Science.gov

Sample records for 24-h energy balance

  1. Acute effect of ephedrine on 24-h energy balance

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Gottesdiener, K.; Jordan, J.; Chen, K.; Flattery, S.; Larson, P. J.; Candelore, M. R.; Gertz, B.; Robertson, D.; Sun, M.

    1999-01-01

    Ephedrine is used to help achieve weight control. Data on its true efficacy and mechanisms in altering energy balance in human subjects are limited. We aimed to determine the acute effect of ephedrine on 24-h energy expenditure, mechanical work and urinary catecholamines in a double-blind, randomized, placebo-controlled, two-period crossover study. Ten healthy volunteers were given ephedrine (50 mg) or placebo thrice daily during each of two 24-h periods (ephedrine and placebo) in a whole-room indirect calorimeter, which accurately measures minute-by-minute energy expenditure and mechanical work. Measurements were taken of 24-h energy expenditure, mechanical work, urinary catecholamines and binding of (+/-)ephedrine in vitro to human beta1-, beta2- and beta3-adrenoreceptors. Twenty-four-hour energy expenditure was 3.6% greater (8965+/-1301 versus 8648+/-1347 kJ, P<0.05) with ephedrine than with placebo, but mechanical work was not different between the ephedrine and placebo periods. Noradrenaline excretion was lower with ephedrine (0.032+/-0.011 microg/mg creatinine) compared with placebo (0.044+/-0.012 microg/mg creatinine) (P<0.05). (+/-)Ephedrine is a relatively weak partial agonist of human beta1- and beta2-adrenoreceptors, and had no detectable activity at human beta3-adrenoreceptors. Ephedrine (50 mg thrice daily) modestly increases energy expenditure in normal human subjects. A lack of binding of ephedrine to beta3-adrenoreceptors and the observed decrease in urinary noradrenaline during ephedrine treatment suggest that the thermogenic effect of ephedrine results from direct beta1-/beta2-adrenoreceptor agonism. An indirect beta3-adrenergic effect through the release of noradrenaline seems unlikely as urinary noradrenaline decreased significantly with ephedrine.

  2. Effect of high sodium and high water intake on 24 h-potassium balance in dogs.

    PubMed

    Boemke, W; Palm, U; Kaczmarczyk, G; Reinhardt, H W

    1990-01-01

    The influence of different amounts of oral sodium intake combined with high oral water intake on potassium excretion and plasma potassium concentration (PK) was evaluated. Female beagle dogs (11-16 kg) were divided into 2 groups: 1. Normal Sodium and high Water Intake (NSWI): 2.5 mmol Na, 3.55 mmol K, 91 ml H2O, and 277 kJ per kg body mass and 24 h (31 24 h-balance studies with 11 dogs). 2. High Sodium and high Water Intake (HSWI): Same diet as NSWI but 14.5 mmol Na x kg body mass-1 x 24 h-1 (55 24 h-balance studies with 21 dogs). The 24 h-balance studies were performed after different periods of time after onset of the respective diet (dogs in metabolic cages). Plasma sodium concentration (PNa) on NSWI was 148.4 +/- 2.6 mmol x 1(-1), whereas it was lower on HSWI (145.9 +/- 2.4 mmol x 1(-1). The lower plasma aldosterone concentration (PAC) on HSWI (24 +/- 8 pg x ml-1) compared to NSWI (67 +/- 38 pg x ml-1) may account for the lower PNa on HSWI. 24 h-sodium excretion was 93.6 +/- 6.5% of intake (%i) on HSWI and 91.5 +/- 20.7% i on NSWI. 24 h-water excretion was not different between both groups (81 +/- 7% i). PK was 3.93 +/- 0.25 mmol x 1(-1) on NSWI regardless of the time the dogs were on NSWI.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A Mobile Phone Based Method to Assess Energy and Food Intake in Young Children: A Validation Study against the Doubly Labelled Water Method and 24 h Dietary Recalls.

    PubMed

    Delisle Nyström, Christine; Forsum, Elisabet; Henriksson, Hanna; Trolle-Lagerros, Ylva; Larsson, Christel; Maddison, Ralph; Timpka, Toomas; Löf, Marie

    2016-01-15

    Mobile phones are becoming important instruments for assessing diet and energy intake. We developed the Tool for Energy Balance in Children (TECH), which uses a mobile phone to assess energy and food intake in pre-school children. The aims of this study were: (a) to compare energy intake (EI) using TECH with total energy expenditure (TEE) measured via doubly labelled water (DLW); and (b) to compare intakes of fruits, vegetables, fruit juice, sweetened beverages, candy, ice cream, and bakery products using TECH with intakes acquired by 24 h dietary recalls. Participants were 39 healthy, Swedish children (5.5 ± 0.5 years) within the ongoing Mobile-based Intervention Intended to Stop Obesity in Preschoolers (MINISTOP) obesity prevention trial. Energy and food intakes were assessed during four days using TECH and 24 h telephone dietary recalls. Mean EI (TECH) was not statistically different from TEE (DLW) (5820 ± 820 kJ/24 h and 6040 ± 680 kJ/24 h, respectively). No significant differences in the average food intakes using TECH and 24 h dietary recalls were found. All food intakes were correlated between TECH and the 24 h dietary recalls (ρ = 0.665-0.896, p < 0.001). In conclusion, TECH accurately estimated the average intakes of energy and selected foods and thus has the potential to be a useful tool for dietary studies in pre-school children, for example obesity prevention trials.

  4. A Mobile Phone Based Method to Assess Energy and Food Intake in Young Children: A Validation Study against the Doubly Labelled Water Method and 24 h Dietary Recalls

    PubMed Central

    Delisle Nyström, Christine; Forsum, Elisabet; Henriksson, Hanna; Trolle-Lagerros, Ylva; Larsson, Christel; Maddison, Ralph; Timpka, Toomas; Löf, Marie

    2016-01-01

    Mobile phones are becoming important instruments for assessing diet and energy intake. We developed the Tool for Energy Balance in Children (TECH), which uses a mobile phone to assess energy and food intake in pre-school children. The aims of this study were: (a) to compare energy intake (EI) using TECH with total energy expenditure (TEE) measured via doubly labelled water (DLW); and (b) to compare intakes of fruits, vegetables, fruit juice, sweetened beverages, candy, ice cream, and bakery products using TECH with intakes acquired by 24 h dietary recalls. Participants were 39 healthy, Swedish children (5.5 ± 0.5 years) within the ongoing Mobile-based Intervention Intended to Stop Obesity in Preschoolers (MINISTOP) obesity prevention trial. Energy and food intakes were assessed during four days using TECH and 24 h telephone dietary recalls. Mean EI (TECH) was not statistically different from TEE (DLW) (5820 ± 820 kJ/24 h and 6040 ± 680kJ/24 h, respectively). No significant differences in the average food intakes using TECH and 24 h dietary recalls were found. All food intakes were correlated between TECH and the 24 h dietary recalls (ρ = 0.665–0.896, p < 0.001). In conclusion, TECH accurately estimated the average intakes of energy and selected foods and thus has the potential to be a useful tool for dietary studies in pre-school children, for example obesity prevention trials. PMID:26784226

  5. The 24-h Energy Intake of Obese Adolescents Is Spontaneously Reduced after Intensive Exercise: A Randomized Controlled Trial in Calorimetric Chambers

    PubMed Central

    Thivel, David; Isacco, Laurie; Montaurier, Christophe; Boirie, Yves

    2012-01-01

    Background Physical exercise can modify subsequent energy intake and appetite and may thus be of particular interest in terms of obesity treatment. However, it is still unclear whether an intensive bout of exercise can affect the energy consumption of obese children and adolescents. Objective To compare the impact of high vs. moderate intensity exercises on subsequent 24-h energy intake, macronutrient preferences, appetite sensations, energy expenditure and balance in obese adolescent. Design This randomized cross-over trial involves 15 obese adolescent boys who were asked to randomly complete three 24-h sessions in a metabolic chamber, each separated by at least 7 days: (1) sedentary (SED); (2) Low-Intensity Exercise (LIE) (40% maximal oxygen uptake, VO2max); (3) High-Intensity Exercise (HIE) (75%VO2max). Results Despite unchanged appetite sensations, 24-h total energy intake following HIE was 6–11% lower compared to LIE and SED (p<0.05), whereas no differences appeared between SED and LIE. Energy intake at lunch was 9.4% and 8.4% lower after HIE compared to SED and LIE, respectively (p<0.05). At dinner time, it was 20.5% and 19.7% lower after HIE compared to SED and LIE, respectively (p<0.01). 24-h energy expenditure was not significantly altered. Thus, the 24-h energy balance was significantly reduced during HIE compared to SED and LIE (p<0.01), whereas those of SED and LIE did not differ. Conclusions In obese adolescent boys, HIE has a beneficial impact on 24-h energy balance, mainly due to the spontaneous decrease in energy intake during lunch and dinner following the exercise bout. Prescribing high-intensity exercises to promote weight loss may therefore provide effective results without affecting appetite sensations and, as a result, food frustrations. Trial Registration ClinicalTrial.gov NCT01036360 PMID:22272251

  6. Effect of 24-h severe energy restriction on appetite regulation and ad libitum energy intake in lean men and women.

    PubMed

    Clayton, David J; Burrell, Kirsty; Mynott, Georgina; Creese, Mark; Skidmore, Nicola; Stensel, David J; James, Lewis J

    2016-12-01

    Intermittent severe energy restriction (SER) can induce substantial weight loss, but the appetite regulatory responses to SER are unknown and may dictate long-term dietary adherence. We determined the effect of 24-h SER on appetite regulation, metabolism, and energy intake. Eighteen lean men and women completed two 3-d trials in randomized, counterbalanced order. On day 1 subjects consumed standardized diets containing 100% (mean ± SD: 9.3 ± 1.3 MJ; energy balance) or 25% [2.3 ± 0.3 MJ; energy restriction (ER)] of energy requirements. On day 2, a standardized breakfast was consumed, with plasma concentrations of acylated ghrelin, glucagon-like peptide 1, insulin, glucose, and nonesterified fatty acids determined for 4 h. Ad libitum energy intake was assessed at lunch and dinner with subjective appetite and resting metabolism assessed throughout. On day 3, ad libitum energy intake was assessed at breakfast and by weighed food records. Energy intake was 7% greater on day 2 (P < 0.05) during ER but not significantly different on day 3 (P = 0.557). Subjective appetite was greater during ER on the morning of day 2 (P < 0.05) but was not significantly different thereafter (P > 0.145). During ER, postprandial concentrations of acylated ghrelin were lower (P < 0.05), whereas glucose (P < 0.05) and nonesterified fatty acids (P < 0.0001) were higher. Postprandial glucagon-like peptide 17-36 (P = 0.784) and insulin (P = 0.06) concentrations were not significantly different between trials. Energy expenditure was lower during ER in the morning (P < 0.01). In lean young adults, 24-h SER transiently elevated subjective appetite and marginally increased energy intake, but hormonal appetite markers did not respond in a manner indicative of hyperphagia. These results suggest that intermittent SER might be useful to attenuate energy intake and control body weight in this population. This trial was registered at www.clinicaltrials.gov.uk as NCT02696772. © 2016 American Society for

  7. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment.

    PubMed

    Skelly, Lauren E; Andrews, Patricia C; Gillen, Jenna B; Martin, Brian J; Percival, Michael E; Gibala, Martin J

    2014-07-01

    Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.

  8. Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones.

    PubMed

    Gonnissen, Hanne K J; Rutters, Femke; Mazuy, Claire; Martens, Eveline A P; Adam, Tanja C; Westerterp-Plantenga, Margriet S

    2012-10-01

    The disruption of the circadian system has been associated with the development of obesity. We examined the effects of circadian misalignment on sleep, energy expenditure, substrate oxidation, appetite, and related hormones. Thirteen subjects [aged 24.3 ± 2.5 (mean ± SD) y; BMI (in kg/m²): 23.6 ± 1.7 (mean ± SD)] completed a randomized crossover study. For each condition, subjects stayed time blinded in the respiration chamber during 3 light-entrained circadian cycles that resulted in a phase advance (3 × 21 h) and a phase delay (3 × 27 h) compared with during a 24-h cycle. Sleep, energy expenditure, substrate oxidation, and appetite were quantified. Blood and saliva samples were taken to determine melatonin, glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1), and cortisol concentrations. Circadian misalignment, either phase advanced or phase delayed, did not result in any changes in appetite or energy expenditure, whereas meal-related blood variables (glucose, insulin, ghrelin, leptin, and GLP-1) followed the new meal patterns. However, phase-advanced misalignment caused flattening of the cortisol-secretion pattern (P < 0.001), increased insulin concentrations (P = 0.04), and increased carbohydrate oxidation (P = 0.03) and decreased protein oxidation (P = 0.001). Phase-delayed misalignment increased rapid eye movement sleep (P < 0.001) and the sleeping metabolic rate (P = 0.02), increased glucose (P = 0.02) and decreased GLP-1 (P = 0.02) concentrations, and increased carbohydrate oxidation (P = 0.01) and decreased protein oxidation (P = 0.003). The main effect of circadian misalignment, either phase advanced or phase delayed, is a concomitant disturbance of the glucose-insulin metabolism and substrate oxidation, whereas the energy balance or sleep is not largely affected. Chronically eating and sleeping at unusual circadian times may create a health risk through a metabolic disturbance. This trial was registered at the International Clinical

  9. Effect of moderate cold exposure on 24-h energy expenditure: similar response in postobese and nonobese women.

    PubMed

    Buemann, B; Astrup, A; Christensen, N J; Madsen, J

    1992-12-01

    Twenty-four-hour energy expenditure (EE) and substrate oxidation rates were measured two times in eight postobese women and eight matched controls. On one occasion the subjects were exposed to a room temperature of 16 degrees C, on the other to 24 degrees C. Cold exposure elicited a 2% increment in 24-h EE (P < 0.05), with similar response in the two groups. The slight increase in EE was entirely covered by an enhanced carbohydrate oxidation rate. Fasting plasma norepinephrine (NE) increased from 0.74 +/- 0.08 to 1.29 +/- 0.21 nmol/l under cold exposure (P < 0.05), with no group difference. The cold-induced increase in 24-h EE was positively correlated to the increase in NE concentration (r2 = 0.41, P = 0.01). Sleeping EE was found to be 5% lower in the postobese women than in the controls (P = 0.04). The postobese group also had higher 24-h nonprotein respiratory quotient than the control group (P = 0.04), which was due to a 26% lower lipid-to-carbohydrate oxidation ratio. The study demonstrates that the thermogenic response to cold is normal in women susceptible to obesity, but it supports previous reports of a slightly lower basal EE and lower lipid-to-carbohydrate oxidation ratio in postobese subjects.

  10. Ingestion of nutrition bars high in protein or carbohydrate does not impact 24-h energy intakes in healthy young adults.

    PubMed

    Trier, Catherine M; Johnston, Carol S

    2012-12-01

    Sales of nutrition bars increased almost 10-fold to $1.7billion over the past decade yet few studies have examined the impact of bar ingestion on dietary parameters. In this crossover trial, 24-h energy intakes were assessed in free-living college students ingesting a high-protein (HP, 280kcal) or a high-carbohydrate (HC, 260kcal) nutrition bar upon waking. Fifty-four students entered the trial, and 37 participants completed the three test days. Daily energy intakes ranged from 1752±99kcal for the non-intervention day to 1846±75 and 1891±110kcal for the days the HP and HC bars were consumed respectively (p=0.591). However, for individuals who reported high levels of physically activity (n=11), daily energy intakes increased significantly compared to the control day for the HC bar day (+45%; p=0.030) and HP bar day (+22%; p=0.038). Macro- and micro-nutrient intakes differed significantly across test days in the total sample mirroring the nutrient profile of the specific bars. These data suggest that young adults adjust caloric intakes appropriately following the ingestion of energy-dense nutrition bars over a 24-h period. Moreover, nutrition bars may represent a unique opportunity to favorably influence nutrient status of young adults.

  11. Overestimation of infant and toddler energy intake by 24-h recall compared with weighed food records

    USDA-ARS?s Scientific Manuscript database

    Twenty-four-hour dietary recalls have been used in large surveys of infant and toddler energy intake, but the accuracy of the method for young children is not well documented. We aimed to determine the accuracy of infant and toddler energy intakes by a single, telephone-administered, multiple-pass 2...

  12. Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion.

    PubMed

    Jacobsen, R; Lorenzen, J K; Toubro, S; Krog-Mikkelsen, I; Astrup, A

    2005-03-01

    Observational studies have shown an inverse association between dietary calcium intake and body weight, and a causal relation is likely. However, the underlying mechanisms are not understood. We examined whether high and low calcium intakes from mainly low-fat dairy products, in diets high or normal in protein content, have effects on 24-h energy expenditure (EE) and substrate oxidation, fecal energy and fat excretion, and concentrations of substrates and hormones involved in energy metabolism and appetite. In all, 10 subjects participated in a randomized crossover study of three isocaloric 1-week diets with: low calcium and normal protein (LC/NP: 500 mg calcium, 15% of energy (E%) from protein), high calcium and normal protein (HC/NP: 1800 mg calcium, 15E% protein), and high calcium and high protein (HC/HP: 1800 mg calcium, 23E% protein). The calcium intake had no effect on 24-h EE or fat oxidation, but fecal fat excretion increased approximately 2.5-fold during the HC/NP diet compared with the LC/NP and the HC/HP diets (14.2 vs 6.0 and 5.9 g/day; P < 0.05). The HC/NP diet also increased fecal energy excretion as compared with the LC/NP and the HC/HP diets (1045 vs 684 and 668 kJ/day; P < 0.05). There were no effects on blood cholesterol, free fatty acids, triacylglycerol, insulin, leptin, or thyroid hormones. A short-term increase in dietary calcium intake, together with a normal protein intake, increased fecal fat and energy excretion by approximately 350 kJ/day. This observation may contribute to explain why a high-calcium diet produces weight loss, and it suggests that an interaction with dietary protein level may be important.

  13. The 24-h carbohydrate oxidation rate in a human respiratory chamber predicts ad libitum food intake.

    PubMed

    Pannacciulli, Nicola; Salbe, Arline D; Ortega, Emilio; Venti, Colleen A; Bogardus, Clifton; Krakoff, Jonathan

    2007-09-01

    The 24-h respiratory quotient (24-h RQ) and 24-h carbohydrate balance (24-h CHO-Bal) are predictors of weight change. Whether these relations are mediated by the effects of substrate oxidation and balance on food intake is not known. We tested whether substrate oxidation and balance predict future ad libitum food intake. Substrate oxidation and balance were measured in a respiratory chamber in 112 normoglycemic subjects (83 Pima Indians and 29 whites; 67 men and 45 women) in energy balance for 3 d before tests were performed. The subjects then self-selected their food ad libitum for the following 3 d. The 24-h RQ, 24-h carbohydrate oxidation (24-h CHO-Ox), and 24-h CHO-Bal in the respiratory chamber predicted subsequent ad libitum food intake over 3 d (as a percentage of weight maintenance energy needs; %EN-WM). The 24-h CHO-Ox explained 15% of the variance in %EN-WM. The weight change over the 3-d ad libitum period was associated positively with 24-h CHO-Ox and negatively with 24-h CHO-Bal in the chamber; these associations were no longer significant after adjustment for %EN-WM. Carbohydrate oxidation and balance predict subsequent ad libitum food intake and can influence short-term weight changes, which indicates that carbohydrate balance is a contributing metabolic factor affecting food intake.

  14. Association of food form with self-reported 24-h energy intake and meal patterns in US adults: NHANES 2003–2008123

    PubMed Central

    Kant, Ashima K; Graubard, Barry I; Mattes, Richard D

    2012-01-01

    Background: Laboratory studies suggest that food form (beverages compared with solid foods) evokes behavioral and physiologic responses that modify short-term appetite and food intake. Beverage energy may be less satiating and poorly compensated, which leads to higher energy intake. Objective: We examined associations between 24-h energy consumed in beverages and a variety of meal and dietary attributes to quantify the contribution of beverage consumption to the energy content of diets in free-living individuals consuming their self-selected diets. Design: We used dietary recall data for adults (n = 13,704) in NHANES 2003–2008 to examine the multiple covariate-adjusted associations between 24-h energy from beverages and nonbeverages and associations between beverage intake, eating behaviors, and the energy density of beverage and nonbeverage foods. Results: In the highest tertile of 24-h beverage energy intake, beverages provided >30% of energy. Total 24-h energy and nonbeverage energy consumption and energy density (kcal/g) of both beverage and nonbeverage foods increased with increasing energy from beverages (P < 0.0001). With increasing 24-h beverage energy consumption, the reported frequency of all, snack, and beverage-only ingestive episodes and length of the ingestive period increased, whereas the percentage of energy from main meals decreased (P < 0.0001). Conclusions: Higher 24-h beverage energy intake was related to higher energy intake from nonbeverage foods, quality of food selections, and distribution of 24-h energy into main meal and snack episodes. Moderation of beverage-only ingestive episodes and curtailing the length of the ingestion period may hold potential to lower uncompensated beverage energy consumption in the US population. PMID:23097271

  15. Energy Balance and Obesity

    PubMed Central

    Hill, James O.; Wyatt, Holly R.; Peters, John C.

    2012-01-01

    This paper describes the interplay among energy intake, energy expenditure and body energy stores and illustrates how an understanding of energy balance can help develop strategies to reduce obesity. First, reducing obesity will require modifying both energy intake and energy expenditure and not simply focusing on either alone. Food restriction alone will not be effective in reducing obesity if human physiology is biased toward achieving energy balance at a high energy flux (i.e. at a high level of energy intake and expenditure). In previous environments a high energy flux was achieved with a high level of physical activity but in today's sedentary environment it is increasingly achieved through weight gain. Matching energy intake to a high level of energy expenditure will likely be more a more feasible strategy for most people to maintain a healthy weight than restricting food intake to meet a low level of energy expenditure. Second, from an energy balance point of view we are likely to be more successful in preventing excessive weight gain than in treating obesity. This is because the energy balance system shows much stronger opposition to weight loss than to weight gain. While large behavior changes are needed to produce and maintain reductions in body weight, small behavior changes may be sufficient to prevent excessive weight gain. In conclusion, the concept of energy balance combined with an understanding of how the body achieves balance may be a useful framework in helping develop strategies to reduce obesity rates. PMID:22753534

  16. Resetting of 24-h sodium and water balance during 4 days of servo-controlled reduction of renal perfusion pressure.

    PubMed

    Reinhardt, H W; Corea, M; Boemke, W; Pettker, R; Rothermund, L; Scholz, A; Schwietzer, G; Persson, P B

    1994-02-01

    This study examines whether an increase in renal perfusion pressure (RPP) is necessary to escape endogenously stimulated Na- and water-retaining mechanisms. In seven dogs stimulation was accomplished by a servo-controlled reduction of RPP (rRPP) below the threshold for pressure-dependent renin release for 4 days. Oral intake was standardized. Plasma renin activity (PRA) rose from 2.5 in controls to approximately 5 ng ANG I.ml-1 x h-1 during rRPP days. Plasma aldosterone concentration (PAC) increased by approximately 50% only on day 1 of rRPP but fell at or below control levels thereafter. The PAC-to-PRA ratio decreased during rRPP days. Atrial natriuretic factor (ANF) rose to values three times higher than in controls. Mean systemic blood pressure (MABP) rose from 111 +/- 12 in controls to 142 +/- 14 mmHg on day 4 of rRPP. On day 1 of rRPP 60% of the Na and 24% of the water intake were retained. However, after 2-3 days the input-output balance was restored but on a higher level of total body Na and total body water (new "set point"). Because elevated systemic MABP could not exert direct pressure effects on the kidneys due to servo control of rRPP, there must be other factors, e.g., fall in PAC, increase in ANF, and changes in intrarenal hemodynamics and physical factors that may have contributed to the resetting of input-output balances during rRPP.

  17. Reproducibility of 24-h post-exercise changes in energy intake in overweight and obese women using current methodology.

    PubMed

    Brown, Gemma L; Lean, Michael E; Hankey, Catherine R

    2012-07-01

    Direct observation(s) of energy intake (EI) via buffet meals served in the laboratory are often carried out within short-term exercise intervention studies. The reproducibility of values obtained has not been assessed either under resting control conditions or post-exercise, in overweight and obese females. A total of fourteen sedentary, pre-menopausal females (BMI 30.0 (SD 5.1) kg/m²) completed four trials; two exercise and two control. Each trial lasted 24 h spanning over 2 d; conducted from afternoon on day 1 and morning on day 2. An exercise session to expend 1.65 MJ was completed on day 1 of exercise trials, and three buffet meals were served during each trial. Reproducibility of post-exercise changes in energy and macronutrient intakes was assessed at each individual buffet meal by intraclass correlation coefficient (r(i)). Only the r(i) values for post-exercise changes in energy (r(i) 0.44 (95 % CI - 0.03, 0.77), P = 0.03) and fat intake (r(i) 0.51 (95 % CI 0.04, 0.81), P = 0.02) at the lunch buffet meal achieved statistical significance; however, these r i values were weak and had large associated 95 % CI, which indicates a large degree of variability associated with these measurements. Energy and macronutrient intakes at the breakfast and evening buffet meals were not reproducible. This study concludes that the frequently used laboratory-based buffet meal method of assessing EI does not produce reliable, reproducible post-exercise changes in EI in overweight and obese women.

  18. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents.

    USDA-ARS?s Scientific Manuscript database

    Exercise might have a persistent effect on energy expenditure and fat oxidation, resulting in increased fat loss. However, even without weight loss, exercise results in positive metabolic effects. The effect of an aerobic exercise program on 24-h total energy expenditure (TEE), and its components-ba...

  19. Regulation of Energy Balance.

    ERIC Educational Resources Information Center

    Bray, George A.

    1985-01-01

    Explains relationships between energy intake and expenditure focusing on the cellular, chemical and neural mechanisms involved in regulation of energy balance. Information is referenced specifically to conditions of obesity. (Physicians may earn continuing education credit by completing an appended test). (ML)

  20. Regulation of Energy Balance.

    ERIC Educational Resources Information Center

    Bray, George A.

    1985-01-01

    Explains relationships between energy intake and expenditure focusing on the cellular, chemical and neural mechanisms involved in regulation of energy balance. Information is referenced specifically to conditions of obesity. (Physicians may earn continuing education credit by completing an appended test). (ML)

  1. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men.

    PubMed

    Bérubé-Parent, Sonia; Pelletier, Catherine; Doré, Jean; Tremblay, Angelo

    2005-09-01

    It has been reported that green tea has a thermogenic effect, due to its caffeine content and probably also to the catechin, epigallocatechin-3-gallate (EGCG). The main aim of the present study was to compare the effect of a mixture of green tea and Guarana extracts containing a fixed dose of caffeine and variable doses of EGCG on 24 h energy expenditure and fat oxidation. Fourteen subjects took part to this randomized, placebo-controlled, double-blind, cross-over study. Each subject was tested five times in a metabolic chamber to measure 24 h energy expenditure, substrate oxidation and blood pressure. During each stay, the subjects ingested a capsule of placebo or capsules containing 200 mg caffeine and a variable dose of EGCG (90, 200, 300 or 400 mg) three times daily, 30 min before standardized meals. Twenty-four hour energy expenditure increased significantly by about 750 kJ with all EGCG-caffeine mixtures compared with placebo. No effect of the EGCG-caffeine mixture was observed for lipid oxidation. Systolic and diastolic blood pressure increased by about 7 and 5 mmHg, respectively, with the EGCG-caffeine mixtures compared with placebo. This increase was significant only for 24 h diastolic blood pressure. The main finding of the study was the increase in 24 h energy expenditure with the EGCG-caffeine mixtures. However, this increase was similar with all doses of EGCG in the mixtures.

  2. Energy balance in obesity.

    PubMed

    Webber, Jonathan

    2003-05-01

    The current epidemic of human obesity implies that whilst energy balance appears to be regulated, the extent of this regulatory process is being overwhelmed in large numbers of the population by environmental changes. Clearly, the shift towards positive energy balance reflects both alterations in energy intake and decreases in physical activity. Increased energy intake and, in particular, the rising proportion of energy from fat is linked with obesity. However, on a population level reduced levels of activity probably play the predominant role. It is apparent that individual susceptibility to weight gain varies enormously. The factors underlying this susceptibility are an area of intense research interest. Variations in BMR from that predicted appear to be linked to the propensity to gain weight. The genes responsible for this variation may include uncoupling proteins-2 and -3, with a number of studies showing a link with obesity. However, in vivo studies of these proteins have not yet demonstrated a physiological role for them that would explain the link with obesity. Non-exercise activity thermogenesis may also protect from weight gain, but the regulation of this type of thermogenesis is unclear, although the sympathetic nervous system may be important. A profusion of hormones, cytokines and neurotransmitters is involved in regulating energy intake, but whilst mutations in leptin and the melanocortin-3 receptor are responsible for rare monogenic forms of obesity, their wider role in common polygenic obesity is not known. Much current work is directed at examining the interplay between genetic background and environmental factors, in particular diet, that both lead to positive energy balance and seem to make it so hard for many obese subjects to lose weight.

  3. Spices and energy balance.

    PubMed

    Mattes, Richard D

    2012-11-05

    The sensory properties of foods and beverages are primary determinants of food choice. Some flavor components have an inherent hedonic valence that influences ingestive behavior. However, these hedonic impressions may be modified and others newly formed through their association with the post-ingestive consequences of food and beverage consumption. Flavor-active compounds, including spices, also modify digestive, absorptive and metabolic processes through direct activation of signaling pathways or via neurally-mediated cephalic phase responses. These may modify energy balance through effects on food digestion, energy absorption and metabolism. Thus, collectively, flavor has the potential to modify energy balance. Attempts to purposefully augment energy and nutrient intake have largely focused on the aging population where flavor fortification is posited to correct for diminishing sensory function. Evidence of efficacy is not strong, possibly due to methodological issues such as low statistical power and failure to match documented sensory limitations with the nature of the intervention. More rigorous testing should determine the viability of this therapeutic application of food flavors. The use of flavor compounds for weight reduction has yielded mixed results. Most trials have delivered the compounds via capsule precluding assessment of flavor to outcomes. Work with red pepper suggests there is an independent, albeit subtle, sensory effect on substrate oxidation coupled with a more general reduction of appetite and enhancement of energy expenditure. Flavor active compounds hold some promise for being more a part of the solution than the problem of disordered eating and unhealthy weight. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Energy balance in peridynamics.

    SciTech Connect

    Lehoucq, Richard B.; Silling, Stewart Andrew

    2010-09-01

    The peridynamic model of solid mechanics treats internal forces within a continuum through interactions across finite distances. These forces are determined through a constitutive model that, in the case of an elastic material, permits the strain energy density at a point to depend on the collective deformation of all the material within some finite distance of it. The forces between points are evaluated from the Frechet derivative of this strain energy density with respect to the deformation map. The resulting equation of motion is an integro-differential equation written in terms of these interparticle forces, rather than the traditional stress tensor field. Recent work on peridynamics has elucidated the energy balance in the presence of these long-range forces. We have derived the appropriate analogue of stress power, called absorbed power, that leads to a satisfactory definition of internal energy. This internal energy is additive, allowing us to meaningfully define an internal energy density field in the body. An expression for the local first law of thermodynamics within peridynamics combines this mechanical component, the absorbed power, with heat transport. The global statement of the energy balance over a subregion can be expressed in a form in which the mechanical and thermal terms contain only interactions between the interior of the subregion and the exterior, in a form anticipated by Noll in 1955. The local form of this first law within peridynamics, coupled with the second law as expressed in the Clausius-Duhem inequality, is amenable to the Coleman-Noll procedure for deriving restrictions on the constitutive model for thermomechanical response. Using an idea suggested by Fried in the context of systems of discrete particles, this procedure leads to a dissipation inequality for peridynamics that has a surprising form. It also leads to a thermodynamically consistent way to treat damage within the theory, shedding light on how damage, including the

  5. Appetite and energy balancing.

    PubMed

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Experimental sleep curtailment causes wake-dependent increases in 24-h energy expenditure as measured by whole-room indirect calorimetry1234

    PubMed Central

    Shechter, Ari; Rising, Russell; Albu, Jeanine B

    2013-01-01

    Background: Epidemiologic evidence has shown a link between short sleep and obesity. Clinical studies suggest a role of increased energy intake in this relation, whereas the contributions of energy expenditure (EE) and substrate utilization are less clearly defined. Objective: Our aim was to investigate the effects of sleep curtailment on 24-h EE and respiratory quotient (RQ) by using whole-room indirect calorimetry under fixed-meal conditions. Design: Ten females aged 22–43 y with a BMI (in kg/m2) of 23.4–27.5 completed a randomized, crossover study. Participants were studied under short- (4 h/night) and habitual- (8 h/night) sleep conditions for 3 d, with a 4-wk washout period between visits. Standardized weight-maintenance meals were served at 0800, 1200, and 1900 with a snack at 1600. Measures included EE and RQ during the sleep episode on day 2 and continuously over 23 h on day 3. Results: Short compared with habitual sleep resulted in significantly higher (±SEM) 24-h EE (1914.0 ± 62.4 compared with 1822.1 ± 43.8 kcal; P = 0.012). EE during the scheduled sleep episode (0100–0500 and 2300–0700 in short- and habitual-sleep conditions, respectively) and across the waking episode (0800–2300) were unaffected by sleep restriction. RQ was unaffected by sleep restriction. Conclusions: Short compared with habitual sleep is associated with an increased 24-h EE of ∼92 kcal (∼5%)—lower than the increased energy intake observed in prior sleep-curtailment studies. This finding supports the hypothesis that short sleep may predispose to weight gain as a result of an increase in energy intake that is beyond the modest energy costs associated with prolonged nocturnal wakefulness. This trial was registered at clinicaltrials.gov as NCT01751581. PMID:24088722

  7. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  8. Validity of 24-h recalls in (pre-)school aged children: comparison of proxy-reported energy intakes with measured energy expenditure.

    PubMed

    Börnhorst, C; Bel-Serrat, S; Pigeot, I; Huybrechts, I; Ottavaere, C; Sioen, I; De Henauw, S; Mouratidou, T; Mesana, M I; Westerterp, K; Bammann, K; Lissner, L; Eiben, G; Pala, V; Rayson, M; Krogh, V; Moreno, L A

    2014-02-01

    Little is known about the validity of repeated 24-h dietary recalls (24-HDR) as a measure of total energy intake (EI) in young children. This study aimed to evaluate the validity of proxy-reported EI by comparison with total energy expenditure (TEE) measured by the doubly labeled water (DLW) technique. The agreement between EI and TEE was investigated in 36 (47.2% boys) children aged 4-10 years from Belgium and Spain using subgroup analyses and Bland-Altman plots. Low-energy-reporters (LER), adequate-energy-reporters (AER) and high-energy-reporters (HER) were defined from the ratio of EI over TEE by application of age- and sex-specific cut-off values. There was good agreement between means of EI (1500 kcal/day) and TEE (1523 kcal/day) at group level though in single children, i.e. at the individual level, large differences were observed. Almost perfect agreement between EI and TEE was observed in thin/normal weight children (EI: 1511 kcal/day; TEE: 1513 kcal/day). Even in overweight/obese children the mean difference between EI and TEE was only -86 kcal/day. Among the participants, 28 (78%) were classified as AER, five (14%) as HER and three (8%) as LER. Two proxy-reported 24-HDRs were found to be a valid instrument to assess EI on group level but not on the individual level. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Exercise Increases 24-h Fat Oxidation Only When It Is Performed Before Breakfast.

    PubMed

    Iwayama, Kaito; Kurihara, Reiko; Nabekura, Yoshiharu; Kawabuchi, Ryosuke; Park, Insung; Kobayashi, Masashi; Ogata, Hitomi; Kayaba, Momoko; Satoh, Makoto; Tokuyama, Kumpei

    2015-12-01

    As part of the growing lifestyle diversity in modern society, there is wide variation in the time of day individuals choose to exercise. Recent surveys in the US and Japan have reported that on weekdays, more people exercise in the evening, with fewer individuals exercising in the morning or afternoon. Exercise performed in the post-prandial state has little effect on accumulated fat oxidation over 24 h (24-h fat oxidation) when energy intake is matched to energy expenditure (energy-balanced condition). The present study explored the possibility that exercise increases 24-h fat oxidation only when performed in a post-absorptive state, i.e. before breakfast. Indirect calorimetry using a metabolic chamber was performed in 10 young, non-obese men over 24 h. Subjects remained sedentary (control) or performed 60-min exercise before breakfast (morning), after lunch (afternoon), or after dinner (evening) at 50% of VO2max. All trials were designed to be energy balanced over 24 h. Time course of energy and substrate balance relative to the start of calorimetry were estimated from the differences between input (meal consumption) and output (oxidation). Fat oxidation over 24 h was increased only when exercise was performed before breakfast (control, 456 ± 61; morning, 717 ± 64; afternoon, 446 ± 57; and evening, 432 ± 44 kcal/day). Fat oxidation over 24 h was negatively correlated with the magnitude of the transient deficit in energy and carbohydrate. Under energy-balanced conditions, 24-h fat oxidation was increased by exercise only when performed before breakfast. Transient carbohydrate deficits, i.e., glycogen depletion, observed after morning exercise may have contributed to increased 24-h fat oxidation.

  10. Checking for completeness of 24-h urine collection using para-amino benzoic acid not necessary in the Observing Protein and Energy Nutrition study.

    PubMed

    Subar, A F; Midthune, D; Tasevska, N; Kipnis, V; Freedman, L S

    2013-08-01

    The orally administered para-amino benzoic acid (PABA) is known to have near 100% excretion in urine and is used as a measure of 24-h urine collection completeness (referred to as PABAcheck). The purpose was to examine the effect of including urine collections deemed incomplete based on PABAcheck in a dietary measurement error study. The Observing Protein and Energy Nutrition (OPEN) study was conducted in 1999-2000 and included 484 men and women aged 40-69 years. A food frequency questionnaire and 24-h dietary recalls were evaluated using recovery biomarkers that included urinary nitrogen and potassium from two 24-h urine collections. Statistical modeling determined the measurement error properties of dietary assessment instruments. In the original analyses, PABAcheck was used as a measure of complete urine collection; incomplete collections were either excluded or adjusted to acceptable levels. The OPEN data were reanalyzed including all urine collections and by using criteria based on self-reported missing voids to assess the differences. Means and coefficients of variation for biomarker-based protein and potassium intakes, and measurement error model-based correlations and attenuation factors were similar regardless of whether PABAcheck or missed voids were considered. PABAcheck may not be required in large population-based biomarker studies. However, until there are more analyses evaluating the necessity of a PABAcheck, it is recommended that PABA be given to all participants, but not necessarily analyzed. Then, PABAcheck could be used selectively as a marker of completeness among the collections in which low levels of biomarker are detected or for which noncompliance is suspected.

  11. Energy and macronutrient balances for humans in a whole body metabolic chamber without control of preceding diet and activity level.

    PubMed

    White, M D; Bouchard, G; Buemann, B; Alméras, N; Després, J P; Bouchard, C; Tremblay, A

    1997-02-01

    To examine the relationships between 24 h energy and macronutrient balances in a whole body metabolic chamber subsequent to periods when subjects maintained their normal food intake and physical activity levels. Thirteen males and 17 females were studied for two 24 h sessions while consuming an estimated isocaloric diet with a food quotient of 0.85. Energy expenditure and macronutrient oxidation rates were measured twice for 24 h in whole body indirect calorimeter. Positive and significant correlations were evident between energy and lipid balances (r = 0.38, P < 0.05 and r = 0.54, P < 0.01, respectively) and differences between the two sessions for energy and lipid balances were also significantly correlated (r = 0.40, P < 0.05). Accounting for carbohydrate or protein balances improved the strength of each of these associations. These results indicate that for subjects in a small but significant positive energy balance, with uncontrolled diet and activity preceding their metabolic chamber sessions, that 24 h energy balance is positively correlated with lipid balance. Accounting for associations between lipid, carbohydrate, protein and energy balances, improved the strength of the association between 24 h lipid and energy balances. The implications of these results are that in these conditions modifications to lipid balance are important for weight maintenance.

  12. Fluid balance and chloride load in the first 24h of ICU admission and its relation with renal replacement therapies through a multicentre, retrospective, case-control study paired by APACHE-II.

    PubMed

    González-Castro, A; Ortiz-Lasa, M; Leizaola, O; Salgado, E; Irriguible, T; Sánchez-Satorra, M; Lomas-Fernández, C; Barral-Segade, P; Cordero-Vallejo, M; Rodrigo-Calabia, E; Dierssen-Sotos, T

    2017-05-01

    To analyse the association between water balance during the first 24h of admission to ICU and the variables related to chloride levels (chloride loading, type of fluid administered, hyperchloraemia), with the development of acute kidney injury renal replacement therapy (AKI-RRT) during patients' admission to ICU. Multicentre case-control study. Hospital-based, national, carried out in 6 ICUs. Cases were patients older than 18 years who developed an AKI-RRT. Controls were patients older than 18 years admitted to the same institutions during the study period, who did not develop AKI-RRT during ICU admission. Pairing was done by APACHE-II. An analysis of unconditional logistic regression adjusted for age, sex, APACHE-II and water balance (in evaluating the type of fluid). We analysed the variables of 430 patients: 215 cases and 215 controls. An increase of 10% of the possibility of developing AKI-RRT per 500ml of positive water balance was evident (OR: 1.09 [95% CI: 1.05 to 1.14]; P<.001). The study of mean values of chloride load administered did not show differences between the group of cases and controls (299.35±254.91 vs. 301.67±234.63; P=.92). The water balance in the first 24h of ICU admission relates to the development of IRA-TRR, regardless of chloraemia. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Balancing the Energy Pendulum.

    ERIC Educational Resources Information Center

    MacKinnon, Sharon

    1987-01-01

    The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)

  14. Balancing the Energy Pendulum.

    ERIC Educational Resources Information Center

    MacKinnon, Sharon

    1987-01-01

    The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)

  15. Energy balance in motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubńiski, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    This paper present the concept of testing energy balance. The test was conducted on the test bench equipped with the alternator, battery and standard mounted current receivers. The course of measurements consisted in recording the indications of three ammeters and a tachometer. On the basis of the recorded current values, it was possible to determine: energy received from the battery, consumed by the receivers and the energy drawn from the alternator.

  16. Energy landscape of social balance.

    PubMed

    Marvel, Seth A; Strogatz, Steven H; Kleinberg, Jon M

    2009-11-06

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  17. Energy balance in MIG arcs

    NASA Astrophysics Data System (ADS)

    Schnick, M.; Hertel, M.; Fuessel, U.; Uhrlandt, D.

