by 16S rDNA sequence analysis but were probably prototype isolates of new species. These isolates originated mainly from environmental sources (P = 0.07). The 16S rDNA approach failed to identify Enterobacter and Pantoea isolates to the species level (P = 0.04; odds ratio = 0.32 [95% confidence interval, 0.10 to 1.14]). Elsewhere, the usefulness of 16S rDNA sequencing was compromised by the presence of 16S rDNA sequences with >1% undetermined positions in the databases. Unlike phenotypic identification, which can be modified by the variability of expression of characters, 16S rDNA sequencing provides

  11. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    PubMed Central

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  12. Restriction enzyme analysis of ribosomal DNA shows that Candida inconspicua clinical isolates can be misidentified as Candida norvegensis with traditional diagnostic procedures.

    PubMed

    Majoros, L; Kardos, G; Belák, A; Maráz, A; Asztalos, L; Csánky, E; Barta, Z; Szabó, B

    2003-11-01

    We identified 29 yeast isolates from 22 patients using the API ID32C panel. Twenty-eight of these isolates were Candida norvegensis and one was C. inconspicua. Although C. norvegensis is considered a pseudohypha-producing species, only one isolate produced pseudohyphae. Restriction enzyme analysis of PCR-amplified ribosomal DNA with four different enzymes proved that all isolates were C. inconspicua.

  13. 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril).

    PubMed

    Magalhães Cruz, L; de Souza, E M; Weber, O B; Baldani, J I; Döbereiner, J; Pedrosa, F de O

    2001-05-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria.

  14. 16S ribosomal DNA clone libraries to reveal bacterial diversity in anaerobic reactor-degraded tetrabromobisphenol A.

    PubMed

    Peng, Xingxing; Zhang, Zaili; Zhao, Ziling; Jia, Xiaoshan

    2012-05-01

    Microorganisms able to rapidly degrade tetrabromobisphenol A (TBBPA) were domesticated in an anaerobic reactor and added to gradually increased concentrations of TBBPA. After 240 days of domestication, the degradation rate reached 96.0% in cultivated batch experiments lasting 20 days. The optimum cultivating temperature and pH were 30°C and 7.0. The bacterial community's composition and diversity in the reactor was studied by comparative analysis with 16S ribosomal DNA clone libraries. Amplified rDNA restriction analysis of 200 clones from the library indicate that the rDNA richness was high (Coverage C 99.5%) and that evenness was not high (Shannon-Weaver index 2.42). Phylogenetic analysis of 63 bacterial sequences from the reactor libraries demonstrated the presence of Betaproteobacteria (33.1%), Gammaproteobacteria (18.7%), Bacteroidetes (13.9%), Firmicutes (11.4%), Chloroflexi (3.6%), Actinobacteria (0.6%), the candidate division TM7 (4.2%) and other unknown, uncultured bacterial groups (14.5%). Comamonas, Achromobacter, Pseudomonas and Flavobacterium were the dominant types.

  15. Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences.

    PubMed

    Liu, Guo-Hua; Yan, Hong-Bin; Otranto, Domenico; Wang, Xing-Ye; Zhao, Guang-Hui; Jia, Wan-Zhong; Zhu, Xing-Quan

    2014-10-01

    Lancet flukes parasitize the bile ducts and gall bladder of a range of mammals, including humans, causing dicrocoeliosis. In the present study, we sequenced and characterized the complete mitochondrial (mt) genomes as well as the first and second internal transcribed spacers (ITS-1 and ITS-2=ITS) of nuclear ribosomal DNA (rDNA) of two lancet flukes, Dicrocoelium chinensis and D. dendriticum. Sequence comparison of a conserved mt gene and nuclear rDNA sequences among multiple individual lancet flukes revealed substantial nucleotide differences between the species but limited sequence variation within each of them. Phylogenetic analysis of the concatenated amino acid and multiple mt rrnS sequences using Bayesian inference supported the separation of D. chinensis and D. dendriticum into two distinct species-specific clades. Results of the present study support the proposal that D. dendriticum and D. chinensis represent two distinct lancet flukes. While providing the first mt genomes from members of the superfamily Plagiorchioidea, the novel mt markers described herein will be useful for further studies of the diagnosis, epidemiology and systematics of the lancet flukes and other trematodes of human and animal health significance.

  16. Ribosomal DNA and Plastid Markers Used to Sample Fungal and Plant Communities from Wetland Soils Reveals Complementary Biotas

    PubMed Central

    Porter, Teresita M.; Shokralla, Shadi; Baird, Donald; Golding, G. Brian; Hajibabaei, Mehrdad

    2016-01-01

    Though the use of metagenomic methods to sample below-ground fungal communities is common, the use of similar methods to sample plants from their underground structures is not. In this study we use high throughput sequencing of the ribulose-bisphosphate carboxylase large subunit (rbcL) plastid marker to study the plant community as well as the internal transcribed spacer and large subunit ribosomal DNA (rDNA) markers to investigate the fungal community from two wetland sites. Observed community richness and composition varied by marker. The two rDNA markers detected complementary sets of fungal taxa and total fungal composition clustered according to primer rather than by site. The composition of the most abundant plants, however, clustered according to sites as expected. We suggest that future studies consider using multiple genetic markers, ideally generated from different primer sets, to detect a more taxonomically diverse suite of taxa compared with what can be detected by any single marker alone. Conclusions drawn from the presence of even the most frequently observed taxa should be made with caution without corroborating lines of evidence. PMID:26731732

  17. Repetitive sequences in the ITS1 region of the ribosomal DNA of Tunga penetrans and other flea species (Insecta, Siphonaptera).

    PubMed

    Gamerschlag, Sara; Mehlhorn, Heinz; Heukelbach, Jörg; Feldmeier, Hermann; D'Haese, Jochen

    2008-01-01

    Different Tunga penetrans isolates from various hosts obtained from South America (Fortaleza. Brazil) have been studied by nucleotide sequence comparison of the first and the second internal transcribed spacer (ITS1, ITS2) of the ribosomal deoxyribonucleic acid (rDNA) and part of the mitochondrial 16S rDNA. Results show no significant host-dependent sequence differences. No indication for intraindividual and intraspecific polymorphisms could be detected. Comparing the ITS1 spacer region of T. penetrans from South America with that from Africa (Togo, Cameroon), distinct length variations have been observed caused by a repetitive sequence motif of 99 bp. The ITS1 from the South American T. penetrans contain two tandemly repeated copies, whereas four of these units are present in the spacer of the African T. penetrans. The absence of homogenization of these units indicates a recent separation of both populations. However, the different number of repetitions together with two base substitutions put the evolutionary distance of only 135 years as postulated for the transfer of T. penetrans from South America to Africa into question. Repetitive sequences could also be detected within the ITS1 rDNA region of other flea species Ctenocephalides felis, Echidnophaga gallinacea, Pulex irritans, Spilopsyllus cuniculi, and Xenopsylla cheopis. The repeat units with lengths from 10 to 99 bp are arranged in pure tandem or interspersed. The repetitive elements observed in the ITS1 of various flea species may serve as a valuable tool for phylogeographic studies.

  18. Ribosomal PCR and DNA sequencing for detection and identification of bacteria: experience from 6 years of routine analyses of patient samples.

    PubMed

    Jensen, Kristine Helander; Dargis, Rimtas; Christensen, Jens Jørgen; Kemp, Michael

    2014-03-01

    The use of broad range PCR and DNA sequencing of bacterial 16S ribosomal RNA genes for routine diagnostics of bacterial infections was evaluated. Here, the results from more than 2600 analyses during a 6-year period (2003-2009) are presented. Almost half of the samples were from joints and bones, and the second most frequent origin of samples was from the central nervous system. Overall, 26% of all samples were positive for bacterial DNA and bacterial identification was obtained in 80% of the PCR-positive samples by subsequent DNA sequencing. Ambiguous species identification was noticed among non-haemolytic streptococci, especially within the mitis group. The data show that ribosomal PCR with subsequent DNA sequencing of the PCR product is a most valuable supplement to culture for identifying bacterial agents of both acute and prolonged infections. However, some bacteria, including non-haemolytic streptococci, may not be precisely identified.

  19. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods.

    PubMed

    Friedrich, M; Tautz, D

    1995-07-13

    The evolutionary relationships among arthropods are of particular interest because the best-studied model system for ontogenetic pattern formation, the insect Drosophila, is a member of this phylum. Evolutionary inferences about the developmental mechanisms that have led to the various designs of the arthropod body plan depend on a knowledge of the phylogenetic framework of arthropod evolution. Based on morphological evidence, but also on palaeontological consideration, the sister group of the insects is believed to be found among the myriapods. Using nuclear ribosomal gene sequences for constructing a molecular phylogeny, we provide strong evidence that the crustaceans and not the myriapods should be considered to be the sister group of the insects. Moreover, the degree of sequence divergence suggests that the diversification of the myriapods occurred during the Cambrian. Our findings have general implications for the course of land colonization by the different arthropod groups, as well as for the interpretation of primitive and derived features of arthropod morphology.

  20. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...

  1. Fine resolution mapping of double-strand break sites for human ribosomal DNA units.

    PubMed

    Pope, Bernard J; Mahmood, Khalid; Jung, Chol-Hee; Park, Daniel J

    2016-12-01

    DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011) [5]; Blondet et al., 2001 Blondet et al. (2001) [1]). Stults et al. (2009) Stults et al. (2009) [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016) Tchurikov et al. (2015a, 2016) [7], [9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs) occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini) protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate 'windows' of varying size and made these data (as well as the relevant 'raw' sequencing information) available to the public (Tchurikov et al., 2015b). Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  2. Effects of permissible maximum-contamination levels of VOC mixture in water on total DNA, antioxidant gene expression, and sequences of ribosomal DNA of Drosophila melanogaster.

    PubMed

    Doganlar, Oguzhan; Doganlar, Zeynep Banu; Tabakcioglu, Kiymet

    2015-10-01

    In this study, we aimed to investigate the mutagenic and carcinogenic potential of a volatile organic compound (VOC) mixture with references to the response of D.melanogaster using selected antioxidant gene expressions, RAPD assay and base-pair change of ribosomal 18S, and the internal transcribed spacer, ITS2 rDNA gene sequences. For this purpose, Drosophila melanogaster Oregon R, reared under controlled conditions on artificial diets, were treated with the mixture of thirteen VOCs, which are commonly found in water in concentrations of 10, 20, 50, and 75 ppb for 1 and 5 days. In the random amplified polymorphic DNA (RAPD) assay, band changes were clearly detected, especially at the 50 and 75 ppb exposure levels, for both treatment periods, and the band profiles exhibited clear differences between the treated and untreated flies with changes in band intensity and the loss/appearance of bands. Quantitative real-time PCR (qRT-PCR) analysis of Mn-superoxide dismutase (Mn-SOD), catalase (CAT) and glutathione-synthetase (GS) expressions demonstrated that these markers responded significantly to VOC-induced oxidative stress. Whilst CAT gene expressions increased linearly with increasing concentrations of VOCs and treatment times, the 50- and 75-ppb treatments caused decreases in GS expressions compared to the control at 5 days. Treatment with VOCs at both exposure times, especially in high doses, caused gene mutation of the 18S and the ITS2 ribosomal DNA. According to this research, we thought that the permissible maximum-contamination level of VOCs can cause genotoxic effect especially when mixed.

  3. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    SciTech Connect

    Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  4. Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs.

    PubMed

    Islam-Faridi, M N; Nelson, C D; DiFazio, S P; Gunter, L E; Tuskan, G A

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  5. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis.

    PubMed

    Alfreider, Albin; Vogt, Carsten; Babel, Wolfgang

    2002-08-01

    A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the

  6. Extensive Pyrosequencing Reveals Frequent Intra-Genomic Variations of Internal Transcribed Spacer Regions of Nuclear Ribosomal DNA

    PubMed Central

    Li, Dezhu; Sun, Yongzhen; Niu, Yunyun; Chen, Zhiduan; Luo, Hongmei; Pang, Xiaohui; Sun, Zhiying; Liu, Chang; Lv, Aiping; Deng, Youping; Larson-Rabin, Zachary; Wilkinson, Mike; Chen, Shilin

    2012-01-01

    Background Internal transcribed spacer of nuclear ribosomal DNA (nrDNA) is already one of the most popular phylogenetic and DNA barcoding markers. However, the existence of its multiple copies has complicated such usage and a detailed characterization of intra-genomic variations is critical to address such concerns. Methodology/Principal Findings In this study, we used sequence-tagged pyrosequencing and genome-wide analyses to characterize intra-genomic variations of internal transcribed spacer 2 (ITS2) regions from 178 plant species. We discovered that mutation of ITS2 is frequent, with a mean of 35 variants per species. And on average, three of the most abundant variants make up 91% of all ITS2 copies. Moreover, we found different congeneric species share identical variants in 13 genera. Interestingly, different species across different genera also share identical variants. In particular, one minor variant of ITS2 in Eleutherococcus giraldii was found identical to the ITS2 major variant of Panax ginseng, both from Araliaceae family. In addition, DNA barcoding gap analysis showed that the intra-genomic distances were markedly smaller than those of the intra-specific or inter-specific variants. When each of 5543 variants were examined for its species discrimination efficiency, a 97% success rate was obtained at the species level. Conclusions Identification of identical ITS2 variants across intra-generic or inter-generic species revealed complex species evolutionary history, possibly, horizontal gene transfer and ancestral hybridization. Although intra-genomic multiple variants are frequently found within each genome, the usage of the major variants alone is sufficient for phylogeny construction and species determination in most cases. Furthermore, the inclusion of minor variants further improves the resolution of species identification. PMID:22952830

  7. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.

    PubMed

    Hiergeist, Andreas; Reischl, Udo; Gessner, Andrè

    2016-08-01

    The composition of human as well as animal microbiota has increasingly gained in interest since metabolites and structural components of endogenous microorganisms fundamentally influence all aspects of host physiology. Since many of the bacteria are still unculturable, molecular techniques such as high-throughput sequencing have dramatically increased our knowledge of microbial communities. The majority of microbiome studies published thus far are based on bacterial 16S ribosomal RNA (rRNA) gene sequencing, so that they can, at least in principle, be compared to determine the role of the microbiome composition for host metabolism and physiology, developmental processes, as well as different diseases. However, differences in DNA preparation and purification, 16S rDNA PCR amplification, sequencing procedures and platforms, as well as bioinformatic analysis and quality control measures may strongly affect the microbiome composition results obtained in different laboratories. To systematically evaluate the comparability of results and identify the most influential methodological factors affecting these differences, identical human stool sample replicates spiked with quantified marker bacteria, and their subsequent DNA sequences were analyzed by nine different centers in an external quality assessment (EQA). While high intra-center reproducibility was observed in repetitive tests, significant inter-center differences of reported microbiota composition were obtained. All steps of the complex analysis workflow significantly influenced microbiome profiles, but the magnitude of variation caused by PCR primers for 16S rDNA amplification was clearly the largest. In order to advance microbiome research to a more standardized and routine medical diagnostic procedure, it is essential to establish uniform standard operating procedures throughout laboratories and to initiate regular proficiency testing.

  8. Diversity and Inheritance of Intergenic Spacer Sequences of 45S Ribosomal DNA among Accessions of Brassica oleracea L. var. capitata

    PubMed Central

    Yang, Kiwoung; Robin, Arif Hasan Khan; Yi, Go-Eun; Lee, Jonghoon; Chung, Mi-Young; Yang, Tae-Jin; Nou, Ill-Sup

    2015-01-01

    Ribosomal DNA (rDNA) of plants is present in high copy number and shows variation between and within species in the length of the intergenic spacer (IGS). The 45S rDNA of flowering plants includes the 5.8S, 18S and 25S rDNA genes, the internal transcribed spacer (ITS1 and ITS2), and the intergenic spacer 45S-IGS (25S-18S). This study identified six different types of 45S-IGS, A to F, which at 363 bp, 1121 bp, 1717 bp, 1969 bp, 2036 bp and 2111 bp in length, respectively, were much shorter than the reported reference IGS sequences in B. oleracea var. alboglabra. The shortest two IGS types, A and B, lacked the transcription initiation site, non-transcribed spacer, and external transcribed spacer. Functional behavior of those two IGS types in relation to rRNA synthesis is a subject of further investigation. The other four IGSs had subtle variations in the transcription termination site, guanine-cytosine (GC) content, and number of tandem repeats, but the external transcribed spacers of these four IGSs were quite similar in length. The 45S IGSs were found to follow Mendelian inheritance in a population of 15 F1s and their 30 inbred parental lines, which suggests that these sequences could be useful for development of new breeding tools. In addition, this study represents the first report of intra-specific (within subspecies) variation of the 45S IGS in B. oleracea. PMID:26633391

  9. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba.

    PubMed

    Yang, Hye-Won; Lee, Yu-Ran; Inoue, Noboru; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Kim, Hong-Kyun; Lee, Junhun; Goo, Youn-Kyoung; Kong, Hyun-Hee; Chung, Dong-Il; Hong, Yeonchul

    2013-06-01

    Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner.

  10. Loop-Mediated Isothermal Amplification Targeting 18S Ribosomal DNA for Rapid Detection of Acanthamoeba

    PubMed Central

    Yang, Hye-Won; Lee, Yu-Ran; Inoue, Noboru; Jha, Bijay Kumar; Danne, Dinzouna-Boutamba Sylvatrie; Kim, Hong-Kyun; Lee, Junhun; Goo, Youn-Kyoung; Kong, Hyun-Hee; Chung, Dong-Il

    2013-01-01

    Amoebic keratitis (AK) caused by Acanthamoeba is one of the most serious corneal infections. AK is frequently misdiagnosed initially as viral, bacterial, or fungal keratitis, thus ensuring treatment delays. Accordingly, the early detection of Acanthamoeba would contribute significantly to disease management and selection of an appropriate anti-amoebic therapy. Recently, the loop-mediated isothermal amplification (LAMP) method has been applied to the clinical diagnosis of a range of infectious diseases. Here, we describe a rapid and efficient LAMP-based method targeting Acanthamoeba 18S rDNA gene for the detection of Acanthamoeba using clinical ocular specimens in the diagnosis of AK. Acanthamoeba LAMP assays detected 11 different strains including all AK-associated species. The copy number detection limit for a positive signal was 10 DNA copies of 18S rDNA per reaction. No cross-reactivity with the DNA of fungi or other protozoa was observed. The sensitivity of LAMP assay was higher than those of Nelson primer PCR and JDP primer PCR. In the present study, LAMP assay based on directly heat-treated samples was found to be as efficient at detecting Acanthamoeba as DNA extracted using a commercial kit, whereas PCR was only effective when commercial kit-extracted DNA was used. This study showed that the devised Acanthamoeba LAMP assay could be used to diagnose AK in a simple, sensitive, and specific manner. PMID:23864737

  11. Evolution of Ribosomal DNA (Rdna) Genetic Structure in Colonial Californian Populations of Avena Barbata

    PubMed Central

    Cluster, P. D.; Allard, R. W.

    1995-01-01

    DNA samples from 980 plants of Avena barbata from 48 ecologically diverse sites in California and Oregon were assayed to determine their genotype for two duplicated loci governing rDNA variants. More than 40 different rDNA genotypes were observed among which 5 made up 96% of our sample in environmentally homogeneous sites; predominant genotypes were less frequent and recombinant genotypes were more frequent in environmentally heterogeneous sites. The spatial distribution of each predominant rDNA genotype was nearly an exact overlay on both macro- and microgeographical scales of a distinctive habitat and also of the distribution of an eight-locus morphological-allozyme variant genotype. In all, seven different habitat-genotype combinations (ecotypes) were distinguishable on the basis of their morphological-allozyme-rDNA genotypes. None of these seven genotypes has been found in ancestral Spanish populations; thus the above predominant multilocus genotypes (ecotypes) of the colonial populations evidently evolved subsequent to the recent introduction (within 150-200 generations) of A. barbata to California. The precise associations of specific alleles and genotypes of the morphological allozyme and rDNA loci with different specifiable habitats leads us to the conclusion that natural selection favoring particular multilocus combinations of alleles in different habitats was the main guiding force in shaping the internal genetic structure of local populations as well as the overall adaptive landscape of A. barbata over California and Oregon. PMID:7713443

  12. Multiple Orientation-Dependent, Synergistically Interacting, Similar Domains in the Ribosomal DNA Replication Origin of the Fission Yeast, Schizosaccharomyces pombe

    PubMed Central

    Kim, Soo-Mi; Huberman, Joel A.

    1998-01-01

    Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small (∼570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast. PMID:9819416

  13. Molecular approach to the phylogenetics of sea spiders (Arthropoda: Pycnogonida) using partial sequences of nuclear ribosomal DNA.

    PubMed

    Arango, Claudia P

    2003-09-01

    The phylogenetic relationships among major evolutionary lineages of the sea spiders (subphylum Pycnogonida) were investigated using partial sequences of nuclear DNA, 18S, and 28S ribosomal genes. Topological differences were obtained with separate analyses of 18S and 28S, and estimates of phylogeny were found to be significantly different between a combined molecular data set (18S and 28S) and a subset of a morphological data matrix analyzed elsewhere. Colossendeidae played a major role in the conflicts; it was closely related to Callipallenidae or Nymphonidae with 18S or 28S, respectively, but related to Ammotheidae according to morphological characters. Austrodecidae was defined as a basal taxon for Pycnogonida by these molecular data. The 18S sequences were surprisingly conserved among pycnogonid taxa, suggesting either an unusual case of slow evolution of the gene, or an unexpected recent divergence of pycnogonid lineages. Notwithstanding difficulties such as non-optimal taxon sampling, this is the first attempt to reconstruct the pycnogonid phylogeny based on DNA. Continued studies of sequences and other characters should increase the reliability of the analyses and our understanding of the phylogenetics of sea spiders.

  14. Phylogenetic Relationships and Genetic Variation in Longidorus and Xiphinema Species (Nematoda: Longidoridae) Using ITS1 Sequences of Nuclear Ribosomal DNA

    PubMed Central

    Ye, Weimin; Szalanski, Allen L.; Robbins, R. T.

    2004-01-01

    Genetic analyses using DNA sequences of nuclear ribosomal DNA ITS1 were conducted to determine the extent of genetic variation within and among Longidorus and Xiphinema species. DNA sequences were obtained from samples collected from Arkansas, California and Australia as well as 4 Xiphinema DNA sequences from GenBank. The sequences of the ITS1 region including the 3' end of the 18S rDNA gene and the 5' end of the 5.8S rDNA gene ranged from 1020 bp to 1244 bp for the 9 Longidorus species, and from 870 bp to 1354 bp for the 7 Xiphinema species. Nucleotide frequencies were: A = 25.5%, C = 21.0%, G = 26.4%, and T = 27.1%. Genetic variation between the two genera had a maximum divergence of 38.6% between X. chambersi and L. crassus. Genetic variation among Xiphinema species ranged from 3.8% between X. diversicaudatum and X. bakeri to 29.9% between X. chambersi and X. italiae. Within Longidorus, genetic variation ranged from 8.9% between L. crassus and L. grandis to 32.4% between L. fragilis and L. diadecturus. Intraspecific genetic variation in X. americanum sensu lato ranged from 0.3% to 1.9%, while genetic variation in L. diadecturus had 0.8% and L. biformis ranged from 0.6% to 10.9%. Identical sequences were obtained between the two populations of L. grandis, and between the two populations of X. bakeri. Phylogenetic analyses based on the ITS1 DNA sequence data were conducted on each genus separately using both maximum parsimony and maximum likelihood analysis. Among the Longidorus taxa, 4 subgroups are supported: L. grandis, L. crassus, and L. elongatus are in one cluster; L. biformis and L. paralongicaudatus are in a second cluster; L. fragilis and L. breviannulatus are in a third cluster; and L. diadecturus is in a fourth cluster. Among the Xiphinema taxa, 3 subgroups are supported: X. americanum with X. chambersi, X. bakeri with X. diversicaudatum, and X. italiae and X. vuittenezi forming a sister group with X. index. The relationships observed in this study

  15. Identification of the 18S-ribosomal-DNA genotypes of Acanthamoeba isolates from the Philippines.

    PubMed

    Rivera, W L; Adao, D E V

    2008-12-01

    Cyst morphology has been commonly used to identify the free-living amoeba Acanthamoeba to subgenus level. A more accurate and consistent method, based on the sequence analysis of the gene coding for the amoeba's small-subunit ribosomal RNA (Rns), has, however, been developed. There have been no attempts to identify the Acanthamoeba genotypes circulating in the Philippines. In this study, therefore, the ASA.S1 region of the Rns gene from 17 Acanthamoeba isolates, collected from soil, water and contact-lens storage cases in different regions of the Philippines, was sequenced. After the isolates were genotyped, using the BLAST program, their phylogenetic positions relative to known Acanthamoeba isolates were determined. For this, the model-based (GTR + Gamma) neighbour-joining, maximum-likelihood and Bayesian-inference analyses and the non-model-based maximum-parsimony analysis were used. All but two of the isolates were identified as the T5 or T4 genotypes, which are probably common in soil, water and contact-lens cases across the Philippines. The only other genotypes identified were T15 (as a single isolate from a contact-lens case) and T3 (as a single soil isolate).

  16. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase.

    PubMed

    Wallgren, Marcus; Mohammad, Jani B; Yan, Kok-Phen; Pourbozorgi-Langroudi, Parham; Ebrahimi, Mahsa; Sabouri, Nasim

    2016-07-27

    Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures.

  17. Isolation and 18S ribosomal DNA gene sequences of Marteilioides chungmuensis (Paramyxea), an ovarian parasite of the Pacific oyster Crassostrea gigas.

    PubMed

    Itoh, Naoki; Oda, Tadashi; Yoshinaga, Tomoyoshi; Ogawa, Kazuo

    2003-03-31

    To develop sensitive detection techniques with the aim of elucidating the life cycle of Marteilioides chungmuensis, an intracellular paramyxean infecting the ovary of the Pacific oyster Crassostrea gigas, we isolated the parasite at the sporont stage from infected oysters using a freeze-thaw procedure at -20 degrees C and differential centrifugations in discontinuous sucrose and Percoll gradients. DNA was extracted from the isolated sporonts, and a PCR amplicon of 18S small subunit ribosomal RNA gene DNA was partially sequenced. In situ hybridization using 3 parasite-specific probes designed from the obtained sequence successfully detected parasite cells in infected oysters, and confirmed that the sequenced DNA was derived from M. chungmuensis.

  18. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    PubMed Central

    2008-01-01

    Background In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. Results In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length), of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Conclusion Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny. PMID:18366624

  19. Specific binding of tRNAMet to 23S rRNA of Escherichia coli.

    PubMed Central

    Dahlberg, J E; Kintner, C; Lund, E

    1978-01-01

    tRNAMetf binds to 23S rRNA of Escherichia coli, forming a complex with a melting temperature of 75 degrees (in 0.6 M NaCl). The regions within the RNAs that bind to each other have been isolated and their nucleotide sequences have been determined. The interacting region in tRNAMetf is 17 nucleotides long, extending from G5 in the acceptor stem to D21 (D = 5.6-dihydrouridine) in the D loop. The sequence in 23S rRNA is complementary to that sequence except for an extra Up in the middle and allowing a Gp.D base pair. We propose that association of these two sequences may play a role in initiation of protein synthesis by tRNAMetf. In addition, part of this sequence in 23S rRNA may also stabilize tRNA binding to the ribosome during elongation of nascent polypeptides. Images PMID:349554

  20. Ralstonia paucula (Formerly CDC Group IV c-2): Unsuccessful Strain Differentiation with PCR-Based Methods, Study of the 16S-23S Spacer of the rRNA Operon, and Comparison with Other Ralstonia Species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum)

    PubMed Central

    Moissenet, Didier; Bidet, Philippe; Garbarg-Chenon, Antoine; Arlet, Guillaume; Vu-Thien, Hoang

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNAIle and tRNAAla genes, which are identical to genes described for R. pickettii and R. solanacearum. PMID:11136807

  1. Ralstonia paucula (Formerly CDC group IV c-2): unsuccessful strain differentiation with PCR-based methods, study of the 16S-23S spacer of the rRNA operon, and comparison with other Ralstonia species (R. eutropha, R. pickettii, R. gilardii, and R. solanacearum).

    PubMed

    Moissenet, D; Bidet, P; Garbarg-Chenon, A; Arlet, G; Vu-Thien, H

    2001-01-01

    Ralstonia paucula (formerly CDC group IV c-2) can cause serious human infections. Confronted in 1995 with five cases of nosocomial bacteremia, we found that pulsed-field gel electrophoresis could not distinguish between the isolates and that randomly amplified polymorphic DNA analysis was poorly discriminatory. In this study, we used PCR-ribotyping and PCR-restriction fragment length polymorphism analysis of the spacer 16S-23S ribosomal DNA (rDNA); both methods were unable to differentiate R. paucula isolates. Eighteen strains belonging to other Ralstonia species (one R. eutropha strain, six R. pickettii strains, three R. solanacearum strains, and eight R. gilardii strains) were also tested by PCR-ribotyping, which failed to distinguish between the four species. The 16S-23S rDNA intergenic spacer of R. paucula contains the tRNA(Ile) and tRNA(Ala) genes, which are identical to genes described for R. pickettii and R. solanacearum.

  2. 23S rRNA domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase.

    PubMed Central

    Kovalic, D; Giannattasio, R B; Jin, H J; Weisblum, B

    1994-01-01

    The DNA sequence that encodes 23S rRNA domain V of Bacillus subtilis, nucleotides 2036 to 2672 (C. J. Green, G. C. Stewart, M. A. Hollis, B. S. Vold, and K. F. Bott, Gene 37:261-266, 1985), was cloned and used as a template from which to transcribe defined domain V RNA in vitro. The RNA transcripts served as a substrate in vitro for specific methylation of B. subtilis adenine 2085 (adenine 2058 in Escherichia coli 23S rRNA) by the ErmSF methyltransferase, an enzyme that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics on Streptomyces fradiae NRRL 2702, the host from which it was cloned. Thus, neither RNA sequences belonging to domains other than V nor the association of 23S rRNA with ribosomal proteins is needed for the specific methylation of adenine that confers resistance to the macrolide-lincosamide-streptogramin B group of antibiotics. Images PMID:7961463

  3. Developmentally Regulated Ribosomal rDNA Genes in Plasmodium vivax: Biological Implications and Practical Applications

    DTIC Science & Technology

    1994-08-10

    microgametes are released from one microgametocyte during exflagellation while only one female macrogamete differentiates from a macrogametocyte...protein synthesis. In contrast to other eukaryotes, the rRNA genes in Plasmodium species are unique in terms of their genomic arrangement and...development and evolution. In this study, three structurally distinct rRNA genes, including one novel" type, have been characterized from the genomic DNA of

  4. Ribosomal and mitochondrial DNA analysis of Trichuridae nematodes of carnivores and small mammals.

    PubMed

    Guardone, Lisa; Deplazes, Peter; Macchioni, Fabio; Magi, Marta; Mathis, Alexander

    2013-10-18

    Several species of Trichuridae nematodes can infect dogs, cats and wild mammals. The diagnosis of these infections relies on the microscopic identification of eggs which are characterized by a similar "lemon" shape and polar plugs in all Trichuridae. Thus, morphological diagnosis to species level is challenging. The use of biomolecular diagnostic methods is desirable but very little genetic data are known from Trichuridae of carnivores and small mammals. The aim of this work was to genetically characterize several species of Trichuridae that can affect dogs, cats and wild mammals, as a basis to develop molecular diagnostic tests. Specimens (adult worms or eggs) of Eucoleus aerophilus (syn. Capillaria aerophila), Eucoleus boehmi (syn. Capillaria boehmi), Pearsonema plica (syn. Capillaria plica), Aonchotheca putorii (syn. Capillaria putorii), Calodium hepaticum (syn. Capillaria hepatica), Calodium splenaecum (syn. Capillaria splenaeca) and Trichuris vulpis were obtained from carcasses of red foxes, feces of dogs, the liver of a vole and from the spleen of Crocidura sp. Parts of the small subunit rRNA (18S rRNA) gene and of the mitochondrial cytochrome c oxidase subunit I (cox 1 mtDNA) gene were amplified from the above mentioned nematodes, yielding the first 18S rRNA gene sequences of all the capillariid nematodes and the first cox 1 mtDNA sequences of E. boehmi, P. plica, C. hepaticum, A. putorii and T. vulpis. The 18S rRNA gene is highly conserved among the different species and not suitable as a target for specific diagnostic oligonucleotides. However, these sequences contribute to a better understanding of the complex taxonomic relations among Trichuridae. Indeed, a dendrogram based on the 18S rRNA gene locus supports the latest taxonomic revision. Interspecies divergence was much higher at the cox 1 mtDNA gene locus, rendering it suitable for DNA barcoding and particularly valuable in resolving closely related species. Furthermore, the mitochondrial genetic

  5. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure.

    PubMed

    Campbell, Christopher S; Wright, Wesley A; Cox, Margaret; Vining, Thomas F; Major, C Smoot; Arsenault, Matthew P

    2005-04-01

    The nrDNA ITS1 of Picea is 2747-3271 bp, the longest known of all plants. We obtained 24 cloned ITS1 sequences from six individuals of Picea glehnii, Picea mariana, Picea orientalis, and Picea rubens. Mean sequence divergence within these individuals (0.018+/-0.009) is more than half that between the species (0.031+/-0.011) and may be maintained against concerted evolution by separation of Picea 18S-26S rDNA repeats on multiple chromosomes. Picea ITS1 contains three subrepeats with a motif (5'-GGCCACCCTAGTC) that is conserved across Pinaceae. Two subrepeats are tandem, remote from the third, and more closely related and significantly more similar to one another than either is to the third subrepeat. This correlation between similarity and proximity may be the result of subrepeat duplication or concerted evolution within rDNA repeats. In inferred secondary structures, subrepeats generally form long hairpins, with a portion of the Pinaceae conserved motif in the terminal loop, and tandem subrepeats pair with one another over most of their length. Coalescence of ITS1 sequences occurs in P. orientalis but not in the other species.

