Science.gov

Sample records for 24-h energy balance

  1. Acute effect of ephedrine on 24-h energy balance

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Gottesdiener, K.; Jordan, J.; Chen, K.; Flattery, S.; Larson, P. J.; Candelore, M. R.; Gertz, B.; Robertson, D.; Sun, M.

    1999-01-01

    Ephedrine is used to help achieve weight control. Data on its true efficacy and mechanisms in altering energy balance in human subjects are limited. We aimed to determine the acute effect of ephedrine on 24-h energy expenditure, mechanical work and urinary catecholamines in a double-blind, randomized, placebo-controlled, two-period crossover study. Ten healthy volunteers were given ephedrine (50 mg) or placebo thrice daily during each of two 24-h periods (ephedrine and placebo) in a whole-room indirect calorimeter, which accurately measures minute-by-minute energy expenditure and mechanical work. Measurements were taken of 24-h energy expenditure, mechanical work, urinary catecholamines and binding of (+/-)ephedrine in vitro to human beta1-, beta2- and beta3-adrenoreceptors. Twenty-four-hour energy expenditure was 3.6% greater (8965+/-1301 versus 8648+/-1347 kJ, P<0.05) with ephedrine than with placebo, but mechanical work was not different between the ephedrine and placebo periods. Noradrenaline excretion was lower with ephedrine (0.032+/-0.011 microg/mg creatinine) compared with placebo (0.044+/-0.012 microg/mg creatinine) (P<0.05). (+/-)Ephedrine is a relatively weak partial agonist of human beta1- and beta2-adrenoreceptors, and had no detectable activity at human beta3-adrenoreceptors. Ephedrine (50 mg thrice daily) modestly increases energy expenditure in normal human subjects. A lack of binding of ephedrine to beta3-adrenoreceptors and the observed decrease in urinary noradrenaline during ephedrine treatment suggest that the thermogenic effect of ephedrine results from direct beta1-/beta2-adrenoreceptor agonism. An indirect beta3-adrenergic effect through the release of noradrenaline seems unlikely as urinary noradrenaline decreased significantly with ephedrine.

  2. Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultra-marathon.

    PubMed

    Costa, Ricardo J S; Gill, Samantha K; Hankey, Joanne; Wright, Alice; Marczak, Slawomir

    2014-08-14

    The present study aimed to assess the adequacy of energy, macronutrients and water intakes of ultra-endurance runners (UER) competing in a 24 h ultra-marathon (distance range: 122-208 km). The ad libitum food and fluid intakes of the UER (n 25) were recorded throughout the competition and analysed using dietary analysis software. Body mass (BM), urinary ketone presence, plasma osmolality (POsmol) and volume change were determined at pre- and post-competition time points. Data were analysed using appropriate t tests, with significance set at P <0·05. The total energy intake and expenditure of the UER were 20 (sd 12) and 55 (sd 11) MJ, respectively (control (CON) (n 17): 12 (sd 1) and 14 (sd 5) MJ, respectively). The protein, carbohydrate and fat intakes of the UER were 1·1 (sd 0·4), 11·3 (sd 7·0) and 1·5 (sd 0·7) g/kg BM, respectively. The rate of carbohydrate intake during the competition was 37 (sd 24) g/h. The total water intake of the UER was 9·1 (sd 4·0) litres (CON: 2·1 (sd 1·0) litres), while the rate of water intake was 378 (sd 164) ml/h. Significant BM loss occurred at pre- to post-competition time points (P =0·001) in the UER (1·6 (sd 2·0) %). No significant changes in POsmol values were observed at pre- (285 (sd 11) mOsmol/kg) to post-competition (287 (sd 10) mOsmol/kg) time points in the UER and were lower than those recorded in the CON group (P <0·05). However, plasma volume (PV) increased at post-competition time points in the UER (10·2 (sd 9·7) %; P <0·001). Urinary ketones were evident in the post-competition samples of 90 % of the UER. Energy deficit was observed in all the UER, with only one UER achieving the benchmark recommendations for carbohydrate intake during endurance exercise. Despite the relatively low water intake rates recorded in the UER, hypohydration does not appear to be an issue, considering increases in PV values observed in the majority (80 %) of the UER. Population-specific dietary recommendations may be

  3. A Mobile Phone Based Method to Assess Energy and Food Intake in Young Children: A Validation Study against the Doubly Labelled Water Method and 24 h Dietary Recalls

    PubMed Central

    Delisle Nyström, Christine; Forsum, Elisabet; Henriksson, Hanna; Trolle-Lagerros, Ylva; Larsson, Christel; Maddison, Ralph; Timpka, Toomas; Löf, Marie

    2016-01-01

    Mobile phones are becoming important instruments for assessing diet and energy intake. We developed the Tool for Energy Balance in Children (TECH), which uses a mobile phone to assess energy and food intake in pre-school children. The aims of this study were: (a) to compare energy intake (EI) using TECH with total energy expenditure (TEE) measured via doubly labelled water (DLW); and (b) to compare intakes of fruits, vegetables, fruit juice, sweetened beverages, candy, ice cream, and bakery products using TECH with intakes acquired by 24 h dietary recalls. Participants were 39 healthy, Swedish children (5.5 ± 0.5 years) within the ongoing Mobile-based Intervention Intended to Stop Obesity in Preschoolers (MINISTOP) obesity prevention trial. Energy and food intakes were assessed during four days using TECH and 24 h telephone dietary recalls. Mean EI (TECH) was not statistically different from TEE (DLW) (5820 ± 820 kJ/24 h and 6040 ± 680kJ/24 h, respectively). No significant differences in the average food intakes using TECH and 24 h dietary recalls were found. All food intakes were correlated between TECH and the 24 h dietary recalls (ρ = 0.665–0.896, p < 0.001). In conclusion, TECH accurately estimated the average intakes of energy and selected foods and thus has the potential to be a useful tool for dietary studies in pre-school children, for example obesity prevention trials. PMID:26784226

  4. The 24-h Energy Intake of Obese Adolescents Is Spontaneously Reduced after Intensive Exercise: A Randomized Controlled Trial in Calorimetric Chambers

    PubMed Central

    Thivel, David; Isacco, Laurie; Montaurier, Christophe; Boirie, Yves

    2012-01-01

    Background Physical exercise can modify subsequent energy intake and appetite and may thus be of particular interest in terms of obesity treatment. However, it is still unclear whether an intensive bout of exercise can affect the energy consumption of obese children and adolescents. Objective To compare the impact of high vs. moderate intensity exercises on subsequent 24-h energy intake, macronutrient preferences, appetite sensations, energy expenditure and balance in obese adolescent. Design This randomized cross-over trial involves 15 obese adolescent boys who were asked to randomly complete three 24-h sessions in a metabolic chamber, each separated by at least 7 days: (1) sedentary (SED); (2) Low-Intensity Exercise (LIE) (40% maximal oxygen uptake, VO2max); (3) High-Intensity Exercise (HIE) (75%VO2max). Results Despite unchanged appetite sensations, 24-h total energy intake following HIE was 6–11% lower compared to LIE and SED (p<0.05), whereas no differences appeared between SED and LIE. Energy intake at lunch was 9.4% and 8.4% lower after HIE compared to SED and LIE, respectively (p<0.05). At dinner time, it was 20.5% and 19.7% lower after HIE compared to SED and LIE, respectively (p<0.01). 24-h energy expenditure was not significantly altered. Thus, the 24-h energy balance was significantly reduced during HIE compared to SED and LIE (p<0.01), whereas those of SED and LIE did not differ. Conclusions In obese adolescent boys, HIE has a beneficial impact on 24-h energy balance, mainly due to the spontaneous decrease in energy intake during lunch and dinner following the exercise bout. Prescribing high-intensity exercises to promote weight loss may therefore provide effective results without affecting appetite sensations and, as a result, food frustrations. Trial Registration ClinicalTrial.gov NCT01036360 PMID:22272251

  5. Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry.

    PubMed

    Dauncey, M J

    1980-03-01

    1. The metabolic effects of increasing or decreasing the usual energy intake for only 1 d were assessed in eight adult volunteers. Each subject lived for 28 h in a whole-body calorimeter at 26 degrees on three separate occasions of high, medium or low energy intake. Intakes (mean +/- SEM) of 13830 +/- 475 (high), 8400 +/- 510 (medium) and 3700 +/- 359 (low) kj/24 h were eaten in three meals of identical nutrient composition. 2. Energy expenditure was measured continuously by two methods: direct calorimetry, as total heat loss partitioned into its evaporative and sensible components: and indirect calorimetry, as heat production calculated from oxygen consumption and carbon dioxide production. For the twenty-four sessions there was a mean difference of only 1.2 +/- 0.14 (SEM) % between the two estimates of 24 h energy expenditure, with heat loss being less than heat production. Since experimental error was involved in both estimates it would be wrong to ascribe greater accuracy to either one of the measures of energy expenditure. 3. Despite the wide variation in the metabolic responses of the subjects to over-eating and under-eating, in comparison with the medium intake the 24 h heat production increased significantly by 10% on the high intake and decreased by 6% on the low intake. Mean (+/- SEM) values for 24 h heat production were 8770 +/- 288, 7896 +/- 297 and 7495 +/- 253 kJ on the high, medium and low intakes respectively. The effects of over-eating were greatest at night and the resting metabolic rate remained elevated by 12% 14 h after the last meal. By contrast, during under-eating the metabolic rate at night decreased by only 1%. 4. Evaporative heat loss accounted for an average of 25% of the total heat loss at each level of intake. Changes in evaporative heat loss were +14% on the high intake and -10% on the low intake. Sensible heat loss altered by +9 and -5% on the high and low intakes respectively. 5. It is concluded that (a) the effects on 24 h energy

  6. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment.

    PubMed

    Skelly, Lauren E; Andrews, Patricia C; Gillen, Jenna B; Martin, Brian J; Percival, Michael E; Gibala, Martin J

    2014-07-01

    Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.

  7. Optical excitation energies, Stokes shift, and spin-splitting of C24H72Si14.

    PubMed

    Zope, Rajendra R; Baruah, Tunna; Richardson, Steven L; Pederson, Mark R; Dunlap, Brett I

    2010-07-21

    As an initial step toward the synthesis and characterization of sila-diamondoids, such as sila-adamantane (Si(10)H(16),T(d)), the synthesis of a fourfold silylated sila-adamantane molecule (C(24)H(72)Si(14),T(d)) has been reported in literature [Fischer et al., Science 310, 825 (2005)]. We present the electronic structure, ionization energies, quasiparticle gap, and the excitation energies for the Si(14)(CH(3))(24) and the exact silicon analog of adamantane Si(10)H(16) obtained at the all-electron level using the delta-self-consistent-field and transitional state methods within two different density functional models: (i) Perdew-Burke-Ernzerhof generalized gradient approximation and (ii) fully analytic density functional (ADFT) implementation with atom dependent potential. The ADFT is designed so that molecules separate into atoms having exact atomic energies. The calculations within the two models agree well, to within 0.25 eV for optical excitations. The effect of structural relaxation in the presence of electron-hole-pair excitations is examined to obtain its contribution to the luminescence Stokes shift. The spin-influence on exciton energies is also determined. Our calculations indicate overall decrease in the absorption, emission, quasiparticle, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps, ionization energies, Stokes shift, and exciton binding energy when passivating hydrogens in the Si(10)H(16) are replaced with electron donating groups such as methyl (Me) and trimehylsilyl (-Si(Me)(3)).

  8. Variants in the LEPR gene are nominally associated with higher BMI and lower 24-h energy expenditure in Pima Indians.

    PubMed

    Traurig, Michael T; Perez, Jessica M; Ma, Lijun; Bian, Li; Kobes, Sayuko; Hanson, Robert L; Knowler, William C; Krakoff, Jonathan A; Bogardus, Clifton; Baier, Leslie J

    2012-12-01

    Genome-wide association studies (GWASs) have been used to search for susceptibility genes for type 2 diabetes and obesity in the Pima Indians, a population with a high prevalence of both diseases. In these studies, a variant (rs2025804) in the LEPR gene was nominally associated with BMI in 1,082 subjects (P = 0.03 adjusted for age, sex, birth year, and family membership). Therefore the LEPR and leptin overlapping transcript (LEPROT) genes were selected for further sequencing and genotyping in larger population-based samples for association analyses with obesity-related phenotypes. Selected variants (n = 80) spanning these genes were genotyped in a sample of full-heritage Pima Indians (n = 2,842) and several common variants including rs2025804 were nominally associated with BMI (P = 0.05-0.003 adjusted for age, sex, birth year, and family membership). Four common tag variants associated with BMI in the full-heritage Pima Indian sample were genotyped in a second sample of mixed-heritage Native Americans (n = 2,969) and three of the variants showed nominal replication (P = 0.03-0.006 adjusted as above and additionally for Indian heritage). Combining both samples provided the strongest evidence for association (adjusted P = 0.0003-0.0001). A subset of these individuals (n = 403) had been metabolically characterized for predictors of obesity and the BMI risk alleles for the variants tagged by rs2025804 were also associated with lower 24-h energy expenditure (24hEE) as assessed in a human respiratory chamber (P = 0.0007 adjusted for age, sex, fat mass, fat-free mass, activity, and family membership). We conclude that common noncoding variation in the LEPR gene is associated with higher BMI and lower energy expenditure in Native Americans. PMID:22810975

  9. Reproducibility of 24-h post-exercise changes in energy intake in overweight and obese women using current methodology.

    PubMed

    Brown, Gemma L; Lean, Michael E; Hankey, Catherine R

    2012-07-01

    Direct observation(s) of energy intake (EI) via buffet meals served in the laboratory are often carried out within short-term exercise intervention studies. The reproducibility of values obtained has not been assessed either under resting control conditions or post-exercise, in overweight and obese females. A total of fourteen sedentary, pre-menopausal females (BMI 30.0 (SD 5.1) kg/m²) completed four trials; two exercise and two control. Each trial lasted 24 h spanning over 2 d; conducted from afternoon on day 1 and morning on day 2. An exercise session to expend 1.65 MJ was completed on day 1 of exercise trials, and three buffet meals were served during each trial. Reproducibility of post-exercise changes in energy and macronutrient intakes was assessed at each individual buffet meal by intraclass correlation coefficient (r(i)). Only the r(i) values for post-exercise changes in energy (r(i) 0.44 (95 % CI - 0.03, 0.77), P = 0.03) and fat intake (r(i) 0.51 (95 % CI 0.04, 0.81), P = 0.02) at the lunch buffet meal achieved statistical significance; however, these r i values were weak and had large associated 95 % CI, which indicates a large degree of variability associated with these measurements. Energy and macronutrient intakes at the breakfast and evening buffet meals were not reproducible. This study concludes that the frequently used laboratory-based buffet meal method of assessing EI does not produce reliable, reproducible post-exercise changes in EI in overweight and obese women.

  10. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exercise might have a persistent effect on energy expenditure and fat oxidation, resulting in increased fat loss. However, even without weight loss, exercise results in positive metabolic effects. The effect of an aerobic exercise program on 24-h total energy expenditure (TEE), and its components-ba...

  11. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men.

    PubMed

    Bérubé-Parent, Sonia; Pelletier, Catherine; Doré, Jean; Tremblay, Angelo

    2005-09-01

    It has been reported that green tea has a thermogenic effect, due to its caffeine content and probably also to the catechin, epigallocatechin-3-gallate (EGCG). The main aim of the present study was to compare the effect of a mixture of green tea and Guarana extracts containing a fixed dose of caffeine and variable doses of EGCG on 24 h energy expenditure and fat oxidation. Fourteen subjects took part to this randomized, placebo-controlled, double-blind, cross-over study. Each subject was tested five times in a metabolic chamber to measure 24 h energy expenditure, substrate oxidation and blood pressure. During each stay, the subjects ingested a capsule of placebo or capsules containing 200 mg caffeine and a variable dose of EGCG (90, 200, 300 or 400 mg) three times daily, 30 min before standardized meals. Twenty-four hour energy expenditure increased significantly by about 750 kJ with all EGCG-caffeine mixtures compared with placebo. No effect of the EGCG-caffeine mixture was observed for lipid oxidation. Systolic and diastolic blood pressure increased by about 7 and 5 mmHg, respectively, with the EGCG-caffeine mixtures compared with placebo. This increase was significant only for 24 h diastolic blood pressure. The main finding of the study was the increase in 24 h energy expenditure with the EGCG-caffeine mixtures. However, this increase was similar with all doses of EGCG in the mixtures.

  12. Energy balance in peridynamics.

    SciTech Connect

    Lehoucq, Richard B.; Silling, Stewart Andrew

    2010-09-01

    The peridynamic model of solid mechanics treats internal forces within a continuum through interactions across finite distances. These forces are determined through a constitutive model that, in the case of an elastic material, permits the strain energy density at a point to depend on the collective deformation of all the material within some finite distance of it. The forces between points are evaluated from the Frechet derivative of this strain energy density with respect to the deformation map. The resulting equation of motion is an integro-differential equation written in terms of these interparticle forces, rather than the traditional stress tensor field. Recent work on peridynamics has elucidated the energy balance in the presence of these long-range forces. We have derived the appropriate analogue of stress power, called absorbed power, that leads to a satisfactory definition of internal energy. This internal energy is additive, allowing us to meaningfully define an internal energy density field in the body. An expression for the local first law of thermodynamics within peridynamics combines this mechanical component, the absorbed power, with heat transport. The global statement of the energy balance over a subregion can be expressed in a form in which the mechanical and thermal terms contain only interactions between the interior of the subregion and the exterior, in a form anticipated by Noll in 1955. The local form of this first law within peridynamics, coupled with the second law as expressed in the Clausius-Duhem inequality, is amenable to the Coleman-Noll procedure for deriving restrictions on the constitutive model for thermomechanical response. Using an idea suggested by Fried in the context of systems of discrete particles, this procedure leads to a dissipation inequality for peridynamics that has a surprising form. It also leads to a thermodynamically consistent way to treat damage within the theory, shedding light on how damage, including the

  13. Appetite and energy balancing.

    PubMed

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control.

  14. Appetite and energy balancing.

    PubMed

    Rogers, Peter J; Brunstrom, Jeffrey M

    2016-10-01

    pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of emptiness of the gut and food liking related to the food's sensory qualities and macronutrient value and the individual's dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control. PMID:27059321

  15. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  16. Exercise Increases 24-h Fat Oxidation Only When It Is Performed Before Breakfast

    PubMed Central

    Iwayama, Kaito; Kurihara, Reiko; Nabekura, Yoshiharu; Kawabuchi, Ryosuke; Park, Insung; Kobayashi, Masashi; Ogata, Hitomi; Kayaba, Momoko; Satoh, Makoto; Tokuyama, Kumpei

    2015-01-01

    Background As part of the growing lifestyle diversity in modern society, there is wide variation in the time of day individuals choose to exercise. Recent surveys in the US and Japan have reported that on weekdays, more people exercise in the evening, with fewer individuals exercising in the morning or afternoon. Exercise performed in the post-prandial state has little effect on accumulated fat oxidation over 24 h (24-h fat oxidation) when energy intake is matched to energy expenditure (energy-balanced condition). The present study explored the possibility that exercise increases 24-h fat oxidation only when performed in a post-absorptive state, i.e. before breakfast. Methods Indirect calorimetry using a metabolic chamber was performed in 10 young, non-obese men over 24 h. Subjects remained sedentary (control) or performed 60-min exercise before breakfast (morning), after lunch (afternoon), or after dinner (evening) at 50% of VO2max. All trials were designed to be energy balanced over 24 h. Time course of energy and substrate balance relative to the start of calorimetry were estimated from the differences between input (meal consumption) and output (oxidation). Findings Fat oxidation over 24 h was increased only when exercise was performed before breakfast (control, 456 ± 61; morning, 717 ± 64; afternoon, 446 ± 57; and evening, 432 ± 44 kcal/day). Fat oxidation over 24 h was negatively correlated with the magnitude of the transient deficit in energy and carbohydrate. Interpretation Under energy-balanced conditions, 24-h fat oxidation was increased by exercise only when performed before breakfast. Transient carbohydrate deficits, i.e., glycogen depletion, observed after morning exercise may have contributed to increased 24-h fat oxidation. PMID:26844280

  17. Balancing the Energy Pendulum.

    ERIC Educational Resources Information Center

    MacKinnon, Sharon

    1987-01-01

    The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)

  18. Energy balance in motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubńiski, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    This paper present the concept of testing energy balance. The test was conducted on the test bench equipped with the alternator, battery and standard mounted current receivers. The course of measurements consisted in recording the indications of three ammeters and a tachometer. On the basis of the recorded current values, it was possible to determine: energy received from the battery, consumed by the receivers and the energy drawn from the alternator.

  19. Ad libitum food intake on a "cafeteria diet" in Native American women: relations with body composition and 24-h energy expenditure.

    PubMed

    Larson, D E; Tataranni, P A; Ferraro, R T; Ravussin, E

    1995-11-01

    Epidemiologic studies consistently report associations between obesity and dietary fat but not total energy intake. We measured ad libitum food intake in a laboratory setting and evaluated its relation to body weight and composition, energy expenditure, and macronutrient utilization in 28 women of Pima-Papago heritage (aged 27 +/- 7 y, 85.3 +/- 19.0 kg, 44 +/- 6% body fat; means +/- SD). All women were studied during the follicular phase of the menstrual cycle. After a 4-d weight-maintenance period, the volunteers selected their food for 5 d from computerized vending machines offering a variety of familiar and preferred foods, ie, a "cafeteria diet". Twenty-four-hour energy expenditure and substrate oxidation were measured in a respiratory chamber on the 4th d o weight maintenance and the 5th d of ad libitum intake. Average ad libitum intake was 13,732 +/- 4238 kJ/d (11 +/- 1% protein, 40 +/- 1% fat, 49 +/- 4% carbohydrate), ie, moderate overeating by 27 +/- 37% above weight maintenance requirements (range: -27% to 124%). Percent body fat correlated with daily energy intake (r = 0.53, P < 0.01), the degree of overeating (r = 0.41, P < 0.05), and the selection of a diet higher in fat and lower in carbohydrate (r = 0.70 and r = -0.63, respectively, P < 0.001). Excess carbohydrate intake caused an increase in carbohydrate oxidation (r = 0.51, P < 0.01), whereas excess fat intake resulted in a decrease in fat oxidation (r = -0.53, P < 0.01) and thus a positive fat balance of 85 +/- 65 g/d. The positive relations among degrees of obesity, dietary fat intake and overeating, and the fact that dietary fat does not induce fat oxidation, support the hypothesis that dietary fat promotes obesity in women. PMID:7572735

  20. [Nutrition, energy balance, and obesity].

    PubMed

    Frühbeck, G; Sopena, M; Martínez, J A; Salvador, J

    1997-01-01

    Energy supply from foods and drinks depends upon carbohydrate, protein, lipid and alcohol content. Cells obtain the energy through a complex and integrated system of physico-chemical processes. The energy value of foods is applied for ATP formation, but also for nutrient utilization and turnover. Net energy from foods is expended for basal metabolism, thermic effect of food and physical activity. Total energy expenditure for human beings is displayed in different lists developed by national and international organisms and institutions. Energy balance and body weight are narrowly interrelated as well as body composition, which depends also of age, sex, exercise and neuroendocrine status. Obesity, is known as an excessive deposition of fat for height, and it is associated with cancer, dislipemias, endocrine abnormalities, diabetes, etc. Recent advances suggest that genetic and neuroendocrine factors are more involved in obesity rather than gluttony or sloth as previously reported. PMID:10420925

  1. Meal replacements and energy balance.

    PubMed

    Heymsfield, Steven B

    2010-04-26

    Induction and maintenance of a period of negative energy balance are required for overweight and obese subjects to lose weight. Meal replacements, particularly in beverage form, have now evolved as part of the "toolbox" used by researchers and clinicians to achieve negative energy balance. This overview traces the historical development of beverage meal replacements, reviews key studies supporting their clinical efficacy, and examines concerns related to their safe use. This collective information supports the view that meal replacements, particularly in beverage form, are now an effective and safe component for use in the clinical setting. Further studies are needed to identify those subjects most likely to benefit from use of meal replacements as part of their comprehensive weight control program.

  2. 24-h Efficacy of Glaucoma Treatment Options.

    PubMed

    Konstas, Anastasios G P; Quaranta, Luciano; Bozkurt, Banu; Katsanos, Andreas; Garcia-Feijoo, Julian; Rossetti, Luca; Shaarawy, Tarek; Pfeiffer, Norbert; Miglior, Stefano

    2016-04-01

    Current management of glaucoma entails the medical, laser, or surgical reduction of intraocular pressure (IOP) to a predetermined level of target IOP, which is commensurate with either stability or delayed progression of visual loss. In the published literature, the hypothesis is often made that IOP control implies a single IOP measurement over time. Although the follow-up of glaucoma patients with single IOP measurements is quick and convenient, such measurements often do not adequately reflect the untreated IOP characteristics, or indeed the quality of treated IOP control during the 24-h cycle. Since glaucoma is a 24-h disease and the damaging effect of elevated IOP is continuous, it is logical that we should aim to understand the efficacy of all treatment options throughout the 24-h period. This article first reviews the concept and value of diurnal and 24-h IOP monitoring. It then critically evaluates selected available evidence on the 24-h efficacy of medical, laser and surgical therapy options. During the past decade several controlled trials have significantly enhanced our understanding on the 24-h efficacy of all glaucoma therapy options. Nevertheless, more long-term evidence is needed to better evaluate the 24-h efficacy of glaucoma therapy and the precise impact of IOP characteristics on glaucomatous progression and visual prognosis.

  3. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  4. Evaluating the global energy balance of Titan

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    To understand the weather and climate on Earth as well as on other planets and their moons, scientists need to know the global energy balance, the balance between energy coming in from solar radiation and thermal energy radiated back out of the planet. The energy balance can provide interesting information about a planet. For instance, Jupiter, Saturn, and Neptune emit more energy than they absorb, implying that these planets have an internal heat source. Earth, on the other hand, is in near equilibrium, with energy coming in approximately equaling energy going out, though a small energy imbalance can lead to global climate change.

  5. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  6. Comprehensive Energy Balance Measurements in Mice.

    PubMed

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-01-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc. PMID:27584551

  7. Comprehensive Energy Balance Measurements in Mice.

    PubMed

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-09-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc.

  8. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  9. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men.