    2013-06-01

    Recent studies of metal inert gas (MIG) processes by spectroscopy and fluid simulations have shown that metal evaporation causes a specific spatial structure of the arc, and among others a minimum of plasma temperature at the arc centre. Changes in the arc structure and in the heat transfer to the material are closely connected with the arc energy balance; its detailed analysis has not been carried out so far under the specific impact of metal vapour. In this paper, magnetohydrodynamic (MHD) simulations of an MIG arc in argon including iron evaporation at the wire tip are considered. The main terms in the energy balance are discussed focusing on a comparison of the arc regions with and without metal vapour. In addition, a simple approach of the energy balance at a cross section of the MIG arc is proposed where all details of the heat transport are neglected. The MHD model and the simplified approach are in good agreement and clearly demonstrate that the specific structure in an MIG arc is mainly caused by the different temperature dependence of the plasma radiation and the electrical conductivity in argon or in argon mixtures with iron vapour.

  18. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  19. Peanut digestion and energy balance.

    PubMed

    Traoret, C J; Lokko, P; Cruz, A C R F; Oliveira, C G; Costa, N M B; Bressan, J; Alfenas, R C G; Mattes, R D

    2008-02-01

    To explore the effects of peanut consumption on fecal energy excretion with a balanced, non-vegetarian diet. Four arm parallel group design (that is, whole peanut (P), peanut butter (PB), peanut oil (PO) or peanut flour (PF) consumption) with one crossover (control and intervention). In total 63 healthy men and women from Ghana, Brazil and USA (N=15-16 per group) with an average body mass index of 21.8 kg m(-2). Percent fat of fecal wet weight daily energy excretion during the control and the treatment periods. Compared to control, the percentage of fat in the feces increased significantly for the P group (5.22+/-0.29%) relative to the other three groups ((PO=3.07+/-0.36%, PB=3.11+/-0.31% (P=0.001), and PF=3.75+/-0.40% (P=0.019)). The same findings held for kJ g(-1) of feces excreted. During the P supplementation period, the energy excretion was 21.4+/-1.0 kJ g(-1) versus 18.7+/-1.0 kJ g(-1) for PO (P=0.034), 18.8+/-0.7 kJ g(-1) for PB (P=0.042) and 18.5+/-0.8 kJ g(-1) for PF (P=0.028). Fecal fat and energy loss is greater with consumption of whole peanuts compared to peanut butter, oil or flour. This may contribute to the less than predicted change of body weight observed with peanut consumption. There were no cultural differences.

  20. Obesity, energy balance and spermatogenesis.

    PubMed

    Oliveira, Pedro F; Sousa, Mário; Silva, Branca M; Monteiro, Mariana P; Alves, Marco G

    2017-06-01

    Obesity has grown to pandemic proportions. It affects an increasing number of children, adolescents and young adults exposed to the silent comorbidities of this disorder for a longer period. Infertility has arisen as one important comorbidity associated with the energy dysfunction promoted by obesity. Spermatogenesis is a highly regulated process that is determined by specific energetic requirements. The reproductive potential of males relies on hormonal-dependent and -independent stimuli that control sperm quality. There are conflicting data concerning the impact of male overweight and obesity on sperm quality, as well as on the possible paternal-induced epigenetic trait inheritance of obesity. In addition, it remains a matter of debate whether massive weight loss induced by lifestyle interventions, drugs or bariatric surgery may or may not benefit obese men seeking fatherhood. Herein, we propose to discuss how energy balance may modulate hormonal signalling and sperm quality in overweight and obese men. We also discuss some molecular mechanisms that mediate obesity-related dysfunction in male reproductive system and how paternal obesity may lead to trait inheritance. Finally, we will discuss how lifestyle modifications and sustained weight loss, particularly the loss achieved by bariatric surgery, may revert some of the deleterious effects of obesity in men and their offspring. © 2017 Society for Reproduction and Fertility.

  1. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  2. Comprehensive Energy Balance Measurements in Mice.

    PubMed

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-09-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Nuclear dynamics at the balance energy

    NASA Astrophysics Data System (ADS)

    Sood, Aman D.; Puri, Rajeev K.

    2004-09-01

    We study the mass dependence of various quantities (like the average and maximum density, collision rate, participant-spectator matter, and temperature, as well as time zones for higher density) by simulating different reactions at the energy of vanishing flow. This study is carried out within the framework of the quantum molecular dynamics model. Our findings clearly indicate the existence of a power law in all the above quantities calculated at the balance energy. A significant mass dependence exists for the temperature reached in the central sphere. All other quantities at the balance energy are either rather insensitive or depend weakly on the system size. The time zone for the higher density as well as the time of maximal density and collision rate follow a power law inverse to the energy of vanishing flow. The participant matter at the balance energy shows a remarkable lack of mass dependence that makes it a good candidate for studying the balance energy.

  4. The effect of caffeine on energy balance.

    PubMed

    Harpaz, Eynav; Tamir, Snait; Weinstein, Ayelet; Weinstein, Yitzhak

    2017-01-01

    The global prevalence of obesity has increased considerably in the last two decades. Obesity is caused by an imbalance between energy intake (EI) and energy expenditure (EE), and thus negative energy balance is required to bring about weight loss, which can be achieved by either decreasing EI or increasing EE. Caffeine has been found to influence the energy balance by increasing EE and decreasing EI, therefore, it can potentially be useful as a body weight regulator. Caffeine improves weight maintenance through thermogenesis, fat oxidation, and EI. The sympathetic nervous system is involved in the regulation of energy balance and lipolysis (breakdown of lipids to glycerol and free fatty acids) and the sympathetic innervation of white adipose tissue may play an important role in the regulation of total body fat. This article reviews the current knowledge on the thermogenic properties of caffeine, and its effects on appetite and EI in relation to energy balance and body weight regulation.

  5. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  6. Alcohol from corn: poor energy balance

    SciTech Connect

    Not Available

    1981-08-10

    It is reported that most processing plants producing alcohol from corn currently operate with very unfavourable energy balances. The energy needed to grow and harvest corn plus petroleum or natural gas used in the processing phase often exceeds the energy that can be derived from the alcohol.

  7. PV modules with optimized energy balance

    NASA Astrophysics Data System (ADS)

    Weixlberger, Johann; Bruckner, Richard

    2011-09-01

    The overall energy balance of a solar PV-module across its life time needs a consideration incl. its energy consumption during manufacturing process versus its energy harvesting capabilities during life time. A glass-glass-module based on thin tempered glass on front and backside can dramatically influence this overall balance, since more than 50 % of encapsulation materials manufacturing energy can be saved, followed by a an further impact on frameless mounting of light-weighted modules, reducing mounting costs and enabling simpler BIPV.

  8. Energy Landscape of Social Balance

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  9. Impact of leucine on energy balance.

    PubMed

    McAllan, Liam; Cotter, Paul D; Roche, Helen M; Korpela, Riitta; Nilaweera, Kanishka N

    2013-03-01

    Body weight is determined by the balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure, the surplus energy is stored as fat in the adipose tissue, which causes its expansion and may even lead to the development of obesity. Thus, there is a growing interest to develop dietary interventions that could reduce the current obesity epidemic. In this regard, data from a number of in vivo and in vitro studies suggest that the branched-chain amino acid leucine influences energy balance. However, this has not been consistently reported. Here, we review the literature related to the effects of leucine on energy intake, energy expenditure and lipid metabolism as well as its effects on the cellular activity in the brain (hypothalamus) and in peripheral tissues (gastro-intestinal tract, adipose tissue, liver and muscle) regulating the above physiological processes. Moreover, we discuss how obesity may influence the actions of this amino acid.

  10. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-01-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Nederlands Trial Register; registration number NTR2944.

  11. Energy Balance of Rural Ecosystems In India

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Madhava Rao, V.; Hermon, R. R.; Garg, A.; Nag, T.; Bhaskara Rao, N.; Sharma, A.; Parihar, J. S.

    2014-11-01

    India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013-14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from -18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy

  12. Glial cells and energy balance.

    PubMed

    Argente-Arizón, Pilar; Guerra-Cantera, Santiago; Garcia-Segura, Luis Miguel; Argente, Jesús; Chowen, Julie A

    2017-01-01

    The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.

  13. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  14. Exercise patterns, ingestive behaviors, and energy balance.

    PubMed

    Li, Jia; O'Connor, Lauren E; Zhou, Jing; Campbell, Wayne W

    2014-07-01

    Ingestive and exercise behaviors are important determinants of whole body energy balance and weight control. An acute bout of exercise generates a transient energy deficit, which is only partially compensated for by food intake at the next eating occasion or within the next day (loose dietary coupling). Such an energy deficit, when repeated chronically, leads to moderate weight loss and improved body composition. For this narrative review, we assessed the effects of exercise patterns on energy intake, energy balance, and weight control in adults primarily using results from randomized acute exercise and chronic training studies. The patterns assessed were exercise mode (e.g. resistance, aerobic exercise), intensity, duration, time of day, and frequency. The body of evidence indicates that exercise training frequency and quantity are influential for weight loss. Aerobic training is superior to resistance training for weight loss, although resistance training helps preserve lean body mass better. Weight loss does not differ among different intensities when energy expenditure is matched by adjusting duration. Differing patterns of physical activity exhibited by normal weight, overweight, and obese people during weekdays and weekend days are consistent with their weight status; leaner people are more physically active. Collectively, these findings support acute and chronic exercise patterns as important modifiable behaviors to improve energy balance and weight control in adults while having minor effects on absolute energy intake.

  15. 24-h Efficacy of Glaucoma Treatment Options.

    PubMed

    Konstas, Anastasios G P; Quaranta, Luciano; Bozkurt, Banu; Katsanos, Andreas; Garcia-Feijoo, Julian; Rossetti, Luca; Shaarawy, Tarek; Pfeiffer, Norbert; Miglior, Stefano

    2016-04-01

    Current management of glaucoma entails the medical, laser, or surgical reduction of intraocular pressure (IOP) to a predetermined level of target IOP, which is commensurate with either stability or delayed progression of visual loss. In the published literature, the hypothesis is often made that IOP control implies a single IOP measurement over time. Although the follow-up of glaucoma patients with single IOP measurements is quick and convenient, such measurements often do not adequately reflect the untreated IOP characteristics, or indeed the quality of treated IOP control during the 24-h cycle. Since glaucoma is a 24-h disease and the damaging effect of elevated IOP is continuous, it is logical that we should aim to understand the efficacy of all treatment options throughout the 24-h period. This article first reviews the concept and value of diurnal and 24-h IOP monitoring. It then critically evaluates selected available evidence on the 24-h efficacy of medical, laser and surgical therapy options. During the past decade several controlled trials have significantly enhanced our understanding on the 24-h efficacy of all glaucoma therapy options. Nevertheless, more long-term evidence is needed to better evaluate the 24-h efficacy of glaucoma therapy and the precise impact of IOP characteristics on glaucomatous progression and visual prognosis.

  16. When energy balance is maintained, exercise does not induce negative fat balance in lean sedentary, obese sedentary, or lean endurance-trained individuals

    PubMed Central

    Gozansky, Wendolyn S.; Barry, Daniel W.; MacLean, Paul S.; Grunwald, Gary K.; Hill, James O.

    2009-01-01

    Fat oxidation during exercise is increased by endurance training, and evidence suggests that fat oxidation during exercise is impaired in obesity. Thus the primary aim of this study was to compare the acute effects of exercise on 24-h fat oxidation and fat balance in lean sedentary [LS, n = 10, body mass index (BMI) = 22.5 ± 6.5 kg/m2], lean endurance-trained (LT, n = 10, BMI = 21.2 ± 1.2 kg/m2), and obese sedentary (OS, n = 7, BMI = 35.5 ± 4.4 kg/m2) men and women. Twenty-four-hour energy expenditure and substrate oxidation were measured under sedentary (control; CON) and exercise (EX) conditions while maintaining energy balance. During EX, subjects performed 1 h of stationary cycling at 55% of aerobic capacity. Twenty-four-hour fat oxidation did not differ on the CON or EX day in LS (43 ± 9 vs. 29 ± 7 g/day, respectively), LT (53 ± 8 vs. 42 ± 5 g/day), or OS (58 ± 7 vs. 80 ± 9 g/day). However, 24-h fat balance was significantly more positive on EX compared with CON (P < 0.01). Twenty-four-hour glucose, insulin, and free fatty acid (FFA) profiles were similar on the EX and CON days, but after consumption of the first meal, FFA concentrations remained below fasting levels for the remainder of the day. These data suggest that when exercise is performed with energy replacement (i.e., energy balance is maintained), 24-h fat oxidation does not increase and in fact, may be slightly decreased. It appears that the state of energy balance is an underappreciated factor determining the impact of exercise on fat oxidation. PMID:19833807

  17. When energy balance is maintained, exercise does not induce negative fat balance in lean sedentary, obese sedentary, or lean endurance-trained individuals.

    PubMed

    Melanson, Edward L; Gozansky, Wendolyn S; Barry, Daniel W; Maclean, Paul S; Grunwald, Gary K; Hill, James O

    2009-12-01

    Fat oxidation during exercise is increased by endurance training, and evidence suggests that fat oxidation during exercise is impaired in obesity. Thus the primary aim of this study was to compare the acute effects of exercise on 24-h fat oxidation and fat balance in lean sedentary [LS, n = 10, body mass index (BMI) = 22.5 +/- 6.5 kg/m(2)], lean endurance-trained (LT, n = 10, BMI = 21.2 +/- 1.2 kg/m(2)), and obese sedentary (OS, n = 7, BMI = 35.5 +/- 4.4 kg/m(2)) men and women. Twenty-four-hour energy expenditure and substrate oxidation were measured under sedentary (control; CON) and exercise (EX) conditions while maintaining energy balance. During EX, subjects performed 1 h of stationary cycling at 55% of aerobic capacity. Twenty-four-hour fat oxidation did not differ on the CON or EX day in LS (43 +/- 9 vs. 29 +/- 7 g/day, respectively), LT (53 +/- 8 vs. 42 +/- 5 g/day), or OS (58 +/- 7 vs. 80 +/- 9 g/day). However, 24-h fat balance was significantly more positive on EX compared with CON (P < 0.01). Twenty-four-hour glucose, insulin, and free fatty acid (FFA) profiles were similar on the EX and CON days, but after consumption of the first meal, FFA concentrations remained below fasting levels for the remainder of the day. These data suggest that when exercise is performed with energy replacement (i.e., energy balance is maintained), 24-h fat oxidation does not increase and in fact, may be slightly decreased. It appears that the state of energy balance is an underappreciated factor determining the impact of exercise on fat oxidation.

  18. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  19. Kisspeptin and energy balance in reproduction.

    PubMed

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  20. Nexus of poverty, energy balance and health.

    PubMed

    Mishra, C P

    2012-04-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  1. Active video games and energy balance in male adolescents: a randomized crossover trial.

    PubMed

    Gribbon, Aidan; McNeil, Jessica; Jay, Ollie; Tremblay, Mark S; Chaput, Jean-Philippe

    2015-06-01

    , resulting in no measurable change in energy balance after 24 h. These results suggest that the potential of Kinect to reduce the energy gap underlying weight gain is offset within 24 h in male adolescents. This trial was registered at clinicaltrials.gov as NCT01655901. © 2015 American Society for Nutrition.

  2. Neuropeptides controlling energy balance: orexins and neuromedins

    PubMed Central

    Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.

    2016-01-01

    In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways, but is nonetheless a separate neural process that depends on interactions with other feeding related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite related neuromedin producing neurons are in hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the various other neuro-peptides, -transmitters, -modulators and –hormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight. PMID:22249811

  3. Neuropeptides controlling energy balance: orexins and neuromedins.

    PubMed

    Nixon, Joshua P; Kotz, Catherine M; Novak, Colleen M; Billington, Charles J; Teske, Jennifer A

    2012-01-01

    In this chapter, we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus-perifornical area and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways but is nonetheless a separate neural process that depends on interactions with other feeding-related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite-related neuromedin-producing neurons are in the hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding-related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the other various neuropeptides, neurotransmitters, neuromodulators, and neurohormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight.

  4. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  5. Energy balance of the collisional tearing mode

    SciTech Connect

    Bondeson, A.; Sobel, J.R.

    1984-08-01

    The energy balance of the collisional tearing mode is examined within linear theory. It is found that in an asymmetric case the quadratic form given by Furth for the net release of magnetic energy must be completed with a term connected with the current gradient in the resistive layer. The growth-rate and the inner-layer solution are calculated in the limit where viscosity dominates over inertia. The amounts of energy going into Joule heating and either kinetic energy or viscous dissipation are calculated analytically. In the inertial regime 1/4 of the net decrease in magnetic energy goes into kinetic energy and (3)/(4) into Joule heating, while, in viscous regime, (1)/(6) goes into viscous dissipation and (5)/(6) into Joule heating. The analytical results, based on the constant-psi approximation, are in good agreement with numerical simulations when the resistive layer is sufficiently narrow.

  6. Evaluation of Two Energy Balance Closure Parametrizations

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  7. Hemispheric energy balance from an ocean perspective

    NASA Astrophysics Data System (ADS)

    Hakuba, M. Z.; Stephens, G. L.

    2016-12-01

    Although the Earth's energy balance has been studied for many decades, a number of challenges still remain in quantifying it globally and in understanding its behavior regionally. The recent advances in satellite-based radiation products allow to estimate the top-of-atmosphere (TOA) energy budget with unprecedented accuracy. In contrast, no equivalent data record exists for the energy balance at the surface with associated uncertainties being much larger than the small imbalance of 0.6 Wm-2 inferred from changes in ocean heat content. Recent studies combine the total and atmospheric heat budgets derived from satellite-based TOA irradiances and atmospheric reanalysis to infer the hemispheric surface heat budget as their residual. Here, we propose an approach that takes the perspective of the ocean, deriving the multi-annual surface net heat flux as the residual of the hemispheric ocean heat storage (OHS) and cross-equatorial ocean heat transport (OHT). The latter is taken from ocean model solutions (i.e. ECCOv4), while the OHS is derived from in-situ temperature profiles covering the ARGO period 2005-2015. Notable features of the hemispheric energy balance portrayed here are the dominance of the Southern hemispheric oceans in taking up heat (0.9 Wm-2) and the slight inter-hemispheric energy imbalance that leads to a net cross-equatorial heat transport from the Southern to the Northern hemisphere. This is achieved by the oceans transporting about 0.45 PW northward across the equator, accompanied by a southward transport of heat by the atmosphere (0.2-0.3 PW). The hemispheric turbulent heat fluxes, calculated as the residual of the net balance at the surface and satellite-derived surface radiative flux (CERES EBAF), differ by about 3 Wm-2, which is largely in line with the hemispheric contrast in precipitation according to GPCP data.

  8. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  9. Energy and mass balance calculations for incinerators

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1998-01-01

    Calculation of energy and mass balance within an incinerator is a very important part of designing and/or evaluating the incineration process. This article describes a simple computer model used to calculate an energy and mass balance for a rotary kiln incinerator. The main purpose of the model is to assist US Environmental Protection Agency (EPA) permit writers in evaluating the adequacy of the data submitted by applicants seeking incinerator permits. The calculation is based on the assumption that a thermodynamic equilibrium condition exits within the combustion chamber. Key parameters that the model can calculate include theoretical combustion air, excess air needed for actual combustion cases, flue gas flow rate, and exit temperature.

  10. Radiative Energy Balance in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij V.; Piccioni, Giuseppe; Drossart, Pierre; Markiewicz, Wojciech J.

    This chapter reviews the observations of the radiative fluxes inside and outside the Venusian atmosphere, along with the available data about the planetary energy balance and the distribution of sources and sinks of radiative energy. We also briefly address the role of the radiation on the atmospheric temperature structure, global circulation, thermodynamics, climate and evolution of Venus and compare the main features of radiative balance on the terrestrial planets. We describe the physics of the greenhouse effect as it applies to the evolution of the Venusian climate, concluding with a summary of outstanding open issues. The article is to a great extent based on the paper by Titov et al. [2007] expanded byincluding recent results from the Venus Express observations relevant to the topic.

  11. Energy-balanced algorithm for RFID estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan

    2016-10-01

    RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.

  12. Obesity and Energy Balance in GI Cancer.

    PubMed

    Brown, Justin C; Meyerhardt, Jeffrey A

    2016-12-10

    The prevalence of overweight (body mass index [BMI], 25 to 29.9 kg/m(2)) and obesity (BMI ≥ 30 kg/m(2)) have increased dramatically in the United States. Because increasing BMI is associated with the development of multiple different cancer types, including most GI cancers, providers will frequently encounter patients with GI cancer who are overweight or obese. Mounting evidence associates overweight and/or obesity with worsened prognosis in multiple GI cancers, including esophageal, gastric, hepatocellular, pancreatic, and colorectal. However, these data are observational and may be subject to bias and/or confounding. Furthermore, in some cancer types, the associations between BMI and outcomes is not linear, where overweight and class I obese patients may have an improvement in outcome. This report provides a brief highlight of existing studies that have linked overweight and/or obesity to prognosis in GI cancer; provides recommendations on best management practices; and discusses limitations, controversies, and future directions in this rapidly evolving area. There are multiple areas of promise that warrant continued investigation: What are the comparative contributions of energy balance, including weight, dietary patterns, and physical activity on cancer prognosis? What are the specific physiologic pathways that mediate the relationship between energy balance and prognosis? What is the relationship between low muscle mass (sarcopenia) or sarcopenic obesity and cancer prognosis? Are there subsets of patients for whom purposefully altering energy balance would be deleterious to prognosis? This area is rich with opportunities to understand how states of energy (im)balance can be favorably altered to promote healthy survivorship.

  13. Obesity and Energy Balance in GI Cancer

    PubMed Central

    Meyerhardt, Jeffrey A.

    2016-01-01

    The prevalence of overweight (body mass index [BMI], 25 to 29.9 kg/m2) and obesity (BMI ≥ 30 kg/m2) have increased dramatically in the United States. Because increasing BMI is associated with the development of multiple different cancer types, including most GI cancers, providers will frequently encounter patients with GI cancer who are overweight or obese. Mounting evidence associates overweight and/or obesity with worsened prognosis in multiple GI cancers, including esophageal, gastric, hepatocellular, pancreatic, and colorectal. However, these data are observational and may be subject to bias and/or confounding. Furthermore, in some cancer types, the associations between BMI and outcomes is not linear, where overweight and class I obese patients may have an improvement in outcome. This report provides a brief highlight of existing studies that have linked overweight and/or obesity to prognosis in GI cancer; provides recommendations on best management practices; and discusses limitations, controversies, and future directions in this rapidly evolving area. There are multiple areas of promise that warrant continued investigation: What are the comparative contributions of energy balance, including weight, dietary patterns, and physical activity on cancer prognosis? What are the specific physiologic pathways that mediate the relationship between energy balance and prognosis? What is the relationship between low muscle mass (sarcopenia) or sarcopenic obesity and cancer prognosis? Are there subsets of patients for whom purposefully altering energy balance would be deleterious to prognosis? This area is rich with opportunities to understand how states of energy (im)balance can be favorably altered to promote healthy survivorship. PMID:27903148

  14. Relationships between energy balance closure and turbulent transport of energy

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirtha; Zeeman, Matthias; Brugger, Peter; De Roo, Frederik; Mauder, Matthias

    2017-04-01

    The energy balance residual (EBR), defined as the difference between the available energy (sum of net radiation and ground heat flux) and the turbulent fluxes of latent and sensible heat, is often found to have a large positive value. Several land surface experiments and flux networks report an average energy balance closure of approximately 80%. Although different factors can influence the energy balance closure across measurement campaigns, a significant EBR even when sites are horizontally with short canopies indicates of a systematic bias resulting from the general underestimation of the aerodynamic transport of energy, especially horizontal divergence of the mean advective fluxes and transport by low-frequency motions generally called 'secondary circulations'. These low frequency local transports can occur from various processes such as coherent large scale organized motions, convective cells and even significant transient changes. Thus, we decided to study the budget of the turbulent kinetic energy (TKE) in conjunction with the energy balance closure and the turbulent fluxes associated with nonlocal motions, advection and flux divergence. In the current work, this interdependency has been investigated using surface flux (Eddy Covariance) at the TERENO sites Fendt, Graswang and Rottenbuch in Southern Germany (with gentle topography. Statistical methods for dimensional reduction techniques has been used to extract the effects and significance of aforementioned processes towards explaining the observed annual average EBR of about 50 Wm-2. Initial results indicate a high correlation between EBR and the TKE dissipation rate, as well as the skewness of vertical velocity and the turbulent fluxes associated with flux divergence, confirming the role of secondary circulations. Overall, improved understanding of such connections between the fundamental mechanisms of TKE transport and the energy balance likely advances the knowledge towards constraining the modeling

  15. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  16. Energy balance comparison of sorghum and sunflower

    NASA Astrophysics Data System (ADS)

    Rachidi, F.; Kirkham, M. B.; Kanemasu, E. T.; Stone, L. R.

    1993-03-01

    An understanding of the energy exchange processes at the surface of the earth is necessary for studies of global climate change. If the climate becomes drier, as is predicted for northern mid-latitudes, it is important to know how major agricultural crops will play a role in the budget of heat and moisture. Thus, the energy balance components of sorghum [ Sorghum bicolor (L.) Moench.] and sunflower ( Helianthus annuus L.), two drought-resistant crops grown in the areas where summertime drying is forecasted, were compared. Soil water content and evapotranspiration ( ET) rates also were determined. Net radiation was measured with net radiometers. Soil heat flux was analyzed with heat flux plates and thermocouples. The Bowen ratio method was used to determine sensible and latent heat fluxes. Sunflower had a higher evapotranspiration rate and depleted more water from the soil than sorghum. Soil heat flux into the soil during the daytime was greater for sorghum than sunflower, which was probably the result of the more erect leaves of sorghum. Nocturnal net radiation loss from the sorghum crop was greater than that from the sunflower crop, perhaps because more heat was stored in the soil under the sorghum crop. But daytime net radiation values were similar for the two crops. The data indicated that models of climate change must differentiate nighttime net radiation of agricultural crops. Sensible heat flux was not always less (or greater) for sorghum compared to sunflower. Sunflower had greater daytime values for latent heat flux, reflecting its greater depletion of water from the soil. Evapotranspiration rates determined by the energy balance method agreed relatively well with those found by the water balance method. For example, on 8 July (43 days after planting), the ET rates found by the energy-balance and water-balance methods were 4.6 vs. 5.5 mm/day for sunflower, respectively; for sorghum, these values were 4.0 vs. 3.5 mm/day, respectively. If the climate does

  17. Gut microbiota, nutrient sensing and energy balance.

    PubMed

    Duca, F A; Lam, T K T

    2014-09-01

    The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut-brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut-brain axis controlling energy balance, at both the level of intestinal nutrient-sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy-regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.

  18. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    ERIC Educational Resources Information Center

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  19. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    ERIC Educational Resources Information Center

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  20. Energy balance during recovery from malnutrition.

    PubMed

    Spady, D W; Payne, P R; Picou, D; Waterlow, J C

    1976-10-01

    This report presents an account of energy balance of young Jamaican children recovering from protein-energy malnutrition (PEM). This was done in three steps. Initially the true gross energy of a formula used in the treatment of PEM was determined by bomb calorimetry. Then its metabolizable energy content was determined in a group of nine children recovering from PEM. In a similar but different group of eight children total daily metabolizable energy intake (EI), average rate of weight gain (g/kg/day) (WG), and total daily energy expenditure (TDEE) were determined. TDEE was determined by indirect calorimetry using a heart rate counter and is based on the relationship of heart rate to oxygen consumption. In this group, the mean EI was 122.5 kcal, WG was 8.4 g, and TDEE was 92 kcal. The difference between EI and TDEE was 30.7 kcal/kg, or 3.3 kcal/g of weight gain. This difference is presumed to be the stored energy in new tissue and corresponds to a proposed new tissue composition of 31% fat and 14% protein. A regression curve comparison of WG versus EI showed that at zero weight gain EI was 85.5 kcal and each additional gain. The difference of 1.0 kcal between total energy cost and stored energy reflects the energy required to deposit new tissue. Gram weight gain required 4.4 kcal. The latter figure is felt to reflect the total energy cost of weight. From three independent measurements, an estimate of maintenance energy requirements was estimated to be about 82 kcal/kg/day.

  1. Energy balance in the WTC collapse

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqi; Xu, Kang; Ansourian, Peter; Tahmasebinia, Faham; Alonso-Marroquin, Fernando

    2016-08-01

    The main aim of this report is to provide an analysis of Twin Towers of the New York City's World Trade Centre collapsed after attacked by two jet aircrafts. The approach mainly focused on the effect of temperature on mechanical properties of the building, by modelling heat energy in the south tower. Energy balance during the collapse between the energy inputs by aircraft petrol and the transient heat to the towers was conducted. Both the overall structure between 80 to 83 stories and individual elements was modelled. The main elements contributed to the heat transition includes external and internal columns. Heat applied in 2D and 3D models for single elements was through convection and conduction. Analysis of transient heat was done using Strand7.

  2. Dorsomedial hypothalamic NPY and energy balance control

    PubMed Central

    Bi, Sheng; Kim, Yonwook J.; Zheng, Fenping

    2012-01-01

    Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis. PMID:23083763

  3. Dorsomedial hypothalamic NPY and energy balance control.

    PubMed

    Bi, Sheng; Kim, Yonwook J; Zheng, Fenping

    2012-12-01

    Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Comprehensive Assessments of Energy Balance in Mice.

    PubMed

    Grobe, Justin L

    2017-01-01

    Increasing evidence supports a major role for the renin-angiotensin system (RAS) in energy balance physiology. The RAS exists as a circulating system but also as a local paracrine/autocrine signaling mechanism in target tissues including the gastrointestinal tract, the brain, the kidney, and distinct adipose beds. Through activation of various receptors in these target tissues, the RAS contributes to the control of food intake behavior, digestive efficiency, spontaneous physical activity, and aerobic and anaerobic resting metabolism. Although the assortment of methodologies available to assess the various aspects of energy balance can be daunting for an investigator new to this area, a relatively straightforward array of entry-level and advanced methodologies can be employed to comprehensively and quantitatively dissect the effects of experimental manipulations on energy homeostasis. Such methodologies and a simple initial workflow for the use of these methods are described in this chapter, including the use of metabolic caging systems, bomb calorimetry, body composition analyzers, respirometry systems, and direct calorimetry systems. Finally, a brief discussion of the statistical analyses of metabolic data is included.

  5. Sleep restriction is not associated with a positive energy balance in adolescent boys.

    PubMed

    Klingenberg, Lars; Chaput, Jean-Philippe; Holmbäck, Ulf; Jennum, Poul; Astrup, Arne; Sjödin, Anders

    2012-08-01

    A short sleep (SS) duration has been linked to obesity in observational studies. However, experimental evidence of the potential mechanisms of sleep restriction on energy balance is conflicting and, to our knowledge, nonexistent in adolescents. We investigated the effects of 3 consecutive nights of partial sleep deprivation on components of energy balance. In a randomized, crossover design, 21 healthy, normal-weight male adolescents (mean ± SD age: 16.8 ± 1.3 y) completed the following 2 experimental conditions, each for 3 consecutive nights: an SS (4 h/night) and a long sleep (LS; 9 h/night) duration. Endpoints were 24-h energy expenditure (EE), spontaneous physical activity (SPA), postintervention diet-induced thermogenesis (DIT), appetite sensations, ad libitum energy intake (EI), and profiles of plasma ghrelin and leptin. The 24-h EE on day 3 was 370 ± 496 kJ higher in the SS condition than in the LS condition (P = 0.003). This difference in EE was explained by prolonged wakefulness in the SS condition and a 19% higher SPA (P = 0.003). In a postintervention breakfast-meal challenge, there was a 0.19-kJ/min smaller incremental AUC in DIT over 4 h in the SS condition than in the LS condition (P = 0.012) with no time × condition effect (P = 0.29). Subjects consumed 13% less energy in the ad libitum meal in the SS condition (P = 0.031), with a concomitant decreased motivation to eat. Concentrations of ghrelin and leptin remained unchanged with sleep restriction. Short-term sleep restriction in male adolescents is associated with a small negative energy balance driven by increased EE from prolonged wakefulness and a concomitant decreased EI and motivation to eat. This trial was registered at clinicaltrials.gov as NCT01198431.

  6. Energy Balance Bowen Ratio (EBBR) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  7. Energy Balance Bowen Ratio Station (EBBR) Handbook

    SciTech Connect

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  8. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men.

    PubMed

    Gonnissen, Hanne K J; Hursel, Rick; Rutters, Femke; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-02-28

    In addition to short sleep duration, reduced sleep quality is also associated with appetite control. The present study examined the effect of sleep fragmentation, independent of sleep duration, on appetite profiles and 24 h profiles of hormones involved in energy balance regulation. A total of twelve healthy male subjects (age 23 (sd 4) years, BMI 24·4 (sd 1·9) kg/m²) completed a 24 h randomised crossover study in which sleep (23.30-07.30 hours) was either fragmented or non-fragmented. Polysomnography was used to determine rapid-eye movement (REM) sleep, slow-wave sleep (SWS) and total sleep time (TST). Blood samples were taken at baseline and continued hourly for the 24 h period to measure glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1) and melatonin concentrations. In addition, salivary cortisol levels were measured. Visual analogue scales were used to score appetite-related feelings. Sleep fragmentation resulted in reduced REM sleep (69·4 min compared with 83·5 min; P< 0·05) and preservation of SWS without changes in TST. In fragmented v. non-fragmented sleep, glucose concentrations did not change, while insulin secretion was decreased in the morning, and increased in the afternoon (P< 0·05), and GLP-1 concentrations and fullness scores were lower (P< 0·05). After dinner, desire-to-eat ratings were higher after fragmented sleep (P< 0·05). A single night of fragmented sleep, resulting in reduced REM sleep, induced a shift in insulin concentrations, from being lower in the morning and higher in the afternoon, while GLP-1 concentrations and fullness scores were decreased. These results may lead to increased food intake and snacking, thus contributing to a positive energy balance.

  9. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  10. High-intensity sweeteners and energy balance.

    PubMed

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  11. Exercise, energy balance and the shift worker.

    PubMed

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don

    2008-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst 'white collar' occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality in shift workers have not been confirmed. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. 'Normal' eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomized controlled studies on the efficacy of physical

  12. Exercise, Energy Balance and the Shift Worker

    PubMed Central

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don; Waterhouse, Jim

    2009-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst ‘white collar’ occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep-deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality have not been confirmed in shift workers. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. ‘Normal’ eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomised controlled studies on the efficacy of

  13. Sleep patterns, diet quality and energy balance.

    PubMed

    Chaput, Jean-Philippe

    2014-07-01

    There is increasing evidence showing that sleep has an influence on eating behaviors. Short sleep duration, poor sleep quality, and later bedtimes are all associated with increased food intake, poor diet quality, and excess body weight. Insufficient sleep seems to facilitate the ingestion of calories when exposed to the modern obesogenic environment of readily accessible food. Lack of sleep has been shown to increase snacking, the number of meals consumed per day, and the preference for energy-rich foods. Proposed mechanisms by which insufficient sleep may increase caloric consumption include: (1) more time and opportunities for eating, (2) psychological distress, (3) greater sensitivity to food reward, (4) disinhibited eating, (5) more energy needed to sustain extended wakefulness, and (6) changes in appetite hormones. Globally, excess energy intake associated with not getting adequate sleep seems to be preferentially driven by hedonic rather than homeostatic factors. Moreover, the consumption of certain types of foods which impact the availability of tryptophan as well as the synthesis of serotonin and melatonin may aid in promoting sleep. In summary, multiple connections exist between sleep patterns, eating behavior and energy balance. Sleep should not be overlooked in obesity research and should be included as part of the lifestyle package that traditionally has focused on diet and physical activity.

  14. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  15. [Genetic variations in energy balance regulation].

    PubMed

    Pankov, Iu A

    2010-01-01

    Single nucleotide polymorphism (SNP) near certain genes revealed association of FAT(fat mass and obesity-associated gene), MC4R (melanocortin 4 receptor gene), and other genes with obesity. Participation of the FAT expression products in the regulation of energy balance remains to be clarified. The function of MC4R encoding melanocortin 4 receptor (MC4R) is somewhat better understood. alpha-, beta-, and gamma-MSH encoded by the POMC gene bind to MC4R, reduce food intake, and slow down fat accumulation. Expression of POMC that codes MSH is enhanced by leptin binding to the receptor (LepRb) in hypothalamic neurons. Mutations in human and animal MC4R, POMC, and LEP genes are known to be associated with obesity. More than 60 mutations in MC4R, more than 20 mutations in POMC and fewer LEP mutations have been reported. Nonsense mutations and reading frame shifts block gene expression and thereby disrupt protein synthesis. Missense mutations frequently affect protein folding in endoplasmic reticulum; unfolded or misfolded proteins remain in the cytoplasm and undergo degradation. Certain missence mutations do not interfere with gene expression and folding of proteins but impair their functioning at the periphery. P.S127L mutation in MC4R, p.E206X and p.F144L mutations in POMC as well as other mutations in homozygous and heterozygous forms account for disturbed energy balance in man. The LEP gene has been reported to contain G133fsX15, p.R105X, p.R1O5W, and p.S141C mutations. As a rule, they are associated with obesity and other pathological conditions only in homozygous forms.

  16. Effects of Supplemental Energy on Protein Balance during 4-d Arctic Military Training.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Gundersen, Yngvar; Castellani, John W; Karl, J Philip; Carrigan, Christopher T; Teien, Hilde-Kristin; Madslien, Elisabeth-Henie; Montain, Scott J; Pasiakos, Stefan M

    2016-08-01

    Soldiers often experience negative energy balance during military operations that diminish whole-body protein retention, even when dietary protein is consumed within recommended levels (1.5-2.0 g·kg·d). The objective of this study is to determine whether providing supplemental nutrition spares whole-body protein by attenuating the level of negative energy balance induced by military training and to assess whether protein balance is differentially influenced by the macronutrient source. Soldiers participating in 4-d arctic military training (AMT) (51-km ski march) were randomized to receive three combat rations (CON) (n = 18), three combat rations plus four 250-kcal protein-based bars (PRO, 20 g protein) (n = 28), or three combat rations plus four 250-kcal carbohydrate-based bars daily (CHO, 48 g carbohydrate) (n = 27). Energy expenditure (D2O) and energy intake were measured daily. Nitrogen balance (NBAL) and protein turnover were determined at baseline (BL) and day 3 of AMT using 24-h urine and [N]-glycine. Protein and carbohydrate intakes were highest (P < 0.05) for PRO (mean ± SD, 2.0 ± 0.3 g·kg·d) and CHO (5.8 ± 1.3 g·kg·d), but only CHO increased (P < 0.05) energy intake above CON. Energy expenditure (6155 ± 515 kcal·d), energy balance (-3313 ± 776 kcal·d), net protein balance (NET) (-0.24 ± 0.60 g·d), and NBAL (-68.5 ± 94.6 mg·kg·d) during AMT were similar between groups. In the combined cohort, energy intake was associated (P < 0.05) with NET (r = 0.56) and NBAL (r = 0.69), and soldiers with the highest energy intake (3723 ± 359 kcal·d, 2.11 ± 0.45 g protein·kg·d, 6.654 ± 1.16 g carbohydrate·kg·d) achieved net protein balance and NBAL during AMT. These data reinforce the importance of consuming sufficient energy during periods of high energy expenditure to mitigate the consequences of negative energy balance and attenuate whole-body protein loss.

  17. Characterization of the diurnal rhythm of peptide YY and its association with energy balance parameters in normal-weight premenopausal women

    PubMed Central

    Hill, Brenna R.; De Souza, Mary Jane

    2011-01-01

    PYY may play a role in modulating satiety and energy expenditure; increasing PYY postprandially has been studied largely in single-meal responses. The diurnal rhythm of PYY and its role in energy balance have not been fully characterized. The purpose of our study was to characterize features of the diurnal rhythm of PYY and determine its role in regulating energy balance. This study was a cross-sectional analysis of 11 subjects in whom 24-h repeated blood sampling was conducted at baseline of a larger prospective study. Breakfast (B), lunch (L), dinner (D), and a snack (S) occurred between 0900 and 1900. Total PYY was assayed every hour from 0800 to 1000, every 20 min from 1000 to 2000, and every hour from 2000 to 0800. PYY variables included total AUC, postprandial peaks, and 24-h mean. Energy balance variables included energy intake, RMR, RQ, and NEAT. PYY postprandial peaks were significantly higher than fasting (P < 0.05). Twenty-four-hour peak PYY occurred after L and was significantly higher than all other peaks (P < 0.05). A cubic curve function accounted for most of the variance in PYY (r2 = 69.9%, P < 0.01). Fasting PYY (0800) correlated with postprandial peaks at B (r = 0.77, P = 0.01), L (r = 0.71, P = 0.01), and D (r = 0.65, P = 0.03). The only significant association between PYY and energy expenditure was that RMR (kcal/24 h) correlated with 24-h mean PYY (r = 0.71, P = 0.013) and total AUC (r = 0.69, P = 0.019). We conclude that PYY displays a meal-driven diurnal rhythm and is correlated to RMR, a major contributor to energy expenditure. Thus, PYY varies in accordance with energy content and RMR, supporting a role for PYY in energy balance modulation. PMID:21610227

  18. Breakfasts high in protein, fat or carbohydrate: effect on within-day appetite and energy balance.

    PubMed

    Stubbs, R J; van Wyk, M C; Johnstone, A M; Harbron, C G

    1996-07-01

    To compare the effect of isoenergetically-dense, high-protein (HP), high-fat (HF) or high-carbohydrate (HC) breakfasts (at 08.30) on subjective hunger, fullness and appetite (measured hourly on a 100 mm visual analogue scale), macronutrient balance and ad libitum energy intake (EI), at a test meal (13.30) and throughout the rest of the day (until 23.00). Six men each spent 24 h in a whole-body indirect calorimeter on three separate occasions during which they received breakfasts designed to match 75% of BMR and that comprised, on average 3.1 MJ of protein (HP), carbohydrate (HC) or fat (HF), respectively, the remainder being split between the other two macronutrients. Every item of the ad libitum diet comprised 13% protein, 40% fat and 47% carbohydrate by energy, with an energy density of 550 kJ/100 g. Subjectively-rated pleasantness did not differ between the breakfasts, or any of the subsequent ad libitum meals. Subjective hunger was significantly greater during the hours between breakfast and lunch after the HF (26) treatment relative to the HP (18) or HC (18 mm) meals (P < 0.001), although the HP treatment suppressed hunger to a greater extent than the other two treatments over 24 h. However, mean ad libitum lunch intakes were similar at 5.38, 5.30 and 5.18 MJ (NS) on the HP, HC and HF treatments, respectively. After-lunch intakes were also very similar at 6.14, 6.18 and 5.83 MJ (NS). Mean 24-h energy expenditure amounted to 11.12, 11.14 and 10.93 MJ, respectively, producing energy balances of 5.71, 5.83 and 5.04 MJ (NS), respectively. The HP, HF and HC breakfasts led to enhanced P, F and C oxidation, respectively (P < 0.003). Large HP, HC or HF breakfasts led to detectable changes in hunger that were not of sufficient magnitude to influence lunch-time intake 5 h later, or EI for the rest of the day. A single positive balance of each macronutrient can be buffered by oxidation and storage capacity, without leading to changes in meal-to-meal EI, when subjects

  19. Dietary and 24-h fat oxidation in Asians and whites who differ in body composition.

    PubMed

    Wulan, Siti N; Westerterp, Klaas R; Plasqui, Guy

    2012-06-01

    With the same BMI, age, and sex, Asians were reported to have a higher body fat percentage than whites. This study aimed to determine the difference in body composition and its effect on dietary and 24-h fat oxidation between Asians and whites when they were fed a diet that contained 30% of energy as fat. Seventeen Asians (8 men) were matched with 17 whites (8 men) for BMI, age, and sex. Physical activity was measured for 7 d with an accelerometer. During the last 3 d of the activity measurement, subjects were given a diet to maintain energy balances. Energy expenditure and substrate use were measured for 24 h in a respiration chamber. Dietary fat oxidation was determined from the percentage recovery of deuterium in the urine after a breakfast meal that contained deuterated palmitic acid. Body composition was calculated with a 3-compartment model from body mass, body volume (hydrodensitometry), and total body water (deuterium dilution). Asians had 5% higher body fat than whites (28.1 ± 7.3% compared with 23.0 ± 6.9%, respectively; P = 0.03). The fat-free mass index tended to be lower in Asians than in whites (16.3 ± 1.6 compared with 17.0 ± 1.7 kg/m(2), respectively; P = 0.07). Dietary fat oxidation as a percentage of fat consumed was 11.7 ± 3.6% compared with 10.8 ± 4.5% (P = 0.50) for Asians and whites, respectively. In Asians and whites, the 24-h fat oxidation as a percentage of total energy expenditure was 17.7 ± 6.9% compared with 19.2 ± 5.1% (P = 0.63), respectively; carbohydrate oxidation was 68.0 ± 6.8% compared with 66.1 ± 5.1% (P = 0.51), respectively; and protein oxidation was 14.3 ± 2.2 compared with 14.7 ± 1.6% (P = 0.61), respectively. Dietary and 24-h fat oxidation were not different between Asians and whites despite differences in body composition. This study was registered in the public trial registry at www.ccmo.nl as NL31217.068.10.