  6. Characterization of three different clusters of 18S-26S ribosomal DNA genes in the sea urchin P. lividus: Genetic and epigenetic regulation synchronous to 5S rDNA.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Caradonna, Fabio

    2016-04-15

    We previously reported the characterization 5S ribosomal DNA (rDNA) clusters in the common sea urchin Paracentrotus lividus and demonstrated the presence of DNA methylation-dependent silencing of embryo specific 5S rDNA cluster in adult tissue. In this work, we show genetic and epigenetic characterization of 18S-26S rDNA clusters in this specie. The results indicate the presence of three different 18S-26S rDNA clusters with different Non-Transcribed Spacer (NTS) regions that have different chromosomal localizations. Moreover, we show that the two largest clusters are hyper-methylated in the promoter-containing NTS regions in adult tissues, as in the 5S rDNA. These findings demonstrate an analogous epigenetic regulation in small and large rDNA clusters and support the logical synchronism in building ribosomes. In fact, all the ribosomal RNA genes must be synchronously and equally transcribed to perform their unique final product.

  7. T7 Early RNAs and Escherichia coli Ribosomal RNAs are Cut from Large Precursor RNAs In Vivo by Ribonuclease III

    PubMed Central

    Dunn, John J.; Studier, F. William

    1973-01-01

    The early region of T7 DNA is transcribed as a single unit in a Ribonuclease III-deficient E. coli strain to produce large molecules essentially identical to those produced in vitro by E. coli RNA polymerase. As with the in vitro RNAs, these molecules are cut by purified RNase III in vitro to produce the messenger RNAs normally observed in vivo. Thus, the normal pathway for producing the T7 early messenger RNAs in vivo appears to involve endonucleolytic cleavage by RNase III. The uninfected RNase III-deficient strain contains several RNAs not observed in the parent strain. Patterns of labeling in vivo suggest that the largest of these RNAs, about 1.8 × 106 daltons, may be a precursor to the 16S and 23S ribosomal RNAs. When this large molecule is treated in vitro with purified RNase III, molecules the size of precursor 16S and 23S ribosomal RNAs are released; hybridization competition experiments also indicate that the 1.8 × 106 dalton RNA does indeed represent ribosomal RNA. Thus, RNase III cleavage seems to be part of the normal pathway for producing at least the 16S and 23S ribosomal RNAs in vivo. Several smaller molecules are also released from the 1.8 × 106 dalton RNA by RNase III, but it is not yet established whether any of these contain 5S RNA sequences. Images PMID:4587248

  8. Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA.

    PubMed

    Kamstra, S A; Kuipers, A G; De Jeu, M J; Ramanna, M S; Jacobsen, E

    1997-10-01

    Fluorescence in situ hybridization (FISH) was used to localise two species-specific repetitive DNA sequences, A001-I and D32-13, and two highly conserved 25S and 5S rDNA sequences on the metaphase chromosomes of two species of Alstroemeria. The Chilean species, Alstroemeria aurea (2n = 16), has abundant constitutive heterochromatin, whereas the Brazilian species, Alstroemeria inodora, has hardly any heterochromatin. The A. aurea specific A001-I probe hybridized specifically to the C-band regions on all chromosomes. The FISH patterns on A. inodora chromosomes using species-specific probe D32-13 resembled the C-banding pattern and the A001-I pattern on A. aurea chromosomes. There were notable differences in number and distribution of rDNA sites between the two species. The 25S rDNA probe revealed 16 sites in A. aurea that closely colocalised with A001-I sites and 12 in A. inodora that were predominantly detected in the centromeric regions. FISH karyotypes of the two Alstroemeria species were constructed accordingly, enabling full identification of all individual chromosomes. These FISH karyotypes will be useful for monitoring the chromosomes of both Alstroemeria species in hybrids and backcross derivatives.

  9. Phylogenetics of neotropical Platymiscium (Leguminosae: Dalbergieae): systematics, divergence times, and biogeography inferred from nuclear ribosomal and plastid DNA sequence data.

    PubMed

    Saslis-Lagoudakis, Charilaos; Chase, Mark W; Robinson, Daniel N; Russell, Stephen J; Klitgaard, Bente B

    2008-10-01

    Platymiscium is a neotropical legume genus of forest trees in the Pterocarpus clade of the pantropical "dalbergioid" clade. It comprises 19 species (29 taxa), distributed from Mexico to southern Brazil. This study presents a molecular phylogenetic analysis of Platymiscium and allies inferred from nuclear ribosomal (nrITS) and plastid (trnL, trnL-F and matK) DNA sequence data using parsimony and Bayesian methods. Divergence times are estimated using a Bayesian method assuming a relaxed molecular clock (multidivtime). Within the Pterocarpus clade, new sister relationships are recovered: Pterocarpus + Etaballia, Inocarpus + Tipuana and Paramachaerium + Maraniona. Our results support monophyly of Platymiscium, which is resolved into three major clades, each with distinct geographic ranges and ecological preferences. Diversification in Platymiscium has been driven by habitat fragmentation, invasion of novel geographic regions, and ecological diversification, revealing general patterns of diversification in the neotropics. We hypothesize that Platymiscium arose in dry habitats of South America and radiated northward. The Amazon basin was invaded twice both within the last 5.6 My and Central America twice before the closure of the Isthmus of Panama. Divergence times of the P. pubescens complex, restricted to seasonally dry tropical forests of South America, support pre-Pleistocene divergence in this biome.

  10. Phylogenetic relationships of species within the tribe Labiostrongylinea (Nematoda: Cloacinidae) from Australian marsupials based on ribosomal DNA spacer sequence data.

    PubMed

    Chilton, Neil B; Huby-Chilton, Florence; Beveridge, Ian; Smales, Lesley R; Gasser, Robin B; Andrews, Ross H

    2011-12-01

    Parasitic nematodes of the tribe Labiostrongylinea (Family Cloacinidae) occur in the stomachs of a wide variety of potoroid and macropodid marsupials in Australia, Papua Indonesia and Papua New Guinea. The aim of the present study was to infer the evolutionary relationships of the five genera of labiostrongyline nematodes that occur in Australian potoroids and macropodids using sequence data of the nuclear first and second internal transcribed spacers of ribosomal DNA. The phylogenetic analyses resulted in the separation of the Labiostrongylinea into two major groups reflecting coevolution between hosts and parasites. Two nematode species belonging to the genus Potorostrongylus formed a sister group to the remaining species of the Labiostrongylinea. This genus occurs exclusively in potoroid marsupials, which are considered to be basal to the macropodid marsupials. The second major group included species of Labiostrongylus, Labiosimplex, Labiomultiplex and Parazoniolaimus, all of which occur in macropodids. These species formed two distinct clades, one predominating in the host genera Thylogale and Onychogalea, and the second in the genus Macropus, which includes the more recent macropodids. However, there is also evidence of colonisation by both nematode clades of relatively unrelated hosts. In addition, genetic differences among individuals of Lm. eugenii from geographically isolated populations of M. eugenii, and among Ls. longispicularis from different subspecies of M. robustus suggest the existence of sibling species that may have arisen by allopatric speciation. The broad coevolutionary relationship between the labiostrongyline nematodes and their marsupial hosts therefore represents a mixture of potential cospeciation and colonisation events.

  11. Phylogenetics of Bonamia parasites based on small subunit and internal transcribed spacer region ribosomal DNA sequence data.

    PubMed

    Hill, Kristina M; Stokes, Nancy A; Webb, Stephen C; Hine, P Mike; Kroeck, Marina A; Moore, James D; Morley, Margaret S; Reece, Kimberly S; Burreson, Eugene M; Carnegie, Ryan B

    2014-07-24

    The genus Bonamia (Haplosporidia) includes economically significant oyster parasites. Described species were thought to have fairly circumscribed host and geographic ranges: B. ostreae infecting Ostrea edulis in Europe and North America, B. exitiosa infecting O. chilensis in New Zealand, and B. roughleyi infecting Saccostrea glomerata in Australia. The discovery of B. exitiosa-like parasites in new locations and the observation of a novel species, B. perspora, in non-commercial O. stentina altered this perception and prompted our wider evaluation of the global diversity of Bonamia parasites. Samples of 13 oyster species from 21 locations were screened for Bonamia spp. by PCR, and small subunit and internal transcribed spacer regions of Bonamia sp. ribosomal DNA were sequenced from PCR-positive individuals. Infections were confirmed histologically. Phylogenetic analyses using parsimony and Bayesian methods revealed one species, B. exitiosa, to be widely distributed, infecting 7 oyster species from Australia, New Zealand, Argentina, eastern and western USA, and Tunisia. More limited host and geographic distributions of B. ostreae and B. perspora were confirmed, but nothing genetically identifiable as B. roughleyi was found in Australia or elsewhere. Newly discovered diversity included a Bonamia sp. in Dendostrea sandvicensis from Hawaii, USA, that is basal to the other Bonamia species and a Bonamia sp. in O. edulis from Tomales Bay, California, USA, that is closely related to both B. exitiosa and the previously observed Bonamia sp. from O. chilensis in Chile.

  12. Phenotypic variability confirmed by nuclear ribosomal DNA suggests a possible natural hybrid zone of Triatoma brasiliensis species complex.

    PubMed

    Costa, Jane; Bargues, Maria Dolores; Neiva, Vanessa Lima; Lawrence, Gena G; Gumiel, Marcia; Oliveira, Genova; Cabello, Pedro; Lima, Marli Maria; Dotson, Ellen; Provance, David William; Almeida, Carlos Eduardo; Mateo, Lucia; Mas-Coma, Santiago; Dujardin, Jean Pierre

    2016-01-01

    Triatoma brasiliensis macromelasoma occurs in Pernambuco state, Brazil, which is situated between the distribution areas of Triatoma brasiliensis brasiliensis (north) and Triatoma juazeirensis (south). T. b. macromelasoma displays greater variations in its chromatic phenotype than either T. b. brasiliensis or T. juazeirensis, and patterns reminiscent of one or the other. Experimental crosses from each of these members of the T. brasiliensis species complex generated fertile offspring suggesting that viable hybrids could be present in nature, despite their significant genetic distances. Considering the geographical position of occurrence of the T. b. macromelasoma (in Pernambuco) it was proposed to be an area capable of supporting natural hybridization between T. b. brasiliensis and T. juazeirensis. Since phenotypic variability is expected, this study investigated the existence of intermediate chromatic phenotypes for T. b. macromelasoma in various locations in areas between the T. b. brasiliensis and T. juazeirensis occurrences. Thirteen different color patterns were for the first time characterized and nine of those displayed intermediate phenotypes. Molecular analysis performed using ribosomal DNA intergenic region, grouped all within the T. brasiliensis complex. The intermediate chromatic phenotypes, molecular analysis and experimental crosses all support the distinction of a zone of hybridization that gave rise to the T. b. macromelasoma through homoploidal evolution.

  13. Amplified ribosomal DNA restriction analysis of free-living bacteria present in the headbox of a Canadian paper machine.

    PubMed

    Prince, Véronique; Simao-Beaunoir, Anne-Marie; Beaulieu, Carole

    2009-07-01

    The headbox water is the main source of bacterial contamination of paper machines. Identification of these bacterial contaminants could be an asset in developing specific control methods. An amplified ribosomal DNA restriction analysis (ARDRA) was carried out to characterize the bacterial communities associated with the headbox water of a paper machine in a Canadian mill in February and July 2006. Eight bacterial genera were identified as the main colonizers present in the headbox water. The genus Meiothermus appeared to be the dominant bacterial group in the Canadian paper machine. Some variation was observed between the February and July clone libraries. Bacterial genera such as Chelatococcus and Hydrogenophilus were only detected in February or in July, respectively. Furthermore, the proportion of Tepidimonas clones in the libraries was higher in July than in February. The metabolic profile of the February and July communities, determined using Biolog EcoPlates, also suggested that temporal variation occurred within the bacterial populations that colonized the headbox of the paper machine.

  14. Septic arthritis and osteomyelitis in a 10-year-old boy, caused by Fusobacterium nucleatum, diagnosed with PCR/16S ribosomal bacterial DNA amplification

    PubMed Central

    Kroon, Elke; Arents, Niek A; Halbertsma, Feico Jan

    2012-01-01

    A 10-year-old boy presented with an atypical non-febrile septic arthritis/osteomyelitis. He was unresponsive to routine antibiotic treatment with flucloxacillin/gentamicin as the pain and fluid collection increased. Synovial fluid cultures are negative and gram stain remained negative. Only after PCR/16S ribosomal bacterial DNA amplification a Fusobacterium nucleatum could be detected, and antibiotic therapy switched to clindamycin with rapid response. Septic osteomyelitis and arthritis are relatively rare but important infections in children needing prompt treatment, and should be considered when a child complaints about joint or bone pain without prior recent trauma. Skin bacteria are the most prevalent causative organisms, whereas Fusobacteria or other anaerobic, Gram-negative microorganisms are very seldom encountered. If cultures remain negative and the patients responds insufficiently to empiric treatment, PCR/16S ribosomal bacterial DNA amplification can be useful to detect the causative microorganisms. PMID:22605875

  15. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruíz-Estévez, Mercedes; López-León, M Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2013-09-01

    B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant.

  16. cDNA cloning and overexpression of acidic ribosomal phosphoprotein P1 gene (RPLP1) from the giant panda.

    PubMed

    Du, Yu-Jie; Luo, Xiao-Yan; Hao, Yan-Zhe; Zhang, Tian; Hou, Wan-Ru

    2007-10-26

    RPLP1 is one of acidic ribosomal phosphoproteins encoded by RPLP1 gene, which plays an important role in the elongation step of protein synthesis. The cDNA of RPLP1 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using RT-PCR technology, which was also sequenced, analyzed preliminarily and expressed in E.coli. The cDNA fragment cloned is 449bp in size, containing an open reading frame of 344bp encoding 114 amino acids. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to other five species studied, including Homo sapiens, Mus musculus, Rattus norvegicus, Bos Taurus and Sus scrofa. The homologies for nucleotide sequences of Giant Panda PPLP1 to that of these species are 92.4%, 89.8%, 89.0%, 91.3% and 87.5%, while the homologies for amino acid sequences are 96.5%, 94.7%, 95.6%, 96.5% and 88.6%. Topology prediction showed there are three Casein kinase II phosphorylation sites and two N-myristoylation sites in the RPLP1 protein of the Giant Panda (Ailuropoda melanoleuca). The RPLP1 gene was overexpressed in E. coli and the result indicated that RPLP1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 18kDa polypeptide, which was in accordance with the predicted protein and could also be used to purify the protein and study its function.

  17. Molecular Systematics and Biogeography of Crawfurdia, Metagentiana and Tripterospermum (Gentianaceae) Based on Nuclear Ribosomal and Plastid DNA Sequences

    PubMed Central

    CHEN, SHENGYUN; XIA, TAO; WANG, YUJIN; LIU, JIANQUAN; CHEN, SHILONG

    2005-01-01

    • Background and Aims The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences. • Methods Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae. • Key Results The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0·05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11·4–21·4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0·4 to 6·2 Mya. • Conclusions The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene. PMID:15994844

  18. Restriction Enzyme Analysis of Ribosomal DNA Shows that Candida inconspicua Clinical Isolates Can Be Misidentified as Candida norvegensis with Traditional Diagnostic Procedures

    PubMed Central

    Majoros, L.; Kardos, G.; Belák, Á.; Maráz, A.; Asztalos, L.; Csánky, E.; Barta, Z.; Szabó, B.

    2003-01-01

    We identified 29 yeast isolates from 22 patients using the API ID32C panel. Twenty-eight of these isolates were Candida norvegensis and one was C. inconspicua. Although C. norvegensis is considered a pseudohypha-producing species, only one isolate produced pseudohyphae. Restriction enzyme analysis of PCR-amplified ribosomal DNA with four different enzymes proved that all isolates were C. inconspicua. PMID:14605175

  19. Genetic and Molecular Organization of Ribosomal DNA (Rdna) Variants in Wild and Cultivated Barley

    PubMed Central

    Allard, R. W.; Maroof, MAS.; Zhang, Q.; Jorgensen, R. A.

    1990-01-01

    Twenty rDNA spacer-length variants (slvs) have been identified in barley. These slvs form a ladder in which each variant (with one exception) differs from its immediate neighbors by a 115-bp subrepeat. The 20 slvs are organized in two families, one forming an eight-step ladder (slvs 100-107) in the nucleolus organizer region (NOR) of chromosome 7 and the other a 12-step ladder (slvs 108a-118) in the NOR of chromosome 6. The eight shorter slvs (100-107) segregate and serve as markers of eight alleles of Mendelian locus Rrn2 and the 12 longer slvs (108a-118) segregate and serve as markers of 12 alleles of Mendelian locus Rrn1. Most barley plants (90%) are homozygous for two alleles, including one from each the 100-107 and the 108a-118 series. Two types of departures from this typical pattern of molecular and genetic organization were identified, one featuring compound alleles marked by two slvs of Rrn1 or of Rrn2, and the other featuring presence in Rrn1 of alleles normally found in Rrn2, and vice versa. The individual and joint effects on adaptedness of the rDNA alleles are discussed. It was concluded that selection acting on specific genotypes plays a major role in molding the strikingly different allelic and genotypic frequency distributions seen in populations of wild and cultivated barley from different ecogeographical regions. PMID:2249766

  20. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata.

    PubMed

    Moreira, David; von der Heyden, Sophie; Bass, David; López-García, Purificación; Chao, Ema; Cavalier-Smith, Thomas

    2007-07-01

    Resolution of the phylogenetic relationships among the major eukaryotic groups is one of the most important problems in evolutionary biology that is still only partially solved. This task was initially addressed using a single marker, the small-subunit ribosomal DNA (SSU rDNA), although in recent years it has been shown that it does not contain enough phylogenetic information to robustly resolve global eukaryotic phylogeny. This has prompted the use of multi-gene analyses, especially in the form of long concatenations of numerous conserved protein sequences. However, this approach is severely limited by the small number of taxa for which such a large number of protein sequences is available today. We have explored the alternative approach of using only two markers but a large taxonomic sampling, by analysing a combination of SSU and large-subunit (LSU) rDNA sequences. This strategy allows also the incorporation of sequences from non-cultivated protists, e.g., Radiozoa (=radiolaria minus Phaeodarea). We provide the first LSU rRNA sequences for Heliozoa, Apusozoa (both Apusomonadida and Ancyromonadida), Cercozoa and Radiozoa. Our Bayesian and maximum likelihood analyses for 91 eukaryotic combined SSU+LSU sequences yielded much stronger support than hitherto for the supergroup Rhizaria (Cercozoa plus Radiozoa plus Foraminifera) and several well-recognised groups and also for other problematic clades, such as the Retaria (Radiozoa plus Foraminifera) and, with more moderate support, the Excavata. Within opisthokonts, the combined tree strongly confirms that the filose amoebae Nuclearia are sisters to Fungi whereas other Choanozoa are sisters to animals. The position of some bikont taxa, notably Heliozoa and Apusozoa, remains unresolved. However, our combined trees suggest a more deeply diverging position for Ancyromonas, and perhaps also Apusomonas, than for other bikonts, suggesting that apusozoan zooflagellates may be central for understanding the early evolution of

  1. Low-molecular-weight (4.5S) ribonucleic acid in higher-plant chloroplast ribosomes.

    PubMed Central

    Whitfeld, P R; Leaver, C J; Bottomley, W; Atchison, B

    1978-01-01

    A species of RNA that migrates on 10% (w/v) polyacrylamide gels between 5S and 4S RNA was detected in spinach chloroplasts. This RNA (referred to as 4.5 S RNA) was present in amounts equimolar to the 5S RNA and its molecular weight was estimated to be approx. 33 000. Fractionation of the chloroplast components showed that the 4.5S RNA was associated with the 50 S ribosomal subunit and that it could be removed by washing the ribosomes with a buffer containing 0.01 M-EDTA and 0.5 M-KCl. It did not appear to be a cleavage product of the labile 23 S RNA of spinach chloroplast ribosomes. When 125I-labelled 4.5 S RNA was hybridized to fragments of spinach chloroplast DNA produced by SmaI restriction endonuclease, a single fragment (mol.wt. 1.15 times 10(6)) became labelled. The same DNA fragment also hybridized to chloroplast 5 S RNA and part of the 23 S RNA. It was concluded that the coding sequence for 4.5 S RNA was part of, or immediately adjacent to, the rRNA-gene region in chloroplast DNA . A comparable RNA species was observed in chloroplasts of tobacco and pea leaves. Images Fig. 8. PMID:743229

  2. Small subunit ribosomal DNA suggests that the xenophyophorean Syringammina corbicula is a foraminiferan.

    PubMed

    Pawlowski, Jan; Holzmann, Maria; Fahrni, Jose; Richardson, Susan L

    2003-01-01

    Xenophyophorea are giant deep-sea rhizopodial protists of enigmatic origins. Although species were described as Foraminifera or sponges in the early literature, the xenophyophoreans are currently classified either as a class of Rhizopoda or an independent phylum. To establish the phylogenetic position of Xenophyophorea, we analysed the small subunit (SSU) rRNA gene sequence of Syringammina corbicula Richardson, a newly described xenophyophorean species from the Cape Verde Plateau. The SSUrDNA analyses showed that S. corbicula is closely related to Rhizammina algaeformis, a tubular deep-sea foraminiferan. Both species branch within a group of monothalamous (single-chambered) Foraminifera, which include also such agglutinated genera as Toxisarcon, Rhabdammina, and Saccammina, and the organic-walled genera Gloiogullmia and Cylindrogullmia. Our results are congruent with observations of similar cytoplasmic organisation in Rhizammina and Syringammina. Thus, the Xenophyophorea appear to be a highly specialised group of deep-sea Foraminifera.

  3. Evaluation of Borrelia real time PCR DNA targeting OspA, FlaB and 5S-23S IGS and Borrelia 16S rRNA RT-qPCR.

    PubMed

    de Leeuw, Bertie H C G M; Maraha, Boulos; Hollemans, Leonie; Sprong, Hein; Brandenburg, Afke H; Westenend, Pieter J; Kusters, Johannes G

    2014-12-01

    Borrelia burgdorferi non-sensu lato (s.l.) strains occurred in the Netherlands. A multiplex OspA, FlaB, IGS real time PCR was compared to 16S rRNA/rDNA RT-qPCR with lower average Cycle threshold (Ct) and LOD on strain dilutions. Multiplexing increased sensitivity on CSF samples (n=74), distinguishing B. burgdorferi s.l. from non-s.l. strains.

  4. Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA.

    PubMed

    Lin, Q; Li, H M; Gao, M; Wang, X Y; Ren, W X; Cong, M M; Tan, X C; Chen, C X; Yu, S K; Zhao, G H

    2012-03-01

    In the present study, a total of 20 nematode isolates, (including 10 male and 10 female worms) representing Baylisascaris schroederi from 5 Qinling subspecies of giant pandas (Ailuropoda melanoleuca) in Shaanxi Province of China, were characterized and grouped genetically by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA). The rDNA fragment spanning 3' end of 18S rDNA, complete ITS-1 rDNA, and 5' end of 5.8S rDNA were amplified and sequenced. The sequence variability in ITS-1 rDNA was examined within B. schroederi and among parasites in order Ascaridata available in GenBank™, and their phylogenetic relationships were also reconstructed. The sequences of ITS-1 rDNA for all the B. schroederi isolates were 427 bp in length, with no genetic variation detected among these isolates. Phylogenetic analyses based on the ITS-1 rDNA sequences revealed that all the male and female B. schroederi isolates sequenced in the present study were posited into the clade of genus Baylisascaris, sistered to zoonotic nematodes in genus Ascaris, and the ITS-1 rDNA sequence could distinguish different species in order Ascaridata. These results showed that the ITS-1 rDNA provides a suitable molecular marker for the inter-species phylogenetic analysis and differential identification of nematodes in order Ascaridata.

  5. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    PubMed

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  6. Ribosomal DNA (rDNA) identification of the culturable bacterial flora on monetary coinage from 17 currencies.

    PubMed

    Xu, Jiru; Moore, John E; Millar, B Cherie

    2005-03-01

    The aim of the investigation reported in this paper was to identify the bacterial microflora on monetary coinage from 17 countries by employment of polymerase chain reaction (PCR) sequenced-based molecular identification of rDNA from bacterial cultures. Silver, bronze, and other alloy coins (approximately 300 g) from 17 currencies were enriched individually by aerobic culturing in tryptone soya broth for 72 hours at 30 degrees C. Next, 20 microL of broth was inoculated onto Columbia blood agar supplemented with 5 percent volume-pervolume (v/v) defibrinated horse blood for 72 hours at 30 degrees C, and resulting colonies were purified by further subculture, as detailed above, for a further 72 hours. All colonies were identified by initial PCR amplification of a partial region of the 16S rDNA gene locus, which was then sequenced, and the sequence was aligned according to the BLASTn algorithm. Twenty-five isolates were obtained from the coinage; of these, 25 (100 percent) were Gram positive, and the most prevalent genus observed was Bacillus (B. megaterium, B. lentus, B. litoralis, B. subtilis, B. circulans and other Bacillus spp.), which accounted for 10 of 25 isolates (40 percent) and was isolated from 10 of 17 countries (58.8 percent). It was followed in prevalence by Staphylococcus spp. (Staph. aureus, Staph. epidermidis, Staph. hominis, Staph. schleiferi), which accounted for 7 of 25 isolates (28 percent) and were isolated from 7 of 17 countries (41.2 percent). Given the organisms identified in this study, it is not believed that monetary coinage presents any particular risk to public health. The authors support the principles of basic hygiene, however, in terms of proper handwashing and the avoidance of handling money when working with food or dressing wounds and skin lesions, In conclusion, the study demonstrated that money from 17 countries was contaminated by environmental Gram-positive flora, in particular Bacillus spp., and that the universal 16S rDNA

  7. Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses.

    PubMed

    Liu, Yang; Forrest, Laura L; Bainard, Jillian D; Budke, Jessica M; Goffinet, Bernard

    2013-03-01

    Recent innovations in high-throughput DNA sequencing methodology (next generation sequencing technologies [NGS]) allow for the generation of large amounts of high quality data that may be particularly critical for resolving ambiguous relationships such as those resulting from rapid radiations. Application of NGS technology to bryology is limited to assembling entire nuclear or organellar genomes of selected exemplars of major lineages (e.g., classes). Here we outline how organellar genomes and the entire nuclear ribosomal DNA repeat can be obtained from minimal amounts of moss tissue via small-scale 454 GS FLX sequencing. We sampled two Funariaceae species, Funaria hygrometrica and Entosthodon obtusus, and assembled nearly complete organellar genomes and the whole nuclear ribosomal DNA repeat unit (18S-ITS1-5.8S-ITS2-26S-IGS1-5S-IGS2) for both taxa. Sequence data from these species were compared to sequences from another Funariaceae species, Physcomitrella patens, revealing low overall degrees of divergence of the organellar genomes and nrDNA genes with substitutions spread rather evenly across their length, and high divergence within the external spacers of the nrDNA repeat. Furthermore, we detected numerous microsatellites among the 454 assemblies. This study demonstrates that NGS methodology can be applied to mosses to target large genomic regions and identify microsatellites.

  8. Practical identification of human originated Lactobacillus species by amplified ribosomal DNA restriction analysis (ARDRA) for probiotic use.

    PubMed

    Öztürk, Mehmet; Meterelliyöz, Merve

    2015-08-01

    Probiotics are gaining popularity and increasing the importance of their accurate speciation. Lactobacillus species are commonly used as probiotic strains mostly of clinical importance. Present knowledge indicates that at least 14 Lactobacillus species are associated with the human intestinal tract. Currently, researchers are interested in developing efficient techniques for screening and selecting probiotics bacteria, but unfortunately most of these methods are time-consuming, labor-intensive and costly. The aim of this study is to develop reliable, rapid and accurate method to identify 14 references Lactobacillus species that could have been found in the human alimentary tract by 16S ribosomal DNA restriction analysis. In this study, to develop an effective method for the genotype-based identification of the reference Lactobacillus species, 1.5 kb of 16S rRNA nucleotide sequences of 14 Lactobacillus were collected from the Gene Bank aligned, in silico restricted and analyzed in respect to their 16S-rRNA restriction fragment polymorphism. In silico restriction profiles of 16S-rRNA indicated that FspBI, HinfI and DraI restriction enzymes (RE) are convenient for differentiation of 14 Lactobacillus species in human intestinal tract except Lb. casei and Lb. paracasei. The patterns of our experimental findings obtained from 16S PCR-ARDRA completely confirmed our in silico patterns. The present work demonstrated that 16S PCR-ARDRA method with FspBI, HinfI and DraI RE is a rapid, accurate and reliable method for the identification of Lactobacillus species from human alimentary tract, especially during the identification of large numbers of isolates and any laboratory equipped with a thermo cycler for probiotic use.

  9. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus

    PubMed Central

    Griffin, John N.; Sondalle, Samuel B.; del Viso, Florencia; Baserga, Susan J.; Khokha, Mustafa K.

    2015-01-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  10. Assessment of phylogenetic relationship of rare plant species collected from Saudi Arabia using internal transcribed spacer sequences of nuclear ribosomal DNA.

    PubMed

    Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A

    2013-03-11

    The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.

  11. Molecular characterization of Fasciola spp. from the endemic area of northern Iran based on nuclear ribosomal DNA sequences.

    PubMed

    Amor, Nabil; Halajian, Ali; Farjallah, Sarra; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-07-01

    Fasciolosis caused by Fasciola spp. (Platyhelminthes: Trematoda: Digenea) is considered as the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. In the endemic regions of the North of Iran, Fasciola hepatica and Fasciola gigantica have been previously characterized on the basis of morphometric differences, but the use of molecular markers is necessary to distinguish exactly between species and intermediate forms. Samples from buffaloes and goats from different localities of northern Iran were identified morphologically and then genetically characterized by sequences of the first (ITS-1) and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA). Comparison of the ITS of the northern Iranian samples with sequences of Fasciola spp. from GenBank showed that the examined specimens had sequences identical to those of the most frequent haplotypes of F. hepatica (n=25, 48.1%) and F. gigantica (n=20, 38.45%), which differed from each other in different variable nucleotide positions of ITS region sequences, and their intermediate forms (n=7, 13.45%), which had nucleotides overlapped between the two Fasciola species in all the positions. The ITS sequences from populations of Fasciola isolates in buffaloes and goats had experienced introgression/hybridization as previously reported in isolates from other ruminants and humans. Based on ITS-1 and ITS-2 sequences, flukes are scattered in pure F. hepatica, F. gigantica and intermediate Fasciola clades, revealing that multiple genotypes of Fasciola are able to infect goats and buffaloes in North of Iran. Furthermore, the phylogenetic trees based upon the ITS-1 and ITS-2 sequences showed a close relationship of the Iranian samples with isolates of F. hepatica and F. gigantica from different localities of Africa and Asia. In the present study, the intergenic transcribed spacers ITS-1 and ITS-2 showed to be reliable approaches for the genetic

  12. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons

    SciTech Connect

    Xiong, Y.; Eickbush, T.H.

    1988-01-01

    Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. The authors present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. The authors therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons.

  13. Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals.

    PubMed

    Radeva, Galina; Selenska-Pobell, Sonja

    2005-11-01

    Bacterial diversity was assessed in water samples collected from several uranium mining wastes in Ger many and in the United States by using 16S rDNA and ribosomal intergenic spacer amplification retrievals. The results obtained using the 16S rDNA retrieval showed that the samples collected from the uranium mill tailings of Schlema/Alberoda, Germany, were predominated by Nitrospina-like bacteria, whereas those from the mill tailings of Shiprock, New Mexico, USA, were predominated by gamma-Pseudomonas and Frauteria spp. Additional smaller populations of the Cytophaga-Flavobacterium-Bacteroides group and alpha- and delta-Proteobacteria were identified in the Shiprock samples as well. Proteobacteria and Cytophaga-Flavobacterium-Bacteroides were also found in the third uranium mill tailings studied, Gittersee/Coschütz, Germany, but the groups of the predominant clones were rather small. Most of the clones of the Gittersee/Coschütz samples represented individual sequences, which indicates a high level of bacterial diversity. The samples from the fourth uranium waste studied, Steinsee Deponie B1, Germany, were predominantly occupied by Acinetobacter spp. The ribosomal intergenic spacer amplification retrieval provided results complementary to those obtained by the 16S rDNA analyses. For instance, in the Shiprock samples, an additional predominant bacterial group was identified and affiliated with Nitrosomonas sp., whereas in the Gittersee/Coschütz samples, anammox populations were identified that were not retrieved by the applied 16S rDNA approach.

  14. Intraspecific variation and population structure of the German cockroach, Blattella germanica, revealed with RFLP analysis of the non-transcribed spacer region of ribosomal DNA.

    PubMed

    Mukha, D V; Kagramanova, A S; Lazebnaya, I V; Lazebnyi, O E; Vargo, E L; Schal, C

    2007-06-01

    Little information is available on genetic variation within and between populations of pest cockroaches. In this study, intraspecific HindIII polymorphism was investigated in the German cockroach, Blattella germanica (Linnaeus) (Dictyoptera, Blattaria: Blattellidae), using restriction fragment length polymorphisms (RFLP) of the non-transcribed spacer (NTS) region of ribosomal DNA (rDNA). Individual male insects were collected from infestations at three different pig farms. Each population was characterized by HindIII restriction fragment frequencies and haplotype (a particular X-chromosome pattern) frequencies. The inheritance of the X-chromosome HindIII rDNA patterns over 12 generations (3 years) follows Mendelian patterns, and the stability of this polymorphic marker indicates infrequent genetic recombination of variable sites. Although pairwise genetic distance measures were uncorrelated with geographical distance, the pattern of genetic differentiation of the three cockroach populations suggests that human-mediated transport of cockroaches is an important force in shaping the population genetic structure of cockroach infestations, at least at the regional scale of 10-100 km. Sequence variation in the ribosomal NTS is a useful marker, and RFLP of rDNA is a simple, robust and reproducible technique for differentiating recently diverged cockroach populations.