    PubMed

    Gonnissen, Hanne K J; Hursel, Rick; Rutters, Femke; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-02-28

    In addition to short sleep duration, reduced sleep quality is also associated with appetite control. The present study examined the effect of sleep fragmentation, independent of sleep duration, on appetite profiles and 24 h profiles of hormones involved in energy balance regulation. A total of twelve healthy male subjects (age 23 (sd 4) years, BMI 24·4 (sd 1·9) kg/m²) completed a 24 h randomised crossover study in which sleep (23.30-07.30 hours) was either fragmented or non-fragmented. Polysomnography was used to determine rapid-eye movement (REM) sleep, slow-wave sleep (SWS) and total sleep time (TST). Blood samples were taken at baseline and continued hourly for the 24 h period to measure glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1) and melatonin concentrations. In addition, salivary cortisol levels were measured. Visual analogue scales were used to score appetite-related feelings. Sleep fragmentation resulted in reduced REM sleep (69·4 min compared with 83·5 min; P< 0·05) and preservation of SWS without changes in TST. In fragmented v. non-fragmented sleep, glucose concentrations did not change, while insulin secretion was decreased in the morning, and increased in the afternoon (P< 0·05), and GLP-1 concentrations and fullness scores were lower (P< 0·05). After dinner, desire-to-eat ratings were higher after fragmented sleep (P< 0·05). A single night of fragmented sleep, resulting in reduced REM sleep, induced a shift in insulin concentrations, from being lower in the morning and higher in the afternoon, while GLP-1 concentrations and fullness scores were decreased. These results may lead to increased food intake and snacking, thus contributing to a positive energy balance.

  10. Sodium appetite as well as 24-h variations of fluid balance, mean arterial pressure and heart rate in spontaneously hypertensive (SHR) and normotensive (WKY) rats, when on various sodium diets.

    PubMed

    Ely, D E; Thorén, P; Wiegand, J; Folkow, B

    1987-01-01

    Young SHR and WKY rats were compared, first, concerning sodium (Na) appetite during 'rest', mild social stress and ACTH injections, second, concerning the diurnal patterns of water intake, urine output, mean arterial pressure (MAP) and heart rate (HR) while on various Na diets: 0.5 mmol Na(LNa), 5 or 12-13 mmol Na (CNa), 50 (HNa) or 120 mmol Na (vHNa) per 100 g food. Sodium appetite and water intake were about 50% higher in SHR than in WKY (4-4.5 vs 2.5-3 mmol Na per 100 g body wt day-1). It was modestly increased by both social stress and ACTH, and more so in WKY, thereby approaching that in SHR. Concerning the various Na diets and their influences, daytime resting MAP was modestly lowered in LNaSHR and slightly increased in vHNaSHR compared with CNaSHR but largely equal in all WKY groups. Food-water consumption was concentrated to the active night period, but even high Na-water intakes caused no signs of sustained hypervolaemia, because each intake bout was in both SHR and WKY eliminated by urine within 30-40 min. However, particularly the vHNa diet in SHR also increased the frequency of drinking, and each bout caused transient, evidently neurogenic MAP and HR increases which occurred too rapidly to be consequences of blood volume expansion. As a result, the diurnal MAP-HR patterns in SHR varied markedly with the Na diets, in vHNa group resulting in considerably raised average diurnal MAP levels even though resting daytime MAP was here nearly the same as in CNaSHR. These findings illustrate how largely continuous diurnal recordings are needed to judge correctly the relationships between, for example, Na intake, volume equilibrium and MAP. Finally, the relevance of these results in rats for also judging the control of Na balance in man is discussed.

  11. [Energy balance among female athletes].

    PubMed

    Arieli, Rakefet; Constantini, Naama

    2012-02-01

    Athletes need to consume sufficient energy to meet their training demands, maintain their health, and if young, to ensure their growth and development. Athletes are often preoccupied by their body weight and shape, and in some sports might be subjected to pressure to lose weight by coaches, peers or themselves. Eating disorders and poor eating habits are prevalent among female athletes, especially in sport disciplines where low body weight is required to improve performance or for "aesthetic" appearance or in weight category sports. Low energy intake has deleterious effects on many systems, including the cardiovascular system, several hormonal pathways, musculoskeletal system, fluids and electrolytes, thermoregulation, growth and development. Various fitness components and overall performance are also negatively affected. All these, together with poor nutritional status that causes vitamin and mineral deficiencies, poor concentration and depression, put the athlete at an increased injury risk. Energy availability is now recognized as the primary factor initiating these health problems. Energy availability is defined as dietary energy intake minus exercise energy expenditure. If below 30 kcal/kg fat free mass per day, reproductive system functions, as well as other metabolic systems, might be suppressed. The case presented is of a young female Judoka, who complained of fatigue and weakness. Medical and nutritional assessment revealed that she suffered from low energy availability, which slowed her growth and development, and negatively affected her health and athletic performance. This case study emphasizes the importance of adequate energy availability in young female athletes in order to ensure their health.

  12. Energy Landscape of Social Balance

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  13. Meal to meal energy balance in rats.

    PubMed

    Le Magnen, J; Devos, M

    1984-01-01

    Meal to meal energy balance was examined in thirty-eight simultaneous recordings of feeding pattern and O2 consumption in six rats. The mean difference between energy intake in a meal and energy expenditure until the onset of the next meal was found positive at night and negative during day time. At night the excess of meal intake over meal to meal expenditures was decreasing from the beginning to the end of the night and was strongly correlated to meal sizes. During day time meal to meal deficit was decreasing from the beginning to the end of the period but was not correlated to meal sizes. These meal location and size effects on the meal to meal energy balance were not determined by an effect of these factors on metabolic rate. No indication was provided that meal to meal energy balance was influenced by a "meal induced thermogenesis." Rather an evolution from the beginning to the end of the night of the correlation between meal size and durations of meal to meal intervals was found to be parallel to the evolution of positive meal to meal energy balance throughout the night. From these data it is concluded that at night a dual utilization of meal caloric intake (current energy metabolism plus fat storage) and a dual source of fuel during the day (food plus mobilized fats) determine time and mechanism of meal onset.

  14. Energy Balance of Rural Ecosystems In India

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Madhava Rao, V.; Hermon, R. R.; Garg, A.; Nag, T.; Bhaskara Rao, N.; Sharma, A.; Parihar, J. S.

    2014-11-01

    India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013-14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from -18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy

  15. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  16. Health in a 24-h society.

    PubMed

    Rajaratnam, S M; Arendt, J

    2001-09-22

    With increasing economic and social demands, we are rapidly evolving into a 24-h society. In any urban economy, about 20% of the population are required to work outside the regular 0800-1700 h working day and this figure is likely to increase. Although the increase in shiftwork has led to greater flexibility in work schedules, the ability to provide goods and services throughout the day and night, and possibly greater employment opportunities, the negative effects of shiftwork and chronic sleep loss on health and productivity are now being appreciated. For example, sleepiness surpasses alcohol and drugs as the greatest identifiable and preventable cause of accidents in all modes of transport. Industrial accidents associated with night work are common, perhaps the most famous being Chernobyl, Three Mile Island, and Bhopal. PMID:11583769

  17. Kisspeptin and energy balance in reproduction.

    PubMed

    De Bond, Julie-Ann P; Smith, Jeremy T

    2014-03-01

    Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.

  18. Nexus of Poverty, Energy Balance and Health

    PubMed Central

    Mishra, C. P.

    2012-01-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  19. Daily body energy balance in rats.

    PubMed

    Le Magnen, J; Devos, M

    1982-11-01

    The aim of the present study was to examine the balance between caloric intake and expenditures in successive 12 and 24 hour periods, for several consecutive days in rats. The simultaneous and continuous measurements of respiratory exchanges and of the spontaneous feeding pattern were performed in 6 rats during 38 days, in periods of 2 to 4 successive days. At night, caloric intake exceeded caloric expenditures by 32% on the average. In individual rats, the excess was positively correlated to meal size but not to meal number. During the daytime, caloric intake was 24% lower on the average than the concomitant energy expenditures. In individual subjects, these deficits were correlated to meal number but not to meal size. A nocturnal excess and the subsequent daytime deficit, and the diurnal deficit and the excess during the subsequent night were highly positively correlated. In fact, the 24 hour energy balance was either slightly positive (12% excess) or negative (4% deficit). The daily weight gain or loss was highly correlated to the residual excess and/or deficit with a mean caloric cost of 4.8 kcal per g of body weight. The absence of correlation between balances on successive days indicates that the body energy balance is regulated within 24 hr through 12/12 hr compensations and that no compensatory mechanisms are involved beyond 24 hr.

  20. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  1. Radiative Energy Balance in the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Titov, Dmitrij V.; Piccioni, Giuseppe; Drossart, Pierre; Markiewicz, Wojciech J.

    This chapter reviews the observations of the radiative fluxes inside and outside the Venusian atmosphere, along with the available data about the planetary energy balance and the distribution of sources and sinks of radiative energy. We also briefly address the role of the radiation on the atmospheric temperature structure, global circulation, thermodynamics, climate and evolution of Venus and compare the main features of radiative balance on the terrestrial planets. We describe the physics of the greenhouse effect as it applies to the evolution of the Venusian climate, concluding with a summary of outstanding open issues. The article is to a great extent based on the paper by Titov et al. [2007] expanded byincluding recent results from the Venus Express observations relevant to the topic.

  2. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  3. Energy and mass balance calculations for incinerators

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1998-01-01

    Calculation of energy and mass balance within an incinerator is a very important part of designing and/or evaluating the incineration process. This article describes a simple computer model used to calculate an energy and mass balance for a rotary kiln incinerator. The main purpose of the model is to assist US Environmental Protection Agency (EPA) permit writers in evaluating the adequacy of the data submitted by applicants seeking incinerator permits. The calculation is based on the assumption that a thermodynamic equilibrium condition exits within the combustion chamber. Key parameters that the model can calculate include theoretical combustion air, excess air needed for actual combustion cases, flue gas flow rate, and exit temperature.

  4. Effects of Hypothalamic Neurodegeneration on Energy Balance

    PubMed Central

    2005-01-01

    Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp) or proopiomelanocortin (Pomc), neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging. PMID:16296893

  5. Energy-balanced algorithm for RFID estimation

    NASA Astrophysics Data System (ADS)

    Zhao, Jumin; Wang, Fangyuan; Li, Dengao; Yan, Lijuan

    2016-10-01

    RFID has been widely used in various commercial applications, ranging from inventory control, supply chain management to object tracking. It is necessary for us to estimate the number of RFID tags deployed in a large area periodically and automatically. Most of the prior works use passive tags to estimate and focus on designing time-efficient algorithms that can estimate tens of thousands of tags in seconds. But for a RFID reader to access tags in a large area, active tags are likely to be used due to their longer operational ranges. But these tags use their own battery as energy supplier. Hence, conserving energy for active tags becomes critical. Some prior works have studied how to reduce energy expenditure of a RFID reader when it reads tags IDs. In this paper, we study how to reduce the amount of energy consumed by active tags during the process of estimating the number of tags in a system and make the energy every tag consumed balanced approximately. We design energy-balanced estimation algorithm that can achieve our goal we mentioned above.

  6. Energy Balance of Controlled Thermonuclear Fusion

    NASA Astrophysics Data System (ADS)

    Hashmi, M.; Staudenmaier, G.

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor - an energy producing device - seems to be beyond the realms of realization.

  7. Research on energy balance test of ESP

    SciTech Connect

    Cui Zhenhua; Zhu Jun

    1995-12-31

    Electrical Submersible Pump (ESP) is a kind of important means in the oilfield mechanical recovery. People used to place the emphasis on calculating the energy losses of every component by piece in the applications, and no test data were established. This paper takes ESP as a system, and gives theoretical analysis on the energy losses of every ESP component. Energy balance test of ESP system is performed in test well for the first time, the pattern of energy-loss distribution is found and some proposals on improving the design, manufacture and application of ESP system are put forward. In addition, the test procedure and calculating method of energy losses for ESP system is offered.

  8. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old

    PubMed Central

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N. S.; Olivier, Patrick; Adamson, Ashley J.; Foster, Emma

    2016-01-01

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11–24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11–24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults. PMID:27294952

  9. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old.

    PubMed

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N S; Olivier, Patrick; Adamson, Ashley J; Foster, Emma

    2016-06-09

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11-24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11-24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults.

  10. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old.

    PubMed

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N S; Olivier, Patrick; Adamson, Ashley J; Foster, Emma

    2016-01-01

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11-24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11-24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults. PMID:27294952

  11. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    ERIC Educational Resources Information Center

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  12. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  13. Gut microbiota, nutrient sensing and energy balance.

    PubMed

    Duca, F A; Lam, T K T

    2014-09-01

    The gastrointestinal (GI) tract is a highly specialized sensory organ that provides crucial negative feedback during a meal, partly via a gut-brain axis. More specifically, enteroendocrine cells located throughout the GI tract are able to sense and respond to specific nutrients, releasing gut peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, thus controlling both food intake and possibly energy expenditure. Furthermore, the gut microbiota has been shown to provide a substantial metabolic and physiological contribution to the host, and metabolic disease such as obesity has been associated with aberrant gut microbiota and microbiome. Interestingly, recent evidence suggests that the gut microbiota can impact the gut-brain axis controlling energy balance, at both the level of intestinal nutrient-sensing mechanisms, as well as potentially at the sites of integration in the central nervous system. A better understanding of the intricate relationship between the gut microbiota and host energy-regulating pathways is crucial for uncovering the mechanisms responsible for the development of metabolic diseases and for possible therapeutic strategies.

  14. Energy balance in the WTC collapse

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqi; Xu, Kang; Ansourian, Peter; Tahmasebinia, Faham; Alonso-Marroquin, Fernando

    2016-08-01

    The main aim of this report is to provide an analysis of Twin Towers of the New York City's World Trade Centre collapsed after attacked by two jet aircrafts. The approach mainly focused on the effect of temperature on mechanical properties of the building, by modelling heat energy in the south tower. Energy balance during the collapse between the energy inputs by aircraft petrol and the transient heat to the towers was conducted. Both the overall structure between 80 to 83 stories and individual elements was modelled. The main elements contributed to the heat transition includes external and internal columns. Heat applied in 2D and 3D models for single elements was through convection and conduction. Analysis of transient heat was done using Strand7.

  15. Dorsomedial hypothalamic NPY and energy balance control.

    PubMed

    Bi, Sheng; Kim, Yonwook J; Zheng, Fenping

    2012-12-01

    Neuropeptide Y (NPY) is a potent hypothalamic orexigenic peptide. Within the hypothalamus, Npy is primarily expressed in the arcuate nucleus (ARC) and the dorsomedial hypothalamus (DMH). While the actions of ARC NPY in energy balance control have been well studied, a role for DMH NPY is still being unraveled. In contrast to ARC NPY that serves as one of downstream mediators of actions of leptin in maintaining energy homeostasis, DMH NPY is not under the control of leptin. Npy gene expression in the DMH is regulated by brain cholecystokinin (CCK) and other yet to be identified molecules. The findings of DMH NPY overexpression or induction in animals with increased energy demands and in certain rodent models of obesity implicate a role for DMH NPY in maintaining energy homeostasis. In support of this view, adeno-associated virus (AAV)-mediated overexpression of NPY in the DMH causes increases in food intake and body weight and exacerbates high-fat diet-induced hyperphagia and obesity. Knockdown of NPY in the DMH via AAV-mediated RNAi ameliorates hyperphagia, obesity and glucose intolerance of Otsuka Long-Evans Tokushima Fatty rats in which DMH NPY overexpression has been proposed to play a causal role. NPY knockdown in the DMH also prevents high-fat diet-induced hyperphagia, obesity and impaired glucose homeostasis. A detailed examination of actions of DMH NPY reveals that DMH NPY specifically affects nocturnal meal size and produces an inhibitory action on within meal satiety signals. In addition, DMH NPY modulates energy expenditure likely through affecting brown adipocyte formation and thermogenic activity. Overall, the recent findings provide clear evidence demonstrating critical roles for DMH NPY in energy balance control, and also imply a potential role for DMH NPY in maintaining glucose homeostasis.

  16. REM sleep, energy balance and 'optimal foraging'.

    PubMed

    Horne, Jim

    2009-03-01

    Mechanisms underlying mammalian REM sleep (REM) indicate commonality with feeding and energy balance. REM 'epiphenomena' may facilitate this, in providing heat conservation and appetite modulation, with the atonia reflecting search (foraging?) behaviour, and the lost neck muscle tonus a suppressed ingestion. In rodents, REM deprivation severely undermines energy balance. It is argued that REM may also facilitate 'optimal foraging' in wakefulness by updating 'decisions' about: appropriate food, where to find it, allocation of time in obtaining it, the locomotion/energy expenditure required to do so, vs. risk of predation. Whereas REM in the early sleep period is oriented to this updating, later REM can put feeding 'on hold'. PGO intensity changes over successive REM periods may reflect this shift. Humans, pets, zoo and laboratory mammals, and neonates have easy food accessibility, without need to forage, leading to a potential excess of REM in the later sleep period; loss of which has different outcomes to total REM deprivation. A more ecological approach in understanding REM function is desirable.

  17. Energy Balance Bowen Ratio Station (EBBR) Handbook

    SciTech Connect

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  18. Energy Balance Bowen Ratio (EBBR) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  19. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  20. Exercise, energy balance and the shift worker.

    PubMed

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don

    2008-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst 'white collar' occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality in shift workers have not been confirmed. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. 'Normal' eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomized controlled studies on the efficacy of physical

  1. Sleep patterns, diet quality and energy balance.

    PubMed

    Chaput, Jean-Philippe

    2014-07-01

    There is increasing evidence showing that sleep has an influence on eating behaviors. Short sleep duration, poor sleep quality, and later bedtimes are all associated with increased food intake, poor diet quality, and excess body weight. Insufficient sleep seems to facilitate the ingestion of calories when exposed to the modern obesogenic environment of readily accessible food. Lack of sleep has been shown to increase snacking, the number of meals consumed per day, and the preference for energy-rich foods. Proposed mechanisms by which insufficient sleep may increase caloric consumption include: (1) more time and opportunities for eating, (2) psychological distress, (3) greater sensitivity to food reward, (4) disinhibited eating, (5) more energy needed to sustain extended wakefulness, and (6) changes in appetite hormones. Globally, excess energy intake associated with not getting adequate sleep seems to be preferentially driven by hedonic rather than homeostatic factors. Moreover, the consumption of certain types of foods which impact the availability of tryptophan as well as the synthesis of serotonin and melatonin may aid in promoting sleep. In summary, multiple connections exist between sleep patterns, eating behavior and energy balance. Sleep should not be overlooked in obesity research and should be included as part of the lifestyle package that traditionally has focused on diet and physical activity.

  2. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  3. 24-h hydration status: parameters, epidemiology and recommendations.

    PubMed

    Manz, F; Wentz, A

    2003-12-01

    Hydration of individuals and groups is characterised by comparing actual urine osmolality (Uosm) with maximum Uosm. Data of actual, maximum and minimum Uosm in infants, children and adults and its major influencing factors are reviewed. There are remarkable ontogenetic, individual and cultural differences in Uosm. In the foetus and the breast-fed infant Uosm is much lower than plasma osmolality, whereas in children and adults it is usually much higher. Individuals and groups may show long-term differences in Uosm. In industrialised countries, the gender difference of Uosm is common. There are large intercultural differences of mean 24-h Uosm ranging from 860 mosm/kg in Germany, 649 mosm/kg in USA to 392 mosm/kg in Poland. A new physiologically based concept called 'free-water reserve' quantifies differences in 24-h euhydration. In 189 boys of the DONALD Study aged 4.0-6.9 y, median urine volume was 497 ml/24-h and median Uosm 809 mosm/kg. Considering mean-2 s.d. of actual maximum 24-h Uosm of 830 mosm/kg as upper level of euhydration and physiological criterion of adequate hydration in these boys, median free-water reserve was 11 ml/24-h. Based on median total water intake of 1310 ml/24-h and the third percentile of free-water volume of -156 ml/24-h, adequate total water intake was 1466 ml/24-h or 1.01 ml/kcal. Data of Uosm in 24-h urine samples and corresponding free-water reserve values of homogeneous groups of healthy subjects from all over the world might be useful parameters in epidemiology to investigate the health effects of different levels of 24-h euhydration. PMID:14681708

  4. Central H3R activation by thioperamide does not affect energy balance.

    PubMed

    Sindelar, Dana K; Shepperd, Mary L; Pickard, Richard T; Alexander-Chacko, Jesline; Dill, M Joelle; Cramer, Jeffrey W; Smith, Dennis P; Gadski, Robert

    2004-06-01

    The central histamine 3 receptor (H3R) is a presynaptic autoreceptor that regulates neuronal release and synthesis of histamine, and is thought to play a key role in controlling numerous central nervous system (CNS)-mediated parameters, including energy homeostasis. Thioperamide, the prototypical selective H3R antagonist, was used to examine the role that H3R plays in regulating energy balance in vivo. Thioperamide was administered either intraperitoneally or orally to rats and the pharmacokinetic parameters were examined along with central H3R binding and histaminergic system activation. Food intake and metabolic parameters of either route of thioperamide administration were likewise examined. In a dose-dependent manner, both the intraperitoneal and oral route of administration resulted in similar ex vivo binding curves and tele-methylhistamine dose-response curves despite the route of administration. However, only intraperitoneal administration of 30 mg/kg thioperamide resulted in a significant decrease in 24-h food intake (60% lower than control) and respiratory quotient (RQ), while the oral route of delivery did not. Moreover, the decrease in RQ with the 30 mg/kg ip administration also decreased energy expenditure (EE) thus resulting in an unchanged energy balance. The decrease in food intake and EE was coupled with a conditioned taste aversion with the 30-mg/kg ip administration. These data indicate that the activation of the central H3R system by thioperamide does not play a direct role in decreasing food intake or altering energy homeostasis.

  5. Energy balance, physical activity, and cancer risk.

    PubMed

    Fair, Alecia Malin; Montgomery, Kara

    2009-01-01

    This chapter posits that cancer is a complex and multifactorial process as demonstrated by the expression and production of key endocrine and steroid hormones that intermesh with lifestyle factors (physical activity, body size, and diet) in combination to heighten cancer risk. Excess weight has been associated with increased mortality from all cancers combined and for cancers of several specific sites. The prevalence of obesity has reached epidemic levels in many parts of the world; more than 1 billion adults are overweight with a body mass index (BMI) exceeding 25. Overweight and obesity are clinically defined indicators of a disease process characterized by the accumulation of body fat due to an excess of energy intake (nutritional intake) relative to energy expenditure (physical activity). When energy intake exceeds energy expenditure over a prolonged period of time, the result is a positive energy balance (PEB), which leads to the development of obesity. This physical state is ideal for intervention and can be modulated by changes in energy intake, expenditure, or both. Nutritional intake is a modifiable factor in the energy balance-cancer linkage primarily tested by caloric restriction studies in animals and the effect of energy availability. Restriction of calories by 10 to 40% has been shown to decrease cell proliferation, increasing apoptosis through anti-angiogenic processes. The potent anticancer effect of caloric restriction is clear, but caloric restriction alone is not generally considered to be a feasible strategy for cancer prevention in humans. Identification and development of preventive strategies that "mimic" the anticancer effects of low energy intake are desirable. The independent effect of energy intake on cancer risk has been difficult to estimate because body size and physical activity are strong determinants of total energy expenditure. The mechanisms that account for the inhibitory effects of physical activity on the carcinogenic process

  6. Sleep and energy balance: Interactive homeostatic systems.

    PubMed

    Vanitallie, Theodore B

    2006-10-01

    For early humans, acquisition of food by hunting and/or gathering was a hunger-driven process requiring vigilance and (often) strenuous physical effort during daylight hours. To sustain such activities, hunter-gatherers also needed periodic rest and sleep-pursuits most effectively undertaken at night. In recent years, research has given us new insights into the physiologic underpinnings of these behaviors. Specifically, evidence has been uncovered indicating that the homeostatic regulation of food intake on the one hand and that of sleep on the other hand, are intertwined. Thus, carefully performed studies of eating behavior in rats indicate that duration of sleep after ingestion of a meal is closely correlated to the meal's energy content. In 1999, it was discovered that mice and dogs functionally deficient in the appetite-stimulating hormone, hypocretin-1, become narcoleptic, suggesting the existence of a "hard-wired" connection between regulation of hunger and satiety and regulation of sleep. Administered into the nucleus accumbens shell, hypocretin-1 induces feeding and locomotor activity in Sprague-Dawley rats. Hypocretin neurons in the hypothalamus are responsive to metabolic cues capable of signaling nutritional status. The suprachiasmatic nucleus, the body's principal circadian clock, exchanges information with the hypocretin system about the light/dark cycle and the body's metabolic condition. Circadian Clock mutant mice exhibit an attenuated diurnal feeding rhythm and become hyperphagic and obese. Both disruption of the circadian cycle and sleep deprivation can affect energy balance and, over time, may bring about substantial changes in body composition. Although there is growing evidence that interleukin-6 and several other proinflammatory cytokines are "sleep factors" that also affect energy balance, any possible role they might have in coordinating sleep/wakefulness with food-motivated behavior awaits clarification. Yet, the evidence is increasingly

  7. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner.

    PubMed

    Cameron, Jameason D; Goldfield, Gary S; Doucet, Éric

    2012-06-01

    Changes in smell function can modify feeding behaviour but there is little evidence of how acute negative energy balance may impact olfaction and palatability. In a within-subjects repeated measures design, 15 subjects (nine male; six female) aged 28.6±4.5 years with initial body weight (BW) 74.7±4.9 kg and body mass index (BMI) 25.3±1.4 kg/m(2) were randomized and tested at baseline (FED) and Post Deprivation (FASTED) for nasal chemosensory performance (Sniffin' Sticks) and food palatability (visual analogue scale). Significant main effects for time indicated improvements in the FASTED session for odor threshold, odor discrimination, and total odor scores (TDI), and for increased palatability. There were significant positive correlations between initial BW and the change in odor threshold (r=.52) and TDI scores (r=.53). Positive correlations were also noted between delta identification score and delta palatability (r=.68). When the sample was split by sex, only for females were there significant correlations between delta palatability and: delta BW (r=.88); delta odor identification (r=.94); and delta TDI score (r=.85). Fasting for 24h improved smell function and this was related to increased palatability ratings and initial BW. Further studies should confirm the role of BW and sex in the context of olfaction, energy deprivation and palatability.

  8. Appetite and energy balance signals from adipocytes

    PubMed Central

    Trayhurn, Paul; Bing, Chen

    2006-01-01

    Interest in the biology of white adipose tissue has risen markedly with the recent surge in obesity and its associated disorders. The tissue is no longer viewed simply as a vehicle for lipid storage; instead, it is recognized as a major endocrine and secretory organ. White adipocytes release a multiplicity of protein hormones, signals and factors, termed adipokines, with an extensive range of physiological actions. Foremost among these various adipokines is the cytokine-like hormone, leptin, which is synthesized predominantly in white fat. Leptin plays a critical role in the control of appetite and energy balance, with mutations in the genes encoding the hormone or its receptor leading to profound obesity in both rodents and man. Leptin regulates appetite primarily through an interaction with hypothalamic neuroendocrine pathways, inhibiting orexigenic peptides such as neuropeptide Y and orexin A, and stimulating anorexigenic peptides such as proopiomelanocortin. White fat also secretes several putative appetite-related adipokines, which include interleukin-6 and adiponectin, but whether these are indeed significant signals in the regulation of food intake has not been established. Through leptin and the other adipokines it is evident that adipose tissue communicates extensively with other organs and plays a pervasive role in metabolic homeostasis. PMID:16815801

  9. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  10. Energy balance of human locomotion in water.