  20. Appetite and energy balance signals from adipocytes

    PubMed Central

    Trayhurn, Paul; Bing, Chen

    2006-01-01

    Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis. PMID:16815801

  1. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  2. The ANIBES Study on Energy Balance in Spain: design, protocol and methodology.

    PubMed

    Ruiz, Emma; Ávila, José Manuel; Castillo, Adrián; Valero, Teresa; del Pozo, Susana; Rodriguez, Paula; Bartrina, Javier Aranceta; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M; Serra-Majem, Lluis; Varela-Moreiras, Gregorio

    2015-02-04

    Energy Balance (EB) is an important topic to understand how an imbalance in its main determinants (energy intake and consumption) may lead to inappropriate weight gain, considered to be "dynamic" and not "static". There are no studies to evaluate EB in Spain, and new technologies reveal themselves as key tools to solve common problems to precisely quantify energy consumption and expenditure at population level. The overall purpose of the ANIBES ("Anthropometry, Intake and Energy Balance") Study was to carry out an accurate updating of food and beverage intake, dietary habits/behaviour and anthropometric data of the Spanish population (9-75 years, n=2009), as well as the energy expenditure and physical activity patterns. Anthropometry measurements (weight, height, body mass index, waist circumference, % body fat, % body water) were obtained; diet was evaluated throughout a three-day dietary record (tablet device) accompanied by a 24 h-dietary recall; physical activity was quantified by questionnaire and accelerometers were also employed. Finally, information about perception and understanding of several issues related to EB was also obtained. The ANIBES study will contribute to provide valuable useful data to inform food policy planning, food based dietary guidelines development and other health oriented actions in Spain.

  3. Effect of a 3-day high-fat feeding period on carbohydrate balance and ad libitum energy intake in humans.

    PubMed

    Galgani, J E; de Jonge, L; Most, M M; Bray, G A; Smith, S R

    2010-05-01

    A reduction in glycogen after the switch to an isoenergetic high-fat diet (HFD) might promote a compensatory increase in food intake to reestablish carbohydrate balance. We assessed the effect of an isoenergetic switch from a 49%-carbohydrate to 50%-fat diet on nutrient balance and ad libitum food intake. We hypothesized that carbohydrate balance would be inversely related to ad libitum energy intake. In 47 men and 11 women (22.6+/-0.4 years; 26.1+/-0.5 kg m(-2)), fuel balance was measured in a respiration chamber over 4 days. During the first day, an isoenergetic, high-carbohydrate diet was provided followed by a 3-day isoenergetic, HFD. At the end of this period and after 16 h of fasting, three options of foods (cookies, fruit salad and turkey sandwich) were offered ad libitum for 4 h. The relationships between post-chamber ad libitum intake and macronutrient oxidation and balance measured day-to-day and over the 4-day respiration chamber stay were studied. After switching to a HFD, 24-h respiratory quotient decreased from 0.87+/-0.02 to 0.83+/-0.02 (P<0.0001) resulting in a 4-day cumulative carbohydrate, fat and protein balances of -183+/-368, 342+/-480 and 65+/-267 kcal, respectively. Cumulative energy balance (224+/-362 kcal per 4 days) did not influence ad libitum energy intake. However, we detected that 4-day carbohydrate balance was a positive and independent predictor of post-chamber ad libitum energy intake (R (2)=0.10; P=0.01), whereas no significant influence of fat and protein balances was found. In response to an isoenergetic change from a high-carbohydrate to HFD, higher carbohydrate balance related to increased energy intake.

  4. Association between 24-h urinary sodium excretion and obesity in Korean adults: A multicenter study.

    PubMed

    Nam, Ga Eun; Kim, Seon Mee; Choi, Mi-Kyeong; Heo, Young-Ran; Hyun, Tai-Sun; Lyu, Eun-Soon; Oh, Se-Young; Park, Hae-Ryun; Ro, Hee-Kyong; Han, Kyungdo; Lee, Yeon Kyung

    2017-09-01

    The aim of this study was to explore the association between sodium intake, as assessed by 24-h urinary sodium excretion, and various obesity parameters among South Korean adults. The associations of 24-h urinary sodium excretion and sodium intake calculated from the dietary questionnaire with obesity parameters also were compared. This multicenter, cross-sectional study analyzed data of 640 healthy adults from eight provinces in South Korea. Obesity was assessed by body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). Mean 24-h urinary sodium excretion was calculated from repeatedly collected 24-h urine samples. Participants' dietary intake was assessed by 24-h dietary recall interview on the days before 24-h urine collection. In both sexes, the means of all anthropometric measurements tended to increase proportionally with 24-h urinary sodium excretion quartiles, regardless of adjustment. Men in the highest quartile (Q4) of 24-h urinary sodium excretion had increased odds of obesity (as assessed by BMI, WC, WHR, and WHtR) compared with men in the three lower quartiles (Q1-Q3) of 24-h urinary sodium excretion. Women in Q4 of 24-h urinary sodium excretion exhibited a higher chance of general obesity and abdominal obesity. Sodium intake calculated from the dietary questionnaire was not significantly associated with obesity in either sex. In Korean adults, there was a positive association between higher sodium intake as assessed by 24-h urinary sodium excretion and obesity independent of energy intake. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dietary energy density, inflammation and energy balance in palliative care cancer patients.

    PubMed

    Wallengren, Ola; Bosaeus, Ingvar; Lundholm, Kent

    2013-02-01

    Diet energy density is correlated with energy intake in patients with advanced cancer. Little information is available about the effects of energy density on energy balance, nor about the influence of other factors, such as systemic inflammation and disease stage. We assessed whether dietary energy density or energy intake predict energy balance over 4 months in patients with advanced cancer. We examined also the influence of systemic inflammation and survival time. Energy balance was calculated from the change in body energy content by repeated dual-energy X-ray scans in 107 patients for a total of 164 4-month measurement periods. A linear mixed model was used to investigate relationships between diet energy density (kcal/g), energy intake (kcal/day) and energy balance with systemic inflammation and survival as covariates. In an unadjusted model, the energy density of solid food and energy intake were positive predictors of energy balance (P < 0.03). A 1-SD increase in energy density and energy intake increased energy balance by 38 and 41 kcal/day, respectively. The total diet energy density did not predict energy balance (P > 0.05). Survival was positively (P < 0.001), and systemic inflammation negatively (P = 0.005) associated with energy balance. Only energy intake remained a significant predictor of energy balance after adjustment for survival and inflammatory status. Dietary energy density is positively associated with energy balance in patients with advanced cancer. Relations between energy intake, energy density and energy balance are affected by systemic inflammation. Thus, targeting systemic inflammation may be important in nutritional interventions in this patient group. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Aquifer Thermal Energy Storage for Seasonal Thermal Energy Balance

    NASA Astrophysics Data System (ADS)

    Rostampour, Vahab; Bloemendal, Martin; Keviczky, Tamas

    2017-04-01

    Aquifer Thermal Energy Storage (ATES) systems allow storing large quantities of thermal energy in subsurface aquifers enabling significant energy savings and greenhouse gas reductions. This is achieved by injection and extraction of water into and from saturated underground aquifers, simultaneously. An ATES system consists of two wells and operates in a seasonal mode. One well is used for the storage of cold water, the other one for the storage of heat. In warm seasons, cold water is extracted from the cold well to provide cooling to a building. The temperature of the extracted cold water increases as it passes through the building climate control systems and then gets simultaneously, injected back into the warm well. This procedure is reversed during cold seasons where the flow direction is reversed such that the warmer water is extracted from the warm well to provide heating to a building. From the perspective of building climate comfort systems, an ATES system is considered as a seasonal storage system that can be a heat source or sink, or as a storage for thermal energy. This leads to an interesting and challenging optimal control problem of the building climate comfort system that can be used to develop a seasonal-based energy management strategy. In [1] we develop a control-oriented model to predict thermal energy balance in a building climate control system integrated with ATES. Such a model however cannot cope with off-nominal but realistic situations such as when the wells are completely depleted, or the start-up phase of newly installed wells, etc., leading to direct usage of aquifer ambient temperature. Building upon our previous work in [1], we here extend the mathematical model for ATES system to handle the above mentioned more realistic situations. Using our improved models, one can more precisely predict system behavior and apply optimal control strategies to manage the building climate comfort along with energy savings and greenhouse gas reductions

  7. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  8. Top 10 research questions related to energy balance.

    PubMed

    Shook, Robin P; Hand, Gregory A; Blair, Steven N

    2014-03-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy expenditure. Although this relationship may appear easy to understand based on simple mathematics, in reality, a variety of known and unknown systems influence the components of energy balance (energy storage, energy intake, energy expenditure). Clearly, if a complete understanding of energy balance was apparent, worldwide levels of obesity would not have reached pandemic proportions due to effective prevention and treatment strategies. The aim of the present article is to provide a brief overview of the components of energy balance and to identify 10 key topics and unanswered questions that would move the research field forward if addressed. These topics are intentionally diverse and range from general themes (e.g., methodological issues) to specific areas (e.g., intensity of exercise required to alter energy intake). Although this list is not meant to be exhaustive, it does provide a research agenda for scientists involved in the study of energy balance and recommendations for public health professionals developing obesity interventions.

  9. Serotonin and the regulation of mammalian energy balance

    PubMed Central

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated. PMID:23543912

  10. Hindbrain DPP-IV inhibition improves glycemic control and promotes negative energy balance.

    PubMed

    Mietlicki-Baase, Elizabeth G; McGrath, Lauren E; Koch-Laskowski, Kieran; Krawczyk, Joanna; Pham, Tram; Lhamo, Rinzin; Reiner, David J; Hayes, Matthew R

    2017-05-01

    The beneficial glycemic and food intake-suppressive effects of glucagon-like peptide-1 (GLP-1) have made this neuroendocrine system a leading target for pharmacological approaches to the treatment of diabetes and obesity. One strategy to increase the activity of endogenous GLP-1 is to prevent the rapid degradation of the hormone by the enzyme dipeptidyl peptidase-IV (DPP-IV). However, despite the expression of both DPP-IV and GLP-1 in the brain, and the clear importance of central GLP-1 receptor (GLP-1R) signaling for glycemic and energy balance control, the metabolic effects of central inhibition of DPP-IV activity are unclear. To test whether hindbrain DPP-IV inhibition suppresses blood glucose, feeding, and body weight gain, the effects of 4th intracerebroventricular (ICV) administration of the FDA-approved DPP-IV inhibitor sitagliptin were evaluated. Results indicate that hindbrain delivery of sitagliptin improves glycemic control in a GLP-1R-dependent manner, suggesting that this effect is due at least in part to increased endogenous brainstem GLP-1 activity after sitagliptin administration. Furthermore, 4th ICV injection of sitagliptin reduced 24h body weight gain and energy intake, with a selective suppression of high-fat diet, but not chow, intake. These data reveal a novel role for hindbrain GLP-1R activation in glycemic control and also demonstrate that DPP-IV inhibition in the caudal brainstem promotes negative energy balance.

  11. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old

    PubMed Central

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N. S.; Olivier, Patrick; Adamson, Ashley J.; Foster, Emma

    2016-01-01

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11–24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11–24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults. PMID:27294952

  12. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old.

    PubMed

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N S; Olivier, Patrick; Adamson, Ashley J; Foster, Emma

    2016-06-09

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11-24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11-24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults.

  13. Fuel feeds function: Energy balance and bovine peripheral blood mononuclear cell activation.

    PubMed

    Schwarm, A; Viergutz, T; Kuhla, B; Hammon, H M; Schweigel-Röntgen, M

    2013-01-01

    A general phenomenon in peripartum mammals is the breakdown of (acquired) immunity. The incidence of parasite load, disease and inflammation often rise during the specific energetically demanding time of pregnancy and lactation. In this period, blood leukocytes display decreased DNA synthesis in response to mitogens in vitro. Leukocyte activation, the phase of the cell cycle preceding the DNA synthetic phase has hardly been investigated, but the few studies suggest that leukocyte activation may also be impaired by the limited energy/nutrient availability. Leukocyte activation is characterized by manifold processes, thus, we used the cellular oxygen consumption rate (OCR) as a measure of ATP turnover to support all these processes. We hypothesized that the activation of peripheral blood mononuclear cells (PBMC) - in terms of oxygen consumed over basal levels after in vitro stimulation - is altered by energy balance around parturition. We studied peripartum high-yielding dairy cows because they undergo substantial fluctuations in energy intake, energy output and body fat mass. We established a fluorescence-based test strategy allowing for long-term (≥24h) quantification of O(2)-consumption and studied the peripartum period from 5 weeks ante partum to 5 weeks postpartum. In addition, we determined cellular lactate production, DNA/RNA synthesis and cell size and zoo-technical parameters such as animal energy intake and milk yield were assessed, as well as selected plasma parameters, e.g. glucose concentration. The basal OCR of PBMC from pregnant, non-lactating cows (n=6, -5 weeks ante partum) was 1.19±0.15 nmol min(-1) (10(7)cells)(-1) and increased to maximum levels of 2.54±0.49 nmol min(-1) (10(7)cells)(-1) in phytohemagglutinin (PHA)-stimulated PBMC. The basal OCR did not change over the peripartum period. Whereas the activation indices, herein defined as the PHA-induced 24h-increase of OCR above baseline, amounted to 1.1±0.3, 4.2±0.3, 4.1±1.1, 2.1±0.3, and

  14. Genetic regulation of feed intake and energy balance in poultry.

    PubMed

    Richards, M P

    2003-06-01

    Intensive selection by poultry breeders over many generations for economically important production traits such as growth rate and meat production has been accompanied by significant changes in feed intake and energy balance. For example, the modern commercial broiler, selected for rapid growth and enhanced muscle mass, does not adequately regulate voluntary feed intake to achieve energy balance. When given unrestricted access to feed, broilers exhibit hyperphagia leading to an excessive accumulation of energy (fat) stores, making these birds prone to obesity and other health-related problems. Humoral and neural pathways have been identified and studied in mammals that link appetite and energy balance. A series of highly integrated regulatory mechanisms exists for both of these processes involving complex interactions between peripheral tissues and the central nervous system. Within the central nervous system, the brainstem and the hypothalamus play critical roles in the regulation of feed intake and energy balance. Genes encoding key regulatory factors such as hormones, neuropeptides, receptors, enzymes, transcription factors, and binding/transport proteins constitute the molecular basis for regulatory systems that derive from integrated sensing, signaling, and metabolic pathways. However, we do not yet have a complete understanding of the genetic basis for this regulation in poultry. This review examines what is currently known about the regulation of feed intake and energy balance in poultry. A better understanding of the genes associated with controlling feed intake and energy balance and how their expression is regulated by nutritional and hormonal stimuli will offer new insights into current poultry breeding and management practices.

  15. Techniques for the study of energy balance in man.

    PubMed

    Elia, Marinos; Stratton, Rebecca; Stubbs, James

    2003-05-01

    Energy balance can be estimated in tissues, body segments, individual subjects (the focus of the present article), groups of subjects and even societies. Changes in body composition in individual subjects can be translated into changes in the energy content of the body, but this method is limited by the precision of the techniques. The precision for measuring fat and fat-free mass can be as low as 0.5 kg when certain reference techniques are used (hydrodensitometry, air-displacement plethysmography, dual-energy X-ray absorptiometry), and approximately 0.7 kg for changes between two time points. Techniques associated with a measurement error of 0.7 kg for changes in fat and fat-free mass (approximately 18 MJ) are of little or no value for calculating energy balance over short periods of time, but they may be of some value over long periods of time (18 MJ over 1 year corresponds to an average daily energy balance of 70 kJ, which is < 1% of the normal dietary energy intake). Body composition measurements can also be useful in calculating changes in energy balance when the changes in body weight and composition are large, e.g. > 5-10 kg. The same principles can be applied to the assessment of energy balance in body segments using dual-energy X-ray absorptiometry. Energy balance can be obtained over periods as short as a few minutes, e.g. during measurements of BMR. The variability in BMR between individuals of similar age, weight and height and gender is about 7-9%, most of which is of biological origin rather than measurement error, which is about 2%. Measurement of total energy expenditure during starvation (no energy intake) can also be used to estimate energy balance in a whole-body calorimeter, in patients in intensive care units being artificially ventilated and by tracer techniques. The precision of these techniques varies from 1 to 10%. Establishing energy balance by measuring the discrepancy between energy intake and expenditure has to take into consideration

  16. Analysis of energy balance models using the ERBE data set

    NASA Technical Reports Server (NTRS)

    Graves, Charles E.; North, Gerald R.

    1991-01-01

    A review of Energy Balance Models is presented. Results from the Outgoing Longwave Radiation parameterization are discussed. The albedo parameterizations and the consequences of the new parameterizations are examined.

  17. Hypothalamic proopiomelanocortin processing and the regulation of energy balance

    PubMed Central

    Wardlaw, Sharon L.

    2011-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PCI/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing. PMID:21208604

  18. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  19. Melanocortin control of energy balance: evidence from rodent models.

    PubMed

    De Jonghe, Bart C; Hayes, Matthew R; Bence, Kendra K

    2011-08-01

    Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.

  20. Melanocortin Control of Energy Balance: Evidence from Rodent Models

    PubMed Central

    De Jonghe, Bart C.; Hayes, Matthew R.; Bence, Kendra K.

    2011-01-01

    Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of long term energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed. PMID:21553232

  1. Top 10 Research Questions Related to Energy Balance

    ERIC Educational Resources Information Center

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  2. Top 10 Research Questions Related to Energy Balance

    ERIC Educational Resources Information Center

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  3. Suburban Energy Balance Estimates for Vancouver, B.C., Using the Bowen Ratio-Energy Balance Approach.

    NASA Astrophysics Data System (ADS)

    Kalanda, B. D.; Oke, T. R.; Spittlehouse, D. L.

    1980-07-01

    The energy balance of a suburban site in Vancouver, B.C. in late summer is presented. The balance is obtained from direct measurements of net radiation, parameterized heat storage and turbulent fluxes determined according to the Bowen ratio-energy balance method with reversing psychrometers. An error analysis shows the turbulent fluxes are good to within 10-20% by day. Features of the suburban energy balance are found to be intermediate between those previously reported for urban and rural surfaces. Average daytime Bowen ratios are usually in the range 0.5-1.0 with some days as high as 2.5. The daytime sensible heat flux is in-phase with the net radiation. At night this flux is sometimes positive. Evapotranspiration is always an important term in the balance. The role of urban irrigation and microscale heat advection in maintaining evapotranspiration rates is discussed.

  4. Analysis of surface energy balance closure over heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Soojin; Lee, Young-Hee; Kim, Kyu Rang; Park, Young-San

    2014-11-01

    Surface energy balance closure has been examined using eddy covariance measurements and other observations at one industrial and three agricultural sites near the Nakdong River during daytime. Energy balance closure was evaluated by calculating the long-term averaged energy balance ratio (EBR), the ratio of turbulent energy fluxes to available energy, and the statistical regression of turbulent energy fluxes against available energy using half-hourly data. The EBR of all sites ranges from 0.46 to 0.83 while the coefficient of determination ( R 2) ranges from 0.37 to 0.77. The energy balance closure was relatively poor compared to homogeneous sites, indicating the influence of surface heterogeneity. Unmeasured heat storage terms also seem to play a role in the surface energy budget at the industrial and irrigated sites. The energy balance closure was better in conditions of high wind speed, low downward short wave radiation, and high friction velocity, which suggests the role of heat storage term and surface heterogeneity in surface energy balance at these sites. Spectrum analysis shows a sharp roll-off at the low frequency in co-spectrum, which indicates that low-frequency motions do not significantly contribute to turbulent fluxes. Both the spectra and cospectra in unstable conditions show a broad peak indicating the influence of multiple sizes of large eddies over heterogeneous sites. Most of ogive curves for the kinematic latent and sensible heat fluxes reach an asymptote within 30 minutes regardless of the EBR value, indicating that low frequency motion is not a main factor for energy imbalance. However, stationary eddies due to landscape heterogeneity still remains as a possible cause for energy imbalance.

  5. Neural Control of Energy Balance: Translating Circuits to Therapies

    PubMed Central

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W.

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes. PMID:25815991

  6. Developmental programming of energy balance and its hypothalamic regulation.

    PubMed

    Remmers, Floor; Delemarre-van de Waal, Henriette A

    2011-04-01

    Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.

  7. The ANIBES Study on Energy Balance in Spain: Design, Protocol and Methodology

    PubMed Central

    Ruiz, Emma; Ávila, José Manuel; Castillo, Adrián; Valero, Teresa; del Pozo, Susana; Rodriguez, Paula; Bartrina, Javier Aranceta; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio

    2015-01-01

    Energy Balance (EB) is an important topic to understand how an imbalance in its main determinants (energy intake and consumption) may lead to inappropriate weight gain, considered to be “dynamic” and not “static”. There are no studies to evaluate EB in Spain, and new technologies reveal themselves as key tools to solve common problems to precisely quantify energy consumption and expenditure at population level. The overall purpose of the ANIBES (“Anthropometry, Intake and Energy Balance”) Study was to carry out an accurate updating of food and beverage intake, dietary habits/behaviour and anthropometric data of the Spanish population (9–75 years, n = 2009), as well as the energy expenditure and physical activity patterns. Anthropometry measurements (weight, height, body mass index, waist circumference, % body fat, % body water) were obtained; diet was evaluated throughout a three-day dietary record (tablet device) accompanied by a 24 h-dietary recall; physical activity was quantified by questionnaire and accelerometers were also employed. Finally, information about perception and understanding of several issues related to EB was also obtained. The ANIBES study will contribute to provide valuable useful data to inform food policy planning, food based dietary guidelines development and other health oriented actions in Spain. PMID:25658237

  8. Balancing the energy equation for healthy kidneys.

    PubMed

    Mount, Peter F; Power, David A

    2015-12-01

    The high-energy requirement of the kidney and the importance of energy metabolism in renal physiology has been appreciated for decades, but only recently has there emerged a strong link between impaired renal energy metabolism and chronic kidney disease (CKD). The mechanisms underlying the association between changes in energy metabolism and progression of CKD, however, remain poorly understood. A new study from Qiu and colleagues reported in the Journal of Pathology has advanced this understanding by showing that, after renal injury, the energy sensor AMPK inhibits epithelial-mesenchymal transition and inflammation, processes important in the pathogenesis of CKD. Furthermore, this study identifies an interaction between AMPK and CK2β as an important mechanism in the anti-fibrotic effect. CK2β has previously been shown to interact with STK11 (also known as LKB1) to regulate cellular polarity. These findings are consistent with the known roles of the LKB1-AMPK pathway in sustaining cellular energy homeostasis and epithelial cell polarity, and add to growing evidence linking the suppression of energy metabolism to CKD. They emphasize the importance of energy metabolism in general and the LKB1-AMPK axis in particular as key investigational and therapeutic targets in the battle against CKD.

  9. Validity and relative validity of a novel digital approach for 24-h dietary recall in athletes

    PubMed Central

    2014-01-01

    Background We developed a digital dietary analysis tool for athletes (DATA) using a modified 24-h recall method and an integrated, customized nutrient database. The purpose of this study was to assess DATA’s validity and relative validity by measuring its agreement with registered dietitians’ (RDs) direct observations (OBSERVATION) and 24-h dietary recall interviews using the USDA 5-step multiple-pass method (INTERVIEW), respectively. Methods Fifty-six athletes (14–20 y) completed DATA and INTERVIEW in randomized counter-balanced order. OBSERVATION (n = 26) consisted of RDs recording participants’ food/drink intake in a 24-h period and were completed the day prior to DATA and INTERVIEW. Agreement among methods was estimated using a repeated measures t-test and Bland-Altman analysis. Results The paired differences (with 95% confidence intervals) between DATA and OBSERVATION were not significant for carbohydrate (10.1%, -1.2–22.7%) and protein (14.1%, -3.2–34.5%) but was significant for energy (14.4%, 1.2–29.3%). There were no differences between DATA and INTERVIEW for energy (-1.1%, -9.1–7.7%), carbohydrate (0.2%, -7.1–8.0%) or protein (-2.7%, -11.3–6.7%). Bland-Altman analysis indicated significant positive correlations between absolute values of the differences and the means for OBSERVATION vs. DATA (r = 0.40 and r = 0.47 for energy and carbohydrate, respectively) and INTERVIEW vs. DATA (r = 0.52, r = 0.29, and r = 0.61 for energy, carbohydrate, and protein, respectively). There were also wide 95% limits of agreement (LOA) for most method comparisons. The mean bias ratio (with 95% LOA) for OBSERVATION vs. DATA was 0.874 (0.551-1.385) for energy, 0.906 (0.522-1.575) for carbohydrate, and 0.895(0.395-2.031) for protein. The mean bias ratio (with 95% LOA) for INTERVIEW vs. DATA was 1.016 (0.538-1.919) for energy, 0.995 (0.563-1.757) for carbohydrate, and 1.031 (0.514-2.068) for protein. Conclusion DATA has good relative

  10. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; hide

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  11. Energy balance measurement: when something is not better than nothing.

    PubMed

    Dhurandhar, N V; Schoeller, D; Brown, A W; Heymsfield, S B; Thomas, D; Sørensen, T I A; Speakman, J R; Jeansonne, M; Allison, D B

    2015-07-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health-care policies, future research and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance.

  12. Energy Balance Measurement: When Something is Not Better than Nothing

    PubMed Central

    Dhurandhar, Nikhil V.; Schoeller, Dale; Brown, Andrew W.; Heymsfield, Steven B.; Thomas, Diana; Sørensen, Thorkild I.A.; Speakman, John R.; Jeansonne, Madeline; Allison, David B.

    2014-01-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health care policies, future research, and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance. PMID:25394308

  13. Free energy balance in gyrokinetic turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  14. Free energy balance in gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Bañón Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Görler, T.; Jenko, F.

    2011-09-01

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  15. Organization of primary care practice for providing energy balance care.

    PubMed

    Klabunde, Carrie N; Clauser, Steven B; Liu, Benmei; Pronk, Nicolaas P; Ballard-Barbash, Rachel; Huang, Terry T-K; Smith, Ashley Wilder

    2014-01-01

    Primary care physicians (PCPs) may not adequately counsel or monitor patients regarding diet, physical activity, and weight control (i.e., provide energy balance care). We assessed the organization of PCPs' practices for providing this care. The study design was a nationally representative survey conducted in 2008. The study setting was U.S. primary care practices. A total of 1740 PCPs completed two sequential questionnaires (response rate, 55.5%). The study measured PCPs' reports of practice resources, and the frequency of body mass index assessment, counseling, referral for further evaluation/management, and monitoring of patients for energy balance care. Descriptive statistics and logistic regression modeling were used. More than 80% of PCPs reported having information resources on diet, physical activity, or weight control available in waiting/exam rooms, but fewer billed (45%), used reminder systems (<30%), or received incentive payments (3%) for energy balance care. A total of 26% reported regularly assessing body mass index and always/often providing counseling as well as tracking patients for progress related to energy balance. In multivariate analyses, PCPs in practices with full electronic health records or those that bill for energy balance care provided this care more often and more comprehensively. There were strong specialty differences, with pediatricians more likely (odds ratio, 1.78; 95% confidence interval, 1.26-2.51) and obstetrician/gynecologists less likely (odds ratio, 0.28; 95% confidence interval, 0.17-0.44) than others to provide energy balance care. PCPs' practices are not well organized for providing energy balance care. Further research is needed to understand PCP care-related specialty differences.

  16. Teaching Mass and Energy Balances by Experiment

    ERIC Educational Resources Information Center

    Orbey, Nese; De Jesús Vega, Marisel; Zalluhoglu, Fulya Sudur

    2017-01-01

    A general tank-draining problem was used as an experimental project in two undergraduate-level chemical engineering courses. The project aimed to illustrate the critical nature of experimentation in addition to use of mass and energy conservation principles in developing mathematical models that correctly describes a system. The students designed…

  17. Dietary(sensory)variety and energy balance

    USDA-ARS?s Scientific Manuscript database

    The prevalence of overweight and obesity in US adults is currently 68%, compared with about 47% in the early 1970s. Many dietary factors have been proposed to contribute to the US obesity epidemic, including the percentage of energy intake from fat, carbohydrate and protein; glycemic index; fruit a...

  18. A new diagram of the global energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin

    2014-05-01

    This study provides a new assessment of the global mean energy flows from a surface perspective as well as an associated diagram of the global mean energy balance. The radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less has been known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, the growing number of surface observations is used to constrain the global energy balance not only from space, but also from the surface. These observations are combined with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm-2, respectively, which are most compatible with surface observations. Combined with an estimated global mean surface absorbed solar radiation and thermal emission of 161 Wm-2 and 398 Wm-2, respectively, this leaves 105 Wm-2 of global mean surface net radiation available for distribution amongst the non-radiative surface energy balance components. Considering an imbalance of 0.6 Wm-2, the global mean sensible and latent heat fluxes are estimated at 20 and 84 Wm-2, respectively, to close the surface energy balance. The global mean surface radiative fluxes derived here in combination with a latent heat flux of 84 Wm-2 may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates. The findings of this study are compiled into a new global energy balance diagram. Related references: Wild, M., Folini, D., Schär, C., Loeb, N., Dutton E.G., and König-Langlo, G., 2013: A new diagram of the global energy balance, AIP Conf. Proc., 1531, 628-631, doi: 10.1063/1.4804848. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and K

  19. Traffic off-balancing algorithm for energy efficient networks

    NASA Astrophysics Data System (ADS)

    Kim, Junhyuk; Lee, Chankyun; Rhee, June-Koo Kevin

    2011-12-01

    Physical layer of high-end network system uses multiple interface arrays. Under the load-balancing perspective, light load can be distributed to multiple interfaces. However, it can cause energy inefficiency in terms of the number of poor utilization interfaces. To tackle this energy inefficiency, traffic off-balancing algorithm for traffic adaptive interface sleep/awake is investigated. As a reference model, 40G/100G Ethernet is investigated. We report that suggested algorithm can achieve energy efficiency while satisfying traffic transmission requirement.

  20. Ground Energy Balance For Shallow Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.

    2015-12-01

    Vertical borehole heat exchangers (BHE) represent the most common applications by far in the field of shallow geothermal energy. They are typically operated for decades for energy extraction from the top 400 m of the subsurface. During this lifetime, thermal anomalies are generated in the ground and surface-near aquifers. These anomalies often grow over the years and compromise the overall performance of the geothermal system. As a basis for prediction and control of the developing energy imbalance in the ground, the focus is often set on the ground temperatures. This is reflected, for instance, in regulative temperature thresholds. As an alternative to temperature, we examine the temporal and spatial variability of heat fluxes and power sources during geothermal heat pump operation. The underlying idea is that knowledge of the primary heat sources is fundamental for the control of ground temperature evolution. For analysis of heat fluxes, an analytical framework for BHE simulation based on Kelvin's line source is re-formulated. This is applied to a synthetic study and for modelling a long-term application in the field. Our results show that during early operation phase, energy is extracted mainly from the underground. Local depletion at the borehole enhances the vertical fluxes with the relative contribution from the bottom reaching a limit of 24 % of the total power demand. The relative contribution from the ground surface becomes dominant for Fourier numbers larger than 0.13. For the full life cycle, vertical heat flux from the ground surface dominates the basal heat flux towards the BHE and it provides about two thirds of the demanded power. Finally, we reveal that the time for ground energy recovery after BHE shutdown may be longer than what is expected from simulated temperature trends.

  1. Development of Energy Balances for the State of California

    SciTech Connect

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-12-01

    Analysts assessing energy policies and energy modelers forecasting future trends need to have access to reliable and concise energy statistics. Lawrence Berkeley National Laboratory evaluated several sources of California energy data, primarily from the California Energy Commission and the U.S. Energy Information Administration, to develop the California Energy Balance Database (CALEB). This database manages highly disaggregated data on energy supply, transformation, and end-use consumption for each type of energy commodity from 1990 to the most recent year available (generally 2001) in the form of an energy balance, following the methodology used by the International Energy Agency. This report presents the data used for CALEB and provides information on how the various data sources were reconciled. CALEB offers the possibility of displaying all energy flows in numerous ways (e.g.,physical units, Btus, petajoules, different levels of aggregation), facilitating comparisons among the different types of energy commodities and different end-use sectors. In addition to displaying energy data, CALEB can also be used to calculate state-level energy-related carbon dioxide emissions using the methodology of the Intergovernmental Panel on Climate Change.

  2. Serum immunoreactive relaxin in women during a 24-h period.

    PubMed

    Seki, K; Kato, K; Tabei, T

    1987-03-01

    Serum relaxin concentrations were measured every 30 min during a 24-h period in nonpregnant and pregnant women. Relaxin was undetectable in all serum samples obtained from 3 nonpregnant women. Relaxin was detectable in all serum samples obtained from 2 pregnant women. However, neither episodic secretion of relaxin nor a 24-h rhythm in relaxin secretion was discernible in these women.

  3. Energy balance: an overview with emphasis on children.

    PubMed

    Tam, Charmaine S; Ravussin, Eric

    2012-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11-57% of children with acute lymphoblastic leukemia, probably due to increased energy intake and reduced energy expenditure secondary to reduced habitual activity caused by fatigue. However, most of the studies in children with leukemia are retrospective, use BMI as a measure of obesity, and are inconclusive about the impact of the type of treatment on the development of obesity later in life. To better understand the etiology of obesity in both healthy and sick children, we need to undertake nutrient balance studies with appropriate measures of fat mass and fat distribution while keeping in mind the influence of normal tissue growth and puberty on energy balance. Copyright © 2011 Wiley Periodicals, Inc.

  4. Energy Balance: An Overview With Emphasis on Children

    PubMed Central

    Tam, Charmaine S.; Ravussin, Eric

    2014-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11–57% of children with acute lymphoblastic leukemia, probably due to increased energy intake and reduced energy expenditure secondary to reduced habitual activity caused by fatigue. However, most of the studies in children with leukemia are retrospective, use BMI as a measure of obesity, and are inconclusive about the impact of the type of treatment on the development of obesity later in life. To better understand the etiology of obesity in both healthy and sick children, we need to undertake nutrient balance studies with appropriate measures of fat mass and fat distribution while keeping in mind the influence of normal tissue growth and puberty on energy balance. PMID:22021150

  5. Numerical studies of the energy balance in coronal loops

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Antiochos, S. K.; Vesecky, J. F.

    1981-01-01

    A numerical method is applied to treat the energy balance of quasi-static solar coronal loops, which have been observed to persist for periods much greater than the radiative cooling time. The quasi-static loop model employed takes into account gravity, density-, temperature- or position-dependent energy input, an accurate form of the radiative losses and variable loop cross-sectional area, under assumptions of energy input by coronal heating balanced by radiative and conductive losses, an optically thin plasma, energy conduction along the field lines only and hydrostatic equilibrium. Computations of an emission measure function for various distributions of the energy input and loop geometries are then presented which show that little information on the location of the energy input may be gained from spectral line intensity measurements integrated over a single loop.

  6. A new diagram of the global energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; Dutton, Ellsworth G.; König-Langlo, Gert

    2013-05-01

    Here we provide a new assessment of the global mean energy fluxes from a surface perspective and present an associated diagram of the global mean energy balance, adapted from the study by Wild et al. (2013) [1] with two slight modifications as outlined in this paper. The radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less has been known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm-2 and 398 Wm-2, respectively, this leaves 105 Wm-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. Considering an imbalance of 0.6 Wm-2, the global mean sensible and latent heat fluxes are estimated at 20 and 84 Wm-2, respectively, to close the surface energy balance. The global mean surface radiative fluxes derived here in combination with a latent heat flux of 84 Wm-2 may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates. The findings of this study are compiled into a new global energy balance diagram.

  7. 24-h hydration status: parameters, epidemiology and recommendations.

    PubMed

    Manz, F; Wentz, A

    2003-12-01

    Hydration of individuals and groups is characterised by comparing actual urine osmolality (Uosm) with maximum Uosm. Data of actual, maximum and minimum Uosm in infants, children and adults and its major influencing factors are reviewed. There are remarkable ontogenetic, individual and cultural differences in Uosm. In the foetus and the breast-fed infant Uosm is much lower than plasma osmolality, whereas in children and adults it is usually much higher. Individuals and groups may show long-term differences in Uosm. In industrialised countries, the gender difference of Uosm is common. There are large intercultural differences of mean 24-h Uosm ranging from 860 mosm/kg in Germany, 649 mosm/kg in USA to 392 mosm/kg in Poland. A new physiologically based concept called 'free-water reserve' quantifies differences in 24-h euhydration. In 189 boys of the DONALD Study aged 4.0-6.9 y, median urine volume was 497 ml/24-h and median Uosm 809 mosm/kg. Considering mean-2 s.d. of actual maximum 24-h Uosm of 830 mosm/kg as upper level of euhydration and physiological criterion of adequate hydration in these boys, median free-water reserve was 11 ml/24-h. Based on median total water intake of 1310 ml/24-h and the third percentile of free-water volume of -156 ml/24-h, adequate total water intake was 1466 ml/24-h or 1.01 ml/kcal. Data of Uosm in 24-h urine samples and corresponding free-water reserve values of homogeneous groups of healthy subjects from all over the world might be useful parameters in epidemiology to investigate the health effects of different levels of 24-h euhydration.

  8. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  9. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  10. Surface energy balance calculations for small northern lakes

    NASA Astrophysics Data System (ADS)

    Binyamin, J.; Rouse, W. R.; Davies, J. A.; Oswald, C. J.; Schertzer, W. M.

    2006-12-01

    An energy balance model is used to determine diurnal surface energy balance components for three different sized high-latitude Canadian lakes in the Mackenzie River Basin (MRB) during the open water seasons of 2000, 2001, and 2002. Surface net radiation is derived from the component fluxes of the radiation balance. Turbulent heat fluxes are calculated using the aerodynamic method with input from local meteorological stations and experimentally derived drag coefficients. Lake heat storage, determined as a residual of the surface energy balance, is used together with measured water temperature profiles to calculate the daily mixing layer depth. The model uses readily available meteorological inputs for radiation calculations.Verification results for surface energy balance components show mean bias error (MBE) generally less than 5% of the mean measured daily fluxes and root mean square error (RMSE) less than 38%, which decreases to less than 16% for 10-day averaging periods. The model tends to overestimate net radiation by 7% and latent and sensible heat fluxes by about 4% and 1%, respectively, on average. Inferred slab layer depths indicate that the shallowest lake was isothermal while the deeper lakes showed temporal variations as expected.

  11. Disruptions in Energy Balance: Does Nature overcome Nurture?

    PubMed Central

    Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-01-01

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193

  12. Disruptions in energy balance: does nature overcome nurture?

    PubMed

    Fernández, José R; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-04-22

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments supports the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual's genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities.

  13. Energy balance at a crossroads: translating the science into action.

    PubMed

    Manore, Melinda M; Brown, Katie; Houtkooper, Linda; Jakicic, John; Peters, John C; Smith Edge, Marianne; Steiber, Alison; Going, Scott; Gable, Lisa Guillermin; Krautheim, Ann Marie

    2014-07-01

    One of the major challenges facing the United States is the high number of overweight and obese adults and the growing number of overweight and unfit children and youth. To improve the nation's health, young people must move into adulthood without the burden of obesity and its associated chronic diseases. To address these issues, the American College of Sports Medicine, the Academy of Nutrition and Dietetics, and the US Department of Agriculture/Agriculture Research Service convened an expert panel meeting in October 2012 titled "Energy Balance at a Crossroads: Translating the Science into Action." Experts in the fields of nutrition and exercise science came together to identify the biological, lifestyle, and environmental changes that will most successfully help children and families attain and manage energy balance and tip the scale toward healthier weights. Two goals were addressed: 1) professional training and 2) consumer/community education. The training goal focused on developing a comprehensive strategy to facilitate the integration of nutrition and physical activity (PA) using a dynamic energy balance approach for regulating weight into the training of undergraduate and graduate students in dietetics/nutrition science, exercise science/PA, and pre-K-12 teacher preparation programs and in training existing cooperative extension faculty. The education goal focused on developing strategies for integrating dynamic energy balance into nutrition and PA educational programs for the public, especially programs funded by federal/state agencies. The meeting expert presenters and participants addressed three key areas: 1) biological and lifestyle factors that affect energy balance, 2) undergraduate/graduate educational and training issues, and 3) best practices associated with educating the public about dynamic energy balance. Specific consensus recommendations were developed for each goal.