  15. Infective Arthritis: Bacterial 23S rRNA Gene Sequencing as a Supplementary Diagnostic Method

    PubMed Central

    Moser, Claus; Andresen, Keld; Kjerulf, Anne; Salamon, Suheil; Kemp, Michael; Christensen, Jens Jørgen

    2008-01-01

    Consecutively collected synovial fluids were examined for presence of bacterial DNA (a 700-bp fragment of the bacterial 23S rRNA gene) followed by DNA sequencing of amplicons, and by conventional bacteriological methods. One or more microorganisms were identified in 22 of the 227 synovial fluids (9,7%) originating from 17 patients. Sixteen of the patients had clinical signs of arthritis. For 11 patients molecular and conventional bacterial examinations were in agreement. Staphylococcus aureus, Streptococcus dysgalactiae subspecies equisimilis and Streptococcus pneumoniae, were detected in synovial fluids from 6, 2 and 2 patients, respectively. In 3 patients only 23S rRNA analysis was positive; 2 synovial fluids contained S. dysgalactiae subspecies equisimilis and 1 S. pneumoniae). The present study indicates a significant contribution by PCR with subsequent DNA sequencing of the 23S rRNA gene analysis in recognizing and identification of microorganisms from synovial fluids. PMID:19088916

  16. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor.

    PubMed Central

    Elhag, G A; Thomas, F J; McCreery, T P; Bourque, D P

    1992-01-01

    Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco. Images PMID:1542565

  17. Nucleotide sequence of the internal transcribed spacers and 5.8S region of ribosomal DNA in Pinus pinea L.

    PubMed

    Marrocco, R; Gelati, M T; Maggini, F

    1996-01-01

    The nucleotide sequence of the first internal transcribed spacer (ITS1) belonging to different ribosomal RNA genes from Pinus pinea are reported. The analyzed ITS1 can be distinguished on the basis of their length, being one 2631 bp and the other 271 bp long. Nucleotide comparison of these regions did not show appreciable sequence homology. The larger ITS1 contains five tandem arranged subrepeats with size ranging between 219 bp and 237 bp. The nucleotide sequence of the 5.8S and the ITS2 regions belonging to the larger ribosomal RNA gene are also reported.

  18. Molecular phylogeny of the butterfly tribe Satyrini (Nymphalidae: Satyrinae) with emphasis on the utility of ribosomal mitochondrial genes 16s rDNA and nuclear 28s rDNA.

    PubMed

    Yang, Mingsheng; Zhang, Yalin

    2015-07-09

    The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.

  19. Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis.

    PubMed

    Erlacher, Matthias D; Chirkova, Anna; Voegele, Paul; Polacek, Norbert

    2011-05-01

    The protocol describes the site-specific chemical modification of 23S rRNA of Thermus aquaticus ribosomes. The centerpiece of this 'atomic mutagenesis' approach is the site-specific incorporation of non-natural nucleoside analogs into 23S rRNA in the context of the entire 70S ribosome. This technique exhaustively makes use of the available crystallographic structures of the ribosome for designing detailed biochemical experiments aiming at unraveling molecular insights of ribosomal functions. The generation of chemically engineered ribosomes carrying a particular non-natural 23S rRNA residue at the site of interest, a procedure that typically takes less than 2 d, allows the study of translation at the molecular level and goes far beyond the limits of standard mutagenesis approaches. This methodology, in combination with the presented tests for ribosomal functions adapted to chemically engineered ribosomes, allows unprecedented molecular insight into the mechanisms of protein biosynthesis.

  20. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  1. Diversity of Salmonella Strains Isolated from the Aquatic Environment as Determined by Serotyping and Amplification of the Ribosomal DNA Spacer Regions

    PubMed Central

    Baudart, Julia; Lemarchand, Karine; Brisabois, Anne; Lebaron, Philippe

    2000-01-01

    Salmonella species are pathogenic bacteria often detected in sewage, freshwater, marine coastal water, and groundwater. Salmonella spp. can survive for long periods in natural waters, and the persistence of specific and epidemic strains is of great concern in public health. However, the diversity of species found in the natural environment remains unknown. The aim of this study was to investigate the diversity of Salmonella strains isolated from different natural aquatic systems within a Mediterranean coastal watershed (river, wastewater, and marine coastal areas). A total of 574 strains isolated from these natural environments were identified by both conventional serotyping and the ribosomal spacer-heteroduplex polymorphism (RS-HP) method (M. A. Jensen and N. Straus, PCR Methods Appl. 3:186–194, 1993). More than 40 different serotypes were found, and some serotypes probably mobilized from widespread animal-rearing activities were detected only during storm events. These serotypes may be good indicators of specific contamination sources. Furthermore, the RS-HP method based on the PCR amplification of the intergenic spacer region between the 16S and 23S rRNA genes can produce amplicon profiles allowing the discrimination of species at both serotype and intraserotype levels. This method represents a powerful tool that could be used for rapid typing of Salmonella isolates. PMID:10742240

  2. Sequence variation of the ribosomal DNA second internal transcribed spacer region in two spatially-distinct populations of Amblyomma americanum (L.) (Acari: Ixodidae).

    PubMed

    Reichard, M V; Kocan, A A; Van Den Bussche, R A; Barker, R W; Wyckoff, J H; Ewing, S A

    2005-04-01

    Sequence analysis of the ribosomal DNA second internal transcribed spacer (ITS 2) region in 2 spatially distinct populations of Amblyomma americanum (L.) revealed intraspecific variation. Nucleotide sequences from multiple DNA extractions and several polymerase chain reaction amplifications of eggs from mixed-parentage samples from both populations of ticks revealed that 12 of 1,145 (1.0%) sites varied. Three of the 12 sites of variation were distinct between the 2 A. americanum populations, which corresponded to a rate of 0.26%. Phylogenetic analysis based on ITS 2 sequences provided strong support (i.e., bootstrap value of 80%) that wild A. americanum clustered into a distinguishable group separate from those derived from colony ticks.

  3. Ribosomal DNA location in the scarab beetle Thorectes intermedius (Costa) (Coleoptera: Geotrupidae) using banding and fluorescent in-situ hybridization.

    PubMed

    Vitturi, R; Colomba, M S; Barbieri, R; Zunino, M

    1999-01-01

    Mitotic metaphase chromosomes of the scarab beetle Thorectes intermedius (Costa) (Coleoptera Scarabaeoidea: Geotrupidae) were analyzed using various banding methods and fluorescent in-situ hybridization (FISH) with a ribosomal probe. The results obtained indicate that silver and CMA3 staining are unable to localize the chromosome sites of nucleolar organizer regions (NORs). Such an inadequacy is a consequence of the extensive silver and CMA3 stainability of both constitutive heterochromatin and heterochromatin associated to the NORs.

  4. Transcription Termination Factor reb1p Causes Two Replication Fork Barriers at Its Cognate Sites in Fission Yeast Ribosomal DNA In Vivo

    PubMed Central

    Sánchez-Gorostiaga, Alicia; López-Estraño, Carlos; Krimer, Dora B.; Schvartzman, Jorge B.; Hernández, Pablo

    2004-01-01

    Polar replication fork barriers (RFBs) near the 3′ end of the rRNA transcriptional unit are a conserved feature of ribosomal DNA (rDNA) replication in eukaryotes. In the mouse, in vivo studies indicate that the cis-acting Sal boxes required for rRNA transcription termination are also involved in replication fork blockage. On the contrary, in the budding yeast Saccharomyces cerevisiae, the rRNA transcription termination factors are not required for RFBs. Here we characterized the rDNA RFBs in the fission yeast Schizosaccharomyces pombe. S. pombe rDNA contains three closely spaced polar replication barriers named RFB1, RFB2, and RFB3 in the 3′ to 5′ order. The transcription termination protein reb1 and its two binding sites, present at the 3′ end of the coding region, were required for fork arrest at RFB2 and RFB3 in vivo. On the other hand, fork arrest at the strongest RFB1 barrier was independent of the above transcription termination factors. Therefore, RFB2 and RFB3 resemble the barriers present in the mouse rDNA, whereas RFB1 is similar to the budding yeast RFBs. These results suggest that during evolution, cis- and trans-acting factors required for rRNA transcription termination became involved in replication fork blockage also. S. pombe is suggested to be a transitional species in which both mechanisms coexist. PMID:14673172

  5. Detection of Kudoa septempunctata 18S ribosomal DNA in patient fecal samples from novel food-borne outbreaks caused by consumption of raw olive flounder (Paralichthys olivaceus).

    PubMed

    Harada, Tetsuya; Kawai, Takao; Jinnai, Michio; Ohnishi, Takahiro; Sugita-Konishi, Yoshiko; Kumeda, Yuko

    2012-09-01

    Kudoa septempunctata is a newly identified myxosporean parasite of olive flounder (Paralichthys olivaceus) and a suspected causative agent of several food-borne gastroenteritis outbreaks in Japan. Here, we report the detection of K. septempunctata 18S ribosomal DNA in fecal samples of outbreak patients using an efficient method based on real-time PCR. We first performed a spiking experiment to assess whether our previously developed real-time PCR assay was applicable to detect K. septempunctata in feces. Simultaneously, we compared the relative extraction efficacy of K. septempunctata DNA using three commercial kits. Finally, our detection method was validated by testing 45 clinical samples obtained from 13 food-borne outbreaks associated with the consumption of raw flounder and 41 fecal samples from diarrhea patients epidemiologically unrelated to the ingestion of raw fish. We found that the FastDNA Spin Kit for Soil (MP Biomedicals) was the most efficient method for extracting K. septempunctata DNA from fecal samples. Using this kit, the detection limit of our real-time PCR assay was 1.6 × 10(1) spores per g of feces, and positive results were obtained for 21 fecal and 2 vomitus samples obtained from the food-borne outbreaks. To our knowledge, this is the first report to describe the detection of K. septempunctata DNA in patient fecal samples. We anticipate that our detection method will be useful for confirming food-borne diseases caused by K. septempunctata in laboratory investigations.

  6. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    PubMed Central

    Edgcomb, Virginia P.; McDonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-negative, mesophilic sulfate-reducing bacteria (SRB). DNA was extracted from sediment samples, and contaminating materials were removed by a series of steps. Efficiency of DNA extraction was 48% based on the recovery of tritiated plasmid DNA added to samples prior to extraction. Reproducibility of the extraction procedure was demonstrated by hybridizations to replicate samples. Numbers of target cells in samples were estimated by comparing the amount of hybridization to extracted DNA obtained with each probe to that obtained with a standard curve of genomic DNA for reference strains included on the same membrane. In June, numbers of SRB detected with an SRB-specific probe ranged from 6.0 × 107 to 2.5 × 109 (average, 1.1 × 109 ± 5.2 × 108) cells g of sediment−1. In September, numbers of SRB detected ranged from 5.4 × 108 to 7.3 × 109 (average, 2.5 × 109 ± 1.5 × 109) cells g of sediment−1. The capability of using rDNA probes to estimate cell numbers by hybridization to DNA extracted from complex matrices permits initiation of detailed studies on community composition and changes in communities based on cell numbers in formerly intractable environments. PMID:10103245

  7. Sequestration of Ribosome during Protein Aggregate Formation: Contribution of ribosomal RNA

    PubMed Central

    Pathak, Bani K.; Mondal, Surojit; Banerjee, Senjuti; Ghosh, Amar Nath; Barat, Chandana

    2017-01-01

    An understanding of the mechanisms underlying protein aggregation and cytotoxicity of the protein aggregates is crucial in the prevention of several diseases in humans. Ribosome, the cellular protein synthesis machine is capable of acting as a protein folding modulator. The peptidyltransferase center residing in the domain V of large ribosomal subunit 23S rRNA is the centre for the protein folding ability of the ribosome and is also the cellular target of several antiprion compounds. Our in vitro studies unexpectedly reveal that the partial unfolding or aggregation of lysozyme under reducing conditions in presence of the ribosome can induce aggregation of ribosomal components. Electrostatic interactions complemented by specific rRNA-protein interaction drive the ribosome-protein aggregation process. Under similar conditions the rRNA, especially the large subunit rRNA and in vitro transcribed RNA corresponding to domain V of 23S rRNA (bDV RNA) stimulates lysozyme aggregation leading to RNA-protein aggregate formation. Protein aggregation during the refolding of non-disulfide containing protein BCAII at high concentrations also induces ribosome aggregation. BCAII aggregation was also stimulated in presence of the large subunit rRNA. Our observations imply that the specific sequestration of the translation machine by aggregating proteins might contribute to their cytotoxicity. PMID:28169307

  8. Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA.

    PubMed

    Zhu, X Q; Podolska, M; Liu, J S; Yu, H Q; Chen, H H; Lin, Z X; Luo, C B; Song, H Q; Lin, R Q

    2007-11-01

    Using genetic markers defined previously in the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA), isotopic, and non-isotopic polymerase-chain-reaction-coupled single-strand conformation polymorphism (SSCP) were utilized to identify each of three anisakid species [Anisakis simplex (s.l.), Contracaecum osculatum (s.l.), and Hysterothylacium aduncum] from different host species and geographical locations in Poland and Sweden. While subtle microheterogeneity was observed within each of Anisakis simplex (s.l.) and H. aduncum, distinct SSCP profiles were displayed for each of the three species, allowing identification and differentiation of the three taxa. Subsequent sequencing of the ITS-1 and ITS-2 rDNA revealed that A. simplex (s.l.) represented Anisakis simplex s.s. and Contracaecum osculatum (s.l.) represented C. osculatum C. Application of the non-isotopic SSCP assay of ITS-2 to larval anisakid samples from different hosts and geographical locations in China revealed three distinct SSCP profiles, one of which was consistent with that of A. simplex (s.l.), and the other two had different SSCP profiles from that of C. osculatum C and H. aduncum. Sequencing of the ITS-1 and ITS-2 rDNA for representative Chinese anisakid samples examined revealed three anisakid species in China, i.e., Anisakis typica, Anisakis pegreffii, and Hysterothylacium sp. These molecular tools will be useful for identification and investigation of the ecology of anisakid nematodes in China and elsewhere.

  9. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice.

    PubMed

    Jain, Shikha; Afley, Prachiti; Dohre, Sudhir K; Saxena, Nandita; Kumar, Subodh

    2014-07-31

    Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans and existing animal vaccines have limitations. We have previously described the ribosomal protein L9 to have the vaccine potential. In this study, L9 based DNA vaccine (pVaxL9) was generated and evaluated in mouse model. Intramuscular immunisation of pVaxL9 was able to elicit the anti-L9 IgG antibody response of both IgG1 and IgG2a isotypes when compared with PBS and pVax immunised control animals. Heightened antibody response was observed in mice groups immunised with pVaxL9 priming and recombinant L9 boosting (PB) and where pDNA immunisation was carried out by in vivo electroporation (EP). The vaccine groups proliferated splenocytes and released Th1 type cytokines e.g. IFN-γ, TNF-α, IL-2. Further, flow cytometric analysis revealed that IFN-γ was released by both by CD4+ and CD8+ T cells particularly in PB and EP groups when compared with mice immunised with empty control vector. The L9 based pDNA vaccine was able to confer significant protection in mice against challenge with virulent B. abortus with PB and EP groups offering better protection. Taken together, it can be concluded that L9 based DNA vaccine is immunogenic and confer protection in mouse model.

  10. Cleavage of the sarcin–ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding

    PubMed Central

    García-Ortega, Lucía; Álvarez-García, Elisa; Gavilanes, José G.; Martínez-del-Pozo, Álvaro; Joseph, Simpson

    2010-01-01

    Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin α-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin–ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of α-sarcin on defined steps of translation by the bacterial ribosome. α-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu•GTP•tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in α-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA–tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation. PMID:20215430

  11. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence

    PubMed Central

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle

    2016-01-01

    Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with

  12. The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice.

    PubMed

    Iborra, Salvador; Soto, Manuel; Carrión, Javier; Nieto, Ana; Fernández, Edgar; Alonso, Carlos; Requena, Jose M

    2003-11-01

    In this study, we examined the immunogenic properties of the Leishmania infantum acidic ribosomal protein P0 (LiP0) in the BALB/c mouse model. The humoral and cellular responses induced by the administration of the LiP0 antigen, either as soluble recombinant LiP0 (rLiP0) or as a plasmid DNA formulation (pcDNA3-LiP0), were determined. Also, the immunological response associated with a prime-boost strategy, consisting of immunization with pcDNA3-LiP0 followed by a boost with rLiP0, was assayed. Immunization with rLiP0 induced a predominant Th2-like humoral response, but no anti-LiP0 antibodies were induced after immunization with pcDNA3-LiP0, whereas a strong humoral response consisting of a mixed immunoglobulin G2a (IgG2a)-IgG1 isotype profile was induced in mice immunized with the prime-boost regime. For all three immunization protocols, rLiP0-stimulated production of gamma interferon (IFN-gamma) in both splenocytes and lymph node cells from immunized mice was observed. However, it was only when mice were immunized with pcDNA3-LiP0 that noticeable protection against L. major infection was achieved, as determined by both lesion development and parasite burden. Immunization of mice with LiP0-DNA primes both CD4(+) and CD8(+) T cells, which, with the L. major challenge, were boosted to produce significant levels of IL-12-dependent, antigen-specific IFN-gamma. Taken together, these data indicate that genetic vaccination with LiP0 induces protective immunological effector mechanisms, yet the immunological response elicited by LiP0 is not sufficient to keep the infection from progressing.

  13. Molecular phylogenetic relationships among members of the family Phytolaccaceae sensu lato inferred from internal transcribed spacer sequences of nuclear ribosomal DNA.

    PubMed

    Lee, J; Kim, S Y; Park, S H; Ali, M A

    2013-02-28

    The phylogeny of a phylogenetically poorly known family, Phytolaccaceae sensu lato (s.l.), was constructed for resolving conflicts concerning taxonomic delimitations. Cladistic analyses were made based on 44 sequences of the internal transcribed spacer of nuclear ribosomal DNA from 11 families (Aizoaceae, Basellaceae, Didiereaceae, Molluginaceae, Nyctaginaceae, Phytolaccaceae s.l., Polygonaceae, Portulacaceae, Sarcobataceae, Tamaricaceae, and Nepenthaceae) of the order Caryophyllales. The maximum parsimony tree from the analysis resolved a monophyletic group of the order Caryophyllales; however, the members, Agdestis, Anisomeria, Gallesia, Gisekia, Hilleria, Ledenbergia, Microtea, Monococcus, Petiveria, Phytolacca, Rivinia, Schindleria, Seguieria, Stegnosperma, and Trichostigma, which belong to the family Phytolaccaceae s.l., did not cluster under a single clade, demonstrating that Phytolaccaceae is polyphyletic.

  14. Non-monophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA.

    PubMed

    Dohrmann, Martin; Voigt, Oliver; Erpenbeck, Dirk; Wörheide, Gert

    2006-09-01

    Calcareous sponges (Porifera, Calcarea) play an important role for our understanding of early metazoan evolution, since several molecular studies suggested their closer relationship to Eumetazoa than to the other two sponge 'classes,' Demospongiae and Hexactinellida. The division of Calcarea into the subtaxa Calcinea and Calcaronea is well established by now, but their internal relationships remain largely unresolved. Here, we estimate phylogenetic relationships within Calcarea in a Bayesian framework, using full-length 18S and partial 28S ribosomal DNA sequences. Both genes were analyzed separately and in combination and were further partitioned by stem and loop regions, the former being modelled to take non-independence of paired sites into account. By substantially increasing taxon sampling, we show that most of the traditionally recognized supraspecific taxa within Calcinea and Calcaronea are not monophyletic, challenging the existing classification system, while monophyly of Calcinea and Calcaronea is again highly supported.

  15. Identification and Typing of Malassezia Species by Amplified Fragment Length Polymorphism and Sequence Analyses of the Internal Transcribed Spacer and Large-Subunit Regions of Ribosomal DNA

    PubMed Central

    Gupta, Aditya K.; Boekhout, Teun; Theelen, Bart; Summerbell, Richard; Batra, Roma

    2004-01-01

    Malassezia yeasts are associated with several dermatological disorders. The conventional identification of Malassezia species by phenotypic methods is complicated and time-consuming, and the results based on culture methods are difficult to interpret. A comparative molecular approach based on the use of three molecular techniques, namely, amplified fragment length polymorphism (AFLP) analysis, sequencing of the internal transcribed spacer, and sequencing of the D1 and D2 domains of the large-subunit ribosomal DNA region, was applied for the identification of Malassezia species. All species could be correctly identified by means of these methods. The results of AFLP analysis and sequencing were in complete agreement with each other. However, some discrepancies were noted when the molecular methods were compared with the phenotypic method of identification. Specific genotypes were distinguished within a collection of Malassezia furfur isolates from Canadian sources. AFLP analysis revealed significant geographical differences between the North American and European M. furfur strains. PMID:15365020

  16. Characterisation of Lymnaea cubensis, L. viatrix and L. neotropica n. sp., the main vectors of Fasciola hepatica in Latin America, by analysis of their ribosomal and mitochondrial DNA.

    PubMed

    Bargues, M D; Artigas, P; Mera Y Sierra, R L; Pointier, J P; Mas-Coma, S

    2007-10-01

    Although, in the endemic areas throughout the world, human fascioliasis presents varying patterns in its epidemiology, the species of lymnaeid snail that act as intermediate hosts and vectors are always crucial in the transmission of the causative parasites. Species in the Galba/Fossaria group of snails, such as Lymnaea cubensis, L. viatrix var. A ventricosa, L. viatrix var. B elongata and Galba truncatula, appear to be frequently involved in the transmission of Fasciola hepatica in Central and South America, although specific classification within this morphologically and anatomically confusing group is often very difficult. To explore the potential use of molecular analyses in the identification of vector snails, regions of the ribosomal DNA - the small subunit (18S) gene and internal transcribed spacers (ITS-2 and ITS-1) - and of the mitochondrial DNA - the cytochrome c oxidase subunit I (COI) - of wild-caught lymnaeid snails of L. cubensis, L. viatrix var. A ventricosa, L. viatrix var. B elongata and G. truncatula have been sequenced. The samples of the Latin American species included specimens from the respective type localities. The genetic distances observed and the results of phylogenetic analyses demonstrate that two different species exist within L. viatrix. Lymnaea neotropica n. sp. (=L. viatrix var. B elongata) is here proposed for specimens from Lima, Peru, and is differentiated from L. viatrix (=L. viatrix var. A ventricosa), L. cubensis and G. truncatula. The data collected on the 18S ribosomal-RNA gene indicate that the snails investigated may cover more than one supraspecific taxon. The ITS-2, ITS-1 and COI nucleotide sequences are clearly useful markers for the differentiation of these morpho-anatomically similar lymnaeid species. The numerous microsatellite repeats found within ITS-2 are potential tools for differentiation at population level.

  17. Molecular Analysis of the Lance Nematode, Hoplolaimus spp., Using the First Internal Transcribed Spacer and the D1-D3 Expansion Segments of 28S Ribosomal DNA1

    PubMed Central

    Bae, CH; Szalanski, AL; Robbins, RT

    2008-01-01

    DNA sequence analyses of the nuclear ribosomal ITS1 region of the ribosomal DNA and D1-D3 expansion segments of the 28S gene were conducted to characterize the genetic variation of six amphimictic Hoplolaimus species, including H. magnistylus, H. concaudajuvencus, H. galeatus, Hoplolaimus sp. 1, Hoplolaimus sp. 2 and Hoplolaimus sp. 3, and two closely related parthenogenetic species, H. columbus and H. seinhorsti. PCR amplifications of the combined D1-D3 expansion segments and the ITS1 region each yielded one distinct amplicon. In the D1-D3 region, there was no nucleotide sequence variation between populations of H. columbus, H. magnistylus, Hoplolaimus sp. 2 and Hoplolaimus sp. 3, whereas the ITS1 sequences had nucleotide variation among species. We detected conserved ITS1 regions located at the 3’ and 5’ end of ITS1 and also in the middle of the ITS1 among Hoplolaimus species. These regions were compared with sequences of distantly related Heterodera and Globedera. PCR-RFLP and sequence analysis of ITS1 and 28S PCR products revealed that several haplotypes existed in the same genome of H. columbus, H. magnistylus, H. seinhorsti, H. concaudajuvencus and Hoplolaimus sp. 1. Maximum likelihood and maximum parsimony analysis using the combined ITS1 and D1-D3 expansion segment sequences always produced trees with similar topology; H. columbus and H. seinhorsti grouped in one clade and the other six species (H. galeatus, H. concaudajuvencus, H. magnistylus, Hoplolaimus sp. 1, Hoplolaimus sp. 2, Hoplolaimus sp. 3) grouped in another. Molecular analysis supports morphological schemes for this genus to be divided into two groups based on several phenotypic traits derived from morphological evolution. PMID:19440260

  18. cDNA cloning, overexpression, purification and pharmacologic evaluation for anticancer activity of ribosomal protein L23A gene (RPL23A) from the Giant Panda.

    PubMed

    Sun, Bing; Hou, Yi-Ling; Hou, Wan-Ru; Zhang, Si-Nan; Ding, Xiang; Su, Xiu-Lan

    2012-01-01

    RPL23A gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L23P family of ribosomal proteins, which is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of ribosomal protein L23A (RPL23A) gene of the Giant Panda (Ailuropoda melanoleuca). The cDNA of RPL23A was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL23A cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. Recombinant protein of RPL23A obtained from the experiment acted on Hep-2 cells and human HepG-2 cells, then the growth inhibitory effect of these cells was observed by MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) assay. The result indicated that the length of the fragment cloned is 506 bp, and it contains an open-reading frame (ORF) of 471 bp encoding 156 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL23A protein is 17.719 kDa with a theoretical pI 11.16. The molecular weight of the recombinant protein RPL23A is 21.265 kDa with a theoretical pI 10.57. The RPL23A gene can be really expressed in E. coli and the RPL23A protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 22 KDa polypeptide. The data showed that the recombinant protein RPL23A had a time- and dose-dependency on the cell growth inhibition rate. The data also indicated that the effect at low concentrations was better than at high concentrations on Hep-2 cells, and that the concentration of 0.185 μg/mL had the best rate of growth inhibition of 36.31%. All results of the experiment revealed that the recombinant protein RPL23A exhibited anti-cancer function on the Hep-2 cells. The study provides a scientific basis and aids orientation for

  19. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures.

    PubMed

    Takishita, Kiyotaka; Yubuki, Naoji; Kakizoe, Natsuki; Inagaki, Yuji; Maruyama, Tadashi

    2007-07-01

    Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the "hidden" microeukaryotic diversity in the environment examined.

  20. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment.

    PubMed

    Tsuge, Kenji; Matsui, Kuniko; Itaya, Mitsuhiro

    2007-05-10

    Methods that allow the assembly of genes in one single DNA segment are of great use in bioengineering and synthetic biology. The biosynthesis of plipastatin, a lipopeptide antibiotic synthesized non-ribosomally by Bacillus subtilis 168, requires three gene blocks at different genome loci, i.e. the peptide synthetase operon ppsABCDE (38-kb), degQ (0.6kb), and sfp (1.0kb). We applied a DNA assembly protocol in B. subtilis, named ordered gene assembly in B. subtilis (OGAB) method, to incorporate those three gene blocks into a one-unit plasmid via one ligation-reaction. High yields of correct assembly, above 87%, allowed us to screen for the plasmid that produced plipastatin at a level approximately 10-fold higher than in the wild-type. In contrast to that recombinogenic technologies used in E. coli require repetitive assembly steps and/or several selection markers, our method features high fidelity and efficiency, is completed in one ligation using only one selection marker associating with plasmid vector, and is applicable to DNA fragments larger than 40kb.

  1. Morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence distinctions between two species Platygyra (Cnidaria: Scleractinia) from Hong Kong [corrected].

    PubMed

    Lam, Katherine; Morton, Brian

    2003-01-01

    Two sympatric species of Platygyra have been identified from Hong Kong waters: i.e., P. sinensis and P. pini. The former has been further subdivided into 4 morphotypes based on colony growth form as follows: classic, encrusting, hillocky, and long-valley. Taxonomic confusion raised by overlapping morphological variations and frequent sympatric occurrences, however, has posed problems in relation to Platygyra ecology and population dynamics. This study attempted to differentiate Platygyra pini and morphotypes of P. sinensis by both morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence analysis. Morphological data based on 9 skeletal characters were subjected to multivariate analysis. No clear groupings were obtained using a multidimensional scaling plot. Most parsimony analysis was conducted using either the rDNA data set including ITS1, 5.8S, and partial ITS2 or the ITS1 region only. Maximum parsimony (MP) and neighbor-joining (NJ) trees obtained from both data sets, clustered samples of P. sinensis and P. pini into 2 clades. The interspecific Kimura 2-parameter sequence divergence value (k2) obtained by the former rDNA data set was 14.275 +/- 0.507%, which is greater than the intraspecific values (1.239 +/- 1.147% for P. sinensis and 0.469 +/- 0.364% for P. pini), indicating that this marker of ITS1, 5.8S, and ITS2 contains substantially high levels of inherent diversity and is useful in resolving the problematic taxonomy of Platygyra.

  2. Phylogenetic relationships among phrynosomatid lizards as inferred from mitochondrial ribosomal DNA sequences: substitutional bias and information content of transitions relative to transversions.

    PubMed

    Reeder, T W

    1995-06-01

    The phylogenetic relationships among 40 species, representing all genera, within the North American lizard family Phrynosomatidae were inferred from mitochondrial ribosomal RNA gene sequences. Cladistic analysis of the DNA sequence data (779 bp; 162 informative characters) supported the monophyly of the sand lizards (Callisaurus, Cophosaurus, Holbrookia, and Uma), Petrosaurus, Phrynosoma, Urosaurus, and Uta. All the species of Sceloporus, except S. variabilis and S. chrysostictus, formed a clade. Except for a sand lizard + Phrynosoma clade, the intergeneric relationships inferred from the mtDNA were largely incongruent with recent cladistic analyses based on morphology. Sceloporus group monophyly was not supported, with Petrosaurus being a member of a clade containing Sator, Sceloporus, and Urosaurus, to the exclusion of Uta. The phylogenetic placement of Uta was ambiguous. The substitutional bias in the phrynosomatid mitochondrial rDNA sequences was examined, as well as the phylogenetic information content of transitions relative to transversions. There appeared to be a lower transition bias than observed in other vertebrate sequences, with some classes of transversions occurring as frequently as G <-> A transitions. Transitions were no less informative for phylogeny reconstruction than transversions. Therefore, transitions should not be down-weighted in phylogenetic analysis, as is often done.

  3. Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes.

    PubMed

    Gürtler, Volker; Harford, Cate; Bywater, Judy; Mayall, Barrie C

    2006-02-01

    To obtain Mycobacterium species identification directly from clinical specimens and cultures, the 16S-23S rDNA spacer (ISR) was amplified using previously published primers that detect all Mycobacterium species. The restriction enzyme that could potentially produce the most restriction fragment length polymorphisms (RFLPs) was determined from all available ISR DNA sequences in GenBank to produce a novel data set of RFLPs for 31 slowly growing Mycobacterium species. Subsequently a GelCompar II database was constructed from RFLPs for 10 enzymes that have been used in the literature to differentiate slowly growing Mycobacterium species. The combination of Sau96I and HaeIII were the best choice of enzymes for differentiating clinically relevant slowly growing Mycobacterium species. A total of 392 specimens were studied by PCR with 195 negative and 197 positive specimens. The ISR-PCR product was digested with HaeIII (previously reported) and Sau96I (new to this study) to obtain a Mycobacterium species identification based on the ISR-RFLPs. The species identification obtained by ISR-RFLP was confirmed by DNA sequencing (isolate numbers are shown in parentheses) for M. avium (3), M. intracellulare (4), M. avium complex (1), M. gordonae (2) and M. tuberculosis (1). The total number of specimens (99) identified were from culture (67), Bactectrade mark 12B culture bottles (11), EDTA blood (3), directly from smear positive specimens (13), tissue (4) and urine (1). Direct species identification was obtained from all 13/13 smear positive specimens. The total number of specimens (99) were identified as M. tuberculosis (41), M. avium (7), M. avium complex (11), M. intracellulare MIN-A (20), M. flavescens (2), M. fortuitum (10), M. gordonae (4), M. shimoidei (1), M. ulcerans (1) and M. chelonae (2). This method reduces the time taken for Mycobacterium species identification from 8-10 weeks for culture and biochemical identification; to 4-6 weeks for culture and ISR-RFLP; to 2 days

  4. Identification to the species level of Lactobacillus isolated in probiotic prospecting studies of human, animal or food origin by 16S-23S rRNA restriction profiling

    PubMed Central

    Moreira, João Luiz S; Mota, Rodrigo M; Horta, Maria F; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2005-01-01

    Background The accurate identification of Lactobacillus and other co-isolated bacteria during microbial ecological studies of ecosystems such as the human or animal intestinal tracts and food products is a hard task by phenotypic methods requiring additional tests such as protein and/or lipids profiling. Results Bacteria isolated in different probiotic prospecting studies, using de Man, Rogosa and Sharpe medium (MRS), were typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR products. The set of enzymes chosen differentiates most species of Lactobacillus genus and also co-isolated bacteria such as Enterococcus, Streptococcus, Weissella, Staphylococcus, and Escherichia species. The in silico predictions of restriction patterns generated by the Lactobacillus shorter spacers digested with 11 restriction enzymes with 6 bp specificities allowed us to distinguish almost all isolates at the species level but not at the subspecies one. Simultaneous theoretical digestions of the three spacers (long, medium and short) with the same set of enzymes provided more complex patterns and allowed us to distinguish the species without purifying and cloning of PCR products. Conclusion Lactobacillus isolates and several other strains of bacteria co-isolated on MRS medium from gastrointestinal ecosystem and fermented food products could be identified using DNA fingerprints generated by restriction endonucleases. The methodology based on amplified ribosomal DNA restriction analysis (ARDRA) is easier, faster and more accurate than the current methodologies based on fermentation profiles, used in most laboratories for the purpose of identification of these bacteria in different prospecting studies. PMID:15788104

  5. Phylogenetic relationships of the Culicomorpha inferred from 18S and 5.8S ribosomal DNA sequences. (Diptera:Nematocera).

    PubMed

    Miller, B R; Crabtree, M B; Savage, H M

    1997-05-01

    We investigated the evolutionary origins of the mosquito family Culicidae by examination of 18S and 5.8S ribosomal gene sequence divergence. Phylogenetic analyses demonstrated that within the infraorder Culicomorpha, taxa in the families Corethrellidae, Chaoboridae and Culicidae formed a monophyletic group; there was support for a sister relationship between this lineage and a representative of the Chironomidae. A chaoborid midge was the closest relative of the mosquitoes. Taxa from four genera of mosquitoes formed a monophyletic group; lack of a spacer in the 5.8S gene was unique to members of the Culicidae. A member of the genus Anopheles formed the most basal lineage among the mosquitoes analysed. Phylogenetic relationships were unresolved for representatives in the families Dixidae, Simuliidae and Ceratopogonidae.