    PubMed

    Pendergast, D; Zamparo, P; di Prampero, P E; Capelli, C; Cerretelli, P; Termin, A; Craig, A; Bushnell, D; Paschke, D; Mollendorf, J

    2003-10-01

    In this paper a complete energy balance for water locomotion is attempted with the aim of comparing different modes of transport in the aquatic environment (swimming underwater with SCUBA diving equipment, swimming at the surface: leg kicking and front crawl, kayaking and rowing). On the basis of the values of metabolic power (E), of the power needed to overcome water resistance (Wd) and of propelling efficiency (etaP=Wd/Wtot, where Wtot is the total mechanical power) as reported in the literature for each of these forms of locomotion, the energy cost per unit distance (C=E/v, where v is the velocity), the drag (performance) efficiency (etad=Wd/E) and the overall efficiency (etao=Wtot/E=etad/etaP) were calculated. As previously found for human locomotion on land, for a given metabolic power (e.g. 0.5 kW=1.43 l.min(-1) VO2) the decrease in C (from 0.88 kJ.m(-1) in SCUBA diving to 0.22 kJ.m(-1) in rowing) is associated with an increase in the speed of locomotion (from 0.6 m.s(-1) in SCUBA diving to 2.4 m.s(-1) in rowing). At variance with locomotion on land, however, the decrease in C is associated with an increase, rather than a decrease, of the total mechanical work per unit distance (Wtot, kJ.m(-1)). This is made possible by the increase of the overall efficiency of locomotion (etao=Wtot/E=Wtot/C) from the slow speeds (and loads) of swimming to the high speeds (and loads) attainable with hulls and boats (from 0.10 in SCUBA diving to 0.29 in rowing).

  11. Energy balance of human locomotion in water.

    PubMed

    Pendergast, D; Zamparo, P; di Prampero, P E; Capelli, C; Cerretelli, P; Termin, A; Craig, A; Bushnell, D; Paschke, D; Mollendorf, J

    2003-10-01

    In this paper a complete energy balance for water locomotion is attempted with the aim of comparing different modes of transport in the aquatic environment (swimming underwater with SCUBA diving equipment, swimming at the surface: leg kicking and front crawl, kayaking and rowing). On the basis of the values of metabolic power (E), of the power needed to overcome water resistance (Wd) and of propelling efficiency (etaP=Wd/Wtot, where Wtot is the total mechanical power) as reported in the literature for each of these forms of locomotion, the energy cost per unit distance (C=E/v, where v is the velocity), the drag (performance) efficiency (etad=Wd/E) and the overall efficiency (etao=Wtot/E=etad/etaP) were calculated. As previously found for human locomotion on land, for a given metabolic power (e.g. 0.5 kW=1.43 l.min(-1) VO2) the decrease in C (from 0.88 kJ.m(-1) in SCUBA diving to 0.22 kJ.m(-1) in rowing) is associated with an increase in the speed of locomotion (from 0.6 m.s(-1) in SCUBA diving to 2.4 m.s(-1) in rowing). At variance with locomotion on land, however, the decrease in C is associated with an increase, rather than a decrease, of the total mechanical work per unit distance (Wtot, kJ.m(-1)). This is made possible by the increase of the overall efficiency of locomotion (etao=Wtot/E=Wtot/C) from the slow speeds (and loads) of swimming to the high speeds (and loads) attainable with hulls and boats (from 0.10 in SCUBA diving to 0.29 in rowing). PMID:12955519

  12. Does an Adolescent's Accuracy of Recall Improve with a Second 24-h Dietary Recall?

    PubMed

    Kerr, Deborah A; Wright, Janine L; Dhaliwal, Satvinder S; Boushey, Carol J

    2015-05-13

    The multiple-pass 24-h dietary recall is used in most national dietary surveys. Our purpose was to assess if adolescents' accuracy of recall improved when a 5-step multiple-pass 24-h recall was repeated. Participants (n = 24), were Chinese-American youths aged between 11 and 15 years and lived in a supervised environment as part of a metabolic feeding study. The 24-h recalls were conducted on two occasions during the first five days of the study. The four steps (quick list; forgotten foods; time and eating occasion; detailed description of the food/beverage) of the 24-h recall were assessed for matches by category. Differences were observed in the matching for the time and occasion step (p < 0.01), detailed description (p < 0.05) and portion size matching (p < 0.05). Omission rates were higher for the second recall (p < 0.05 quick list; p < 0.01 forgotten foods). The adolescents over-estimated energy intake on the first (11.3% ± 22.5%; p < 0.05) and second recall (10.1% ± 20.8%) compared with the known food and beverage items. These results suggest that the adolescents' accuracy to recall food items declined with a second 24-h recall when repeated over two non-consecutive days.

  13. Does an Adolescent’s Accuracy of Recall Improve with a Second 24-h Dietary Recall?

    PubMed Central

    Kerr, Deborah A.; Wright, Janine L.; Dhaliwal, Satvinder S.; Boushey, Carol J.

    2015-01-01

    The multiple-pass 24-h dietary recall is used in most national dietary surveys. Our purpose was to assess if adolescents’ accuracy of recall improved when a 5-step multiple-pass 24-h recall was repeated. Participants (n = 24), were Chinese-American youths aged between 11 and 15 years and lived in a supervised environment as part of a metabolic feeding study. The 24-h recalls were conducted on two occasions during the first five days of the study. The four steps (quick list; forgotten foods; time and eating occasion; detailed description of the food/beverage) of the 24-h recall were assessed for matches by category. Differences were observed in the matching for the time and occasion step (p < 0.01), detailed description (p < 0.05) and portion size matching (p < 0.05). Omission rates were higher for the second recall (p < 0.05 quick list; p < 0.01 forgotten foods). The adolescents over-estimated energy intake on the first (11.3% ± 22.5%; p < 0.05) and second recall (10.1% ± 20.8%) compared with the known food and beverage items. These results suggest that the adolescents’ accuracy to recall food items declined with a second 24-h recall when repeated over two non-consecutive days. PMID:25984743

  14. Fuel feeds function: Energy balance and bovine peripheral blood mononuclear cell activation.

    PubMed

    Schwarm, A; Viergutz, T; Kuhla, B; Hammon, H M; Schweigel-Röntgen, M

    2013-01-01

    A general phenomenon in peripartum mammals is the breakdown of (acquired) immunity. The incidence of parasite load, disease and inflammation often rise during the specific energetically demanding time of pregnancy and lactation. In this period, blood leukocytes display decreased DNA synthesis in response to mitogens in vitro. Leukocyte activation, the phase of the cell cycle preceding the DNA synthetic phase has hardly been investigated, but the few studies suggest that leukocyte activation may also be impaired by the limited energy/nutrient availability. Leukocyte activation is characterized by manifold processes, thus, we used the cellular oxygen consumption rate (OCR) as a measure of ATP turnover to support all these processes. We hypothesized that the activation of peripheral blood mononuclear cells (PBMC) - in terms of oxygen consumed over basal levels after in vitro stimulation - is altered by energy balance around parturition. We studied peripartum high-yielding dairy cows because they undergo substantial fluctuations in energy intake, energy output and body fat mass. We established a fluorescence-based test strategy allowing for long-term (≥24h) quantification of O(2)-consumption and studied the peripartum period from 5 weeks ante partum to 5 weeks postpartum. In addition, we determined cellular lactate production, DNA/RNA synthesis and cell size and zoo-technical parameters such as animal energy intake and milk yield were assessed, as well as selected plasma parameters, e.g. glucose concentration. The basal OCR of PBMC from pregnant, non-lactating cows (n=6, -5 weeks ante partum) was 1.19±0.15 nmol min(-1) (10(7)cells)(-1) and increased to maximum levels of 2.54±0.49 nmol min(-1) (10(7)cells)(-1) in phytohemagglutinin (PHA)-stimulated PBMC. The basal OCR did not change over the peripartum period. Whereas the activation indices, herein defined as the PHA-induced 24h-increase of OCR above baseline, amounted to 1.1±0.3, 4.2±0.3, 4.1±1.1, 2.1±0.3, and

  15. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  16. The ANIBES Study on Energy Balance in Spain: Design, Protocol and Methodology

    PubMed Central

    Ruiz, Emma; Ávila, José Manuel; Castillo, Adrián; Valero, Teresa; del Pozo, Susana; Rodriguez, Paula; Bartrina, Javier Aranceta; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio

    2015-01-01

    Energy Balance (EB) is an important topic to understand how an imbalance in its main determinants (energy intake and consumption) may lead to inappropriate weight gain, considered to be “dynamic” and not “static”. There are no studies to evaluate EB in Spain, and new technologies reveal themselves as key tools to solve common problems to precisely quantify energy consumption and expenditure at population level. The overall purpose of the ANIBES (“Anthropometry, Intake and Energy Balance”) Study was to carry out an accurate updating of food and beverage intake, dietary habits/behaviour and anthropometric data of the Spanish population (9–75 years, n = 2009), as well as the energy expenditure and physical activity patterns. Anthropometry measurements (weight, height, body mass index, waist circumference, % body fat, % body water) were obtained; diet was evaluated throughout a three-day dietary record (tablet device) accompanied by a 24 h-dietary recall; physical activity was quantified by questionnaire and accelerometers were also employed. Finally, information about perception and understanding of several issues related to EB was also obtained. The ANIBES study will contribute to provide valuable useful data to inform food policy planning, food based dietary guidelines development and other health oriented actions in Spain. PMID:25658237

  17. Serotonin and the regulation of mammalian energy balance

    PubMed Central

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated. PMID:23543912

  18. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  19. Pump energy and flow balance analysis

    SciTech Connect

    Carlson, G.F.

    1982-10-01

    The purpose is to illustrate simple circuit flow analysis techniques that will enable design engineers to identify and provide protection against short circuiting (flow unbalance) for new design. Removal of short circuit fears should help reduce the tendency to oversize HVAC pumps. Presented analysis techniques will establish methods for flow balance in existing buildings and will permit a considerable reduction in pump power requirements. Explains the relationship between pump power draw and operating cost. Shows how, for any given total system flow rate, the actual flow rate entering each riser and, consequently, each terminal unit can be determined. Generalizes that if the driving differential head across the subcircuit remains constant, then if the subcircuit head loss (exclusive of the valve) at design flow is very low, flow change in the subcircuit caused by a change in balance valve setting will be of high order and will follow balance valve characteristics; and if the subcircuit head loss is high, adjustment of the balance valve will only cause a minor order flow change. These simplified techniques should provide protection against flow unbalance and oversizing of HVAC pumps.

  20. Taste of a 24-h diet and its effect on subsequent food preferences and satiety.

    PubMed

    Griffioen-Roose, Sanne; Hogenkamp, Pleunie S; Mars, Monica; Finlayson, Graham; de Graaf, Cees

    2012-08-01

    The objective of this study was to investigate the effect of taste of a 24-h diet on subsequent food preferences (food choice and intake of specific food categories) and satiety. We used a crossover design, consisting of a 24-h fully controlled dietary intervention, during which 39 healthy subjects consumed diets that were predominantly sweet tasting, savory tasting, or a mixture. The diets were similar in energy content, macronutrient composition, and number of different products used. Following the intervention an ad libitum lunch buffet was offered the next day, consisting of food items differing in taste (sweet/savory) and protein content (low/high) and intake was measured. The results showed that the taste of the diet significantly altered preference for food according to their taste properties (p<0.0001); after the savory diet, intake of sweet foods was higher than of savory foods. After the sweet diet, savory foods tended to be preferred (p=0.07). No interaction was seen between the taste of the diet and food preference according to their protein content (p=0.67). No differences in total energy intake (kJ) at the ad libitum lunch buffet were observed (p=0.58). It appears that in healthy subjects, taste of a 24-h diet largely affects subsequent food preferences in terms of sensory appetite, whereby savory taste exerts the strongest modulating effect. Taste of a 24-h diet has no effect on macronutrient appetite.

  1. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  2. Hana kai ii: a 17-day dry saturation dive at 18.6 ATA. II. Energy balance.

    PubMed

    Webb, P; Troutman, S J; Frattali, V; Dressendorfer, R H; Dwyer, J; Moore, T O; Morlock, J F; Smith, R M; Ohta, Y; Hong, S K

    1977-09-01

    Since previous saturation dives have caused loss of body weight despite apparently adequate-to-high food intake, a complete study of energy balance was undertaken during the saturation dive Hana Kai II. Over a 30-day period in the hyperbaric chamber (3 days of predive control, 1 day of compression, 16 days at 18.6 ATA, 7 days of decompression, and 3 days of postdive control), all food, urine, and feces for five men were analyzed by bomb calorimetry; 24-h energy expenditure (M) was measured from continuous VO2, VCO2, and urine N. Body weight was taken daily; body composition was assessed from density, total body water, and skinfold thickness. Food intake was high throughout the 30 days (about 3500 kcal/day) while fecal and urinary losses were a normal 6-8% of intake. Energy expenditure was increased a little by the hyperbaric condition, but averaged only 2431 kcal/day for the 30 days and yet there was an average loss of adipose tissue of 0.8 kg for each man for the entire period. Nitrogen balance was positive. There was no evidence of heat gain or loss. The energy balance, total fuel compared with energy expenditure, required an additional 919 kcal/man-day for 30 days, an unidentified term which is not measured by conventional techniques. PMID:910315

  3. Nitrogen: the key to biofuel energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vigorous debate continues regarding the net energy that can be gained in producing liquid fuels from crop materials. However, it is clear that the net energy gain from the process is small relative to the energy demands of producing the fuel. Thus, a small reduction in the energy required to produ...

  4. Techniques for the study of energy balance in man.

    PubMed

    Elia, Marinos; Stratton, Rebecca; Stubbs, James

    2003-05-01

    Energy balance can be estimated in tissues, body segments, individual subjects (the focus of the present article), groups of subjects and even societies. Changes in body composition in individual subjects can be translated into changes in the energy content of the body, but this method is limited by the precision of the techniques. The precision for measuring fat and fat-free mass can be as low as 0.5 kg when certain reference techniques are used (hydrodensitometry, air-displacement plethysmography, dual-energy X-ray absorptiometry), and approximately 0.7 kg for changes between two time points. Techniques associated with a measurement error of 0.7 kg for changes in fat and fat-free mass (approximately 18 MJ) are of little or no value for calculating energy balance over short periods of time, but they may be of some value over long periods of time (18 MJ over 1 year corresponds to an average daily energy balance of 70 kJ, which is < 1% of the normal dietary energy intake). Body composition measurements can also be useful in calculating changes in energy balance when the changes in body weight and composition are large, e.g. > 5-10 kg. The same principles can be applied to the assessment of energy balance in body segments using dual-energy X-ray absorptiometry. Energy balance can be obtained over periods as short as a few minutes, e.g. during measurements of BMR. The variability in BMR between individuals of similar age, weight and height and gender is about 7-9%, most of which is of biological origin rather than measurement error, which is about 2%. Measurement of total energy expenditure during starvation (no energy intake) can also be used to estimate energy balance in a whole-body calorimeter, in patients in intensive care units being artificially ventilated and by tracer techniques. The precision of these techniques varies from 1 to 10%. Establishing energy balance by measuring the discrepancy between energy intake and expenditure has to take into consideration

  5. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  6. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  7. Top 10 Research Questions Related to Energy Balance

    ERIC Educational Resources Information Center

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  8. Central amygdala opioid transmission is necessary for increased high-fat intake following 24-h food deprivation, but not following intra-accumbens opioid administration.

    PubMed

    Parker, Kyle E; Johns, Howard W; Floros, Ted G; Will, Matthew J

    2014-03-01

    Previous research has demonstrated a dissociation of certain neural mediators that contribute to the increased consumption of a high-fat diet that follows intra-accumbens (Acb) administration of μ-opioid receptor agonists vs. 24-h food deprivation. These two models, both which induce rapid consumption of the diet, have been shown to involve a distributed corticolimbic circuitry, including the amygdala. Specifically, the central amygdala (CeA) has been shown to be involved in high-fat feeding within both opioid and food-deprivation driven models. The present experiments were conducted to examine the more specific role of CeA opioid transmission in mediating high-fat feeding driven by either intra-Acb administration of the μ-opioid agonist d-Ala2-NMe-Phe4-Glyol5-enkephalin (DAMGO) or 24-h home cage food deprivation. Injection of DAMGO into the Acb (0.25 μg/0.5 μl/side) increased consumption of the high-fat diet, but this feeding was unaffected by administration of opioid antagonist, naltrexone (5 μg/0.25 μl/side) administered into the CeA. In contrast, intra-CeA naltrexone administration attenuated high-fat intake driven by 24-h food deprivation, demonstrating a specific role for CeA opioid transmission in high-fat consumption. Intra-CeA naltrexone administration alone had no effect on baseline feeding levels within either feeding model. These findings suggest that CeA opioid transmission mediates consumption of a palatable high-fat diet driven by short-term negative-energy balance (24-h food deprivation), but not intra-Acb opioid receptor activation.

  9. Energy Balance Measurement: When Something is Not Better than Nothing

    PubMed Central

    Dhurandhar, Nikhil V.; Schoeller, Dale; Brown, Andrew W.; Heymsfield, Steven B.; Thomas, Diana; Sørensen, Thorkild I.A.; Speakman, John R.; Jeansonne, Madeline; Allison, David B.

    2014-01-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health care policies, future research, and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance. PMID:25394308

  10. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  11. Energy balance for uranium recovery from seawater

    SciTech Connect

    Schneider, E.; Lindner, H.

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  12. Energy Balance and Metabolism after Cancer Treatment

    PubMed Central

    Tonorezos, Emily S.; Jones, Lee W.

    2013-01-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle interventions such as diet and physical activity are especially relevant to mitigate the deleterious impact of chronic energy imbalance in cancer survivors. PMID:24331194

  13. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  14. Isospin effects on the mass dependence of the balance energy

    SciTech Connect

    Gautam, Sakshi; Sood, Aman D.

    2010-07-15

    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/A= 0.54 and 0.57 as well as isobaric systems with N/A= 0.5 and 0.58. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.

  15. Free energy balance in gyrokinetic turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  16. Dietary(sensory)variety and energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of overweight and obesity in US adults is currently 68%, compared with about 47% in the early 1970s. Many dietary factors have been proposed to contribute to the US obesity epidemic, including the percentage of energy intake from fat, carbohydrate and protein; glycemic index; fruit a...

  17. Ground Energy Balance For Shallow Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.

    2015-12-01

    Vertical borehole heat exchangers (BHE) represent the most common applications by far in the field of shallow geothermal energy. They are typically operated for decades for energy extraction from the top 400 m of the subsurface. During this lifetime, thermal anomalies are generated in the ground and surface-near aquifers. These anomalies often grow over the years and compromise the overall performance of the geothermal system. As a basis for prediction and control of the developing energy imbalance in the ground, the focus is often set on the ground temperatures. This is reflected, for instance, in regulative temperature thresholds. As an alternative to temperature, we examine the temporal and spatial variability of heat fluxes and power sources during geothermal heat pump operation. The underlying idea is that knowledge of the primary heat sources is fundamental for the control of ground temperature evolution. For analysis of heat fluxes, an analytical framework for BHE simulation based on Kelvin's line source is re-formulated. This is applied to a synthetic study and for modelling a long-term application in the field. Our results show that during early operation phase, energy is extracted mainly from the underground. Local depletion at the borehole enhances the vertical fluxes with the relative contribution from the bottom reaching a limit of 24 % of the total power demand. The relative contribution from the ground surface becomes dominant for Fourier numbers larger than 0.13. For the full life cycle, vertical heat flux from the ground surface dominates the basal heat flux towards the BHE and it provides about two thirds of the demanded power. Finally, we reveal that the time for ground energy recovery after BHE shutdown may be longer than what is expected from simulated temperature trends.

  18. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  19. Development of Energy Balances for the State of California

    SciTech Connect

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-12-01

    Analysts assessing energy policies and energy modelers forecasting future trends need to have access to reliable and concise energy statistics. Lawrence Berkeley National Laboratory evaluated several sources of California energy data, primarily from the California Energy Commission and the U.S. Energy Information Administration, to develop the California Energy Balance Database (CALEB). This database manages highly disaggregated data on energy supply, transformation, and end-use consumption for each type of energy commodity from 1990 to the most recent year available (generally 2001) in the form of an energy balance, following the methodology used by the International Energy Agency. This report presents the data used for CALEB and provides information on how the various data sources were reconciled. CALEB offers the possibility of displaying all energy flows in numerous ways (e.g.,physical units, Btus, petajoules, different levels of aggregation), facilitating comparisons among the different types of energy commodities and different end-use sectors. In addition to displaying energy data, CALEB can also be used to calculate state-level energy-related carbon dioxide emissions using the methodology of the Intergovernmental Panel on Climate Change.

  20. Disruptions in energy balance: does nature overcome nurture?

    PubMed

    Fernández, José R; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-04-22

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments supports the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual's genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities.

  1. Assessment tools of energy balance-related behaviours used in European obesity prevention strategies: review of studies during preschool.

    PubMed

    Mouratidou, T; Mesana, M I; Manios, Y; Koletzko, B; Chinapaw, M J M; De Bourdeaudhuij, I; Socha, P; Iotova, V; Moreno, L A

    2012-03-01

    Valid and reliable measures of energy balance-related behaviours are required when evaluating the effectiveness of public health interventions aiming at prevention of childhood obesity. A structured descriptive review was performed to appraise food intake, physical activity and sedentary behaviour assessment tools used in obesity intervention strategies targeting mainly preschool children across Europe. In total, 25 papers are described, addressing energy balance-related behaviours as study outcomes and targeting individuals or clusters of individuals at school- or home-based environment. Parentally reported food records and 24-h recalls were commonly used to assess food intake. Subjective levels of physical activity and sedentary behaviour were commonly accessed via parentally reported questionnaires. Accelerometry was used to obtain objective measures of physical activity. Insufficient evidence of tool evaluation was provided. When feasible, food records and accelerometry are recommended as the most appropriate methods to assess food intake in young children. Sedentary behaviour could be assessed via questionnaires that include key indicators of sedentarism and are able to differentiate individual practices. The choice of methodology for the assessment of specific intervention effects should be equally balanced between required accuracy levels and feasibility, and be guided by the intervention targets.

  2. Energy balance in man measured by direct and indirect calorimetry.

    PubMed

    Webb, P; Annis, J F; Troutman, S J

    1980-06-01

    In six 24-hr measurements of energy balance, direct and indirect calorimetry agreed within +/-3%, which is probably the range of experimental error. But in seven other 24-hr periods there was disagreement in the range of 8 to 23%, and these were usually days when the subjects ate much less than they spent metabolically. Our direct calorimeter is an insulated, water cooled suit. Continous measurements of O2 consumption and CO2 production provided data on metabolic expenditure (M) by indirect calorimetry. The 24-hr values for M matched the energy losses within +/-60 kcal (+/-3% of M) in four men who rested all day and lay down to sleep at night. Similar agreement was seen in one of the four who worked on a treadmill for 4 hr and stayed busy all day. but in another energy losses were 342 kcal greater than M (10% of M). When the experiments gave values for M minus the losses greater than +/-60 kcal, this is called "unmeasured energy". In further experiments, two subjects stayed awake for 24 hr, and their unmeasured energies were 279 and 393 kcal. The same two men, eating sparingly, also worked for 24 hr so as to double their resting metabolic expenditures; the unmeasured energies were even larger, 380 and 958 kcal. When they repeated the 24 hr of mild work, but ate nearly as much as they spent metabolically, one man was near energy balance, while the other showed an unmeasured energy of -363 kcal. Little heat storage was evident in these experiments; therefore, heat balance was present and energy balance should have been present. In the group of 13 experiments, it appeared that the greater the food deficit, the larger was the unmeasured energy (excess of metabolic expenditure over loss of energy).

  3. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  4. Comparison of energy balance on Gangotri and Chhota Shigri Glaciers

    NASA Astrophysics Data System (ADS)

    Rastogi, G.; Ajai

    2014-11-01

    Surface energy balance of a glacier governs the physical processes taking place at the surface-atmosphere interface and connects ice ablation/accumulation to climate variability. To understand the response of Himalayan glaciers to climatic variability, a study was taken to formulate energy balance equation on two of the Indian Himalayan glaciers, one each from Indus and Ganga basins, which have different climatic and physiographic conditions. Study was carried out over Gangotri glacier (Ganga basin) and Chhota Shigri(CS) glacier from Chandra sub-basin (Indus basin). Gangotri glacier is one of the largest glaciers in the central Himalaya located in Uttarkashi District, Uttarakhand, India. Chhota Shigri glacier of Chandra sub-basin lies in Lahaul and Spiti valley of Himachal Pradesh. Energy balance components have been computed using inputs derived from satellite data, AWS (Automatic Weather Station) data and field measurements. Different components of energy balance computed are net radiation (includes net shortwave and net longwave radiation), sensible heat flux and latent heat flux. In this study comparison has been made for each of the above energy balance components as well as total energy for the above glaciers for the months of November and December, 2011. It is observed that net radiation in Gangotri glacier is higher by approximately 43 % in comparison to Chhota Shigri glacier; Sensible heat flux is lesser by 77 %; Latent heat flux is higher by 66 % in the month of November 2011. Comparison in the month of December shows that net radiation in Gangotri glacier is higher by approximately 22 % from Chhota Shigri glacier; Sensible heat flux is lesser by 90 %; Latent heat flux is higher by 3 %.Total energy received at the glacier surface and contributes for melting is estimated to be around 32 % higher in Gangotri than Chhota Shigri glacier in November, 2011 and 1.25 % higher in December, 2011. The overall results contribute towards higher melting rate in

  5. Energy balancing by fat Pik3ca.

    PubMed

    Nelson, Victoria Lb; Ballou, Lisa M; Lin, Richard Z

    2015-01-01

    Obesity is often associated with systemic insulin resistance, and the decline of insulin sensitivity marks the progression of obesity into a disease state. We recently generated a mouse with adipose-specific ablation of the p110α phosphoinositide 3-kinase (PI3K) catalytic subunit to model insulin resistance in this organ. The phenotypes of this animal revealed novel roles of adipose PI3K signaling in regulating body weight and systemic glucose and lipid homeostasis. Loss of p110α in the brown adipose tissue resulted in reduced expression of mitochondrial-associated genes and decreased respiration in brown adipocytes. Reduced activity of the brown adipose tissue in p110α-null mice lowered their energy expenditure, which promoted obesity and systemic metabolic dysfunction with increased lipid deposition in the liver. Loss of PI3K activity did not affect adiposity until sexual maturation, suggesting that the effect of adipose PI3K on obesity might be linked to the development of puberty. Elevated leptin in the p110α knockout mice might interfere with the reproductive axis to delay pubertal development. The increase in adiposity induced by adipose-specific loss of p110α provides a link between insulin resistance and obesity onset and may also provide deeper insight into changes in prepubescent insulin sensitivity that can affect metabolism later in life. PMID:26167406

  6. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  7. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  8. Relationships between energy balance knowledge and the home environment.