  14. Meteorology Of The Clark Atlanta University Local Energy Balance Module

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.; Mills, I.; Paxton, J. N.

    2005-05-01

    The Earth System Science Program (ESSP) at Clark Atlanta University has developed an instructional module to study energy balance at the air/land and air/sea interfaces. A graphical user interface (GUI) has been developed which is used to model each of the components (net radiation, sensible and latent heat fluxes, ground heat flux, storage, anthropomorphic, and residual) necessary to understand the partitioning of energy at the air/land and air/water interfaces. The energy balance diagram consists of sky elements (sun, moon, clouds), a line representing the air/land or water/land interface, and arrows which indicate magnitude and direction of each of the energy fluxes. The storage component is represented as a box when present. The energy balance model has been applied to numerous (33 at present) scenarios which vary by (1) climate or microclimate, (2) day and night, (2) cloudiness and sunshine, (3) windy and calm, (4) land or water surface, and (5) freezing and non-freezing temperatures. The model is available in 2 levels of rigor: (1) an elementary level (Level I), and (2) and advanced level (Level II). In the Level I model only fixed arrow lengths (e.g., zero, 1/4, 1/2, 3/4, 1) are available to express flux magnitude. This allows a qualitative illustration of the energy balance components. The Level II model requires the student to calculate arrow magnitudes and directions from diffusion, evaporation, radiative transfer, and energy storage equations. The module incorporates not only the energy balance model, but also a protocol by which meteorological observations from the ESSP's rooftop laboratory, the AEMN (Georgia Automated Environmental Monitoring Network), and other online resources. The completed module is designed to serve two audiences: (1) undergraduate introductory science classes and grades 8-12, and (2) upper-division science and engineering classes.

  15. Endocrine-disrupting chemicals and the regulation of energy balance.

    PubMed

    Nadal, Angel; Quesada, Ivan; Tudurí, Eva; Nogueiras, Rubén; Alonso-Magdalena, Paloma

    2017-09-01

    Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.

  16. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner.

    PubMed

    Cameron, Jameason D; Goldfield, Gary S; Doucet, Éric

    2012-06-01

    Changes in smell function can modify feeding behaviour but there is little evidence of how acute negative energy balance may impact olfaction and palatability. In a within-subjects repeated measures design, 15 subjects (nine male; six female) aged 28.6±4.5 years with initial body weight (BW) 74.7±4.9 kg and body mass index (BMI) 25.3±1.4 kg/m(2) were randomized and tested at baseline (FED) and Post Deprivation (FASTED) for nasal chemosensory performance (Sniffin' Sticks) and food palatability (visual analogue scale). Significant main effects for time indicated improvements in the FASTED session for odor threshold, odor discrimination, and total odor scores (TDI), and for increased palatability. There were significant positive correlations between initial BW and the change in odor threshold (r=.52) and TDI scores (r=.53). Positive correlations were also noted between delta identification score and delta palatability (r=.68). When the sample was split by sex, only for females were there significant correlations between delta palatability and: delta BW (r=.88); delta odor identification (r=.94); and delta TDI score (r=.85). Fasting for 24h improved smell function and this was related to increased palatability ratings and initial BW. Further studies should confirm the role of BW and sex in the context of olfaction, energy deprivation and palatability.

  17. Energy balance in the solar corona

    NASA Astrophysics Data System (ADS)

    Lundquist, Loraine Louise

    Spectral observations of highly ionized elements in the solar corona indicate temperatures of order 10 6 K, nearly three orders of magnitude larger than photospheric temperatures. Numerous competing theories have proposed plausible mechanisms for sustaining these temperatures, but no consensus has yet been reached. I use satellite observations from the Yohkoh Soft X-ray Telescope (SXT) to provide observational constraints on possible heating mechanisms. I take a forward-modeling approach, using a parameterized approximation for existing coronal heating theories to predict soft X-ray emissions from individual observed solar active regions. Theories that predict observed emissions well are favored over theories that make poor predictions. The forward model begins with a photospheric vector magnetic field measurement of an active region. To solve for the coronal magnetic field, I use a non- constant-alpha force-free field model. I choose several thousand magnetic fieldlines to represent the loop-like structures along which plasma is observed in the solar corona. Along each loop, I solve steady-state equations of mass, momentum, and energy conservation to determine thermodynamic quantities such as temperature and density. Taking into account satellite location and instrument response, I use these results to predict the expected coronal emissions from the active region in question, as observed by SXT. I evaluate 10 case study active regions using 4 heating parameterizations. I find that the predictions of a volumetric heating rate that scales proportionally with average loop field strength and inversely with loop length come closest to matching observed emissions. This parameterization is most similar to the steady-state scaling of two proposed heating mechanisms: van Ballegooijen's "current layers" theory, taken in the AC limit where loop footpoint motions are rapid compared to Alfven travel times, and Parker's "critical angle" mechanism, taken in the case where the

  18. Energy versus Water balance in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Broer, Martine; Hogan, Patrick; Foken, Thomas; Blöschl, Günter

    2013-04-01

    Evapotranspiration (ET) is an important process between vegetation, soil and the atmosphere and also the link between the surface energy balance and water balance. In the64 ha. HOAL experimental catchment at Petzenkirchen all the parameters of both the water and energy balance are measured. Discharge is measured along the small stream at all the incoming tributaries(springs, drainages and small tributaries) and at the catchment outlet. Throughout the catchment four precipitation scales are installed. Groundwater levels are measured in a transect perpendicular to the stream, which will give an indication of the storage change in the catchment. In the middle of the catchment a fully equipped Eddy-Flux station with radiation balance and soil heat flux measurement devices and a surface layer scintillometer are present in the catchment. This unique measurement setup enables us to compare the measured ET from the Eddy-Flux station with the residual of the water balance for the summer of 2012. Because the catchment and therefore the footprint of the Eddy-Flux measurements is very heterogeneous, the influence of the wind direction on the energy balance closure will also be investigated. By comparing the measured ET with the calculated ET from the water balance an estimate can be made of how representative the footprint is for the entire catchment. The surface layer scintillometer and the Eddy-Flux station both measure sensible heat flux and the latent heat flux can also be calculated from the scintillometer data. Therefore both sets of turbulent fluxes can be compared to give insight into the differences between both measurement devices. In addition more insight on the influence of the different shapes of both footprints(drop like from the Eddy-Flux station and oval for the scintillometer)in different wind directions can be gained. This study focuses on integrating measured data from different measurement stations in our catchment and is the first step in a broader

  19. Relationship between 24 h urinary potassium and diet quality in the adult Spanish population.

    PubMed

    Rodríguez-Rodríguez, Elena; Ortega, Rosa M; Andrés Carvajales, Pedro; González-Rodríguez, Liliana G

    2015-04-01

    To study the relationship between diet quality and 24 h urinary K excretion. K was measured in 24 h urine samples, while diet was studied using a 24 h recall method over two consecutive days. Diet quality was determined using the Healthy Eating Index (HEI). The body weight, height and body composition of all participants were recorded, and the BMI of each calculated. Representative members of the adult Spanish population from the FANPE Study ('Fuentes Alimentarias de Nutrientes en Población Española'; Dietary Sources of Nutrients in the Spanish Population). The final sample size was 329 participants aged 18-60 years. Participants with a 24 h urinary K excretion ≥ 93 mmol/d (group AP = adequate potassium) had greater self-reported K intakes, consumed more fruit and vegetables, had a more varied diet and had better HEI scores than those with a 24 h urinary K excretion <93 mmol/d (group IP = inadequate potassium). A significant positive correlation was seen between 24 h urinary K and dietary variety and the number of servings of fruits, vegetables and dairy products consumed, and between each of these and the HEI after correcting for age, sex, BMI, coefficient of activity, energy intake and the under-reporting of energy intake. AP participants were less likely to have an inadequate diet (HEI score <50) than IP participants (OR =0.439; 95 % CI 0.201, 0.961; P=0.039). Diet quality, measured by the HEI, is correlated with 24 h urinary K excretion in Spanish adults.

  20. The energy balance of the solar transition region

    NASA Technical Reports Server (NTRS)

    Jordan, C.

    1980-01-01

    It is shown how the observed distribution of the emission measure with temperature can be used to limit the range of energy deposition functions suitable for heating the solar transition region and inner corona. The minimum energy loss solution is considered in view of the work by Hearn (1975) in order to establish further scaling laws between the transition region pressure, the maximum coronal temperature and the parameter giving the absolute value of the emission measure. Also discussed is the absence of a static energy balance at the base of the transition region in terms of measurable atmospheric parameters, and the condition for a static energy balance is given. In addition, the possible role of the emission from He II in stabilizing the atmosphere by providing enhanced radiation loss is considered.

  1. Energy and nitrogen balances in very low birthweight infants.

    PubMed Central

    De Curtis, M; Brooke, O G

    1987-01-01

    Energy and nitrogen balances were performed in 12 very low birthweight infants fed on either human milk or on a preterm formula. Energy and nitrogen retention were significantly higher in those given the formula feed (p less than 0.05). Highly significant correlations were found between nitrogen intake and nitrogen retention and between energy retention and nitrogen retention (p less than 0.001). Multiple regression analysis failed to show any effect of energy retention on the correlation between nitrogen intake and nitrogen retention in babies fed on human milk. Protein deficiency seems to be the most likely explanation of poor growth in infants fed on human milk. PMID:3662588

  2. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  3. Energy Balance Education in Schools: The Role of Student Knowledge

    ERIC Educational Resources Information Center

    Chen, Senlin; Nam, Yoon Ho

    2017-01-01

    Obesity prevention and control have been identified as top public health priorities in modern societies. Sport and exercise science researchers from multiple perspectives (e.g. behavioral, pedagogical, psychological, and physiological) have been active contributors addressing this topic. This paper examines the importance of energy balance (EB)…

  4. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  5. Pedometer and Human Energy Balance Applications for Science Instruction

    ERIC Educational Resources Information Center

    Rye, James A.; Smolski, Stefan

    2007-01-01

    Teachers can use pedometers to facilitate inquiry learning and show students the need for mathematics in scientific investigation. The authors conducted activities with secondary students that investigated intake and expenditure components of the energy balance algorithm, which led to inquiries about pedometers and related data. By investigating…

  6. The observed Surface Energy Balance of ice shelves

    NASA Astrophysics Data System (ADS)

    Jakobs, Stan; Reijmer, Carleen; van den Broeke, Michiel; König-Lango, Gert

    2017-04-01

    The Surface Energy Balance of ice sheets is important in understanding atmosphere-surface interactions. Investigating its individual components allows us to identify their separate contributions to surface melt as well as the effect on the structure of the firn layer. In a broader sense, we can study the atmospheric contribution to ice shelf melting. In addition, observations of the surface energy balance are crucial for evaluating climate models and satellite products. In this presentation, we will present observed annual, seasonal and diurnal variations in the surface energy balance at Neumayer Station (Ekström ice shelf, Antarctica; operated by the Alfred Wegener Institute, Bremerhaven, Germany). The components are calculated based on meteorological observations covering a 25-year period, combined with a surface energy balance model. The station location experiences a very short melt season with on average 10.9 melt days, spanning only December and January in most years. Furthermore, we combine these results from Neumayer station with observations from three additional sites on ice shelves, one relatively close to Neumayer on the Riiser-Larsen ice shelf, and two on the Larsen C ice shelf, in order to investigate the spatial variability of surface melt on Antarctic ice shelves. It also allows us to look for recent trends: is there any evidence for atmospheric changes affecting the amount of surface melt that is observed?

  7. Hypothalamic proopiomelanocortin processing and the regulation of energy balance.

    PubMed

    Wardlaw, Sharon L

    2011-06-11

    Hypothalamic proopiomelanocortin (POMC) neurons play a key role in regulating energy balance and neuroendocrine function. Much attention has been focused on the regulation of POMC gene expression with less emphasis on regulated peptide processing. This is particularly important given the complexity of posttranslational POMC processing which is essential for the generation of biologically active MSH peptides. Mutations that impair POMC sorting and processing are associated with obesity in humans and in animals. Specifically, mutations in the POMC processing enzymes prohormone convertase 1/3 (PC1/3) and in carboxypeptidase E (CPE) and in the α-MSH degrading enzyme, PRCP, are associated with changes in energy balance. There is increasing evidence that POMC processing is regulated with respect to energy balance. Studies have implicated both the leptin and insulin signaling pathways in the regulation of POMC at various steps in the processing pathway. This article will review the role of hypothalamic POMC in regulating energy balance with a focus on POMC processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Dynamical horizons: energy, angular momentum, fluxes, and balance laws.

    PubMed

    Ashtekar, Abhay; Krishnan, Badri

    2002-12-23

    Dynamical horizons are considered in full, nonlinear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive, and change in the horizon area is related to these fluxes. The flux formulas also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black-hole mechanics.

  9. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  10. Energy balance and obesity: what are the main drivers?

    PubMed

    Romieu, Isabelle; Dossus, Laure; Barquera, Simón; Blottière, Hervé M; Franks, Paul W; Gunter, Marc; Hwalla, Nahla; Hursting, Stephen D; Leitzmann, Michael; Margetts, Barrie; Nishida, Chizuru; Potischman, Nancy; Seidell, Jacob; Stepien, Magdalena; Wang, Youfa; Westerterp, Klaas; Winichagoon, Pattanee; Wiseman, Martin; Willett, Walter C

    2017-03-01

    The aim of this paper is to review the evidence of the association between energy balance and obesity. In December 2015, the International Agency for Research on Cancer (IARC), Lyon, France convened a Working Group of international experts to review the evidence regarding energy balance and obesity, with a focus on Low and Middle Income Countries (LMIC). The global epidemic of obesity and the double burden, in LMICs, of malnutrition (coexistence of undernutrition and overnutrition) are both related to poor quality diet and unbalanced energy intake. Dietary patterns consistent with a traditional Mediterranean diet and other measures of diet quality can contribute to long-term weight control. Limiting consumption of sugar-sweetened beverages has a particularly important role in weight control. Genetic factors alone cannot explain the global epidemic of obesity. However, genetic, epigenetic factors and the microbiota could influence individual responses to diet and physical activity. Energy intake that exceeds energy expenditure is the main driver of weight gain. The quality of the diet may exert its effect on energy balance through complex hormonal and neurological pathways that influence satiety and possibly through other mechanisms. The food environment, marketing of unhealthy foods and urbanization, and reduction in sedentary behaviors and physical activity play important roles. Most of the evidence comes from High Income Countries and more research is needed in LMICs.

  11. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  12. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  13. Report Calls for Balancing Energy Security, Energy Equity, and Environmental Concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-12-01

    Balancing the sometimes conflicting needs for energy security, energy equity, and environmental sustainability—including trying to limit average global temperature increases—can be a daunting task for countries. A new report focuses on the challenges and potential pathways to achieving this energy "trilemma" of meeting energy and environmental needs.

  14. The energy balance and density of matter in solar flares

    NASA Astrophysics Data System (ADS)

    Baranovskii, E. A.

    The density of matter in the region of Lyman and Balmer line formation is estimated on the basis of energy balance calculations for a flare chromosphere irradiated with X-ray and EUV flux. The values obtained (9 x 10 to the 12th and 8 x 10 to the 14th/cu cm) are in agreement with values obtained using other methods. Comparison of radiative losses for Balmer lines and for negative hydrogen ions reveals that flare regions with a density greater than 4 x 10 to the 15th/cu cm will not emit in Balmer lines. It is found that a significant part of the incident X-ray and EUV flux penetrates deeper than the region of hydrogen line formation. It is noted that allowance for EUV radiation in chromospheric energy balance calculations results in a better correspondence between the magnitude of absorbed energy and the magnitude of radiative losses at different chromospheric levels.

  15. Obesity, Energy Balance and Cancer: New Opportunities for Prevention

    PubMed Central

    Hursting, Stephen D.; DiGiovanni, John; Dannenberg, Andrew J.; Azrad, Maria; LeRoith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A.

    2012-01-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-1, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition and exercise is considered as is the importance of the newly-emerging field of stem cell research as a model for studying energy balance and cancer prevention. PMID:23034147

  16. Obesity, energy balance, and cancer: new opportunities for prevention.

    PubMed

    Hursting, Stephen D; Digiovanni, John; Dannenberg, Andrew J; Azrad, Maria; Leroith, Derek; Demark-Wahnefried, Wendy; Kakarala, Madhuri; Brodie, Angela; Berger, Nathan A

    2012-11-01

    Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. These host factors include insulin, insulin-like growth factor-I, leptin, adiponectin, steroid hormones, cytokines, and inflammation-related molecules. Each of these host factors is considered in the context of energy balance and as potential targets for cancer prevention. The possibility of prevention at the systems level, including energy restriction, dietary composition, and exercise is considered as is the importance of the newly emerging field of stem cell research as a model for studying energy balance and cancer prevention.

  17. The maintenance of energy balance is compromised after weight loss.

    PubMed

    Reed, Jennifer L; Chaput, Jean-Philippe; Tremblay, Angelo; Doucet, Éric

    2013-04-01

    Available literature reveals that of the majority of individuals who are able to lose weight, only a small number are able to maintain their weight loss over time. Effective weight maintenance strategies after weight loss are illusive, which is most likely the result of a number of yet poorly understood factors. In fact, both appetite and energy expenditure are profoundly altered in response to reductions in body energy reserves. Weight reduction leads to decreased energy needs, but to an augmented drive to eat, thus compromising the maintenance of energy balance in the weight-reduced state by widening the theoretical gap between the 2 components of energy balance. This review first provides a summary of the factors related to the control of feeding and energy expenditure during weight stability. More specifically related to the topic of this review, the bulk of the literature presented depicts the post weight-loss control of appetite and energy expenditure. The integration of the literature presented in this paper reveals that body weight loss seems to orchestrate a coordinated response to resist further energy depletion, that would seem to create a state of increased vulnerability of weight regain. It is argued that these changes are largely responsible for the more than apparent difficulty in maintaining weight maintenance after weight loss. Copyright © 2013 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  18. Low protein diets produce divergent effects on energy balance

    PubMed Central

    Pezeshki, Adel; Zapata, Rizaldy C.; Singh, Arashdeep; Yee, Nicholas J.; Chelikani, Prasanth K.

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  19. Low protein diets produce divergent effects on energy balance.

    PubMed

    Pezeshki, Adel; Zapata, Rizaldy C; Singh, Arashdeep; Yee, Nicholas J; Chelikani, Prasanth K

    2016-04-28

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance.

  20. Daily energy balance in children and adolescents. Does energy expenditure predict subsequent energy intake?

    PubMed

    Thivel, David; Aucouturier, Julien; Doucet, Éric; Saunders, Travis J; Chaput, Jean-Philippe

    2013-01-01

    Both physical and sedentary activities primarily impact energy balance through energy expenditure, but they also have important implications in term of ingestive behavior. The literature provides scarce evidence on the relationship between daily activities and subsequent nutritional adaptations in children and adolescents. Sedentary activities and physical exercise are generally considered distinctly despite the fact that they represent the whole continuum of daily activity-induced energy expenditure. This brief review paper examines the impact of daily activities (from vigorous physical activity to imposed sedentary behaviors) on acute energy intake control of lean and obese children and adolescents, and whether energy expenditure is the main predictor of subsequent energy intake in this population. After an overview of the available literature, we conclude that both acute physical activity and sedentary behaviors induce food consumption modifications in children and adolescents but also that the important discrepancy between the methodologies used does not allow any clear conclusion so far. When considering energy intake responses according to the level of energy expenditure generated by those activities, it is clear that energy expenditure is not the main predictor of food consumption in both lean and obese children and adolescents. This suggests that other characteristics of those activities may have a greater impact on calorie intake (such as intensity, duration or induced mental stress) and that energy intake may be mainly determined by non-homeostatic pathways that could override the energetic and hormonal signals.

  1. Energy Balance in DC Arc Plasma Melting Furnace

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Meng, Yuedong; Yu, Xinyao; Chen, Longwei; Jiang, Yiman; Ni, Guohua; Chen, Mingzhou

    2009-04-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  2. Mineral balance in milk heated using microwave energy.

    PubMed

    de la Fuente, Miguel Angel; Olano, Agustín; Juárez, Manuela

    2002-04-10

    Milk heated to 75 and 85 degrees C in a water bath or in a microwave oven was assayed for changes in salt partitioning after cooling to room temperature. To properly to assess differences and draw valid comparisons, the two heating methods used in the experiment were applied to samples for identical exposure times, and the samples were heated to attain the same final temperatures. Although the soluble Ca and P(i) contents were lower in the heated milk samples, no significant differences in salt partitioning were found between microwave and conventional heating. Ionic calcium levels in the milk samples pasteurized using microwave energy were very close to the levels in the samples heated in a conventional water bath (approximately 90% of the level in the untreated milk samples). The microwave heating-induced changes were completely reversed after storage at 20 degrees C for 24 h. The coagulation properties of the heated milk samples were also examined, and the coagulation time was longer and the curd formation rate slower in the microwave-heated milk than in the raw milk. Still, the experimental results demonstrated that microwave heating was no more detrimental to the milk than conventional heating and could thus be used for pasteurization purposes.

  3. Does an Adolescent’s Accuracy of Recall Improve with a Second 24-h Dietary Recall?

    PubMed Central

    Kerr, Deborah A.; Wright, Janine L.; Dhaliwal, Satvinder S.; Boushey, Carol J.

    2015-01-01

    The multiple-pass 24-h dietary recall is used in most national dietary surveys. Our purpose was to assess if adolescents’ accuracy of recall improved when a 5-step multiple-pass 24-h recall was repeated. Participants (n = 24), were Chinese-American youths aged between 11 and 15 years and lived in a supervised environment as part of a metabolic feeding study. The 24-h recalls were conducted on two occasions during the first five days of the study. The four steps (quick list; forgotten foods; time and eating occasion; detailed description of the food/beverage) of the 24-h recall were assessed for matches by category. Differences were observed in the matching for the time and occasion step (p < 0.01), detailed description (p < 0.05) and portion size matching (p < 0.05). Omission rates were higher for the second recall (p < 0.05 quick list; p < 0.01 forgotten foods). The adolescents over-estimated energy intake on the first (11.3% ± 22.5%; p < 0.05) and second recall (10.1% ± 20.8%) compared with the known food and beverage items. These results suggest that the adolescents’ accuracy to recall food items declined with a second 24-h recall when repeated over two non-consecutive days. PMID:25984743

  4. Prediction of energy balance in high yielding dairy cows with test-day information.

    PubMed

    Heuer, C; Van Straalen, W M; Schukken, Y H; Dirkzwager, A; Noordhuizen, T M

    2001-02-01

    This study used a previously developed model to predict herd mean energy balance of the first 12 wk of lactation from test-day information. The predictions were compared with calculated energy balance based on feed analysis and to changes in body weight. Seven independent feeding trials including 43 diets (519 lactations, 254 cows; 1987 to 1996) were used. Conventional diets were discriminated from nonconventional diets by significant differences between mean calculated energy balance of subtrial diets versus control diets. The total difference between group means of predicted minus calculated energy balance was positive throughout the observed lactation period. It was lowest (5 to 9 MJ of net energy for lactation) during negative energy balance of the conventional diets in wk 2 to 7 when 18 to 50% of the total difference was due to random variation. Because of this difference, both predicted and calculated energy balances were compared to body weight change as a reference for true energy balance. Body weight change was adjusted for rumen fill. While calculated energy balance tended to be negative at times when cows gained weight, predicted energy balance was positive. Cows fed nonconventional diets gained weight, while calculated energy balance was extremely negative, whereas predicted energy balance based on test-day information was positive. We concluded that the prediction difference was relatively small when standard rations were used, and that nonconventional rations biased predicted energy balance to a lesser extent than calculated energy balance. Estimating energy balance based on test-day information appears feasible.

  5. Reproducibility of urinary biomarkers in multiple 24-h urine samples.

    PubMed

    Sun, Qi; Bertrand, Kimberly A; Franke, Adrian A; Rosner, Bernard; Curhan, Gary C; Willett, Walter C

    2017-01-01

    Limited knowledge regarding the reproducibility of biomarkers in 24-h urine samples has hindered the collection and use of the samples in epidemiologic studies. We aimed to evaluate the reproducibility of various markers in repeat 24-h urine samples. We calculated intraclass correlation coefficients (ICCs) of biomarkers measured in 24-h urine samples that were collected in 3168 participants in the NHS (Nurses' Health Study), NHSII (Nurses' Health Study II), and Health Professionals Follow-Up Study. In 742 women with 4 samples each collected over the course of 1 y, ICCs for sodium were 0.32 in the NHS and 0.34 in the NHSII. In 2439 men and women with 2 samples each collected over 1 wk to ≥1 mo, the ICCs ranged from 0.33 to 0.68 for sodium at various intervals between collections. The urinary excretion of potassium, calcium, magnesium, phosphate, sulfate, and other urinary markers showed generally higher reproducibility (ICCs >0.4). In 47 women with two 24-h urine samples, ICCs ranged from 0.15 (catechin) to 0.75 (enterolactone) for polyphenol metabolites. For phthalates, ICCs were generally ≤0.26 except for monobenzyl phthalate (ICC: 0.55), whereas the ICC was 0.39 for bisphenol A (BPA). We further estimated that, for the large majority of the biomarkers, the mean of three 24-h urine samples could provide a correlation of ≥0.8 with true long-term urinary excretion. These data suggest that the urinary excretion of various biomarkers, such as minerals, electrolytes, most polyphenols, and BPA, is reasonably reproducible in 24-h urine samples that are collected within a few days or ≤1 y. Our findings show that three 24-h samples are sufficient for the measurement of long-term exposure status in epidemiologic studies. © 2017 American Society for Nutrition.

  6. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  7. Insulin controls food intake and energy balance via NPY neurons.

    PubMed

    Loh, Kim; Zhang, Lei; Brandon, Amanda; Wang, Qiaoping; Begg, Denovan; Qi, Yue; Fu, Melissa; Kulkarni, Rishikesh; Teo, Jonathan; Baldock, Paul; Brüning, Jens C; Cooney, Gregory; Neely, Greg; Herzog, Herbert

    2017-06-01

    Insulin signaling in the brain has been implicated in the control of satiety, glucose homeostasis and energy balance. However, insulin signaling is dispensable in energy homeostasis controlling AgRP or POMC neurons and it is unclear which other neurons regulate these effects. Here we describe an ancient insulin/NPY neuronal network that governs energy homeostasis across phyla. To address the role of insulin action specifically in NPY neurons, we generated a variety of models by selectively removing insulin signaling in NPY neurons in flies and mice and testing the consequences on energy homeostasis. By specifically targeting the insulin receptor in both fly and mouse NPY expressing neurons, we found NPY-specific insulin signaling controls food intake and energy expenditure, and lack of insulin signaling in NPY neurons leads to increased energy stores and an obese phenotype. Additionally, the lack of insulin signaling in NPY neurons leads to a dysregulation of GH/IGF-1 axis and to altered insulin sensitivity. Taken together, these results suggest that insulin actions in NPY neurons is critical for maintaining energy balance and an impairment of this pathway may be causally linked to the development of metabolic diseases.

  8. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  9. Dissipation and energy balance in electronic dynamics of Na clusters

    NASA Astrophysics Data System (ADS)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  10. Energy expenditure and balance during spaceflight on the space shuttle

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Hoyt, R. W.; Lane, H. W.; Gretebeck, R. E.; LeBlanc, A. D.

    1999-01-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  11. Energy expenditure and balance during spaceflight on the space shuttle

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Hoyt, R. W.; Lane, H. W.; Gretebeck, R. E.; LeBlanc, A. D.

    1999-01-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  12. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines.

    PubMed

    Le Thuc, Ophélia; Stobbe, Katharina; Cansell, Céline; Nahon, Jean-Louis; Blondeau, Nicolas; Rovère, Carole

    2017-01-01

    The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  13. Energy intake, physical activity, energy balance, and cancer: epidemiologic evidence.

    PubMed

    Pan, Sai Yi; DesMeules, Marie

    2009-01-01

    Energy intake, physical activity, and obesity are modifiable lifestyle factors. This chapter reviews and summarizes the epidemiologic evidence on the relation of energy intake, physical activity, and obesity to cancer. High energy intake may increase the risk of cancers of colon-rectum, prostate (especially advanced prostate cancer), and breast. However, because physical activity, body size, and metabolic efficiency are highly related to total energy intake and expenditure, it is difficult to assess the independent effect of energy intake on cancer risk. There are sufficient evidences to support a role of physical activity in preventing cancers of the colon and breast, whereas the association is stronger in men than in women for colon cancer and in postmenopausal than in premenopausal women for breast cancer. The evidence also suggests that physical activity likely reduces the risk of cancers of endometrium, lung, and prostate (to a lesser extent). On the other hand, there is little or no evidence that the risk of rectal cancer is related to physical activity, whereas the results have been inconsistent regarding the association between physical activity and the risks of cancers of pancreas, ovary and kidney. Epidemiologic studies provide sufficient evidence that obesity is a risk factor for both cancer incidence and mortality. The evidence supports strong links of obesity with the risk of cancers of the colon, rectum, breast (in postmenopausal women), endometrium, kidney (renal cell), and adenocarcinoma of the esophagus. Epidemiologic evidence also indicates that obesity is probably related to cancers of the pancreas, liver, and gallbladder, and aggressive prostate cancer, while it seems that obesity is not associated with lung cancer. The role of obesity in other cancer risks is unclear.

  14. Assessment tools of energy balance-related behaviours used in European obesity prevention strategies: review of studies during preschool.

    PubMed

    Mouratidou, T; Mesana, M I; Manios, Y; Koletzko, B; Chinapaw, M J M; De Bourdeaudhuij, I; Socha, P; Iotova, V; Moreno, L A

    2012-03-01

    Valid and reliable measures of energy balance-related behaviours are required when evaluating the effectiveness of public health interventions aiming at prevention of childhood obesity. A structured descriptive review was performed to appraise food intake, physical activity and sedentary behaviour assessment tools used in obesity intervention strategies targeting mainly preschool children across Europe. In total, 25 papers are described, addressing energy balance-related behaviours as study outcomes and targeting individuals or clusters of individuals at school- or home-based environment. Parentally reported food records and 24-h recalls were commonly used to assess food intake. Subjective levels of physical activity and sedentary behaviour were commonly accessed via parentally reported questionnaires. Accelerometry was used to obtain objective measures of physical activity. Insufficient evidence of tool evaluation was provided. When feasible, food records and accelerometry are recommended as the most appropriate methods to assess food intake in young children. Sedentary behaviour could be assessed via questionnaires that include key indicators of sedentarism and are able to differentiate individual practices. The choice of methodology for the assessment of specific intervention effects should be equally balanced between required accuracy levels and feasibility, and be guided by the intervention targets. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  15. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed Central

    Wohlfahrt, Georg; Widmoser, Peter

    2013-01-01

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  16. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  17. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  18. Linear stochastic system with delay: Energy balance and entropy production

    NASA Astrophysics Data System (ADS)

    Munakata, Toyonori; Iwama, Shinpei; Kimizuka, Makoto

    2009-03-01

    We study the energy balance in a linear stochastic dynamics with delay under the impact of an external periodic force. The linearity of the model, in combination with a response function method, enables us to perform detailed analytic calculations of each term in the energy balance equation. From this, we discuss thermodynamics and entropy production rate σ . With use of the delay time τ and strength of the external force A0 , σ is simply expressed as σ=σD,1(τ)+A02η(τ) , with both σD,1(τ) and η(τ) positive definite. We thus conclude that even when there is no external force (A0=0) , the entropy production rate σ=σD,1(τ) is positive, meaning that the delay force produces work, which is dissipated into a reservoir. Numerical experiments are performed to confirm theoretical results.

  19. Surface energy and radiation balance systems - General description and improvements

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  20. Energy balance model for imagery and electromagnetic propagation

    NASA Astrophysics Data System (ADS)

    Rachele, Henry; Tunick, Arnold

    1992-08-01

    The optical turbulence structure parameter Cn2 typically appears in formulations used to estimate the effects of temperature and moisture (gradients) on imagery and electro- magnetic propagation. Temperature and moisture gradients can be approximated from sensible and latent heat flux estimates, and these fluxes can be obtained from radiation/energy balance equations. Numerous energy balance models exist requiring different kinds and numbers of inputs. The semiempirical model developed and presented in this paper was constrained to require a minimum number of conventional measurements at a reference level (2 m). These measurements include temperature, pressure, relative humidity, and windspeed. The model also requires a judgment of soil type and moisture (dry, moist, or saturated), cloud characteristics (tenths of cloud cover and density and an estimation of cloud height), day of the year, time of day, and longitude and latitude of the site of interest. Model estimates of net radiation, sensible and latent heat fluxes, and Cn2 are compared with measured values.

  1. Energy balance model for imagery and electromagnetic propagation

    NASA Astrophysics Data System (ADS)

    Rachele, Henry; Tunick, Arnold

    1992-05-01

    The optical turbulence structure parameter C2n typically appears in formulations used to estimate the effects of temperature and moisture (gradients) on imagery and electromagnetic propagation. Temperature and moisture gradients can be approximated from sensible and latent heat flux estimates, and these fluxes can be obtained from radiation/energy balance equations. Numerous energy balance models exist requiring different kinds and numbers of inputs. The semiempirical model developed and presented in this report was constrained to require a minimum number of conventional measurements at a reference level (2 m). These measurements include temperature, pressure, relative humidity, and windspeed. The model also requires a judgment of soil type and moisture (dry, moist, or saturated), cloud characteristics (tenths of cloud cover and density and an estimate of cloud height), day of the year, time of day, and longitude and latitude of the site of interest. Model estimates of net radiation, sensible and latent heat fluxes and C2n are compared with measured values.

  2. Energy and mass balances related to climate change and remediation.

    PubMed

    Lueking, Angela D; Cole, Milton W

    2017-07-15

    The goal of this paper is to provide a forum for a broad interdisciplinary group of scientists and engineers to see how concepts of climate change, energy, and carbon remediation strategies are related to quite basic scientific principles. A secondary goal is to show relationships between general concepts in traditional science and engineering fields and to show how they are relevant to broader environmental concepts. This paper revisits Fourier's early mathematical derivation of the average temperature of the Earth from first principles, i.e. an energy balance common to chemical and environmental engineering. The work then uses the concept of mass balance to critically discuss various carbon remediation strategies. The work is of interest to traditional scientists/engineers, but also it is potentially useful as an educational document in advanced undergraduate science or engineering classes. Published by Elsevier B.V.

  3. Dynamic energy-balance model predicting gestational weight gain123

    PubMed Central

    Thomas, Diana M; Navarro-Barrientos, Jesus E; Rivera, Daniel E; Heymsfield, Steven B; Bredlau, Carl; Redman, Leanne M; Martin, Corby K; Lederman, Sally A; M Collins, Linda; Butte, Nancy F

    2012-01-01

    Background: Gestational weight gains (GWGs) that exceed the 2009 Institute of Medicine recommended ranges increase risk of long-term postpartum weight retention; conversely, GWGs within the recommended ranges are more likely to result in positive maternal and fetal outcomes. Despite this evidence, recent epidemiologic studies have shown that the majority of pregnant women gain outside the target GWG ranges. A mathematical model that predicts GWG and energy intake could provide a clinical tool for setting precise goals during early pregnancy and continuous objective feedback throughout pregnancy. Objective: The purpose of this study was to develop and validate a differential equation model for energy balance during pregnancy that predicts GWG that results from changes in energy intakes. Design: A set of prepregnancy BMI–dependent mathematical models that predict GWG were developed by using data from a longitudinal study that measured gestational-changes in fat-free mass, fat mass, total body water, and total energy expenditure in 63 subjects. Results: Mathematical models developed for women with low, normal, and high prepregnancy BMI were shown to fit the original data. In 2 independent studies used for validation, model predictions of fat-free mass, fat mass, and total body water matched actual measurements within 1 kg. Conclusions: Our energy-balance model provides plausible predictions of GWG that results from changes in energy intakes. Because the model was implemented as a Web-based applet, it can be widely used by pregnant women and their health care providers. PMID:22170365

  4. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  5. Components of surface energy balance in a temperate grassland ecosystem

    NASA Technical Reports Server (NTRS)

    Kim, Joon; Verma, Shashi B.

    1990-01-01

    Eddy correlation measurements of moisture, heat, and momentum fluxes were made at a tall grassland site in Kansas during the First International Satellite Land Surface Climatology Project Field Experiment. The fluxes, stomatal conductance, and leaf water potential of three grass species are reported. The species are big bluestem, indiangrass, and switchgrass. The daily and seasonal variation in the components of the surface energy balance and the aerodynamic and canopy surface conductances for prairie vegetation are examined.

  6. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  7. Brain lipoprotein lipase as a regulator of energy balance.

    PubMed

    Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2017-07-24

    The central nervous system is an essential actor in the control of the energy balance. Indeed, many signals of nervous (vagal afferent for example) or circulating (hormone, nutrients) origin converge towards the brain to inform it permanently of the energetic status of the organism. In turn, the brain sends information to the periphery (sympathetic vagal balance, thyroid or corticotropic axis) which allows a fine regulation of the energy fluxes by acting on the hepatic glucose production, the secretion of the pancreatic hormones (glucagon, insulin) or food behavior. Among the nutrients, increasing amount of data assigns a signal molecule role to lipids such as fatty acids. These fatty acids may originate from the bloodstream but may also be the product of the hydrolysis of lipoproteins such as chylomicrons or VLDLs. Indeed, the identification of lipoprotein lipase (LPL) in the brain has led to the hypothesis that the LPL-dependent degradation of TG-enriched particles, and the addition of fatty acids, as informative molecules, to sensitive cells (neurons and/or astrocytes), plays a key role in maintaining the energy balance at equilibrium. Other lipases could also participate in these regulatory mechanisms. This review will summarize the state of the art and open up perspectives. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. Balance or bias: building an equitable energy budget

    SciTech Connect

    DeVaul, D.

    1982-01-01

    The findings of two major studies on the effects of high energy prices are summarized in an effort to develop reliable data for purposes of explanation. The first study, Regional Energy, reviews what is known about the relationship between energy price increases and national economic performance in the 1970s, and details the regional, state, and local effects. The second study, The Impact of Federal Energy Policies, analyzes the effect of federal policies and programs since World War II on the price and availability of energy in different sections of the country. An analysis of past energy policies reveals a strong bias toward oil- and gas-producing areas that is out of balance with national energy needs in the 1980s. Current federal policies continue those biases to the detriment of energy-dependent areas, particularly those in the Northeast and Midwest. The monograph concludes with a series of policy options designed to correct the imbalance in the federal energy budget. 2 figures, 5 tables.

  9. Energy balance regulation by thyroid hormones at central level.

    PubMed

    López, Miguel; Alvarez, Clara V; Nogueiras, Rubén; Diéguez, Carlos

    2013-07-01

    Classically, medical textbooks taught that most effects of thyroid hormones (THs) on energy homeostasis are directly exerted in peripheral tissues. However, current evidence is changing (and challenging) our perspective about the role of THs from a 'peripheral' to a 'central' vision, implying that they affect food intake, energy expenditure, and metabolism by acting, to a large extent, at the central level. Interestingly, effects of THs are interrelated with global energy sensors in the central nervous system (CNS), such as uncoupling protein 2 (UCP2), AMP-activated protein kinase (AMPK; the 'AMPK-BAT axis'), and mechanistic target of rapamycin (mTOR). Here, we review what is currently known about THs and their regulation of energy balance and metabolism in both peripheral and central tissues.

  10. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  11. Energy balance, insulin-resistance biomarkers and breast cancer risk

    PubMed Central

    Fair, Alecia Malin; Dai, Qi; Shu, Xiao-Ou; Matthews, Charles E.; Yu, Herbert; Jin, Fan; Gao, Yu-Tang; Zheng, Wei

    2007-01-01

    Background American women are five times more likely to be at risk for breast cancer than women from Asian countries. Epidemiologic studies have linked energy balance to an increased risk of breast cancer, yet few studies have investigated potential mediators of this association with Chinese women. We examined the above association by blood levels of insulin-like growth factors, binding proteins, and C-peptide in the Shanghai Breast Cancer Study (SBCS), a case-control study conducted among 1459 breast cancer cases and 1556 healthy Chinese women from 1996 and 1998. Methods In-person surveys were used to collect data on energy intake, anthropometric measures, exercise/sport activity, and occupational activity. The present analyses consisted of 397 cases and 397 controls whose blood samples were measured for levels of insulin-like growth factors ( IGFs), insulin growth-factor binding protein 3, (IGFBP-3) C-peptide and the relationship with physical activity status, total energy intake, and body fat distribution. Results Body mass index [BMI] and waist-to-hip ratio [WHR] were significantly positively correlated with IGFBP-3 and C-peptide. Adult exercise/sport activity was significantly negatively correlated with insulin-like growth factor 1(IGF-I). C-peptide levels increased with increasing quartiles of WHR (p for trend <0.01). Additional analyses were performed to evaluate whether the association of energy balance measures with breast cancer risk changed after adjustment for IGFs, IGFBP-3 and C-peptide biomarkers. The associations attenuated, but none of them changed substantially. Conclusions Insulin resistance biomarkers may partially explain the association between positive energy balance and breast cancer risk, but future studies are needed to identify the underlying complex biological mechanisms of action for breast cancer prevention. PMID:17646056

  12. Irreversibility in energy processes: Non-dimensional quantification and balance

    NASA Astrophysics Data System (ADS)

    Pons, Michel

    2004-06-01

    The concept of thermodynamic efficiency (ratio of real cycle efficiency by Carnot efficiency) is well-known. The concept of numbers of entropy-production and of exergy-loss proposed by A. Bejan are also known, but rarely used. The present study firstly evidences that these two last numbers are actually identical, thus being a common number of irreversibility, independent of the method used for obtaining it. The study also evidences a non-dimensional irreversibility balance that applies to any energy conversion process. This balance correlates the thermodynamic efficiency of a whole process (which in most cases equals the exergetic efficiency) and the numbers of irreversibility of the different components or sub-processes involved in this process. Moreover, the basic additivity of entropy-productions and exergy-losses is maintained in this balance. This balance applies to the basic cycles (heat-engines, refrigerators, heat-pumps and heat-transformers), either work- or heat-powered. It also applies to more complex cycles (heat-powered cycles consuming electricity, four-temperature heat-powered cycles, cogeneration processes), thus giving a robust framework for analyzing these cycles.