  6. Potential key bases of ribosomal RNA to kingdom-specific spectra of antibiotic susceptibility and the possible archaeal origin of eukaryotes.

    PubMed

    Xie, Qiang; Wang, Yanhui; Lin, Jinzhong; Qin, Yan; Wang, Ying; Bu, Wenjun

    2012-01-01

    In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been documented. Through comparing 507 taxa of 16S-18S rDNA and 347 taxa of 23S-28S rDNA, we found that archaea and eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase centre (PTC) of the 23S-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug resistance of ribosomes.

  7. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    PubMed

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  8. Essential role of conserved DUF177A protein in plastid 23S rRNA accumulation and plant embryogenesis

    PubMed Central

    Yang, Jiani; Suzuki, Masaharu; McCarty, Donald R.

    2016-01-01

    DUF177 proteins are nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, duf177 mutants in bacteria have not established a function. In contrast, duf177a mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize inbred W22, duf177a mutant embryos arrest at an early transition stage, whereas the block is suppressed in the B73 inbred background, conditioning an albino seedling phenotype. Background-dependent embryo lethal phenotypes are characteristic of maize plastid gene expression mutants. Consistent with the plastid gene expression hypothesis, quantitative real-time PCR revealed a significant reduction of 23S rRNA in an Escherichia coli duf177 knockout. Plastid 23S rRNA contents of duf177a mutant tissues were also markedly reduced compared with the wild-type, whereas plastid 16S, 5S, and 4.5S rRNA contents were less affected, indicating that DUF177 is specifically required for accumulation of prokaryote-type 23S rRNA. An AtDUF177A–green fluorescent protein (GFP) transgene controlled by the native AtDUF177A promoter fully complemented the Arabidopsis atduf177a mutant. Transient expression of AtDUF177A–GFP in Nicotiana benthamiana leaves showed that the protein was localized in chloroplasts. The essential role of DUF177A in chloroplast–ribosome formation is reminiscent of IOJAP, another highly conserved ribosome-associated protein, suggesting that key mechanisms controlling ribosome formation in plastids evolved from non-essential pathways for regulation of the prokaryotic ribosome. PMID:27574185

  9. Characterization of the Dominant and Rare Members of a Young Hawaiian Soil Bacterial Community with Small-Subunit Ribosomal DNA Amplified from DNA Fractionated on the Basis of Its Guanine and Cytosine Composition

    PubMed Central

    Nüsslein, Klaus; Tiedje, James M.

    1998-01-01

    The small-subunit ribosomal DNA (rDNA) diversity was found to be very high in a Hawaiian soil community that might be expected to have lower diversity than the communities in continental soils because the Hawaiian soil is geographically isolated and only 200 years old, is subjected to a constant climate, and harbors low plant diversity. Since an underlying community structure could not be revealed by analyzing the total eubacterial rDNA, we first fractionated the DNA on the basis of guanine-plus-cytosine (G+C) content by using bis-benzimidazole and equilibrium centrifugation and then analyzed the bacterial rDNA amplified from a fraction with a high biomass (63% G+C fraction) and a fraction with a low biomass (35% G+C fraction). The rDNA clone libraries were screened by amplified rDNA restriction analysis to determine phylotype distribution. The dominant biomass reflected by the 63% G+C fraction contained several dominant phylotypes, while the community members that were less successful (35% G+C fraction) did not show dominance but there was a very high diversity of phylotypes. Nucleotide sequence analysis revealed taxa belonging to the groups expected for the G+C contents used. The dominant phylotypes in the 63% G+C fraction were members of the Pseudomonas, Rhizobium-Agrobacterium, and Rhodospirillum assemblages, while all of the clones sequenced from the 35% G+C fraction were affiliated with several Clostridium assemblages. The two-step rDNA analysis used here uncovered more diversity than can be detected by direct rDNA analysis of total community DNA. The G+C separation step is also a way to detect some of the less dominant organisms in a community. PMID:9546163

  10. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  11. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics.

    PubMed

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Köhrer, Karl; Gougoula, Christina; Sager, Martin

    2014-10-01

    Correct identification of bacteria is crucial for the management of rodent colonies. Some bacteria are difficult to identify phenotypically outside reference laboratories. In this study, we evaluated the utility of 16S ribosomal DNA (rDNA) sequencing as a means of identifying a collection of 30 isolates of rodent origin which are conventionally difficult to identify. Sequence analysis of the first approximate 720 to 880 bp of the 5'- end of 16S rDNA identified 25 isolates (83.33%) with ≥ 99% similarity to a sequence of a type strain, whereas three isolates (10%) displayed a sequence similarity ≥ 97% but <99% to the type strain sequences. These similarity scores were used to define identification to species and genus levels, respectively. Two of the 30 isolates (6.67%) displayed a sequence similarity of ≥ 95 but <97% to the reference strains and were thus allocated to a family. This technique allowed us to document the association of mice with bacteria relevant for the colonies management such as Pasteurellaceae, Bordetella hinzii or Streptococcus danieliae. In addition, human potential pathogens such as Acinetobacter spp., Ochrobactrum anthropi and Paracoccus yeei or others not yet reported in mouse bacterial species such as Leucobacter chironomi, Neisseria perflava and Pantoea dispersa were observed. In conclusion, the sequence analysis of 16S rDNA proved to be a useful diagnostic tool, with higher performance characteristics than the classical phenotypic methods, for identification of laboratory animal bacteria. For the first time this method allowed us to document the association of certain bacterial species with the laboratory mouse.

  12. Nucleotide sequence of Marchantia polymorpha chloroplast DNA: a region possibly encoding three tRNAs and three proteins including a homologue of E. coli ribosomal protein S14.

    PubMed Central

    Umesono, K; Inokuchi, H; Ohyama, K; Ozeki, H

    1984-01-01

    The nucleotide sequence of a region of Marchantia polymorpha chloroplast DNA was determined. On this DNA sequence (3.38kb), three open reading frames (ORFs) and three putative tRNA genes were detected in the following order: -ORF701-tRNASer(UGA)-ORF702-tRNAGly(GCC)-initiator tRNAMet(CAU)-ORF703-. The ORF703 is composed of 100 codons in which those for lysine (15%) and arginine (11%) are abundant, and could be accounted for as a counterpart of E. coli ribosomal protein S14 since they share 45% homology in the amino acid sequences. The ORF701 appears to code for a membrane protein, showing a periodic appearance of seven clusters of hydrophobic amino acids. Although the mechanisms remain unknown, the ORF701 causes a streptomycin-sensitive phenotype in resistant mutants of E. coli. The ORFs and tRNA genes are separated from each other by extremely AT-rich spacers containing sequences of dyad symmetry. The third letter positions of the codons in the ORFs are also rich in A and T residues. PMID:6393057

  13. The first determination of Trichuris sp. from roe deer by amplification and sequenation of the ITS1-5.8S-ITS2 segment of ribosomal DNA.

    PubMed

    Salaba, O; Rylková, K; Vadlejch, J; Petrtýl, M; Scháňková, S; Brožová, A; Jankovská, I; Jebavý, L; Langrová, I

    2013-03-01

    Trichuris nematodes were isolated from roe deer (Capreolus capreolus). At first, nematodes were determined using morphological and biometrical methods. Subsequently genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from ribosomal DNA (RNA) was amplified and sequenced using PCR techniques. With u sing morphological and biometrical methods, female nematodes were identified as Trichuris globulosa, and the only male was identified as Trichuris ovis. The females were classified into four morphotypes. However, analysis of the internal transcribed spacers (ITS1-5.8S-ITS2) of specimens did not confirm this classification. Moreover, the female individuals morphologically determined as T. globulosa were molecularly identified as Trichuris discolor. In the case of the only male molecular analysis match the result of the molecular identification. Furthermore, a comparative phylogenetic study was carried out with the ITS1 and ITS2 sequences of the Trichuris species from various hosts. A comparison of biometric information from T. discolor individuals from this study was also conducted.

  14. Genetic diversity and molecular evolution of Naga King Chili inferred from internal transcribed spacer sequence of nuclear ribosomal DNA.

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Devi, Khumuckcham Sangeeta; Tandon, Pramod

    2016-02-01

    Sequences of the Internal Transcribed Spacer (ITS1-5.8S-ITS2) of nuclear ribosomal DNAs were explored to study the genetic diversity and molecular evolution of Naga King Chili. Our study indicated the occurrence of nucleotide polymorphism and haplotypic diversity in the ITS regions. The present study demonstrated that the variability of ITS1 with respect to nucleotide diversity and sequence polymorphism exceeded that of ITS2. Sequence analysis of 5.8S gene revealed a much conserved region in all the accessions of Naga King Chili. However, strong phylogenetic information of this species is the distinct 13 bp deletion in the 5.8S gene which discriminated Naga King Chili from the rest of the Capsicum sp. Neutrality test results implied a neutral variation, and population seems to be evolving at drift-mutation equilibrium and free from directed selection pressure. Furthermore, mismatch analysis showed multimodal curve indicating a demographic equilibrium. Phylogenetic relationships revealed by Median Joining Network (MJN) analysis denoted a clear discrimination of Naga King Chili from its closest sister species (Capsicum chinense and Capsicum frutescens). The absence of star-like network of haplotypes suggested an ancient population expansion of this chili.

  15. Evolution of the assassin's arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea).

    PubMed

    Zhang, Junxia; Gordon, Eric R L; Forthman, Michael; Hwang, Wei Song; Walden, Kim; Swanson, Daniel R; Johnson, Kevin P; Meier, Rudolf; Weirauch, Christiane

    2016-02-26

    Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators.

  16. Molecular differentiation of three closely related members of the mosquito species complex, Anopheles moucheti, by mitochondrial and ribosomal DNA polymorphism.

    PubMed

    Kengne, P; Antonio-Nkondjio, C; Awono-Ambene, H P; Simard, F; Awolola, T S; Fontenille, D

    2007-06-01

    Distinction between members of the equatorial Africa malaria vector Anopheles moucheti (Evans) s.l. (Diptera: Culicidae) has been based mainly on doubtful morphological features. To determine the level of genetic differentiation between the three morphological forms of this complex, we investigated molecular polymorphism in the gene encoding for mitochondrial cytochrome oxidase b (CytB) and in the ribosomal internal transcribed spacers (ITS1 and ITS2). The three genomic regions revealed sequence differences between the three morphological forms similar in degree to the differences shown previously for members of other anopheline species groups or complexes (genetic distance d = 0.047-0.05 for CytB, 0.084-0.166 for ITS1 and 0.03-0.05 for ITS2). Using sequence variation in the ITS1 region, we set up a diagnostic polymerase chain reaction (PCR) for rapid and reliable identification of each subspecies within the An. moucheti complex. Specimens of An. moucheti s.l. collected in Cameroon, the Democratic Republic of Congo (DRC), Uganda and Nigeria were successfully identified, demonstrating the general applicability of this technique.

  17. Evolution of the assassin’s arms: insights from a phylogeny of combined transcriptomic and ribosomal DNA data (Heteroptera: Reduvioidea)

    PubMed Central

    Zhang, Junxia; Gordon, Eric R. L.; Forthman, Michael; Hwang, Wei Song; Walden, Kim; Swanson, Daniel R.; Johnson, Kevin P.; Meier, Rudolf; Weirauch, Christiane

    2016-01-01

    Assassin bugs (Reduvioidea) are one of the most diverse (>7,000 spp.) lineages of predatory animals and have evolved an astounding diversity of raptorial leg modifications for handling prey. The evolution of these modifications is not well understood due to the lack of a robust phylogeny, especially at deeper nodes. We here utilize refined data from transcriptomes (370 loci) to stabilize the backbone phylogeny of Reduvioidea, revealing the position of major clades (e.g., the Chagas disease vectors Triatominae). Analyses combining transcriptomic and Sanger-sequencing datasets result in the first well-resolved phylogeny of Reduvioidea. Despite amounts of missing data, the transcriptomic loci resolve deeper nodes while the targeted ribosomal genes anchor taxa at shallower nodes, both with high support. This phylogeny reveals patterns of raptorial leg evolution across major leg types. Hairy attachment structures (fossula spongiosa), present in the ancestor of Reduvioidea, were lost multiple times within the clade. In contrast to prior hypotheses, this loss is not directly correlated with the evolution of alternative raptorial leg types. Our results suggest that prey type, predatory behavior, salivary toxicity, and morphological adaptations pose intricate and interrelated factors influencing the evolution of this diverse group of predators. PMID:26916580

  18. Cloning and sequence analysis of two copies of a 23S rRNA gene from Helicobacter pylori and association of clarithromycin resistance with 23S rRNA mutations.

    PubMed Central

    Taylor, D E; Ge, Z; Purych, D; Lo, T; Hiratsuka, K

    1997-01-01

    In this study, two identical copies of a 23S-5S gene cluster, which are separately situated within the Helicobacter pylori UA802 chromosome, were cloned and sequenced. Comparison of the DNA sequence of the H. pylori 23S rRNA gene with known sequences of other bacterial 23S rRNA genes indicated that the H. pylori UA802 23S rRNA genes are closely related to those of Campylobacter spp. and therefore belong in the proposed Proteobacteria subdivision. The 5'-terminal nucleotide T or A of the 23S rRNA is close to a Pribnow box which could be a -10 region of the transcription promoter for the 23S rRNA gene, suggesting that a posttranscriptional process is likely not involved in the maturation of the H. pylori 23S rRNA. Clinical isolates of H. pylori resistant to clarithromycin were examined by using natural transformation and pulsed-field gel electrophoresis. Cross-resistance to clarithromycin and erythromycin, which was transferred by natural transformation from the Cla(r) Ery(r) donor strain H. pylori E to the Cla(s) Ery(s) recipient strain H. pylori UA802, was associated with an single A-to-G transition mutation at position 2142 of both copies of the 23S rRNA in UA802 Cla(r) Ery(r) mutants. The transformation frequency for Cla(r) and Ery(r) was found to be approximately 2 x 10(-6) transformants per viable cell, and the MICs of both clarithromycin and erythromycin for the Cla(r) Ery(r) mutants were equal to those for the donor isolate. Our results confirmed the previous findings that mutations at positions 2142 and 2143 of the H. pylori 23S rRNA gene are responsible for clarithromycin resistance and suggest that acquisition of clarithromycin resistance in H. pylori could also result from horizontal transfer. PMID:9420030

  19. Genetic diversity of Ephedra plants in mongolia inferred from internal transcribed spacer sequence of nuclear ribosomal DNA.

    PubMed

    Kitani, Yuki; Zhu, Shu; Batkhuu, Javzan; Sanchir, Chinbat; Komatsu, Katsuko

    2011-01-01

    Ephedrae herba has been used for treating colds, relieving coughs and asthma from ancient times. We previously reported the distribution of Ephedra sinica, E. equisetina, E. przewalskii, E. regeliana, E. monosperma and Ephedra sp. in Mongolia, and among them E. sinica and E. equisetina were potential new resources of Ephedrae herba of Japanese pharmacopoeia grade, based on our field survey and subsequent molecular and chemical assessments. However, the Ephedra population in southwestern areas showed a high possibility of having hybrid origins. Further field surveys in southwestern areas, and sequence analysis of the partial nuclear internal transcribed spacer 1 (ITS1) region, besides trnK and 18S ribosomal RNA (rRNA) gene regions, were conducted in order to obtain detailed evidence of hybridization status. As a result, the distribution of E. glauca in western area and E. lomatolepis in western-most area was confirmed. The ITS sequences from all 8 Ephedra species collected in Mongolia were roughly divided into 5 types (types I-V). Type II sequence, having several additive nucleotides, was found in Ephedra sp., E. glauca, E. regeliana and E. sinica, which provided useful information for tracing hybrid origins. Morphological, genetic and distribution evidence suggested that the hybridization of Ephedra species occurred widely in southwestern Mongolia, and several Ephedra species including E. przewalkskii and E. intermedia were involved in these events. Integrated with our previous report, trnK-, 18S- and ITS-types from pure lines of each species are proposed. In addition, we propose a practicable method for detecting additive peaks on a direct sequencing electropherogram.

  20. Using the small subunit of nuclear ribosomal DNA to reveal the phylogenetic position of the plerocercoid larvae of Spirometra tapeworms.

    PubMed

    Zhang, Xi; Duan, Jiang Yang; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Cui, Jing

    2017-04-01

    Although medically important, the systematics of Spirometra and the taxonomic position of S. erinaceieuropaei remain unclear. In this study, the 18S rDNA gene of S. erinaceieuropaei sparganum from naturally infected frogs caught in 14 geographical locations of China was sequenced. In addition, all available 18S sequences of the family Diphyllobothriidae in the Genbank database were included to reconstruct the phylogeny of diphyllobothriid tapeworms. The secondary structure model of the 18S rDNA was also predicated to further explore the sequence variation. Phylogenetic analyses were performed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. The intraspecific divergences of 18S rDNA in Chinese sparganum isolates ranged from 0.0 to 0.4%. Regions of V2, V4 and V7 were the most variable regions in the secondary structure of 18S rDNA. With the exception of genera Duthiersia and Probothriocephalus, other genera (i.e., Adenocephalus, Diphyllobothrium, Diplogonoporus, Duthiersia, Schistocephalus and Spirometra) selected in the Diphyllobothriidae shared similar topologies of V2, V4 and V7 structures. The topology of generated phylogenetic trees revealed close relationships among Adenocephalus, Digramma, Diphyllobothrium, Diplogonoporus, Ligula, Sparganum and Spirometra. The exact phylogenetic position of Spirometra species should be further analyzed with more sampling and more useful molecular markers.

  1. Use of Subgenic 18S Ribosomal DNA PCR and Sequencing for Genus and Genotype Identification of Acanthamoebae from Humans with Keratitis and from Sewage Sludge

    PubMed Central

    Schroeder, Jill M.; Booton, Gregory C.; Hay, John; Niszl, Ingrid A.; Seal, David V.; Markus, Miles B.; Fuerst, Paul A.; Byers, Thomas J.

    2001-01-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK. PMID:11326011

  2. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of acanthamoebae from humans with keratitis and from sewage sludge.

    PubMed

    Schroeder, J M; Booton, G C; Hay, J; Niszl, I A; Seal, D V; Markus, M B; Fuerst, P A; Byers, T J

    2001-05-01

    This study identified subgenic PCR amplimers from 18S rDNA that were (i) highly specific for the genus Acanthamoeba, (ii) obtainable from all known genotypes, and (iii) useful for identification of individual genotypes. A 423- to 551-bp Acanthamoeba-specific amplimer ASA.S1 obtained with primers JDP1 and JDP2 was the most reliable for purposes i and ii. A variable region within this amplimer also identified genotype clusters, but purpose iii was best achieved with sequencing of the genotype-specific amplimer GTSA.B1. Because this amplimer could be obtained from any eukaryote, axenic Acanthamoeba cultures were required for its study. GTSA.B1, produced with primers CRN5 and 1137, extended between reference bp 1 and 1475. Genotypic identification relied on three segments: bp 178 to 355, 705 to 926, and 1175 to 1379. ASA.S1 was obtained from single amoeba, from cultures of all known 18S rDNA genotypes, and from corneal scrapings of Scottish patients with suspected Acanthamoeba keratitis (AK). The AK PCR findings were consistent with culture results for 11 of 15 culture-positive specimens and detected Acanthamoeba in one of nine culture-negative specimens. ASA.S1 sequences were examined for 6 of the 11 culture-positive isolates and were most closely associated with genotypic cluster T3-T4-T11. A similar distance analysis using GTSA.B1 sequences identified nine South African AK-associated isolates as genotype T4 and three isolates from sewage sludge as genotype T5. Our results demonstrate the usefulness of 18S ribosomal DNA PCR amplimers ASA.S1 and GTSA.B1 for Acanthamoeba-specific detection and reliable genotyping, respectively, and provide further evidence that T4 is the predominant genotype in AK.

  3. Mitochondrial DNA Restriction Fragment Length Polymorphism (RFLP) and 18S Small-Subunit Ribosomal DNA PCR-RFLP Analyses of Acanthamoeba Isolated from Contact Lens Storage Cases of Residents in Southwestern Korea

    PubMed Central

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-01-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis. PMID:11923331

  4. Mitochondrial DNA restriction fragment length polymorphism (RFLP) and 18S small-subunit ribosomal DNA PCR-RFLP analyses of Acanthamoeba isolated from contact lens storage cases of residents in southwestern Korea.

    PubMed

    Kong, Hyun-Hee; Shin, Ji-Yeol; Yu, Hak-Sun; Kim, Jin; Hahn, Tae-Won; Hahn, Young-Ho; Chung, Dong-Il

    2002-04-01

    We applied ribosomal DNA PCR-restriction fragment length polymorphism (RFLP) and mitochondrial DNA (mtDNA) RFLP analyses to 43 Acanthamoeba environmental isolates (KA/LH1 to KA/LH43) from contact lens storage cases in southwestern Korea. These isolates were compared to American Type Culture Collection strains and clinical isolates (KA/E1 to KA/E12) from patients with keratitis. Seven riboprint patterns were seen. To identify the species of the isolates, a phylogenetic tree was constructed based on the comparison of riboprint patterns with reference strains. Four types accounted for 39 of the isolates belonging to the A. castellanii complex. The most predominant (48.8%) type was A. castellanii KA/LH2 type, which had identical riboprint and mtDNA RFLP patterns to those of A. castellanii Castellani, KA/E3 and KA/E8. The riboprint and mtDNA RFLP patterns of the KA/LH7 (20.9%) type were identical to those of A. castellanii Ma, a corneal isolate from the United States. The riboprint and mtDNA RFLP patterns of the KA/LH1 (18.6%) type were the same as those of A. lugdunensis L3a, KA/E2, and KA/E12. The prevalent pattern for each type of Acanthamoeba in southwestern Korea was very different from that from southeastern Korea and Seoul, Korea. It is noteworthy that 38 (88.4%) out of 43 isolates from contact lens storage cases of the residents in southwestern Korea revealed mtDNA RFLP and riboprint patterns identical to those found for clinical isolates in our area. This indicates that most isolates from contact lens storage cases in the surveyed area are potential keratopathogens. More attention should be paid to the disinfection of contact lens storage cases to prevent possible amoebic keratitis.

  5. Utilizing ribosomal DNA gene marker regions to characterize the metacercariae (Trematoda: Digenea) parasitizing piscine intermediate hosts in Manipur, Northeast India.

    PubMed

    Athokpam, Voleentina D; Jyrwa, Donald B; Tandon, Veena

    2016-06-01

    Freshwater fishes in Manipur, Northeast India frequently harbour several types of metacercariae, which based on morphological criteria were identified as Clinostomoides brieni, Euclinostomum heterostomum (Clinostomidae) and Polylekithum sp. (Allocreadiidae). Molecular techniques utilizing PCR amplification of rDNA regions of larger subunit (LSU or 28S), smaller subunit (SSU or 18S) and inter transcribed spacers (ITS1, 2) were used for molecular characterization of these types. Sequences generated from the metacercariae were compared with their related sequences available in public databases; an analysis of the identity matrices and phylogenetic trees constructed was also carried out, which confirmed their identification. Similarly, the sequences generated from Polylekithum sp. were found to be highly similar to the species of the same genus. The rDNA ITS2 secondary structure provided additional confirmation of the robustness of the molecular marker as a tool for taxon-specific characterization.

  6. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family

    PubMed Central

    2010-01-01

    Background In flowering plants and animals the most common ribosomal RNA genes (rDNA) organisation is that in which 35S (encoding 18S-5.8S-26S rRNA) and 5S genes are physically separated occupying different chromosomal loci. However, recent observations established that both genes have been unified to a single 35S-5S unit in the genus Artemisia (Asteraceae), a genomic arrangement typical of primitive eukaryotes such as yeast, among others. Here we aim to reveal the origin, distribution and mechanisms leading to the linked organisation of rDNA in the Asteraceae by analysing unit structure (PCR, Southern blot, sequencing), gene copy number (quantitative PCR) and chromosomal position (FISH) of 5S and 35S rRNA genes in ~200 species representing the family diversity and other closely related groups. Results Dominant linked rDNA genotype was found within three large groups in subfamily Asteroideae: tribe Anthemideae (93% of the studied cases), tribe Gnaphalieae (100%) and in the "Heliantheae alliance" (23%). The remaining five tribes of the Asteroideae displayed canonical non linked arrangement of rDNA, as did the other groups in the Asteraceae. Nevertheless, low copy linked genes were identified among several species that amplified unlinked units. The conserved position of functional 5S insertions downstream from the 26S gene suggests a unique, perhaps retrotransposon-mediated integration event at the base of subfamily Asteroideae. Further evolution likely involved divergence of 26S-5S intergenic spacers, amplification and homogenisation of units across the chromosomes and concomitant elimination of unlinked arrays. However, the opposite trend, from linked towards unlinked arrangement was also surmised in few species indicating possible reversibility of these processes. Conclusions Our results indicate that nearly 25% of Asteraceae species may have evolved unusual linked arrangement of rRNA genes. Thus, in plants, fundamental changes in intrinsic structure of rDNA units

  7. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution.

    PubMed Central

    Sang, T; Crawford, D J; Stuessy, T F

    1995-01-01

    The internal transcribed spacers (ITS) of nuclear ribosomal DNA of 33 species of genus Paeonia (Paeoniaceae) were sequenced. In section Paeonia, different patterns of nucleotide additivity were detected in 14 diploid and tetraploid species at sites that are variable in the other 12 species of the section, suggesting that reticulate evolution has occurred. Phylogenetic relationships of species that do not show additivity, and thus ostensibly were not derived through hybridization, were reconstructed by parsimony analysis. The taxa presumably derived through reticulate evolution were then added to the phylogenetic tree according to additivity from putative parents. The study provides an example of successfully using ITS sequences to reconstruct reticulate evolution in plants and further demonstrates that the sequence data could be highly informative and accurate for detecting hybridization. Maintenance of parental sequences in the species of hybrid origin is likely due to slowing of concerted evolution caused by the long generation time of peonies. The partial and uneven homogenization of parental sequences displayed in nine species of putative hybrid origin may have resulted from gradients of gene conversion. The documented hybridizations may have occurred since the Pleistocene glaciations. The species of hybrid origin and their putative parents are now distantly allopatric. Reconstruction of reticulate evolution with sequence data, therefore, provides gene records for distributional histories of some of the parental species. Images Fig. 1 PMID:7624325

  8. Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria.

    PubMed

    Bernardi-Wenzel, J; Garcia, A; Azevedo, J L; Pamphile, J A

    2013-10-29

    Luehea divaricata is an important plant in popular medicine; it is used for its depurative, anti-inflammatory, and other therapeutic activities. We evaluated the antimicrobial activity of endophytic fungi isolated from leaves of L. divaricata against phytopathogens and pathogenic bacteria, and characterized the isolates based on amplified ribosomal DNA restriction analysis (ARDRA). The in vitro antagonistic activity of these endophytes against the phytopathogen Alternaria alternata was assayed by dual culture technique. Based on this evaluation of antimicrobial activity, we extracted secondary metabolites from nine endophytic fungi by partitioning in ethyl acetate and methanol. These were tested against the phytopathogens A. alternata, Colletotrichum sp and Moniliophthora perniciosa, and against the human pathogenic bacteria Escherichia coli and Staphylococcus aureus. Molecular characterization by ARDRA technique was used for phylogenetic analysis, based on comparison with sequences in GenBank. The endophytes had varied effects on A. alternata. One isolate produced an inhibition halo against M. perniciosa and against E. coli. This antibiosis activity indicates a role in the protection of the plant against microbial pathogens in nature, with potential for pharmaceutical and agricultural applications. Based on ARDRA, the 13 isolates were grouped. We found three different haplotypes of Phomopsis sp, showing interspecific variability. It appears that examination of the microbial community associated with medicinal plants of tropical regions has potential as a useful strategy to look for species with biotechnological applications.

  9. Replication initiates at multiple dispersed sites in the ribosomal DNA plasmid of the protozoan parasite Entamoeba histolytica.

    PubMed Central

    Dhar, S K; Choudhury, N R; Mittal, V; Bhattacharya, A; Bhattacharya, S

    1996-01-01

    In the protozoan parasite Entamoeba histolytica (which causes amoebiasis in humans), the rRNA genes (rDNA) in the nucleus are carried on an extrachromosomal circular plasmid. For strain HM-1:IMSS, the size of the rDNA plasmid is 24.5 kb, and 200 copies per genome are present. Each circle contains two rRNA transcription units as inverted repeats separated by upstream and downstream spacers. We have studied the replication of this molecule by neutral/neutral two-dimensional gel electrophoresis and by electron microscopy. All restriction fragments analyzed by two-dimensional gel electrophoresis gave signals corresponding to simple Y's and bubbles. This showed that replication initiated in this plasmid at multiple, dispersed locations spread throughout the plasmid. On the basis of the intensity of the bubble arcs, initiations from the rRNA transcription units seemed to occur more frequently than those from intergenic spacers. Multiple, dispersed initiation sites were also seen in the rDNA plasmid of strain HK-9 when it was analyzed by two-dimensional gel electrophoresis. Electron microscopic visualization of replicating plasmid molecules in strain HM-1:IMISS showed multiple replication bubbles in the same molecule. The location of bubbles on the rDNA circle was mapped by digesting with PvuI or BsaHI, which linearize the molecule, and with SacII, which cuts the circle twice. The distance of the bubbles from one end of the molecule was measured by electron microscopy. The data corroborated those from two-dimensional gels and showed that replication bubbles were distributed throughout the molecule and that they appeared more frequently in rRNA transcription units. The same interpretation was drawn from electron microscopic analysis of the HK-9 plasmid. Direct demonstration of more than one bubble in the same molecule is clear evidence that replication of this plasmid initiates at multiple sites. Potential replication origins are distributed throughout the plasmid. Such a

  10. Use of whole-genome sequencing data to analyze 23S rRNA-mediated azithromycin resistance.

    PubMed

    Johnson, Steven R; Grad, Yonatan; Abrams, A Jeanine; Pettus, Kevin; Trees, David L

    2017-02-01

    The whole-genome sequences of 24 isolates of Neisseria gonorrhoeae with elevated minimum inhibitory concentrations (MICs) to azithromycin (≥2.0 µg/mL) were analyzed against a modified sequence derived from the whole-genome sequence of N. gonorrhoeae FA1090 to determine, by signal ratio, the number of mutant copies of the 23S rRNA gene and the copy number effect on 50S ribosome-mediated azithromycin resistance. Isolates that were predicted to contain four mutated copies were accurately identified compared with the results of direct sequencing. Fewer than four mutated copies gave less accurate results but were consistent with elevated MICs.

  11. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences.

    PubMed

    Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro; Hasebe, Mitsuyasu

    2003-01-01

    The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.

  12. Identification of Fasciola flukes in Thailand based on their spermatogenesis and nuclear ribosomal DNA, and their intraspecific relationships based on mitochondrial DNA.

    PubMed

    Chaichanasak, Pannigan; Ichikawa, Madoka; Sobhon, Prasert; Itagaki, Tadashi

    2012-12-01

    We analyzed 147 Fasciola flukes obtained from cattle in Thailand based on their spermatogenetic ability, and nuclear ribosomal internal transcribed spacer 1 (ITS1) and mitochondrial nicotiamide adenine dinucleotide dehydrogenase subunit 1 (ND1) genes as molecular markers. One hundred twenty-eight flukes, which had abundant sperm in their seminal vesicles (spermic) and showed the PCR-RFLP pattern of F. gigantica in the ITS1, were accurately identified as F. gigantica. The other 19 flukes that had no sperm in their seminal vesicles were aspermic Fasciola sp. with the RFLP patterns identical to that of F. gigantica. Twenty-nine ND1 haplotypes (Fg-ND1-Thai 2-30) were distinguished in the 128 F. gigantica flukes and were divided into haplotypes unique to Thailand and those common to other countries, suggesting the possibility that ancestral haplotypes were introduced into Thailand. Three haplotypes (Fg-ND1-Thai 7, 9 and 27) appeared to be the major haplotypes found in F. gigantica from Thailand. Only one haplotype (Fg-ND1-Thai 1) was found in the 19 aspermic Fasciola sp. flukes obtained from geographical regions, and the nucleotide sequence of Fg-ND1-Thai 1 was identical to that of the aspermic Fasciola sp. from Japan, Korea, China, Vietnam and Myanmar, suggesting that they were descendants with a common provenance and expanded to these countries in the relatively recent past.

  13. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  14. Single-base mutations at position 2661 of Escherichia coli 23S rRNA increase efficiency of translational proofreading.

    PubMed Central

    Melançon, P; Tapprich, W E; Brakier-Gingras, L

    1992-01-01

    Two single-base substitutions were constructed in the 2660 loop of Escherichia coli 23S rRNA (G2661-->C or U) and were introduced into the rrnB operon cloned in plasmid pKK3535. Ribosomes were isolated from bacteria transformed with the mutated plasmids and assayed in vitro in a poly(U)-directed system for their response to the misreading effect of streptomycin, neomycin, and gentamicin, three aminoglycoside antibiotics known to impair the proofreading control of translational accuracy. Both mutations decreased the stimulation of misreading by these drugs, but neither interfered with their binding to the ribosome. The response of the mutant ribosomes to these drugs suggests that the 2660 loop, which belongs to the elongation factor Tu binding site, is involved in the proofreading step of the accuracy control. In vivo, both mutations reduced read-through of nonsense codons and frameshifting, which can also be related to the increased efficiency in proofreading control which they confer to ribosomes. PMID:1281147

  15. Protein Synthesis with Ribosomes Selected for the Incorporation of β-Amino Acids.

    PubMed

    Maini, Rumit; Chowdhury, Sandipan Roy; Dedkova, Larisa M; Roy, Basab; Daskalova, Sasha M; Paul, Rakesh; Chen, Shengxi; Hecht, Sidney M

    2015-06-16

    In an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4). The modified ribosomes were found to incorporate each of the four isomeric methyl-β-alanines into DHFR but exhibited a preference for incorporation of 3(S)-methyl-β-alanine (β-mAla; 4), i.e., the isomer having the same regio- and stereochemistry as the O-methylated β-tyrosine moiety of β³-puromycin. Also conducted were a selection of clones that are responsive to β²-puromycin and a demonstration of reversal of the regio- and stereochemical preferences of these clones during protein synthesis. These results were incorporated into a structural model of the modified regions of 23S rRNA, which included in silico prediction of a H-bonding network. Finally, it was demonstrated that incorporation of 3(S)-methyl-β-alanine (β-mAla; 4) into a short α-helical region of the nucleic acid binding domain of hnRNP LL significantly stabilized the helix without affecting its DNA binding properties.