    PubMed

    Slater, Megan E; Sirard, John R; Laska, Melissa N; Pereira, Mark A; Lytle, Leslie A

    2011-04-01

    Certain aspects of the home environment as well as individuals' knowledge of energy balance are believed to be important correlates of various dietary and physical activity behaviors, but no known studies have examined potential relationships between these correlates. This study evaluated cross-sectional associations between characteristics of the home environment and energy balance knowledge among 349 youth/parent pairs recruited from the Minneapolis/St Paul, MN, metropolitan area from September 2006 to June 2007. Linear regression models adjusted for student grade and highest level of parental education were used to compare data from home food, physical activity, and media inventories (parent-reported) with energy balance knowledge scores from youth and parent questionnaires. Paired energy balance knowledge (average of youth and parent knowledge scores) was associated with all home food availability variables. Paired knowledge was also significantly associated with a media equipment availability and accessibility summary score (β=-1.40, P=0.005), as well as an activity-to-media ratio score (β=0.72, P=0.003). Youth and/or parent knowledge alone was not significantly associated with most characteristics of the home environment, supporting the importance of developing intervention strategies that target the family as a whole.

  9. Pedometer and Human Energy Balance Applications for Science Instruction

    ERIC Educational Resources Information Center

    Rye, James A.; Smolski, Stefan

    2007-01-01

    Teachers can use pedometers to facilitate inquiry learning and show students the need for mathematics in scientific investigation. The authors conducted activities with secondary students that investigated intake and expenditure components of the energy balance algorithm, which led to inquiries about pedometers and related data. By investigating…

  10. Determining aerodynamic conductance of spar chambers from energy balance measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerodynamic conductance (gA) of SPAR chambers was determined from measurements of energy balance and canopy temperature over a peanut canopy. gA was calculated from the slope of sensible heat flux (H) versus canopy-to-air temperature difference. H and the canopy-to-air temperature were varied by...

  11. Alternative oxidase and uncoupling protein: thermogenesis versus cell energy balance.

    PubMed

    Jarmuszkiewicz, W; Sluse-Goffart, C M; Vercesi, A E; Sluse, F E

    2001-04-01

    The physiological role of an alternative oxidase and an uncoupling protein in plant and protists is discussed in terms of thermogenesis and energy metabolism balance in the cell. It is concluded that thermogenesis is restricted not only by a lower-limit size but also by a kinetically-limited stimulation of the mitochondrial respiratory chain.

  12. Dynamical horizons: energy, angular momentum, fluxes, and balance laws.

    PubMed

    Ashtekar, Abhay; Krishnan, Badri

    2002-12-23

    Dynamical horizons are considered in full, nonlinear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive, and change in the horizon area is related to these fluxes. The flux formulas also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black-hole mechanics. PMID:12484807

  13. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  14. Absorption of macronutrients and nitrogen balance in children with dysentery fed an amylase-treated energy-dense porridge.

    PubMed

    Rahman, M M; Mahalanabis, D; Ali, M; Mazumder, R N; Wahed, M A; Fuchs, G J

    1997-12-01

    The aim of this study was to determine the absorption of macronutrients and energy from an energy-dense diet liquefied with amylase from germinated wheat (ARF) in children suffering from acute dysentery. Thirty male children aged 6-35 months presenting with acute dysentery were randomly assigned to receive either an ARF-treated porridge or a standard porridge liquefied with water to make its consistency similar to the ARF porridge. After 24-h stabilization a 72-h metabolic balance was performed. Sixteen children received an ARF-treated porridge and 14 received a standard porridge liquefied with water. The mean +/- SD coefficients of absorption (%) of carbohydrate, fat, protein and energy (ARF porridge vs regular porridge) were 81.4 +/- 11 vs 86.9 +/- 7, 86.1 +/- 10 vs 82.8 +/- 15, 57.3 +/- 12 vs 48.4 +/- 24 and 81.4 +/- 9 vs 83.1 +/- 8, respectively. The stool loss of carbohydrate, protein, fat and energy was similar in the two groups. The net absorption of energy was substantially greater in the ARF-fed than regular porridge-fed children (by 28%, p = 0.01). The nitrogen balance was 6.9 +/- 3.4 mg kg(-1) d(-1) in the ARF porridge group and 1.1 +/- 6.7 mg kg(-1) d(-1) in the regular porridge group (p = 0.01). These results show that, despite being hyperosmolar, an amylase-treated liquefied energy-dense porridge is absorbed as well as a regular porridge by malnourished children with severe dysentery. Consequently, its use substantially increased the absorption of a net amount of macronutrients and resulted in a better nitrogen balance. These results further support this innovative approach of feeding sick children in developing countries.

  15. Comparing 14-day adhesive patch with 24-h Holter monitoring.

    PubMed

    Cheung, Christopher C; Kerr, Charles R; Krahn, Andrew D

    2014-05-01

    Barrett PM, Komatireddy R, Haaser S et al. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(1), 95.e11–95.e17 (2014). The investigation of cardiac arrhythmias in the outpatient ambulatory setting has traditionally been initiated with the Holter monitor. Using the continuous recording over 24 or 48 h, the Holter monitor permits the detection of baseline rhythm, dysrhythmia and conduction abnormalities, including heart block and changes in the ST segment that may indicate myocardial ischemia. However, apart from the bulkiness and inconvenience of the device itself, the lack of extended monitoring results in a diagnostic yield of typically less than 20%. In this study by Barrett et al., 146 patients referred for the evaluation of cardiac arrhythmia were prospectively enrolled to wear both the 24-h Holter monitor and 14-day adhesive patch monitor (Zio Patch) simultaneously. The primary outcome was the detection of any one of six arrhythmias: supraventricular tachycardia, atrial fibrillation/flutter, pause >3 s, atrioventricular block, ventricular tachycardia, or polymorphic ventricular tachycardia/fibrillation. The adhesive patch monitor detected more arrhythmia events compared with the Holter monitor over the total wear time (96 vs. 61 events; p < 0.001), although the Holter monitor detected more events during the initial 24-h monitoring period (61 vs. 52 events; p = 0.013). Novel, single-lead, intermediate-duration, user-friendly adhesive patch monitoring devices, such as the Zio Patch, represent the changing face of ambulatory ECG monitoring. However, the loss of quality, automated rhythm analysis and inability to detect myocardial ischemia continue to remain important issues that will need to be addressed prior to the implementation of these new devices.

  16. Low protein diets produce divergent effects on energy balance

    PubMed Central

    Pezeshki, Adel; Zapata, Rizaldy C.; Singh, Arashdeep; Yee, Nicholas J.; Chelikani, Prasanth K.

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  17. Canopy radiation transmission for an energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    Mahat, Vinod; Tarboton, David G.

    2012-01-01

    To better estimate the radiation energy within and beneath the forest canopy for energy balance snowmelt models, a two stream radiation transfer model that explicitly accounts for canopy scattering, absorption and reflection was developed. Upward and downward radiation streams represented by two differential equations using a single path assumption were solved analytically to approximate the radiation transmitted through or reflected by the canopy with multiple scattering. This approximation results in an exponential decrease of radiation intensity with canopy depth, similar to Beer's law for a deep canopy. The solution for a finite canopy is obtained by applying recursive superposition of this two stream single path deep canopy solution. This solution enhances capability for modeling energy balance processes of the snowpack in forested environments, which is important when quantifying the sensitivity of hydrologic response to input changes using physically based modeling. The radiation model was included in a distributed energy balance snowmelt model and results compared with observations made in three different vegetation classes (open, coniferous forest, deciduous forest) at a forest study area in the Rocky Mountains in Utah, USA. The model was able to capture the sensitivity of beneath canopy net radiation and snowmelt to vegetation class consistent with observations and achieve satisfactory predictions of snowmelt from forested areas from parsimonious practically available information. The model is simple enough to be applied in a spatially distributed way, but still relatively rigorously and explicitly represent variability in canopy properties in the simulation of snowmelt over a watershed.

  18. Energy expenditure and balance during spaceflight on the space shuttle.

    PubMed

    Stein, T P; Leskiw, M J; Schluter, M D; Hoyt, R W; Lane, H W; Gretebeck, R E; LeBlanc, A D

    1999-06-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  19. Energy expenditure and balance during spaceflight on the space shuttle

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Hoyt, R. W.; Lane, H. W.; Gretebeck, R. E.; LeBlanc, A. D.

    1999-01-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  20. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  1. Components of surface energy balance in a temperate grassland ecosystem

    NASA Technical Reports Server (NTRS)

    Kim, Joon; Verma, Shashi B.

    1990-01-01

    Eddy correlation measurements of moisture, heat, and momentum fluxes were made at a tall grassland site in Kansas during the First International Satellite Land Surface Climatology Project Field Experiment. The fluxes, stomatal conductance, and leaf water potential of three grass species are reported. The species are big bluestem, indiangrass, and switchgrass. The daily and seasonal variation in the components of the surface energy balance and the aerodynamic and canopy surface conductances for prairie vegetation are examined.

  2. Mass by energy loss quantitation as a practical submicrogram balance.

    PubMed

    Palmblad, Magnus; Bench, Graham; Vogel, John S

    2005-02-01

    A simple device integrating a thin film support and a standard microcentrifuge tube can be used for making solutions of accurately known concentration of any organic compound in a single step, avoiding serial dilution and the use of microgram balances. Nanogram to microgram quantities of organic material deposited on the thin film are quantified by ion energy loss and transferred to the microcentrifuge tube with high recovery.

  3. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  4. Resiliency and medicine: how to create a positive energy balance.

    PubMed

    Kelly, John D

    2011-01-01

    A career in orthopaedics is a race-a marathon. Many outside forces converge to increase stressors to high levels. Resiliency, or the ability to bounce back from difficulty, can be learned and nurtured. The management of energy, rather than time, holds the key to avoiding burnout. Orthopaedic surgeons must minimize "energy drain" by first recognizing their ability to become proactive and control their lives. Surgeons must learn how to say "no" and delegate work and responsibilities. A positive energy balance can be attained when relationships, not things, are given priority. A focus on passions and inspiration helps to maintain energy, while a connection to a "source" and living a morally just, service-oriented life will yield endless energy.

  5. The energy balance of divertor discharges in the PDX tokamak

    NASA Astrophysics Data System (ADS)

    Bell, M. G.; Fonck, R. J.; Grek, B.; Jaehnig, K. P.; Kaita, R.; Kaye, S. M.; McBride, T.; Mueller, D.; Owens, D. K.; Schmidt, G. L.

    1984-05-01

    The energy balance of divertor discharges in the PDX tokamak has been studied as a function of the divertor geometry, heating method, and discharge parameters. In the original open divertor geometry, energy flow to the neutralizers accounted for 50-60% of the input energy, while radiation from the main plasma accounted for 20-40%, depending on the density and the heating source. For single-null discharges in the modified closed divertor geometry, the main plasma radiation remains at a similar level, but the neutralizer deposition decreases to < 20% and radiation from the divertor scrape-off must be included to achieve energy accountability. The energy deposition width on the neutralizers is found to vary with plasma conditions in the closed geometry.

  6. Report Calls for Balancing Energy Security, Energy Equity, and Environmental Concerns

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-12-01

    Balancing the sometimes conflicting needs for energy security, energy equity, and environmental sustainability—including trying to limit average global temperature increases—can be a daunting task for countries. A new report focuses on the challenges and potential pathways to achieving this energy "trilemma" of meeting energy and environmental needs.

  7. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  8. The role of ghrelin in energy balance regulation in fish.

    PubMed

    Jönsson, Elisabeth

    2013-06-15

    Knowledge about the endocrine regulation of energy balance in fish is of interest for basic as well as aquaculture research. Ghrelin is a peptide hormone that was first identified in fish 10 years ago and has important roles in the control of food intake and metabolism. Both ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), have been found in numerous fish species. Their tissue distributions support the idea that ghrelin has an integrative role in the regulation of energy balance at both the central nervous system level and systemic level. In tilapia and goldfish, ghrelin treatment appears to increase food intake and to stimulate lipogenesis and tissue fat deposition to promote a more positive energy status. In rainbow trout, on the other hand, ghrelin decreases food intake. Goldfish and rainbow trout are the fish species in which the mode of action of ghrelin on food intake has been most thoroughly investigated. The results from these studies indicate that ghrelin alters food intake by acting on well-known appetite signals, such as CRH, NPY and orexin, in the hypothalamus in a species-specific manner. In goldfish, sensory fibres of the vagus nerve convey the signal from gut-derived ghrelin to modulate appetite. The data also indicate that ghrelin may modulate foraging/swimming activity and the perception of food in fish. Results related to the effects of energy status, temperature, and stressors on plasma ghrelin/tissue ghrelin mRNA levels are occasionally inconsistent between short- and long-term studies, between the protein and mRNA, and between species. Recent data also imply a role of ghrelin in carbohydrate metabolism. More functional studies are required to understand the role of ghrelin and its mechanisms of action in the regulation of energy balance among fish.

  9. Dietary energy balance modulates ovarian cancer progression and metastasis.

    PubMed

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Morris, Robert T; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-08-15

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer.

  10. Diurnal profiles of hypothalamic energy balance gene expression with photoperiod manipulation in the Siberian hamster, Phodopus sungorus.

    PubMed

    Ellis, Claire; Moar, Kim M; Logie, Tracy J; Ross, Alexander W; Morgan, Peter J; Mercer, Julian G

    2008-04-01

    Hypothalamic energy balance genes have been examined in the context of seasonal body weight regulation in the Siberian hamster. Most of these long photoperiod (LD)/short photoperiod (SD) comparisons have been of tissues collected at a single point in the light-dark cycle. We examined the diurnal expression profile of hypothalamic genes in hamsters killed at 3-h intervals throughout the light-dark cycle after housing in LD or SD for 12 wk. Gene expression of neuropeptide Y, agouti-related peptide, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, long-form leptin receptor, suppressor of cytokine signaling-3, melanocortin-3 receptor, melanocortin-4 receptor, and the clock gene Per1 as control were measured by in situ hybridization in hypothalamic nuclei. Effects of photoperiod on gene expression and leptin levels were generally consistent with previous reports. A clear diurnal variation was observed for Per1 in the suprachiasmatic nucleus in both photoperiods. Temporal effects on expression of energy balance genes were restricted to long-form leptin receptor in the arcuate nucleus and ventromedial nucleus, where similar diurnal expression profiles were observed, and melanocortin-4 receptor in the paraventricular nucleus; these effects were only observed in LD hamsters. There was no variation in serum leptin concentration. The 24-h profiles of hypothalamic energy balance gene expression broadly confirm photoperiodic differences that were observed previously, based on single time point comparisons, support the growing consensus that these genes have a limited role in seasonal body weight regulation, and further suggest limited involvement in daily rhythms of food intake.

  11. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  12. Appetite control and energy balance: impact of exercise.

    PubMed

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  13. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat.

  14. DFT study of structural, electronic, and spectroscopic properties of D6d endohedral fullerenes: X@C24H12 (X=Li+, Na+, K+).

    PubMed

    Peng, Sheng; Li, Xiao Jun

    2009-07-01

    Based on the D6d-symmetrical C24H12, the equilibrium geometries, electronic structures, Infrared and Raman spectra, reaction energies, the energy gaps, and BSSE- and Zero-Point-corrected binding energies of endohedral fullerenes X@C24H12 (X=Li+, Na+, K+) have been calculated by first-principle density functional theory (DFT) at B3LYP/6-31G(d) level of theory. The results suggest that the average bond lengths of endohedral fullerenes are longer than those of the empty cage. And in the endohedral fullerenes, Li+@C24H12 is only favorable in energy, and can stably exist. The stable order of three endohedral fullerenes is Li+@C24H12>Na+@C24H12>K+@C24H12, this indicates that the reaction energies and binding energies are in excellent agreement with the energy gaps between the frontier orbitals in the aspect of stability. All may provide a theoretical reference for further applications in the fields of materials physics and chemistry.

  15. Seasonal Contrasts in the Surface Energy Balance of the Sahel

    SciTech Connect

    Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

    2009-03-14

    Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux

  16. The energy balance of plasmoids in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Pneuman, G. W.

    1986-01-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  17. Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice

    PubMed Central

    Nagata, Naoto; Matsuo, Kosuke; Bettaieb, Ahmed; Bakke, Jesse; Matsuo, Izumi; Graham, James; Xi, Yannan; Liu, Siming; Tomilov, Alexey; Tomilova, Natalia; Gray, Susan; Jung, Dae Young; Ramsey, Jon J.; Kim, Jason K.; Cortopassi, Gino; Havel, Peter J.

    2012-01-01

    The Src homology 2 domain-containing protein-tyrosine phosphatase Src homology phosphatase 2 (Shp2) is a negative regulator of hepatic insulin action in mice fed regular chow. To investigate the role of hepatic Shp2 in lipid metabolism and energy balance, we determined the metabolic effects of its deletion in mice challenged with a high-fat diet (HFD). We analyzed body mass, lipid metabolism, insulin sensitivity, and glucose tolerance in liver-specific Shp2-deficient mice (referred to herein as LSHKO) and control mice fed HFD. Hepatic Shp2 protein expression is regulated by nutritional status, increasing in mice fed HFD and decreasing during fasting. LSHKO mice gained less weight and exhibited increased energy expenditure compared with control mice. In addition, hepatic Shp2 deficiency led to decreased liver steatosis, enhanced insulin-induced suppression of hepatic glucose production, and impeded the development of insulin resistance after high-fat feeding. At the molecular level, LSHKO exhibited decreased hepatic endoplasmic reticulum stress and inflammation compared with control mice. In addition, tyrosine and serine phosphorylation of total and mitochondrial signal transducer and activator of transcription 3 were enhanced in LSHKO compared with control mice. In line with this observation and the increased energy expenditure of LSHKO, oxygen consumption rate was higher in liver mitochondria of LSHKO compared with controls. Collectively, these studies identify hepatic Shp2 as a novel regulator of systemic energy balance under conditions of high-fat feeding. PMID:22619361

  18. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  19. [Energy balance, body composition and the female athlete triad syndrome].

    PubMed

    Weinstein, Yitzhak; Weinstein, Ayelet

    2012-02-01

    With the rising participation of women in sports events, the prevalence of eating disorders and the female athlete triad (FTS), a syndrome of disordered eating, amenorrhea, and osteoporosis, have also increased in recent years. FTS is often seen in sports that emphasize thinness (e.g. gymnastics, figure skating and dancing) and also in endurance events. Elements of the FTS are pathophysiologically linked, leading to several disease risks and even to mortality. In spite of the considerable knowledge about sports nutrition, there is no consensus as to the correct nutrition regime for the female athlete. There is consensus that minimizing fluctuations in 'target-body-weight' is an indication of a long-term energy balance. Female athletes (e.g. in endurance events and gymnastics) are less likely to achieve the recommended carbohydrates (CHO) and fat consumption due to chronic or episodic constraints of total energy intake while struggling to achieve or maintain low levels of body fat. It is recommended that dietary CHO and fat content be increased to preserve fat-free mass thus enhancing health and performance. Energy balance should also be maintained during recesses. Furthermore, within-day episodes of energy deficits/surplus (measured by the frequency and/or magnitude of the episodes) should be monitored and treated closest to the time of the incidents. PMID:22741211

  20. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed Central

    Wohlfahrt, Georg; Widmoser, Peter

    2013-01-01

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  1. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed

    Wohlfahrt, Georg; Widmoser, Peter

    2013-02-15

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements.

  2. Recycling legislation: A balanced approach for opening biomass energy opportunities

    SciTech Connect

    Easterly, J.L.

    1995-09-01

    State recycling legislation represents one of the barriers to using wood wastes for energy. Although many states are setting recycling goals that often mandate a significant portion of the waste stream be recycled, legislation in the same states specifically excludes wood-to-energy as a recycling option. A significant supply of yard waste and wood waste could be available for biomass power generation of recycling legislation credited the use of wood-to-energy as an acceptable recycling alternative. This article discusses in some detail the approach Florida legislation has pursued. It could be a model for other innovative recycling programs. It provides checks and balances as well as reasonable compromises that help to avoid or minimize objections by the environmental community.

  3. Orexins (hypocretins) and energy balance: More than feeding.

    PubMed

    Fernø, Johan; Señarís, Rosa; Diéguez, Carlos; Tena-Sempere, Manuel; López, Miguel

    2015-12-15

    Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.

  4. Amylin-mediated control of glycemia, energy balance, and cognition.

    PubMed

    Mietlicki-Baase, Elizabeth G

    2016-08-01

    Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms. PMID:26922873

  5. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.

  6. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  7. Evolution effects on parton energy loss with detailed balance

    SciTech Connect

    Cheng Luan; Wang Enke

    2010-07-15

    The initial conditions in the chemically nonequilibrated medium and Bjorken expanding medium at Relativistic Heavy Ion Collider (RHIC) are determined. With a set of rate equations describing the chemical equilibration of quarks and gluons based on perturbative QCD, we investigate the consequence for parton evolution at RHIC. With considering parton evolution, it is shown that the Debye screening mass and the inverse mean free-path of gluons reduce with increasing proper time in the QGP medium. The parton evolution affects the parton energy loss with detailed balance, both parton energy loss from stimulated emission in the chemically nonequilibrated expanding medium and in Bjorken expanding medium are linear dependent on the propagating distance rather than square dependent in the static medium. The energy absorption cannot be neglected at intermediate jet energies and small propagating distance of the energetic parton in contrast with that it is important only at intermediate jet energy in the static medium. This will increase the energy and propagating distance dependence of the parton energy loss and will affect the shape of suppression of moderately high P{sub T} hadron spectra.

  8. Seasonal contrast in the surface energy balance of the Sahel

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  9. Prefrontal cortex self-stimulation and energy balance.

    PubMed

    McGregor, I S; Atrens, D M

    1991-12-01

    The relation between sulcal prefrontal cortex (SPC) and medial prefrontal cortex (MPC) self-stimulation and energy balance was investigated in rats. SPC but not MPC self-stimulation induced feeding but not the gnawing of wooden blocks. SPC but not MPC self-stimulation enhanced weight gain over several weeks of exposure to stimulation. Food deprivation (48 hr but not 24 hr) increased SPC self-stimulation rates under a 5-s fixed-interval reinforcement schedule and decreased current thresholds for SPC self-stimulation. MPC self-stimulation was unaffected by food deprivation. Insulin (4 U/kg) and 2-deoxy-D-glucose (300 mg/kg) inhibited both SPC and MPC self-stimulation, probably through interfering with performance. Satiety induced by prolonged intake of a sweetened solution or deprivation-induced feeding moderately facilitated SPC self-stimulation. Overall, it appears that SPC but not MPC self-stimulation modulates, and is modulated by, energy balance. PMID:1777106

  10. Pedometer and Human Energy Balance Applications for Science Instruction

    PubMed Central

    Rye, James A.; Smolski, Stefan

    2008-01-01

    Teachers can use pedometers to facilitate inquiry learning and show students the need for mathematics in scientific investigation. The authors conducted activities with secondary students that investigated intake and expenditure components of the energy balance algorithm, which led to inquiries about pedometers and related data. By investigating the accuracy of pedometers and variables that may impact reported step counts, students can better understand experimental design and statistical concepts. Students can also examine other data (distance walked, kilocalories expended) using multifunction pedometers and apply the concepts of correlation and regression. This topic fits well with thematic learning and responds to concerns about excess energy intake and insufficient physical activity in the U.S. population. PMID:19081754

  11. Energy balance during lower hybrid heating in FT

    NASA Astrophysics Data System (ADS)

    FT Group, Mazzitelli, Presented by G.

    1985-07-01

    An energy balance during Lower Hybrid Heating at power level up to about 400 kW is carried out for two different FT discharges. A symmetric n∥ spectrum (1,2≲n∥≲3) is coupled to the plasma in the electron mode at n¯e≲4×1013 cm-3; The two discharges are characterized by: Type A) BT=80 kG, Ip˜300 kA, qa≳6, PRF/POH˜2/3 without sawtooth activity; Type B) BT=60 kG, Ip˜300 kA, q(a)˜4.5, PRF/POH˜.5 with sawtooth. In both discharges good heating efficiency is achieved without any deterioration of the energy confinement time.

  12. [Diurnal and seasonal variations of energy balance over Horqin meadow].

    PubMed

    Li, Hui-dong; Guan, De-Xin; Yuan, Feng-Hui; Ren, Yan; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2014-01-01

    Based on the measurements of eddy flux and micrometeorological factors, this paper analyzed the diurnal and seasonal variations of energy balance over Horqin meadow. The results showed that annual energy balance ratio (EBR) of the eddy covariance system was 0.77, and EBR was biggest in growing season, middle in bare soil period and smallest in snow-covered period. Diurnal variations of energy components all presented bell-shaped curves. The peak of net radiation appeared around 12:00 and peaks of other components slightly lagged. Seasonal variation of net radiation presented a single-peak curve, and the annual average was 5.71 MJ x m(-2) x d(-1). Seasonal variation of latent heat flux was similar to that of net radiation, and the annual average was 2.84 MJ x m(-2) x d(-1). Seasonal variation of sensible heat flux presented a double-peak curve, and the peaks appeared in April and September, respectively. Annual averaged sensible heat flux was 1.87 MJ x m(-2) x d(-1). Maximum soil heat flux (3.47 MJ x m(-2) x d(-1)) appeared in April, and the soil heat flux became negative after September. Annual budget ratios of energy components presented a decreasing order of latent heat flux, sensible heat flux and soil heat flux, which accounted for 49.8%, 35.8% and 3.1% of net radiation, respectively. Seasonal variation of Bowen ratio (beta) presented a 'U' shape, and the annual average was 1.61. beta was small (0.18) and relatively stable in growing season, while it was large (2.39) and fluctuated severely in non-growing season.