  13. Appetite control and energy balance: impact of exercise.

    PubMed

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  14. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat.

  15. Earth's Energy Balance From Space: A 35 Year Perspective

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.

    2005-12-01

    The Earth's radiative energy balance is the most fundamental driver of long term climate. Changes of 1% or less are sufficient to cause major climate change. Earth orbiting satellites provide the optimal platform to observe this energy balance, and efforts began with Nimbus 3 in 1969. Prior to satellite missions, the Earths reflected and emitted radiation were estimated using earthshine from the moon, or by a radiative transfer calculation using surface observations of aerosol, cloud, temperature, humidity, and ozone. Observing the earths radiation balance from space is an 8-dimensional sampling problem, with a requirement for extremely high accuracy and stability to directly observe climate signals. The challenge is especially severe for decadal changes in aerosols and clouds. A perspective is given on the dramatic progress that has occurred in measuring radiation in space, from Nimbus 3 in 1969 to current CERES global and GERB geostationary observations. A vision for future advances in these observations as part of the global climate observing system is also given, including new ways to use the data in unscrambling the effects of aerosol indirect effects as well as cloud feedback in the climate system. These last two issues provide extraordinary challenges in climate forcing and climate sensitivity respectively.

  16. Influence of topiramate in the regulation of energy balance.

    PubMed

    Richard, D; Ferland, J; Lalonde, J; Samson, P; Deshaies, Y

    2000-10-01

    Topiramate (TPM) is a novel neurotherapeutic agent currently indicated for the treatment of epilepsy and undergoing development for other central nervous system indications including neuropathic pain, bipolar disorder, and migraine prophylaxis. TPM is synthesized from D-fructose and contains a sulfamate moiety that is essential for its pharmacologic activity. TPM has been observed to significantly reduce body weight in patients treated for seizure, which has prompted the realization of preclinical studies to characterize the effects of TPM in the regulation of energy balance. Studies carried out in various strains of rats have provided good evidence for the ability of TPM to blunt energy deposition. Body composition analyses from rat trials have demonstrated that TPM inhibits fat deposition while reducing the activity of lipoprotein lipase (LPL) in various white adipose tissue depots. High doses of TPM (likely above the therapeutic dose range) have also been observed to reduce protein gain without catabolic effects. Although TPM cannot be described as a potent anorectic agent, it seems to have the ability to reduce food intake; significant reductions in food intake have been observed in female obese (fa/fa) Zucker rats and in female Wistar rats. TPM can also reduce energy deposition in the absence of alterations in food intake. This effect has been clearly emphasized in female lean (Fa/?) Zucker rats. In female Sprague-Dawley rats, TPM also increased energy expenditure and it has been observed to increase LPL activity in brown adipose tissue, which could indicate that TPM has the ability to enhance regulatory thermogenesis. In addition, TPM stimulates LPL activity in skeletal muscles, further emphasizing its potential to promote substrate oxidation. The mechanisms whereby TPM affects the regulation of energy balance have yet to be understood. TPM represents an antiepileptic drug (AED) with complex biochemical/pharmacologic actions. Its negative effects on energy

  17. Energy Balance during Taekwondo Practice in Elite Male Taekwondo Players.

    PubMed

    Cho, Kang Ok; Garber, Carol Ewing; Lee, Sukho; Kim, Yeon Soo

    2013-03-01

    The goal of this study was to evaluate energy expenditure and dietary intake of nutrients during Taekwondo practice in elite Korean male Taekwondo players. Elite Korean male high school (high school player: HP; n = 59) and college players (college player: CP; n = 58) wore an accelerometer to measure energy expenditure and recorded their daily dietary intake for nutritional analysis over the course of five days. Nutritional adequacy ratios for total energy (0.82), vitamin C (0.97), calcium (0.78), and folate (0.75) were below recommended levels for all players. When comparing daily nutrient intake and energy expenditure between HP and CP, the HP group had significantly higher total calorie intake (402.7 kcal, p < 0.001), calcium (126.3 mg, p = 0.018), phosphorus (198.0 mg, p = 0.002), iron (1.3 mg, p = 0.002), and vitamin B2 (0.4 mg, p < 0.001) than the CP group. Although there was no significant difference in the estimated energy requirement during Taekwondo practice, the total energy expenditure (151.2 kcal, p = 0.001), total activity counts (130,674 counts, p = 0.038) and energy expenditure during Taekwondo practice (257.7 kcal, p < 0.001) were significantly higher in the HP than in the CP. The results indicate that a sports nutrition program based on energy balance is necessary to achieve optimal health and performance in elite male Taekwondo players.

  18. [Energy balance, body composition and the female athlete triad syndrome].

    PubMed

    Weinstein, Yitzhak; Weinstein, Ayelet

    2012-02-01

    With the rising participation of women in sports events, the prevalence of eating disorders and the female athlete triad (FTS), a syndrome of disordered eating, amenorrhea, and osteoporosis, have also increased in recent years. FTS is often seen in sports that emphasize thinness (e.g. gymnastics, figure skating and dancing) and also in endurance events. Elements of the FTS are pathophysiologically linked, leading to several disease risks and even to mortality. In spite of the considerable knowledge about sports nutrition, there is no consensus as to the correct nutrition regime for the female athlete. There is consensus that minimizing fluctuations in 'target-body-weight' is an indication of a long-term energy balance. Female athletes (e.g. in endurance events and gymnastics) are less likely to achieve the recommended carbohydrates (CHO) and fat consumption due to chronic or episodic constraints of total energy intake while struggling to achieve or maintain low levels of body fat. It is recommended that dietary CHO and fat content be increased to preserve fat-free mass thus enhancing health and performance. Energy balance should also be maintained during recesses. Furthermore, within-day episodes of energy deficits/surplus (measured by the frequency and/or magnitude of the episodes) should be monitored and treated closest to the time of the incidents.

  19. Alternative energy balances for Bulgaria to mitigate climate change

    SciTech Connect

    Christov, C.

    1996-09-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987-1992 period. The energy sector is the main contributor to the total CO{sub 2} emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; waste-heat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed. 3 refs.

  20. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  1. Leptin: at the crossroads of energy balance and systemic inflammation

    PubMed Central

    Steiner, Alexandre A.; Romanovsky, Andrej A.

    2007-01-01

    In addition to playing a central role in energy homeostasis, leptin is also an important player in the inflammatory response. Systemic inflammation is accompanied by fever (less severe cases) or hypothermia (more severe cases). In leptin-irresponsive mutants, the hypothermia of systemic inflammation is exaggerated, presumably due to the enhanced production and cryogenic action of tumor necrosis factor (TNF)-α. Mechanisms that exaggerate hypothermia can also attenuate fever, particularly in a cool environment. Another common manifestation of systemic inflammation is behavioral depression. Along with the production of interleukin (IL)-1β, this manifestation is exaggerated in leptin-irresponsive mutants. The enhanced production of TNF-α and IL-1β may be due, at least in part, to insufficient activation of the anti-inflammatory hypothalamo-pituitary-adrenal axis by immune stimuli in the absence of leptin signaling. In experimental animals and humans that are responsive to leptin, suppression of leptin production under conditions of negative energy balance (e.g., fasting) can exaggerate both hypothermia and behavioral depression. Since these manifestations aid energy conservation, exaggeration of these manifestations under conditions of negative energy balance is likely to be beneficial. PMID:17275915

  2. Dcf1 regulates neuropeptide expression and maintains energy balance.

    PubMed

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-05-22

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1(-/-), KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1(-/-) mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Brain regulation of energy balance and body weight.

    PubMed

    Rui, Liangyou

    2013-12-01

    Body weight is determined by a balance between food intake and energy expenditure. Multiple neural circuits in the brain have evolved to process information about food, food-related cues and food consumption to control feeding behavior. Numerous gastrointestinal endocrine cells produce and secrete satiety hormones in response to food consumption and digestion. These hormones suppress hunger and promote satiation and satiety mainly through hindbrain circuits, thus governing meal-by-meal eating behavior. In contrast, the hypothalamus integrates adiposity signals to regulate long-term energy balance and body weight. Distinct hypothalamic areas and various orexigenic and anorexigenic neurons have been identified to homeostatically regulate food intake. The hypothalamic circuits regulate food intake in part by modulating the sensitivity of the hindbrain to short-term satiety hormones. The hedonic and incentive properties of foods and food-related cues are processed by the corticolimbic reward circuits. The mesolimbic dopamine system encodes subjective "liking" and "wanting" of palatable foods, which is subjected to modulation by the hindbrain and the hypothalamic homeostatic circuits and by satiety and adiposity hormones. Satiety and adiposity hormones also promote energy expenditure by stimulating brown adipose tissue (BAT) activity. They stimulate BAT thermogenesis mainly by increasing the sympathetic outflow to BAT. Many defects in satiety and/or adiposity hormone signaling and in the hindbrain and the hypothalamic circuits have been described and are believed to contribute to the pathogenesis of energy imbalance and obesity.

  4. Analysis of the residual in column integrated atmospheric energy balance

    NASA Astrophysics Data System (ADS)

    Kato, S.; Xu, K. M.; Wong, T.; Loeb, N. G.; Rose, F. G.; Trenberth, K. E.; Thorsen, T. J.

    2016-12-01

    Observationally-based atmospheric energy balance is analyzed using Clouds and the Earth's Radiant Energy System (CERES)-derived TOA and surface irradiance, Global Precipitation Climatology Project (GPCP)-derived precipitation, dry static and kinetic energy tendency and divergence estimated from ERA-Interim, and surface sensible heat flux from SeaFlux. The residual tends to be negative over tropics and positive over mid-latitudes. A negative residual implies that precipitation rate is too small, divergence is too large, or radiative cooling is too large. The residual of atmospheric energy is spatially and temporally correlated with cloud objects to identify cloud types associated with the residual. Spatially, shallow cumulus, cirrostratus, and deep convective cloud object occurrence are positively correlated with the absolute value of the residual. The temporal correlation coefficient between the number of deep convective cloud objects and individual energy components, net atmospheric irradiance, precipitation rate, and the sum of dry static and kinetic energy divergence and their tendency over western Pacific are, respectively, 0.84, 0.95, and 0.93. However, when all energy components are added, the atmospheric energy residual over tropical Pacific is temporally correlated well with the number of shallow cumulus cloud objects over tropical Pacific. Because shallow cumulus alters not enough atmospheric energy compared to the residual, these suggest 1) if retrieval errors associated with deep convective clouds are causing the column integrated atmospheric energy residual, the errors vary among individual deep convective clouds, 2) it is possible that the residual is associated with processes in which shallow cumulus clouds affect deep convective clouds and hence atmospheric energy budget over tropical western Pacific, or 3) a process that associated with atmospheric energy budget imbalance also affect the number of shallow cumulus cloud objects.

  5. The energy balance of plasmoids in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Pneuman, G. W.

    1986-01-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  6. The energy balance of plasmoids in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Pneuman, G. W.

    1986-08-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  7. Seasonal Contrasts in the Surface Energy Balance of the Sahel

    SciTech Connect

    Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

    2009-03-14

    Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux

  8. Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Kilian, R.; Casassa, G.

    The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby

  9. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  10. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  11. Orexins (hypocretins) and energy balance: More than feeding.

    PubMed

    Fernø, Johan; Señarís, Rosa; Diéguez, Carlos; Tena-Sempere, Manuel; López, Miguel

    2015-12-15

    Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Hypothalamic Lipids: Key Regulators of Whole Body Energy Balance.

    PubMed

    González-García, Ismael; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2017-01-01

    Hypothalamic lipid metabolism plays a major role in the physiological regulation of energy balance. Modulation of several enzymatic activities that control lipid biosynthesis, such as fatty acid synthase and AMP-activated protein kinase, impacts both feeding and energy expenditure. However, lipids can also cause pathological alterations in the hypothalamus. Lipotoxicity is promoted by excess lipids in tissues not suitable for their storage. A large amount of evidence has demonstrated that lipotoxicity is a pathophysiological mechanism leading to metabolic diseases such as insulin resistance, cardiomyopathy, atherosclerosis, and steatohepatitis. Current data have reported that, similar to what is observed in peripheral tissues, complex lipids such as ceramides and sphingolipids act as lipotoxic species at the hypothalamic level to impact metabolism. Here, we will review what is currently known about hypothalamic lipid metabolism and the modulation of energy homeostasis. © 2016 S. Karger AG, Basel.

  13. Energy Balance of a Typical U.S. Diet.

    PubMed

    Alexandrou, Athanasios; Tenbergen, Klaus; Adhikari, Diganta

    2013-03-28

    Today's agriculture provides an ever increasing population with sufficient quantities of food. During food production, processing, handling and transportation, an amount of energy is invested into the various products. An energy analysis of a typical American diet provides policy makers, farmers and the public with the necessary information to evaluate and make informed decisions as to how to improve the efficient use of energy. At the same time, an informed consumer may become energy conscious and be able to make dietary choices based on food energy balance. This paper studies the energy sequestered in a typical American diet as defined in Food and Agriculture Organization of the United Nations, Statistics Division (FAOSTAT). The amount of energy incorporated in this diet of 3628 kcal (15.18 MJ) per person and day to produce, transport, handle and process the foods is calculated and found to have approximately 39.92 GJ (9.54 Gcal) sequestered per person and year. It is shown that a diet in line with the United States Department of Agriculture (USDA) recommendation of around 2100 kcal (8.79 MJ) per day person will result in a reduction of energy inputs by 42% on an annual basis. This reduction for the whole population of the United States of America (USA), corresponds to approximately 879 million barrels of oil equivalent (boe) savings. Energy efficiency for the food categories studied varies from 3.4% to 56.5% with an average of 21.7%. Food energy efficiency can be further improved in some food categories through either a reduction of energy inputs or yield increase.

  14. Energy Balance of a Typical U.S. Diet

    PubMed Central

    Alexandrou, Athanasios; Tenbergen, Klaus; Adhikari, Diganta

    2013-01-01

    Today’s agriculture provides an ever increasing population with sufficient quantities of food. During food production, processing, handling and transportation, an amount of energy is invested into the various products. An energy analysis of a typical American diet provides policy makers, farmers and the public with the necessary information to evaluate and make informed decisions as to how to improve the efficient use of energy. At the same time, an informed consumer may become energy conscious and be able to make dietary choices based on food energy balance. This paper studies the energy sequestered in a typical American diet as defined in Food and Agriculture Organization of the United Nations, Statistics Division (FAOSTAT). The amount of energy incorporated in this diet of 3628 kcal (15.18 MJ) per person and day to produce, transport, handle and process the foods is calculated and found to have approximately 39.92 GJ (9.54 Gcal) sequestered per person and year. It is shown that a diet in line with the United States Department of Agriculture (USDA) recommendation of around 2100 kcal (8.79 MJ) per day person will result in a reduction of energy inputs by 42% on an annual basis. This reduction for the whole population of the United States of America (USA), corresponds to approximately 879 million barrels of oil equivalent (boe) savings. Energy efficiency for the food categories studied varies from 3.4% to 56.5% with an average of 21.7%. Food energy efficiency can be further improved in some food categories through either a reduction of energy inputs or yield increase. PMID:28239103

  15. Energy balance and dietary habits of America's Cup sailors.

    PubMed

    Bernardi, Elisabetta; Delussu, Sofia A; Quattrini, Filippo M; Rodio, Angelo; Bernardi, Marco

    2007-08-01

    This research, which was conducted with crew members of an America's Cup team, had the following objectives: (a) to assess energy expenditure and intake during training; (b) to evaluate the sailors' diet, and (c) to identify any dietary flaws to determine the appropriate intake of nutrients, correct possible dietary mistakes, and improve their food habits. Energy expenditure was estimated on 15 sailors using direct measurements (oxygen consumption) and a 3-day activity questionnaire. Oxygen consumption was measured on sailors during both on-water America's Cup sailing training and dry-land fitness training. Composition of the diet was estimated using a 3-day food record. Average daily energy expenditure of the sailors ranged from 14.95 to 24.4 MJ, depending on body mass and boat role, with the highest values found in grinders and mastmen. Daily energy intake ranged from 15.7 to 23.3 MJ (from +6% to -18% of energy expenditure). The contributions of carbohydrate, protein, and fat to total energy intake were 43%, 18%, and 39% respectively, values that are not in accord with the recommended guidelines for athletes. Our results show the importance of assessing energy balance and food habits for America's Cup sailors performing different roles. The practical outcome of this study was that the sailors were given dietary advice and prescribed a Mediterranean diet, explained in specific nutrition lectures.

  16. Role of Northern Lakes in Landscape Energy Balance

    NASA Astrophysics Data System (ADS)

    Rouse, W. R.; Oswald, C. J.; Spence, C.; Blanken, P. D.; Bussières, N.; Schertzer, W. M.; Duguay, C. R.; Binyamin, J.

    2004-05-01

    In the central Mackenzie River Valley of western Canada, from which most of the data used in this study are derived, there are about 32,370 lakes. For the specific study region used to determine the landscape energy balance, lakes comprise 37% of the landscape. They are classified as small (<1 km2), medium (1-100 km2) and large (>100 km2). The large lake is represented by the central portion of Great Slave Lake. The non-lake components of the landscape are divided into wetlands (8%) and uplands (55%). With such abundance, lakes are important features in regional climatic, meteorological and biogeochemical cycling. The purpose of this paper is to examine the regional role of lakes in the surface energy and water balance, to link this to the frequency-size distribution of lakes, and to cast some light on how the surface energy balance may influence regional climate and weather processes. Toward this end we employ recently-gathered data from northern lakes of various sizes, characterize their surface energy balances for both magnitude and temporal behavior of fluxes, and examine the impacts of combinations of various-size lakes and land-lake distributions on regional energy balances and evaporation cycles. The analysis is limited to the ice-free period. Net radiation was substantially greater over all water-dominated surfaces compared with uplands (U). Seasonal differences were 16% greater for wetlands (W), 25% greater for small (SL) and medium (ML) lakes and 73% greater for Great Slave Lake (LL). At maximum, the seasonal heat storage relative to net radiation was 6, 9, 26, 55 and 76 % for U, W, SL, ML and LL respectively. ML and LL are slow to warm in summer but their large cumulative heat storage near summer's end has a major impact on the regional energy balance, because this heat is available to feed convective heat fluxes in fall and early winter. The evaporation season for U, W, SL, ML and LL lasts for 19, 21, 22, 24 and 30 weeks respectively. The effects of

  17. Energy balance model for imagery and electromagnetic propagation

    NASA Astrophysics Data System (ADS)

    Rachele, Henry; Tunick, Arnold

    1994-07-01

    The optical turbulence structure parameter C(sup 2) sub n typically appears in equations used to estimate the effects of temperature and moisture (gradients) on imagery and electromagnetic propagation. Temperature and moisture gradients can be approximated from sensible and latent heat flux estimates, by the application of basic Obukhov similarity theory parameterizations, and the fluxes can be obtained from radiation/energy balance equations. Numerous energy balance models exist requiring different kinds and numbers of inputs. The semiempirical model developed and presented was constrained to require a minimum number of conventional measurements at a reference level (2 m). There measurements include temperature, pressure, relative humidity, and windspeed. The model also requires a judgment of soil type and moisture (dry, moist, or saturated), cloud characteristics (tenths of cloud cover and density and an estimate of cloud height), day of the year, time of day, and longitude and latitude of the site. Model estimates of net radiation, sensible, ground, and latent heat fluxes are compared with measured values. Comparisons of C(sup 2) sub n estimates computed from measured versus modeled energy fluxes are also made.

  18. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  19. Primary cilia in energy balance signaling and metabolic disorder.

    PubMed

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-12-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.

  20. Models and mechanisms of energy balance regulation in the young.

    PubMed

    Mercer, Julian G

    2008-11-01

    The proportion of the child and adolescent population that is in appropriate energy balance is declining throughout the developed world, and childhood obesity is a particular problem in the UK relative to other northern European countries. Assessment of the underlying causes of obesity, and the different routes to its development, may assist in the definition of successful intervention strategies. The network of peripheral and central (brain) regulatory systems that underlie energy balance and body weight and composition can, for the most part, only be approached experimentally through the study of appropriate laboratory animal models. This problem is particularly acute when the target is overweight and obesity in the young. Some of the mechanisms underlying the development of energy imbalance and specifically the onset of overweight and obesity in the young, and the metabolic health consequences of obesity, can be addressed by examination of experimental rodent models in which mutation of a single gene causes early-onset extreme obesity, genetic susceptibility to obesity is revealed in an obesogenic environment or early-life nutritional experience programmes susceptibility to obesity or metabolic problems in later life. These studies highlight genes that are essential to normal body-weight regulation in rodents and man, the impact of diet and diet-induced obesity on regulatory systems in the young and the potential sensitivity of developing regulatory systems to nutritional experiences in utero and during early life.

  1. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  2. Energy requirements for a swimming pool through a water-atmosphere energy balance

    SciTech Connect

    Almanza, F.; Lara, J. )

    1994-07-01

    The methodology displayed here is to calculate the energy requirements for heating a swimming pool to a desired temperature. This methodology consists of an energy balance between water-atmosphere as is used in the temperature evaluation of cooling ponds in power plants. Different mathematical expressions are given to calculate such a balance. It is necessary to know the month of the year, the ambient temperature, relative humidity, wind velocity, and solar radiation. With these parameters it is possible to know the natural temperature of the water, natural evaporation, energy needed to reach a determined swimming pool temperature and the evaporation of the heated pool.

  3. A Satellite Based Study of Surface Energy Fluxes and Closing the Energy Balance

    NASA Astrophysics Data System (ADS)

    Didari, S.; Skoko-Dobryansky, S.; Norouzi, H.

    2014-12-01

    All agricultural, hydrological and biological processes are affected by the amount of available energy. Spatially distributed air temperature is one of the most important variables in various scientific fields. Although meteorological stations provide accurate data observations, their spatial coverage is limited and thus often insufficient for environmental modeling. Remote sensing provides the spatial data and it fills the spatial and temporal gaps left by the meteorological stations. In this study, the surface energy balance and Moderate Resolution Imaging Spectroradiometer (MODIS) products through the years 2003-2013 are used in order to estimate air temperature for New York City region and Fars Province region in south of Iran. Land surface temperature, evapotranspiration and surface reflectance data were obtained from MODIS, and by using the surface energy balance equation the air temperature is computed and analyzed. The amount of fluxes seasonally is investigated as one the most important and governing components of the energy balance.

  4. Amylin-mediated control of glycemia, energy balance, and cognition.

    PubMed

    Mietlicki-Baase, Elizabeth G

    2016-08-01

    Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Amylin-mediated control of glycemia, energy balance, and cognition

    PubMed Central

    Mietlicki-Baase, Elizabeth G.

    2016-01-01

    Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms. PMID:26922873

  6. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  7. The Precession Index and a Nonlinear Energy Balance Climate Model

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  8. Climate sensitivity with a seasonal cycle energy balance model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.

    1984-01-01

    The sensitivity of climate which may have a local maximum as the ice cap passes through a midlatitude region where the atmosphere's transport efficiency varies strongly with latitude is examined. This behavior, found in a two level primitive equations climate model forced with annual mean insolation, was reproduced in an energy balance model (EBM) by making the diffusion coefficient a function of latitude. The two level seasonally varying EBM was applied and the global mean surface temperature vs. solar constant for this model are shown and two regions of enhanced sensitivity appear. The snowcover distributions around the year for three cases are shown.

  9. The Precession Index and a Nonlinear Energy Balance Climate Model

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  10. Hypothalamic miRNAs: emerging roles in energy balance control.

    PubMed

    Schneeberger, Marc; Gomez-Valadés, Alicia G; Ramirez, Sara; Gomis, Ramon; Claret, Marc

    2015-01-01

    The hypothalamus is a crucial central nervous system area controlling appetite, body weight and metabolism. It consists in multiple neuronal types that sense, integrate and generate appropriate responses to hormonal and nutritional signals partly by fine-tuning the expression of specific batteries of genes. However, the mechanisms regulating these neuronal gene programmes in physiology and pathophysiology are not completely understood. MicroRNAs (miRNAs) are key regulators of gene expression that recently emerged as pivotal modulators of systemic metabolism. In this article we will review current evidence indicating that miRNAs in hypothalamic neurons are also implicated in appetite and whole-body energy balance control.

  11. Adipocytes as regulators of energy balance and glucose homeostasis

    PubMed Central

    Rosen, Evan D.; Spiegelman, Bruce M.

    2011-01-01

    Adipocytes have been studied with increasing intensity as a result of the emergence of obesity as a serious public health problem and the realization that adipose tissue serves as an integrator of various physiological pathways. In particular, their role in calorie storage makes adipocytes well suited to the regulation of energy balance. Adipose tissue also serves as a crucial integrator of glucose homeostasis. Knowledge of adipocyte biology is therefore crucial for understanding the pathophysiological basis of obesity and metabolic diseases such as type 2 diabetes. Furthermore, the rational manipulation of adipose physiology is a promising avenue for therapy of these conditions. PMID:17167472

  12. Validating surface energy balance fluxes derived from airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Chavez Eguez, Jose Luis

    Remote sensing-derived energy balance components were compared against measured eddy covariance energy balance terms using heat flux source area models to validate the airborne multispectral remote sensing procedure in the estimation of instantaneous and daily evapotranspiration rates. A procedure was developed to generate raster layers of the footprint weights for weighting/integrating the different components of the energy balance model and obtain meaningful comparisons to similar energy balance terms measured at eddy covariance and/or Bowen ratio stations. Soil heat flux and surface aerodynamic temperature models were studied in an effort to improve the remote sensing estimation of distributed evapotranspiration rates. Aerial and ground data were acquired over a riparian corridor (Salt Cedar, Tamarix grove), soybean and cornfields (rainfed crops) in different ecosystems. The results confirmed that net radiation is well estimated with the remote sensing technique showing an estimation error of only -4.8 +/- 20.7 W m-2, (-0.5 +/- 3.6%). Linear and exponential soil heat flux models were found to correlate strongly to leaf area index and net radiation. The surface aerodynamic temperature term in the sensible heat flux equation was parameterized using surface radiometric temperature, air temperature, wind speed, and leaf area index. It is suggested that the surface aerodynamic temperature model be tested for a wide range of vegetation types, atmospheric stability conditions, surface heterogeneity, and ecosystems to assess the model limitations. The flux source area footprint model "FSAM" integrated heat flux pixels that compared better to measured values and it is recommended as a standard procedure to compare airborne remote sensing-derived heat fluxes against measured fluxes by eddy covariance systems; when compared to the "FASOWG" footprint model and simple arithmetic averages. Finally, the method that uses alfalfa reference daily evapotranspiration in

  13. Hypothalamic CB1 cannabinoid receptors regulate energy balance in mice.

    PubMed

    Cardinal, Pierre; Bellocchio, Luigi; Clark, Samantha; Cannich, Astrid; Klugmann, Matthias; Lutz, Beat; Marsicano, Giovanni; Cota, Daniela

    2012-09-01

    Cannabinoid type 1 (CB(1)) receptor activation is generally considered a powerful orexigenic signal and inhibition of the endocannabinoid system is beneficial for the treatment of obesity and related metabolic diseases. The hypothalamus plays a critical role in regulating energy balance by modulating both food intake and energy expenditure. Although CB(1) receptor signaling has been implicated in the modulation of both these mechanisms, a complete understanding of its role in the hypothalamus is still lacking. Here we combined a genetic approach with the use of adeno-associated viral vectors to delete the CB(1) receptor gene in the adult mouse hypothalamus and assessed the impact of such manipulation on the regulation of energy balance. Viral-mediated deletion of the CB(1) receptor gene in the hypothalamus led to the generation of Hyp-CB(1)-KO mice, which displayed an approximately 60% decrease in hypothalamic CB(1) receptor mRNA levels. Hyp-CB(1)-KO mice maintained on a normocaloric, standard diet showed decreased body weight gain over time, which was associated with increased energy expenditure and elevated β(3)-adrenergic receptor and uncoupling protein-1 mRNA levels in the brown adipose tissue but, surprisingly, not to changes in food intake. Additionally, Hyp-CB(1)-KO mice were insensitive to the anorectic action of the hormone leptin (5 mg/kg) and displayed a time-dependent hypophagic response to the CB(1) inverse agonist rimonabant (3 mg/kg). Altogether these findings suggest that hypothalamic CB(1) receptor signaling is a key determinant of energy expenditure under basal conditions and reveal its specific role in conveying the effects of leptin and pharmacological CB1 receptor antagonism on food intake.

  14. 24-h Void number as an indicator of hydration status.

    PubMed

    Burchfield, J M; Ganio, M S; Kavouras, S A; Adams, J D; Gonzalez, M A; Ridings, C B; Moyen, N E; Tucker, M A

    2015-05-01

    Few user-friendly hydration assessment techniques exist for the general population to use on a daily basis. The present study evaluated void number over 24 h as a potential hydration assessment tool. Male and female subjects collected urine for 24 h while adequately hydrated (n=44; 22 ± 4 years, 168 ± 16 cm, 73 ± 15 kg) or fluid restricted (n=43; 22 ± 3 years, 175 ± 10 cm, 81 ± 24 kg). As a control, participants were asked to void when feeling the 'first urge to void' on a commonly used urge scale and noted the volume of each void. For each sample, 24-h urine volume, osmolality (U(OSM)), specific gravity (U(SG)) and color were measured in the laboratory. As designed, the level of urge upon voiding was consistent throughout the study (2 ± 0; 'first urge to void'). Samples were classified by U(SG) as either euhydrated (U(SG)<1.020) or hypohydrated (U(SG) ⩾ 1.020). Grouping by U(OSM) did not change results. Euhydrated versus hypohydrated individuals had greater 24-h urine volume (1933 ± 864 versus 967 ± 306 ml, respectively) and lower urine color (2 ± 1 versus 5 ± 1), U(SG) (1.012 ± 0.004 versus 1.025 ± 0.004) and UOSM (457 ± 180 versus 874 ± 175 mOsm/kg H2O; all P<0.001). Euhydrated individuals voided more than hypohydrated individuals over the 24-h period (5 ± 2 versus 3 ± 1 voids; P<0.001). Additionally, void number inversely correlated with hydration status as identified by U(SG) (r=-0.50; P<0.05) and U(OSM) (r=-0.56; P<0.05). In conclusion, over 24 h, individuals with a higher void number were euhydrated (that is, had less concentrated hydration biomarkers) than those with a lower void number. Based on these data, void number might be utilized as a simple and feasible hydration assessment for the general public, as it utilizes no equipment or technical expertise.

  15. Seasonal contrast in the surface energy balance of the Sahel

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  16. Energy balance and photochemical processes in the inner coma

    SciTech Connect

    Huebner, W.F.; Keady, J.J.

    1982-01-01

    Energy balance and multifluid flow in the coma are described. Expansion cooling, radiative cooling, photodissociative heating, chemical heating, and relative multifluid flow are the processes determining the energy budget. In the fluid dynamics, fast atomic and molecular hydrogen are considered as separate fluids with larger collision mean free paths than the cold bulk fluid that has a larger mean molecular weight. The transition from fluid flow to free molecular flow is approximated. The model predicts hydrogen and bulk fluid flow velocities in general agreement with observations. The effects of the temperature profile and the fast hydrogen flow on the chemistry in the inner coma are investigated. Results from a model approximating conditions in Halley's comet are presented.

  17. Energy balance regulation by endocannabinoids at central and peripheral levels.

    PubMed

    Quarta, Carmelo; Mazza, Roberta; Obici, Silvana; Pasquali, Renato; Pagotto, Uberto

    2011-09-01

    Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.

  18. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    PubMed

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  19. Flow effects on jet energy loss with detailed balance

    NASA Astrophysics Data System (ADS)

    Cheng, Luan; Liu, Jia; Wang, EnKe

    2014-11-01

    In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential. The flow effect on jet quenching with detailed balance is investigated in pQCD. It turns out, considering the collective flow with velocity v z along the jet direction, the collective flow decreases the LPM destructive interference comparing to that in the static medium. The gluon absorption plays a more important role in the moving medium. The collective flow increases the energy gain from gluon absorption, however, decreases the energy loss from gluon radiation, which is (1 - v z ) times as that in the static medium to the first order of opacity. In the presence of collective flow, the second order in opacity correction is relatively small compared to the first order. So that the total effective energy loss is decreased. The flow dependence of the energy loss will affect the suppression of high p T hadron spectrum and anisotropy parameter v 2 in high-energy heavy-ion collisions.

  20. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  1. The structure and energy balance of cool star atmospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    The atmospheric structure and energy balance phenomena associated with magnetic fields in the Sun are reviewed and it is shown that similar phenomena occur in cool stars. The evidence for the weakening or disappearance of transition regions and coronae is discussed together with the appearance of extended cool chromospheres with large mass loss, near V-R = 0.80 in the H-R diagram. Like the solar atmosphere, these atmospheres are not homogeneous and there is considerable evidence for plage regions with bright TR emission lines that overlie dark (presumably magnetic) star spots. The IUE observations are providing important information on the energy balance in these atmospheres that should guide theoretical calculations of the nonradiative heating rate. Recent high dispersion spectra are providing unique information concerning which components of close binary systems are the dominant contributors to the observed emission. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in DRa (G2 Ib) and perhaps other stars. Finally, the G and K giants and supergiants are classified into three groups depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.

  2. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  3. Energy Balance during Taekwondo Practice in Elite Male Taekwondo Players

    PubMed Central

    Cho, Kang Ok; Garber, Carol Ewing; Lee, Sukho; Kim, Yeon Soo

    2013-01-01

    Background The goal of this study was to evaluate energy expenditure and dietary intake of nutrients during Taekwondo practice in elite Korean male Taekwondo players. Methods: Elite Korean male high school (high school player: HP; n = 59) and college players (college player: CP; n = 58) wore an accelerometer to measure energy expenditure and recorded their daily dietary intake for nutritional analysis over the course of five days. Results: Nutritional adequacy ratios for total energy (0.82), vitamin C (0.97), calcium (0.78), and folate (0.75) were below recommended levels for all players. When comparing daily nutrient intake and energy expenditure between HP and CP, the HP group had significantly higher total calorie intake (402.7 kcal, p < 0.001), calcium (126.3 mg, p = 0.018), phosphorus (198.0 mg, p = 0.002), iron (1.3 mg, p = 0.002), and vitamin B2 (0.4 mg, p < 0.001) than the CP group. Although there was no significant difference in the estimated energy requirement during Taekwondo practice, the total energy expenditure (151.2 kcal, p = 0.001), total activity counts (130,674 counts, p = 0.038) and energy expenditure during Taekwondo practice (257.7 kcal, p < 0.001) were significantly higher in the HP than in the CP. Conclusion: The results indicate that a sports nutrition program based on energy balance is necessary to achieve optimal health and performance in elite male Taekwondo players. PMID:26064838

  4. Obesity and energy balance: is the tail wagging the dog?

    PubMed

    Wells, J C K; Siervo, M

    2011-11-01

    The scientific study of obesity has been dominated throughout the twentieth century by the concept of energy balance. This conceptual approach, based on fundamental thermodynamic principles, states that energy cannot be destroyed, and can only be gained, lost or stored by an organism. Its application in obesity research has emphasised excessive appetite (gluttony), or insufficient physical activity (sloth), as the primary determinants of excess weight gain, reflected in current guidelines for obesity prevention and treatment. This model cannot explain why weight accumulates persistently rather than reaching a plateau, and underplays the effect of variability in dietary constituents on energy and intermediary metabolism. An alternative model emphasises the capacity of fructose and fructose-derived sweeteners (sucrose, high-fructose corn syrup) to perturb cellular metabolism via modification of the adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio, activation of AMP kinase and compensatory mechanisms, which favour adipose tissue accretion and increased appetite while depressing physical activity. This conceptual model implicates chronic hyperinsulinaemia in the presence of a paradoxical state of 'cellular starvation' as a key driver of the metabolic modifications inducing chronic weight gain. We combine evidence from in vitro and in vivo experiments to formulate a perspective on obesity aetiology that emphasises metabolic flexibility and dietary composition rather than energy balance. Using this model, we question the direction of causation of reported associations between obesity and sleep duration or childhood growth. Our perspective generates new hypotheses, which can be tested to improve our understanding of the current obesity epidemic, and to identify novel strategies for prevention or treatment.

  5. Exercise, energy expenditure and energy balance, as measured with doubly labelled water.

    PubMed

    Westerterp, Klaas R

    2017-07-20

    The doubly labelled water method for the measurement of total daily energy expenditure (TDEE) over 1-3 weeks under daily living conditions is the indicated method to study effects of exercise and extreme environments on energy balance. Subjects consume a measured amount of doubly labelled water (2H2 18O) to increase background enrichment of body water for 18O and 2H, and the subsequent difference in elimination rate between 18O and 2H, as measured in urine, saliva or blood samples, is a measure for carbon dioxide production and thus allows calculation of TDEE. The present review describes research showing that physical activity level (PAL), calculated as TDEE (assessed with doubly labelled water) divided by resting energy expenditure (REE, PAL = TDEE/REE), reaches a maximum value of 2·00-2·40 in subjects with a vigorously active lifestyle. Higher PAL values, while maintaining energy balance, are observed in professional athletes consuming additional energy dense foods to compete at top level. Exercise training can increase TDEE/REE in young adults to a value of 2·00-2·40, when energy intake is unrestricted. Furthermore, the review shows an exercise induced increase in activity energy expenditure can be compensated by a reduction in REE and by a reduction in non-exercise physical activity, especially at a negative energy balance. Additionally, in untrained subjects, an exercise-induced increase in activity energy expenditure is compensated by a training-induced increase in exercise efficiency.

  6. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance.

    PubMed

    Drenowatz, Clemens

    2015-09-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of "compensators" and "noncompensators." This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic. © 2015 American Society for Nutrition.

  7. Preliminary approach of the MELiSSA loop energy balance

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering

  8. Global Energy and Water Balances in the Latest Reanalyses

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Kang, Suchul; Park, Hye-Jin

    2016-04-01

    The recently released Japanese 55-year Reanalysis (JRA-55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERRA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes occur in MERRA, CFRS and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique. Acknowledgements This work was funded by the Korea Meteorological

  9. [Hypothalamic inflammation and energy balance deregulations: focus on chemokines.

    PubMed

    Le Thuc, Ophélia; Rovère, Carole

    2016-01-01

    The hypothalamus is a key brain region in the regulation of energy balance. It especially controls food intake and both energy storage and expenditure through integration of humoral, neural and nutrient-related signals and cues. Hypothalamic neurons and glial cells act jointly to orchestrate, both spatially and temporally, regulated metabolic functions of the hypothalamus. Thus, the existence of a causal link between hypothalamic inflammation and deregulations of feeding behavior, such as involuntary weight-loss or obesity, has been suggested. Among the inflammatory mediators that could induce deregulations of hypothalamic control of the energy balance, chemokines represent interesting candidates. Indeed, chemokines, primarily known for their chemoattractant role of immune cells to the inflamed site, have also been suggested capable of neuromodulation. Thus, chemokines could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators that are involved in the maintenance of energy balance. Here, we relate, on one hand, recent results showing the primary role of the central chemokinergic signaling CCL2/CCR2 for metabolic and behavioral adaptation to high-grade inflammation, especially loss of appetite and weight, through its activity on hypothalamic neurons producing the orexigenic peptide Melanin-Concentrating Hormone (MCH) and, on the other hand, results that suggest that chemokines could also deregulate hypothalamic neuropeptidergic circuits to induce an opposite phenotype and eventually participate in the onset/development of obesity. In more details, we will emphasize a study recently showing, in a model of high-grade acute inflammation of LPS injection in mice, that central CCL2/CCR2 signaling is of primary importance for several aspects explaining weight loss associated with inflammation: after LPS injection, animals lose weight, reduce their food intake, increase their fat oxidation (thus energy consumption from

  10. Diurnal profiles of hypothalamic energy balance gene expression with photoperiod manipulation in the Siberian hamster, Phodopus sungorus.

    PubMed

    Ellis, Claire; Moar, Kim M; Logie, Tracy J; Ross, Alexander W; Morgan, Peter J; Mercer, Julian G

    2008-04-01

    Hypothalamic energy balance genes have been examined in the context of seasonal body weight regulation in the Siberian hamster. Most of these long photoperiod (LD)/short photoperiod (SD) comparisons have been of tissues collected at a single point in the light-dark cycle. We examined the diurnal expression profile of hypothalamic genes in hamsters killed at 3-h intervals throughout the light-dark cycle after housing in LD or SD for 12 wk. Gene expression of neuropeptide Y, agouti-related peptide, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, long-form leptin receptor, suppressor of cytokine signaling-3, melanocortin-3 receptor, melanocortin-4 receptor, and the clock gene Per1 as control were measured by in situ hybridization in hypothalamic nuclei. Effects of photoperiod on gene expression and leptin levels were generally consistent with previous reports. A clear diurnal variation was observed for Per1 in the suprachiasmatic nucleus in both photoperiods. Temporal effects on expression of energy balance genes were restricted to long-form leptin receptor in the arcuate nucleus and ventromedial nucleus, where similar diurnal expression profiles were observed, and melanocortin-4 receptor in the paraventricular nucleus; these effects were only observed in LD hamsters. There was no variation in serum leptin concentration. The 24-h profiles of hypothalamic energy balance gene expression broadly confirm photoperiodic differences that were observed previously, based on single time point comparisons, support the growing consensus that these genes have a limited role in seasonal body weight regulation, and further suggest limited involvement in daily rhythms of food intake.

  11. p75 neurotrophin receptor regulates energy balance in obesity

    PubMed Central

    Baeza-Raja, Bernat; Sachs, Benjamin D.; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L.; Chan, Justin P.; Scadeng, Miriam; Taylor, Susan S.; Houslay, Miles D.; Baillie, George S.; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2015-01-01

    Summary Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here we show that upon high-fat diet (HFD), the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice. Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean due to increased energy expenditure, without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-neuronal functions of neurotrophin receptor signaling could be a new target for treating obesity and the metabolic syndrome. PMID:26748707

  12. p75 Neurotrophin Receptor Regulates Energy Balance in Obesity.