  16. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  17. Analysis of the genetic polymorphism of Paracoccidioides brasiliensis and Paracoccidioides cerebriformis "Moore" by random amplified polymorphic DNA (RAPD) and 28S ribosomal DNA sequencing--Paracoccidioides cerebriformis revisited.

    PubMed

    Cavalcanti, Sarah Desirée Barbosa; Levi, José Eduardo; Dantas, Kátia Cristina; Martins, José Eduardo Costa

    2005-01-01

    Our purpose was to compare the genetic polymorphism of six samples of P. brasiliensis (113, 339, BAT, T1F1, T3B6, T5LN1), with four samples of P. cerebriformis (735, 741, 750, 361) from the Mycological Laboratory of the Instituto de Medicina Tropical de São Paulo, using Random Amplified Polymorphic DNA Analysis (RAPD). RAPD profiles clearly segregated P. brasiliensis and P. cerebriformis isolates. However, the variation on band patterns among P. cerebriformis isolates was high. Sequencing of the 28S rDNA gene showed nucleotide conservancy among P. cerebriformis isolates, providing basis for taxonomical grouping, and disclosing high divergence to P. brasiliensis supporting that they are in fact two distinct species. Moreover, DNA sequence suggests that P. cerebriformis belongs in fact to the Aspergillus genus.

  18. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs.

    PubMed

    Skillman, Lucy C; Evans, Paul N; Naylor, Graham E; Morvan, Brieuc; Jarvis, Graeme N; Joblin, Keith N

    2004-10-01

    The population densities and identities of methanogens colonising new-born lambs in a grazing flock were determined from rumen samples collected at regular intervals after birth. Methanogen colonisation was found at the first sampling (1-3 days after birth) and population densities reached around 10(4) methanogens per gram at 1 week of age. Population densities increased in an exponential manner to a maximum of 10(8)-10(9) per gram at 3 weeks of age. To identify methanogens, PCR primers specific for each of the Archaea; a grouping of the orders Methanomicrobiales, Methanosarcinales and Methanococcales; the order Methanobacteriales; the order Methanococcales; the order Methanosarcinales; the genus Methanobacterium; and the genus Methanobrevibacter were designed. Primer-pair specificities were confirmed in tests with target and non-target micro-organisms. PCR analysis of DNA extracts revealed that all the detectable ruminal methanogens belonged to the order Methanobacteriales, with no methanogens belonging to the Methanomicrobiales, the Methanosarcinales, or the Methanococcales being detected. In 3 lambs, the initial colonising methanogens were Methanobrevibacter spp. and in 2 lambs were a mixture of Methanobrevibacter and Methanobacterium spp. In the latter case, the initial colonising Methanobacterium spp. subsequently disappeared and were not detectable 12-19 days after birth. Seven weeks after birth, lambs contained only Methanobrevibacter spp. This study, the first to provide information on the identities of methanogens colonising pre-ruminants, suggests that the predominant methanogens found in the mature rumen establish very soon after birth and well before a functioning rumen develops.

  19. Ribosomal DNA sequence polymorphism and the delineation of two ascosporic yeast species: Metschnikowia agaves and Starmerella bombicola.

    PubMed

    Lachance, Marc-André; Wijayanayaka, Tishara M; Bundus, Joanna D; Wijayanayaka, Dilini N

    2011-06-01

    The relationship between mating success and sequence divergence in the internal transcribed spacer (ITS)/5.8S-D1/D2 rDNA region was examined in isolates tentatively assigned to Metschnikowia agaves and Starmerella bombicola. Both species are haplontic and heterothallic, such that the formation of mature asci can be used as a measure of genetic compatibility. Parsimony haplotype network analysis and mating success confirmed that all known isolates of M. agaves are conspecific. The previously reported D1/D2 polymorphism of five substitutions was not corroborated; the maximum divergence observed between any two strains was three substitutions, four with ITS. Of 39 putative S. bombicola strains, 36 formed an ITS-D1/D2 haplotype network using the 95% criterion. Thirty-five strains could mate with one or more compatible partner. The excluded strains did not mate. Mature asci arose from crosses between individuals differing by as many as five, but not six or seven substitutions in the D1/D2 domain. All strains capable of mating formed mature asci with at least one partner and all network members could be linked to another member by three or fewer substitutions. These results support the use of sequence divergence as a criterion for species delineation, but caution against describing poorly sampled species solely on the basis of that criterion.

  20. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae.

    PubMed

    Lu, Hui; Zhu, Yi-Fei; Xiong, Juan; Wang, Rong; Jia, Zhengping

    2015-08-01

    Ribosomal proteins (RPs), are essential components of the ribosomes, the molecular machines that turn mRNA blueprints into proteins, as they serve to stabilize the structure of the rRNA, thus improving protein biosynthesis. In addition, growing evidence suggests that RPs can function in other cellular roles. In the present review, we summarize several potential extra-ribosomal functions of RPs in ribosomal biogenesis, transcription activity, translation process, DNA repair, replicative life span, adhesive growth, and morphological transformation in Saccharomyces cerevisiae. However, the future in-depth studies are needed to identify these novel secondary functions of RPs in S. cerevisiae.

  1. Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia).

    PubMed

    Wörheide, Gert; Hooper, John N A; Degnan, Bernard M

    2002-09-01

    Leucetta 'chagosensis' is a widespread calcareous sponge, occurring in shaded habitats of Indo-Pacific coral reefs. In this study we explore relationships among 19 ribosomal DNA sequence types (the ITS1-5.8S-ITS2 region plus flanking gene sequences) found among 54 individuals from 28 locations throughout the western Pacific, with focus on the Great Barrier Reef (GBR). Maximum parsimony analysis revealed phylogeographical structuring into four major clades (although not highly supported by bootstrap analysis) corresponding to the northern/central GBR with Guam and Taiwan, the southern GBR and subtropical regions south to Brisbane, Vanuatu and Indonesia. Subsequent nested clade analysis (NCA) confirmed this structure with a probability of > 95%. After NCA of geographical distances, a pattern of range expansion from the internal Indonesian clade was inferred at the total cladogram level, as the Indonesian clade was found to be the internal and therefore oldest clade. Two distinct clades were found on the GBR, which narrowly overlap geographically in a line approximately from the Whitsunday Islands to the northern Swain Reefs. At various clade levels, NCA inferred that the northern GBR clade was influenced by past fragmentation and contiguous range expansion events, presumably during/after sea level low stands in the Pleistocene, after which the northern GBR might have been recolonized from the Queensland Plateau in the Coral Sea. The southern GBR clade is most closely related to subtropical L. 'chagosensis', and we infer that the southern GBR probably was recolonized from there after sea level low stands, based on our NCA results and supported by oceanographic data. Our results have important implications for conservation and management of the GBR, as they highlight the importance of marginal transition zones in the generation and maintenance of species rich zones, such as the Great Barrier Reef World Heritage Area.

  2. 16S ribosomal DNA sequence analysis distinguishes biotypes of Streptococcus bovis: Streptococcus bovis Biotype II/2 is a separate genospecies and the predominant clinical isolate in adult males.

    PubMed

    Clarridge, J E; Attorri, S M; Zhang, Q; Bartell, J

    2001-04-01

    We characterized 22 human clinical strains of Streptococcus bovis by genotypic (16S rRNA gene sequence analysis [MicroSeq]; Applied Biosystems, Foster City, Calif.) and phenotypic (API 20 Strep and Rapid ID32 Strep systems (bioMerieux Vitek, Hazelton, Mo.) methods. The strains, isolated from blood, cerebrospinal fluid (CSF), and urine, formed two distinct 16S ribosomal DNA sequence clusters. Three strains which were associated with endocarditis urinary tract infection (UTI), and sepsis clustered with the S. bovis type strain ATCC 33317 (cluster 1); other closely related type strains were S. equinus and S. infantarius. Nineteen strains clustered at a distance of about 2.5% dissimilarity to the S. bovis type strain (cluster 2) and were associated with central nervous system (CNS) disease in addition to endocarditis, UTI, and sepsis. All strains were distinct from S. gallolyticus. Within cluster 2, a single strain grouped with ATCC strain 43143 (cluster 2a) and may be phenotypically distinct. All the other strains formed a second subgroup (cluster 2b) that was biochemically similar to S. bovis biotype II/2 (mannitol negative and beta galactosidase, alpha galactosidase, beta glucuronidase, and trehalose positive). The API 20 Strep system identified isolates of cluster 2b as S. bovis biotype II/2, those of cluster 1 as S. bovis biotype II/1, and that of cluster 2a as S. bovis biotype I. There was an excellent correlation of biotype and genotype: S. bovis biotype II/2 isolates form a separate genospecies distinct from the S. bovis, S. gallolyticus, and S. infantarius type strains and are the most common isolates in adult males.

  3. Leishmania major: genetic heterogeneity of Iranian isolates by single-strand conformation polymorphism and sequence analysis of ribosomal DNA internal transcribed spacer.

    PubMed

    Tashakori, Mahnaz; Mahnaz, Tashakori; Kuhls, Katrin; Katrin, Kuhls; Al-Jawabreh, Amer; Amer, Al-Jawabreh; Mauricio, Isabel L; Isabel, Mauricio; Schönian, Gabriele; Gabriele, Schönian; Farajnia, Safar; Safar, Farajnia; Alimohammadian, Mohammad Hossein; Hossein, Alimohammadian Mohammad

    2006-04-01

    Protozoan parasites of Leishmania major are the causative agents of cutaneous leishmaniasis in different parts of Iran. We applied PCR-based methods to analyze L. major parasites isolated from patients with active lesions from different geographic areas in Iran in order to understand DNA polymorphisms within L. major species. Twenty-four isolates were identified as L. major by RFLP analysis of the ribosomal internal transcribed spacer 1 (ITS1) amplicons. These isolates were further studied by single-strand conformation polymorphism (SSCP) analysis and sequencing of ITS1 and ITS2. Data obtained from SSCP analysis of the ITS1 and ITS2 loci revealed three and four different patterns among all studied samples, respectively. Sequencing of ITS1 and ITS2 confirmed the results of SSCP analysis and showed the potential of the PCR-SSCP method for assessing genetic heterogeneity within L. major. Different patterns in ITS1 were due to substitution of one nucleotide, whereas in ITS2 the changes were defined by variation in the number of repeats in two polymorphic microsatellites. In total five genotypic groups LmA, LmB, LmC, LmD and LmE were identified among L. major isolates. The most frequent genotype, LmA, was detected in isolates collected from different endemic areas of cutaneous leishmaniasis in Iran. Genotypes LmC, LmD and LmE were found only in the new focus of CL in Damghan (Semnan province) and LmB was identified exclusively among isolates of Kashan focus (Isfahan province). The distribution of genetic polymorphisms suggests the existence of distinct endemic regions of L. major in Iran.

  4. Interaction between the yeast mitochondrial and nuclear genomes influences the abundance of novel transcripts derived from the spacer region of the nuclear ribosomal DNA repeat.

    PubMed Central

    Parikh, V S; Conrad-Webb, H; Docherty, R; Butow, R A

    1989-01-01

    We have identified stable transcripts from the so-called nontranscribed spacer region (NTS) of the nuclear ribosomal DNA repeat in certain respiration-deficient strains of Saccharomyces cerevisiae. These RNAs, which are transcribed from the same strand as is the 37S rRNA precursor, are 500 to 800 nucleotides long and extend from the 5' end of the 5S rRNA gene to three major termination sites about 1,780, 1,830, and 1,870 nucleotides from the 3' end of the 26S rRNA gene. A survey of various wild-type and respiration-deficient strains showed that NTS transcript abundance depended on the mitochondrial genotype and a single codominant nuclear locus. In strains with that nuclear determinant, NTS transcripts were barely detected in [rho+] cells, were slightly more abundant in various mit- derivatives, and were most abundant in petites. However, in one petite that was hypersuppressive and contained a putative origin of replication (ori5) within its 757-base-pair mitochondrial genome, NTS transcripts were no more abundant than in [rho+] cells. The property of low NTS transcript abundance in the hypersuppressive petite was unstable, and spontaneous segregants that contained NTS transcripts as abundant as in the other petites examined could be obtained. Thus, respiration deficiency per se is not the major factor contributing to the accumulation of these unusual RNAs. Unlike RNA polymerase I transcripts, the abundant NTS RNAs were glucose repressible, fractionated as poly(A)+ RNAs, and were sensitive to inhibition by 10 micrograms of alpha-amanitin per ml, a concentration that had no effect on rRNA synthesis. Abundant NTS RNAs are therefore most likely derived by polymerase II transcription. Images PMID:2473390

  5. RIBOSOME-MEMBRANE INTERACTION

    PubMed Central

    Adelman, M. R.; Sabatini, David D.; Blobel, Günter

    1973-01-01

    In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (∼15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear. PMID:4682341

  6. Isolation of Mitochondrial Ribosomes.

    PubMed

    Carroll, Adam J

    2017-01-01

    Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

  7. The "DEAD box" protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA.

    PubMed Central

    Nicol, S M; Fuller-Pace, F V

    1995-01-01

    The Escherichia coli DEAD (Asp-Glu-Ala-Asp) box protein DbpA is a putative RNA helicase and established RNA-dependent ATPase and is the only member of the DEAD box protein family for which a specific RNA substrate, bacterial 23S rRNA, has been identified. We have investigated the nature of this specificity in depth and have localized by deletion mutagenesis and PCR a single region of 93 bases (bases 2496-2588) in 23S rRNA that is both necessary and sufficient for complete activation of ATPase activity of DbpA. This target region forms part of the peptidyltransferase center and includes many bases involved in interaction with the 3' terminal adenosines of both A- and P-site tRNAs. Deletion of stem loops within the 93-base segment abolished ATPase activation. Similarly, point mutations that disrupt base pairing within stem structures ablated stimulation of ATPase activity. These data are consistent with roles for DbpA either in establishing and/or maintaining the correct three-dimensional structure of the peptidyltransferase center in 23S rRNA during ribosome assembly or in the peptidyltransferase reaction. Images Fig. 1 Fig. 2 PMID:8524828

  8. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status.

  9. The Ribosome Filter Redux

    PubMed Central

    Mauro, Vincent P.; Edelman, Gerald M.

    2010-01-01

    The ribosome filter hypothesis postulates that ribosomes are not simply translation machines but also function as regulatory elements that differentially affect or filter the translation of particular mRNAs. On the basis of new information, we take the opportunity here to review the ribosome filter hypothesis, suggest specific mechanisms of action, and discuss recent examples from the literature that support it. PMID:17890902

  10. FGF23-S129F mutant bypasses ER/Golgi to the circulation of hyperphosphatemic familial tumoral calcinosis patients.

    PubMed

    Shawar, Said M; Ramadan, Ahmad R; Ali, Bassam R; Alghamdi, Manal A; John, Anne; Hudaib, Ferial M

    2016-12-01

    FGF23 is essential for the homeostasis of phosphate, and vitamin D. Loss-of-function mutations in this hormone cause hyperphosphatemic familial tumoral calcinosis (HFTC). Earlier reports suggested that intact FGF23 from loss of function mutants such as FGF23/S129F (iFGF23/S129F) is retained intracellularly while the carboxy-terminal fragment is secreted. We sought to investigate the fate of iFGF23/S129F mutant hormone in vivo and in vitro. Five patients clinically diagnosed with HFTC and confirmed by DNA sequencing to carry the c.386 C>T; p.S129F mutation in the homozygous state were studied. Healthy and heterozygous individuals were used as controls in the study. Using ELISA assays, we showed that iFGF23/S129F was 2-5 folds higher in patients' plasma, compared to heterozygous or healthy controls. Importantly, the mutant hormone could not be detected in the patients' sera. However, using proteinase inhibition profiling, we found that a serum metalloproteinase degraded the iFGF23/S129F explaining our failure to detect it in sera. The serum metalloproteinase degrades the WT and the mutant at different rates. Also, confocal microscopy imaging using wild-type (WT) FGF23 or FGF23/S129F mutant in transiently transfected HEK293 and HeLa cells showed weak staining of the Golgi complex with some vesicular staining resembling the ER. Additionally, FGF23 variants (FGF23/WT, FGF23/S129F, FGF23/S71G, and FGF23/R176Q) from stably transfected HEK293 cells secreted high levels into a serum-free medium that can be detected by ELISA and Western blot. Our results suggest that iFGF23/S129F mutant bypasses the ER/Golgi quality control system to the circulation of HFTC patients by an unknown pathway. Finally, we hypothesize that either the mutant hormone is unable to bind α-Klotho-FGFR1c, or it binds the dyad receptor with low affinity and, therefore, incapable of initiating maximal intracellular signaling. Our findings raise the potential use of the WT hormone in therapies of some

  11. Sequence homologies between eukaryotic 5.8S rRNA and the 5' end of prokaryotic 23S rRNa: evidences for a common evolutionary origin.

    PubMed Central

    Jacq, B

    1981-01-01

    The question of the evolutionary origin of eukaryotic 5.8S rRNA was re-examined after the recent publication of the E. coli 23S rRNA sequence (26,40). A region of the 23S RNA located at its 5' end was found to be approximately 50% homologous to four different eukaryotic 5.8S rRNAs. A computer comparison analysis indicates that no other region of the E. coli ribosomal transcription unit (greater than 5 000 nucleotides in length) shares a comparable homology with 5.8S rRNA. Homology between the 5' end of e. coli 23S and four different eukaryotic 5.8S rRNAs falls within the same range as that between E. coli 5S RNA from the same four eukaryotic species. All these data strongly suggest that the 5' end of prokaryotic 23S rRNA and eukaryotic 5.8S RNA have a common evolutionary origin. Secondary structure models are proposed for the 5' region of E. coli 23S RNA. Images PMID:7024907

  12. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  13. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  14. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  15. Eukaryotic ribosomes that lack a 5.8S RNA

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Woese, C. R.

    1986-01-01

    The 5.8S ribosomal RNA is believed to be a universal eukaryotic characteristic. It has no (size) counterpart among the prokaryotes, although its sequence is homologous with the first 150 or so nucleotides of the prokaryotic large subunit (23S) ribosomal RNA. An exception to this rule is reported here. The microsporidian Vairimorpha necatrix is a eukaryote that has no 5.8S rRNA. As in the prokaryotes, it has a single large subunit rRNA, whose 5-prime region corresponds to the 5.8S rRNA.

  16. DbpA: a DEAD box protein specifically activated by 23s rRNA.

    PubMed Central

    Fuller-Pace, F V; Nicol, S M; Reid, A D; Lane, D P

    1993-01-01

    The Escherichia coli protein DbpA is a member of the 'DEAD box' family of putative RNA-dependent ATPases and RNA helicases, so called because they share the highly conserved motif Asp-Glu-Ala-Asp, together with several other conserved elements. We have investigated DbpA expression under conditions where an endogenous promoter is used. In this context, translation initiation does not occur at the previously identified AUG, but at an upstream, in-frame GUG. Mutation of the GUG initiation codon to AUG virtually abolishes DbpA expression, suggesting an unusual translation initiation mechanism. Using an inducible overexpression plasmid, we have purified milligram quantities of DbpA to homogeneity and shown that the purified protein hydrolyses ATP in an RNA-dependent manner. This ATPase activity is interesting in that, unlike that of other DEAD box proteins investigated to date, it absolutely requires a specific bacterial RNA, which we have identified as 23S rRNA. This observation is particularly significant since DbpA will bind other RNAs and DNA, but will only hydrolyse ATP in the presence of 23S rRNA. Images PMID:8253085

  17. The expression of acidic ribosomal phosphoproteins on the surface membrane of different tissues in autoimmune and normal mice which are the target molecules for anti-double-stranded DNA antibodies.

    PubMed Central

    Sun, K H; Liu, W T; Tang, S J; Tsai, C Y; Hsieh, S C; Wu, T H; Han, S H; Yu, C L

    1996-01-01

    Affinity-purified polyclonal anti-double-stranded DNA (anti-dsDNA) antibodies from patients with systemic lupus erythematosus (SLE) exert a cytostatic effect on cultured rat glomerular mesangial cells (MC). The cognate antigens expressed on the surface of MC have been proved to be acidic ribosomal phosphoproteins (P proteins) in our previous study. The mesangial cytostatic effect of anti-dsDNA antibodies is attributed to the cross-reactivity of the antibodies with membrane-expressed P proteins, but not to the effect of minute amounts of anti-ribosomal P proteins antibodies contained in the anti-dsDNA preparations. Immunofluorescence staining of the native cells demonstrated that anti-dsDNA antibodies bound to the surface of rat mesangial cells, rat brain astrocytes (RBA-1) and mouse fibroblasts (3T3). Anti-dsDNA antibodies also exert potent cytostatic effects on these cells in a dose-dependent manner. In addition, the plasma membranes of different cell lines and tissues from normal and autoimmune mice were isolated and probed by anti-dsDNA antibodies in Western blot analysis. We found the actively proliferating cells such as MC, RBA-1 and 3T3 may express both P0 (38,000 MW) and P1 (19,000 MW) on the surface membrane. In addition, the kidney, liver and spleen from either autoimmune MRL-lpr/lpr or BALB/c mice may constantly express P0 protein, but the expression of P1 is inconsistent. In contrast, brain and muscle from either mice failed to express P proteins on their surface. Unexpectedly, a high molecular weight substance (larger than 205,000 MW) with unknown nature appears in the membrane of brain and muscle tissues in both mice. Immunoprecipitation of the surface-biotinylated MC-lysate by anti-dsDNA antibodies further confirmed that P1 (19,000 MW) and P2 (17,000 MW) are really expressed on the cell surface. These results suggest that P proteins expressed on the surface of different tissues become the targets for anti-dsDNA antibodies mediating pleomorphic tissue

  18. Phylogenetic study of Baylisascaris schroederi isolated from Qinling subspecies of giant panda in China based on combined nuclear 5.8S and the second internal transcribed spacer (ITS-2) ribosomal DNA sequences.

    PubMed

    Zhao, Guang-Hui; Li, Hong-Mei; Ryan, Una M; Cong, Mei-Mei; Hu, Bing; Gao, Man; Ren, Wan-Xin; Wang, Xing-Ye; Zhang, Shui-Ping; Lin, Qing; Zhu, Xing-Quan; Yu, San-Ke

    2012-09-01

    The nuclear ribosomal DNA (rDNA) region spanning 5.8S rDNA and the second internal transcribed spacer (ITS-2) of Baylisascaris schroederi isolated from the Qinling subspecies of giant panda in Shaanxi Province, China were amplified and sequenced. Sequence variations in the two rDNA regions within B. schroederi and among species in the family Ascarididae were examined. The lengths of B. schroederi 5.8S and ITS-2 rDNA sequences were 156 bp and 327 bp, respectively, and no nucleotide variation was found in these two rDNA regions among the 20 B. schroederi samples examined, and these ITS-2 sequences were identical to that of B. schroederi isolated from giant panda in Sichuan province, China. The inter-species differences in 5.8S and ITS-2 rDNA sequences among members of the family Ascarididae were 0-1.3% and 0-17.7%, respectively. Phylogenetic relationships among species in the Ascarididae were re-constructed by Bayesian inference (Bayes), maximum parsimony (MP), and maximum likelihood (ML) analyses, based on combined sequences of 5.8S and ITS-2 rDNA. All B. schroederi samples clustered together and sistered to B. transfuga with high posterior probabilities/bootstrap values, which further confirmed that nematodes isolated from the Qinling subspecies of giant panda in Shaanxi Province, China represent B. schroederi. Because of the large number of ambiguously aligned sequence positions (difficulty of inferring homology by positions), ITS-2 sequence alone is likely unsuitable for phylogenetic analyses at the family level, but the combined 5.8S and ITS-2 rDNA sequences provide alternative genetic markers for the identification of B. schroederi and for phylogenetic analysis of parasites in the family Ascarididae.

  19. Complete sequence of Euglena gracilis chloroplast DNA.

    PubMed Central

    Hallick, R B; Hong, L; Drager, R G; Favreau, M R; Monfort, A; Orsat, B; Spielmann, A; Stutz, E

    1993-01-01

    We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns. PMID:8346031

  20. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis.

    PubMed

    Esparcia, Oscar; Montemayor, Michel; Ginovart, Gemma; Pomar, Virginia; Soriano, Germán; Pericas, Roser; Gurgui, Mercedes; Sulleiro, Elena; Prats, Guillem; Navarro, Ferran; Coll, Pere

    2011-02-01

    The diagnostic accuracy of a 16S ribosomal DNA (rDNA) gene-based molecular technique for bacterial meningitis (BM), early-onset neonatal sepsis (EONS), and spontaneous bacterial peritonitis (SBP) is evaluated. The molecular approach gave better results for BM diagnosis: sensitivity (S) was 90.6% compared to 78.1% for the bacterial culture. Percentages of cases correctly diagnosed (CCD) were 91.7% and 80.6%, respectively. For EONS diagnosis, S was 60.0% for the molecular approach and 70.0% for the bacterial culture; and CCD was 95.2% and 96.4%, respectively. For SPB diagnosis, the molecular approach gave notably poorer results than the bacterial cultures. S and CCD were 48.4% and 56.4% for the molecular approach and 80.6% and 89.1% for bacterial cultures. Nevertheless, bacterial DNA was detected in 53.3% of culture-negative samples. Accuracy of the 16S rDNA PCR approach differs depending on the sample, the microorganisms involved, the expected bacterial load, and the presence of bacterial DNA other than that from the pathogen implied in the infectious disease.

  1. Helicobacter pylori specific nested PCR assay for the detection of 23S rRNA mutation associated with clarithromycin resistance

    PubMed Central

    Maeda, S; Yoshida, H; Ogura, K; Kanai, F; Shiratori, Y; Omata, M

    1998-01-01

    Background—Clarithromycin is one of the most important antibiotics for Helicobacter pylori eradication. However, 5-10% of strains are reported to be resistant. It has been shown that one point mutation in the 23S rRNA gene is associated with resistance to clarithromycin. 
Aims—To establish a polymerase chain reaction (PCR) system which amplifies a segment of the 23S rRNA gene containing the mutation points with primers specific for H pylori, so that H pylori infection and the mutation associated with clarithromycin resistance can be examined simultaneously. 
Methods—To detect H pylori infection and the mutation simultaneously, primers specific for the H pylori 23S rRNA gene were designed based on sequence conservation among H pylori strains and sequence specificity as compared with other bacteria. DNA from 57 cultured strains and from 39 gastric juice samples was amplified in the seminested 23S rRNA PCR. Clinical applicability was evaluated in 85patients. 
Results—DNA samples from 57 cultured strains were all amplified. The novel assay and the urease A PCR agreed in 37/39 gastric juice samples with no false positives. The assay did not amplify the DNA of bacteria other than H pylori. Eight of 85 samples had the mutation before treatment. In clarithromycin based treatment, eradication was achieved in 2/5 (40%) with the mutation and 29/34 (85%) without the mutation. 
Conclusion—The assay using gastric juice is quick (within 12 hours) and non-invasive (endoscopy not required), enabling rapid initiation of appropriate antibiotic treatment. 

 Keywords: Helicobacter pylori; eradication; clarithromycin; resistance; point mutation PMID:9863474

  2. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases

    PubMed Central

    Roth, Andreas; Reischl, Udo; Streubel, Anna; Naumann, Ludmila; Kroppenstedt, Reiner M.; Habicht, Marion; Fischer, Marga; Mauch, Harald

    2000-01-01

    A novel genus-specific PCR for mycobacteria with simple identification to the species level by restriction fragment length polymorphism (RFLP) was established using the 16S-23S ribosomal RNA gene (rDNA) spacer as a target. Panspecificity of primers was demonstrated on the genus level by testing 811 bacterial strains (122 species in 37 genera from 286 reference strains and 525 clinical isolates). All mycobacterial isolates (678 strains among 48 defined species and 5 indeterminate taxons) were amplified by the new primers. Among nonmycobacterial isolates, only Gordonia terrae was amplified. The RFLP scheme devised involves estimation of variable PCR product sizes together with HaeIII and CfoI restriction analysis. It yielded 58 HaeIII patterns, of which 49 (84%) were unique on the species level. Hence, HaeIII digestion together with CfoI results was sufficient for correct identification of 39 of 54 mycobacterial taxons and one of three or four of seven RFLP genotypes found in Mycobacterium intracellulare and Mycobacterium kansasii, respectively. Following a clearly laid out diagnostic algorithm, the remaining unidentified organisms fell into five clusters of closely related species (i.e., the Mycobacterium avium complex or Mycobacterium chelonae-Mycobacterium abscessus) that were successfully separated using additional enzymes (TaqI, MspI, DdeI, or AvaII). Thus, next to slowly growing mycobacteria, all rapidly growing species studied, including M. abscessus, M. chelonae, Mycobacterium farcinogenes, Mycobacterium fortuitum, Mycobacterium peregrinum, and Mycobacterium senegalense (with a very high 16S rDNA sequence similarity) were correctly identified. A high intraspecies sequence stability and the good discriminative power of patterns indicate that this method is very suitable for rapid and cost-effective identification of a wide variety of mycobacterial species without the need for sequencing. Phylogenetically, spacer sequence data stand in good agreement with 16S rDNA

  3. Intragenomic sequence variation at the ITS1 - ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: mollusca)

    USGS Publications Warehouse

    Hoy, Marshal S.; Rodriguez, Rusty J.

    2013-01-01

    Molecular genetic analysis was conducted on two populations of the invasive non-native New Zealand mud snail (Potamopyrgus antipodarum), one from a freshwater ecosystem in Devil's Lake (Oregon, USA) and the other from an ecosystem of higher salinity in the Columbia River estuary (Hammond Harbor, Oregon, USA). To elucidate potential genetic differences between the two populations, three segments of nuclear ribosomal DNA (rDNA), the ITS1-ITS2 regions and the 18S and 28S rDNA genes were cloned and sequenced. Variant sequences within each individual were found in all three rDNA segments. Folding models were utilized for secondary structure analysis and results indicated that there were many sequences which contained structure-altering polymorphisms, which suggests they could be nonfunctional pseudogenes. In addition, analysis of molecular variance (AMOVA) was used for hierarchical analysis of genetic variance to estimate variation within and among populations and within individuals. AMOVA revealed significant variation in the ITS region between the populations and among clones within individuals, while in the 5.8S rDNA significant variation was revealed among individuals within the two populations. High levels of intragenomic variation were found in the ITS regions, which are known to be highly variable in many organisms. More interestingly, intragenomic variation was also found in the 18S and 28S rDNA, which has rarely been observed in animals and is so far unreported in Mollusca. We postulate that in these P. antipodarum populations the effects of concerted evolution are diminished due to the fact that not all of the rDNA genes in their polyploid genome should be essential for sustaining cellular function. This could lead to a lessening of selection pressures, allowing mutations to accumulate in some copies, changing them into variant sequences.                   

  4. Analysis of ITS1 and ITS2 sequences in Ensis razor shells: suitability as molecular markers at the population and species levels, and evolution of these ribosomal DNA spacers.

    PubMed

    Vierna, Joaquín; Martínez-Lage, Andrés; González-Tizón, Ana M

    2010-01-01

    Internal transcribed spacer 1 and 2 (ITS1 and ITS2) sequences were analysed in Ensis razor shells (Mollusca: Bivalvia: Pharidae). We aimed to (1) test ITS1 and ITS2 as molecular markers at the population level in the successful alien E. directus (Conrad, 1843); (2) test these spacers at the species level in E. directus and three other Ensis species, E. siliqua (L., 1758), E. macha (Molina, 1782), and E. magnus (Schumacher, 1817); and (3) analyse the evolutionary processes that may be shaping Ensis ITS1 and ITS2 extant variation. In E. directus, despite the intragenomic divergence detected, ITS1 and ITS2 were informative in differentiating the geographic areas considered (Denmark and Canada) by means of both the insertion-deletion polymorphism and the nucleotide polymorphism. In this species, the 5.8S ribosomal gene (5.8S) showed scarce polymorphism. At the species level, maximum parsimony and maximum likelihood analyses revealed that ITS1 and ITS2 may be suitable to reconstruct Ensis phylogenetic relationships. Finally, the evolutionary models that best fit the long-term evolution of Ensis ITS1-5.8S-ITS2 are discussed. A mixed process of concerted evolution, birth-and-death evolution, and selection is chosen as an option that may reconcile the long-term evolution of Ensis ITS1-5.8S-ITS2 and 5S ribosomal DNA.

  5. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes.

    PubMed Central

    Occhialini, A; Urdaci, M; Doucet-Populaire, F; Bébéar, C M; Lamouliatte, H; Mégraud, F

    1997-01-01

    Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes. PMID:9420046

  6. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes.

    PubMed

    Occhialini, A; Urdaci, M; Doucet-Populaire, F; Bébéar, C M; Lamouliatte, H; Mégraud, F

    1997-12-01

    Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes.