  13. Mechanisms linking energy balance and reproduction: impact of prenatal environment.

    PubMed

    Rhinehart, Erin M

    2016-01-01

    The burgeoning field of metabolic reproduction regulation has been gaining momentum due to highly frequent discoveries of new neuroendocrine factors regulating both energy balance and reproduction. Universally throughout the animal kingdom, energy deficits inhibit the reproductive axis, which demonstrates that reproduction is acutely sensitive to fuel availability. Entrainment of reproductive efforts with energy availability is especially critical for females because they expend large amounts of energy on gestation and lactation. Research has identified an assortment of both central and peripheral factors involved in the metabolic regulation of reproduction. From an evolutionary perspective, these mechanisms likely evolved to optimize reproductive fitness in an environment with an unpredictable food supply and regular bouts of famine. To be effective, however, the mechanisms responsible for the metabolic regulation of reproduction must also retain developmental plasticity to allow organisms to adapt their reproductive strategies to their particular niche. In particular, the prenatal environment has emerged as a critical developmental window for programming the mechanisms responsible for the metabolic control of reproduction. This review will discuss the current knowledge about hormonal and molecular mechanisms that entrain reproduction with prevailing energy availability. In addition, it will provide an evolutionary, human life-history framework to assist in the interpretation of findings on gestational programming of the female reproductive function, with a focus on pubertal timing as an example. Future research should aim to shed light on mechanisms underlying the prenatal modulation of the adaptation to an environment with unstable resources in a way that optimizes reproductive fitness.

  14. The detailed balance limit of photochemical energy conversion.

    PubMed

    Fingerhut, Benjamin P; Zinth, Wolfgang; de Vivie-Riedle, Regina

    2010-01-14

    Limits and optimization of a solar energy conversion system consisting of a photochemical charge separating unit coupled to an energy storage state are explored by multi-objective genetic algorithms. Pareto fronts were evaluated to obtain information about the ideal parameter combinations, guaranteeing highest efficiency. The light absorbing and charge separating unit is described by a chain of chromophores and electron carriers, connected by Marcus type electron transfer processes. It is coupled to the thermal equilibrium of charge conduction and transport in an energy storage system according to the principle of detailed balance. In addition to our previous findings for an optimal charge separation unit, consisting of a minimum number of charge carriers with adapted recombination and reaction rates, the complete photochemical unit must fulfil further requirements. Low reorganization energies are found to be essential for the initial charge separation steps and can be realized by a low dielectric constant in the local environment. The identified optimal operation rates can be realized by antenna systems adapted to the illumination conditions. For standard solar illumination and a realistic parameter setting energy conversion efficiencies up to 26.8% are predicted, comparable to the limit (31.8%) of ideal single junction semiconductor solar cells.

  15. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. PMID:24630935

  16. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  17. Energy Balance during Taekwondo Practice in Elite Male Taekwondo Players

    PubMed Central

    Cho, Kang Ok; Garber, Carol Ewing; Lee, Sukho; Kim, Yeon Soo

    2013-01-01

    Background The goal of this study was to evaluate energy expenditure and dietary intake of nutrients during Taekwondo practice in elite Korean male Taekwondo players. Methods: Elite Korean male high school (high school player: HP; n = 59) and college players (college player: CP; n = 58) wore an accelerometer to measure energy expenditure and recorded their daily dietary intake for nutritional analysis over the course of five days. Results: Nutritional adequacy ratios for total energy (0.82), vitamin C (0.97), calcium (0.78), and folate (0.75) were below recommended levels for all players. When comparing daily nutrient intake and energy expenditure between HP and CP, the HP group had significantly higher total calorie intake (402.7 kcal, p < 0.001), calcium (126.3 mg, p = 0.018), phosphorus (198.0 mg, p = 0.002), iron (1.3 mg, p = 0.002), and vitamin B2 (0.4 mg, p < 0.001) than the CP group. Although there was no significant difference in the estimated energy requirement during Taekwondo practice, the total energy expenditure (151.2 kcal, p = 0.001), total activity counts (130,674 counts, p = 0.038) and energy expenditure during Taekwondo practice (257.7 kcal, p < 0.001) were significantly higher in the HP than in the CP. Conclusion: The results indicate that a sports nutrition program based on energy balance is necessary to achieve optimal health and performance in elite male Taekwondo players. PMID:26064838

  18. Global Energy and Water Balances in the Latest Reanalyses

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Kang, Suchul; Park, Hye-Jin

    2016-04-01

    The recently released Japanese 55-year Reanalysis (JRA-55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERRA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes occur in MERRA, CFRS and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique. Acknowledgements This work was funded by the Korea Meteorological

  19. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  20. Preliminary approach of the MELiSSA loop energy balance

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering

  1. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration under complex terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.

    2010-07-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  2. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N.-B.

    2011-01-01

    Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement). Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  3. Energy requirements for a swimming pool through a water-atmosphere energy balance

    SciTech Connect

    Almanza, F.; Lara, J. )

    1994-07-01

    The methodology displayed here is to calculate the energy requirements for heating a swimming pool to a desired temperature. This methodology consists of an energy balance between water-atmosphere as is used in the temperature evaluation of cooling ponds in power plants. Different mathematical expressions are given to calculate such a balance. It is necessary to know the month of the year, the ambient temperature, relative humidity, wind velocity, and solar radiation. With these parameters it is possible to know the natural temperature of the water, natural evaporation, energy needed to reach a determined swimming pool temperature and the evaporation of the heated pool.

  4. Global energy and water balances in the latest reanalyses

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Ahn, Joong-Bae

    2015-11-01

    The recently released Japanese 55-year Reanalysis (JRA- 55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique.

  5. p75 neurotrophin receptor regulates energy balance in obesity

    PubMed Central

    Baeza-Raja, Bernat; Sachs, Benjamin D.; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L.; Chan, Justin P.; Scadeng, Miriam; Taylor, Susan S.; Houslay, Miles D.; Baillie, George S.; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2015-01-01

    Summary Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here we show that upon high-fat diet (HFD), the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice. Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean due to increased energy expenditure, without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-neuronal functions of neurotrophin receptor signaling could be a new target for treating obesity and the metabolic syndrome. PMID:26748707

  6. The global land and ocean mean energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris

    2016-04-01

    The energy balance over land and oceans governs a diversity of terrestrial and maritime processes and is the key determinant of climatic conditions in these areas. Despite its crucial role, climate models show significant differences in the individual components of the energy balance over both land and oceans, particularly at the surface. Here we combine a comprehensive set of radiation observations from GEBA and BSRN with 43 state-of-the-art climate models to infer best estimates for present day annual mean downward solar and thermal radiation averaged over land and ocean surfaces, together with their uncertainty ranges. Over land (including the polar ice sheets), where most direct observations are available to constrain the surface fluxes, we obtain 184 and 306 Wm-2 for solar and thermal downward radiation, respectively. Over oceans, with weaker observational constraints, corresponding estimates are around 185 and 356 Wm-2. These values closely agree, mostly within 3 Wm-2, with the respective quantities independently derived by a state-of-the-art reanalysis (ERA-Interim) and satellite-derived product (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far stated large uncertainty sources in the energy budgets. The estimated downward solar radiation averaged over land and ocean surfaces is almost identical despite differences in the incoming solar flux at the Top-of-Atmosphere (TOA) around 20 Wm-2, indicative of an overall less transparent atmosphere over oceans than land. Considering additionally surface albedo and emissivity, we infer a surface absorbed solar and net thermal radiation of 136 and -66 Wm-2 over land, and 170 and -53 Wm-2 over oceans, respectively. The surface net radiation is thus estimated at 70 Wm-2 over land and 117 Wm-2 over oceans, which may impose additional constraints on the poorly known sensible and latent heat flux magnitudes. These are estimated here near 32 and 38 Wm-2 over

  7. Energy Balance of Triathletes during an Ultra-Endurance Event

    PubMed Central

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-01-01

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit. PMID:25558906

  8. Geospatial and Contextual Approaches to Energy Balance and Health

    PubMed Central

    Berrigan, David; Hipp, J. Aaron; Hurvitz, Philip M.; James, Peter; Jankowska, Marta M.; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A.; Powell-Wiley, Tiffany M.; Tarlov, Elizabeth; Zenk, Shannon N.

    2016-01-01

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities. PMID:27076868

  9. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  10. Confinement time and energy balance in the CTX spheromak

    SciTech Connect

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1984-01-01

    The multipoint Thomson scattering diagnostic on CTX allows measurement of electron plasma pressure. The pressure correlates well with the poloidal flux function. Analysis using equilibrium models allows the (..beta..)/sub vol/ to be calculated from over 100 Thomson scattering profiles taken under standard conditions of spheromak operation where the plasma parameters vary widely within the discharge. The calculated tau/sub E/ increases with central core temperature and with density. The global magnetic energy decay time tau/sub B/2 is consistent with Spitzer-Harm resistivity, but with an anomaly factor of 2 to 4 which may decrease at small ratios of B/n. The n tau/sub E/ product reaches 4 x 10/sup 9/ s cm/sup -3/ during the hottest part of the discharge. A zero-dimensional energy balance code, which accurately includes all the major atomic physics processes and whose parameters have been constrained by comparision to experimental data, is used to identify the causes of energy loss that contribute to the observed confinement time. The most important power loss is that needed to replace the particles being lost and to maintain the constant density of the plateau.

  11. The impact of weight loss on the 24-h profile of circulating peptide YY and its association with 24-h ghrelin in normal weight premenopausal women.

    PubMed

    Hill, Brenna R; De Souza, Mary Jane; Wagstaff, David A; Williams, Nancy I

    2013-11-01

    Peptide YY (PYY) and ghrelin exhibit a reciprocal association and antagonistic physiological effects in the peripheral circulation. Research has yet to clarify the effect of weight loss on the 24h profile of PYY or its association to 24h ghrelin. We sought to determine if diet- and exercise-induced weight loss affects the 24h profile of PYY and its association with 24h ghrelin in normal weight, premenopausal women. Participants (n = 13) were assessed at baseline (BL) and after a 3-month diet and exercise intervention (post). Blood samples obtained q10 min for 24h were assayed for total PYY and total ghrelin q60 min from 0800 to 1000 h and 2000 to 0800 h and q20 min from 1000 to 2000 h. The ghrelin/PYY ratio was used as an index of hormonal exposure. Statistical analyses included paired t-tests and linear mixed effects modeling. Body weight (-1.85 ± 0.67 kg; p = 0.02), and body fat (-2.53 ± 0.83%; p = 0.01) decreased from BL to post. Ghrelin AUC (5252 ± 2177 pg/ml/24h; p=0.03), 24h mean (216 ± 90 pg/ml; p = 0.03) and peak (300 ± 134 pg/ml; p = 0.047) increased from BL to post. No change occurred in PYY AUC (88.2 ± 163.7 pg/ml; p = 0.60), 24h mean (4.8 ± 6.9 pg/ml; p = 0.50) or peak (3.6 ± 6.4 pg/ml; p = 0.58). The 24h association between PYY and ghrelin at baseline (p = 0.04) was weakened at post (p = 0.14); however, the ghrelin/PYY lunch ratio increased (p = 0.01) indicating the potential for ghrelin predominance over PYY in the circulation. PYY and ghrelin are reciprocally associated during a period of weight stability, but not following weight loss. An "uncoupling" may have occurred, particularly at lunch, due to factors that modulate ghrelin in response to weight loss.

  12. Modeling the water and energy balance of vegetated areas with snow accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to quantify soil–atmosphere water and energy exchange is important in understanding agricultural and natural ecosystems, as well as the earth’s climate. We developed a one-dimensional vertical model that calculates solar radiation, canopy energy balance, surface energy balance, snowpack ...

  13. Estimating energy balance fluxes above a boreal forest from radiometric temperature observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great areal extent of boreal forests confers these ecosystems potential to impact on the global surface-atmosphere energy exchange. A modeling approach, based on a simplified two-source energy balance model, was proposed to estimate energy balance fluxes above boreal forests using thermal infrar...

  14. Simulating drought impacts on energy balance in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Imbuzeiro, H. A.; Costa, M. H.; Galbraith, D.; Christoffersen, B. O.; Powell, T.; Harper, A. B.; Levine, N. M.; Rowland, L.; Moorcroft, P. R.; Benezoli, V. H.; Meir, P.; da Costa, A. C. L.; Brando, P. M.; Malhi, Y.; Saleska, S. R.; Williams, M. D.

    2014-12-01

    The studies of the interaction between vegetation and climate change in the Amazon Basin indicate that up to half of the region's forests may be displaced by savanna vegetation by the end of the century. Additional analyses suggest that complex interactions among land use, fire-frequency, and episodic drought are driving an even more rapid process of the forest impoverishment and displacement referred here as "savannization". But it is not clear whether surface/ecosystem models are suitable to analyze extreme events like a drought. Long-term simulations of throughfall exclusion experiments has provided unique insights into the energy dynamics of Amazonian rainforests during drought conditions. In this study, we evaluate how well six surface/ecosystem models quantify the energy dynamics from two Amazonian throughfall exclusion experiments. All models were run for the Tapajós and Caxiuanã sites with one control plot using normal precipitation (i.e. do not impose a drought) and then the drought manipulation was imposed for several drought treatments (10 to 90% rainfall exclusion). The sap flow, net radiation (Rn), sensible (H), latent (LE) and ground (G) heat flux are used to analyze if the models are able to capture the dynamics of water stress and what the implications for the energy dynamics are. With respect to the model validation, when we compare the sap flow observed and transpiration simulated, models are more accurate to simulate control plots than drought treatments (50% rainfall exclusion). The results show that the models overestimate the sap flow data during the drought conditions, but they were able to capture the changes in the main energy balance components for different drought treatments. The Rn and LE decreased and H increased with more intensity of drought. The models sensitivity analysis indicate that models are more sensitive to drought when rainfall is excluded for more than 60% and when this reduction occurs during the dry season.

  15. Energy balance and the composition of weight loss during prolonged space flight

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    Integrated metabolic balance analysis, Skylab integrated metabolic balance analysis and computer simulation of fluid-electrolyte responses to zero-g, overall mission weight and tissue losses, energy balance, diet and exercise, continuous changes, electrolyte losses, caloric and exercise requirements, and body composition are discussed.

  16. Creatinine adjustment of spot urine samples and 24 h excretion of iodine, selenium, perchlorate, and thiocyanate.

    PubMed

    Ohira, Shin-ichi; Kirk, Andrea B; Dyke, Jason V; Dasgupta, Purnendu K

    2008-12-15

    Creatinine (CR) adjustment is widely used for the estimation of urinary 24 h excretion from spot urine samples. We have compared CR-adjusted values for urinary iodine, selenium, perchlorate, and thiocyanate to measured 24 h excretion. The urine samples were collected from a cohort of 14 breastfeeding mothers with both spot samples and 24 h collection, 52 24 h and spot sample pairs where the 24 h CR value fell within the "normal" adult female CR excretion range of 0.6-1.6 g/day were considered for this analysis. In addition, a nonlactating female and a male subject provided all micturitions for 1 and 5 days, respectively. Creatinine was analyzed with a Jáffe reaction-based automated analyzer. Iodine and selenium were determined with induction coupled plasma-mass spectrometry (ICP-MS). Perchlorate and thiocyanate were measured with ion chromatography (IC)-isotope dilution tandem mass spectrometry (MS/MS). Creatinine-adjusted values were poor substitutes of the actual 24 h excretion values (average deviation +/-69, 78, 105, and 104% for iodine, selenium, perchlorate, and thiocyanate, respectively.). Over a 5 day period, the 24 h iodine excretion predicted based on creatinine adjustment of spot samples for the same individual deviated between -83.5 to +101% from the actual measured value, the minimum absolute error being 2.5%. Creatinine adjustment for estimation of 24 h excretion from spot samples was not effective for iodine, selenium, perchlorate, or thiocyanate.

  17. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  18. Energy Balance Around Gas Injection into Oxygen Steelmaking

    NASA Astrophysics Data System (ADS)

    Sabah, Shabnam; Brooks, Geoffrey

    2016-02-01

    In the present work, a simplified approach of energy balance around gas injection into oxygen steelmaking has been carried out in a cold model. The aim is to provide an estimation of the amount of energy consumed by the different parts of the injection process such as dissipation, stirring of the bath, cavity formation, and splashing. Calculation of jet power used by different processes has been carried for various operating conditions and cavity modes ( i.e., splashing and penetrating). Calculations showed that dissipation and splashing are the dominant processes where most of the power of the jet is used, whereas cavity formation consumes the least amount. In the splashing mode, the percentage of total input power going into dissipation was about 59 to 63 pct, whereas it was found to be 2.6 to 50 pct in the penetrating mode. In splashing mode, about 30 pct power from the nozzle was used to create splash which is proved to be an efficient mode for droplet generation as less power is required to create droplets. At a certain lance height, the percentages of total input power used for splashing and dissipation were found equal. Below this lance height, all the cavities were found to be in penetrating mode. This simplified approach provides an improved understanding of the gas injection process and may be used for developing models of the injection process of steelmaking.

  19. DET/MPS - The GSFC Energy Balance Programs

    NASA Technical Reports Server (NTRS)

    Jagielski, J. M.

    1994-01-01

    Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.

  20. Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency

    PubMed Central

    Longo, Kenneth A.; Berryman, Darlene E.; Kelder, Bruce; Charoenthongtrakul, Soratree; DiStefano, Peter S.; Geddes, Brad J.; Kopchick, John

    2009-01-01

    The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA. PMID:19747867

  1. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted.

  2. Gut microbiota and energy balance: role in obesity.

    PubMed

    Blaut, Michael

    2015-08-01

    The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.

  3. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells.

    PubMed

    Jacobson, Kyle S; Kelly, Patrick T; He, Zhen

    2015-03-01

    Energy recovery and consumption in a microbial fuel cell (MFC) can be significantly affected by the operating conditions. This study investigated the effects of electrolyte recirculation and operation mode (continuous vs sequence batch reactor) on the energy balance in a tubular MFC. It was found that decreasing the anolyte recirculation also decreased the energy recovery. Because of the open environment of the cathode electrode, the catholyte recirculation consumed 10 to 50 times more energy than the anolyte recirculation, and resulted in negative energy balances despite the reduction of the anolyte recirculation. Reducing the catholyte recirculation to 20% led to a positive energy balance of 0.0288 kWh m(-3). The MFC operated as a sequence batch reactor generated less energy and had a lower energy balance than the one with continuous operation. Those results encourage the further development of MFC technology to achieve neutral or even positive energy output.

  4. The Energy Balance of the Winter Boreal Landscape.

    NASA Astrophysics Data System (ADS)

    Harding, R. J.; Pomeroy, J. W.

    1996-11-01

    During the winter of 1993/94 a study to quantify the winter energy balance of the main cover types of the boreal landscape took place. The study was based on the southern edge of boreal forest in Canada. Measurements were made over a mature jack pine stand and a frozen lake. Shortwave albedos of 12% to 14% over the jack pine and 20% to 88% on the frozen lake (both depending on snow cover) were measured. There were correspondingly large contrasts in the total radiation inputs and the turbulent heat fluxes. The mean net all-wave radiation input was large and positive into the forest and negative over the lake. The sensible heat fluxes were of the same sign as the radiative inputs with positive values over the forest peaking at +200 W m2 and failing to 100 W m2 over the lake. The evaporation from the forest depended on whether the there was snow on the canopy. When the canopy was snow-free, the evaporation was low, about 50% of net radiation but, when there was snow on the canopy, the evaporation was large, 4 mm over a 36-hour period. The results of these experiments are being used to design much-improved descriptions of boreal forest within the next generation of climate, models.

  5. The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults12

    PubMed Central

    Chowdhury, Enhad A; Richardson, Judith D; Holman, Geoffrey D; Tsintzas, Kostas; Thompson, Dylan; Betts, James A

    2016-01-01

    Background: The causal nature of associations between breakfast and health remain unclear in obese individuals. Objective: We sought to conduct a randomized controlled trial to examine causal links between breakfast habits and components of energy balance in free-living obese humans. Design: The Bath Breakfast Project is a randomized controlled trial with repeated measures at baseline and follow-up among a cohort in South West England aged 21–60 y with dual-energy X-ray absorptiometry–derived fat mass indexes of ≥13 kg/m2 for women (n = 15) and ≥9 kg/m2 for men (n = 8). Components of energy balance (resting metabolic rate, physical activity thermogenesis, diet-induced thermogenesis, and energy intake) were measured under free-living conditions with random allocation to daily breakfast (≥700 kcal before 1100) or extended fasting (0 kcal until 1200) for 6 wk, with baseline and follow-up measures of health markers (e.g., hematology/adipose biopsies). Results: Breakfast resulted in greater physical activity thermogenesis during the morning than when fasting during that period (difference: 188 kcal/d; 95% CI: 40, 335) but without any consistent effect on 24-h physical activity thermogenesis (difference: 272 kcal/d; 95% CI: −254, 798). Energy intake was not significantly greater with breakfast than fasting (difference: 338 kcal/d; 95% CI: −313, 988). Body mass increased across both groups over time but with no treatment effects on body composition or any change in resting metabolic rate (stable within 8 kcal/d). Metabolic/cardiovascular health also did not respond to treatments, except for a reduced insulinemic response to an oral-glucose-tolerance test over time with daily breakfast relative to an increase with daily fasting (P = 0.05). Conclusions: In obese adults, daily breakfast leads to greater physical activity during the morning, whereas morning fasting results in partial dietary compensation (i.e., greater energy intake) later in the day. There were

  6. Simulating maize production, water and surface energy balance, and canopy temperature under full and deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface energy balance is critical to the understanding of crop evapotranspiration (ET) requirement and crop water stresses. The objective of this study was to evaluate the simulation of crop growth, water and surface energy balance components, and canopy temperature under full and deficit irrigated...

  7. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    PubMed

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance.

  8. Symposium Papers-Progress in Radiation and Energy Balance Measurement Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On November 2, 2004, an all-day symposium entitled “Progress in Radiation and Energy Balance Measurement Systems” was convened at the ASA-CSSA-SSSA annual meetings in Seattle, WA. Interest in the measurement of radiation and energy balance components at soil and plant canopy surfaces has seen a res...

  9. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    PubMed

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. PMID:24472322

  10. Comparative analysis of net energy balance for satellite power systems (SPS) and other energy systems

    SciTech Connect

    Cirillo, R.R.; Cho, B.S.; Monarch, M.R.; Levine, E.P.

    1980-04-01

    The net energy balance of seven electric energy systems is assessed: two coal-based, one nuclear, two terrestrial solar, and two solar power satellites, with principal emphasis on the latter two systems. Solar energy systems require much less operating energy per unit of electrical output. However, on the basis of the analysis used here, coal and nuclear systems are two to five times more efficient at extracting useful energy from the primary resource base than are the solar energy systems. The payback period for all systems is less than 1.5 years, except for the terrestrial photovoltaic (19.8 yr) and the solar power satellite system (6.4 yr), both of which rely on energy-intensive silicon cells.

  11. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.

    PubMed

    Gerin, Patrick A; Vliegen, François; Jossart, Jean-Marc

    2008-05-01

    Energy crops can be used to feed anaerobic digesters and produce renewable energy. However, sustainability of this option requires that it contributes to a net production of renewable energy and a net reduction of fossil CO2 emission. In this paper, the net balance of CO2 emission and renewable energy production is assessed for maize and grass energy crops produced in several agricultural systems relevant for Southern Belgium and surrounding areas. The calculated net energy yields are 8-25 (maize) and 7.4-15.5 (grass) MWh of renewable CH4 per MWh of fossil energy invested, depending on the agricultural option considered. After conversion to electricity, the specific CO2 emissions range from 31 to 104 kg(CO2)MWhelectricity(-1), depending on the case considered. This corresponds to a significant reduction in CO2 emissions compared to the current reference gas-steam turbine technology which produces 456 kg(CO2)MWhelectricity(-1). PMID:17574409

  12. Environment-physiology, diet quality and energy balance: the influence of early life nutrition on future energy balance.

    PubMed

    Burdge, Graham C; Lillycrop, Karen A

    2014-07-01

    Diseases caused by impaired regulation of energy balance, in particular obesity, represent a major global health burden. Although polymorphisms, lifestyle and dietary choices have been associated with differential risk of obesity and related conditions, a substantial proportion of the variation in disease risk remains unexplained. Evidence from epidemiological studies, natural experiments and from studies in animal models has shown that a poor intra-uterine environment is associated causally with increased risk of obesity and metabolic disease in adulthood. Induction of phenotypes that increase disease risk involves the fetus receiving cues from the mother about the environment which, via developmental plasticity, modify the phenotype of the offspring to match her environment. However, inaccurate information may induce an offspring phenotype that is mismatched to the future environment. Such mismatch has been suggested to underlie increased risk of metabolic disease associated with a poor early life environment. Recent studies have shown that induction of modified phenotypes in the offspring involves altered epigenetic regulation of specific genes. Identification of a central role of epigenetics in the aetiology of obesity and metabolic disease may facilitate the development of novel therapeutic interventions and of biomarkers of disease risk.

  13. Relationship between salt intake as estimated by a brief self-administered diet-history questionnaire (BDHQ) and 24-h urinary salt excretion in hypertensive patients.

    PubMed

    Sakata, Satoko; Tsuchihashi, Takuya; Oniki, Hideyuki; Tominaga, Mitsuhiro; Arakawa, Kimika; Sakaki, Minako; Kitazono, Takanari

    2015-08-01

    Assessing an individual's salt intake is necessary for providing guidance with respect to salt restriction. However, the methods that exist for assessing salt intake have both merits and limitations. Therefore, the evaluation methods should be selected for their appropriateness to the patients and the environment of the medical facilities. The purpose of the present study was to investigate the validity of a brief self-administered diet-history questionnaire (BDHQ) by comparing the responses with 24-h urinary salt excretion. A total of 136 hypertensive outpatients (54 men and 82 women) were included in this study. All subjects were given the BDHQ and performed 24-h home urine collection. The energy-adjusted salt intake as assessed by the BDHQ was 12.3 (95% confidence interval: 11.8-12.9) g per day, and the urinary salt excretion evaluated by 24-h urinary collection was 9.0 (8.4-9.5) g per day. The energy-adjusted salt intake assessed by the BDHQ correlated significantly with the urinary salt excretion evaluated by 24-h urinary collection (r=0.34, P<0.001). In conclusion, the estimated salt intake evaluated by the BDHQ weakly, but significantly, correlated with 24-h urinary salt excretion. In clinical practice, it seems important to utilize both methods to assess an individual's salt intake in order to provide adequate guidance for salt restriction.