    PubMed

    Baeza-Raja, Bernat; Sachs, Benjamin D; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L; Chan, Justin P; Scadeng, Miriam; Taylor, Susan S; Houslay, Miles D; Baillie, George S; Saltiel, Alan R; Olefsky, Jerrold M; Akassoglou, Katerina

    2016-01-12

    Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here, we show that the p75 neurotrophin receptor (p75(NTR)) controls energy expenditure in obese mice on a high-fat diet (HFD). Despite no changes in food intake, p75(NTR)-null mice were protected from HFD-induced obesity and remained lean as a result of increased energy expenditure without developing insulin resistance or liver steatosis. p75(NTR) directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75(NTR) or transplantation of p75(NTR)-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75(NTR) to cAMP/PKA regulates energy balance and suggest that non-CNS neurotrophin receptor signaling could be a target for treating obesity and the metabolic syndrome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Macrophage depletion disrupts immune balance and energy homeostasis.

    PubMed

    Lee, Bonggi; Qiao, Liping; Kinney, Brice; Feng, Gen-Sheng; Shao, Jianhua

    2014-01-01

    Increased macrophage infiltration in tissues including white adipose tissue and skeletal muscle has been recognized as a pro-inflammatory factor that impairs insulin sensitivity in obesity. However, the relationship between tissue macrophages and energy metabolism under non-obese physiological conditions is not clear. To study a homeostatic role of macrophages in energy homeostasis, we depleted tissue macrophages in adult mice through conditional expression of diphtheria toxin (DT) receptor and DT-induced apoptosis. Macrophage depletion robustly reduced body fat mass due to reduced energy intake. These phenotypes were reversed after macrophage recovery. As a potential mechanism, severe hypothalamic and systemic inflammation was induced by neutrophil (NE) infiltration in the absence of macrophages. In addition, macrophage depletion dramatically increased circulating granulocyte colony-stimulating factor (G-CSF) which is indispensable for NE production and tissue infiltration. Our in vitro study further revealed that macrophages directly suppress G-CSF gene expression. Therefore, our study indicates that macrophages may play a critical role in integrating immune balance and energy homeostasis under physiological conditions.

  14. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  15. Global energy and water balances in the latest reanalyses

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Ahn, Joong-Bae

    2015-11-01

    The recently released Japanese 55-year Reanalysis (JRA- 55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique.

  16. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation.

    PubMed

    Helfer, G; Tups, A

    2016-03-01

    Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders. © 2016

  17. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  18. Energy Balance for Random Vibrations of Piecewise-Conservative Systems

    NASA Astrophysics Data System (ADS)

    IOURTCHENKO, D. V.; DIMENTBERG, M. F.

    2001-12-01

    Vibrations of systems with instantaneous or stepwise energy losses, e.g., due to impacts with imperfect rebounds, dry friction forces(s) (in which case the losses may be treated as instantaneous ones by appropriate introduction of the response energy) and/or active feedback “bang-bang” control of the systems' response are considered. Response of such (non-linear) systems to a white-noise random excitation is considered for the case where there are no other response energy losses. Thus, a simple linear energy growth with time between “jumps” is observed. Explicit expressions for the expected response energy are derived by direct application of the stochastic differential equations calculus, which contains the expected time interval between two consecutive jumps. The latter may be predicted as a solution to the relevant first-passage problem. Perturbational analysis of the relevant PDE for this problem for a certain vibroimpact system demonstrated the possibility for using the solution to the corresponding free vibration problem as a zero order approximation. The method is applied to an s.d.o.f. system with a feedback inertia control, designed according to a certain previously introduced “generalized reversed swings law”. Extensive Monte-Carlo simulation results are presented for this system as well as for several previously analyzed ones: system with impacts; system with dry friction; system with stiffness control; pendulum with controlled length. The results are compared with those due to the asymptotic stochastic averaging approach. Both methods are shown to provide adequate accuracy far beyond the expected applicability range of the asymptotic approach (which requires both excitation intensity and losses to be small), with direct energy balance being generally superior.

  19. Energy balance of triathletes during an ultra-endurance event.

    PubMed

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-12-31

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit.

  20. Energy Balance of Triathletes during an Ultra-Endurance Event

    PubMed Central

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-01-01

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit. PMID:25558906

  1. Simulating the surface energy balance in a soybean canopy with SHAW and RZ-SHAW models

    USDA-ARS?s Scientific Manuscript database

    Correct simulation of surface energy balance in a crop canopy is critical for better understanding of soil water balance, canopy and soil temperature, plant water stress, and plant growth. One existing effort is to incorporate the surface energy balance in the Simultaneous Heat And Water (SHAW) into...

  2. The global land and ocean mean energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris

    2016-04-01

    The energy balance over land and oceans governs a diversity of terrestrial and maritime processes and is the key determinant of climatic conditions in these areas. Despite its crucial role, climate models show significant differences in the individual components of the energy balance over both land and oceans, particularly at the surface. Here we combine a comprehensive set of radiation observations from GEBA and BSRN with 43 state-of-the-art climate models to infer best estimates for present day annual mean downward solar and thermal radiation averaged over land and ocean surfaces, together with their uncertainty ranges. Over land (including the polar ice sheets), where most direct observations are available to constrain the surface fluxes, we obtain 184 and 306 Wm-2 for solar and thermal downward radiation, respectively. Over oceans, with weaker observational constraints, corresponding estimates are around 185 and 356 Wm-2. These values closely agree, mostly within 3 Wm-2, with the respective quantities independently derived by a state-of-the-art reanalysis (ERA-Interim) and satellite-derived product (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far stated large uncertainty sources in the energy budgets. The estimated downward solar radiation averaged over land and ocean surfaces is almost identical despite differences in the incoming solar flux at the Top-of-Atmosphere (TOA) around 20 Wm-2, indicative of an overall less transparent atmosphere over oceans than land. Considering additionally surface albedo and emissivity, we infer a surface absorbed solar and net thermal radiation of 136 and -66 Wm-2 over land, and 170 and -53 Wm-2 over oceans, respectively. The surface net radiation is thus estimated at 70 Wm-2 over land and 117 Wm-2 over oceans, which may impose additional constraints on the poorly known sensible and latent heat flux magnitudes. These are estimated here near 32 and 38 Wm-2 over

  3. Compensatory Changes in Energy Balance Regulation over One Athletic Season.

    PubMed

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B

    2017-06-01

    Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P < 0.05), but a large individual variability was found ranging from -6.1 to 5.2 kg. The TEE raise (16.8% ± 11.7%) was compensated by an increase EI change (16.3% ± 12.0%) for the whole group (P < 0.05). MA was found in triathletes, sparing 128 ± 168 kcal·d, and basketball players, dissipating 168 ± 205 kcal·d (P < 0.05). MA was associated (P < 0.05) with EB and energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport

  4. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  5. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  6. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  7. An energy-balance model of glaciation cycles

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Bhattacharya, K.

    1979-01-01

    A one dimensional energy balance model is presented which contains a time lagged albedo to account for the delayed dependence of continental ice sheets on temperature; it also includes a smoothing of temperature gradients in the tropics to account for the effect of the Hadley circulation on the strong flattening of meridional temperature profiles there. The model exhibits finite amplitude, sustained free oscillations; these oscillations are triggered by a change in the insulation parameter and occur in the absence of any external forcing. This model behavior strongly suggests the possibility of an almost-intransitive mechanism playing a role in glaciation cycles. This behavior also occurs on shorter time scales which might be relevant to the interannual variability of the atmosphere.

  8. Effects of neonatal programming on hypothalamic mechanisms controlling energy balance.

    PubMed

    Contreras, C; Novelle, M G; Leis, R; Diéguez, C; Skrede, S; López, M

    2013-12-01

    The prevalence of overweight and obesity in most developed countries has markedly increased during the last decades. In addition to genetic, hormonal, and metabolic influences, environmental factors like fetal and neonatal nutrition play key roles in the development of obesity. Interestingly, overweight during critical developmental periods of fetal and/or neonatal life has been demonstrated to increase the risk of obesity throughout juvenile life into adulthood. In spite of this evidence, the specific mechanisms underlying this fetal/neonatal programming are not perfectly understood. However, it is clear that circulating hormones such as insulin and leptin play a critical role in the development and programming of hypothalamic circuits regulating energy balance. Here, we review what is currently known about the impact of perinatal malnutrition on the mechanisms regulating body weight homeostasis. Understanding these molecular mechanisms may provide new targets for the treatment of obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Components of surface energy balance in a temperate grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Kim, Joon; Verma, Shashi B.

    1990-06-01

    Eddy correlation measurements were made of fluxes of moisture, heat and momentum at a tallgrass prairie site near Manhattan, Kansas, U.S.A. during the First ISLSCP ISLSCP: International Satellite Land Surface Climatology Project (for details, see Sellers et al., 1988). Field Experiment (FIFE) in 1987. The study site is dominated by three C4 grass species: big bluestem ( Andropogon gerardii), indiangrass ( Sorghastrum nutans), and switchgrass ( Panicum virgatum). The stomatal conductance and leaf water potential of these grass species were also measured. In this paper, daily and seasonal variations in the components of the surface energy balance are examined. The aerodynamic and canopy surface conductances for the prairie vegetation are also evaluated.

  10. Geospatial and Contextual Approaches to Energy Balance and Health.

    PubMed

    Berrigan, David; Hipp, J Aaron; Hurvitz, Philip M; James, Peter; Jankowska, Marta M; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A; Powell-Wiley, Tiffany M; Tarlov, Elizabeth; Zenk, Shannon N

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities.

  11. FOXO1 in the ventromedial hypothalamus regulates energy balance.

    PubMed

    Kim, Ki Woo; Donato, Jose; Berglund, Eric D; Choi, Yun-Hee; Kohno, Daisuke; Elias, Carol F; Depinho, Ronald A; Elmquist, Joel K

    2012-07-01

    The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis.

  12. FOXO1 in the ventromedial hypothalamus regulates energy balance

    PubMed Central

    Kim, Ki Woo; Donato, Jose; Berglund, Eric D.; Choi, Yun-Hee; Kohno, Daisuke; Elias, Carol F.; DePinho, Ronald A.; Elmquist, Joel K.

    2012-01-01

    The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis. PMID:22653058

  13. Confinement time and energy balance in the CTX spheromak

    SciTech Connect

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1984-01-01

    The multipoint Thomson scattering diagnostic on CTX allows measurement of electron plasma pressure. The pressure correlates well with the poloidal flux function. Analysis using equilibrium models allows the (..beta..)/sub vol/ to be calculated from over 100 Thomson scattering profiles taken under standard conditions of spheromak operation where the plasma parameters vary widely within the discharge. The calculated tau/sub E/ increases with central core temperature and with density. The global magnetic energy decay time tau/sub B/2 is consistent with Spitzer-Harm resistivity, but with an anomaly factor of 2 to 4 which may decrease at small ratios of B/n. The n tau/sub E/ product reaches 4 x 10/sup 9/ s cm/sup -3/ during the hottest part of the discharge. A zero-dimensional energy balance code, which accurately includes all the major atomic physics processes and whose parameters have been constrained by comparision to experimental data, is used to identify the causes of energy loss that contribute to the observed confinement time. The most important power loss is that needed to replace the particles being lost and to maintain the constant density of the plateau.

  14. Energy balance and cold adaptation in the octopus Pareledone charcoti.

    PubMed

    Daly; Peck

    2000-03-15

    A complete energy balance equation is calculated for the Antarctic octopus Pareledone charcoti at 0 degrees C. Energy used in respiration, growth, and excretion of nitrogenous and faecal waste, was recorded along with the total consumption of energy through food, for three specimens of P. charcoti (live weights: 73, 51 and 29 g). Growth rates were very slow for cephalopods, with a mean daily increase in body weight of only 0.11%. Assimilation efficiencies were high, between 95.4 and 97.0%, which is consistent with previous work on octopods. The respiration rate in P. charcoti was low, with a mean of 2.45 mg O(2) h(-1) for a standard animal of 150 g wet mass at 0 degrees C. In the North Sea octopus Eledone cirrhosa, respiration rates of 9.79 mg O(2) h(-1) at 11.5 degrees C and 4.47 mg O(2) h(-1) at 4.5 degrees C for a standard animal of 150 g wet mass were recorded. Respiration rates between P. charcoti and E. cirrhosa were compared using a combined Q(10) value between P. charcoti at 0 degrees C and E. cirrhosa at 4.5 degrees C. This suggests that P. charcoti are respiring at a level predicted by E. cirrhosa rates at 4.5 and 11.5 degrees C extrapolated to 0 degrees C along the curve Q(10)=3, with no evidence of metabolic compensation for low temperature.

  15. [Obesity based on mutation of genes involved in energy balance].

    PubMed

    Hainerová, I

    2007-01-01

    Within the last decade an intensive research led to an identification of several genes which are involved in a regulation of energy balance. In most cases, carriers of these gene mutations do not exhibit further characteristic phenotypic features except for a severe obesity. Obesity based on mutation of one gene product is called monogenic obesity. Mutations in genes for leptin, leptin receptor, proopiomelanocortin, prohormone convertase 1, melanocortin 4 and 3 receptor disrupt the physiological humoral signalization between peripheral signals and the hypothalamic centres of satiety and hunger. Defects of all above mentioned genes lead to phenotype of abnormal eating behaviour followed by a development of severe early-onset obesity. Mutations of melanocortin 4 receptor gene represent the most common cause of monogenic obesity because they are detected in almost 6 % children with early-onset severe obesity. Mutations of the other genes involved in energy homeostasis are very rare. Although these mutations are sporadic we assume that further research of monogenic forms of obesity might lead to our understanding of physiology and pathophysiology of regulation of the energy homeostasis and eating behaviour. Additionally, they may open new approach to the management of eating behaviour and to the treatment of obesity.

  16. Effects of ghrelin in energy balance and body weight homeostasis.

    PubMed

    Mihalache, Laura; Gherasim, Andreea; Niță, Otilia; Ungureanu, Maria Christina; Pădureanu, Sergiu Serghei; Gavril, Radu Sebastian; Arhire, Lidia Iuliana

    2016-02-01

    Ghrelin is a gut peptide composed of 28 amino acids mostly secreted in the gastric fundus mucosa. It was isolated and described in 1999 by Kojima et al. and only three years later its specific receptor, GHSR1a, was also identified. Ghrelin, the endogenous ligand for the GH secretagogue receptor, is the only peripheral orexigenic hormone that activates the receptors to be found especially in the appetite center (hypothalamus and pituitary gland). Ghrelin is present in human plasma in two forms: an inactive form known as deacylated ghrelin, and an active form called acylated ghrelin synthesized under the action of ghrelin O-acyltransferase enzyme (GOAT). The literature even mentions an extremely complex ghrelin/GOAT/GHSR system involved in the regulation of human energy, metabolism and adaptation of energy homeostasis to environmental changes. In humans, there is a preprandial rise and a postprandial fall in plasma ghrelin levels, which strongly suggest that the peptide plays a physiological role in meal initiation and may be employed in determining the amount and quality of ingested food. Besides the stimulation of food intake, ghrelin determines a decrease in energy expenditure and promotes the storage of fatty acids in adipocytes. Thus, in the human body ghrelin induces a positive energy balance, an increased adiposity gain, as well as an increase in caloric storage, seen as an adaptive mechanism to caloric restriction conditions. In the current world context, when we are witnessing an increasing availability of food and a reduction of energy expenditure to a minimum level, these mechanisms have become pathogenic. As a consequence, the hypothesis that ghrelin is involved in the current obesity epidemic has been embraced by many scholars and researchers.

  17. Hypothalamic control of energy balance: different peptides, different functions.

    PubMed

    Leibowitz, Sarah F; Wortley, Katherine E

    2004-03-01

    Energy balance is maintained via a homeostatic system involving both the brain and the periphery. A key component of this system is the hypothalamus. Over the past two decades, major advances have been made in identifying an increasing number of peptides within the hypothalamus that contribute to the process of energy homeostasis. Under stable conditions, equilibrium exists between anabolic peptides that stimulate feeding behavior, as well as decrease energy expenditure and lipid utilization in favor of fat storage, and catabolic peptides that attenuate food intake, while stimulating sympathetic nervous system (SNS) activity and restricting fat deposition by increasing lipid metabolism. The equilibrium between these neuropeptides is dynamic in nature. It shifts across the day-night cycle and from day to day and also in response to dietary challenges as well as peripheral energy stores. These shifts occur in close relation to circulating levels of the hormones, leptin, insulin, ghrelin and corticosterone, and also the nutrients, glucose and lipids. These circulating factors together with neural processes are primary signals relaying information regarding the availability of fuels needed for current cellular demand, in addition to the level of stored fuels needed for long-term use. Together, these signals have profound impact on the expression and production of neuropeptides that, in turn, initiate the appropriate anabolic or catabolic responses for restoring equilibrium. In this review, we summarize the evidence obtained on nine peptides in the hypothalamus that have emerged as key players in this process. Data from behavioral, physiological, pharmacological and genetic studies are described and consolidated in an attempt to formulate a clear statement on the underlying function of each of these peptides and also on how they work together to create and maintain energy homeostasis.

  18. Evaluating the effect of measurement error when using one or two 24 h dietary recalls to assess eating out: a study in the context of the HECTOR project.

    PubMed

    Orfanos, Philippos; Knüppel, Sven; Naska, Androniki; Haubrock, Jennifer; Trichopoulou, Antonia; Boeing, Heiner

    2013-09-28

    Eating out is often recorded through short-term measurements and the large within-person variability in intakes may not be adequately captured. The present study aimed to understand the effect of measurement error when using eating-out data from one or two 24 h dietary recalls (24hDR), in order to describe intakes and assess associations between eating out and personal characteristics. In a sample of 366 adults from Potsdam, Germany, two 24hDR and a FFQ were collected. Out-of-home intakes were estimated based on either one 24hDR or two 24hDR or the Multiple Source Method (MSM) combining the two 24hDR and the questionnaire. The distribution of out-of-home intakes of energy, macronutrients and selected foods was described. Multiple linear regression and partial correlation coefficients were estimated to assess associations between out-of-home energy intake and participants' characteristics. The mean daily out-of-home intakes estimated from the two 24hDR were similar to the usual intakes estimated through the MSM. The out-of-home energy intake, estimated through either one or two 24hDR, was positively associated with total energy intake, inversely with age and associations were stronger when using the two 24hDR. A marginally significant inverse association between out-of-home energy intake and physical activity at work was observed only on the basis of the two 24hDR. After applying the MSM, all significant associations remained and were more precise. Data on eating out collected through one or two 24hDR may not adequately describe intake distributions, but significant associations between eating out and participants' characteristics are highly unlikely to appear when in reality these do not exist.

  19. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    SciTech Connect

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  20. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.

    PubMed

    Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

    2008-05-01

    Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1).

  1. Lipid sensing in the brain and regulation of energy balance.

    PubMed

    Moullé, V-S; Picard, A; Le Foll, C; Levin, B-E; Magnan, C

    2014-02-01

    Nutrient-sensitive neurons [to glucose and fatty acids (FAs)] are present at many sites throughout the brain, including the hypothalamus and brain stem, and play a key role in the neural control of energy and glucose homoeostasis. Through their neuronal output, FAs can modulate feeding behaviour as well as insulin secretion and activity. Central administration of oleate, for example, inhibits food intake and glucose production in rats. This suggests that daily variations in plasma FA concentrations could be detected by the central nervous system as a signal that contributes to regulation of energy balance. At the cellular level, subpopulations of neurons in the ventromedial and arcuate hypothalamic nuclei are selectively either inhibited or activated by FAs. Possible molecular effectors of these FA effects most likely include the chloride and potassium ion channels. While intracellular metabolism and activation of the ATP-sensitive K(+) channels appear to be necessary for some signalling effects of FAs, at least half the FA responses in ventromedial hypothalamic neurons are mediated by interaction with fatty acid translocase (FAT)/CD36, an FA transporter/receptor that does not require intracellular metabolism to activate downstream signalling. Thus, FAs and their metabolites can modulate neuronal activity by directly monitoring the ongoing fuel availability for brain nutrient-sensing neurons involved in the regulation of energy and glucose homoeostasis. Besides these physiological effects, FA overload or metabolic dysfunction may also impair neural control of energy homoeostasis and contribute to obesity and/or type 2 diabetes in predisposed subjects. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Simulating drought impacts on energy balance in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.

    2014-12-01

    The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.

  3. Daily physical activity as determined by age, body mass and energy balance.

    PubMed

    Westerterp, Klaas R

    2015-06-01

    Insight into the determinants of physical activity, including age, body mass and energy balance, facilitates the design of intervention studies with body mass and energy balance as determinants of health and optimal performance. An analysis of physical activity energy expenditure in relation to age and body mass and in relation to energy balance, where activity energy expenditure is derived from daily energy expenditure as measured with doubly labelled water and body movement is measured with accelerometers, was conducted in healthy subjects under daily living conditions over intervals of one or more weeks. Activity energy expenditure as a fraction of daily energy expenditure is highest in adults at the reproductive age. Then, activity energy expenditure is a function of fat-free mass. Excess body mass as fat does not affect daily activity energy expenditure, but body movement decreases with increasing fatness. Overweight and obesity possibly affect daily physical activity energy expenditure through endurance. Physical activity is affected by energy availability; a negative energy balance induces a reduction of activity expenditure. Optimal performance and health require prevention of excess body fat and maintenance of energy balance, where energy balance determines physical activity rather than physical activity affecting energy balance.

  4. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  5. Estimate of dietary phosphorus intake using 24-h urine collection

    PubMed Central

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-01-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record. PMID:25120281

  6. Natriuretic peptide control of energy balance and glucose homeostasis.

    PubMed

    Coué, Marine; Moro, Cedric

    2016-05-01

    Cardiac natriuretic peptides (NP) have recently emerged as metabolic hormones. Physiological stimulation of cardiac NP release as during exercise may contribute to increase fatty acid mobilization from adipose tissue and their oxidation by skeletal muscles. Clinical studies have shown that although very high plasma NP level characterizes cardiac dysfunction and heart failure, a consistently reduced plasma NP level is observed in metabolic diseases such as obesity and type 2 diabetes. A low circulating NP level also predicts the risk of new onset type 2 diabetes. It is unclear at this stage if the "natriuretic handicap" observed in obesity is causally associated with the incidence of type 2 diabetes. Recent work indicates that NP can activate a thermogenic program in brown and white fat, increase energy expenditure and inhibit food intake. Mouse studies also argue for a key role of NP in the regulation of energy balance and glucose homeostasis. This review will focus on recent human and mouse studies to highlight the metabolic roles of NP and their potential relevance in the context of obesity and type 2 diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Local geodetic and seismic energy balance for shallow earthquake prediction

    NASA Astrophysics Data System (ADS)

    Cannavó, Flavio; Arena, Alessandra; Monaco, Carmelo

    2015-01-01

    Earthquake analysis for prediction purposes is a delicate and still open problem largely debated among scientists. In this work, we want to show that a successful time-predictable model is possible if based on large instrumental data from dense monitoring networks. To this aim, we propose a new simple data-driven and quantitative methodology which takes into account the accumulated geodetic strain and the seismically-released strain to calculate a balance of energies. The proposed index quantifies the state of energy of the selected area and allows us to evaluate better the ingoing potential seismic risk, giving a new tool to read recurrence of small-scale and shallow earthquakes. In spite of its intrinsic simple formulation, the application of the methodology has been successfully simulated in the Eastern flank of Mt. Etna (Italy) by tuning it in the period 2007-2011 and testing it in the period 2012-2013, allowing us to predict, within days, the earthquakes with highest magnitude.

  8. Energy Balance Around Gas Injection into Oxygen Steelmaking

    NASA Astrophysics Data System (ADS)

    Sabah, Shabnam; Brooks, Geoffrey

    2016-02-01

    In the present work, a simplified approach of energy balance around gas injection into oxygen steelmaking has been carried out in a cold model. The aim is to provide an estimation of the amount of energy consumed by the different parts of the injection process such as dissipation, stirring of the bath, cavity formation, and splashing. Calculation of jet power used by different processes has been carried for various operating conditions and cavity modes ( i.e., splashing and penetrating). Calculations showed that dissipation and splashing are the dominant processes where most of the power of the jet is used, whereas cavity formation consumes the least amount. In the splashing mode, the percentage of total input power going into dissipation was about 59 to 63 pct, whereas it was found to be 2.6 to 50 pct in the penetrating mode. In splashing mode, about 30 pct power from the nozzle was used to create splash which is proved to be an efficient mode for droplet generation as less power is required to create droplets. At a certain lance height, the percentages of total input power used for splashing and dissipation were found equal. Below this lance height, all the cavities were found to be in penetrating mode. This simplified approach provides an improved understanding of the gas injection process and may be used for developing models of the injection process of steelmaking.

  9. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  10. A balanced filterless K-edge energy window multilayer detector for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Karim, Karim S.

    2010-04-01

    Ross (or balanced) filter-based systems have been studied extensively in the past, however they have only recently been studied for medical applications such as computed tomography and contrast-enhanced mammography. Balanced filters are filters composed of different materials which have thicknesses designed to match the attenuation for all radiation energies except those within a certain energy window (between the K-edges of the filter materials). Images obtained using different filters to attenuate the incident x-rays can be subtracted to obtain an image which contains information solely within the energy window. The disadvantage of this image acquisition method is the requirement of a separate exposure for each filter. This can lead to motion artifacts in the resulting image for example due to cardiac, respiratory, or patient movement. In this paper we investigate a filterless, multilayer detector design using the general concept of balanced filters. In the proposed detector, energy discrimination is achieved using stacked layers of different conversion materials. Similar to how the thicknesses of balanced filters are chosen, the thicknesses of the conversion layers are designed to match the attenuation of x-rays except between the K-edges of the conversion materials. Motion artifacts are suppressed in the final image due to the simultaneous acquisition of images on all layers during a single exposure. The proposed multilayer design can be used for a number of applications depending on the energy range of interest. To study the proposed design, we consider dual energy computed tomography (CT) using a gadolinium-based contrast agent.

  11. Central regulation of energy balance: inputs, outputs and leptin resistance.

    PubMed

    Arch, Jonathan R S

    2005-02-01

    The regulation of energy balance is complex and, in man, imprecise. Nevertheless, in many individuals intake and expenditure are balanced with <1% error with little or no conscious effect. Essential components of such a regulatory system are signals, leptin and insulin, that reflect the size of lipid stores. Leptin receptors signal via phosphatidylinositol 3-kinase (as do insulin receptors) and via the transcription factor signal transducer and activator of transcription-3 to activate various types of neurone. Obese rodents, and possibly man, are resistant to leptin; in some cases because of genetic or perinatal programming (primary resistance), but commonly in response to high leptin levels (secondary resistance). Secondary leptin resistance may be a result of reduced transport of leptin to the brain or down-regulation of leptin signalling. Signals that reflect lipid stores form the tonic homeostatic regulatory system. They interact with episodic homeostatic signals carried by neurones, hormones and metabolites to regulate meal size and frequency. They also interact with signals related to the palatability of food, biorhythms and learning. Many neurotransmitters and hormones mediate responses to more than one input (e.g. gastric and adipocyte leptin), but are nevertheless most involved with particular inputs (e.g. leptin with adipocyte fat stores). Feeding can be divided into appetitive (preparation for feeding) and consummatory phases, which can both be further subdivided. Different sets of neurotransmitters and hormones are involved at each stage. In the long term it may be possible to customise obesity therapies according to those inputs and outputs that are most disturbed and most amenable to intervention in individual subjects.

  12. Estimating energy balance fluxes above a boreal forest from radiometric temperature observations

    USDA-ARS?s Scientific Manuscript database

    The great areal extent of boreal forests confers these ecosystems potential to impact on the global surface-atmosphere energy exchange. A modeling approach, based on a simplified two-source energy balance model, was proposed to estimate energy balance fluxes above boreal forests using thermal infrar...

  13. Modeling the water and energy balance of vegetated areas with snow accumulation

    USDA-ARS?s Scientific Manuscript database

    The ability to quantify soil–atmosphere water and energy exchange is important in understanding agricultural and natural ecosystems, as well as the earth’s climate. We developed a one-dimensional vertical model that calculates solar radiation, canopy energy balance, surface energy balance, snowpack ...

  14. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted.

  15. Gut microbiota and energy balance: role in obesity.

    PubMed

    Blaut, Michael

    2015-08-01

    The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.

  16. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.

    PubMed

    Huang, Honggang; Larsen, Martin R; Palmisano, Giuseppe; Dai, Jie; Lametsch, René

    2014-06-25

    Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome

  17. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  18. Energy balance and the composition of weight loss during prolonged space flight

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    Integrated metabolic balance analysis, Skylab integrated metabolic balance analysis and computer simulation of fluid-electrolyte responses to zero-g, overall mission weight and tissue losses, energy balance, diet and exercise, continuous changes, electrolyte losses, caloric and exercise requirements, and body composition are discussed.

  19. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  20. Daily energy balance in growth hormone receptor/binding protein (GHR -/-) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency.

    PubMed

    Longo, Kenneth A; Berryman, Darlene E; Kelder, Bruce; Charoenthongtrakul, Soratree; Distefano, Peter S; Geddes, Brad J; Kopchick, John J

    2010-02-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR -/- mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (M(b)) changes and physical activity in 17month-old female GHR -/- mice and their age-matched wild type littermates. The GHR -/- mice were smaller, consumed more food per unit M(b), had greater EE per unit M(b) and had an increase in 24-h EE/M(b) that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR -/- mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, M(b) and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for M(b) and LMA, the GHR -/- mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR -/- mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR -/- mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final 3h of the dark phase. Therefore, we conclude that GHR -/- mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable M(b). Relative to wild type mice, the GHR -/- mice consumed more calories per unit M(b), which offset the disproportionate increase in their daily energy expenditure. While GHR -/- mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Perfect 24-h management of hypertension: clinical relevance and perspectives.

    PubMed

    Kario, K

    2017-04-01

    Out-of-office blood pressure (BP) measured by home BP monitoring, or ambulatory BP monitoring, was demonstrated to be superior to office BP for the prediction of cardiovascular events. The J-HOP study of a nationwide Japanese cohort demonstrated that morning home BP is the best stroke predictor. In the prospective HONEST study of >21 000 hypertensives, on-treatment morning home BP was shown to be a strong predictor both of future coronary artery disease and stroke events. In subjects whose office BP was maintained at ⩾150 mm Hg, there was no increase in cardiovascular events when their morning systolic BP was well-controlled at <125 mm Hg. Since Asians show greater morning BP surges, it is particularly important for Asians to achieve 'perfect 24-hr BP control,' that is, the 24-h BP level, nocturnal BP dipping and BP variability including morning surge. The morning BP surge and the extremes of disrupted circadian rhythm (riser and extreme dipper patterns) are independent risks for stroke in hypertensives. A morning BP-guided approach is thus the first step toward perfect 24-h BP control, followed by the control of nocturnal hypertension. In the resonance hypothesis, the synergistic resonance of BP variability phenotypes would produce an extraordinary large 'dynamic BP surge' that can trigger a cardiovascular event, especially in high-risk patients with systemic hemodynamic atherothrombotic syndrome, a vicious cycle of exaggerated BP variability and vascular disease. In the future, information and communications technology and artificial intelligence technology with the innovation of wearable continuous surge BP monitoring will contribute to 'anticipation medicine' with the goal of zero cardiovascular events.

  2. 24-h activity rhythm and sleep in depressed outpatients.

    PubMed

    Hori, Hiroaki; Koga, Norie; Hidese, Shinsuke; Nagashima, Anna; Kim, Yoshiharu; Higuchi, Teruhiko; Kunugi, Hiroshi

    2016-06-01

    Disturbances in sleep and circadian rest-activity rhythms are key features of depression. Actigraphy, a non-invasive method for monitoring motor activity, can be used to objectively assess circadian rest-activity rhythms and sleep patterns. While recent studies have measured sleep and daytime activity of depressed patients using wrist-worn actigraphy, the actigraphic 24-h rest-activity rhythm in depression has not been well documented. We aimed to examine actigraphically measured sleep and circadian rest-activity rhythms in depressed outpatients. Twenty patients with DSM-IV major depressive episode and 20 age- and sex-matched healthy controls participated in this study. Participants completed 7 consecutive days of all-day actigraphic activity monitoring while engaging in usual activities. For sleep parameters, total sleep time, wake after sleep onset, and sleep fragmentation index were determined. Circadian rhythms were estimated by fitting individual actigraphy data to a cosine curve of a 24-h activity rhythm using the cosinor method, which generated three circadian activity rhythm parameters, i.e., MESOR (rhythm-adjusted mean), amplitude, and acrophase. Subjective sleep was also assessed using a sleep diary and the Pittsburgh Sleep Quality Index. Patients showed significantly lower MESOR and more dampened amplitude along with significant sleep disturbances. Logistic regression analysis revealed that lower MESOR and more fragmented sleep emerged as the significant predictors of depression. Correlations between subjectively and actigraphically measured parameters demonstrated the validity of actigraphic measurements. These results indicate marked disturbances in sleep and circadian rest-activity rhythms of depression. By simultaneously measuring sleep and rest-activity rhythm parameters, actigraphy might serve as an objective diagnostic aid for depression.

  3. Comparing 14-day adhesive patch with 24-h Holter monitoring.

    PubMed

    Cheung, Christopher C; Kerr, Charles R; Krahn, Andrew D

    2014-05-01

    Barrett PM, Komatireddy R, Haaser S et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(1), 95.e11–95.e17 (2014). The investigation of cardiac arrhythmias in the outpatient ambulatory setting has traditionally been initiated with the Holter monitor. Using the continuous recording over 24 or 48 h, the Holter monitor permits the detection of baseline rhythm, dysrhythmia and conduction abnormalities, including heart block and changes in the ST segment that may indicate myocardial ischemia. However, apart from the bulkiness and inconvenience of the device itself, the lack of extended monitoring results in a diagnostic yield of typically less than 20%. In this study by Barrett et al., 146 patients referred for the evaluation of cardiac arrhythmia were prospectively enrolled to wear both the 24-h Holter monitor and 14-day adhesive patch monitor (Zio Patch) simultaneously. The primary outcome was the detection of any one of six arrhythmias: supraventricular tachycardia, atrial fibrillation/flutter, pause >3 s, atrioventricular block, ventricular tachycardia, or polymorphic ventricular tachycardia/fibrillation. The adhesive patch monitor detected more arrhythmia events compared with the Holter monitor over the total wear time (96 vs. 61 events; p < 0.001), although the Holter monitor detected more events during the initial 24-h monitoring period (61 vs. 52 events; p = 0.013). Novel, single-lead, intermediate-duration, user-friendly adhesive patch monitoring devices, such as the Zio Patch, represent the changing face of ambulatory ECG monitoring. However, the loss of quality, automated rhythm analysis and inability to detect myocardial ischemia continue to remain important issues that will need to be addressed prior to the implementation of these new devices.

  4. Amylin activates distributed CNS nuclei to control energy balance

    PubMed Central

    Mietlicki-Baase, Elizabeth G.; Hayes, Matthew R.

    2014-01-01

    Amylin is a pancreas-derived neuropeptide that acts in the central nervous system (CNS) to reduce food intake. Much of the literature describing the anorectic effects of amylin are focused on amylin’s actions in the area postrema, a hindbrain circumventricular structure. Although the area postrema is certainly an important site that mediates the intake-suppressive effects of amylin, several pieces of evidence indicate that amylin may also promote negative energy balance through action in additional CNS nuclei, including hypothalamic and mesolimbic structures. Therefore, this review highlights the distributed neural network mediating the feeding effects of amylin signaling with special attention being devoted to the recent discovery that the ventral tegmental area is physiologically relevant for amylin-mediated control of feeding. The production of amylin by alternative, extra-pancreatic sources and its potential relevance to food intake regulation is also considered. Finally, the utility of amylin and amylin-like compounds as a component of combination pharmacotherapies for the treatment of obesity is discussed. PMID:24480072

  5. Amylin modulates the mesolimbic dopamine system to control energy balance.

    PubMed

    Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R

    2015-01-01

    Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling.

  6. Amylin activates distributed CNS nuclei to control energy balance.

    PubMed

    Mietlicki-Baase, Elizabeth G; Hayes, Matthew R

    2014-09-01

    Amylin is a pancreas-derived neuropeptide that acts in the central nervous system (CNS) to reduce food intake. Much of the literature describing the anorectic effects of amylin are focused on amylin's actions in the area postrema, a hindbrain circumventricular structure. Although the area postrema is certainly an important site that mediates the intake-suppressive effects of amylin, several pieces of evidence indicate that amylin may also promote negative energy balance through action in additional CNS nuclei, including hypothalamic and mesolimbic structures. Therefore, this review highlights the distributed neural network mediating the feeding effects of amylin signaling with special attention being devoted to the recent discovery that the ventral tegmental area is physiologically relevant for amylin-mediated control of feeding. The production of amylin by alternative, extra-pancreatic sources and its potential relevance to food intake regulation is also considered. Finally, the utility of amylin and amylin-like compounds as a component of combination pharmacotherapies for the treatment of obesity is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance

    PubMed Central

    Mietlicki-Baase, Elizabeth G; Reiner, David J; Cone, Jackson J; Olivos, Diana R; McGrath, Lauren E; Zimmer, Derek J; Roitman, Mitchell F; Hayes, Matthew R

    2015-01-01

    Amylin acts in the CNS to reduce feeding and body weight. Recently, the ventral tegmental area (VTA), a mesolimbic nucleus important for food intake and reward, was identified as a site-of-action mediating the anorectic effects of amylin. However, the long-term physiological relevance and mechanisms mediating the intake-suppressive effects of VTA amylin receptor (AmyR) activation are unknown. Data show that the core component of the AmyR, the calcitonin receptor (CTR), is expressed on VTA dopamine (DA) neurons and that activation of VTA AmyRs reduces phasic DA in the nucleus accumbens core (NAcC). Suppression in NAcC DA mediates VTA amylin-induced hypophagia, as combined NAcC D1/D2 receptor agonists block the intake-suppressive effects of VTA AmyR activation. Knockdown of VTA CTR via adeno-associated virus short hairpin RNA resulted in hyperphagia and exacerbated body weight gain in rats maintained on high-fat diet. Collectively, these findings show that VTA AmyR signaling controls energy balance by modulating mesolimbic DA signaling. PMID:25035079

  8. Assessing circumbinary habitable zones using latitudinal energy balance modelling

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan

    2014-01-01

    Previous attempts to describe circumbinary habitable zones (HZs) have been concerned with the spatial extent of the zone, calculated analytically according to the combined radiation field of both stars. By contrast to these `spatial HZs', we present a numerical analysis of the `orbital HZ', an HZ defined as a function of planet orbital elements. This orbital HZ is better equipped to handle (for example) eccentric planet orbits, and is more directly connected to the data returned by exoplanet observations. Producing an orbital HZ requires a large number of climate simulations to be run to investigate the parameter space - we achieve this using latitudinal energy balance models, which handle the insolation of the planet by both stars (including mutual eclipses), as well as the planetary atmosphere's ability to absorb, transfer and lose heat. We present orbital HZs for several known circumbinary planetary systems: Kepler-16, Kepler-34, Kepler-35, Kepler-47 and PH-1. Generally, the orbital HZs at zero eccentricity are consistent with spatial HZs derived by other authors, although we detect some signatures of variability that coincide with resonances between the binary and planet orbital periods. We confirm that Earth-like planets around Kepler-47 with Kepler-47c's orbital parameters could possess liquid water, despite current uncertainties regarding its eccentricity. Kepler-16b is found to be outside the HZ, as well as the other circumbinary planets investigated.

  9. Global Surface Temperature Response Explained by Multibox Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Fredriksen, H. B.; Rypdal, M.

    2016-12-01

    We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.

  10. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    PubMed

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  11. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance

    PubMed Central

    True, Cadence; Grove, Kevin L.; Smith, M. Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance. PMID:22645510

  12. Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises

    NASA Astrophysics Data System (ADS)

    Gao, Yunlong; Gao, Feng; Zhai, Qiaozhu; Guan, Xiaohong

    2013-06-01

    Balancing production and consumption with self-generation capacity in energy-intensive enterprises has huge economic and environmental benefits. However, balancing production and consumption with self-generation capacity is a challenging task since the energy production and consumption must be balanced in real time with the criteria specified by power grid. In this article, a mathematical model for minimising the production cost with exactly realisable energy delivery schedule is formulated. And a dynamic programming (DP)-based self-balancing dynamic scheduling algorithm is developed to obtain the complete solution set for such a multiple optimal solutions problem. For each stage, a set of conditions are established to determine whether a feasible control trajectory exists. The state space under these conditions is partitioned into subsets and each subset is viewed as an aggregate state, the cost-to-go function is then expressed as a function of initial and terminal generation levels of each stage and is proved to be a staircase function with finite steps. This avoids the calculation of the cost-to-go of every state to resolve the issue of dimensionality in DP algorithm. In the backward sweep process of the algorithm, an optimal policy is determined to maximise the realisability of energy delivery schedule across the entire time horizon. And then in the forward sweep process, the feasible region of the optimal policy with the initial and terminal state at each stage is identified. Different feasible control trajectories can be identified based on the region; therefore, optimising for the feasible control trajectory is performed based on the region with economic and reliability objectives taken into account.

  13. BALANCE (Bioengineering Approaches for Lifestyle Activity and Nutrition Continuous Engagement): Developing New Technology for Monitoring Energy Balance in Real Time

    PubMed Central

    Hughes, Deonna C.; Andrew, Adrienne; Denning, Tamara; Hurvitz, Philip; Lester, Jonathan; Beresford, Shirley; Borriello, Gaetano; Bruemmer, Barbara; Moudon, Anne Vernez; Duncan, Glen E.

    2010-01-01

    Methods that measure energy balance accurately in real time represent promising avenues to address the obesity epidemic. We developed an electronic food diary on a mobile phone that includes an energy balance visualization and computes and displays the difference between energy intake from food entries and energy expenditure from a multiple-sensor device that provides objective estimates of energy expenditure in real time. A geographic information system dataset containing locations associated with activity and eating episodes is integrated with an ArcPad mapping application on the phone to provide users with a visual display of food sources and locations associated with physical activity within their proximal environment. This innovative tool captures peoples' movement through space and time under free-living conditions and could potentially have many health-related applications in the future. PMID:20307404

  14. BALANCE (Bioengineering Approaches for Lifestyle Activity and Nutrition Continuous Engagement): developing new technology for monitoring energy balance in real time.

    PubMed

    Hughes, Deonna C; Andrew, Adrienne; Denning, Tamara; Hurvitz, Philip; Lester, Jonathan; Beresford, Shirley; Borriello, Gaetano; Bruemmer, Barbara; Moudon, Anne Vernez; Duncan, Glen E

    2010-03-01

    Methods that measure energy balance accurately in real time represent promising avenues to address the obesity epidemic. We developed an electronic food diary on a mobile phone that includes an energy balance visualization and computes and displays the difference between energy intake from food entries and energy expenditure from a multiple-sensor device that provides objective estimates of energy expenditure in real time. A geographic information system dataset containing locations associated with activity and eating episodes is integrated with an ArcPad mapping application on the phone to provide users with a visual display of food sources and locations associated with physical activity within their proximal environment. This innovative tool captures peoples' movement through space and time under free-living conditions and could potentially have many health-related applications in the future. (c) 2010 Diabetes Technology Society.