  7. Crosslinking of Ribosomal Proteins to RNA in Maize Ribosomes by UV-B and Its Effects on Translation1[w

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Ultraviolet-B (UV-B) photons can cause substantial cellular damage in biomolecules, as is well established for DNA. Because RNA has the same absorption spectrum for UV as DNA, we have investigated damage to this cellular constituent. In maize (Zea mays) leaves, UV-B radiation damages ribosomes by crosslinking cytosolic ribosomal proteins S14, L23a, and L32, and chloroplast ribosomal protein L29 to RNA. Ribosomal damage accumulated during a day of UV-B exposure correlated with a progressive decrease in new protein production; however, de novo synthesis of some ribosomal proteins is increased after 6 h of UV-B exposure. After 16 h without UV-B, damaged ribosomes were eliminated and translation was restored to normal levels. Ribosomal protein S6 and an S6 kinase are phosphorylated during UV-B exposure; these modifications are associated with selective translation of some ribosomal proteins after ribosome damage in mammalian fibroblast cells and may be an adaptation in maize. Neither photosynthesis nor pigment levels were affected significantly by UV-B, demonstrating that the treatment applied is not lethal and that maize leaf physiology readily recovers. PMID:15466230

  8. Studies of the GTPase domain of archaebacterial ribosomes.

    PubMed

    Beauclerk, A A; Hummel, H; Holmes, D J; Böck, A; Cundliffe, E

    1985-09-02

    Ribosomes from the methanogens Methanococcus vannielii and Methanobacterium formicicum catalyse uncoupled hydrolysis of GTP in the presence of factor EF-2 from rat liver (but not factor EF-G from Escherichia coli). In this assay, and in poly(U)-dependent protein synthesis, they were sensitive to thiostrepton. In contrast, ribosomes from Sulfolobus solfataricus did not respond to factor EF-2 (or factor EF-G) but possessed endogenous GTPase activity, which was also sensitive to thiostrepton. Ribosomes from the methanogens did not support (p)ppGpp production, but did appear to possess the equivalent of protein L11, which in E. coli is normally required for guanosine polyphosphate synthesis. Protein L11 from E. coli bound well to 23S rRNA from all three archaebacteria (as did thiostrepton) and oligonucleotides protected by the protein were sequenced and compared with rRNA sequences from other sources.

  9. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  10. Different sensitivity of H69 modification enzymes RluD and RlmH to mutations in Escherichia coli 23S rRNA.

    PubMed

    Leppik, Margus; Ero, Rya; Liiv, Aivar; Kipper, Kalle; Remme, Jaanus

    2012-05-01

    Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.

  11. Identification of the S6 kinase activity stimulated in quiescent brine shrimp embryos upon entry to preemergence development as p70 ribosomal protein S6 kinase: Isolation of Artemia franciscana p70S6k cDNA

    PubMed Central

    Santiago, J.; Sturgill, T.W.

    2010-01-01

    We previously demonstrated that a protein kinase responsible for phosphorylating 40S ribosomal subunits is activated in quiescent Artemia franciscana embryos within 15 min of restoration of normal tonicity and incubation at 30°C. Here, we identify the activated S6 kinase as A. franciscana p70 ribosomal S6 kinase (p70S6k) subsequent to the isolation of an Artemia p70S6k cDNA. The protein conceptually translated from cDNA has 70% similarity and 64% identity to both Drosophila melanogaster and human p70S6k. Southern blot analysis is consistent with presence of a single p70S6k gene. Two transcripts of 5.4 and 2.7 kb were found. Abundance of both mRNAs increased dramatically around 4 h of preemergence development, and exhibited different steady-state level variation thereafter. Stimulated S6 kinase activity, partially purified by Superose 6 chromatography, correlated best with the slowest migrating, ~65 kDa, form detected by Western analysis using a specific polyclonal antibody made to a peptide from the predicted p70S6k NH2-terminus. Furthermore, the A. franciscana p70S6k was immunoprecipitated with the same antibody, showing in parallel an S6 kinase activity similar to peak profiles. We conclude that the stimulated S6 kinase activity is that of an ortholog of human p70S6k that may be involved in the regulation of protein synthesis during preemergence development in A. franciscana species. PMID:11310561

  12. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  13. Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal sequence variation linked with multiple rDNA loci: a case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp.

    PubMed

    Králová-Hromadová, Ivica; Stefka, Jan; Spakulová, Marta; Orosová, Martina; Bombarová, Marta; Hanzelová, Vladimíra; Bazsalovicsová, Eva; Scholz, Tomás

    2010-02-01

    Complete sequences of the ribosomal internal transcribed spacers (ITS1 and ITS2) and karyological characters of the monozoic (unsegmented) tapeworm Atractolytocestus huronensis Anthony, 1958 (Cestoda: Caryophyllidea) from Slovakia were analysed, revealing considerable intra-genomic variability and triploidy in all analysed specimens. Analysis of 20 sequences of each ITS1 and ITS2 spacer yielded eight and 10 different sequence types, respectively. In individual tapeworms, two to four ITS1 and three to four ITS2 sequence types were found. Divergent intra-genomic ITS copies were mostly induced by nucleotide substitutions and different numbers of short repetitive motifs within the sequence. In addition, triploidy was found to be a common feature of A. huronensis. The karyotype of Slovakian A. huronensis possesses three sets of chromosomes (3n=24, n=4m+3st+1minute chromosome), similar to the previously described triploidy in conspecific tapeworms from North America. Fluorescent in situ hybridisation (FISH) with a ssrDNA probe revealed two distinct rDNA clusters for each homologue of the triplet number 2. To date, A. huronensis is the only cestode species in which intra-individual ITS sequence variants were found in parallel with its triploid nature and multiple rDNA loci. Some of these molecular and genetic features were observed in several other species of basal or nearly basal tapeworms of the orders Caryophyllidea and Diphyllobothriidea, which indicates that the phenomena may be characteristic for evolutionarily lower tapeworms and deserve more attention in future studies.

  14. Molecular characterization of parthenogenic Fasciola sp. in Korea on the basis of DNA sequences of ribosomal ITS1 and mitochondrial NDI gene.

    PubMed

    Itagaki, Tadashi; Kikawa, Masayuki; Terasaki, Kunio; Shibahara, Toshiyuki; Fukuda, Koichi

    2005-11-01

    Nucleotide sequences of ribosomal internal transcribed spacer (ITS1) and mitochondrial NADH dehydrogenase I (NDI) gene were analyzed to genetically characterize aspermic Fasciola forms in Korea. From the difference in ITS1 sequences, Korean flukes were divided into 3 haplotypes represented by Kor1, Kor2 and Kor1/2, which had nucleotides identical to F. hepatica, F. gigantica and those overlapped between the two species, respectively. NDI sequences also showed that Korean flukes could be classified into 3 distinct haplotypes (Kor1: F. hepatica-type, Kor2a and Kor2b: F. gigantica-type). The sequences of Kor1 and Kor2a were 100% identical to those of the haplotypes Fsp1and Fsp2, respectively, which are major Fasciola forms in Japan. These findings strongly suggest that aspermic Fasciola forms in Korea and Japan originated from same ancestors and have recently spread throughout both countries.

  15. Determination of Trichuris muris from murid hosts and T. arvicolae (Nematoda) from arvicolid rodents by amplification and sequentiation of the ITS1-5.8S-ITS2 segment of the ribosomal DNA.

    PubMed

    Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C

    2002-06-01

    Trichuris muris has been isolated from murid hosts ( Apodemus sylvaticus and Mus musculus) and Trichuris arvicolae from arvicolid rodents in Barcelona, Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced using polymerase chain reaction techniques. The ITS2 of both populations isolated from Apodemus and Mus was 382 nucleotides in length and had a GC content of about 60.73%, while the ITS2 of T. arvicolae was 442 nucleotides in length and had a GC content of about 59.8%. Furthermore, the ITS1 of Trichuris from murids was 448 nucleotides in length and had a GC content of about 56.47%, while T. arvicolae was 446 nucleotides in length and had 57.62% of GC content. A total of 161 and 173 nucleotides were observed along the 5.8S gene of T. murisand T. arvicolae, respectively; This difference in nucleotides was due to the insertion of a DNA segment (transposon) in the 5.8S sequence of the latter species. Slight intraindividual and intraspecific variations were detected in the rDNA of both species. The presence of microsatellites was observed in all of the individuals assayed. Sequence analysis of the internal transcribed spacers and the 5.8S gene demonstrated no sequence differences between T. muris isolated from both of its murid hosts. Nevertheless, clear differences were detected between the ITS2, ITS1 and 5.8S gene of T. muris and T. arvicolae. This corroborates the existence of two separate Trichuris species in murid and arvicolid hosts. Furthermore, a phylogenetic analysis was carried out and endonucleases restriction maps were elaborated for both species.

  16. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis

    PubMed Central

    Yang, Leiyun; Yang, Fen; Wang, Yi; Zhu, Jian-Kang; Hua, Jian

    2016-01-01

    Plants have varying abilities to tolerate chilling (low but not freezing temperatures), and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance. PMID:27138552

  17. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins

    PubMed Central

    Gamalinda, Michael; Woolford, John L

    2015-01-01

    The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders. PMID:26779413

  18. Ribosome dynamics during decoding.

    PubMed

    Rodnina, Marina V; Fischer, Niels; Maracci, Cristina; Stark, Holger

    2017-03-19

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNA(Sec) and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'.

  19. Determination of Trichuris skrjabini by sequencing of the ITS1-5.8S-ITS2 segment of the ribosomal DNA: comparative molecular study of different species of trichurids.

    PubMed

    Cutillas, C; Oliveros, R; de Rojas, M; Guevara, D C

    2004-06-01

    Adults of Trichuris skrjahini have been isolated from the cecum of caprine hosts (Capra hircus), Trichuris ovis and Trichuris globulosa from Ovis aries (sheep) and C. hircus (goats), and Trichuris leporis from Lepus europaeus (rabbits) in Spain. Genomic DNA was isolated and the ITS1-5.8S-ITS2 segment from the ribosomal DNA (rDNA) was amplified and sequenced by polymerase chain reaction (PCR) techniques. The ITS1 of T. skrjabini, T. ovis, T. globulosa, and T. leporis was 495, 757, 757, and 536 nucleotides in length, respectively, and had G + C contents of 59.6, 58.7, 58.7, and 60.8%, respectively. Intraindividual variation was detected in the ITSI sequences of the 4 species. Furthermore, the 5.8S sequences of T. skrjabini, T. ovis, T. globulosa, and T. leporis were compared. A total of 157, 152, 153, and 157 nucleotides in length was observed in the 5.8S sequences of these 4 species, respectively. There were no sequence differences of ITS1 and 5.8S products between T. ovis and T. globulosa. Nevertheless, clear differences were detected between the ITS1 sequences of T. skrjabini, T. ovis, T. leporis, Trichuris muris, and T. arvicolae. The ITS2 fragment from the rDNA of T. skrjabini was sequenced. A comparative study of the ITS2 sequence of T. skrjabini with the previously published ITS2 sequence data of T. ovis, T. leporis, T. muris, and T. arvicolae suggested that the combined use of sequence data from both spacers would be useful in the molecular characterization of trichurid parasites.

  20. An infectious RNA with a hepta-adenosine stretch responsible for programmed -1 ribosomal frameshift derived from a full-length cDNA clone of Hibiscus latent Singapore virus.

    PubMed

    Niu, Shengniao; Cao, Shishu; Wong, Sek-Man

    2014-01-20

    Hibiscus latent Singapore virus (HLSV) is a member of Tobamovirus and its full-length cDNA clones were constructed. The in vitro transcripts from two HLSV full-length cDNA clones, which contain a hepta-adenosine stretch (pHLSV-7A) and an octo-adenosine stretch (pHLSV-8A), are both infectious. The replication level of HLSV-7A in Nicotiana benthamiana protoplasts was 5-fold lower, as compared to that of HLSV-8A. The replicase proteins of HLSV-7A were produced through programmed -1 ribosomal frameshift (-1 PRF) and the 7A stretch was a slippery sequence for -1 PRF. Mutations to the downstream pseudoknot of 7A stretch showed that the pseudoknot was not required for the frameshift in vitro. The stretch was found to be extended to 8A after subsequent replication cycles in vivo. It is envisaged that HLSV employs the monotonous runs of A and -1 PRF to convert its 7A to 8A to reach higher replication for its survival in plants.

  1. Ribosome maturation in E. coli.

    PubMed

    Silengo, L; Altruda, F; Dotto, G P; Lacquaniti, F; Perlo, C; Turco, E; Mangiarotti, G

    1977-01-01

    In vivo and in vitro experiments have shown that processing of ribosomal RNA is a late event in ribosome biogenesis. The precursor form of RNA is probably necessary to speed up the assembly of ribomal proteins. Newly formed ribosomal particles which have already entered polyribosomes differ from mature ribosomes not only in their RNA content but also in their susceptibility to unfolding in low Mg concentration and to RNase attack. Final maturation of new ribosomes is probably dependent on their functioning in protein synthesis. Thus only those ribosomes which have proven to be functional may be converted into stable cellular structures.

  2. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  3. Identification of a Novel G2073A Mutation in 23S rRNA in Amphenicol-Selected Mutants of Campylobacter jejuni

    PubMed Central

    Naren, Gaowa; Li, Hui; Xia, Xi; Wu, Congming; Shen, Jianzhong; Zhang, Qijing; Wang, Yang

    2014-01-01

    Objectives This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture. Methods Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations. Results C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides. Conclusions This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media. PMID:24728007

  4. Ribosome dynamics during decoding

    PubMed Central

    Maracci, Cristina; Stark, Holger

    2017-01-01

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138068

  5. Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization.

    PubMed

    Liu, Z-L; Zhang, D; Hong, D-Y; Wang, X-R

    2003-01-01

    Fluorescence in situ hybridization (FISH) was employed on mitotic metaphase chromosome preparations of five Asian Pinus species: Pinus tabuliformis, Pinus yunnanensis, Pinus densata, Pinus massoniana and Pinus merkusii, using simultaneously DNA probes of the 18S rRNA gene and the 5S rRNA gene including the non-transcribed spacer sequences. The number and location of 18S rDNA sites varied markedly (5-10 pairs of strong signals) among the five pines. A maximum of 20 major 18S rDNA sites was observed in the diploid genome (2n = 24) of P. massoniana. The 5S rDNA FISH pattern was less variable, with one major site and one minor site commonly observed in each species. The differentiation of rDNA sites on chromosomes among the five pines correlates well with their phylogenic positions in Pinus as reconstructed from other molecular data. P. densata, a species of hybrid origin, resembles its parents ( P. tabuliformis and P. yunnanensis), including some components characteristic of each parent in its pattern. However, the species is unique, showing new features resulting possibly from recombination and genome reorganization.

  6. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  7. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria.

    PubMed Central

    Valverde, J R; Marco, R; Garesse, R

    1994-01-01

    A search of sequence data bases for a tridecamer transcription termination signal, previously described in human mtDNA as being responsible for the accumulation of mitochondrial ribosomal RNAs (rRNAs) in excess over the rest of mitochondrial genes, has revealed that this termination signal occurs in equivalent positions in a wide variety of organisms from protozoa to mammals. Due to the compact organization of the mtDNA, the tridecamer motif usually appears as part of the 3' adjacent gene sequence. Because in phylogenetically widely separated organisms the mitochondrial genome has experienced many rearrangements, it is interesting that its occurrence near the 3' end of the large rRNA is independent of the adjacent gene. The tridecamer sequence has diverged in phylogenetically widely separated organisms. Nevertheless, a well-conserved heptamer--TGGCAGA, the mitochondrial rRNA termination box--can be defined. Although extending the experimental evidence of its role as a transcription termination signal in humans will be of great interest, its evolutionary conservation strongly suggests that mitochondrial rRNA transcription termination could be a widely conserved mechanism in animals. Furthermore, the conservation of a homologous tridecamer motif in one of the last 3' secondary loops of nonmitochondrial 23S-like rRNAs suggests that the role of the sequence has changed during mitochondrial evolution. PMID:7515499

  8. Regulation of ribosome biogenesis in maize embryonic axes during germination.

    PubMed

    Villa-Hernández, J M; Dinkova, T D; Aguilar-Caballero, R; Rivera-Cabrera, F; Sánchez de Jiménez, E; Pérez-Flores, L J

    2013-10-01

    Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 h of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6 h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA.

  9. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  10. A regulatory role for cAMP in phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase-mediated DNA synthesis in platelet-derived-growth-factor-stimulated bovine airway smooth-muscle cells.

    PubMed Central

    Scott, P H; Belham, C M; al-Hafidh, J; Chilvers, E R; Peacock, A J; Gould, G W; Plevin, R

    1996-01-01

    In bovine airway smooth-muscle cells platelet-derived growth factor (PDGF) and endothelin (Et-1) stimulate sustained and comparable activation of mitogen-activated protein kinase (MAP kinase) but display very different mitogenic efficacies, with PDGF inducing 50 times more DNA synthesis than Et-1. To examine additional signalling pathways which may be involved in this response, we investigated the role of phosphatidylinositol 3-kinase (PtdIns 3-kinase)/p70 ribosomal protein S6 kinase (p70s6k) in mediating PDGF- and Et-1-induced mitogenesis, and whether inhibition of this pathway may underly the ability of cAMP to inhibit cell proliferation. PDGF stimulated an increase in PtdIns 3-kinase activity and a sustained 15-fold increase in p70s6k activity that was abolished by both wortmannin and rapamycin. Et-1, however, stimulated only a 2-fold increase in p70s6k activity that was rapamycin-sensitive but wortmannin-insensitive. DNA synthesis stimulated by PDGF (50-fold) and Et-1 (2-fold) followed a similar pattern of inhibition. Pretreatment with phorbol ester did not affect p70s6k activation in response to PDGF. Raising intracellular cAMP levels using forskolin, however, resulted in a marked time-dependent inhibition of p70s6k activity, a decrease in the tyrosine phosphorylation of the PtdIns 3-kinase p85 subunit and reduced PtdIns 3-kinase activity. Forskolin also inhibited PDGF-stimulated DNA synthesis. These results suggest that PtdIns 3-kinase-dependent activation of p70s6k may determine mitogenic efficacy of agonists that generate comparable MAP kinase signals. Negative regulation of PtdIns 3-kinase by cAMP may play an important role in the inhibition of airway smooth-muscle cell proliferation. PMID:8836145

  11. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    NASA Astrophysics Data System (ADS)

    Després, V. R.; Nowoisky, J. F.; Klose, M.; Conrad, R.; Andreae, M. O.; Pöschl, U.

    2007-12-01

    This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA) particles in the atmosphere. Samples of fine particulate matter (PM2.5) and total suspended particulates (TSP) have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze). From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP) were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses. Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m-3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively). Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42) and some from Actinobacteria (10) and Firmicutes (1). The fungal sequences were characteristic for Ascomycota (3) and Basidiomycota (1), which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2) and moss spores (2), while animal DNA was found only for one unicellular eukaryote (protist). Over 80% of the 53 bacterial sequences could be matched to one of the 19 T-RF peaks found in the PM2.5 samples, but only 40% of the T-RF peaks

  12. Expanding the ribosomal universe.

    PubMed

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-09

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  13. Molecular characterization of Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae) from goats in the western part of India by LSU of nuclear ribosomal DNA.

    PubMed

    Kumar, Ashwani; Chaudhary, Anshu; Verma, Chandni; Singh, Hridaya Shanker

    2014-12-01

    The rumen parasite, Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae), is a highly pathogenic trematode parasite of goat (Capra hircus). It sucks blood that causes acute disease like anemia, and severe economic losses occur due to morbidity and mortality of the ruminant infected by these worms. The study of these rumen paramphistomes, their infection, and public health importance remains unclear in India especially in the western part of state Uttar Pradesh (U.P.), Meerut, India, where the goat meat consumption is very high. This paper provides the molecular characterization of G. crumenifer recovered from the rumen of Capra hircus from Meerut, U.P., India by the partial sequence of 28S rDNA. Nucleotide sequence similarity searching on BLAST of 28S rDNA from parasites showed the highest identity with those of G. crumenifer from the same host Capra hircus. This is the first report of molecular identification of G. crumenifer from this part of India.

  14. Molecular Characterization of Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae) from Goats in the Western Part of India by LSU of Nuclear Ribosomal DNA

    PubMed Central

    Kumar, Ashwani; Verma, Chandni; Singh, Hridaya Shanker

    2014-01-01

    The rumen parasite, Gastrothylax crumenifer (Platyhelminthes: Gastrothylacidae), is a highly pathogenic trematode parasite of goat (Capra hircus). It sucks blood that causes acute disease like anemia, and severe economic losses occur due to morbidity and mortality of the ruminant infected by these worms. The study of these rumen paramphistomes, their infection, and public health importance remains unclear in India especially in the western part of state Uttar Pradesh (U.P.), Meerut, India, where the goat meat consumption is very high. This paper provides the molecular characterization of G. crumenifer recovered from the rumen of Capra hircus from Meerut, U.P., India by the partial sequence of 28S rDNA. Nucleotide sequence similarity searching on BLAST of 28S rDNA from parasites showed the highest identity with those of G. crumenifer from the same host Capra hircus. This is the first report of molecular identification of G. crumenifer from this part of India. PMID:25548426

  15. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGG) n repeat in eight species of true bugs (Hemiptera, Heteroptera)

    PubMed Central

    Grozeva, S.; Kuznetsova, V.G.; Anokhin, B.A.

    2011-01-01

    Abstract Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH) with telomeric (TTAGG)n and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838) (2n=30+2m+XY) and Deraeocoris ruber(Linnaeus, 1758) (2n=30+2m+XY) from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785) (2n=30+XY) from the Miridae; Oxycarenus lavaterae (Fabricius, 1787) (2n=14+2m+XY) from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758) (2n=22+X) from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758) (2n=12+XY) and Graphosoma lineatum (Linnaeus, 1758) (2n=12+XY) from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in Oxycarenus lavaterae and Pyrrhocoris apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGG)n was demonstrated to be absent in all the species studied in this respect, Deraeocoris rutilus, Megaloceroea recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae), Eurydema oleracea, and Graphosoma lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown) or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from Cimex lectularius, Nabis sp. and Oxycarenus lavaterae with (TTAGG)n and six other telomeric probes likewise provided a negative result. PMID:24260641

  16. Patterns of variation in the intergenic spacers of ribosomal DNA in Drosophila melanogaster support a model for genetic exchanges during X-Y pairing.

    PubMed Central

    Polanco, C; González, A I; Dover, G A

    2000-01-01

    Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges at the IGS regions, which can explain the different evolutionary trajectories followed by the IGS and the ITS regions. Here, we provide data from the chromosomal distribution of selected IGS length variants, as well as the detailed internal structure of a large number of IGS regions obtained from specific X and Y chromosomes. The variability found in the different internal subrepeat regions of IGS regions isolated from X and Y chromosomes supports the proposed mechanism of genetic exchanges and suggests that only the "240" subrepeats are involved. The presence of a putative site for topoisomerase I at the 5' end of the 18S rRNA gene would allow for the exchange between X and Y chromosomes of some 240 subrepeats, the promoter, and the ETS region, leaving the rest of the rDNA unit to evolve along separate chromosomal lineages. The phenomenon of localized units (modules) of homogenization has implications for multigene family evolution in general. PMID:10880483

  17. Chapter 2: Genetic Variability in Nuclear Ribosomal and Chloroplast DNA in Utah (Juniperus Osteosperma) and Western (J. Occidentalis) Juniper (Cupressaceae): Evidence for Interspecific Gene Flow1

    SciTech Connect

    Terry, Randall G.; Tausch, Robin J.; Nowak, Robert S.

    1998-02-14

    Early studies of evolutionary change in chloroplast DNA indicated limited variability within species. This finding has been attributed to relatively low rates of sequence evolution and has been maintained as justification for the lack of intraspecific sampling in studies examining, relationships at the species level and above. However, documentation of intraspecific variation in cpDNA has become increasingly common and has been attributed in many cases to ''chloroplast capture'' following genetic exchange across species boundaries. Rleseberg and Wendel (1993) list 37 cases of proposed hybridization in plants that include intraspecific variation in cpDNA, 24 (65%) of which they considered to be probable instances of introgression. Rieseberg (1995) suspected that a review of the literature at that time would reveal over 100 cases of intraspecific variation in CPDNA that could be attributed to hybridization and introgression. That intraspecific variation in cpDNA is potentially indicative of hybridization is founded on the expectation that slowly evolving loci or genomes will produce greater molecular variation between than within species. In cases where a species is polymorphic for CPDNA and at least one of the molecular variants is diagnostic for a second species, interspecific hybridization is a plausible explanation. Incongruence between relationships suggested by cpDNA variation and those supported by other types of data (e.g., morphology or molecular data from an additional locus) provides additional support for introgression. One aspect of hybridization in both animals and plants that has become increasingly evident is incongruence in the phylogenetic and geographic distribution of cytoplasmic and nuclear markers. In most cases cytoplasmic introgression appears to be more pervasive than nuclear exchange. This discordance appears attributable to several factors including differences in the mutation rate, number of effective alleles, and modes of inheritance of

  18. Mutations Outside the Anisomycin-Binding Site Can Make Ribosomes Drug-Resistant

    SciTech Connect

    Blaha,G.; Gurel, G.; Schroeder, S.; Moore, P.; Steitz, T.

    2008-01-01

    Eleven mutations that make Haloarcula marismortui resistant to anisomycin, an antibiotic that competes with the amino acid side chains of aminoacyl tRNAs for binding to the A-site cleft of the large ribosomal unit, have been identified in 23S rRNA. The correlation observed between the sensitivity of H. marismortui to anisomycin and the affinity of its large ribosomal subunits for the drug indicates that its response to anisomycin is determined primarily by the binding of the drug to its large ribosomal subunit. The structures of large ribosomal subunits containing resistance mutations show that these mutations can be divided into two classes: (1) those that interfere with specific drug-ribosome interactions and (2) those that stabilize the apo conformation of the A-site cleft of the ribosome relative to its drug-bound conformation. The conformational effects of some mutations of the second kind propagate through the ribosome for considerable distances and are reversed when A-site substrates bind to the ribosome.

  19. Isolation of ribosomes and polysomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe a preparative differential centrifugation protocol for the isolation of ribosomes from a crude cell homogenate. The subcellular fraction obtained is enriched in ribosome monomers and polysomes. The protocol has been optimized for the homogenization and collection of the ribosomal fraction from prokaryotic cells, mammalian and plant tissues, reticulocytes, and chloroplasts. The quality of the ribosomal preparation is enhanced by the removal of the remaining cellular components and adsorbed proteins by pelleting through a sucrose cushion with a high concentration of monovalent salts, NH4Cl or KCl. The different components of the ribosomal fraction isolated using this protocol can be further purified by sucrose gradient centrifugation.

  20. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.

    PubMed

    Bakshi, Somenath; Siryaporn, Albert; Goulian, Mark; Weisshaar, James C

    2012-07-01

    Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; β'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.

  1. Gyrodiniellum shiwhaense n. gen., n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence.

    PubMed

    Kang, Nam Seon; Jeong, Hae Jin; Moestrup, Ojvind; Park, Tae Gyu

    2011-01-01

    The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a

  2. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off Western Korea: morphology, pigments, and ribosomal DNA gene sequence.

    PubMed

    Kang, Nam Seon; Jeong, Hae Jin; Moestrup, Øjvind; Shin, Woongghi; Nam, Seung Won; Park, Jae Yeon; De Salas, Miguel F; Kim, Ki Woo; Noh, Jae Hoon

    2010-01-01

    The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate-like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension-like furrow. The cingulum is as wide as 0.2-0.3 x cell length and displaced by 0.2-0.3 x cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4-19.3 and 6.1-16.0 microm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17-18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst-nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.

  3. Identification of grass-associated and toluene-degrading diazotrophs, Axoarcus spp., by analyses of partial 16S ribosomal DNA sequences

    SciTech Connect

    Hurek, T.; Reinhold-Hurek, B.

    1995-06-01

    The genus Azoarcus includes nitrogen-fixing, grass-associated strains as well as denitrifying toluene degraders. In order to identify and group members of the genus Azoarcus, phylogenetic analysis based on partial sequences of 16S rRNA genes (16S rDNAs) is proposed. 16S rRNA-targeted PCR using specific primers to exclude amplification in the majority of other members of the beta subclass of the class Proteobacteria was combined with direct sequencing of the PCR products. Tree inference from comparisons of 446-bp rDNA fragments yielded similar results for the three known Azoarcus spp. sequences and for analysis of the complete 16S rDNA sequence. These three species formed a phylogenetically coherent group with representatives of two other Azoarcus species which were subjected to 16S rRNA sequencing in this study. This group was related to Rhodocyclus purpureus and Thaurea selenatis. New isolates and also sequences of so far uncultured bacteria from roots of Kallar grass were assigned to the genus Azoarcus as well. Also, strains degrading monoaromatic hydrocarbons anaerobically in the presence of nitrate clustered within this genus, albeit not with grass-associated isolates. All representative members of the five species harboring rhizospheric bacteria were able to form N{sub 2}O from nitrate and showed anaerobic growth on malic acid with nitrate but not on toluene. In order to visualize different Azoarcus spp. by whole-cell in situ hybridizations, we generated 16S rRNA-targeted, fluorescent probes by in vitro transcription directly from PCR products which spanned the variable region V2. Hybridization was species specific for Azoarcus communis and Azoarcus indigens. The proposed scheme of phylogenetic analysis of PCR-generated 16S rDNA segements will facilitate studies on ecological distribution, host range, and diversity of Azoarcus spp. and may even allow rapid identification of unc ultured strains from environmental DNAs. 30 refs., 3 figs.

  4. Cytomolecular Analysis of Ribosomal DNA Evolution in a Natural Allotetraploid Brachypodium hybridum and Its Putative Ancestors—Dissecting Complex Repetitive Structure of Intergenic Spacers

    PubMed Central

    Borowska-Zuchowska, Natalia; Kwasniewski, Miroslaw; Hasterok, Robert

    2016-01-01

    Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA genes and consists in selective suppression of gene loci inherited from one of the progenitors in the allopolyploid. Our understanding of the exact mechanisms that determine this process is still fragmentary, especially in case of the grass species. This study aimed to shed some light on the molecular basis of this genome-specific inactivation of 35S rDNA loci in an allotetraploid Brachypodium hybridum (2n = 30), which arose from the interspecific hybridization between two diploid ancestors that were very similar to modern B. distachyon (2n = 10) and B. stacei (2n = 20). Using fluorescence in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we revealed that the nucleolar dominance is present not only in meristematic root-tip cells but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers (IGSs) from both of the putative ancestors and the allotetraploid were sequenced and analyzed. The presumptive transcription initiation sites, spacer promoters and repeated elements were identified within the IGSs. Two different length variants, 2.3 and 3.5 kb, of IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS that had originated from B. distachyon-like ancestor was present in the allotetraploid. The amplification pattern of B. hybridum IGSs suggests that some genetic changes occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid. We hypothesize that their preferential silencing is an effect of structural changes in the sequence rather than just the result of the sole inactivation at the epigenetic level. PMID:27790225

  5. Complete nucleotide sequence of the 23S rRNA gene of the Cyanobacterium, Anacystis nidulans.

    PubMed Central

    Douglas, S E; Doolittle, W F

    1984-01-01

    The nucleotide sequence of the Anacystis nidulans 23S rRNA gene, including the 5'- and 3'-flanking regions has been determined. The gene is 2876 nucleotides long and shows higher primary sequence homology to the 23S rRNAs of plastids (84.5%) than to that of E. coli (79%). The predicted rRNA transcript also shares many secondary structural features with those of plastids, reinforcing the endosymbiont hypothesis for the origin of these organelles. PMID:6326060

  6. Characterization of Bacterial and Fungal Soil Communities by Automated Ribosomal Intergenic Spacer Analysis Fingerprints: Biological and Methodological Variability

    PubMed Central

    Ranjard, L.; Poly, F.; Lata, J.-C.; Mougel, C.; Thioulouse, J.; Nazaret, S.

    2001-01-01

    Automated rRNA intergenic spacer analysis (ARISA) was used to characterise bacterial (B-ARISA) and fungal (F-ARISA) communities from different soil types. The 16S-23S intergenic spacer region from the bacterial rRNA operon was amplified from total soil community DNA for B-ARISA. Similarly, the two internal transcribed spacers and the 5.8S rRNA gene (ITS1-5.8S-ITS2) from the fungal rRNA operon were amplified from total soil community DNA for F-ARISA. Universal fluorescence-labeled primers were used for the PCRs, and fragments of between 200 and 1,200 bp were resolved on denaturing polyacrylamide gels by use of an automated sequencer with laser detection. Methodological (DNA extraction and PCR amplification) and biological (inter- and intrasite) variations were evaluated by comparing the number and intensity of peaks (bands) between electrophoregrams (profiles) and by multivariate analysis. Our results showed that ARISA is a high-resolution, highly reproducible technique and is a robust method for discriminating between microbial communities. To evaluate the potential biases in community description provided by ARISA, we also examined databases on length distribution of ribosomal intergenic spacers among bacteria (L. Ranjard, E. Brothier, and S. Nazaret, Appl. Environ. Microbiol. 66:5334–5339, 2000) and fungi. PMID:11571146

  7. Structural insights into ribosome translocation

    PubMed Central

    Ling, Clarence

    2016-01-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  8. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  9. Ribosomal DNA sequence divergence and group I introns within the Leucostoma species L. cinctum, L. persoonii, and L. parapersoonii sp. nov., ascomycetes that cause Cytospora canker of fruit trees.

    PubMed

    Adams, Gerard C; Surve-Iyer, Rupa S; Iezzoni, Amy F

    2002-01-01

    Leucostoma species that are the causal agents of Cytospora canker of stone and pome fruit trees were studied in detail. DNA sequence of the internal transcribed spacer regions and the 5.8S of the nuclear ribosomal DNA operon (ITS rDNA) supplied sufficient characters to assess the phylogenetic relationships among species of Leucostoma, Valsa, Valsella, and related anamorphs in Cytospora. Parsimony analysis of the aligned sequence divided Cytospora isolates from fruit trees into clades that generally agreed with the morphological species concepts, and with some of the phenetic groupings (PG 1-6) identified previously by isozyme analysis and cultural characteristics. Phylogenetic analysis inferred that isolates of L. persoonii formed two well-resolved clades distinct from isolates of L. cinctum. Phylogenetic analysis of the ITS rDNA, isozyme analysis, and cultural characteristics supported the inference that L. persoonii groups PG 2 and PG 3 were populations of a new species apparently more genetically different from L. persoonii PG 1 than from isolates representative of L. massariana, L. niveum, L. translucens, and Valsella melastoma. The new species, L. parapersoonii, was described. A diverse collection of isolates of L. cinctum, L. persoonii, and L. parapersoonii were examined for genetic variation using restriction fragment length polymorphism (RFLP) analysis of the ITS rDNA and the five prime end of the large subunit of the rDNA (LSU rDNA). HinfI and HpaII endonucleases were each useful in dividing the Leucostoma isolates into RFLP profiles corresponding to the isozyme phenetic groups, PG 1-6. RFLP analysis was more effective than isozyme analysis in uncovering variation among isolates of L. persoonii PG 1, but less effective within L. cinctum populations. Isolates representative of seven of the L. persoonii formae speciales proposed by G. Défago in 1935 were found to be genetically diverse isolates of PG 1. Two large insertions, 415 and 309 nucleotides long, in

  10. Expression of Variant Ribosomal RNA Genes in Mouse Oocytes and Preimplantation Embryos1

    PubMed Central

    Ihara, Motomasa; Tseng, Hung; Schultz, Richard M.