  14. Simultaneous recording of blood pressure and ST-segment with combined, triggered ambulatory 24-h devices.

    PubMed

    Uen, Sakir; Vetter, Hans; Mengden, Thomas

    2003-02-01

    Silent myocardial ischemia is defined as an ischemic episode without chest pain but with transient ST abnormalities during stress testing or Holter monitoring. With Holter monitoring the prevalence of silent myocardial ischemia in hypertensive patients without coronary artery disease is between 25% and 73%. Simultaneous recording of ambulatory 24-h ECG and 24-h ambulatory blood pressure measurements (ABPM) with the option of additional ST-triggered blood pressure measurement is useful to detect silent ischemia and triggers of silent ischaemia. It is surprising that only a few combined 24-h Holter/ABPM devices are on the market, and in turn only three devices allow additional triggered blood pressure measurements. The paper provides an overview of studies investigating hypertensive patients with Holter monitoring for the detection of ST segment depression indicating myocardial ischaemia. Furthermore, requirements for combined devices allowing simultaneous ambulatory 24-h ECG and ABPM are defined.

  15. Parallel assessment of nutrition and activity in athletes: validation against doubly labelled water, 24-h urea excretion, and indirect calorimetry.

    PubMed

    Koehler, Karsten; Braun, Hans; De Marees, Markus; Fusch, Gerhard; Fusch, Christoph; Mester, Joachim; Schaenzer, Wilhelm

    2010-11-01

    The assessment of nutrition and activity in athletes requires accurate and precise methods. The aim of this study was to validate a protocol for parallel assessment of diet and exercise against doubly labelled water, 24-h urea excretion, and respiratory gas exchange. The participants were 14 male triathletes under normal training conditions. Energy intake and doubly labelled water were weakly associated with each other (r = 0.69, standard error of estimate [SEE] = 304 kcal x day(-1)). Protein intake was strongly correlated with 24-h urea (r = 0.89) but showed considerable individual variation (SEE = 0.34 g kg(-1) x day(-1)). Total energy expenditure based on recorded activities was highly correlated with doubly labelled water (r = 0.95, SEE = 195 kcal x day(-1)) but was proportionally biased. During running and cycling, estimated exercise energy expenditure was highly correlated with gas exchange (running: r = 0.89, SEE = 1.6 kcal x min(-1); cycling: r = 0.95, SEE = 1.4 kcal x min(-1)). High exercise energy expenditure was slightly underestimated during running. For nutrition data, variations appear too large for precise measurements in individual athletes, which is a common problem of dietary assessment methods. Despite the high correlations of total energy expenditure and exercise energy expenditure with reference methods, a correction for systematic errors is necessary for the valid estimation of energetic requirements in individual athletes. PMID:20967672

  16. An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) Modeling Schemes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An intercomparison of output from two models estimating spatially distributed surface energy fluxes from remotely sensed imagery is conducted. A major difference between the two models is whether the soil and vegetation components of the scene are treated separately (Two-Source Energy Balance; TSEB ...

  17. [Energy flux and energy balance closure of intensively managed lei bamboo forest ecosystem].

    PubMed

    Chen, Yun-fei; Jiang, Hong; Zhou, Guo-mo; Sun, Cheng; Chen, Jian

    2013-04-01

    By using open-path eddy covariance system and meteorological instruments, an observation was conducted on the sensitive heat flux, latent heat flux, net radiation, soil heat flux, air temperature, ground temperature, and precipitation in a intensively managed Lei bamboo forest ecosystem in 2011, with the diurnal and monthly variations of energy flux as well as the distribution pattern of each energy component analyzed, and the Bowen ratio and energy balance closure calculated. The yearly net radiation of the forest ecosystem was 2928. 92 MJ m-2, and the latent heat flux, sensitive heat flux, and soil heat flux were 1384.90, 927.54, and -28.27 MJ m-2, respectively. Both the daily and the monthly variations of the energy components showed a single peak curve. The sensible and latent heat fluxes were 31.7% and 47.3% of the net radiation, respectively, indicating that latent heat flux was the main form of energy loss. The Bowen ratio followed the "U"-shaped pattern, and fluctuated from 0. 285 to 2. 062, suggesting that soil was a heat source. The yearly energy balance closure of the forest ecosystem was 0. 782, and the monthly average was 0.808. PMID:23898666

  18. [Energy flux and energy balance closure of intensively managed lei bamboo forest ecosystem].

    PubMed

    Chen, Yun-fei; Jiang, Hong; Zhou, Guo-mo; Sun, Cheng; Chen, Jian

    2013-04-01

    By using open-path eddy covariance system and meteorological instruments, an observation was conducted on the sensitive heat flux, latent heat flux, net radiation, soil heat flux, air temperature, ground temperature, and precipitation in a intensively managed Lei bamboo forest ecosystem in 2011, with the diurnal and monthly variations of energy flux as well as the distribution pattern of each energy component analyzed, and the Bowen ratio and energy balance closure calculated. The yearly net radiation of the forest ecosystem was 2928. 92 MJ m-2, and the latent heat flux, sensitive heat flux, and soil heat flux were 1384.90, 927.54, and -28.27 MJ m-2, respectively. Both the daily and the monthly variations of the energy components showed a single peak curve. The sensible and latent heat fluxes were 31.7% and 47.3% of the net radiation, respectively, indicating that latent heat flux was the main form of energy loss. The Bowen ratio followed the "U"-shaped pattern, and fluctuated from 0. 285 to 2. 062, suggesting that soil was a heat source. The yearly energy balance closure of the forest ecosystem was 0. 782, and the monthly average was 0.808.

  19. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V.

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  20. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    PubMed

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes.

  1. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    PubMed

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  2. Balancing Area Coordination: Efficiently Integrating Renewable Energy Into the Grid, Greening the Grid

    SciTech Connect

    Katz, Jessica; Denholm, Paul; Cochran, Jaquelin

    2015-06-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.

  3. Preliminary energy balance and economics of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    The energy balance and economics of grain to ethanol plants are matters of current national interest, as we strive to deal with our liquid fuel supply problems. This report prepared at the request of the Department of Energy, examines the energy balance and economic questions for a particular farm-scale plant in Campo, Colo. It shows that such plants may have a place in our national liquid fuel supply system.

  4. Estimates of fluid and energy balances of Apollo 17

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Fluid and caloric balance has been calculated for the Apollo 17 crew. This included measurement of nitrogen, water, and caloric value of the ingested food and the volume and nitrogen content of the excreted urine and feces. Body composition changes were determined from total body water and extracellular fluid volume differences. The body composition measurements made it possible to divide the weight loss into lean body mass and adipose tissue losses. From this division a caloric equivalent was calculated. These tissue losses indicated that the caloric requirements of the mission were considerably greater than the actual caloric intake. The 3.3 kilo mean loss of body weight represented 1 kilo of lean body mass and 2.3 kilos of adipose tissue. Calculated fluid balance was more positive during the mission than during the control period. These changes are unlike the body composition and fluid balance changes reported in bedrested subjects.

  5. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  6. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  7. Coherent Structure Patterns Affect Energy Balance Closure: Evidence from Virtual Measurements for a Field Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, S.; De Roo, F.; Heinze, R.; Eder, F.; Huq, S.; Schmidt, M.; Kalthoff, N.; Mauder, M.

    2015-12-01

    The energy balance closure problem is a well-known issue of eddy-covariance measurements. However, the underlying mechanisms are still under debate. Recent evidence suggests that organized low-frequency motion contributes significantly to the energy balance residual, because the associated transport cannot be captured by a point measurement. In this study, we carry out virtual measurements using a PArallelized Large-Eddy Simulation Model (PALM). In order to represent specific measurement days of the field campaign "High definition clouds and precipitation for advancing climate prediction" (HD(CP)²), which was part of the project "High Definition Clouds and Precipitation for Advancing Climate Prediction"(HOPE) in 2013, the simulations were driven by synoptic-scale COSMO-DE reanalysis data. Planet boundary layer height, the vertical profiles of variance and skewness of vertical wind were analyzed and a comparison with Doppler-lidar observations shows good agreement. Furthermore, simulated energy imbalances were compared with real-world imbalances from two eddy-covariance stations in the model domain. Particularly poor energy balance closure was found for a day with cellular organized structures in the surface layer, while the energy balance closure was better on other days with roll-like structures. This finding might be one explanation why the energy balance closure generally tends to improve with increasing friction velocity, since roll-like structures are typically associated with higher wind speeds. In order to gain insight into the partitioning of the energy balance residual between the sensible and latent heat fluxes, we further employed a control volume method within the numerical simulation. Hence, advection and storage terms were identified as the most important causes for the lack of energy balance closure by the eddy-covariance method. The results of the virtual measurements indicate that the "missing" part of the surface energy mainly comes from the

  8. Towards a Sustainable Energy Balance: Progressive Efficiency and the Return of Energy Conservation

    SciTech Connect

    Diamond, Rick; Harris, Jeff; Diamond, Rick; Iyer, Maithili; Payne, Christopher; Blumstein, Carl; Siderius, Hans-Paul

    2007-08-13

    We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on"conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of"intensive" versus"extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency. We introduce the concept of"progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards. For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.

  9. Daily evapotranspiration assessment by means of residual surface energy balance modeling: A critical analysis under a wide range of water availability

    NASA Astrophysics Data System (ADS)

    Cammalleri, C.; Ciraolo, G.; La Loggia, G.; Maltese, A.

    2012-07-01

    SummaryAn operational use of the actual evapotranspiration assessed by remote sensing approaches requires the integration of instantaneous fluxes to daily values. This is commonly achieved under the hypotheses of daytime self-preservation of evaporative fraction and negligible daily ground heat flux. The aim of this study is to evaluate the effect of these assumptions on estimate daily evapotranspiration over a full phenological cycle, including phases characterized by significant changes both in net radiation and vegetation cover. To assess the reliability of these hypotheses, the observations made by a flux tower, installed within a homogeneous field of cereal located in the valley part of the Imera Meridionale basin, were analyzed. Additionally, the widely-known SEBAL (Surface Energy Balance Algorithm for Land) model was applied on the same study area by means of four MODIS (MODerate-resolution Imaging Spectroradiometer) images selected across a three-rainfall events period in March-April 2007 with the aim to analyze the consistency of its estimates in an operational study case under different conditions of water availability. The analysis of in situ data highlights errors on 24-h evapotranspiration characterized by an average value of 20% due to daily soil heat flux neglecting; whereas, the hypothesis of evaporative fraction self-preservation causes an average error equal to -16%. Moreover, the analysis of the observations suggests that a compensation effect of the errors related to each hypothesis occurs in most cases (56%), and this makes suitable the approach for practical daily integration purposes. The application of the SEBAL model at basin scale shows a good capability to detect the increase of the actual 24-h evapotranspiration under the tested hypotheses, also in the case of instantaneous evaporative fraction and daily net radiation not derived form in situ observations.

  10. The National Energy Strategy: A balanced program?. Proceedings of the nineteenth annual Illinois energy conference

    SciTech Connect

    Not Available

    1991-12-31

    The Nineteenth Annual Illinois Energy Conference was held in Chicago, Illinois November 1991. It was organized by the Energy Resources Center, University of Illinois at Chicago with major support provided by the US Environmental Protection Agency, the US Department of Energy, the Illinois Commerce Commission, the Illinois Department of Energy and Natural Resources, and the Citizens Council on Energy Resources. The conference program was developed by a planning committee who drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The members of the planning committee were brought together for a full-day session where they were asked to assess the political, economic, and social impacts of the proposed National Energy Strategy as it relates to Illinois and the Midwest region. Within this context, the planning committee identified several major issues including: (1) Is the proposed plan a balanced strategy; (2) What are the NES impacts on the transportation sector; (3) What are the opportunities for improved efficiency in the Electric Utility Sector; and (4) What is the role of advanced research and development.

  11. Developmental programming of energy balance regulation: Is physical activity more "programmable" than food intake?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mecha...

  12. Analysis of energy balance models using the ERBE data set. Final Report

    SciTech Connect

    Graves, C.E.; North, G.R.

    1991-04-01

    A review of Energy Balance Models is presented. Results from the Outgoing Longwave Radiation parameterization are discussed. The albedo parameterizations and the consequences of the new parameterizations are examined.

  13. Effects of buffer size and shape on associations between the built environment and energy balance.

    PubMed

    James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine

    2014-05-01

    Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature.

  14. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  15. The Role of PVH Circuits in Leptin Action and Energy Balance

    PubMed Central

    Sutton, Amy K.; Myers, Martin G.; Olson, David P.

    2016-01-01

    Summary While it has been clear that the brain regulates feeding behaviour and energy expenditure, the major determinants of energy balance and adiposity, roles for individual brain regions (and specific cell types within these regions) in the control of energy balance were not understood until very recently; these details continue to emerge rapidly. Much of what we now know flows from the discoveries of leptin and the hypothalamic melanocortin system, which define circuits crucial for the control of energy balance. Within the brain, hypothalamic circuits play a crucial role in the control of feeding and energy expenditure. Within the hypothalamus, the arcuate nucleus (ARC) functions as an entry point gateway for hormonal signals of energy balance, such as leptin; the ARC also contains the soma of melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals regarding energy balance, and mediates the majority of hypothalamic output to control feeding and energy expenditure. Herein, we review the structure and function of the ARC-PVH circuit in leptin action, in addition to it’s role in the control of feeding behavior and energy expenditure. PMID:26863324

  16. Multiple constraints on grassland evapotranspiration: implications for closing the energy balance

    PubMed Central

    Wohlfahrt, Georg; Irschick, Christoph; Thalinger, Bettina; Hörtnagl, Lukas; Obojes, Nikolaus; Hammerle, Albin

    2013-01-01

    When using the eddy covariance (EC) method for measuring the ecosystem-atmosphere exchange of sensible and latent heat, it is not uncommon to find that these two energy fluxes fall short of available energy by 20-30 %. As the causes for the energy imbalance are still under discussion, it is currently not clear how the energy balance should be closed. The objective of the present paper is to use independent measurements of evapotranspiration (ET) for empirically devising on how to best close the energy balance. To this end ET of a temperate mountain grassland was quantified during two measurement campaigns using both an open- and a closed-path EC system, lysimeters and an approach scaling up leaf-level stomatal conductance to canopy level transpiration. Our study showed that both EC systems underestimated ET measured independently by lysimeters and the up-scaling approach. Best correspondence to independently measured ET was achieved by assigning the entire energy imbalance to ET and by adjusting ET according to the average energy balance ratio during the first and second measurement campaign, respectively. Due to a large spatial variability in ET during the first measurement campaign and given large differences in spatial scale between the EC and the independent methods, we are more confident with the comparison of approaches during the second measurement campaign and thus recommend forcing energy balance closure by adjusting for the average energy balance ratio. PMID:24339743

  17. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance

    PubMed Central

    Brown, Juliette A.; Woodworth, Hillary L.; Leinninger, Gina M.

    2015-01-01

    Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders. PMID:25741247

  18. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg(-1)·day(-1)) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (-1.41 ± 1.11 (-1.98, -0.84) g·kg(-1)·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits. PMID:25386980

  19. System analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting (POPFULL)

    NASA Astrophysics Data System (ADS)

    Ceulemans, R.; Janssens, I.; Berhongaray, G.; Broeckx, L.; De Groote, T.; ElKasmioui, O.; Fichot, R.; Njakou Djomo, S.; Verlinden, M.; Zona, D.

    2011-12-01

    In recent year the environmental impact of fossil fuels and their reduced availability are leading to an increasing interest in renewable energy sources, among them bio-energy. However, the cost/benefit in establishing, managing, and using these plantations for energy production should be quantified together with their environmental impact. In this project we are performing a full life cycle analysis (LCA) balance of the most important greenhouse gases (CO2, CH4, N2O, H2O and O3), together with full energy accounting of a short-rotation coppice (SRC) plantation with fast-growing trees. We established the plantation two years ago and we have been monitoring net fluxes of CO2, N2O, CH4, and O3, in combination with biomass pools (incl. soil) and fluxes, and volatile organic carbon (VOCs). This poplar plantation will be monitored for another two years then harvested and transformed into bio-energy. For the energy accounting we are performing a life cycle analysis and energy efficiency assessments over the entire cycle of the plantation until the production of electricity and heat. Here we present an overview of the results from the first two years from the plantation establishment, and some of the projections based on these first results.

  20. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  1. Energy balance during underwater implosion of ductile metallic cylinders.

    PubMed

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  2. Water and energy balances in the soil-plant atmosphere continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  3. Alterations in amino acid concentrations in the plasma and muscle in human subjects during 24 h of simulated adventure racing.

    PubMed

    Borgenvik, Marcus; Nordin, Marie; Mikael Mattsson, C; Enqvist, Jonas K; Blomstrand, Eva; Ekblom, Björn

    2012-10-01

    This investigation was designed to evaluate changes in plasma and muscle levels of free amino acids during an ultra-endurance exercise and following recovery. Nine male ultra-endurance trained athletes participated in a 24-h standardized endurance trial with controlled energy intake. The participants performed 12 sessions of running, kayaking and cycling (4 × each discipline). Blood samples were collected before, during and after exercise, as well as after 28 h of recovery. Muscle biopsies were taken before the test and after exercise, as well as after 28 h of recovery. During the 24-h exercise, plasma levels of branched-chain (BCAA), essential amino acids (EAA) and glutamine fell 13, 14 and 19% (P < 0.05), respectively, whereas their concentrations in muscle were unaltered. Simultaneously, tyrosine and phenylalanine levels rose 38 and 50% (P < 0.05) in the plasma and 66 and 46% (P < 0.05) in muscle, respectively. After the 24-h exercise, plasma levels of BCAA were positively correlated with muscle levels of glycogen (r (2) = 0.73, P < 0.05), as was the combined concentrations of muscle tyrosine and phenylalanine with plasma creatine kinase (R (2) = 0.55, P < 0.05). Following 28-h of recovery, plasma and muscle levels of amino acids had either returned to their initial levels or were elevated. In conclusion, ultra-endurance exercise caused significant changes elevations in plasma and muscle levels of tyrosine and phenylalanine, which suggest an increase in net muscle protein breakdown during exercise. There was a reduction in plasma concentrations of EAA and glutamine during exercise, whereas no changes were detected in their muscle concentration after exercise. PMID:22350359

  4. The Role of PVH Circuits in Leptin Action and Energy Balance.

    PubMed

    Sutton, Amy K; Myers, Martin G; Olson, David P

    2016-01-01

    Although it has been known for more than a century that the brain controls overall energy balance and adiposity by regulating feeding behavior and energy expenditure, the roles for individual brain regions and neuronal subtypes were not fully understood until recently. This area of research is active, and as such our understanding of the central regulation of energy balance is continually being refined as new details emerge. Much of what we now know stems from the discoveries of leptin and the hypothalamic melanocortin system. Hypothalamic circuits play a crucial role in the control of feeding and energy expenditure, and within the hypothalamus, the arcuate nucleus (ARC) functions as a gateway for hormonal signals of energy balance, such as leptin. It is also well established that the ARC is a primary residence for hypothalamic melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals that affect energy balance, and mediates the majority of hypothalamic output to control both feeding and energy expenditure. Herein, we review in detail the structure and function of the ARC-PVH circuit in mediating leptin signaling and in regulating energy balance. PMID:26863324

  5. Energy balance and plume dynamics in Triton's lower atmosphere

    SciTech Connect

    Yelle, R.V.; Lunine, J.I.; Hunten, D.M. )

    1991-02-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's. 28 refs.

  6. Energy balance and plume dynamics in Triton's lower atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.; Lunine, Jonathan I.; Hunten, Donald M.

    1991-01-01

    The present study of the thermal balance-affecting relationships among Triton lower atmosphere thermal conduction, eddy mixing, condensation, and radiative heating indicates that, while the temperature gradient is negative in the lower atmosphere, it becomes positive at higher altitudes due to the downward conduction of ionospheric heat. This temperature profile is essentially consistent with radio-occultation experiment data; the geyser-like plumes observed by Voyager suggest that the Trioton atmosphere's convective and conductive regions join near 10-km altitude, and that the values inferred for the eddy diffusion and heat-transport coefficients indicate a profile reminiscent of the earth's.

  7. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  8. Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1990-01-01

    The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.

  9. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  10. Parametrization of ambient energy harvesters for complementary balanced electronic applications

    NASA Astrophysics Data System (ADS)

    Verbelen, Yannick; Braeken, An; Touhafi, Abdellah

    2013-05-01

    The specific technical challenges associated with the design of an ambient energy powered electronic system currently requires thorough knowledge of the environment of deployment, energy harvester characteristics and power path management. In this work, a novel flexible model for ambient energy harvesters is presented that allows decoupling of the harvester's physical principles and electrical behavior using a three dimensional function. The model can be adapted to all existing harvesters, resulting in a design methodology for generic ambient energy powered systems using the presented model. Concrete examples are included to demonstrate the versatility of the presented design in the development of electronic appliances on system level.

  11. NQRS Data for C24H20BK (Subst. No. 1576)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BK (Subst. No. 1576)

  12. Differences in 24-h blood pressure profile of Japanese hypertensive patients under ARB treatment.

    PubMed

    Kita, Toshihiro; Sakima, Atsushi; Yokota, Naoto; Tamaki, Noboru; Etoh, Takuma; Shimokubo, Toru; Nakada, Seigo; Takishita, Shuichi; Ohya, Yusuke; Kitamura, Kazuo

    2015-01-01

    Blood pressure (BP) control throughout the entire day is recommended for cardiovascular protection. Angiotensin-II receptor blockers (ARBs) are widely used in hypertensive patients because of beneficial class effects. It is uncertain, however, whether are there any differences in 24-h BP profiles among ARBs. We examined ambulatory blood pressure monitoring (ABPM) among 211 Japanese hypertensive patients (age, 69.4 ± 9.6 years; female, 59.2%) under treatment with five different ARBs. Patients were divided into five groups according to ARBs prescribed. Patient backgrounds were almost identical in all the groups and there were no differences in office, 24-h and daytime BP; however, nighttime BP with olmesartan was significantly lower than with other ARBs. Office BPs with candesartan and telmisartan, but not other ARBs, correlated well with 24-h BP (p < 0.01). Also, there were higher correlations between daytime and nighttime BP with candesartan and telmisartan. In all patients, pulse pressure with office BP was significantly correlated with ambulatory arterial stiffness index (p = 0.001) and fluctuation of systolic BP on ABPM (p = 0.002). In conclusion, different ARB treatments produced meaningful differences in 24-h profiles.

  13. NQRS Data for C24H20BCs (Subst. No. 1575)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BCs (Subst. No. 1575)

  14. NQRS Data for C24H24BN (Subst. No. 1583)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H24BN (Subst. No. 1583)

  15. Probable maximum precipitation for 24-h duration over an equatorial region: Part 2-Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Desa M., M. N.; Rakhecha, P. R.

    2007-03-01

    Probable maximum precipitation (PMP) is a characteristic of rainfall at a particular location that can be used in designing water impounding structures. The PMP for rainfall stations in Malaysia by Hershfield statistical method in earlier studies was estimated using a frequency factor of 15 which is the highest value in the world. The value of 15 as frequency was found to be too high for a humid country like Malaysia. The objective of this study therefore was to provide a fresh and reliable estimates of PMP in Malaysia using historical rainfall data. In this updating study, annual maximum 1-day rainfall data from 39 rainfall stations with records longer than 15 years found in the state of Johor, Malaysia, were analysed to obtain estimates of 24-h point PMP using an appropriate frequency factor calculated. Results of the 24-h PMP are presented in the mapped form. It was found that 24-h PMP over Johor varied from about 400 mm to over 1000 mm and there is a tendency for PMP to be higher on the east coast while decreasing westwards. The average ratio of the 24-h PMP to the highest observed rainfall was found to be about 2.0.

  16. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    NASA Astrophysics Data System (ADS)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  17. Effects of daily walking on office, home and 24-h blood pressure in hypertensive patients.

    PubMed

    Ohta, Yuko; Kawano, Yuhei; Minami, Junichi; Iwashima, Yoshio; Hayashi, Shinichiro; Yoshihara, Fumiki; Nakamura, Satoko

    2015-01-01

    Aerobic exercise has been recommended in the management of hypertension. However, few studies have examined the effect of walking on ambulatory blood pressure (BP), and no studies have employed home BP monitoring. We investigated the effects of daily walking on office, home, and 24-h ambulatory BP in hypertensive patients. Sixty-five treated or untreated patients with essential hypertension (39 women and 26 men, 60 ± 9 years) were examined in a randomized cross-over design. The patients were asked to take a daily walk of 30-60 min to achieve 10 000 steps/d for 4 weeks, and to maintain usual activities for another 4 weeks. The number of steps taken and home BP were recorded everyday. Measurement of office and ambulatory BP, and sampling of blood and urine were performed at the end of each period. The average number of steps were 5349 ± 2267/d and 10 049 ± 3403/d in the control and walking period, respectively. Body weight and urinary sodium excretion did not change. Office, home, and 24-h BP in the walking period were lower compared to the control period by 2.6 ± 9.4/1.3 ± 4.9 mmHg (p < 0.05), 1.6 ± 6.8/1.5 ± 3.7 mmHg (p < 0.01), and 2.4 ± 7.6/1.8 ± 5.3 mmHg (p < 0.01), respectively. Average 24-h heart rate and serum triglyceride also decreased significantly. The changes in 24-h BP with walking significantly correlated with the average 24-h BP in the control period. In conclusion, daily walking lowered office, home, and 24-h BP, and improved 24-h heart rate and lipid metabolism in hypertensive patients. However, the small changes in BP may limit the value of walking as a non-pharmacologic therapy for hypertension. PMID:25815710

  18. Energy balance of biofuel production from biological conversion of crude glycerol.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  19. 24-h Fluid Kinetics and Perception of Sweat Losses Following a 1-h Run in a Temperate Environment

    PubMed Central

    O’Neal, Eric K.; Caufield, Christina R.; Lowe, Jordan B.; Stevenson, Mary C.; Davis, Brett A.; Thigpen, Lauren K.

    2013-01-01

    This study examined 24-h post-run hydration status and sweat loss estimation accuracy in college age runners (men = 12, women = 8) after completing a 1-h self-paced outdoor run (wet bulb globe temperature = 19.9 ± 3.0 °C). Sweat losses (1353 ± 422 mL; 1.9% ± 0.5% of body mass) were significantly greater (p < 0.001) than perceived losses (686 ± 586 mL). Cumulative fluid consumption equaled 3876 ± 1133 mL (218 ± 178 mL during) with 37% of fluid ingested lost through urine voids (1450 ± 678 mL). Fluid balance based on intake and urine production equaled +554 ± 669 mL at 12 h and +1186 ± 735 mL at 24 h. Most runners reported euhydrated (pre-run urine specific gravity (USG) = 1.018 ± 0.008) with no changes (p = 0.33) at hours 12 or 24 when both genders were included. However, USG was higher (p = 0.004) at 12 h post-run for men (1.025 ± 0.0070 vs. 1.014 ± 0.007), who consumed 171% ± 40% of sweat losses at 12 h vs. 268% ± 88% for women. Most runners do not need intervention concerning between bout hydration needs in temperate environments. However, repeated USG measurements were able to identify runners who greatly under or over consumed fluid during recovery. Practitioners can use multiple USG assessments as cheap method to detect runners who need to modify their hydration strategies and should promote assessment of sweat losses by change in body mass, as runners had poor perception of sweat losses. PMID:24451307

  20. 24-h fluid kinetics and perception of sweat losses following a 1-h run in a temperate environment.