  15. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  16. Energy Balance Closure at a Variety of Ecosystems in the Czech Republic

    NASA Astrophysics Data System (ADS)

    McGloin, Ryan; Šigut, Ladislav; Sedlák, Pavel; Havránková, Kateřina; Pavelka, Marian

    2017-04-01

    A long-standing problem in micrometeorology is that at most eddy covariance sites around the world, the sum of the sensible and latent heat measurements is less than the available energy, resulting in the so-called energy balance closure problem. This study utilised the national network of eddy covariance towers in the Czech Republic to examine the degree of energy balance closure at sites covering a wide variety of vegetation types and terrain complexities. In addition, variation in closure under a range of meteorological conditions was also analysed. The energy balance closure fractions for the different ecosystems ranged from 0.68 (beech forest) to 0.81 (spruce forest). Best energy balance closure at each of the sites occurred in strongly unstable to moderately unstable atmospheric conditions. As in previous studies, energy balance closure improved with increasing friction velocity, although in this study the ratio of friction velocity and wind speed seemed to have a greater impact on energy balance closure, particularly at the sites with tall canopies. At the Štítná site, in the Carpathian Mountains, evidence suggested that the complex topography to the south of the eddy covariance tower was influencing the airflow and resulting in low friction velocity measurements and poor energy balance closure results. Finally, applying the sector-wise planar fit method and increasing the flux averaging period from 30 minutes to 1 hour resulted in minor increases in energy balance closure at the majority of sites.

  17. Interacting components of the top-of-atmosphere energy balance affect changes in regional surface temperature

    NASA Astrophysics Data System (ADS)

    Merlis, Timothy M.

    2014-10-01

    The role of interactions between components of the top-of-atmosphere (TOA) energy balance in determining regional surface temperature changes, such as polar amplification, is examined in diffusive energy balance model (EBM) simulations. These interactions have implications for the interpretation of local feedback analyses when they are applied to regional surface temperature changes. Local feedback analysis succeeds at accounting for the EBM-simulated temperature change given the changes in the radiative forcing, atmospheric energy transport, and radiative feedbacks. However, the inferences about the effect of individual components of the TOA energy balance on regional temperature changes do not account for EBM simulations in which individual components are prescribed or "locked." As changes in one component of the TOA energy balance affect others, unambiguous attribution statements relating changes in regional temperature or its intermodel spread to individual terms in the TOA energy balance cannot be made.

  18. Heat storage in forest biomass improves energy balance closure

    NASA Astrophysics Data System (ADS)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  19. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    SciTech Connect

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  20. Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance.

    PubMed

    Burdge, Graham C; Lillycrop, Karen A

    2014-07-01

    Diseases caused by impaired regulation of energy balance, in particular obesity, represent a major global health burden. Although polymorphisms, lifestyle and dietary choices have been associated with differential risk of obesity and related conditions, a substantial proportion of the variation in disease risk remains unexplained. Evidence from epidemiological studies, natural experiments and from studies in animal models has shown that a poor intra-uterine environment is associated causally with increased risk of obesity and metabolic disease in adulthood. Induction of phenotypes that increase disease risk involves the fetus receiving cues from the mother about the environment which, via developmental plasticity, modify the phenotype of the offspring to match her environment. However, inaccurate information may induce an offspring phenotype that is mismatched to the future environment. Such mismatch has been suggested to underlie increased risk of metabolic disease associated with a poor early life environment. Recent studies have shown that induction of modified phenotypes in the offspring involves altered epigenetic regulation of specific genes. Identification of a central role of epigenetics in the aetiology of obesity and metabolic disease may facilitate the development of novel therapeutic interventions and of biomarkers of disease risk. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Careful Measurements and Energy Balance Closure - The Case of Soil Heat Flux

    USDA-ARS?s Scientific Manuscript database

    An area of persistent concern in micrometeorological measurements is the failure to close the energy balance at surface flux stations. While most attention has focused on corrections associated with the eddy fluxes, none of the energy balance terms are measured without error. The flux plate method i...

  2. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    PubMed

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Simulating maize production, water and surface energy balance, and canopy temperature under full and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Surface energy balance is critical to the understanding of crop evapotranspiration (ET) requirement and crop water stresses. The objective of this study was to evaluate the simulation of crop growth, water and surface energy balance components, and canopy temperature under full and deficit irrigated...

  4. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism

    PubMed Central

    Zhang, Eric E.; Chapeau, Emilie; Hagihara, Kazuki; Feng, Gen-Sheng

    2004-01-01

    Shp2, a Src homology 2-containing tyrosine phosphatase, has been implicated in a variety of growth factor or cytokine signaling pathways. However, it is conceivable that this enzyme acts predominantly in one pathway versus the others in a cell, depending on the cellular context. To determine the putative functions of Shp2 in the adult brain, we selectively deleted Shp2 in postmitotic forebrain neurons by crossing CaMKIIα-Cre transgenic mice with a conditional Shp2 mutant (Shp2flox) strain. Surprisingly, a prominent phenotype of the mutant (CaMKIIα-Cre:Shp2flox/flox or CaSKO) mice was the development of early-onset obesity, with increased serum levels of leptin, insulin, glucose, and triglycerides. The mutant mice were not hyperphagic but developed enlarged and steatotic liver. Consistent with previous in vitro data, we found that Shp2 down-regulates Jak2/Stat3 (signal transducer and activator of transcription 3) activation by leptin in the hypothalamus. However, Jak2/Stat3 down-regulation is offset by a dominant Shp2 promotion of the leptin-stimulated Erk pathway, leading to induction rather than suppression of leptin resistance upon Shp2 deletion in the brain. Collectively, these results suggest that a primary function of Shp2 in postmitotic forebrain neurons is to control energy balance and metabolism, and that this phosphatase is a critical signaling component of leptin receptor ObRb in the hypothalamus. Shp2 shows potential as a neuronal target for pharmaceutical sensitization of obese patients to leptin action. PMID:15520383

  5. The National Energy Strategy: A balanced program?. Proceedings of the nineteenth annual Illinois energy conference

    SciTech Connect

    Not Available

    1991-12-31

    The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.

  6. Analysis of the temperature dynamics of a proglacial river using time-lapse thermal imaging and energy balance modeling

    NASA Astrophysics Data System (ADS)

    Cardenas, M. Bayani; Doering, Michael; Rivas, Denny S.; Galdeano, Carlos; Neilson, Bethany T.; Robinson, Christopher T.

    2014-11-01

    Understanding the temperature dynamics of rivers is critical for their management and for ecological and biogeochemical aquatic processes. In proglacial rivers, there is typically a paucity of thermal observations which in turn limits the understanding of these sensitive and evolving environments. Here we collected ground-based thermal images, with approximately meter resolution and imaged every half hour for 24 h, of a proglacial river and 2 km2 of its floodplain and interpret the observations using a numerical energy balance model. The images revealed the longitudinal thermal pattern of the Urbach River in Switzerland - there was gradual cooling in the upstream half of the study section and then warming in the remaining downstream portion. This pattern persisted through the diurnal warming and cooling cycle. The spatio-temporal thermal pattern was explained by a model that included distributed thermal inputs of cooler water in the upstream half coming from alluvial fans and warmer water in the downstream half running off steep cliffs that warm snowmelt. The warm inputs from the cliffs were confirmed by the thermal imaging. These data and the associated modeling illustrated that distributed inflows can overwhelm the influence of atmospheric fluxes, and that their knowledge is critical for understanding stream temperatures. The combination of modeling and detailed time-lapse thermal imaging allowed for identification and quantification of processes critical to in-stream temperature dynamics in a proglacial river.

  7. Vibration Energy Harvesting Concept using a Balanced Armature Transducer

    DTIC Science & Technology

    2012-04-16

    transducers are used as the speakers in most hearing aids and in some small insert earphones , in this size range, the balanced armature speaker is a more...left blank. n Abstract Balanced armature transducers are used as the speakers in most hear- ing aids and in some small insert earphones . In this...of stress rod attachment 10 Vll This page intentionally left blank. vin Acknowledgments This material is based upon work supported by the

  8. Impact of seasonal scarcity on energy balance and body composition in peasant adolescents from Calakmul, Campeche Mexico.

    PubMed

    Gamboa, José A Alayón; García, Francisco D Gurri

    2007-01-01

    A time allocation and anthropometric study were performed on 46 male and 38 female adolescents from 16 peasant households from two different adaptive strategies in the municipio of Calakmul, Campeche Mexico to see if they could maintain energy balance during the annual scarcity season. These strategies were called: "household subsistence agricultural strategy" (HSA) and "household commercial agricultural strategy" (HCA). Each month, from June 2001 to May 2002, adolescents were measured and followed for 24 h. Their activities were recorded at 15 min intervals. Weight for age (W/A), height for age (H/A), body mass index (BMI), arm muscle area, arm fat area, total energy expenditure (TEE), activity energy expenditure (AEE), and basal metabolic rate (BMR) were estimated and the data compared between seasons using a repeated measurements analysis of variance. The results suggest that HCA offers their adolescents better buffering against seasonal scarcity, and that HSA males are better protected than females. HCA adolescents didn't show significant losses of weight, and HCA females lost body fat during the scarcity season. HSA vulnerability was observed in W/A and BMI z score reductions during the scarcity season. It also reflected itself in stunted adolescent males and adolescent females with fewer fat reserves. HSA adolescents reduced their BMR to down regulate their energy expenditure during the scarcity season without reducing TEE and physical activity levels. HSA females lost muscle mass during the scarcity season while HSA males didn't. This difference was associated with a more demanding work schedule throughout the year for females. Copyright 2007 Wiley-Liss, Inc.

  9. Trends in research on energy balance supported by the National Cancer Institute.

    PubMed

    Ballard-Barbash, Rachel; Siddiqi, Sameer M; Berrigan, David A; Ross, Sharon A; Nebeling, Linda C; Dowling, Emily C

    2013-04-01

    Over the past decade, the body of research linking energy balance to the incidence, development, progression, and treatment of cancer has grown substantially. No prior NIH portfolio analyses have focused on energy balance within one institute. This portfolio analysis describes the growth of National Cancer Institute (NCI) grant research on energy balance-related conditions and behaviors from 2004 to 2010 following the release of an NCI research priority statement in 2003 on energy balance and cancer-related research. Energy balance grants from fiscal years (FY) 2004 to 2010 were identified using multiple search terms and analyzed between calendar years 2008 and 2010. Study characteristics related to cancer site, design, population, and energy balance area (physical activity, diet, and weight) were abstracted. From FY2004 to FY2010, the NCI awarded 269 energy balance-relevant grants totaling $518 million. In FY2010, 4.2% of NCI's total research project grants budget was allocated to energy balance research, compared to 2.1% in FY2004. The NCI more than doubled support for investigator-initiated research project grants (R01) and increased support for cooperative agreement (U01, U54) and exploratory research (R21) grants. In the portfolio, research examining energy balance areas in combination accounted for 41.6%, and observational and interventional studies were equally represented (38.3% and 37.2%, respectively). Breast cancer was the most commonly studied cancer. Inclusion of minorities rose, and funding specific to cancer survivors more than doubled. From FY2004 to FY2010, NCI's investment in energy balance and related health behavior research showed growth in funding and diversity of mechanisms, topics, and disciplines-growth that reflects new directions in this field. Published by Elsevier Inc.

  10. Modes and balance of energy in the piezoelectric cochlear outer hair cell wall.

    PubMed

    Spector, Alexander A; Jean, Ronald P

    2004-02-01

    Here, we analyze energy transformations in the outer hair cell and its effectiveness as a piezoelectric-type actuator in the cochlea. The major modes of energy are introduced, and a method to estimate the coefficients of their tension-dependence is proposed. Next, we derive balance of the mechanical and electrical parts of energy, and show two forms of the active energy associated with the motors driving electromotility. The two forms of the active energy, stored mechanical energy, and external electrical work are then introduced as functions of voltage and applied force. We use the energy balance to introduce and estimate the effectiveness of the cell's electromotile response.

  11. System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting (POPFULL)

    NASA Astrophysics Data System (ADS)

    Ceulemans, R.; Janssens, I.; Berhongaray, G.; Broeckx, L.; De Groote, T.; ElKasmioui, O.; Fichot, R.; Njakou Djomo, S.; Verlinden, M.; Zona, D.

    2011-12-01

    In recent year the environmental impact of fossil fuels and their reduced availability are leading to an increasing interest in renewable energy sources, among them bio-energy. However, the cost/benefit in establishing, managing, and using these plantations for energy production should be quantified together with their environmental impact. In this project we are performing a full life cycle analysis (LCA) balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3), together with full energy accounting of a short-rotation coppice (SRC) plantation with fast-growing trees. We established the plantation two years ago and we have been monitoring net fluxes of CO2, N2O, CH4, and O3, in combination with biomass pools (incl. soil) and fluxes, and volatile organic carbon (VOCs). This poplar plantation will be monitored for another two years then harvested and transformed into bio-energy. For the energy accounting we are performing a life cycle analysis and energy efficiency assessments over the entire cycle of the plantation until the production of electricity and heat. Here we present an overview of the results from the first two years from the plantation establishment, and some of the projections based on these first results.

  12. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  13. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  14. The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults.

    PubMed

    Betts, James A; Richardson, Judith D; Chowdhury, Enhad A; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan

    2014-08-01

    Popular beliefs that breakfast is the most important meal of the day are grounded in cross-sectional observations that link breakfast to health, the causal nature of which remains to be explored under real-life conditions. The aim was to conduct a randomized controlled trial examining causal links between breakfast habits and all components of energy balance in free-living humans. The Bath Breakfast Project is a randomized controlled trial with repeated-measures at baseline and follow-up in a cohort in southwest England aged 21-60 y with dual-energy X-ray absorptiometry-derived fat mass indexes ≤11 kg/m² in women (n = 21) and ≤7.5 kg/m² in men (n = 12). Components of energy balance (resting metabolic rate, physical activity thermogenesis, energy intake) and 24-h glycemic responses were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (eg, hematology/biopsies). Contrary to popular belief, there was no metabolic adaptation to breakfast (eg, resting metabolic rate stable within 11 kcal/d), with limited subsequent suppression of appetite (energy intake remained 539 kcal/d greater than after fasting; 95% CI: 157, 920 kcal/d). Rather, physical activity thermogenesis was markedly higher with breakfast than with fasting (442 kcal/d; 95% CI: 34, 851 kcal/d). Body mass and adiposity did not differ between treatments at baseline or follow-up and neither did adipose tissue glucose uptake or systemic indexes of cardiovascular health. Continuously measured glycemia was more variable during the afternoon and evening with fasting than with breakfast by the final week of the intervention (CV: 3.9%; 95% CI: 0.1%, 7.8%). Daily breakfast is causally linked to higher physical activity thermogenesis in lean adults, with greater overall dietary energy intake but no change in resting metabolism. Cardiovascular health

  15. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults12

    PubMed Central

    Chowdhury, Enhad A; Richardson, Judith D; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A

    2016-01-01

    Background: The causal nature of associations between breakfast and health remain unclear in obese individuals. Objective: We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. Design: The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21–60 y with dual-energy X-ray absorptiometry–derived fat mass indexes of ≥13 kg/m2 for women (n = 15) and ≥9 kg/m2 for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (e.g., hematology/adipose biopsies). Results: Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: −254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: −313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). Conclusions: In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were

  16. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults.

    PubMed

    Chowdhury, Enhad A; Richardson, Judith D; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A

    2016-03-01

    The causal nature of associations between breakfast and health remain unclear in obese individuals. We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21-60 y with dual-energy X-ray absorptiometry-derived fat mass indexes of ≥13 kg/m(2) for women (n = 15) and ≥9 kg/m(2) for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (e.g., hematology/adipose biopsies). Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: -254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: -313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were no differences between groups in weight change and most

  17. Urinary C-peptide is not an accurate bioindicator of energy balance in humans.

    PubMed

    Bergouignan, Audrey; Habold, Caroline; Rudwill, Floriane; Gauquelin-Koch, Guillemette; Normand, Sylvie; Simon, Chantal; Blanc, Stéphane

    2012-03-01

    The apprehension of the factors that affect long term regulation of energy balance is indispensable to understand the rise in obesity prevalence as well as to delineate levers to prevent it. Accurate measurements of energy balance are however challenging during free-living conditions. Recent studies proposed urinary C-peptide, a metabolic byproduct of insulin synthesis, as reliable noninvasive assessment of energy balance. These studies were in fact essentially based on correlations between urinary C-peptide and energy intake and only focused on nonhuman primates. During a bed-rest study conducted in 16 healthy women in a controlled environment, we tested the existence of a relationship between 24 h-urinary C-peptide and energy balance in humans. Daily energy intake and body mass, body composition (dual-energy X-ray absorptiometry (DXA)) and total energy expenditure (doubly labeled water (DLW) method) was measured and energy balance was calculated as the difference between energy intake and expenditure. Urinary C-peptide was positively correlated with bed-rest-induced changes in fat mass (r(2) = 0.285; P = 0.03) and energy balance assessed at the end of the bed-rest (r(2) = 0.302; P = 0.027). However, in this tightly controlled environment, urinary C-peptide only accounted for 30% of variations in energy balance. No relationship was noted between urinary C-peptide and body or fat mass both at baseline and at the end of the bed-rest. These results indicate that urinary C-peptide cannot be used as an accurate biomarker of energy balance in the general human population in free-living conditions.

  18. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  19. The Analysis of the Development Dynamics and Structural Balance of Solar Energy in the World

    NASA Astrophysics Data System (ADS)

    Brand, A. E.; Chekardovskiy, S. M.; Akulov, K. A.

    2017-01-01

    The paper presents data the analysis of the development dynamics and structural balance of solar energy in the world. In the article presents information about total installed production capacity of solar energy, the world solar energy production capacity distribution and the European Union energy market structure in 2000 and 2015 years.

  20. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    SciTech Connect

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  1. Preliminary energy balance and economics of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    The energy balance and economics of grain to ethanol plants are matters of current national interest, as we strive to deal with our liquid fuel supply problems. This report prepared at the request of the Department of Energy, examines the energy balance and economic questions for a particular farm-scale plant in Campo, Colo. It shows that such plants may have a place in our national liquid fuel supply system.

  2. The global mean energy balance under cloud-free conditions

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles

    2017-04-01

    är, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.

  3. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at

  4. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    NASA Astrophysics Data System (ADS)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  5. Effects of Standing and Light-Intensity Walking and Cycling on 24-h Glucose.

    PubMed

    Crespo, Noe C; Mullane, Sarah L; Zeigler, Zachary S; Buman, Matthew P; Gaesser, Glenn A

    2016-12-01

    This study aimed to compare 24-h and postprandial glucose responses to incremental intervals of standing (STAND), walking (WALK), and cycling (CYCLE) to a sit-only (SIT) condition. Nine overweight/obese (body mass index = 29 ± 3 kg·m) adults (30 ± 15 yr) participated in this randomized crossover full-factorial study, with each condition performed 1 wk apart. STAND, CYCLE, and WALK intervals increased from 10 to 30 min·h (2.5 h total) during an 8-h workday. WALK (1.0 mph) and STAND were matched for upright time, and WALK and CYCLE were matched for energy expenditure (~2 METs). Continuous interstitial glucose monitoring was performed for 24 h to include the 8-h workday (LAB), after-work evening hours (EVE), and sleep (SLEEP). Three 2-h postprandial periods were also analyzed. Linear mixed models were used to test for condition differences. Compared with SIT (5.7 ± 1.0 mmol·L), mean 24-h glucose during STAND (5.4 ± 0.9 mmol·L) and WALK (5.3 ± 0.9 mmol·L) were lower, and CYCLE (5.1 ± 1.0 mmol·L) was lower than all other conditions (all P < 0.001). During LAB and EVE, mean glucose was lower for STAND, WALK, and CYCLE compared with SIT (P < 0.001). During SLEEP, the mean glucose for CYCLE was lower than all other conditions (P < 0.001). Compared with SIT, cumulative 6-h postprandial mean glucose was 5%-12% lower (P < 0.001) during STAND, WALK, and CYCLE, and 6-h postprandial glucose integrated area under the curve was 24% lower during WALK (P < 0.05) and 44% lower during CYCLE (P < 0.001). Replacing sitting with regular intervals of standing or light-intensity activity during an 8-h workday reduces 24-h and postprandial glucose. These effects persist during evening hours, with CYCLE having the largest and most sustained effect.

  6. An online tool for calculation of free-energy balance for the renal inner medulla.

    PubMed

    Vilbig, Ryan L; Sarkar, Abhijit; Zischkau, Joseph; Knepper, Mark A; Pisitkun, Trairak

    2012-08-01

    Concentrating models of the renal inner medulla can be classified according to external free-energy balance into passive models (positive values) and models that require an external energy source (negative values). Here we introduce an online computational tool that implements the equations of Stephenson and colleagues (Stephenson JL, Tewarson RP, Mejia R. Proc Natl Acad Sci USA 71: 1618-1622, 1974) to calculate external free-energy balance at steady state for the inner medulla (http://helixweb.nih.gov/ESBL/FreeEnergy). Here "external free-energy balance" means the sum of free-energy flows in all streams entering and leaving the inner medulla. The program first assures steady-state mass balance for all components and then tallies net external free-energy balance for the selected flow conditions. Its use is illustrated by calculating external free-energy balance for an example of the passive concentrating model taken from the original paper by Kokko and Rector (Kokko JP, Rector FC Jr. Kidney Int 2: 214-223, 1972).

  7. Trends in Research on Energy Balance Supported by the National Cancer Institute

    PubMed Central

    Ballard-Barbash, Rachel; Siddiqi, Sameer M.; Berrigan, David A.; Ross, Sharon A.; Nebeling, Linda C.; Dowling, Emily C.

    2013-01-01

    Over the past decade, the body of research linking energy balance to the incidence, development, progression and treatment of cancer has grown substantially. No prior NIH portfolio analyses have focused on energy balance within one institute. This portfolio analysis describes the growth of National Cancer Institute (NCI) grant research on energy balance–related conditions and behaviors from 2004 to 2010 following the release of an NCI research priority statement in 2003 on energy balance and cancer-related research. Energy-balance grants from fiscal years (FY) 2004 to 2010 were identified using multiple search terms and analyzed between calendar years 2008 and 2010. Study characteristics related to cancer site, design, population and energy-balance area (physical activity, diet, and weight) were abstracted. From FY2004 to FY2010, the NCI awarded 269 energy balance–relevant grants totaling $518 million. In FY2010, 4.2% of NCI’s total research project grants budget was allocated to energy-balance research, compared to 2.1% in FY2004. The NCI more than doubled support for investigator-initiated research project grants (R01), and increased support for cooperative agreement (U01, U54) and exploratory research (R21) grants. In the portfolio, research examining energy-balance areas in combination accounted for 41.6%, and observational and interventional studies were equally represented (38.3% and 37.2%, respectively). Breast cancer was the most commonly studied cancer. Inclusion of minorities rose, and funding specific to cancer survivors more than doubled. From FY2004 to FY2010, NCI’s investment in energy-balance and related health behavior research showed growth in funding and diversity of mechanisms, topics and disciplines—growth that reflects new directions in this field. PMID:23498109

  8. Coherent Structure Patterns Affect Energy Balance Closure: Evidence from Virtual Measurements for a Field Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, S.; De Roo, F.; Heinze, R.; Eder, F.; Huq, S.; Schmidt, M.; Kalthoff, N.; Mauder, M.

    2015-12-01

    The energy balance closure problem is a well-known issue of eddy-covariance measurements. However, the underlying mechanisms are still under debate. Recent evidence suggests that organized low-frequency motion contributes significantly to the energy balance residual, because the associated transport cannot be captured by a point measurement. In this study, we carry out virtual measurements using a PArallelized Large-Eddy Simulation Model (PALM). In order to represent specific measurement days of the field campaign "High definition clouds and precipitation for advancing climate prediction" (HD(CP)²), which was part of the project "High Definition Clouds and Precipitation for Advancing Climate Prediction"(HOPE) in 2013, the simulations were driven by synoptic-scale COSMO-DE reanalysis data. Planet boundary layer height, the vertical profiles of variance and skewness of vertical wind were analyzed and a comparison with Doppler-lidar observations shows good agreement. Furthermore, simulated energy imbalances were compared with real-world imbalances from two eddy-covariance stations in the model domain. Particularly poor energy balance closure was found for a day with cellular organized structures in the surface layer, while the energy balance closure was better on other days with roll-like structures. This finding might be one explanation why the energy balance closure generally tends to improve with increasing friction velocity, since roll-like structures are typically associated with higher wind speeds. In order to gain insight into the partitioning of the energy balance residual between the sensible and latent heat fluxes, we further employed a control volume method within the numerical simulation. Hence, advection and storage terms were identified as the most important causes for the lack of energy balance closure by the eddy-covariance method. The results of the virtual measurements indicate that the "missing" part of the surface energy mainly comes from the

  9. Evaluating surface energy balance system (SEBS) using aircraft data collected during BEAREX07

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. Remote sensing based surface energy balance algorithms are now capable of providing accurate estimates of spatial-temporal ET. Uses of these spatial E...

  10. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  11. Incorporating elastic and plastic work rates into energy balance for long-term tectonic modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, M. S.; Choi, E.

    2014-12-01

    Deformation-related energy budget is usually considered in the simplest form or even completely omitted from the energy balance equation. We derive an energy balance equation that accounts not only for heat energy but also for elastic and plastic work. Such a general description of the energy balance principle will be useful for modeling complicated interactions between geodynamic processes such as thermoelastisity, thermoplasticity and mechanical consequences of metamorphism. Following the theory of large deformation plasticity, we start from the assumption that Gibbs free energy (g) is a function of temperature (T), the second Piola-Kirchhoff stress (S), density (ρ) and internal variables (qj, j=1…n). In this formulation, new terms are derived, which are related to the energy dissipated through plastic work and the elastically stored energy that are not seen in the usual form of the energy balance equation used in geodynamics. We then simplify the generic equation to one involving more familiar quantities such as Cauchy stress and material density assuming that the small deformation formulation holds for our applications. The simplified evolution equation for temperature is implemented in DyanEarthSol3D, an unstructured finite element solver for long-term tectonic deformation. We calculate each of the newly derived terms separately in simple settings and compare the numerical results with a corresponding analytic solution. We also present the effects of the new energy balance on the evolution of a large offset normal fault.

  12. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    PubMed

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  13. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  14. Transgenic Mouse Models Resistant to Diet-Induced Metabolic Disease: Is Energy Balance the Key?

    PubMed Central

    Gilliam, Laura A. A.

    2012-01-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance. PMID:22700428

  15. Transgenic mouse models resistant to diet-induced metabolic disease: is energy balance the key?

    PubMed

    Gilliam, Laura A A; Neufer, P Darrell

    2012-09-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance.

  16. Interacting Components of the Top-of-Atmosphere Energy Balance Affect Changes in Regional Surface Temperature

    NASA Astrophysics Data System (ADS)

    Merlis, T. M.

    2014-12-01

    The role of interactions between components of the top-of-atmosphere (TOA) energy balance in determining regional surface temperature changes is examined in diffusive energy balance model (EBM) simulations. These interactions have implications for the interpretation of local feedback analyses when they are applied to regional surface temperature change. In the EBM, local feedback analysis succeeds at accounting for the EBM-simulated temperature change given the changes in the radiative forcing, atmospheric energy transport, and radiative feedbacks. However, the inferences about the effect of individual components of the TOA energy balance on regional temperature changes do not account for EBM simulations in which individual components are prescribed or "locked". As changes in one component of the TOA energy balance affect others, unambiguous attribution statements relating changes in regional temperature or its intermodel spread to individual terms in the TOA energy balance cannot be made because these interactions between changing components are important. Interactions between change components of the TOA energy balance are also important in general circulation model simulations of climate change.

  17. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy.

    PubMed

    Ayoub, Ahmed Taha; Staelens, Michael; Prunotto, Alessio; Deriu, Marco A; Danani, Andrea; Klobukowski, Mariusz; Tuszynski, Jack Adam

    2017-09-22

    Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs)-tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole-dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by - 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  18. Developmental programming of energy balance regulation: Is physical activity more "programmable" than food intake

    USDA-ARS?s Scientific Manuscript database

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...

  19. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance

    PubMed Central

    Brown, Juliette A.; Woodworth, Hillary L.; Leinninger, Gina M.

    2015-01-01

    Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders. PMID:25741247

  20. The Role of PVH Circuits in Leptin Action and Energy Balance

    PubMed Central

    Sutton, Amy K.; Myers, Martin G.; Olson, David P.

    2016-01-01

    Summary While it has been clear that the brain regulates feeding behaviour and energy expenditure, the major determinants of energy balance and adiposity, roles for individual brain regions (and specific cell types within these regions) in the control of energy balance were not understood until very recently; these details continue to emerge rapidly. Much of what we now know flows from the discoveries of leptin and the hypothalamic melanocortin system, which define circuits crucial for the control of energy balance. Within the brain, hypothalamic circuits play a crucial role in the control of feeding and energy expenditure. Within the hypothalamus, the arcuate nucleus (ARC) functions as an entry point gateway for hormonal signals of energy balance, such as leptin; the ARC also contains the soma of melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals regarding energy balance, and mediates the majority of hypothalamic output to control feeding and energy expenditure. Herein, we review the structure and function of the ARC-PVH circuit in leptin action, in addition to it’s role in the control of feeding behavior and energy expenditure. PMID:26863324

  1. Water and energy balances in the soil-plant atmosphere continuum

    USDA-ARS?s Scientific Manuscript database

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  2. Does the energy expenditure status in obstructive sleep apnea favour a positive energy balance?

    PubMed

    Major, Geneviève C; Sériès, Frédéric; Tremblay, Angelo

    2007-01-01

    The effect of the obstructive sleep apnea syndrome on energy expenditure is controversial. The objective of this study was to assess the relationship between 24-hr energy expenditure or sleeping metabolic rate and features of the obstructive sleep apnea. Twenty-four apneic men took part in this cross-sectional study and were classified in quartiles of nocturnal desaturation severity, i.e. of percentage total sleep time with SaO2 < 90% determined with polysomnography. 24-hr energy expenditure and sleeping metabolic rate were measured with a whole body indirect calorimetry (respiratory chamber), and body composition by hydrodensitometry. During the stay in the respiratory chamber, urine was collected to assess catecholamine concentration and percentage recording time with SaO2 < 90% (%TRT SaO2 < 90%) was measured with nocturnal oximetry. Mean fat free mass and fat mass were greater in quartile 4 than in quartile 1 (P < 0.05). %TRT SaO2 < 90% was higher in quartile 4 than in other quartiles (P < 0.0001). 24-hr energy expenditure and sleeping metabolic rate were similar among quartiles. However, when expressed on a per kg body weight basis (kcal/kg), these variables were negatively correlated with the %TRT SaO2 < 90% in the whole group (r = -0.46 and -0.48, respectively, P < 0.05). %TRT SaO2 < 90% was found to be a predictor of sleeping metabolic rate which explained, together with fat mass and fat free mass, 86% of this variance (P < 0.05). In apneic men energy expenditure relative to body weight decreases with increasing severity of oxygen desaturation which could favour a positive energy balance.

  3. Influence of momentum dependent interactions on the fragment structures at balance energies

    SciTech Connect

    Chugh, Rajiv Kumar, Rohit

    2016-05-06

    We study the role of momentum-dependent interactions on fragment structures at balance energies for semi-peripheral collisions over a wide range of system masses using quantum molecular dynamics (QMD) model. We find a meagre role of momentum-dependent interactions for fragments in case of lighter system masses. But as we go towards higher system masses, the effect of momentum-dependent interactions increases for free nucleons, light charged particles and intermediate mass fragments at corresponding balance energies.

  4. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure.

    PubMed

    St-Onge, Marie-Pierre

    2013-01-15

    Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance?

  5. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  6. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  7. Energy Balance in Driven Soap-Film Turbulence

    NASA Astrophysics Data System (ADS)

    Rivera, M.; Wu, X. L.

    1999-11-01

    Turbulence in freely suspended soap film is excited by electromagnetic forcing and measured by particle imaging velocimetry. It is shown that velocity fluctuations in the film can be adequately described by the two-dimensional Navier-Stokes equation with a linear drag term that mimics air friction. Based on this equation, all of the energy-rate constants, including the energy injection and the energy dissipations by air and by fluid's viscosity, can be determined. It is established that air friction is a more effective energy sink, whereas viscosity is a more effective enstrophy sink in the flowing soap film.

  8. Multiple behavior interventions to prevent substance abuse and increase energy balance behaviors in middle school students.

    PubMed

    Velicer, Wayne F; Redding, Colleen A; Paiva, Andrea L; Mauriello, Leanne M; Blissmer, Bryan; Oatley, Karin; Meier, Kathryn S; Babbin, Steven F; McGee, Heather; Prochaska, James O; Burditt, Caitlin; Fernandez, Anne C

    2013-03-01

    This study examined the effectiveness of two transtheoretical model-tailored, computer-delivered interventions designed to impact multiple substance use or energy balance behaviors in a middle school population recruited in schools. Twenty middle schools in Rhode Island including sixth grade students (N=4,158) were stratified and randomly assigned by school to either a substance use prevention (decreasing smoking and alcohol) or an energy balance (increasing physical activity, fruit and vegetable consumption, and limiting TV time) intervention group in 2007. Each intervention involved five in-class contacts over a 3-year period with assessments at 12, 24, and 36 months. Main outcomes were analyzed using random effects modeling. In the full energy balance group and in subsamples at risk and not at risk at baseline, strong effects were found for physical activity, healthy diet, and reducing TV time, for both categorical and continuous outcomes. Despite no direct treatment, the energy balance group also showed significantly lower smoking and alcohol use over time than the substance use prevention group. The energy balance intervention demonstrated strong effects across all behaviors over 3 years among middle school students. The substance use prevention intervention was less effective than the energy balance intervention in preventing both smoking and alcohol use over 3 years in middle school students. The lack of a true control group and unrepresented secular trends suggest the need for further study.

  9. Arc tracking energy balance for copper and aluminum aeronautic cables

    NASA Astrophysics Data System (ADS)

    André, T.; Valensi, F.; Teulet, P.; Cressault, Y.; Zink, T.; Caussé, R.

    2017-04-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted.

  10. Energy balance and plume dynamics in Triton's lower atmosphere

    SciTech Connect

    Yelle, R.V.; Lunine, J.I.; Hunten, D.M. )

    1991-02-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's. 28 refs.

  11. Control of energy balance by the brain renin-angiotensin system.

    PubMed

    Claflin, Kristin E; Grobe, Justin L

    2015-05-01

    The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.

  12. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  13. The Role of PVH Circuits in Leptin Action and Energy Balance.

    PubMed

    Sutton, Amy K; Myers, Martin G; Olson, David P

    2016-01-01

    Although it has been known for more than a century that the brain controls overall energy balance and adiposity by regulating feeding behavior and energy expenditure, the roles for individual brain regions and neuronal subtypes were not fully understood until recently. This area of research is active, and as such our understanding of the central regulation of energy balance is continually being refined as new details emerge. Much of what we now know stems from the discoveries of leptin and the hypothalamic melanocortin system. Hypothalamic circuits play a crucial role in the control of feeding and energy expenditure, and within the hypothalamus, the arcuate nucleus (ARC) functions as a gateway for hormonal signals of energy balance, such as leptin. It is also well established that the ARC is a primary residence for hypothalamic melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals that affect energy balance, and mediates the majority of hypothalamic output to control both feeding and energy expenditure. Herein, we review in detail the structure and function of the ARC-PVH circuit in mediating leptin signaling and in regulating energy balance.

  14. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance

    PubMed Central

    Shen, Run; Wang, Biao; Giribaldi, Maria G.; Ayres, Janelle; Thomas, John B.; Montminy, Marc

    2016-01-01

    The starvation-inducible coactivator cAMP response element binding protein (CREB)–cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc–sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain–gut pathway that maintains homeostasis through its effects on epithelial integrity. PMID:27208092

  15. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance.

    PubMed

    Shen, Run; Wang, Biao; Giribaldi, Maria G; Ayres, Janelle; Thomas, John B; Montminy, Marc

    2016-06-07

    The starvation-inducible coactivator cAMP response element binding protein (CREB)-cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc-sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain-gut pathway that maintains homeostasis through its effects on epithelial integrity.

  16. Energy balance in laser ablation of metal targets

    SciTech Connect

    Sobral, H.; Villagran-Muniz, M.; Bredice, F.

    2005-10-15

    Laser-generated plasma was induced on metallic targets glued to a piezoelectric microphone and placed between the plates of a planar charged capacitor. The plasma generates a temporal redistribution of electric charge on the plates that can easily be measured by a resistor connected to the ground plate; this signal is proportional to the total number of ions removed by breakdown. Both the absorbed and scattered energies were simultaneously monitored by the photoacoustic signal and an energy meter. From these signals it was possible to determine the energy involved in each of the processes. Just above the ablation threshold most of the delivered energy is absorbed and the acoustic signal prevails compared to other contributions. Above this region, the electric signal, which is proportional to the energy involved in the ablation process, becomes dominant.

  17. Energy Transport and Ionization Balance in Isochorically Heated Dense Plasmas*

    NASA Astrophysics Data System (ADS)

    Landen, Otto

    2003-04-01

    Dense plasmas, a principal state of matter in inertial confinement fusion research and in planetary and stellar environments, can now be routinely created in the laboratory at diagnosable mm-scales by x-ray radiative heating provided by high power laser produced plasmas. We discuss two recent studies in such isochorically-heated plasmas, the first examining supersonic diffusive radiative transport in foam cylinders using spectrally and temporally-resolved soft x-ray imaging [1] and the second studying solid density plasma ionization balance [2] using spectrally resolved x-ray scattering [3]. The radiation transport data provides a measure of the dense plasma heat capacity and opacity for the various foam and wall materials tested. Moreover, data from more complex radiation flow geometries further constrain the radiation transport modelling. In the case of x-ray scattering measurements, by spectrally resolving both the Compton downshifted and Doppler broadened inelastic component and the Rayleigh scattered elastic component, we can infer both the plasma electron temperature and ratio of weakly bound and free electron fraction to tightly bound electron fraction in low Z samples. The results are compared to various dense plasma ionization balance models. [1] C.A. Back, et. al., Phys. Rev. Lett. 84 (2000) 274 and Phys. Plasmas 7 (2000 ) 2126. [2] S.H. Glenzer, et. al., submitted to Phys. Rev. Lett. (2003). [3] O.L. Landen, et. al., J. Quant. Spectrosc. Radiat. Trans. 71 (2001) 465.

  18. Greater expression of TLR2, TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with Streptococcus uberis.

    PubMed

    Moyes, Kasey M; Drackley, James K; Morin, Dawn E; Loor, Juan J

    2010-03-01

    Our objectives were to compare gene expression profiles in blood polymorphonuclear cells (PMN) during a Streptococcus uberis intramammary challenge between lactating cows subjected to feed restriction to induce negative energy balance (NEB; n=5) and cows fed ad libitum to maintain positive energy balance (PEB; n=5). After 5 days of feed restriction, one rear mammary quarter of each cow was inoculated with 5,000 cfu of S. uberis. Blood PMN were isolated at 24 h post-inoculation from all cows for mRNA expression via quantitative polymerase chain reaction for 20 genes associated with immune response and metabolism. A total of 12 genes were differentially expressed in blood PMN in NEB versus PEB cows. Upregulated genes by NEB were ALOX5AP, CPNE3, IL1R2, IL6, TLR2, TLR4, and THY1, and downregulated genes were HLA-DRA, HLA-A, IRAK1, SOD1, and TNF. Network analysis revealed that TNF was associated with several of the affected genes in NEB cows compared with PEB cows. Results showed that 24 h after intramammary challenge with S. uberis, cows in NEB had altered PMN expression of genes involved with immune response. Our data provide new information on transcriptomic mechanisms associated with NEB and the corresponding inhibition of immune response in lactating dairy cows.

  19. Comparison of a Web-Based 24-h Dietary Recall Tool (Foodbook24) to an Interviewer-Led 24-h Dietary Recall

    PubMed Central

    Timon, Claire M.; Evans, Katie; Kehoe, Laura; Blain, Richard J.; Flynn, Albert; Gibney, Eileen R.; Walton, Janette

    2017-01-01

    Web-based tools have the potential to reduce the cost of dietary assessment; however, it is necessary to establish their performance compared to traditional dietary assessment methods. This study aims to compare nutrient and food intakes derived from Foodbook24 to those obtained from an interview-led 24-h dietary recall (24HDR). Seventy-nine adult participants completed one self-administered 24HDR using Foodbook24 and one interviewer-led 24HDR on the same day. Following a 10 days wash-out period the same process was completed again in opposite order to the previous study visit. Statistical analysis including Spearman’s rank order correlation, Mann-Whitney U tests, cross-classification analysis, and “Match”, “Omission”, and “Intrusion” rates were used to investigate the relationship between both methods. Strong, positive correlations of nutrient intake estimated using both methods was observed (rs = 0.6–1.0; p < 0.001). The percentage of participants classified into the same tertile of nutrient intake distribution using both methods ranged from 58% (energy) to 82% (vitamin D). The overall match rate for food intake between both methods was 85%, while rates for omissions and intrusions were 11.5% and 3.5%, respectively. These results, alongside the reduced cost and participant burden associated with Foodbook24, highlight the tool’s potential as a viable alternative to the interviewer-led 24HDR. PMID:28441358

  20. The Role of Sleep Duration in the Regulation of Energy Balance: Effects on Energy Intakes and Expenditure

    PubMed Central

    St-Onge, Marie-Pierre

    2013-01-01

    Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7–9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance? Citation: St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med 2013;9(1):73–80. PMID:23319909

  1. Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1990-01-01

    The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.