    2011-01-01

    Ribosomal DNA (rDNA) is not composed of multiple copies of identical transcription units, as commonly believed, but rather of at least seven rDNA variant subtypes that are expressed in somatic cells. This finding raises the possibility that ribosome function may be modulated as proposed by the ribosome filter hypothesis. We report here that mouse oocytes and preimplantation embryos express all the rDNA variants except variant V and that there is no marked developmental change in the qualitative pattern of variant expression. The maternal and embryonic ribosome pools are therefore quite similar, minimizing the likelihood that developmental changes in composition of the ribosome population are critical for preimplantation development. PMID:21209414

  11. The Structure of LepA, the Ribosomal Back Translocase

    SciTech Connect

    Evans,R.; Blaha, G.; Bailey, S.; Steitz, T.

    2008-01-01

    LepA is a highly conserved elongation factor that promotes the back translocation of tRNAs on the ribosome during the elongation cycle. We have determined the crystal structure of LepA from Escherichia coli at 2.8- Angstroms resolution. The high degree of sequence identity between LepA and EF-G is reflected in the structural similarity between the individual homologous domains of LepA and EF-G. However, the orientation of domains III and V in LepA differs from their orientations in EF-G. LepA also contains a C-terminal domain (CTD) not found in EF-G that has a previously unobserved protein fold. The high structural similarity between LepA and EF-G enabled us to derive a homology model for LepA bound to the ribosome using a 7.3- Angstroms cryo-EM structure of a complex between EF-G and the 70S ribosome. In this model, the very electrostatically positive CTD of LepA is placed in the direct vicinity of the A site of the large ribosomal subunit, suggesting a possible interaction between the CTD and the back translocated tRNA or 23S rRNA.

  12. Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron.

    PubMed

    Elbadri, Gamal A A; De Ley, Paul; Waeyenberge, Lieven; Vierstraete, Andy; Moens, Maurice; Vanfleteren, Jacques

    2002-02-01

    Restriction fragment length polymorphism and direct sequencing of the internal transcribed spacer rDNA region of 19 isolates of Radopholus similis yielded significant diversity, both among isolates and within some individuals. Restriction fragment length polymorphism with HaeIII, AluI and Tru9I yielded two sets of patterns. Digestion with RsaI revealed one or two supernumerary bands in single nematodes from five isolates, and sequencing confirmed microheterogeneity in four of these. Phylogenetic analysis grouped most isolates closely together, except for the five isolates with additional bands for RsaI. Our data reveal more population structure than previously found and lend further support to the synonymy of R. similis and 'Radopholus citrophilus'.

  13. Are unpaired chromosomes spermicidal?: A maximum-likelihood analysis of segregation and meiotic drive in Drosophila melanogaster males deficient for the ribosomal-dna.

    PubMed Central

    Robbins, L G

    1999-01-01

    Meiosis in Drosophila melanogaster males is achiasmate and requires special systems to ensure normal segregation. Several situations that yield frequent nondisjunction also produce high levels of chromatin-dependent sperm lethality, suggesting the possibility of a simple and direct connection between defective disjunction and defective sperm development. One hypothesis that has been offered is that pairing not only ensures disjunction, but also changes the physical state of chromosomes so that they can be packaged in sperm. Here, I present an analysis of extensive data on disjunction and sperm survival in rDNA-deficient males collected by B. McKee and D. Lindsley. This analysis demonstrates that, although nondisjunction and sperm lethality are indeed correlated, the basis of this is not the presence of unpaired chromosomes in the sperm. Chromosomes that have failed to disjoin are not themselves spermicidal. PMID:9872964

  14. Are unpaired chromosomes spermicidal?: A maximum-likelihood analysis of segregation and meiotic drive in Drosophila melanogaster males deficient for the ribosomal-dna.

    PubMed

    Robbins, L G

    1999-01-01

    Meiosis in Drosophila melanogaster males is achiasmate and requires special systems to ensure normal segregation. Several situations that yield frequent nondisjunction also produce high levels of chromatin-dependent sperm lethality, suggesting the possibility of a simple and direct connection between defective disjunction and defective sperm development. One hypothesis that has been offered is that pairing not only ensures disjunction, but also changes the physical state of chromosomes so that they can be packaged in sperm. Here, I present an analysis of extensive data on disjunction and sperm survival in rDNA-deficient males collected by B. McKee and D. Lindsley. This analysis demonstrates that, although nondisjunction and sperm lethality are indeed correlated, the basis of this is not the presence of unpaired chromosomes in the sperm. Chromosomes that have failed to disjoin are not themselves spermicidal.

  15. Sequence variation of the 16S to 23S rRNA spacer region in Salmonella enterica.

    PubMed

    Christensen, H; Møller, P L; Vogensen, F K; Olsen, J E

    2000-01-01

    The possibility for identification of Salmonella enterica serotypes by sequence analysis of the 16S to 23S rRNA internal transcribed spacer was investigated by direct sequencing of polymerase chain reaction-amplified DNA from all operons simultaneously in a collection of 25 strains of 18 different serotypes of S. enterica, and by sequencing individual cloned operons from a single strain. It was only possible to determine the first 117 bases upstream from the 23S rRNA gene by direct sequencing because of variation between the rrn operons. Comparison of sequences from this region allowed separation of only 15 out of the 18 serotypes investigated and was not specific even at the subspecies level of S. enterica. To determine the differences between internal transcribed spacers in more detail, the individual rrn operons of strain JEO 197, serotype IV 43:z4,z23:-, were cloned and sequenced. The strain contained four short internal transcribed spacer fragments of 382-384 bases in length, which were 98.4-99.7% similar to each other and three long fragments of 505 bases with 98.0-99.8% similarity. The study demonstrated a higher degree of interbacterial variation than intrabacterial variation between operons for serotypes of S. enterica.

  16. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    SciTech Connect

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-05-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. /sup 32/P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA.

  17. Ribosome recycling induces optimal translation rate at low ribosomal availability.

    PubMed

    Marshall, E; Stansfield, I; Romano, M C

    2014-09-06

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired.

  18. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  19. Structure of the Escherichia coli S10 ribosomal protein operon.

    PubMed Central

    Zurawski, G; Zurawski, S M

    1985-01-01

    The complete structure of the Escherichia coli S10 ribosomal protein operon is presented. Based on the DNA sequence, the deduced order of the 11 genes in the operon is rpsJ, rplC, rplD, rplW, rplB, rpsS, rplV, rpsC, rplP, rpmC, rpsQ. The estimated transcribed length of the operon is 5181 base pairs. Putative sequences involved in ribosome binding are discussed. The DNA sequence data corrects several errors in previously determined protein sequence data. PMID:3892488

  20. Genetic Characterization of Fasciola Isolates from West Azerbaijan Province Iran Based on ITS1 and ITS2 Sequence of Ribosomal DNA

    PubMed Central

    GALAVANI, Hossein; GHOLIZADEH, Saber; HAZRATI TAPPEH, Khosrow

    2016-01-01

    Background: Fascioliasis, caused by Fasciola hepatica and F. gigantica, has medical and economic importance in the world. Molecular approaches comparing traditional methods using for identification and characterization of Fasciola spp. are precise and reliable. The aims of current study were molecular characterization of Fasciola spp. in West Azerbaijan Province, Iran and then comparative analysis of them using GenBank sequences. Methods: A total number of 580 isolates were collected from different hosts in five cities of West Azerbaijan Province, in 2014 from 90 slaughtered cattle (n=50) and sheep (n=40). After morphological identification and DNA extraction, designing specific primer were used to amplification of ITS1, 5.8s and ITS2 regions, 50 samples were conducted to sequence, randomly. Result: Using morphometric characters 99.14% and 0.86% of isolates identified as F. hepatica and F. gigantica, respectively. PCR amplification of 1081 bp fragment and sequencing result showed 100% similarity with F. hepatica in ITS1 (428 bp), 5.8s (158 bp), and ITS2 (366 bp) regions. Sequence comparison among current study sequences and GenBank data showed 98% identity with 11 nucleotide mismatches. However, in phylogenetic tree F. hepatica sequences of West Azerbaijan Province, Iran, were in a close relationship with Iranian, Asian, and African isolates. Conclusions: Only F. hepatica species is distributed among sheep and cattle in West Azerbaijan Province Iran. However, 5 and 6 bp variation in ITS1 and ITS2 regions, respectively, is not enough to separate of Fasciola spp. Therefore, more studies are essential for designing new molecular markers to correct species identification. PMID:27095969

  1. BALANCED PRODUCTION OF RIBOSOMAL PROTEINS

    PubMed Central

    Perry, Robert P.

    2017-01-01

    Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding these proteins are usually at widely scattered loci and have distinctive promoters with certain common features. This minireview discusses the means by which cells manage to balance the production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. Regulation at all levels of gene expression, from transcription to protein turnover, is considered. PMID:17689889

  2. Differentiation of Acinetobacter baumannii biotypes by amplification of 16S-23S rRNA intergenic spacer sequences.

    PubMed

    Garcia, A; Montoya, R; Bello, H; Gonzalez, G; Dominguez, M; Zemelman, R

    1996-01-01

    Isolates of Acinetobacter baumannii (32 strains) from blood samples obtained from patients in five Chilean hospitals were identified and biotyped according to their phenotypic properties. They were also submitted to random amplified polymorphic DNA (RAPD) using eight randomly designed 10-mers and the core sequence of M13 phage (15-mers) as well as amplification of the spacer regions between 16S and 23S genes in the prokaryotic rRNA genetic loci. With some primers, RAPD discriminated between biotypes, whereas with others each isolate showed a particular profile. When amplification of spacer regions was performed, a clear correlation between patterns and biotypes was found. This last technique allowed correct biotyping of clinical isolates. Both genetic methods might be used for the identification of A. baumannii biotypes.

  3. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome

    PubMed Central

    Arenz, Stefan; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S.; Blanchard, Scott C.; Wilson, Daniel N.

    2016-01-01

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis. PMID:27330110

  4. Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome.

    PubMed

    Arenz, Stefan; Juette, Manuel F; Graf, Michael; Nguyen, Fabian; Huter, Paul; Polikanov, Yury S; Blanchard, Scott C; Wilson, Daniel N

    2016-07-05

    The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.

  5. Isolation of ribosomes by chromatography.

    PubMed

    Maguire, Bruce A

    2015-04-01

    Mixed-mode chromatography on cysteine-SulfoLink resin efficiently separates ribosomes from cell lysates and is particularly effective at rapidly removing endogenous proteases and nucleases, resulting in ribosomes of improved purity, integrity, and activity. Binding occurs partly by anion exchange of the RNA of the ribosomes, so that cells must be lysed in a buffer of moderate ionic strength (conductivity no more than 20 mS for chromatography of bacterial ribosomes) without any highly charged additives (e.g., heparin, which is used to inhibit RNases in yeast). A robust protocol for Escherichia coli is given here as an example.

  6. Ribonuclease selection for ribosome profiling

    PubMed Central

    Gerashchenko, Maxim V.; Gladyshev, Vadim N.

    2017-01-01

    Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome–mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems. PMID:27638886

  7. 18S Ribosomal DNA Typing and Tracking of Acanthamoeba Species Isolates from Corneal Scrape Specimens, Contact Lenses, Lens Cases, and Home Water Supplies of Acanthamoeba Keratitis Patients in Hong Kong

    PubMed Central

    Booton, G. C.; Kelly, D. J.; Chu, Y.-W.; Seal, D. V.; Houang, E.; Lam, D. S. C.; Byers, T. J.; Fuerst, P. A.

    2002-01-01

    We examined partial 18S ribosomal DNA (Rns) sequences of Acanthamoeba isolates cultured in a study of microbial keratitis in Hong Kong. Sequence differences were sufficient to distinguish closely related strains and were used to examine links between strains obtained from corneal scrape specimens, contact lenses, lens cases, lens case solutions, and home water-supply faucets of patients with Acanthamoeba. We also looked for evidence of mixed infections. Identification of Acanthamoeba Rns genotypes was based on sequences of ∼113 bp within the genus-specific amplicon ASA.S1. This permitted genotype identification by using nonaxenic cultures. Of 13 specimens obtained from corneal scrapes, contact lenses, lens cases, or lens case solutions, 12 were Rns genotype T4 and the remaining one was Rns genotype T3. The sequences of corneal scrape specimens of two patients also were the same as those obtained from their contact lenses or lens case specimens. A possible triple-strain infection was indicated by three different T4 sequences in cultures from one patient's lenses. Although faucet water used by patients to clean their lenses is a possible source of infections, specimens isolated from the faucets at two Acanthamoeba keratitis patients' homes differed from their corneal scrape or lens specimens. The overall results demonstrate the potential of this Rns region for tracking Acanthamoeba keratitis strains in infections and for distinguishing single-strain and closely related multiple-strain infections even when other microorganisms might be present with the cultured specimens. They also confirm the predominance of Rns genotype T4 strains in Acanthamoeba keratitis infections. PMID:11980931

  8. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong.

    PubMed

    Booton, G C; Kelly, D J; Chu, Y-W; Seal, D V; Houang, E; Lam, D S C; Byers, T J; Fuerst, P A

    2002-05-01

    We examined partial 18S ribosomal DNA (Rns) sequences of Acanthamoeba isolates cultured in a study of microbial keratitis in Hong Kong. Sequence differences were sufficient to distinguish closely related strains and were used to examine links between strains obtained from corneal scrape specimens, contact lenses, lens cases, lens case solutions, and home water-supply faucets of patients with Acanthamoeba. We also looked for evidence of mixed infections. Identification of Acanthamoeba Rns genotypes was based on sequences of approximately 113 bp within the genus-specific amplicon ASA.S1. This permitted genotype identification by using nonaxenic cultures. Of 13 specimens obtained from corneal scrapes, contact lenses, lens cases, or lens case solutions, 12 were Rns genotype T4 and the remaining one was Rns genotype T3. The sequences of corneal scrape specimens of two patients also were the same as those obtained from their contact lenses or lens case specimens. A possible triple-strain infection was indicated by three different T4 sequences in cultures from one patient's lenses. Although faucet water used by patients to clean their lenses is a possible source of infections, specimens isolated from the faucets at two Acanthamoeba keratitis patients' homes differed from their corneal scrape or lens specimens. The overall results demonstrate the potential of this Rns region for tracking Acanthamoeba keratitis strains in infections and for distinguishing single-strain and closely related multiple-strain infections even when other microorganisms might be present with the cultured specimens. They also confirm the predominance of Rns genotype T4 strains in Acanthamoeba keratitis infections.

  9. Detection of two Bartonella tamiae-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers.

    PubMed

    Billeter, Sarah A; Miller, Melissa K; Breitschwerdt, Edward B; Levy, Michael G

    2008-01-01

    Four hundred and sixty-six questing Amblyomma americanum (L.) (Acari: Ixodidae) from Carolina County, VA, and 98 questing A. americanum from Chatham County, NC, were screened by polymerase chain reaction (PCR) for the Bartonella 16S-23S intergenic spacer region. Two amplicons, approximately 270-280 bp, were detected in two ticks from Virginia. Based upon PCR and sequencing, an adult male and adult female tick harbored DNA sequences closely related to Bartonella tamiae (DQ395180). Bartonella DNA was not detected in A. americanum from North Carolina. Potential transmission of Bartonella spp. by A. americanum should be the focus of future experimental studies.

  10. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  11. The ribosome challenge to the RNA world.

    PubMed

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.

  12. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    PubMed Central

    Long, Katherine S.

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms. PMID:22143525

  13. Networks of interactions in the secondary and tertiary structure of ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong; Lee, Jung C.; Gutell, Robin R.

    2007-12-01

    We construct four different structural networks for both the secondary and tertiary structures of the 16S and 23S ribosomal RNAs (rRNAs) in the high-resolution crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits, and investigate topological characteristics of the rRNA structures by determining relevant measures, such as the characteristic path length, the clustering coefficient, and the helix betweenness. This study reveals that the 23S rRNA network is more compact than the 16S rRNA networks, reflecting the more globular overall structure of the 23S rRNA relative to the 16S rRNA. In particular, the large number of tertiary interactions in the 23S rRNA tends to cluster, accounting for its small-world network properties. In addition, although the rRNA networks are not the scale-free network, their helix betweenness has a power-law distribution and is correlated with the phylogenetic conservation of helices. The higher the helix betweenness, the more conserved the helix. These results suggest a potential role of the rRNA network as a new quantitative approach in rRNA research.

  14. Ribosomal Peptide Natural Products: Bridging the Ribosomal and Nonribosomal Worlds

    PubMed Central

    McIntosh, John A.; Donia, Mohamed S.; Schmidt, Eric W.

    2010-01-01

    Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis. PMID:19642421

  15. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    SciTech Connect

    Feng, Yingang; Song, Xiaxia; Lin, Jinzhong; Xuan, Jinsong; Cui, Qiu; Wang, Jinfeng

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  16. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.

    PubMed

    Poulsen, S M; Kofoed, C; Vester, B

    2000-12-01

    Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.

  17. Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis.

    PubMed

    Petropoulos, Alexandros D; Kouvela, Ekaterini C; Dinos, George P; Kalpaxis, Dimitrios L

    2008-02-22

    Erythromycin and tylosin are 14- and 16-membered lactone ring macrolides, respectively. The current work shows by means of kinetic and chemical footprinting analysis that both antibiotics bind to Escherichia coli ribosomes in a two-step process. The first step established rapidly, involves a low-affinity binding site placed at the entrance of the exit tunnel in the large ribosomal subunit, where macrolides bind primarily through their hydrophobic portions. Subsequently, slow conformational changes mediated by the antibiotic hydrophilic portion push the drugs deeper into the tunnel, in a high-affinity site. Compared with erythromycin, tylosin shifts to the high-affinity site more rapidly, due to the interaction of the mycinose sugar of the drug with the loop of H35 in domain II of 23 S rRNA. Consistently, mutations of nucleosides U2609 and U754 implicated in the high-affinity site reduce the shift of tylosin to this site and destabilize, respectively, the final drug-ribosome complex. The weak interaction between tylosin and the ribosome is Mg2+ independent, unlike the tight binding. In contrast, both interactions between erythromycin and the ribosome are reduced by increasing concentrations of Mg2+ ions. Polyamines attenuate erythromycin affinity for the ribosome at both sequential steps of binding. In contrast, polyamines facilitate the initial binding of tylosin, but exert a detrimental, more pronounced, effect on the drug accommodation at its final position. Our results emphasize the role of the particular interactions that side chains of tylosin and erythromycin establish with 23 S rRNA, which govern the exact binding process of each drug and its response to the ionic environment.

  18. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome.

    PubMed Central

    Nakagawa, A; Nakashima, T; Taniguchi, M; Hosaka, H; Kimura, M; Tanaka, I

    1999-01-01

    Ribosomal protein L2 is the largest protein component in the ribosome. It is located at or near the peptidyl transferase center and has been a prime candidate for the peptidyl transferase activity. It binds directly to 23S rRNA and plays a crucial role in its assembly. The three-dimensional structure of the RNA-binding domain of L2 from Bacillus stearothermophilus has been determined at 2.3 A resolution by X-ray crystallography using the selenomethionyl MAD method. The RNA-binding domain of L2 consists of two recurring motifs of approximately 70 residues each. The N-terminal domain (positions 60-130) is homologous to the OB-fold, and the C-terminal domain (positions 131-201) is homologous to the SH3-like barrel. Residues Arg86 and Arg155, which have been identified by mutation experiments to be involved in the 23S rRNA binding, are located at the gate of the interface region between the two domains. The molecular architecture suggests how this important protein has evolved from the ancient nucleic acid-binding proteins to create a 23S rRNA-binding domain in the very remote past. PMID:10075918

  19. Regarding the Charmed-Strange Member of the 23S1 Meson State

    PubMed Central

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 23S1 meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states. PMID:24250272

  20. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs

    PubMed Central

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  1. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.

  2. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals

    PubMed Central

    Kakumanu, Madhavi L.; Ponnusamy, Loganathan; Sutton, Haley T.; Meshnick, Steven R.; Nicholson, William L.

    2016-01-01

    A novel nested PCR assay was developed to detect Rickettsia spp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) of Rickettsia spp. The newly designed primers were evaluated using genomic DNA from 11 Rickettsia species belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to other Rickettsia-specific PCR targets (ompA, gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11 Rickettsia spp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from “Candidatus Rickettsia amblyommii.” Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adult Dermacentor variabilis ticks. The nested 23S-5S IGS assay detected Rickettsia DNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species of Rickettsia. The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species of Rickettsia in the ticks. “Candidatus Rickettsia amblyommii,” R. montanensis, R. felis, and R. bellii were frequently identified species, along with some potentially novel Rickettsia strains that were closely related to R. bellii and R. conorii. PMID:26818674

  3. Development and Validation of an Improved PCR Method Using the 23S-5S Intergenic Spacer for Detection of Rickettsiae in Dermacentor variabilis Ticks and Tissue Samples from Humans and Laboratory Animals.

    PubMed

    Kakumanu, Madhavi L; Ponnusamy, Loganathan; Sutton, Haley T; Meshnick, Steven R; Nicholson, William L; Apperson, Charles S

    2016-04-01

    A novel nested PCR assay was developed to detectRickettsiaspp. in ticks and tissue samples from humans and laboratory animals. Primers were designed for the nested run to amplify a variable region of the 23S-5S intergenic spacer (IGS) ofRickettsiaspp. The newly designed primers were evaluated using genomic DNA from 11Rickettsiaspecies belonging to the spotted fever, typhus, and ancestral groups and, in parallel, compared to otherRickettsia-specific PCR targets (ompA,gltA, and the 17-kDa protein gene). The new 23S-5S IGS nested PCR assay amplified all 11Rickettsiaspp., but the assays employing other PCR targets did not. The novel nested assay was sensitive enough to detect one copy of a cloned 23S-5S IGS fragment from "CandidatusRickettsia amblyommii." Subsequently, the detection efficiency of the 23S-5S IGS nested assay was compared to those of the other three assays using genomic DNA extracted from 40 adultDermacentor variabilisticks. The nested 23S-5S IGS assay detectedRickettsiaDNA in 45% of the ticks, while the amplification rates of the other three assays ranged between 5 and 20%. The novel PCR assay was validated using clinical samples from humans and laboratory animals that were known to be infected with pathogenic species ofRickettsia The nested 23S-5S IGS PCR assay was coupled with reverse line blot hybridization with species-specific probes for high-throughput detection and simultaneous identification of the species ofRickettsiain the ticks. "CandidatusRickettsia amblyommii,"R. montanensis,R. felis, andR. belliiwere frequently identified species, along with some potentially novelRickettsiastrains that were closely related toR. belliiandR. conorii.

  4. Targeting ricin to the ribosome.

    PubMed

    May, Kerrie L; Yan, Qing; Tumer, Nilgun E

    2013-07-01

    The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention.

  5. Ribosome dynamics and the evolutionary history of ribosomes

    NASA Astrophysics Data System (ADS)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  6. The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling

    PubMed Central

    Dzyubak, Ekaterina

    2016-01-01

    Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation. PMID:27645242

  7. Molecular Dynamics Investigation of a Mechanism of Allosteric Signal Transmission in Ribosomes.

    PubMed

    Makarov, G I; Golovin, A V; Sumbatyan, N V; Bogdanov, A A

    2015-08-01

    The ribosome is a molecular machine that synthesizes all cellular proteins via translation of genetic information encoded in polynucleotide chain of messenger RNA. Transition between different stages of the ribosome working cycle is strictly coordinated by changes in structure and mutual position both of subunits of the ribosome and its ligands. Therein, information regarding structural transformations is transmitted between functional centers of the ribosome through specific signals. Usually, functional centers of ribosomes are located at a distance reaching up to several tens of angstroms, and it is believed that such signals are transduced allosterically. In our study, we attempted to answer the question of how allosteric signal can be transmitted from one of the so-called sensory elements of ribosomal tunnel (RT) to the peptidyl transferase center (PTC). A segment of RT wall from the E. coli ribosome composed of nucleotide residues A2058, A2059, m(2)A2503, G2061, A2062, and C2063 of its 23S rRNA was examined by molecular dynamics simulations. It was found that a potential signal transduction pathway A2058-C2063 acted as a dynamic ensemble of interdependent conformational states, wherein cascade-like changes can occur. It was assumed that structural rearrangement in the A2058-C2063 RT segment results in reversible inactivation of PTC due to a strong stacking contact between functionally important U2585 residue of the PTC and nucleotide residue C2063. A potential role for the observed conformational transition in the A2058-C2063 segment for regulating ribosome activity is discussed.

  8. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  9. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome

    SciTech Connect

    Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei; Noller, Harry F.

    2012-03-26

    The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.

  10. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective.

    PubMed Central

    Gutell, R R; Larsen, N; Woese, C R

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical

  11. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective

    NASA Technical Reports Server (NTRS)

    Gutell, R. R.; Larsen, N.; Woese, C. R.

    1994-01-01

    The 16S and 23S rRNA higher-order structures inferred from comparative analysis are now quite refined. The models presented here differ from their immediate predecessors only in minor detail. Thus, it is safe to assert that all of the standard secondary-structure elements in (prokaryotic) rRNAs have been identified, with approximately 90% of the individual base pairs in each molecule having independent comparative support, and that at least some of the tertiary interactions have been revealed. It is interesting to compare the rRNAs in this respect with tRNA, whose higher-order structure is known in detail from its crystal structure (36) (Table 2). It can be seen that rRNAs have as great a fraction of their sequence in established secondary-structure elements as does tRNA. However, the fact that the former show a much lower fraction of identified tertiary interactions and a greater fraction of unpaired nucleotides than the latter implies that many of the rRNA tertiary interactions remain to be located. (Alternatively, the ribosome might involve protein-rRNA rather than intramolecular rRNA interactions to stabilize three-dimensional structure.) Experimental studies on rRNA are consistent to a first approximation with the structures proposed here, confirming the basic assumption of comparative analysis, i.e., that bases whose compositions strictly covary are physically interacting. In the exhaustive study of Moazed et al. (45) on protection of the bases in the small-subunit rRNA against chemical modification, the vast majority of bases inferred to pair by covariation are found to be protected from chemical modification, both in isolated small-subunit rRNA and in the 30S subunit. The majority of the tertiary interactions are reflected in the chemical protection data as well (45). On the other hand, many of the bases not shown as paired in Fig. 1 are accessible to chemical attack (45). However, in this case a sizeable fraction of them are also protected against chemical

  12. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  13. Radical SAM-Mediated Methylation of Ribosomal RNA

    PubMed Central

    Stojkovic, Vanja; Fujimori, Danica Galonić

    2015-01-01

    Post-transcriptional modifications of RNA play an important role in a wide range of biological processes. In ribosomal RNA (rRNA), methylation of nucleotide bases is the predominant modification. In recent years, methylation of adenosine 2503 (A2503) in bacterial 23S rRNA has attracted significant attention due to both the unusual regioselectivity of the methyl group incorporation, as well as the pathophysiological roles of the resultant methylations. Specifically, A2503 is methylated at the C2 and C8 positions of the adenine ring, and the introduced modifications have a profound impact on translational fidelity and antibiotic resistance, respectively. These modifications are performed by RlmN and Cfr, two members, of the recently discovered class of radical S-adenosylmethionine (radical SAM) methylsynthases. Here, we present several methods that can be used to evaluate the activity of these enzymes, under both in vivo and in vitro conditions. PMID:26253978

  14. Preparation and proteomic analysis of chloroplast ribosomes.

    PubMed

    Yamaguchi, Kenichi

    2011-01-01

    Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.

  15. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  16. Challenges in describing ribosome dynamics

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Whitford, Paul Charles

    2017-04-01

    For decades, protein folding and functional dynamics have been described in terms of diffusive motion across an underlying energy landscape. With continued advances in structural biology and high-performance computing, the field is positioned to extend these approaches to large biomolecular assemblies. Through the application of energy landscape techniques to the ribosome, one may work towards establishing a comprehensive description of the dynamics, which will bridge theoretical concepts and experimental observations. In this perspective, we discuss a few of the challenges that will need to be addressed as we extend the application of landscape principles to the ribosome.

  17. MPV17L2 is required for ribosome assembly in mitochondria

    PubMed Central

    Dalla Rosa, Ilaria; Durigon, Romina; Pearce, Sarah F.; Rorbach, Joanna; Hirst, Elizabeth M.A.; Vidoni, Sara; Reyes, Aurelio; Brea-Calvo, Gloria; Minczuk, Michal; Woellhaf, Michael W.; Herrmann, Johannes M.; Huynen, Martijn A.; Holt, Ian J.; Spinazzola, Antonella

    2014-01-01

    MPV17 is a mitochondrial protein of unknown function, and mutations in MPV17 are associated with mitochondrial deoxyribonucleic acid (DNA) maintenance disorders. Here we investigated its most similar relative, MPV17L2, which is also annotated as a mitochondrial protein. Mitochondrial fractionation analyses demonstrate MPV17L2 is an integral inner membrane protein, like MPV17. However, unlike MPV17, MPV17L2 is dependent on mitochondrial DNA, as it is absent from ρ0 cells, and co-sediments on sucrose gradients with the large subunit of the mitochondrial ribosome and the monosome. Gene silencing of MPV17L2 results in marked decreases in the monosome and both subunits of the mitochondrial ribosome, leading to impaired protein synthesis in the mitochondria. Depletion of MPV17L2 also induces mitochondrial DNA aggregation. The DNA and ribosome phenotypes are linked, as in the absence of MPV17L2 proteins of the small subunit of the mitochondrial ribosome are trapped in the enlarged nucleoids, in contrast to a component of the large subunit. These findings suggest MPV17L2 contributes to the biogenesis of the mitochondrial ribosome, uniting the two subunits to create the translationally competent monosome, and provide evidence that assembly of the small subunit of the mitochondrial ribosome occurs at the nucleoid. PMID:24948607

  18. Chromatographic purification of highly active yeast ribosomes.

    PubMed

    Meskauskas, Arturas; Leshin, Jonathan A; Dinman, Jonathan D

    2011-10-24

    Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.

  19. Impact of P-Site tRNA and Antibiotics on Ribosome Mediated Protein Folding: Studies Using the Escherichia coli Ribosome

    PubMed Central

    Mondal, Surojit; Pathak, Bani Kumar; Ray, Sutapa; Barat, Chandana

    2014-01-01

    Background The ribosome, which acts as a platform for mRNA encoded polypeptide synthesis, is also capable of assisting in folding of polypeptide chains. The peptidyl transferase center (PTC) that catalyzes peptide bond formation resides in the domain V of the 23S rRNA of the bacterial ribosome. Proper positioning of the 3′ –CCA ends of the A- and P-site tRNAs via specific interactions with the nucleotides of the PTC are crucial for peptidyl transferase activity. This RNA domain is also the center for ribosomal chaperoning activity. The unfolded polypeptide chains interact with the specific nucleotides of the PTC and are released in a folding competent form. In vitro transcribed RNA corresponding to this domain (bDV RNA) also displays chaperoning activity. Results The present study explores the effects of tRNAs, antibiotics that are A- and P-site PTC substrate analogs (puromycin and blasticidin) and macrolide antibiotics (erythromycin and josamycin) on the chaperoning ability of the E. coli ribosome and bDV RNA. Our studies using mRNA programmed ribosomes show that a tRNA positioned at the P-site effectively inhibits the ribosome's chaperoning function. We also show that the antibiotic blasticidin (that mimics the interaction between 3′–CCA end of P/P-site tRNA with the PTC) is more effective in inhibiting ribosome and bDV RNA chaperoning ability than either puromycin or the macrolide antibiotics. Mutational studies of the bDV RNA could identify the nucleotides U2585 and G2252 (both of which interact with P-site tRNA) to be important for its chaperoning ability. Conclusion Both protein synthesis and their proper folding are crucial for maintenance of a functional cellular proteome. The PTC of the ribosome is attributed with both these abilities. The silencing of the chaperoning ability of the ribosome in the presence of P-site bound tRNA might be a way to segregate these two important functions. PMID:25000563

  20. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    PubMed Central

    Kaminska, Katarzyna H.; Purta, Elzbieta; Hansen, Lykke H.; Bujnicki, Janusz M.; Vester, Birte; Long, Katherine S.

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase RlmN that methylates the C-2 position. Database searches with the Cfr sequence have revealed a large group of closely related sequences from all domains of life that contain the conserved CX3CX2C motif characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. Phylogenetic analysis of the Cfr/RlmN family suggests that the RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer. A structural model of Cfr has been calculated and used as a guide for alanine mutagenesis studies that corroborate the model-based predictions of a 4Fe–4S cluster, a SAM molecule coordinated to the iron–sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis. The investigation has identified essential amino acids and Cfr variants with altered reaction mechanisms and represents a first step towards understanding the structural basis of Cfr activity. PMID:20007606

  1. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy

    PubMed Central

    Liu, Mingfu; Douthwaite, Stephen

    2002-01-01

    The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit. PMID:12417742

  2. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy.

    PubMed

    Liu, Mingfu; Douthwaite, Stephen

    2002-11-12

    The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.