    PubMed

    O'Neal, Eric K; Caufield, Christina R; Lowe, Jordan B; Stevenson, Mary C; Davis, Brett A; Thigpen, Lauren K

    2014-01-01

    This study examined 24-h post-run hydration status and sweat loss estimation accuracy in college age runners (men=12, women=8) after completing a 1-h self-paced outdoor run (wet bulb globe temperature=19.9±3.0 °C). Sweat losses (1353±422 mL; 1.9%±0.5% of body mass) were significantly greater (p<0.001) than perceived losses (686±586 mL). Cumulative fluid consumption equaled 3876±1133 mL (218±178 mL during) with 37% of fluid ingested lost through urine voids (1450±678 mL). Fluid balance based on intake and urine production equaled +554±669 mL at 12 h and +1186±735 mL at 24 h. Most runners reported euhydrated (pre-run urine specific gravity (USG)=1.018±0.008) with no changes (p=0.33) at hours 12 or 24 when both genders were included. However, USG was higher (p=0.004) at 12 h post-run for men (1.025±0.0070 vs. 1.014±0.007), who consumed 171%±40% of sweat losses at 12 h vs. 268%±88% for women. Most runners do not need intervention concerning between bout hydration needs in temperate environments. However, repeated USG measurements were able to identify runners who greatly under or over consumed fluid during recovery. Practitioners can use multiple USG assessments as cheap method to detect runners who need to modify their hydration strategies and should promote assessment of sweat losses by change in body mass, as runners had poor perception of sweat losses.

  1. 24-h fluid kinetics and perception of sweat losses following a 1-h run in a temperate environment.

    PubMed

    O'Neal, Eric K; Caufield, Christina R; Lowe, Jordan B; Stevenson, Mary C; Davis, Brett A; Thigpen, Lauren K

    2014-01-01

    This study examined 24-h post-run hydration status and sweat loss estimation accuracy in college age runners (men=12, women=8) after completing a 1-h self-paced outdoor run (wet bulb globe temperature=19.9±3.0 °C). Sweat losses (1353±422 mL; 1.9%±0.5% of body mass) were significantly greater (p<0.001) than perceived losses (686±586 mL). Cumulative fluid consumption equaled 3876±1133 mL (218±178 mL during) with 37% of fluid ingested lost through urine voids (1450±678 mL). Fluid balance based on intake and urine production equaled +554±669 mL at 12 h and +1186±735 mL at 24 h. Most runners reported euhydrated (pre-run urine specific gravity (USG)=1.018±0.008) with no changes (p=0.33) at hours 12 or 24 when both genders were included. However, USG was higher (p=0.004) at 12 h post-run for men (1.025±0.0070 vs. 1.014±0.007), who consumed 171%±40% of sweat losses at 12 h vs. 268%±88% for women. Most runners do not need intervention concerning between bout hydration needs in temperate environments. However, repeated USG measurements were able to identify runners who greatly under or over consumed fluid during recovery. Practitioners can use multiple USG assessments as cheap method to detect runners who need to modify their hydration strategies and should promote assessment of sweat losses by change in body mass, as runners had poor perception of sweat losses. PMID:24451307

  2. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-01

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP.

  3. Integration of microalgae systems at municipal wastewater treatment plants: implications for energy and emission balances.

    PubMed

    Menger-Krug, Eve; Niederste-Hollenberg, Jutta; Hillenbrand, Thomas; Hiessl, Harald

    2012-11-01

    Integrating microalgae systems (MAS) at municipal wastewater treatment plants (WWTPs) to produce of bioenergy offers many potential synergies. Improved energy balances provide a strong incentive for WWTPs to integrate MAS, but it is crucial that WWTPs maintain their barrier function to protect water resources. We perform a prospective analysis of energy and emission balances of a WWTP with integrated MAS, based on a substance flow analysis of the elements carbon (C), nitrogen (N), and phosphorus (P). These elements are the main ingredients of wastewater, and the key nutrients for algae growth. We propose a process design which relies solely on resources from wastewater with no external input of water, fertilizer or CO(2). The whole process chain, from cultivation to production of bioelectricity, takes place at the WWTP. Our results show that MAS can considerably improve energy balances of WWTPs without any external resource input. With optimistic assumptions, they can turn WWTPs into net energy producers. While intensive C recycling in MAS considerably improves the energy balance, we show that it also impacts on effluent quality. We discuss the importance of nonharvested biomass for effluent quality and highlight harvesting efficiency as key factor for energy and emission balances of MAS at WWTP. PMID:23050661

  4. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains].

    PubMed

    Zhang, Xin-jian; Yuan, Feng-hui; Chen, Ni-na; Deng, Jun-li; Yu, Xiao-zhou; Sheng, Xue-jiao

    2011-03-01

    Based on the continuous measurements of an open-path eddy covariance system, this paper analyzed the characteristics of energy balance components and evapotranspiration in a broad-leaved Korean pine forest in Changbai Mountains in 2008, as well as the differences of energy balance components and evapotranspiration between growth season and dormant season. For the test forest, the year-round energy balance closure was 72%, being at a medium level, compared to the other studies in the Fluxnet community. The energy balance components had significant differences in their diurnal and seasonal variations. In growth season, turbulent energy exchange was dominated by upward latent heat flux, accounting for 66% of available energy; while in dormant season, the turbulent energy exchange was dominated by upward sensible heat flux, accounting for 63% of available energy. The accumulated annual evapotranspiration in the study site in 2008 was 484.7 mm, occupying 87% of the precipitation at the same time period (558.9 mm), which demonstrated that evapotranspiration was the main water loss item in temperate forests of northern China.

  5. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  6. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure.

    PubMed

    St-Onge, Marie-Pierre

    2013-01-15

    Short sleep duration and obesity are common occurrence in today's society. An extensive literature from cross-sectional and longitudinal epidemiological studies shows a relationship between short sleep and prevalence of obesity and weight gain. However, causality cannot be inferred from such studies. Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance. The aim of this review is to evaluate studies that have assessed food intake, energy expenditure, and leptin and ghrelin levels after periods of restricted and normal sleep. Most studies support the notion that restricting sleep increases food intake, but the effects on energy expenditure are mixed. Differences in methodology and component of energy expenditure analyzed may account for the discrepancies. Studies examining the effects of sleep on leptin and ghrelin have provided conflicting results with increased, reduced, or unchanged leptin and ghrelin levels after restricted sleep compared to normal sleep. Energy balance of study participants and potential sex differences may account for the varied results. Studies should strive for constant energy balance and feeding schedules when assessing the role of sleep on hormonal profile. Although studies suggest that restricting sleep may lead to weight gain via increased food intake, research is needed to examine the impact on energy expenditure and endocrine controls. Also, studies have been of short duration, and there is little knowledge on the reverse question: does increasing sleep duration in short sleepers lead to negative energy balance?

  7. Evaporation and the mass and energy balances of the Dead Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Lensky, N.; Gavrieli, I.; Gertman, I.; Nehorai, R.; Lensky, I. M.; Lyakhovsky, V.; Dvorkin, Y.

    2009-12-01

    The Dead Sea is a hypersaline terminal lake experiencing a water level drop of about 1 m/yr over the last decade. The existing estimations for the water balance of the lake are widely variable, reflecting the unknown subsurface water inflow, the rate of evaporation, and the rate of salt accumulation at the lake bottom. To estimate these we calculate the energy and mass balances for the Dead Sea utilizing measured meteorological and hydrographical data from 1996 to 2009. The data is measured from a buoy located in the Dead Sea 5, km from the nearest shore. The data includes solar radiation (incoming), long wave radiation (downward and upward looking), wind velocity, relative humidity, air temperature, air pressure and water temperature profile. Using energy balance we calculate the evaporation rate, taking into account the impact of lowered surface water activity. From mass balance considerations we calculate the salt precipitation rate, which was about 0.1 m/yr during this period. Using an overall mass balance we get the relation between water inflows, which are the least constrained quantity, and the evaporation rate. The average annual inflow is 265-325 mcm/yr, corresponding to an evaporation rate of 1.1-1.2 m/yr. Higher inflows, suggested in previous studies, call for increased evaporation rate and are therefore not in line with the energy balance. We also take into account the spatial variations and discuss how well the data measured in the buoy represent the Dead Sea surface conditions.

  8. Plasma energy balance in the L-2M stellarator

    SciTech Connect

    Fedyanin, O. I.; Akulina, D. K.; Batanov, G. M.; Berezhetskii, M. S.; Vasil'kov, D. G.; Vafin, I. Yu.; Voronov, G. S.; Voronova, E. V.; Gladkov, G. A.; Grebenshchikov, S. E.; Kovrizhnykh, L. M.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Malykh, N. I.; Meshcheryakov, A. I.; Nechaev, Yu. I.; Sarksyan, K. A.; Skvortsova, N. N.; Shchepetov, S. V.

    2007-10-15

    Results are presented from studies of the effect of the discharge parameters (in particular, plasma density and heating power) and the characteristics of the magnetic configuration (e.g., rotational transform) on the confinement of a low-pressure plasma during electron-cyclotron resonance heating in the L-2M stellarator. An analysis shows that the plasma energy in the steady-state phase of a discharge is fairly well described by the product of power functions of the plasma density, heating power, and rotational transform: W = W{sub 0} n{sub e}{sup {alpha}{sub n}P{alpha}{sub p}{iota}{alpha}{sub {iota}}}. The energy scalings constructed in terms of the parameters in the initial stage of free plasma decay and those in the steady-state phase are close to one another. The dynamic analysis of the plasma energy decay is now under way.

  9. Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks.

    PubMed

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime.

  10. The Tidal Dynamics and Energy Balance of the Red Sea

    NASA Astrophysics Data System (ADS)

    Pugh, David T.; Abualnaja, Yasser O.; NP, Mohammedali; Eltaib, Elfatih B.

    2014-05-01

    The semidiurnal tides of the Red Sea have been mapped as a classic half-wavelength standing wave. Because of the earth's rotation, the pattern is actually composed of an ingoing Kelvin wave, with maximum amplitude found in the northern eastern side along the Saudi Arabia coastline, and a reflected south-going Kelvin wave along the southern African coastline. The result is tidal rotation around a central amphidrome; this amphidrome, because of energy losses in the reflected wave, is nearer to the African side close to Port Sudan. The movements of this amphidrome can be mapped through a spring-neap tidal cycle to show how the tidal energy is dissipated through the Red Sea. There are suggestions that that Red Sea tides are entirely due to direct internal tidal gravitational astronomical forcing; this is an alternative to the model of energy flux from the Gulf of Aden tides in the Indian Ocean, through the entrance at Bab el Mandeb. These alternative energy sources will be investigated in the project.

  11. Saving Energy in Historic Buildings: Balancing Efficiency and Value

    ERIC Educational Resources Information Center

    Cluver, John H.; Randall, Brad

    2012-01-01

    By now the slogan of the National Trust for Historic Preservation that "the greenest building is the one already built" is widely known. In an era of increased environmental awareness and rising fuel prices, however, the question is how can historic building stock be made more energy efficient in a manner respectful of its historic integrity and…

  12. The Energy Balance of Corn Ethanol: An Update

    SciTech Connect

    Shapouri, Hosein; Duffield, James A.; Wang, Michael

    2002-07-01

    Studies conducted since the late 1970s have estimated the net energy value (NEV) of corn ethanol. However, variations in data and assumptions used among the studies have resulted in a wide range of estimates. This study identifies the factors causing this wide variation and develops a more consistent estimate.

  13. Energy balance in nanosecond pulse discharges in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Adamovich, Igor V.

    2016-02-01

    Kinetic modeling is used to analyze energy partition and energy transfer in nanosecond pulse discharges sustained between two spherical electrodes in nitrogen and air. The modeling predictions are compared with previous time-resolved temperature and {{\\text{N}}2}≤ft(X {}1Σ\\text{g}+,v=0-9\\right) vibrational population measurements by picosecond broadband coherent anti-Stokes Raman spectroscopy (CARS) and phase-locked Schlieren imaging. The model shows good agreement with experimental data, reproducing experimental discharge current pulse waveforms, as well as dominant processes of energy transfer in the discharge and the afterglow. Specifically, the results demonstrate that the temperature rise in the plasma occurs in two stages, (i) ‘rapid’ heating on sub-acoustic time scale, dominated by {{\\text{N}}2}≤ft(A {}3Σ\\text{u}+\\right) energy pooling processes, N2(B 3Πg) and N(2P,2D) quenching (in nitrogen), and by quenching of excited electronic states of N2 molecules by O2 (in air), and (ii) ‘slow’ heating due to N2 vibrational relaxation by O atoms (in air), nearly completely missing in nitrogen. Comparison of the model predictions with N2 vibrational level populations confirms that the N2 vibrational temperature rises after the discharge pulse is caused by the ‘downward’ vibrational-vibrational exchange depopulating higher vibrational levels and populating vibrational level v  =  1. The model reproduces temporal dynamics of vibrational level populations and temperature in the discharge and the afterglow, indicating that energy partition among different modes (vibrational, electronic, dissociation, and ionization) is predicted accurately. At the present conditions, energy fraction coupled to the positive column of the discharge filament in air is approximately 50%, with the rest coupled to the cathode layer. Nearly 10% of the total pulse energy is spent on O atom generation, and about 10% is thermalized on a sub-acoustic time scale

  14. Neuronal energy-sensing pathway promotes energy balance by modulating disease tolerance.

    PubMed

    Shen, Run; Wang, Biao; Giribaldi, Maria G; Ayres, Janelle; Thomas, John B; Montminy, Marc

    2016-06-01

    The starvation-inducible coactivator cAMP response element binding protein (CREB)-cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc-sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain-gut pathway that maintains homeostasis through its effects on epithelial integrity.

  15. Evaluation of surface energy and radiation balance systems on the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.

    1987-01-01

    Four Surface Energy and Radiation Balance Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface energy and radiation balances were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the energy balance components for all days and systems are given.

  16. An Analysis of Turbulent Heat Fluxes and the Energy Balance During the REFLEX Campaign

    NASA Astrophysics Data System (ADS)

    Tol, Christiaan van der; Timmermans, Wim; Corbari, Chiara; Carrara, Arnaud; Timmermans, Joris; Su, Zhongbo

    2015-12-01

    Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of energy balance fluxes and vertical temperature and wind profiles. The energy balance closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the energy balance at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin-Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).

  17. Integrated energy balance analysis for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Tandler, John

    1991-01-01

    An integrated simulation model is described which characterizes the dynamic interaction of the energy transport subsystems of Space Station Freedom for given orbital conditions and for a given set of power and thermal loads. Subsystems included in the model are the Electric Power System (EPS), the Internal Thermal Control System (ITCS), the External Thermal Control System (ETCS), and the cabin Temperature and Humidity Control System (THC) (which includes the avionics air cooling, cabin air cooling, and intermodule ventilation systems). Models of the subsystems were developed in a number of system-specific modeling tools and validated. The subsystem models are then combined into integrated models to address a number of integrated performance issues involving the ability of the integrated energy transport system of Space Station Freedom to provide power, controlled cabin temperature and humidity, and equipment thermal control to support operations.

  18. Bone and the regulation of global energy balance

    PubMed Central

    Zhang, Qian; Riddle, Ryan C.; Clemens, Thomas L.

    2015-01-01

    The skeleton, populated by large numbers of osteoblasts and long-lived osteocytes, requires a constant supply of energy-rich molecules to fuel the synthesis, deposition, and mineralization of bone matrix during bone modeling and remodeling. When these energetic demands are not met, bone acquisition is suppressed. Recent findings suggest that key developmental signals emanating from WNT- low-density lipoprotein-related receptor 5 and Hypoxia-inducible factor pathways impact osteoblast bioenergetics to accommodate the energy requirements for bone cells to fulfill their function. In vivo studies in several mutant mouse strains have confirmed a link between bone cells and global metabolism, ultimately leading to the identification of hormonal interactions between the skeleton and other tissues. The hormones insulin and leptin affect postnatal bone acquisition, while osteocalcin produced by the osteoblast in turn stimulates insulin secretion by the pancreas. These observations have prompted additional questions regarding the nature of the mechanisms of fuel sensing and processing in the osteoblast and their contribution to overall energy utilization and homeostasis. Answers to such questions should advance our understanding of metabolic diseases and may ultimately improve management of affected patients. In this review we highlight recent studies in this field and offer a perspective on the evolutionary implications of bone as a metabolic endocrine organ. PMID:25597336

  19. Energy balance in apodized diffractive multifocal intaocular lenses

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-08-01

    The energy distribution between the distance and near images formed in a model eye by three different apodized diffractive multifocal intraocular lenses (IOLs) is experimentally determined in an optical bench. The model eye has an artificial cornea with positive spherical aberration (SA) similar to human cornea. The level of SA upon the IOL, which is pupil size dependent, is controlled using a Hartmann-Shack wave sensor. The energy of the distance and near images as a function of the pupil size is experimentally obtained from image analysis. All three IOLs have the same base refractive power (20D) but different designs (aspheric, spherical) and add powers (+4.0 D, +3.0 D). The results show that in all the cases, the energy efficiency of the distance image decreases for large pupils, in contrast with the theoretical and simulated results that only consider the diffractive profile of the lens. As for the near image, since the diffractive zone responsible for the formation of this image has the same apodization factor in the spherical and aspheric lenses and the apertures involved are small (and so the level of SA), the results turn out to be similar for all the three IOL designs.

  20. Evaluation of a two source snow-vegetation energy balance model for estimating surface energy fluxes in a rangeland ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of a two source snow-vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model ...

  1. Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.

    2011-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat balance

  2. Atomic Oxygen and Energy Balance in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Hunt, L. A.; Marshall, T.; Mertens, C. J.; Russell, J. M.; Mast, J. C.; Thompson, R. E.

    2012-12-01

    We use atomic oxygen concentrations measured by SABER in conjunction with measurements of infrared radiative cooling and solar heating to assess the energy balance in the Earth's mesosphere and lower thermosphere. Atomic oxygen plays a central role, particularly in the mesopause region, through heating due to exothermic chemical reactions. The SABER data reveal approximate balance in global heating and cooling on annual timescales. In the 11-year SABER record there is also clear evidence of the solar cycle variation in all of the heat budget terms including atomic oxygen. Long-term changes in heating and cooling rates appear consistent with each other. Uncertainty in the energy budget is due largely to uncertainty in recombination rate coefficients governing exothermic chemical reactions at mesospheric temperatures. In this talk we will show the multitude of energy budget terms derived from SABER observations, the global energy budget, the variability due to the solar cycle, and the uncertainty in the energy balance. We also examine the constraints on the global atomic oxygen concentration based on energy balance considerations.

  3. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  4. Effects of vegetative heterogeneity and patch-scale harvest on energy balance closure and flux measurements

    NASA Astrophysics Data System (ADS)

    Guo, X. F.; Cai, X. H.; Kang, L.; Zhu, T.; Zhang, H. S.

    2009-05-01

    Based on the micrometeorological measurements at a heterogeneous farmland in South China, this work detects the effects of vegetative heterogeneity and patch-scale harvest on the energy balance closure and turbulent fluxes. As a quality control, the integral turbulent characteristics are analyzed in the framework of Monin-Obukhov similarity theory. Spatial representativeness of the measurements is studied in terms of footprint and source area. Firstly, in two wind sectors, the nondimensional standard deviations of turbulent quantities generally agree with some foregoing studies. Discrepancies exist in the other sectors due to the instrument-induced flow distortion. Secondly, energy balance closure is examined with two types of linear regression, which confirms that mismatching source areas between the available energy and turbulent fluxes have no preference to either energy “deficit” or “surplus”. Thirdly, turbulent fluxes exhibit greater variability when they represent smaller source areas. The patch-scale harvest adjacent to the flux mast causes notable increase and decrease in the sensible heat and latent heat fluxes, respectively, while the CO2 exchange almost vanishes after the harvest. Interestingly, energy balance closure is less influenced despite the notable effects on the turbulent fluxes and Bowen ratio, implying that the energy balance closure check may mask some variability in the turbulent fluxes. Thus, to adjust the heat fluxes with a single “closure factor” for a perfect closure is dangerous at a patchy site.

  5. Association Between Estimated 24-h Urinary Sodium Excretion and Metabolic Syndrome in Korean Adults

    PubMed Central

    Won, Jong Chul; Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-01-01

    Abstract High sodium intake is 1 of the modifiable risk factors for cardiovascular disease, but in Korea, daily sodium intake is estimated to be double the level recommended by World Health Organization. We investigated the association between the estimated 24-h urinary sodium excretion (24hUNaE) and metabolic syndrome using nationwide population data. In total, 17,541 individuals (weighted n = 33,200,054; weighted men, 52.5% [95% confidence interval, CI = 51.8–53.3]; weighted age, 45.2 years [44.7–45.7]) who participated in the Korean Health and Nutrition Examination Survey 2009 to 2011 were investigated. NCEP-ATP III criteria for metabolic syndrome were used, and sodium intake was estimated by 24hUNaE using Tanaka equation with a spot urine sample. The weighted mean 24hUNaE values were 3964 mg/d (95% CI = 3885–4044) in men and 4736 mg/d (4654–4817) in women. The weighted age-adjusted prevalence of metabolic syndrome was 22.2% (21.4–23.0), and it increased with 24hUNaE quartile in both men and women (mean ± standard error of the mean; men: 22.5 ± 1.0%, 23.0 ± 1.0%, 26.0 ± 1.2%, and 26.0 ± 1.2%; P = 0.026; women: 19.4 ± 0.8%, 17.7 ± 0.8%, 19.8 ± 1.0%, and 23.0 ± 1.1%; P = 0.002, for quartiles 1–4, respectively). Even after adjustment for age, daily calorie intake, heavy alcohol drinking, regular exercise, college graduation, and antihypertensive medication, the weighted prevalence of metabolic syndrome increased with the increase in 24hUNaE in men and women. The weighted 24hUNaE was positively associated with the number of metabolic syndrome components after adjustment for confounding factors in men and women. In subjects without antihypertensive medication, the odds ratio for metabolic syndrome in quartile 4 of 24hUNaE compared with quartile 1 was 1.56 (1.33–1.84, P < 0.001) in the total population, 1.66 (1.34–2.06, P < 0.001) in men, and 1.94 (1.49–2.53, P < 0

  6. Photodissociation of [Fe(x)(C24H12)y]+ complexes in the PIRENEA setup: iron-polycyclic aromatic hydrocarbon clusters as candidates for very small interstellar grains.

    PubMed

    Simon, Aude; Joblin, Christine

    2009-04-30

    Astronomical observations suggest that polycyclic aromatic hydrocarbons (PAHs) that emit at the surface of molecular clouds in the interstellar medium are locally produced by photodestruction of very small grains (VSGs). In this paper, we investigate [Fex(PAH)y]+ clusters as candidates for these VSGs. [FeC24H12]+ and [Fex(C24H12)2]+ (x = 1-3) complexes were formed by laser ablation of a solid target in the PIRENEA setup, a cold ion trap dedicated to astrochemistry. Their photodissociation was studied under continuous visible irradiation. Photodissociation pathways are identified and characteristic time scales for photostability are provided. [Fex(C24H12)2]+ (x = 1-3) complexes sequentially photodissociate by losing iron atoms and coronene units under laboratory irradiation conditions with C24H12+ as the smallest photofragment. The study of the dissociation kinetics gives interesting insights into the structures of the complexes. The dissociation rate is found to increase with the complex size. Density functional theory (DFT) and time-dependent DFT calculations show that the increase of the number of Fe atoms leads to an increased stability of the complex but also to an increased heating rate in the experimental conditions, due to the presence of strong electronic excitations in the visible. The modeling of the dissociation kinetics of the smallest complex [FeC24H12]+ by using a kinetic Monte Carlo code allows derivation of the dissociation parameters and the internal energy for this complex, showing in particular that it could dissociate under interstellar irradiation conditions. First insights into the dissociation of larger complexes in these conditions are also given.

  7. Prediction of energy expenditure from heart rate and accelerometry in children and adolescents using multivariate adaptive regression splines modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free-living measurements of 24-h total energy expenditure (TEE) and activity energy expenditure (AEE) are required to better understand the metabolic, physiological, behavioral, and environmental factors affecting energy balance and contributing to the global epidemic of childhood obesity. The spec...

  8. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    SciTech Connect

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  9. The effect of breakfast on appetite regulation, energy balance and exercise performance.

    PubMed

    Clayton, David J; James, Lewis J

    2016-08-01

    The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.

  10. Resistant starch and energy balance: impact on weight loss and maintenance.

    PubMed

    Higgins, Janine A

    2014-01-01

    The obesity epidemic has prompted researchers to find effective weight-loss and maintenance tools. Weight loss and subsequent maintenance are reliant on energy balance--the net difference between energy intake and energy expenditure. Negative energy balance, lower intake than expenditure, results in weight loss whereas positive energy balance, greater intake than expenditure, results in weight gain. Resistant starch has many attributes, which could promote weight loss and/or maintenance including reduced postprandial insulinemia, increased release of gut satiety peptides, increased fat oxidation, lower fat storage in adipocytes, and preservation of lean body mass. Retention of lean body mass during weight loss or maintenance would prevent the decrease in basal metabolic rate and, therefore, the decrease in total energy expenditure, that occurs with weight loss. In addition, the fiber-like properties of resistant starch may increase the thermic effect of food, thereby increasing total energy expenditure. Due to its ability to increase fat oxidation and reduce fat storage in adipocytes, resistant starch has recently been promoted in the popular press as a "weight loss wonder food". This review focuses on data describing the effects of resistant starch on body weight, energy intake, energy expenditure, and body composition to determine if there is sufficient evidence to warrant these claims.