  2. The effect of barbiturates on 24-h water intake and renal excretion of sodium and water in dogs.

    PubMed

    Sobocińska, J; Szczepańska-Sadowska, E

    1980-05-01

    The effects of barbiturates on 24-h intakes of water and food and urinary excretion of sodium and potassium as well as on plasma concentration of sodium and potassium and osmolality were examined in dogs placed in metabolism cages and fed with a semiliquid diet. Administration of barbiturates stimulated drinking in a Series of 8 dogs having free access to water. Twenty four-h water intake and water balance increased significantly. Food intake, urinary output and urinary excretion of solutes, sodium and water did not change in this Series. A significant decrease in urine output as well as in osmolal clearance and urinary excretion of sodium was observed in a Series of 7 dogs having water restricted for 24 h following administration of barbiturates. Water balance increased in this Series. The same restriction of water in the dogs which had not received barbiturates did not modify renal excretion of water and electrolytes. Plasma osmolality, sodium and potassium concentrations did not change in either Series of experiments. It is concluded that barbiturates induce positive water balance either by stimulation of drinking when water is freely available or by reduction in urine output when water is restricted. The results suggest that expansion of the body fluids following the increased water intake may abolish reduction in urine output and sodium excretion which otherwise occur after administration of barbiturates.

  3. Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method

    NASA Astrophysics Data System (ADS)

    Imukova, K.; Ingwersen, J.; Hevart, M.; Streck, T.

    2016-01-01

    The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC = 3.4 ± 0.6 mm day-1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day-1). ETEC adjusted by the BR (4.1 ± 0.6 mm day-1) or LE (4.9 ± 0.9 mm day-1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by

  4. Energy Policy Decision-Making: The Need for Balanced Input

    ERIC Educational Resources Information Center

    DeVolpi, A.

    1974-01-01

    Indicates that the credibility of environmentalists and nuclear advocates has been damaged by misinformed alarmist positions. Advocates the public's right of equal standing on advisory councils in the areas of energy development, environmental protection, and public safety. (GS)

  5. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg(-1)·day(-1)) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (-1.41 ± 1.11 (-1.98, -0.84) g·kg(-1)·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.

  6. Energy balance of biofuel production from biological conversion of crude glycerol.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  7. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    NASA Astrophysics Data System (ADS)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  8. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression

    PubMed Central

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.1 In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes’ adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.2 PMID:24575366

  9. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    PubMed

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.)

  10. Energy balance and deformation at scission in 240Pu fission

    NASA Astrophysics Data System (ADS)

    Caamaño, Manuel; Farget, Fanny

    2017-07-01

    The experimental determination of the total excitation energy, the total kinetic energy, and the evaporation neutron multiplicity of fully identified fragments produced in transfer-induced fission of 240Pu, combined with reasonable assumptions, permits to extract the intrinsic and collective excitation energy of the fragments as a function of their atomic number, along with their quadrupole deformation and their distance at scission. The results show that the deformation increases with the atomic number, Z, except for a local maximum around Z = 44 and a minimum around Z = 50, associated with the effect of deformed shells at Z ∼ 44, N ∼ 64, and spherical shells in 132Sn, respectively. The distance between the fragments also shows a minimum around Z1 = 44, Z2 = 50, suggesting a mechanism that links the effect of structure with the length of the neck at scission.

  11. Soil heat flux and day time surface energy balance closure at astronomical observatory, Thiruvananthapuram, south Kerala

    NASA Astrophysics Data System (ADS)

    Roxy, M. S.; Sumithranand, V. B.; Renuka, G.

    2014-06-01

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, pre-monsoon, SW monsoon and NE monsoon seasons. The diurnal variation is characterized by a cross-over from negative to positive values at 0700 h, occurrence of maximum around noon and return to negative values in the late evening. The energy storage term for the soil layer 0-0.05 m is calculated and the ground heat flux G ∗ is estimated in all seasons. Daytime surface energy balance at the surface on wet and dry seasons is investigated. The average Bowen's ratio during the wet and dry seasons were 0.541 and 0.515, respectively indicating that considerable evaporation takes place at the surface. The separate energy balance components were examined and the mean surface energy balance closure was found to be 0.742 and 0.795 for wet and dry seasons, respectively. When a new method that accounts for both soil thermal conduction and soil thermal convection was adopted to calculate the surface heat flux, the energy balance closure was found to be improved. Thus on the land surface under study, the soil vertical water movement is significant.

  12. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-06

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  13. Thoughts for food: brain mechanisms and peripheral energy balance.

    PubMed

    Abizaid, Alfonso; Gao, Qian; Horvath, Tamas L

    2006-09-21

    The past decade has witnessed dramatic advancements regarding the neuroendocrine control of food intake and energy homeostasis and the effects of peripheral metabolic signals on the brain. The development of molecular and genetic tools to visualize and selectively manipulate components of homeostatic systems, in combination with well-established neuroanatomical, electrophysiological, behavioral, and pharmacological techniques, are beginning to provide a clearer picture of the intricate circuits and mechanisms of these complex processes. In this review, we attempt to provide some highlights of these advancements and pinpoint some of the shortcomings of the current understanding of the brain's involvement in the regulation of daily energy homeostasis.

  14. Exercise and negative energy balance in males who perform mental work.

    PubMed

    Lemay, V; Drapeau, V; Tremblay, A; Mathieu, M-E

    2014-08-01

    Although energy expenditure during mental work is not higher than energy expenditure at rest, a stressful mental task is related to an increase in energy intake. It is suggested that mental work produces physiological changes, thereby influencing food intake. Because physical activity can influence hunger, the aim of the study was to determine if the introduction of an active pause could counteract the negative effects of mental work on energy intake and energy balance. Twelve male students, of normal weight, between 15 and 20 years old were evaluated. All subjects participated in three different sessions realized in a randomized order: (i) without pause = relaxation/mental work/meal; (ii) relaxation pause = mental work/relaxation/meal; and (iii) exercise pause = mental work/exercise/meal. Energy expenditure was measured with indirect calorimetry, energy intake was measured with a cold buffet-type meal of 40 items, and appetite-related sensations were measured with visual analogue scales. The effect of introducing an active pause in energy intake and energy balance was studied. The introduction of an active pause did not influence energy intake; although, higher appetite-related sensations were observed (16-26 mm on a 150-mm scale; P < 0.05). After accounting for the energy expenditure related to physical activity, a lower energy balance was measured for the exercise pause visit compared with the visit without a pause (-1137 kJ; P < 0.05). This study indicates that being active between mental work and a meal could represent a strategy to create a negative energy balance following mental work via an increased energy expenditure and a maintenance of energy intake. Globally, these results could help individuals attain and/or maintain a healthy body weight in a context where mental work is omnipresent. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  15. Effect of row orientation on energy balance components

    USDA-ARS?s Scientific Manuscript database

    Solar irradiance is the primary source of energy that is converted into sensible and latent heat fluxes in the soil-plant-atmosphere continuum. The orientation of agricultural crop rows relative to the sun’s zenith angle determines the amount of solar irradiance reaching the plant and soil surfaces...

  16. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic…

  17. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic…

  18. The Tidal Dynamics and Energy Balance of the Red Sea

    NASA Astrophysics Data System (ADS)

    Pugh, David T.; Abualnaja, Yasser O.; NP, Mohammedali; Eltaib, Elfatih B.

    2014-05-01

    The semidiurnal tides of the Red Sea have been mapped as a classic half-wavelength standing wave. Because of the earth's rotation, the pattern is actually composed of an ingoing Kelvin wave, with maximum amplitude found in the northern eastern side along the Saudi Arabia coastline, and a reflected south-going Kelvin wave along the southern African coastline. The result is tidal rotation around a central amphidrome; this amphidrome, because of energy losses in the reflected wave, is nearer to the African side close to Port Sudan. The movements of this amphidrome can be mapped through a spring-neap tidal cycle to show how the tidal energy is dissipated through the Red Sea. There are suggestions that that Red Sea tides are entirely due to direct internal tidal gravitational astronomical forcing; this is an alternative to the model of energy flux from the Gulf of Aden tides in the Indian Ocean, through the entrance at Bab el Mandeb. These alternative energy sources will be investigated in the project.

  19. The Energy Balance of Corn Ethanol: An Update

    SciTech Connect

    Shapouri, Hosein; Duffield, James A.; Wang, Michael

    2002-07-01

    Studies conducted since the late 1970s have estimated the net energy value (NEV) of corn ethanol. However, variations in data and assumptions used among the studies have resulted in a wide range of estimates. This study identifies the factors causing this wide variation and develops a more consistent estimate.

  20. Energy balance in nanosecond pulse discharges in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Adamovich, Igor V.

    2016-02-01

    Kinetic modeling is used to analyze energy partition and energy transfer in nanosecond pulse discharges sustained between two spherical electrodes in nitrogen and air. The modeling predictions are compared with previous time-resolved temperature and {{\\text{N}}2}≤ft(X {}1Σ\\text{g}+,v=0-9\\right) vibrational population measurements by picosecond broadband coherent anti-Stokes Raman spectroscopy (CARS) and phase-locked Schlieren imaging. The model shows good agreement with experimental data, reproducing experimental discharge current pulse waveforms, as well as dominant processes of energy transfer in the discharge and the afterglow. Specifically, the results demonstrate that the temperature rise in the plasma occurs in two stages, (i) ‘rapid’ heating on sub-acoustic time scale, dominated by {{\\text{N}}2}≤ft(A {}3Σ\\text{u}+\\right) energy pooling processes, N2(B 3Πg) and N(2P,2D) quenching (in nitrogen), and by quenching of excited electronic states of N2 molecules by O2 (in air), and (ii) ‘slow’ heating due to N2 vibrational relaxation by O atoms (in air), nearly completely missing in nitrogen. Comparison of the model predictions with N2 vibrational level populations confirms that the N2 vibrational temperature rises after the discharge pulse is caused by the ‘downward’ vibrational-vibrational exchange depopulating higher vibrational levels and populating vibrational level v  =  1. The model reproduces temporal dynamics of vibrational level populations and temperature in the discharge and the afterglow, indicating that energy partition among different modes (vibrational, electronic, dissociation, and ionization) is predicted accurately. At the present conditions, energy fraction coupled to the positive column of the discharge filament in air is approximately 50%, with the rest coupled to the cathode layer. Nearly 10% of the total pulse energy is spent on O atom generation, and about 10% is thermalized on a sub-acoustic time scale

  1. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  2. AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels

    PubMed Central

    Hardie, D. Grahame; Ashford, Michael L. J.

    2014-01-01

    AMP-activated protein kinase appears to have evolved in single-celled eukaryotes as an adenine nucleotide sensor that maintains energy homeostasis at the cellular level. However, during evolution of more complex multicellular organisms, the system has adapted to interact with hormones so that it also plays a key role in balancing energy intake and expenditure at the whole body level. PMID:24583766

  3. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Zhang, Xin-jian; Yuan, Feng-hui; Chen, Ni-na; Deng, Jun-li; Yu, Xiao-zhou; Sheng, Xue-jiao

    2011-03-01

    Based on the continuous measurements of an open-path eddy covariance system, this paper analyzed the characteristics of energy balance components and evapotranspiration in a broad-leaved Korean pine forest in Changbai Mountains in 2008, as well as the differences of energy balance components and evapotranspiration between growth season and dormant season. For the test forest, the year-round energy balance closure was 72%, being at a medium level, compared to the other studies in the Fluxnet community. The energy balance components had significant differences in their diurnal and seasonal variations. In growth season, turbulent energy exchange was dominated by upward latent heat flux, accounting for 66% of available energy; while in dormant season, the turbulent energy exchange was dominated by upward sensible heat flux, accounting for 63% of available energy. The accumulated annual evapotranspiration in the study site in 2008 was 484.7 mm, occupying 87% of the precipitation at the same time period (558.9 mm), which demonstrated that evapotranspiration was the main water loss item in temperate forests of northern China.

  4. Two source energy balance model-refinements and lysimeter tests in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  5. Two source energy balance model:Refinements and lysimeter tests in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  6. Energy Balance and Turbulent Flux Partitioning in a Corn-soybean Rotation in the Midwestern U.S.

    USDA-ARS?s Scientific Manuscript database

    Energy balance at soil surface-canopy interface is critical for better understanding of water balance and changes in regional weather patterns; however, limited long-term, year-round studies have been conducted in agricultural fields. This study was carried out to assess energy balance closure and p...

  7. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression.

    PubMed

    Nilaweera, Kanishka N; Cabrera-Rubio, Raul; Speakman, John R; O'Connor, Paula M; McAuliffe, AnneMarie; Guinane, Caitriona M; Lawton, Elaine M; Crispie, Fiona; Aguilera, Mònica; Stanley, Maurice; Boscaini, Serena; Joyce, Susan; Melgar, Silvia; Cryan, John F; Cotter, Paul D

    2017-07-01

    We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway. Copyright © 2017 the American Physiological Society.

  8. Dike propagation energy balance from deformation modeling and seismic release

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Aoki, Yosuke; Rivalta, Eleonora

    2017-06-01

    Magma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.Plain Language SummaryDike propagation is a dominant mechanism for magma ascent, transport, and eruptions. Besides being an intriguing physical process, it has critical hazard implications. After the magma intrusion starts, it is difficult to predict when and where a specific horizontal dike is going to halt and what its final length will be. In our study, we singled an equation that can be used as a proxy of the expected mechanical <span class="hlt">energy</span> to be released by the opening dike. We related this expected <span class="hlt">energy</span> to the seismic moment of several eruptive intrusions around the world (Afar region, Japanese volcanoes, and Mount Etna). The proposed novel approach is helpful to estimate the total seismic moment to be released, therefore allowing potentially predicting when the dike will end its propagation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25863984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25863984"><span>Differences in correlates of <span class="hlt">energy</span> <span class="hlt">balance</span> in normal weight, overweight and obese adults.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drenowatz, Clemens; Jakicic, John M; Blair, Steven N; Hand, Gregory A</p> <p>2015-01-01</p> <p>The purpose of this study was to examine differences in total daily <span class="hlt">energy</span> expenditure (TDEE), <span class="hlt">energy</span> expenditure in various intensities, as well as total daily <span class="hlt">energy</span> intake (TDEI) and diet quality in normal weight, overweight and obese men and women. Further, the association of <span class="hlt">energy</span> expenditure and <span class="hlt">energy</span> intake with body fatness was examined. The cross-sectional analysis included 430 adults (27.7 ± 3.8 years; 49.3% male). Body weight and height were measured according to standard procedures and percent body fat (BF) was assessed via dual X-ray absorptiometry. <span class="hlt">Energy</span> expenditure was determined via the SenseWear Armband. <span class="hlt">Energy</span> intake and the Healthy Eating Index (HEI) were calculated based on multiple <span class="hlt">24</span>-<span class="hlt">h</span> recalls. Weight adjusted TDEI and TDEE were significantly lower in overweight and obese adults compared to their normal weight peers (p < 0.001) and obese women had a lower HEI (p = 0.006). Overweight and obese adults further displayed a higher proportion of <span class="hlt">energy</span> expenditure spent in sedentary and in light activities (p < 0.001), while the proportion of <span class="hlt">energy</span> expenditure in moderate-to-vigorous physical activity (MVPA) was lower compared to their normal weight peers (p < 0.001). The inverse relationship between BMI or BF and MVPA was stronger than the positive association between BMI or BF and the proportion of <span class="hlt">energy</span> expended in sedentary or light pursuits (r MPA = -0.45 to -0.67/r MVPA = -0.51 to -0.66 vs. r Sedentary = 0.33 to 0.52/r light = 0.36 to 0.47; p < 0.001). These findings emphasise the importance of MPA and bouts of MVPA regarding the maintenance of a normal body weight. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17122359','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17122359"><span>Understanding and addressing the epidemic of obesity: an <span class="hlt">energy</span> <span class="hlt">balance</span> perspective.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hill, James O</p> <p>2006-12-01</p> <p>The intent of this paper is to address the obesity epidemic, which is a term used to describe the sudden and rapid increase in obesity rates that began in the 1980s and continues unabated today. Since 1980, the entire population, regardless of starting weight, is gradually gaining weight. This has led to escalating obesity rates and to obesity being considered one of the most serious public health challenges facing the world. At one level, the obesity epidemic is a classic gene-environment interaction where the human genotype is susceptible to environmental influences that affect <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure. It is also a problem of <span class="hlt">energy</span> <span class="hlt">balance</span>. Understanding the etiology of obesity requires the study of how behavioral and environmental factors have interacted to produce positive <span class="hlt">energy</span> <span class="hlt">balance</span> and weight gain. Reversing the epidemic of obesity will require modifying some combination of these factors to help the population achieve <span class="hlt">energy</span> <span class="hlt">balance</span> at a healthy body weight. While body weight is strongly influenced by biological and behavioral factors, changes in the environment promoting positive <span class="hlt">energy</span> <span class="hlt">balance</span> have been most responsible for the obesity epidemic. Our best strategy for reversing the obesity epidemic is to focus on preventing positive <span class="hlt">energy</span> <span class="hlt">balance</span> in the population through small changes in diet and physical activity that take advantage of our biological systems for regulating <span class="hlt">energy</span> <span class="hlt">balance</span>. Simultaneously, we must address the environment to make it easier to make better food and physical activity choices. This is a very long-term strategy for first stopping and then reversing the escalating obesity rates, but one that can, over time, return obesity rates to pre-1980s levels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24012997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24012997"><span>The impact of weight loss on the <span class="hlt">24</span>-<span class="hlt">h</span> profile of circulating peptide YY and its association with <span class="hlt">24</span>-<span class="hlt">h</span> ghrelin in normal weight premenopausal women.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hill, Brenna R; De Souza, Mary Jane; Wagstaff, David A; Williams, Nancy I</p> <p>2013-11-01</p> <p>Peptide YY (PYY) and ghrelin exhibit a reciprocal association and antagonistic physiological effects in the peripheral circulation. Research has yet to clarify the effect of weight loss on the <span class="hlt">24</span><span class="hlt">h</span> profile of PYY or its association to <span class="hlt">24</span><span class="hlt">h</span> ghrelin. We sought to determine if diet- and exercise-induced weight loss affects the <span class="hlt">24</span><span class="hlt">h</span> profile of PYY and its association with <span class="hlt">24</span><span class="hlt">h</span> ghrelin in normal weight, premenopausal women. Participants (n = 13) were assessed at baseline (BL) and after a 3-month diet and exercise intervention (post). Blood samples obtained q10 min for <span class="hlt">24</span><span class="hlt">h</span> were assayed for total PYY and total ghrelin q60 min from 0800 to 1000 h and 2000 to 0800 h and q20 min from 1000 to 2000 h. The ghrelin/PYY ratio was used as an index of hormonal exposure. Statistical analyses included paired t-tests and linear mixed effects modeling. Body weight (-1.85 ± 0.67 kg; p = 0.02), and body fat (-2.53 ± 0.83%; p = 0.01) decreased from BL to post. Ghrelin AUC (5252 ± 2177 pg/ml/<span class="hlt">24</span><span class="hlt">h</span>; p=0.03), <span class="hlt">24</span><span class="hlt">h</span> mean (216 ± 90 pg/ml; p = 0.03) and peak (300 ± 134 pg/ml; p = 0.047) increased from BL to post. No change occurred in PYY AUC (88.2 ± 163.7 pg/ml; p = 0.60), <span class="hlt">24</span><span class="hlt">h</span> mean (4.8 ± 6.9 pg/ml; p = 0.50) or peak (3.6 ± 6.4 pg/ml; p = 0.58). The <span class="hlt">24</span><span class="hlt">h</span> association between PYY and ghrelin at baseline (p = 0.04) was weakened at post (p = 0.14); however, the ghrelin/PYY lunch ratio increased (p = 0.01) indicating the potential for ghrelin predominance over PYY in the circulation. PYY and ghrelin are reciprocally associated during a period of weight stability, but not following weight loss. An "uncoupling" may have occurred, particularly at lunch, due to factors that modulate ghrelin in response to weight loss. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24423749','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24423749"><span><span class="hlt">Energy</span> expenditure and <span class="hlt">balance</span> among long term liver recipients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ribeiro, Helem S; Anastácio, Lucilene R; Ferreira, Lívia G; Lima, Agnaldo S; Correia, Maria Isabel T D</p> <p>2014-12-01</p> <p>Excessive weight gain in patients undergoing liver transplantation has been well documented. The etiology for this complication is not well defined, although it has a high prevalence in post-transplant patients. Reduced <span class="hlt">energy</span> expenditure may be related to excessive weight gain. Thus, the assessment of the resting <span class="hlt">energy</span> expenditure (REE) in this patient population is of utmost importance. Therefore, patients who underwent liver transplantation had their REEs measured by indirect calorimetry (IC). These results were compared with the demographic, socioeconomic, clinical, anthropometric, dietary and lifestyle variables assessed by uni- and multivariate statistical analyses. The REEs were also compared to estimates using the Harris-Benedict formula, and the patients were classified as hypo-, normo- and hypermetabolic. We evaluated 42 patients with an average of 6.5 years post-transplant and an REE of 1449.7 kcal/day (measured by IC) or 1404.5 kcal/day (predicted by the HB formula). There was great correlation between the methods, and the best predictors of REE were age, weight, amount of lean mass and amount of total body water. Excessive weight was observed in 57% of patients, and obesity was observed in 26.2%. Underreporting of <span class="hlt">energy</span> intake was observed in 65.8% of patients, and most patients (92.7%) were classified as sedentary or less active. No patient was classified as hypometabolic. These results indicate that hypometabolism should be discarded as cause of the high prevalence of overweight and obese patients in the population undergoing LT. However, <span class="hlt">energy</span> consumption and low levels of physical activity may be risk factors. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25597336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25597336"><span>Bone and the regulation of global <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Q; Riddle, R C; Clemens, T L</p> <p>2015-06-01</p> <p>The skeleton, populated by large numbers of osteoblasts and long-lived osteocytes, requires a constant supply of <span class="hlt">energy</span>-rich molecules to fuel the synthesis, deposition and mineralization of bone matrix during bone modelling and remodelling. When these energetic demands are not met, bone acquisition is suppressed. Recent findings suggest that key developmental signals emanating from Wnt low-density lipoprotein-related receptor 5 and hypoxia-inducible factor pathways impact osteoblast bioenergetics to accommodate the <span class="hlt">energy</span> requirements for bone cells to fulfil their function. In vivo studies in several mutant mouse strains have confirmed a link between bone cells and global metabolism, ultimately leading to the identification of hormonal interactions between the skeleton and other tissues. The hormones insulin and leptin affect postnatal bone acquisition, whilst osteocalcin produced by the osteoblast in turn stimulates insulin secretion by the pancreas. These observations have prompted additional questions regarding the nature of the mechanisms of fuel sensing and processing in the osteoblast and their contribution to overall <span class="hlt">energy</span> utilization and homeostasis. Answers to such questions should advance our understanding of metabolic diseases and may ultimately improve management of affected patients. In this review, we highlight recent studies in this field and offer a perspective on the evolutionary implications of bone as a metabolic endocrine organ. © 2015 The Association for the Publication of the Journal of Internal Medicine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22240727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22240727"><span><span class="hlt">24</span>-<span class="hlt">h</span> core temperature in obese and lean men and women.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoffmann, Mindy E; Rodriguez, Sarah M; Zeiss, Dinah M; Wachsberg, Kelley N; Kushner, Robert F; Landsberg, Lewis; Linsenmeier, Robert A</p> <p>2012-08-01</p> <p>Maintenance of core temperature is a major component of <span class="hlt">24</span>-<span class="hlt">h</span> <span class="hlt">energy</span> expenditure, and its dysregulation could contribute to the pathophysiology of obesity. The relationship among temperature, sex, and BMI, however, has not been fully elucidated in humans. This study investigated core temperature in obese and lean individuals at rest, during 20-min exercise, during sleep, and after food consumption. Twelve lean (18.5-24.9 kg/m(2)) and twelve obese (30.0-39.9 kg/m(2)) healthy participants, ages 25-40 years old, were admitted overnight in a clinical research unit. Females were measured in the follicular menstrual phase. Core temperature was measured every minute for <span class="hlt">24</span> <span class="hlt">h</span> using the CorTemp system, a pill-sized sensor that measures core temperature while in the gastrointestinal tract and delivers the measurement via a radio signal to an external recorder. Core temperature did not differ significantly between the obese and lean individuals at rest, postmeals, during exercise, or during sleep (P > 0.5), but core temperature averaged over the entire study was significantly higher (0.1-0.2 °C) in the obese (P = 0.023). Each individual's temperature varied considerably during the study, but at all times, and across the entire study, women were ~0.4 °C warmer than men (P < 0.0001). These data indicate that obesity is not associated with a lower core temperature but that women have a higher core temperature than men at rest, during sleep, during exercise, and after meals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.830a2162M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.830a2162M"><span>Investigation of the <span class="hlt">Energy</span> <span class="hlt">Balance</span> in the Spark Discharge Generator for Nanoparticles Synthesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.</p> <p>2017-07-01</p> <p>In this paper we investigate the <span class="hlt">balance</span> of <span class="hlt">energy</span> in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released <span class="hlt">energy</span> consists of several parts: the <span class="hlt">energy</span> in a discharge gap and the <span class="hlt">energy</span> dissipated in the other elements of the circuit. In turn, in the gap a one part of the <span class="hlt">energy</span> releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize <span class="hlt">energy</span> efficiency of the nanoparticles production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3290465','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3290465"><span><span class="hlt">Energy</span> <span class="hlt">Balanced</span> Strategies for Maximizing the Lifetime of Sparsely Deployed Underwater Acoustic Sensor Networks</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan</p> <p>2009-01-01</p> <p>Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery <span class="hlt">energy</span> consumption will lead to early <span class="hlt">energy</span> depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, <span class="hlt">balanced</span> <span class="hlt">energy</span> dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the <span class="hlt">energy</span> <span class="hlt">balance</span> dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced <span class="hlt">energy</span> consumption in such networks, then we propose two <span class="hlt">energy</span> <span class="hlt">balanced</span> strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve <span class="hlt">balanced</span> <span class="hlt">energy</span> consumption per node while at the same time prolong the networks lifetime. PMID:22399970</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25903982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25903982"><span>The Role of <span class="hlt">Energy</span> <span class="hlt">Balance</span> in Successful Aging Among Elderly Individuals: The Multinational MEDIS Study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tyrovolas, Stefanos; Haro, Josep Maria; Mariolis, Anargiros; Piscopo, Suzanne; Valacchi, Giuseppe; Makri, Kornilia; Zeimbekis, Akis; Tyrovola, Dimitra; Bountziouka, Vassiliki; Gotsis, Efthimios; Metallinos, George; Tur, Josep-Antoni; Matalas, Antonia; Lionis, Christos; Polychronopoulos, Evangelos; Panagiotakos, Demosthenes</p> <p>2015-12-01</p> <p>The determinants that promote living beyond life expectancy and successful aging still remain unknown. The aim of the present work was to evaluate the role of <span class="hlt">energy</span> <span class="hlt">balance</span> in successful aging, in a random sample of older adults living in the Mediterranean basin. During 2005 to 2011, 2,663 older (aged 65-100 years) adults from 21 Mediterranean islands and the rural Mani region (Peloponnesus) of Greece were voluntarily enrolled in the study. Dietary habits, <span class="hlt">energy</span> intake, expenditure, and <span class="hlt">energy</span> <span class="hlt">balance</span> were derived throughout standard procedures. A successful aging index (range = 0-10) was used. After adjusting for several confounders, high <span class="hlt">energy</span> intake (i.e., >1,700 kcal/day), b-coefficient [95% CI] = -0.21[-0.37, -0.05], as well as positive <span class="hlt">energy</span> <span class="hlt">balance</span>, b-coefficient [95% CI] = -0.21 [-0.37, -0.05], were inversely associated with successful aging. A diet with excessive <span class="hlt">energy</span> intake and a positive <span class="hlt">energy</span> <span class="hlt">balance</span> seems to be associated with lower quality of life, as measured through successful aging. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3127512','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3127512"><span>Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or <span class="hlt">24</span>-<span class="hlt">h</span> glucose and insulin excursions123</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J</p> <p>2011-01-01</p> <p>Background: Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). Objective: We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. Design: The subjects were studied in a metabolic facility and consumed <span class="hlt">energy-balanced</span> diets containing 55% of <span class="hlt">energy</span> as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of <span class="hlt">energy</span> requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of <span class="hlt">energy-balanced</span> diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The <span class="hlt">24</span>-<span class="hlt">h</span> glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Results: Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. Conclusion: The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853. PMID:21613559</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21613559','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21613559"><span>Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or <span class="hlt">24</span>-<span class="hlt">h</span> glucose and insulin excursions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stanhope, Kimber L; Griffen, Steven C; Bremer, Andrew A; Vink, Roel G; Schaefer, Ernst J; Nakajima, Katsuyuki; Schwarz, Jean-Marc; Beysen, Carine; Berglund, Lars; Keim, Nancy L; Havel, Peter J</p> <p>2011-07-01</p> <p>Consumption of sugar-sweetened beverages has been shown to be associated with dyslipidemia, insulin resistance, fatty liver, diabetes, and cardiovascular disease. It has been proposed that adverse metabolic effects of chronic consumption of sugar-sweetened beverages are a consequence of increased circulating glucose and insulin excursions, ie, dietary glycemic index (GI). We determined whether the greater adverse effects of fructose than of glucose consumption were associated with glucose and insulin exposures. The subjects were studied in a metabolic facility and consumed <span class="hlt">energy-balanced</span> diets containing 55% of <span class="hlt">energy</span> as complex carbohydrate for 2 wk (GI = 64). The subjects then consumed 25% of <span class="hlt">energy</span> requirements as fructose- or glucose-sweetened beverages along with their usual ad libitum diets for 8 wk at home and then as part of <span class="hlt">energy-balanced</span> diets for 2 wk at the metabolic facility (fructose GI = 38, glucose GI = 83). The <span class="hlt">24</span>-<span class="hlt">h</span> glucose and insulin profiles and fasting plasma glycated albumin and fructosamine concentrations were measured 0, 2, 8, and 10 wk after beverage consumption. Consumption of fructose-sweetened beverages lowered glucose and insulin postmeal peaks and the 23-h area under the curve compared with the baseline diet and with the consumption of glucose-sweetened beverages (all P < 0.001, effect of sugar). Plasma glycated albumin concentrations were lower 10 wk after fructose than after glucose consumption (P < 0.01, effect of sugar), whereas fructosamine concentrations did not differ between groups. The results suggest that the specific effects of fructose, but not of glucose and insulin excursions, contribute to the adverse effects of consuming sugar-sweetened beverages on lipids and insulin sensitivity. This study is registered at clinicaltrials.gov as NCT01165853.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4561833','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4561833"><span>Reciprocal Compensation to Changes in Dietary Intake and <span class="hlt">Energy</span> Expenditure within the Concept of <span class="hlt">Energy</span> <span class="hlt">Balance</span>123</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drenowatz, Clemens</p> <p>2015-01-01</p> <p>An imbalance between <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure is the primary etiology for excess weight gain. Increased <span class="hlt">energy</span> expenditure via exercise and <span class="hlt">energy</span> restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to <span class="hlt">energy</span> <span class="hlt">balance</span>. Current research points to a loose coupling between <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in <span class="hlt">energy</span> <span class="hlt">balance</span> can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their <span class="hlt">energy</span> intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of “compensators” and “noncompensators.” This review emphasizes the need for more research with simultaneous measurements of all major components contributing to <span class="hlt">energy</span> <span class="hlt">balance</span> to enhance the understanding of the regulation of <span class="hlt">energy</span> <span class="hlt">balance</span>, which is crucial to address the current obesity epidemic. PMID:26374181</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001512','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001512"><span>Intraseasonal Variations in Tropical <span class="hlt">Energy</span> <span class="hlt">Balance</span>: Relevance to Climate Sensitivity?</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.</p> <p>2011-01-01</p> <p>Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat <span class="hlt">balance</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25212656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25212656"><span>Berberine interfered with breast cancer cells metabolism, <span class="hlt">balancing</span> <span class="hlt">energy</span> homeostasis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Wen; Li, Ning; Tan, Rui; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Wang, Yitao; Hu, Xiaodong</p> <p>2015-01-01</p> <p>Berberine exerted anti-cancer effect in various cancer cell lines, and was also implied in the treatment of metabolic related diseases. Given the metabolic modulation, we hypothesized that berberine possessed anti-cancer effect under the assistance of metabolic interference. Working as a modulator, metabolic enzyme inhibitor or complex network regulator in <span class="hlt">energy</span> metabolism, berberine was highlighted in current cancer research. A reasonable cross talk between Chinese medicine and <span class="hlt">energy</span> homeostasis provided a solid foundation for berberine interference on cancer cells reprogramming metabolism. Our result showed that berberine regulated the reprogramming metabolism through three aspects simultaneously, including mitochondrial oxidative phosphorylation, glycolysis and macromolecular synthesis. This interference with reprogramming metabolism was a continuous, simultaneous and sustainable approach in a moderate mode. And it could be regarded as a gentle and virtuous cycle from a multi-level perspective, indicating an integrated approach in cancer therapy. Meanwhile, we thought that Chinese medicine could link cancer and metabolic related diseases from a dynamic perspective through integrated network pharmacology. This cross talk would be a realistic and significant strategy for anti-cancer drug discovery and needs further investigation in future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26415589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26415589"><span>Brain lipid sensing and the neural control of <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magnan, Christophe; Levin, Barry E; Luquet, Serge</p> <p>2015-12-15</p> <p>Fatty acid (FA) -sensitive neurons are present in the brain, especially the hypothalamus, and play a key role in the neural control of <span class="hlt">energy</span> and glucose homeostasis including feeding behavior, secretion insulin and action. Subpopulations of neurons in the arcuate and ventromedial hypothalamic nuclei are selectively either activated or inhibited by FA. Molecular effectors of these FA effects include ion channels such as chloride, potassium or calcium. In addition, at least half of the responses in the hypothalamic ventromedial FA neurons are mediated through interaction with the FA translocator/receptor, FAT/CD36, that does not require metabolism to activate intracellular signaling downstream. Recently, an important role of lipoprotein lipase in FA detection has also been demonstrated not only in the hypothalamus, but also in the hippocampus and striatum. Finally, FA could overload <span class="hlt">energy</span> homeostasis via increased hypothalamic ceramide synthesis which could, in turn, contribute to the pathogenesis of diabetes of obesity and/or type 2 in predisposed individuals by disrupting the endocrine signaling pathways of insulin and/or leptin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23443827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23443827"><span>Obesity as malnutrition: the dimensions beyond <span class="hlt">energy</span> <span class="hlt">balance</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wells, J C K</p> <p>2013-05-01</p> <p>The aetiology of obesity is seemingly simple to understand: individuals consume more <span class="hlt">energy</span> than they expend, with the excess <span class="hlt">energy</span> being stored in adipose tissue. Public health campaigns therefore promote dietary restraint and physical exercise, and emphasize individual responsibility for these behaviours. Increasingly, however, researchers are switching from thermodynamic to metabolic models of obesity, thereby clarifying how specific environmental factors promote lipogenesis. Obesity can best be explained not by counting 'calories in and out', but by understanding how specific dietary products and activity behaviours perturb cellular metabolism and promote net lipogenesis. This metabolic approach can furthermore be integrated with more sophisticated models of how commercial practices drive the consumer trends that promote obesogenic behaviours. Notably, obesity treatment has proven more effective if it bypasses individual responsibility, suggesting that a similar approach placing less emphasis on individual responsibility would improve the efficacy of obesity prevention. Successful obesity prevention campaigns are likely to emerge only when the public receive better 'protection' from the commercial practices that are driving the global obesity epidemic. Rather than populations failing to heed governments' public health advice, governments are currently failing the public by abandoning their responsibility for regulating commercial activities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26415590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26415590"><span>Fibroblast growth factor-21, <span class="hlt">energy</span> <span class="hlt">balance</span> and obesity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giralt, Marta; Gavaldà-Navarro, Aleix; Villarroya, Francesc</p> <p>2015-12-15</p> <p>Fibroblast growth factor (FGF)-21 is an endocrine member of the FGF family with healthy effects on glucose and lipid metabolism. FGF21 reduces glycemia and lipidemia in rodent models of obesity and type 2 diabetes. In addition to its effects improving insulin sensitivity, FGF21 causes weight loss by increasing <span class="hlt">energy</span> expenditure. Activation of the thermogenic activity of brown adipose tissue and promotion of the appearance of the so-called beige/brite type of brown adipocytes in white fat are considered the main mechanisms underlying the leaning effects of FGF21. Paradoxically, however, obesity in rodents and humans is characterized by high levels of FGF21 in the blood. Some degree of resistance to the actions of FGF21 has been proposed as part of the endocrine alterations in obesity. The resistance in adipose tissue from obese rodents and patients is likely attributable to abnormally low levels of the FGF co-receptor β-Klotho, required for FGF21 cellular action. However, native FGF21 and FGF21 derivatives retain their healthy metabolic and weight-loss effects when used as pharmacological agents to treat obese rodents and humans. FGF21 derivatives or molecules mimicking FGF21 action appear to be interesting candidates for the development of novel anti-obesity drugs designed to increase <span class="hlt">energy</span> expenditure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BoLMe.158..489S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BoLMe.158..489S"><span>Surface-Parallel Sensor Orientation for Assessing <span class="hlt">Energy</span> <span class="hlt">Balance</span> Components on Mountain Slopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serrano-Ortiz, P.; Sánchez-Cañete, E. P.; Olmo, F. J.; Metzger, S.; Pérez-Priego, O.; Carrara, A.; Alados-Arboledas, L.; Kowalski, A. S.</p> <p>2016-03-01</p> <p>The consistency of eddy-covariance measurements is often evaluated in terms of the degree of <span class="hlt">energy</span> <span class="hlt">balance</span> closure. Even over sloping terrain, instrumentation for measuring <span class="hlt">energy</span> <span class="hlt">balance</span> components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation (Rn) and soil heat fluxes ( G) are treated differently, and typically only Rn is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal Rn and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the <span class="hlt">energy</span> <span class="hlt">balance</span> closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal Rn, when only vertical Rn measurements are available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3032596','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3032596"><span>Current trends in targeting the hormonal regulation of appetite and <span class="hlt">energy</span> <span class="hlt">balance</span> to treat obesity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E; Waldman, Scott A</p> <p>2011-01-01</p> <p>With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates <span class="hlt">energy</span> <span class="hlt">balance</span>. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term <span class="hlt">energy</span> <span class="hlt">balance</span> by regulating appetite and/or metabolism. These endogenous mediators of <span class="hlt">energy</span> <span class="hlt">balance</span> have been the focus of many anti-obesity drug-development programs aimed at either amplifying endogenous anorexigenic/lipolytic signaling or blocking endogenous orexigenic/lipogenic signaling. Here, we discuss the efficacy and safety of targeting these pathways for the pharmacologic treatment of obesity. PMID:21297878</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcGeo..63.1516T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcGeo..63.1516T"><span>An Analysis of Turbulent Heat Fluxes and the <span class="hlt">Energy</span> <span class="hlt">Balance</span> During the REFLEX Campaign</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tol, Christiaan van der; Timmermans, Wim; Corbari, Chiara; Carrara, Arnaud; Timmermans, Joris; Su, Zhongbo</p> <p>2015-12-01</p> <p>Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of <span class="hlt">energy</span> <span class="hlt">balance</span> fluxes and vertical temperature and wind profiles. The <span class="hlt">energy</span> <span class="hlt">balance</span> closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the <span class="hlt">energy</span> <span class="hlt">balance</span> at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin-Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcGeo..63.1516V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcGeo..63.1516V"><span>An Analysis of Turbulent Heat Fluxes and the <span class="hlt">Energy</span> <span class="hlt">Balance</span> During the REFLEX Campaign</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Tol, Christiaan; Timmermans, Wim; Corbari, Chiara; Carrara, Arnaud; Timmermans, Joris; Su, Zhongbo</p> <p>2015-12-01</p> <p>Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of <span class="hlt">energy</span> <span class="hlt">balance</span> fluxes and vertical temperature and wind profiles. The <span class="hlt">energy</span> <span class="hlt">balance</span> closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the <span class="hlt">energy</span> <span class="hlt">balance</span> at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin—Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880008713','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880008713"><span>Evaluation of surface <span class="hlt">energy</span> and radiation <span class="hlt">balance</span> systems on the Konza Prairie</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fritschen, Leo J.</p> <p>1987-01-01</p> <p>Four Surface <span class="hlt">Energy</span> and Radiation <span class="hlt">Balance</span> Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface <span class="hlt">energy</span> and radiation <span class="hlt">balances</span> were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the <span class="hlt">energy</span> <span class="hlt">balance</span> components for all days and systems are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4220782','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4220782"><span>Resistant starch and <span class="hlt">energy</span> <span class="hlt">balance</span>: impact on weight loss and maintenance</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Higgins, Janine A.</p> <p>2013-01-01</p> <p>The obesity epidemic has prompted researchers to find effective weight loss and maintenance tools. Weight loss and subsequent maintenance are reliant on <span class="hlt">energy</span> <span class="hlt">balance</span>; the net difference between <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure. Negative <span class="hlt">energy</span> <span class="hlt">balance</span>, lower intake than expenditure, results in weight loss whereas positive <span class="hlt">energy</span> <span class="hlt">balance</span>, greater intake than expenditure, results in weight gain. Resistant starch has many attributes which could promote weight loss and/or maintenance including reduced prostprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total <span class="hlt">energy</span> expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food thereby increasing total <span class="hlt">energy</span> expenditure. Due its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a “weight loss wonder food”. This review focuses on data describing the effects of resistant starch on body weight, <span class="hlt">energy</span> intake, <span class="hlt">energy</span> expenditure, and body composition to determine if there is sufficient evidence to warrant these claims. PMID:24499148</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24499148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24499148"><span>Resistant starch and <span class="hlt">energy</span> <span class="hlt">balance</span>: impact on weight loss and maintenance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Higgins, Janine A</p> <p>2014-01-01</p> <p>The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on <span class="hlt">energy</span> <span class="hlt">balance</span>--the net difference between <span class="hlt">energy</span> intake and <span class="hlt">energy</span> expenditure. Negative <span class="hlt">energy</span> <span class="hlt">balance</span>, lower intake than expenditure, results in weight loss whereas positive <span class="hlt">energy</span> <span class="hlt">balance</span>, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total <span class="hlt">energy</span> expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total <span class="hlt">energy</span> expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, <span class="hlt">energy</span> intake, <span class="hlt">energy</span> expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26653842','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26653842"><span>The effect of breakfast on appetite regulation, <span class="hlt">energy</span> <span class="hlt">balance</span> and exercise performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clayton, David J; James, Lewis J</p> <p>2016-08-01</p> <p>The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in <span class="hlt">energy</span> intake or a reduction in <span class="hlt">energy</span> expenditure over the remainder of the day, resulting in a state of positive <span class="hlt">energy</span> <span class="hlt">balance</span>. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of <span class="hlt">energy</span> <span class="hlt">balance</span>. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and <span class="hlt">energy</span> <span class="hlt">balance</span>, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily <span class="hlt">energy</span> intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects <span class="hlt">energy</span> expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conc