  3. A putative precursor for the small ribosomal RNA from mitochondria of Saccharomyces cerevisiae.

    PubMed Central

    Osinga, K A; Evers, R F; Van der Laan, J C; Tabak, H F

    1981-01-01

    We have characterized a putative precursor RNA (15.5S) for the 15S ribosomal RNA in mitochondria of Saccharomyces cerevisiae. Hybrids were formed with mitochondrial RNA and mtDNA fragments terminally labelled at restriction sites located within the gene coding for 15S ribosomal RNA and treated with S1 nuclease (Berk, A.J. and Sharp, J.A. (1977) 12, 721-732). Sites of resistant hybrids were measured by agarose gel electrophoresis and end points of RNAs determined. The 15.5S RNA is approximately 80 nucleotides longer than the 15S ribosomal RNA, with the extra sequences being located at the 5'-end. Both 15S ribosomal RNA and 15.5S RNA are fully localised within a 2000 base pair HapII fragment. This putative precursor and the mature 15S ribosomal RNA are also found in petite mutants which retain the 15S ribosomal RNA gene. The petite mutant with the smallest genetic complexity has its end point of deletion (junction) just outside the HapII site located in the 5' flank of the 15S ribosomal RNA genes as determined by S1 nuclease analysis. This leaves a DNA stretch approximately 300 base pairs long where an initiation signal for mitochondrial transcription may be present. Images PMID:6262728

  4. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  5. All Ribosomes Are Created Equal. Really?

    PubMed

    Preiss, Thomas

    2016-02-01

    Ribosomes are generally thought of as molecular machines with a constitutive rather than regulatory role during protein synthesis. A study by Slavov et al.[1] now shows that ribosomes of distinct composition and functionality exist within eukaryotic cells, giving credence to the concept of 'specialized' ribosomes.

  6. Effects of (22S,23S)-Homobrassinolide and Related Compounds on Membrane Potential and Transport of Egeria Leaf Cells.

    PubMed

    Dahse, I; Sack, H; Bernstein, M; Petzold, U; Müller, E; Vorbrodt, H M; Adam, G

    1990-07-01

    (22S,23S)-Homobrassinolide was tested for its effect on the electric cell potential, proton extrusion, ferricyanide reduction, and amino acid and sucrose uptake of leaves of Egeria densa Planchon. In the light, (22S,23S)-homobrassinolide and its derivative, 2alpha-3alpha-dihydroxy-5alpha-stigmast-22-en-6-one, were similar to each other and similar to fusicoccin in causing hyperpolarization and proton extrusion, whereas stigmasterol was less effective. In darkness, the three sterols showed comparable effects. (22S,23S)-Homobrassinolide slightly stimulated ferricyanide reduction and promoted uptake of sucrose and alpha-aminoisobutyric acid. The results are compatible with a stimulation of an electrogenic proton pump mechanism at the plasmalemma by (22S,23S)-homobrassinolide.

  7. Effects of (22S,23S)-Homobrassinolide and Related Compounds on Membrane Potential and Transport of Egeria Leaf Cells

    PubMed Central

    Dahse, Ingo; Sack, Holger; Bernstein, Matthias; Petzold, Uwe; Müller, Eberhard; Vorbrodt, Hans Matthias; Adam, Günter

    1990-01-01

    (22S,23S)-Homobrassinolide was tested for its effect on the electric cell potential, proton extrusion, ferricyanide reduction, and amino acid and sucrose uptake of leaves of Egeria densa Planchon. In the light, (22S,23S)-homobrassinolide and its derivative, 2α-3α-dihydroxy-5α-stigmast-22-en-6-one, were similar to each other and similar to fusicoccin in causing hyperpolarization and proton extrusion, whereas stigmasterol was less effective. In darkness, the three sterols showed comparable effects. (22S,23S)-Homobrassinolide slightly stimulated ferricyanide reduction and promoted uptake of sucrose and α-aminoisobutyric acid. The results are compatible with a stimulation of an electrogenic proton pump mechanism at the plasmalemma by (22S,23S)-homobrassinolide. PMID:16667589

  8. Reconstitution of functional eukaryotic ribosomes from Dictyostelium discoideum ribosomal proteins and RNA.

    PubMed

    Mangiarotti, G; Chiaberge, S

    1997-08-08

    40 and 60 S ribosomal subunits have been reconstituted in vitro from purified ribosomal RNA and ribosomal proteins of Dictyostelium discoideum. The functionality of the reconstituted ribosomes was demonstrated in in vitro mRNA-directed protein synthesis. The reassembly proceeded well with immature precursors of ribosomal RNA but poorly if at all with mature cytoplasmic RNA species. Reassembly also required a preparation of small nuclear RNA(s), acting as morphopoietic factor(s).

  9. Identification and sequence of the initiation site for rat 45S ribosomal RNA synthesis.

    PubMed Central

    Harrington, C A; Chikaraishi, D M

    1983-01-01

    The transcription initiation site for rat 45S precursor ribosomal RNA synthesis was determined by nuclease protection mapping with two single-strand endonucleases. S1 and mung bean, and one single-strand exonuclease, ExoVII. These experiments were performed with end-labeled ribosomal DNA from double-stranded pBR322 recombinants and from single-stranded M13 recombinants. Results from experiments using both kinds of DNA and all three enzymes showed that the 5' end of 45S RNA mapped to a unique site 125 bases upstream from the Hind III site in the ribosomal DNA gene. The DNA surrounding this site (designated +1) was sequenced from -281 to +641. The entire sequence of this region shows extensive homology to the comparable region of mouse. This includes three stretches of T residues in the non-coding strand between +300 and +630. Two sets of direct repeats adjacent to these T-rich regions are observed. Comparison of the mouse and human ribosomal DNA transcription initiation sites with the rat sequence reported in this paper demonstrates a conserved sequence at +2 to +16, CTGACACGCTGTCCT. This suggests that this region may be important for the initiation of transcription on mammalian ribosomal DNAs. Images PMID:6304628

  10. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  11. GTPases involved in bacterial ribosome maturation.

    PubMed

    Goto, Simon; Muto, Akira; Himeno, Hyouta

    2013-05-01

    The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.

  12. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis

    PubMed Central

    Koch, Miriam; Clementi, Nina; Rusca, Nicola; Vögele, Paul; Erlacher, Matthias; Polacek, Norbert

    2015-01-01

    During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis. PMID:25826414

  13. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    PubMed

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a.

  14. Functional characterization of the 180-kD ribosome receptor in vivo

    PubMed Central

    1995-01-01

    A cDNA encoding the 180-kD canine ribosome receptor (RRp) was cloned and sequenced. The deduced primary structure indicates three distinct domains: an NH2-terminal stretch of 28 uncharged amino acids representing the membrane anchor, a basic region (pI = 10.74) comprising the remainder of the NH2-terminal half and an acidic COOH- terminal half (pI = 4.99). The most striking feature of the amino acid sequence is a 10-amino acid consensus motif, NQGKKAEGAP, repeated 54 times in tandem without interruption in the NH2-terminal positively charged region. We postulate that this repeated sequence represents a ribosome binding domain which mediates the interaction between the ribosome and the ER membrane. To substantiate this hypothesis, recombinant full-length ribosome receptor and two truncated versions of this protein, one lacking the potential ribosome binding domain, and one lacking the COOH terminus, were expressed in Saccharomyces cerevisiae. Morphological and biochemical analyses showed all proteins were targeted to, and oriented correctly in the ER membrane. In vitro ribosome binding assays demonstrated that yeast microsomes containing the full-length canine receptor or one lacking the COOH-terminal domain were able to bind two to four times as many human ribosomes as control membranes lacking a recombinant protein or microsomes containing a receptor lacking the NH2-terminal basic domain. Electron micrographs of these cells revealed that the expression of all receptor constructs led to a proliferation of perinuclear ER membranes known as "karmellae." Strikingly, in those strains which expressed cDNAs encoding a receptor containing the putative ribosome binding domain, the induced ER membranes (examined in situ) were richly studded with ribosomes. In contrast, karmellae resulting from the expression of receptor cDNA lacking the putative ribosome binding domain were uniformly smooth and free of ribosomes. Cell fractionation and biochemical analyses corroborated the

  15. Characterization of hibernating ribosomes in mammalian cells.

    PubMed

    Krokowski, Dawid; Gaccioli, Francesca; Majumder, Mithu; Mullins, Michael R; Yuan, Celvie L; Papadopoulou, Barbara; Merrick, William C; Komar, Anton A; Taylor, Derek; Hatzoglou, Maria

    2011-08-15

    Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.

  16. Ribosomal targets for antibiotic drug discovery

    DOEpatents

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  17. Eukaryotic ribosome biogenesis at a glance.

    PubMed

    Thomson, Emma; Ferreira-Cerca, Sébastien; Hurt, Ed

    2013-11-01

    Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.

  18. A detailed view of a ribosomal active site: the structure of the L11-RNA complex.

    PubMed

    Wimberly, B T; Guymon, R; McCutcheon, J P; White, S W; Ramakrishnan, V

    1999-05-14

    We report the crystal structure of a 58 nucleotide fragment of 23S ribosomal RNA bound to ribosomal protein L11. This highly conserved ribonucleoprotein domain is the target for the thiostrepton family of antibiotics that disrupt elongation factor function. The highly compact RNA has both familiar and novel structural motifs. While the C-terminal domain of L11 binds RNA tightly, the N-terminal domain makes only limited contacts with RNA and is proposed to function as a switch that reversibly associates with an adjacent region of RNA. The sites of mutations conferring resistance to thiostrepton and micrococcin line a narrow cleft between the RNA and the N-terminal domain. These antibiotics are proposed to bind in this cleft, locking the putative switch and interfering with the function of elongation factors.

  19. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments

    PubMed Central

    Ingolia, Nicholas T.; Brar, Gloria A.; Rouskin, Silvia; McGeachy, Anna M.; Weissman, Jonathan S.

    2012-01-01

    Recent studies highlight the importance of translational control in determining protein abundance, underscoring the value of measuring gene expression at the level of translation. We present a protocol for genome-wide, quantitative analysis of in vivo translation by deep sequencing. This ribosome profiling approach maps the exact positions of ribosomes on transcripts by nuclease footprinting. The nuclease-protected mRNA fragments are converted into a DNA library suitable for deep sequencing using a strategy that minimizes bias. The abundance of different footprint fragments in deep sequencing data reports on the amount of translation of a gene. Additionally, footprints reveal the exact regions of the transcriptome that are translated. To better define translated reading frames, we describe an adaptation that reveals the sites of translation initiation by pre-treating cells with harringtonine to immobilize initiating ribosomes. The protocol we describe requires 5–7 days to generate a completed ribosome profiling sequencing library. Sequencing and data analysis requires a further 4 – 5 days. PMID:22836135

  20. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    PubMed

    Jakob, Steffen; Ohmayer, Uli; Neueder, Andreas; Hierlmeier, Thomas; Perez-Fernandez, Jorge; Hochmuth, Eduard; Deutzmann, Rainer; Griesenbeck, Joachim; Tschochner, Herbert; Milkereit, Philipp

    2012-01-01

    Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  1. Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer sequences.

    PubMed

    Takahashi, Mai; Yukphan, Pattaraporn; Yamada, Yuzo; Suzuki, Ken-ichiro; Sakane, Takeshi; Nakagawa, Yasuyoshi

    2006-06-01

    Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.

  2. Protein Folding Activity of the Ribosome (PFAR) –– A Target for Antiprion Compounds

    PubMed Central

    Banerjee, Debapriya; Sanyal, Suparna

    2014-01-01

    Prion diseases are fatal neurodegenerative diseases affecting mammals. Prions are misfolded amyloid aggregates of the prion protein (PrP), which form when the alpha helical, soluble form of PrP converts to an aggregation-prone, beta sheet form. Thus, prions originate as protein folding problems. The discovery of yeast prion(s) and the development of a red-/white-colony based assay facilitated safe and high-throughput screening of antiprion compounds. With this assay three antiprion compounds; 6-aminophenanthridine (6AP), guanabenz acetate (GA), and imiquimod (IQ) have been identified. Biochemical and genetic studies reveal that these compounds target ribosomal RNA (rRNA) and inhibit specifically the protein folding activity of the ribosome (PFAR). The domain V of the 23S/25S/28S rRNA of the large ribosomal subunit constitutes the active site for PFAR. 6AP and GA inhibit PFAR by competition with the protein substrates for the common binding sites on the domain V rRNA. PFAR inhibition by these antiprion compounds opens up new possibilities for understanding prion formation, propagation and the role of the ribosome therein. In this review, we summarize and analyze the correlation between PFAR and prion processes using the antiprion compounds as tools. PMID:25341659

  3. Mutations in the 23S rRNA gene of Helicobacter pylori associated with clarithromycin resistance.

    PubMed Central

    Kim, Kyung Suk; Kang, Jung Oak; Eun, Chang Soo; Han, Dong Soo; Choi, Tae Yeal

    2002-01-01

    Among 12 clarithromycin-resistant Helicobacter pylori strains isolated in Guri, Korea, 8 showed an adenine to guanine mutation at position 2143 (formerly A2144G or E. coli 2059) in the 23S rRNA gene by the PCR-restriction fragment length polymorphism (RFLP) method. The remaining 4 strains, digested by neither BsaI nor BbsI, showed a thymine to cytosine mutation at position 2182 (T2182C) by direct sequencing of the PCR products. The T2182C mutants showed a tendency of higher levels of minimum inhibitory concentration to clarithromycin than the A2143G mutants. In conclusion, either the A2143G or the T2182C mutation was present in 100% of clarithromycin-resistant H. pylori isolates examined. The PCR-RFLP technique with restriction enzymes BbsI and BsaI was a rapid and relatively simple method to detect the clarithromycin resistance. But undigested isolates were quite frequent among our isolates (33.3%), the PCR-RFLP method with restriction enzymes BbsI and BsaI should not be used alone, and development of other rapid detection method for clarithromycin resistance is mandatory. PMID:12378008

  4. The weak measurement process and the weak value of spin for metastable helium 23S1

    NASA Astrophysics Data System (ADS)

    Monachello, Vincenzo; Barker, Peter; Flack, Robert; Hiley, Basil

    2016-05-01

    An experiment is being designed and constructed in order to measure the weak value of spin for an atomic system. The principle of the ``weak measurement'' process was first proposed by Aharonov, Albert and Vaidman, and describes a scenario in which a system is weakly coupled to a pointer between well-defined pre- and post-selected states. This experiment will utilise a pulsed supersonic beam of spin-1 metastable Helium (He*) atoms in the 23S1 state. The spin of the pre-selected He* atoms will be weakly coupled to its centre-of-mass. During its flight, the atomic beam will be prepared in a desired quantum state and travel through two inhomogeneous magnets (weak and strong) which both comprise the ``weak measurement'' process. The deviation of the post-selected ms = + 1 state as measured using a micro-channel plate, phosphor screen and CCD camera setup will allow for the determination of the weak value of spin. This poster will report on the methods used and the experimental realisation.

  5. Ribosome engineering to promote new crystal forms

    SciTech Connect

    Selmer, Maria; Gao, Yong-Gui; Weixlbaumer, Albert; Ramakrishnan, V.

    2012-05-01

    Truncation of ribosomal protein L9 in T. thermophilus allows the generation of new crystal forms and the crystallization of ribosome–GTPase complexes. Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.

  6. A report of cat scratch disease in Korea confirmed by PCR amplification of the 16S-23S rRNA intergenic region of Bartonella henselae.

    PubMed

    Suh, Borum; Chun, Jin-Kyoung; Yong, Dongeun; Lee, Yang Soon; Jeong, Seok Hoon; Yang, Woo Ick; Kim, Dong Soo

    2010-02-01

    We report a case of cat scratch disease in an 8-yr-old girl who presented with fever and enlargement of both axillary lymph nodes. Both aerobic and anaerobic cultures of the lymph node aspirate were negative for microbial growth. Gram staining and Warthin-Starry silver staining did not reveal any organism. Purified DNA from the PCR-amplicon of the 16S-23S rRNA intergenic region was sequenced and showed 99.7% identity with the corresponding sequence of Bartonella henselae strain Houston-1. Our findings suggest that the internal transcribed spacer is a reliable region for PCR identification of Bartonella species. In patients with lymphadenitis, a history of contact with cats or dogs necessitates the use of diagnostic approaches that employ not only the conventional staining and culture but also molecular methods to detect B. henselae.

  7. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress

    PubMed Central

    Bursać, Sladana; Brdovčak, Maja Cokarić; Pfannkuchen, Martin; Orsolić, Ines; Golomb, Lior; Zhu, Yan; Katz, Chen; Daftuar, Lilyn; Grabušić, Kristina; Vukelić, Iva; Filić, Vedrana; Oren, Moshe; Prives, Carol; Volarević, Siniša

    2012-01-01

    Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synthesized ribosomal proteins are degraded by proteasomes upon inhibition of Pol I activity by actinomycin D, L5 and L11 accumulate in the ribosome-free fraction where they bind to Mdm2. This selective accumulation of free L5 and L11 is due to their mutual protection from proteasomal degradation. Furthermore, the endogenous, newly synthesized L5 and L11 continue to be imported into nucleoli even after nucleolar disruption and colocalize with Mdm2, p53, and promyelocytic leukemia protein. This suggests that the disrupted nucleoli may provide a platform for L5- and L11-dependent p53 activation, implying a role for the nucleolus in p53 activation by ribosomal biogenesis stress. These findings may have important implications with respect to understanding the pathogenesis of diseases caused by impaired ribosome biogenesis. PMID:23169665

  8. Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Cao, Shuai; Martens, Craig A.; Porcella, Stephen F.; Xie, Zhi; Ma, Ming; Shen, Ben

    2015-01-01

    ABSTRACT The more than 200 closely spaced annotated open reading frames, extensive transcriptional read-through, and numerous unpredicted RNA start sites have made the analysis of vaccinia virus gene expression challenging. Genome-wide ribosome profiling provided an unprecedented assessment of poxvirus gene expression. By 4 h after infection, approximately 80% of the ribosome-associated mRNA was viral. Ribosome-associated mRNAs were detected for most annotated early genes at 2 h and for most intermediate and late genes at 4 and 8 h. Cluster analysis identified a subset of early mRNAs that continued to be translated at the later times. At 2 h, there was excellent correlation between the abundance of individual mRNAs and the numbers of associated ribosomes, indicating that expression was primarily transcriptionally regulated. However, extensive transcriptional read-through invalidated similar correlations at later times. The mRNAs with the highest density of ribosomes had host response, DNA replication, and transcription roles at early times and were virion components at late times. Translation inhibitors were used to map initiation sites at single-nucleotide resolution at the start of most annotated open reading frames although in some cases a downstream methionine was used instead. Additional putative translational initiation sites with AUG or alternative codons occurred mostly within open reading frames, and fewer occurred in untranslated leader sequences, antisense strands, and intergenic regions. However, most open reading frames associated with these additional translation initiation sites were short, raising questions regarding their biological roles. The data were used to construct a high-resolution genome-wide map of the vaccinia virus translatome. IMPORTANCE This report contains the first genome-wide, high-resolution analysis of poxvirus gene expression at both transcriptional and translational levels. The study was made possible by recent methodological

  9. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  10. The Ribosome Modulates Nascent Protein Folding

    PubMed Central

    Kaiser, Christian M.; Goldman, Daniel H.; Chodera, John D.; Tinoco, Ignacio; Bustamante, Carlos

    2014-01-01

    Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state. PMID:22194581

  11. Molecular evolution of the mammalian ribosomal protein gene, RPS14.

    PubMed

    Rhoads, D D; Roufa, D J

    1991-07-01

    Ribosomal protein S14 genes (RPS14) in eukaryotic species from protozoa to primates exhibit dramatically different intron-exon structures yet share homologous polypeptide-coding sequences. To recognize common features of RPS14 gene architectures in closely related mammalian species and to evaluate similarities in their noncoding DNA sequences, we isolated the intron-containing S14 locus from Chinese hamster ovary (CHO) cell DNA by using a PCR strategy and compared it with human RPS14. We found that rodent and primate S14 genes are composed of identical protein-coding exons interrupted by introns at four conserved DNA sites. However, the structures of corresponding CHO and human RPS14 introns differ significantly. Nonetheless, individual intron splice donor, splice acceptor, and upstream flanking motifs have been conserved within mammalian S14 homologues as well as within RPS14 gene fragments PCR amplified from other vertebrate genera (birds and bony fish). Our data indicate that noncoding, intronic DNA sequences within highly conserved, single-copy ribosomal protein genes are useful molecular landmarks for phylogenetic analysis of closely related vertebrate species.

  12. Ribosome-associated protein quality control

    PubMed Central

    Brandman, Onn; Hegde, Ramanujan S

    2016-01-01

    Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation. PMID:26733220

  13. A minimal ribosomal RNA: sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae.

    PubMed Central

    de la Cruz, V F; Lake, J A; Simpson, A M; Simpson, L

    1985-01-01

    The portion of the Leishmania tarentolae kinetoplast maxicircle DNA encoding the 9S RNA gene was sequenced, and the 5' and 3' ends of the transcript were determined. A secondary structure for the 9S RNA was determined based on the Escherichia coli 16S model. The 610-nucleotide 9S RNA exhibits a minimal secondary structure in which all four domains of the E. coli 16S structure are preserved. Within domains, however, some stems and loops have been greatly reduced or eliminated entirely. It is presumed that these reduced domains represent the minimal essential small ribosomal RNA secondary structures necessary for a functional ribosome. Alignment of the L. tarentolae 9S rRNA sequence with the published Trypanosoma brucei 9S rRNA sequence shows a nucleotide similarity of 84% and a transversion/transition ratio of 1.66. Images PMID:3856267

  14. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  15. Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes.

    PubMed

    Sloan, Daniel B; Triant, Deborah A; Wu, Martin; Taylor, Douglas R

    2014-03-01

    Many mitochondrial and plastid protein complexes contain subunits that are encoded in different genomes. In animals, nuclear-encoded mitochondrial proteins often exhibit rapid sequence evolution, which has been hypothesized to result from selection for mutations that compensate for changes in interacting subunits encoded in mutation-prone animal mitochondrial DNA. To test this hypothesis, we analyzed nuclear genes encoding cytosolic and organelle ribosomal proteins in flowering plants. The model angiosperm genus Arabidopsis exhibits low organelle mutation rates, typical of most plants. Nevertheless, we found that (nuclear-encoded) subunits of organelle ribosomes in Arabidopsis have higher amino acid sequence polymorphism and divergence than their counterparts in cytosolic ribosomes, suggesting that organelle ribosomes experience relaxed functional constraint. However, the observed difference between organelle and cytosolic ribosomes was smaller than in animals and could be partially attributed to rapid evolution in N-terminal organelle-targeting peptides that are not involved in ribosome function. To test the role of organelle mutation more directly, we used transcriptomic data from an angiosperm genus (Silene) with highly variable rates of organelle genome evolution. We found that Silene species with unusually fast-evolving mitochondrial and plastid DNA exhibited increased amino acid sequence divergence in ribosomal proteins targeted to the organelles but not in those that function in cytosolic ribosomes. Overall, these findings support the hypothesis that rapid organelle genome evolution has selected for compensatory mutations in nuclear-encoded proteins. We conclude that coevolution between interacting subunits encoded in different genomic compartments within the eukaryotic cell is an important determinant of variation in rates of protein sequence evolution.

  16. Optimizing a Method for the Quantification by Quantitative Real-Time Polymerase Chain Reaction of Host Cell DNA in Plasmid Vector Batches Used in Human Gene Therapy.

    PubMed

    Ferro, Serge; Fabre, Isabelle; Chenivesse, Xavier

    2016-08-01

    Gene therapy products are very complex advanced therapy medicinal products produced using different processes that require many chemical and biological reagents and production intermediates, such as producing cells. The quantification of residual impurities in gene therapy vectors is a major quality control step when these vectors are used for therapeutic purposes, whether or not they are derived from viruses. Indeed, in nonviral gene therapy products, particularly plasmid vectors used to transfer genetic material, the presence of host-cell DNA (HCDNA) from the bacterial cells used for the vector production is an important concern because of the risk of immunogenicity and insertional mutagenesis. Several methods have been developed to quantify residual HCDNA, but real-time quantitative polymerase chain reaction (qPCR) seems to be most suitable because it allows detecting traces of "contaminating" DNA. The French National Agency for Medicines and Health Products Safety (ANSM) ensures the quality and safety of gene transfer medicinal products and must be able to quantify, in its own laboratories, the amount of HCDNA present in plasmid vector batches. Therefore, we developed and validated a qPCR method to quantify at the femtogram level the presence of Escherichia coli residual DNA in plasmid vectors. This approach uses the capillary-based LightCycler 1.5 System (Roche) with SYBR Green I, a primer pair against the E. coli 23S ribosomal RNA gene and different concentrations of a linearized plasmid that contains the 23S target sequence, as standard. This qPCR method is linear on an 8-decade logarithmic scale, accurate, reproducible, and sensitive (quantification of up to 10 copies of 23S target sequence per reaction, or 1.4 E. coli genome, or 7 fg of bacterial DNA). This technique allows ensuring that batches of plasmid vectors to be used in clinical trials comply with the specifications on HCDNA content.

  17. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  18. Sequence diversity in the 16S-23S intergenic spacer region (ISR) of the rRNA operons in representatives of the Escherichia coli ECOR collection.

    PubMed

    Antón, A I; Martínez-Murcia, A J; Rodríguez-Valera, F

    1998-07-01

    The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S-23S intergenic spacer region (ISR) for tRNA(Glu-2) and three (rrnA, D, and H) contain genes for tRNA(Ile-1) and tRNA(Ala-1B). To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions.

  19. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila.

    PubMed

    Descours, Ghislaine; Ginevra, Christophe; Jacotin, Nathalie; Forey, Françoise; Chastang, Joëlle; Kay, Elisabeth; Etienne, Jerome; Lina, Gérard; Doublet, Patricia; Jarraud, Sophie

    2017-03-01

    Monitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings.

  20. RNA tertiary interactions in the large ribosomal subunit: The A-minor motif

    SciTech Connect

    Nissen, Poul; Ippolito, Joseph A.; Ban, Nenad; Moore, Peter B.; Steitz, Thomas A.

    2009-10-07

    Analysis of the 2.4-{angstrom} resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2' OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3' terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.

  1. Ribosomal Protein Methyltransferases in the Yeast Saccharomyces cerevisiae: Roles in Ribosome Biogenesis and Translation

    PubMed Central

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-01-01

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed −1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. PMID:26801560

  2. Insights into the Mechanism of Ribosomal Incorporation of Mammalian L13a Protein during Ribosome Biogenesis

    PubMed Central

    Das, Priyanka; Basu, Abhijit; Biswas, Aditi; Poddar, Darshana; Andrews, Joel; Barik, Sailen; Komar, Anton A.

    2013-01-01

    In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis. PMID:23689135

  3. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  4. 23S rRNA gene mutations contributing to macrolide resistance in Campylobacter jejuni and Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Operon specific 23S rRNA mutations affecting minimum inhibitory concentrations (MICs) of macrolides (erythromycin [ERY], azithromycin [AZM], tylosin [TYL]) and a lincosamide (clindamycin [CLI]) were examined in a collection of Campylobacter jejuni and C. coli isolates. The three copies of the Campy...

  5. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling

    PubMed Central

    Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal

    2017-01-01

    Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529

  6. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors

    PubMed Central

    Toh, Seok-Ming; Mankin, Alexander S.

    2017-01-01

    A number of nucleotide residues in ribosomal RNA undergo specific posttranscriptional modification. The roles of most modifications are unclear, but their clustering in the functionally-important regions of rRNA suggest that they might either directly affect the activity or assembly of the ribosome or modulate its interactions with ligands. Of the 25 modified nucleotides in E. coli 23S rRNA, 14 are located in the peptidyl transferase center, the main antibiotic target in the large ribosomal subunit. Since nucleotide modifications have been closely associated with both antibiotic sensitivity and antibiotic resistance, the loss of some of these posttranscriptional modifications may affect the susceptibility of bacteria to antibiotics. We investigated the antibiotic sensitivity of E. coli cells in which the genes of eight rRNA modifying enzymes targeting the PTC were individually inactivated. The lack of pseudouridine at position 2504 of 23S rRNA was found to significantly increase the susceptibility of bacteria to peptidyl transferase inhibitors. Therefore, this indigenous posttranscriptional modification may have evolved as an intrinsic resistance mechanism protecting bacteria against natural antibiotics. PMID:18554609

  7. The other lives of ribosomal proteins

    PubMed Central

    2010-01-01

    Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects. PMID:20650820

  8. Discrimination of bacillus anthracis and closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microarray.

    SciTech Connect

    Bavykin, S. G.; Mikhailovich, V. M.; Zakharyev, V. M.; Lysov, Y. P.; Kelly, J. J.; Alferov, O. S.; Jackman, J.; Stahl, D. A.; Mirzabekov, A. D.; Gavin, I. M.; Kukhtin, A. V.; Chandler, D.

    2008-01-30

    Analysis of 16S rRNA sequences is a commonly used method for the identification and discrimination of microorganisms. However, the high similarity of 16S and 23S rRNA sequences of Bacillus cereus group organisms (up to 99-100%) and repeatedly failed attempts to develop molecular typing systems that would use DNA sequences to discriminate between species within this group have resulted in several suggestions to consider B. cereus and B. thuringiensis, or these two species together with B. anthracis, as one species. Recently, we divided the B. cereus group into seven subgroups, Anthracis, Cereus A and B, Thuringiensis A and B, and Mycoides A and B, based on 16S rRNA, 23S rRNA and gyrB gene sequences and identified subgroup-specific makers in each of these three genes. Here we for the first time demonstrated discrimination of these seven subgroups, including subgroup Anthracis, with a 3D gel element microarray of oligonucleotide probes targeting 16S and 23S rRNA markers. This is the first microarray enabled identification of B. anthracis and discrimination of these seven subgroups in pure cell cultures and in environmental samples using rRNA sequences. The microarray bearing perfect match/mismatch (p/mm) probe pairs was specific enough to discriminate single nucleotide polymorphisms (SNPs) and was able to identify targeted organisms in 5 min. We also demonstrated the ability of the microarray to determine subgroup affiliations for B. cereus group isolates without rRNA sequencing. Correlation of these seven subgroups with groupings based on multilocus sequence typing (MLST), fluorescent amplified fragment length polymorphism analysis (AFLP) and multilocus enzyme electrophoresis (MME) analysis of a wide spectrum of different genes, and the demonstration of subgroup-specific differences in toxin profiles, psychrotolerance, and the ability to harbor some plasmids, suggest that these seven subgroups are not based solely on neutral genomic polymorphisms, but instead reflect

  9. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems

    PubMed Central

    Failmezger, Jurek; Nitschel, Robert; Sánchez-Kopper, Andrés; Kraml, Michael; Siemann-Herzberg, Martin

    2016-01-01

    Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems. PMID:27992588

  10. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome.

  11. An assembly landscape for the 30S ribosomal subunit

    PubMed Central

    Talkington, Megan W. T.; Siuzdak, Gary

    2005-01-01

    Self-assembling macromolecular machines drive fundamental cellular processes, including transcription, mRNA processing, translation, DNA replication, and cellular transport. The ribosome, which carries out protein synthesis, is one such machine, and the 30S subunit of the bacterial ribosome is the preeminent model system for biophysical analysis of large RNA-protein complexes. Our understanding of 30S assembly is incomplete, due to the challenges of monitoring the association of many components simultaneously. We have developed a new method involving pulse-chase monitored by quantitative mass spectrometry (PC/QMS) to follow the assembly of the 20 ribosomal proteins with 16S rRNA during formation of the functional particle. These data represent the first detailed and quantitative kinetic characterization of the assembly of a large multicomponent macromolecular complex. By measuring the protein binding rates at a range of temperatures, we have found that local transformations throughout the assembling subunit have similar but distinct activation energies. This observation shows that the prevailing view of 30S assembly as a pathway proceeding through a global rate-limiting conformational change must give way to a view in which the assembly of the complex traverses a landscape dotted with a variety of local conformational transitions. PMID:16319883

  12. Large Ribosomal Protein 4 Increases Efficiency of Viral Recoding Sequences

    PubMed Central

    Green, Lisa; Houck-Loomis, Brian; Yueh, Andrew

    2012-01-01

    Expression of retroviral replication enzymes (Pol) requires a controlled translational recoding event to bypass the stop codon at the end of gag. This recoding event occurs either by direct suppression of termination via the insertion of an amino acid at the stop codon (readthrough) or by alteration of the mRNA reading frame (frameshift). Here we report the effects of a host protein, large ribosomal protein 4 (RPL4), on the efficiency of recoding. Using a dual luciferase reporter assay, we found that transfection of cells with a plasmid encoding RPL4 cDNA increases recoding efficiency in a dose-dependent manner, with a maximal enhancement of nearly twofold. Expression of RPL4 increases recoding of reporters containing retroviral readthrough and frameshift sequences, as well as the Sindbis virus leaky termination signal. RPL4-induced enhancement of recoding is cell line specific and appears to be specific to RPL4 among ribosomal proteins. Cotransfection of RPL4 cDNA with Moloney murine leukemia proviral DNA results in Gag processing defects and a reduction of viral particle formation, presumably caused by the RPL4-dependent alteration of the Gag-to-Gag-Pol ratio required for virion assembly and release. PMID:22718819

  13. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.

    PubMed

    Pernodet, J L; Boccard, F; Alegre, M T; Gagnat, J; Guérineau, M

    1989-06-30

    The Streptomyces ambofaciens genome contains four rRNA gene clusters. These copies are called rrnA, B, C and D. The complete nucleotide (nt) sequence of rrnD has been determined. These genes possess striking similarity with other eubacterial rRNA genes. Comparison with other rRNA sequences allowed the putative localization of the sequences encoding mature rRNAs. The structural genes are arranged in the order 16S-23S-5S and are tightly linked. The mature rRNAs are predicted to contain 1528, 3120 and 120 nt, for the 16S, 23S and 5S rRNAs, respectively. The 23S rRNA is, to our knowledge, the longest of all sequenced prokaryotic 23S rRNAs. When compared to other large rRNAs it shows insertions at positions where they are also present in archaebacterial and in eukaryotic large rRNAs. Secondary structure models of S. ambofaciens rRNAs are proposed, based upon those existing for other bacterial rRNAs. Positions of putative transcription start points and of a termination signal are suggested. The corresponding putative primary transcript, containing the 16S, 23S and 5S rRNAs plus flanking regions, was folded into a secondary structure, and sequences possibly involved in rRNA maturation are described. The G + C content of the rRNA gene cluster is low (57%) compared with the overall G + C content of Streptomyces DNA (73%).

  14. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting

    PubMed Central

    Pavlov, Michael Y; Antoun, Ayman; Lovmar, Martin; Ehrenberg, Måns

    2008-01-01

    We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine–Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-