  11. Association of estimated glomerular filtration rate with 24-h urinalysis and stone composition.

    PubMed

    Moreira, Daniel M; Friedlander, Justin I; Hartman, Christopher; Gershman, Boris; Smith, Arthur D; Okeke, Zeph

    2016-08-01

    The aim of this study is to determine the association of estimated glomerular filtration rate (eGFR) with 24-h urine analysis and stone composition. We performed a retrospective review of 1060 stone formers with 24-h urinalysis, of which 499 had stone composition analysis available. Comparisons of baseline patient characteristics and urinary abnormalities across eGFR groups (<60, 60-89.9, ≥90 mL/min/1.73 m(2)) were performed using Fisher's exact test for categorical data and analysis of variance for continuous variables. Analyses of 24-h urinalysis and stone composition across eGFR groups were performed using linear regression with eGFR groups as a continuous variable to evaluate trends. Of the 1060 patients in the study, 595 (56 %) were males. The mean age was 53.8 years. A total of 38 (4 %), 77 (7 %), and 945 (89 %) patients had eGFR <60, 60-89.9, and ≥90 mL/min/1.73 m(2), respectively. Lower eGFR was associated with older age, lower body-mass index, and female gender (all P < 0.05). Lower eGFR was also associated with lower urinary volume, calcium, citrate, uric acid, sodium, magnesium, phosphorus, sulfate, and creatinine on both univariable and multivariable analyses, adjusted for demographics, comorbidities and medication use (all P < 0.05). The prevalence of hypocitraturia and hypomagnesuria was associated with decreased eGFR, while hypercalciuria, hyperoxaluria, hyperuricosuria and hyperphosphaturia were associated with higher eGFR (all P < 0.05). Stone composition was similar across eGFR groups (all P > 0.05). In conclusion, lower eGFR was associated with lower excretion of urinary elements in a routine 24-h urinalysis, but similar stone composition. PMID:26573808

  12. Nqrs Data for C24H20MnO4P (Subst. No. 1581)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20MnO4P (Subst. No. 1581)

  13. Association of estimated glomerular filtration rate with 24-h urinalysis and stone composition.

    PubMed

    Moreira, Daniel M; Friedlander, Justin I; Hartman, Christopher; Gershman, Boris; Smith, Arthur D; Okeke, Zeph

    2016-08-01

    The aim of this study is to determine the association of estimated glomerular filtration rate (eGFR) with 24-h urine analysis and stone composition. We performed a retrospective review of 1060 stone formers with 24-h urinalysis, of which 499 had stone composition analysis available. Comparisons of baseline patient characteristics and urinary abnormalities across eGFR groups (<60, 60-89.9, ≥90 mL/min/1.73 m(2)) were performed using Fisher's exact test for categorical data and analysis of variance for continuous variables. Analyses of 24-h urinalysis and stone composition across eGFR groups were performed using linear regression with eGFR groups as a continuous variable to evaluate trends. Of the 1060 patients in the study, 595 (56 %) were males. The mean age was 53.8 years. A total of 38 (4 %), 77 (7 %), and 945 (89 %) patients had eGFR <60, 60-89.9, and ≥90 mL/min/1.73 m(2), respectively. Lower eGFR was associated with older age, lower body-mass index, and female gender (all P < 0.05). Lower eGFR was also associated with lower urinary volume, calcium, citrate, uric acid, sodium, magnesium, phosphorus, sulfate, and creatinine on both univariable and multivariable analyses, adjusted for demographics, comorbidities and medication use (all P < 0.05). The prevalence of hypocitraturia and hypomagnesuria was associated with decreased eGFR, while hypercalciuria, hyperoxaluria, hyperuricosuria and hyperphosphaturia were associated with higher eGFR (all P < 0.05). Stone composition was similar across eGFR groups (all P > 0.05). In conclusion, lower eGFR was associated with lower excretion of urinary elements in a routine 24-h urinalysis, but similar stone composition.

  14. Nqrs Data for C24H42Li2N4 (Subst. No. 1587)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H42Li2N4 (Subst. No. 1587)

  15. Immune cell changes in response to a swimming training session during a 24-h recovery period.

    PubMed

    Morgado, José P; Monteiro, Cristina P; Teles, Júlia; Reis, Joana F; Matias, Catarina; Seixas, Maria T; Alvim, Marta G; Bourbon, Mafalda; Laires, Maria J; Alves, Francisco

    2016-05-01

    Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3(+)), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools. PMID:27028294

  16. Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum.

    PubMed

    Morán-Diez, Eugenia; Rubio, Belén; Domínguez, Sara; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2012-04-15

    Trichoderma harzianum is a fungus used as biocontrol agent using its antagonistic abilities against phytopathogenic fungi, although it has also direct effects on plants, increasing or accelerating their growth and resistance to diseases and the tolerance to abiotic stresses. We analyzed Arabidopsis thaliana gene expression changes after 24 h of incubation in the presence of T. harzianum T34 using the Affymetrix GeneChip Arabidopsis ATH1. Because this microarray contains more than 22,500 probe sets representing approximately 24,000 genes, we were able to construct a global picture of the molecular physiology of the plant at 24 h of T. harzianum-Arabidopsis interaction. We identified several differentially expressed genes that are involved in plant responses to stress, regulation of transcription, signal transduction or plant metabolism. Our data support the hypothesis that salicylic acid- and jasmonic acid-related genes were down-regulated in A. thaliana after 24 h of incubation in the presence of T. harzianum T34, while several genes related to abiotic stress responses were up-regulated. These systemic changes elicited by T. harzianum in Arabidopsis are discussed.

  17. Immune cell changes in response to a swimming training session during a 24-h recovery period.

    PubMed

    Morgado, José P; Monteiro, Cristina P; Teles, Júlia; Reis, Joana F; Matias, Catarina; Seixas, Maria T; Alvim, Marta G; Bourbon, Mafalda; Laires, Maria J; Alves, Francisco

    2016-05-01

    Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3(+)), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools.

  18. Development of a UK Online 24-h Dietary Assessment Tool: myfood24.

    PubMed

    Carter, Michelle C; Albar, Salwa A; Morris, Michelle A; Mulla, Umme Z; Hancock, Neil; Evans, Charlotte E; Alwan, Nisreen A; Greenwood, Darren C; Hardie, Laura J; Frost, Gary S; Wark, Petra A; Cade, Janet E

    2015-06-01

    Assessment of diet in large epidemiological studies can be costly and time consuming. An automated dietary assessment system could potentially reduce researcher burden by automatically coding food records. myfood24 (Measure Your Food on One Day) an online 24-h dietary assessment tool (with the flexibility to be used for multiple 24 h-dietary recalls or as a food diary), has been developed for use in the UK population. Development of myfood24 was a multi-stage process. Focus groups conducted with three age groups, adolescents (11-18 years) (n = 28), adults (19-64 years) (n = 24) and older adults (≥ 65 years) (n = 5) informed the development of the tool, and usability testing was conducted with beta (adolescents n = 14, adults n = 8, older adults n = 1) and live (adolescents n = 70, adults n = 20, older adults n = 4) versions. Median system usability scale (SUS) scores (measured on a scale of 0-100) in adolescents and adults were marginal for the beta version (adolescents median SUS = 66, interquartile range (IQR) = 20; adults median SUS = 68, IQR = 40) and good for the live version (adolescents median SUS = 73, IQR = 22; adults median SUS = 80, IQR = 25). Myfood24 is the first online 24-h dietary recall tool for use with different age groups in the UK. Usability testing indicates that myfood24 is suitable for use in UK adolescents and adults. PMID:26024292

  19. Effects of insufficient sleep on blood pressure in hypertensive patients: a 24-h study.

    PubMed

    Lusardi, P; Zoppi, A; Preti, P; Pesce, R M; Piazza, E; Fogari, R

    1999-01-01

    The influence of acute sleep deprivation during the first part of the night on 24-h blood pressure monitoring (ABPM) was studied in 36 never-treated mild to moderate hypertensive patients. According to a crossover design, they were randomized to have either sleep deprivation or a full night's sleep 1 week apart, during which they were monitored with ABPM. Urine samples for analysis of nocturnal urinary excretion of norepinephrine were collected. During the sleep-deprivation day, both mean 24-h blood pressure and mean 24-h heart rate were higher in comparison with those recorded during the routine workday, the difference being more pronounced during the nighttime (P < .01). Urinary excretion of norepinephrine showed a significant increase at night during sleep deprivation (P < .05). Blood pressure and heart rate significantly increased in the morning after a sleep-insufficient night (P < .05). These data suggest that lack of sleep in hypertensive patients may increase sympathetic nervous activity during the night and the following morning, leading to increased blood pressure and heart rate. This situation might represent an increased risk for both target organ damage and acute cardiovascular diseases. PMID:10075386

  20. Development of a UK Online 24-h Dietary Assessment Tool: myfood24

    PubMed Central

    Carter, Michelle C.; Albar, Salwa A.; Morris, Michelle A.; Mulla, Umme Z.; Hancock, Neil; Evans, Charlotte E.; Alwan, Nisreen A.; Greenwood, Darren C.; Hardie, Laura J.; Frost, Gary S.; Wark, Petra A.; Cade, Janet E.

    2015-01-01

    Assessment of diet in large epidemiological studies can be costly and time consuming. An automated dietary assessment system could potentially reduce researcher burden by automatically coding food records. myfood24 (Measure Your Food on One Day) an online 24-h dietary assessment tool (with the flexibility to be used for multiple 24 h-dietary recalls or as a food diary), has been developed for use in the UK population. Development of myfood24 was a multi-stage process. Focus groups conducted with three age groups, adolescents (11–18 years) (n = 28), adults (19–64 years) (n = 24) and older adults (≥65 years) (n = 5) informed the development of the tool, and usability testing was conducted with beta (adolescents n = 14, adults n = 8, older adults n = 1) and live (adolescents n = 70, adults n = 20, older adults n = 4) versions. Median system usability scale (SUS) scores (measured on a scale of 0–100) in adolescents and adults were marginal for the beta version (adolescents median SUS = 66, interquartile range (IQR) = 20; adults median SUS = 68, IQR = 40) and good for the live version (adolescents median SUS = 73, IQR = 22; adults median SUS = 80, IQR = 25). Myfood24 is the first online 24-h dietary recall tool for use with different age groups in the UK. Usability testing indicates that myfood24 is suitable for use in UK adolescents and adults. PMID:26024292

  1. Obesity as malnutrition: the dimensions beyond energy balance.

    PubMed

    Wells, J C K

    2013-05-01

    The aetiology of obesity is seemingly simple to understand: individuals consume more energy than they expend, with the excess energy being stored in adipose tissue. Public health campaigns therefore promote dietary restraint and physical exercise, and emphasize individual responsibility for these behaviours. Increasingly, however, researchers are switching from thermodynamic to metabolic models of obesity, thereby clarifying how specific environmental factors promote lipogenesis. Obesity can best be explained not by counting 'calories in and out', but by understanding how specific dietary products and activity behaviours perturb cellular metabolism and promote net lipogenesis. This metabolic approach can furthermore be integrated with more sophisticated models of how commercial practices drive the consumer trends that promote obesogenic behaviours. Notably, obesity treatment has proven more effective if it bypasses individual responsibility, suggesting that a similar approach placing less emphasis on individual responsibility would improve the efficacy of obesity prevention. Successful obesity prevention campaigns are likely to emerge only when the public receive better 'protection' from the commercial practices that are driving the global obesity epidemic. Rather than populations failing to heed governments' public health advice, governments are currently failing the public by abandoning their responsibility for regulating commercial activities. PMID:23443827

  2. Obesity as malnutrition: the dimensions beyond energy balance.

    PubMed

    Wells, J C K

    2013-05-01

    The aetiology of obesity is seemingly simple to understand: individuals consume more energy than they expend, with the excess energy being stored in adipose tissue. Public health campaigns therefore promote dietary restraint and physical exercise, and emphasize individual responsibility for these behaviours. Increasingly, however, researchers are switching from thermodynamic to metabolic models of obesity, thereby clarifying how specific environmental factors promote lipogenesis. Obesity can best be explained not by counting 'calories in and out', but by understanding how specific dietary products and activity behaviours perturb cellular metabolism and promote net lipogenesis. This metabolic approach can furthermore be integrated with more sophisticated models of how commercial practices drive the consumer trends that promote obesogenic behaviours. Notably, obesity treatment has proven more effective if it bypasses individual responsibility, suggesting that a similar approach placing less emphasis on individual responsibility would improve the efficacy of obesity prevention. Successful obesity prevention campaigns are likely to emerge only when the public receive better 'protection' from the commercial practices that are driving the global obesity epidemic. Rather than populations failing to heed governments' public health advice, governments are currently failing the public by abandoning their responsibility for regulating commercial activities.

  3. Chloroplast quality control - balancing energy production and stress.

    PubMed

    Woodson, Jesse D

    2016-10-01

    Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery. PMID:27533783

  4. Energy balance and turbulent flux partitioning in a corn-soybean rotation in the Midwestern US

    NASA Astrophysics Data System (ADS)

    Hernandez-Ramirez, Guillermo; Hatfield, Jerry L.; Prueger, John H.; Sauer, Thomas J.

    2010-03-01

    Quantifying the energy balance above plant canopies is critical for better understanding of water balance and changes in regional weather patterns. This study examined temporal variations of energy balance terms for contrasting canopies [corn ( Zea mays L.) and soybean ( Glycine max L. Merr.)]. We monitored energy balance for 4 years using eddy-covariance systems, net radiometers, and soil heat flux plates in adjacent production fields near Ames, Iowa. On an annual basis, soybean exhibited 20% and 30% lower sensible heat flux ( H) and Bowen ratio than corn, respectively. As canopies developed, a gradual shift in turbulent fluxes occurred with decreasing H and increasing latent heat flux (LE), but with a more pronounced effect for corn. Conversely, during mid-growing season and as both canopies progressively senesced, H in general increased and LE decreased; however, soybean exhibited slightly greater LE and much lower H than corn. These temporal variations in magnitude and partitioning of turbulent fluxes translated into a pronounced energy imbalance for soybean (0.80) and an enhanced closure for corn (0.98) in August and September. These discrepancies could be directly associated with differences in momentum transport as shown by friction velocities of 0.34 and 0.28 m s-1 for corn and soybean, respectively. These results support influential roles of plant canopy on intensity and mode of surface energy exchange processes.

  5. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance.

    PubMed

    Schneider, Jill E; Brozek, Jeremy M; Keen-Rhinehart, Erin

    2014-06-01

    This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits.

  6. 24-h urinary sodium excretion is associated with obesity in a cross-sectional sample of Australian schoolchildren.

    PubMed

    Grimes, Carley A; Riddell, Lynn J; Campbell, Karen J; He, Feng J; Nowson, Caryl A

    2016-03-28

    Emerging evidence indicates that dietary Na may be linked to obesity; however it is unclear whether this relationship is independent of energy intake (EI). The aim of this study was to assess the association between Na intake and measures of adiposity, including BMI z score, weight category and waist:height ratio (WHtR), in a sample of Australian schoolchildren. This was a cross-sectional study of schoolchildren aged 4-12 years. Na intake was assessed via one 24-h urine collection. BMI was converted to age- and sex-specific z scores, and WHtR was used to define abdominal obesity. In children aged ≥8 years, EI was determined via one 24-h dietary recall. Of the 666 children with valid urine samples 55 % were male (average age 9·3 (sd 1·8) years). In adjusted models an additional 17 mmol/d of Na was associated with a 0·10 higher BMI z score (95 % CI 0·07, 0·13), a 23 % (OR 1·23; 95 % CI 1·16, 1·31) greater risk of being overweight/obese and a 15 % (OR 1·15; 95 % CI 1·09, 1·23) greater risk of being centrally obese. In the subsample of 8-12-year-old children (n 458), adjustment for EI did not markedly alter the associations between Na and adiposity outcomes. Using a robust measure of daily Na intake we found a positive association between Na intake and obesity risk in Australian schoolchildren, which could not be explained by total energy consumption. To determine whether this is a causal relationship, longitudinal studies, with high-quality measures of Na and EI, are required.

  7. Role of energy balance in athletic menstrual dysfunction.

    PubMed

    Dueck, C A; Manore, M M; Matt, K S

    1996-06-01

    The cessation of menstrual function in the female athlete may reflect her inability to adapt to the environmental and lifestyle stressors associated with training and competition. As society's emphasis on thinness, dieting, and exercise continues to increase, so will the incidence of menstrual dysfunction in active females. Unfortunately, some individuals view athletic menstrual dysfunction as a benign consequence of strenuous exercise. Conversely, it is most likely a strong indicator of overtraining and a marker for future decrements in performance, and it can have long-term health consequences. Thus, it is imperative that the active female be appropriately educated regarding the adverse consequences of menstrual dysfunction and the interventions available. This paper focuses on the most current information regarding athletic menstrual dysfunction and its multifactorial etiology, especially the role of energy drain. In addition, common misconceptions, adverse health and performance effects, and available treatment options are discussed. PMID:8744788

  8. Energy Balance Regulation and Flexible Production: A New Frontier for Aluminum Smelting

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Etzion, Ron; Lavoie, Pascal; Tang, Jianning

    2014-12-01

    Through a critical review of recent literature on aluminum smelting cell energy balance, this paper defines specific energy constraints which govern the feasibility of cell operation in practice. Using these constraints as a basis, the objective of reducing energy consumption per kilogram of aluminum produced was examined, again with reference to published data and modern cell developments over the last 5 years. Both incremental and quantum steps in cell design are considered in this analysis, in pursuit of a pathway to lower energy consumption in a process where energy efficiency has not yet risen above 50 pct. In Section V and VI of this work, a generic high amperage cell technology is examined using a computational model of the cell energy balance, in which the resultant electrolyte phases and their thermal, electrical, and physical states can be determined. Using a series of trial energy balances, a feasible operating point emerges, and the possibility of flexible cell amperage and production rate is tested in a preliminary way. The specific energy consumption and market implications of this new technology direction are examined.

  9. Impact of Balancing Area Size, Obligation Sharing, and Energy Markets on Mitigating Ramping Requirements in Systems with Wind Energy

    SciTech Connect

    Kirby, B.; Milligan, M.

    2008-01-01

    Balancing area reserve sharing holds the promise of significantly reducing wind integration costs. In a companion paper we examine wind integration costs as a function of balancing area size to determine if the larger system size helps mitigate wind integration cost increases. In this paper we turn to an examination of the NYISO sub-hourly energy market to understand how it incentivizes generators to respond to ramping signals without having to explicitly pay for the service. Because markets appear to have the ability of bringing out supply response in sub-hourly energy markets, and because existing thermal resources appear to have significant untapped ramping capability, we believe that a combination of fast energy markets and combined balancing area operations can increase the grid's ability to absorb higher wind penetrations without experiencing significant operational problems or costs.

  10. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity.

    PubMed

    Hopkins, Mark; Blundell, John E

    2016-09-01

    Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research.

  11. Daily magnesium fluxes regulate cellular timekeeping and energy balance.

    PubMed

    Feeney, Kevin A; Hansen, Louise L; Putker, Marrit; Olivares-Yañez, Consuelo; Day, Jason; Eades, Lorna J; Larrondo, Luis F; Hoyle, Nathaniel P; O'Neill, John S; van Ooijen, Gerben

    2016-04-21

    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.

  12. Low Calorie Sweetener (LCS) use and energy balance.

    PubMed

    Peters, John C; Beck, Jimikaye

    2016-10-01

    For thirty years there has been a debate about whether low calorie sweeteners (LCS) provide a benefit for body weight management. Early studies showed that when consumed alone in a beverage appetite and food intake were increased. Some, observational longitudinal cohort studies reported an association between LCS usage and increasing BMI, suggesting that LCS may actually promote weight gain. In the ensuing decades numerous additional observational and experimental trials have been conducted with the experimental trials nearly uniformly showing a benefit for LCS, either in weight loss or weight gain prevention. The observational trials have been more inconsistent with two recent meta-analyses indicating either a small positive association between LCS usage and BMI (weighted group mean correlation, p=0.03) or an inverse association with body weight change (-1.35 kg, p=.004). Numerous potential mechanisms have been explored, mostly in animal models, in an attempt to explain this association but none have yet been proven in humans. It is also possible that the association between LCS and BMI increase in the observational studies may be due to reverse causality or residual confounding. Randomized controlled trials are consistent in showing a benefit of LCS which suggests that simple behavioral engagement by individuals attempting to control their weight is a sufficiently strong signal to overcome any potential mechanism that might act to promote energy intake and weight gain. Based on existing evidence, LCS can be a useful tool for people actively engaged in managing their body weight for weight loss and maintenance.

  13. Daily magnesium fluxes regulate cellular timekeeping and energy balance.

    PubMed

    Feeney, Kevin A; Hansen, Louise L; Putker, Marrit; Olivares-Yañez, Consuelo; Day, Jason; Eades, Lorna J; Larrondo, Luis F; Hoyle, Nathaniel P; O'Neill, John S; van Ooijen, Gerben

    2016-04-21

    Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease. PMID:27074515

  14. Application of an energy balance correction method for turbulent flux measurements based on buoyancy

    NASA Astrophysics Data System (ADS)

    Babel, Wolfgang; Charuchittipan, Doojdao; Zhao, Peng; Biermann, Tobias; Gatzsche, Kathrin; Foken, Thomas

    2014-05-01

    The energy imbalance in flux measurements between the atmosphere and the surface is a well-known problem, but unsolved due to the complexity of possible reasons and potential error sources. In order to provide unbiased budgets, however, eddy-covariance measurements of sensible and latent heat flux should be corrected according to the closure gap. Recent studies utilising turbulent flux data and LES models suggest that the transport of the missing turbulent flux is triggered by meso-scale circulations, not detected by eddy-covariance measurements within typical averaging intervals of 30 minutes. These motions on longer timescales are driven by buoyancy, suggesting that the missing turbulent flux is a missing buoyancy flux. Based on this assumption we present an energy balance closure correction method according to the buoyancy flux. The effects are compared with the results obtained by the commonly used correction according to the Bowen ratio (Twine et al., Agr. Forest Meteorol., 2000). We show that in general both correction methods could be applied to daytime fluxes and conditions with positive Bowen ratios. Finally the corrected turbulent fluxes are compared with different simulations of SVAT-type models for Tibetan grassland sites and a central European spruce forest site. The model performance with respect to the used data correction method is linked to the different mechanism of closing the energy balance within the model. Model validation requires energy balance closure correction in case the model relies on the energy balance equation. We conclude that mechanistic model development of turbulent flux parameterisations should recognize the recent hypotheses concerning the energy balance closure rather than fitting just to the uncorrected eddy-covariance data.

  15. Low Calorie Sweetener (LCS) use and energy balance.

    PubMed

    Peters, John C; Beck, Jimikaye

    2016-10-01

    For thirty years there has been a debate about whether low calorie sweeteners (LCS) provide a benefit for body weight management. Early studies showed that when consumed alone in a beverage appetite and food intake were increased. Some, observational longitudinal cohort studies reported an association between LCS usage and increasing BMI, suggesting that LCS may actually promote weight gain. In the ensuing decades numerous additional observational and experimental trials have been conducted with the experimental trials nearly uniformly showing a benefit for LCS, either in weight loss or weight gain prevention. The observational trials have been more inconsistent with two recent meta-analyses indicating either a small positive association between LCS usage and BMI (weighted group mean correlation, p=0.03) or an inverse association with body weight change (-1.35 kg, p=.004). Numerous potential mechanisms have been explored, mostly in animal models, in an attempt to explain this association but none have yet been proven in humans. It is also possible that the association between LCS and BMI increase in the observational studies may be due to reverse causality or residual confounding. Randomized controlled trials are consistent in showing a benefit of LCS which suggests that simple behavioral engagement by individuals attempting to control their weight is a sufficiently strong signal to overcome any potential mechanism that might act to promote energy intake and weight gain. Based on existing evidence, LCS can be a useful tool for people actively engaged in managing their body weight for weight loss and maintenance. PMID:27061939

  16. Energy and greenhouse gas balances for a solid waste incineration plant: a case study.

    PubMed

    Brinck, Kim; Poulsen, Tjalfe G; Skov, Henrik

    2011-10-01

    Energy and greenhouse gas balances for a waste incineration plant (Reno-Nord I/S, Aalborg, Denmark) as a function of time over a 45-year period beginning 1960 are presented. The quantity of energy recovered from the waste increased over time due to increasing waste production, increasing lower heating value of the waste and implementation of improved energy recovery technology at the incineration plant. Greenhouse gas (GHG) balances indicated progressively increasing GHG savings during the time period investigated as a result of the increasing energy production. The GHG balances show that the Reno-Nord incineration plant has changed from a net annual GHG emission of 30 kg CO(2)-eq person(-1) year(-1) to a net annual GHG saving of 770 kg CO(2)-eq person(-1) year(-1) which is equivalent to approximately 8% of the annual emission of GHG from an average Danish person (including emissions from industry and transport). The CO(2) emissions associated with combustion of the fossil carbon contained in the waste accounted for about two-thirds of the GHG turnover when no energy recovery is applied but its contribution reduces to between 10 and 15% when energy recovery is implemented. The reason being that energy recovery is associated with a large CO(2) saving (negative emission).

  17. Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty

    USGS Publications Warehouse

    Anslow, Faron S.; Hostetler, S.; Bidlake, W.R.; Clark, P.U.

    2008-01-01

    We have developed a physically based, distributed surface energy balance model to simulate glacier mass balance under meteorological and climatological forcing. Here we apply the model to estimate summer ablation on South Cascade Glacier, Washington, for the 2004 and 2005 mass balance seasons. To arrive at optimal mass balance simulations, we investigate and quantify model uncertainty associated with selecting from a range of physical parameter values that are not commonly measured in glaciological mass balance field studies. We optimize the performance of the model by varying values for atmospheric transmissivity, the albedo of surrounding topography, precipitation-elevation lapse rate, surface roughness for turbulent exchange of momentum, and snow albedo aging coefficient. Of these the snow aging parameter and precipitation lapse rates have the greatest influence on the modeled ablation. We examined model sensitivity to varying parameters by performing an additional 103 realizations with parameters randomly chosen over a ??5% range centered about the optimum values. The best fit suite of model parameters yielded a net balance of -1.69??0.38 m water equivalent (WE) for the 2004 water year and -2.10??0.30 m WE up to 11 September 2005. The 2004 result is within 3% of the measured value. These simulations account for 91% and 93% of the variance in measured ablation for the respective years. Copyright 2008 by the American Geophysical Union.

  18. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Senay, Gabriel B.

    2016-01-01

    The development of different energy balance models has allowed users to choose a model based on its suitability in a region. We compared four commonly used models—Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and the Operational Simplified Surface Energy Balance (SSEBop) model—using Landsat images to estimate evapotranspiration (ET) in the Midwestern United States. Our models validation using three AmeriFlux cropland sites at Mead, Nebraska, showed that all four models captured the spatial and temporal variation of ET reasonably well with an R2 of more than 0.81. Both the METRIC and SSEBop models showed a low root mean square error (<0.93 mm·day−1) and a high Nash–Sutcliffe coefficient of efficiency (>0.80), whereas the SEBAL and SEBS models resulted in relatively higher bias for estimating daily ET. The empirical equation of daily average net radiation used in the SEBAL and SEBS models for upscaling instantaneous ET to daily ET resulted in underestimation of daily ET, particularly when the daily average net radiation was more than 100 W·m−2. Estimated daily ET for both cropland and grassland had some degree of linearity with METRIC, SEBAL, and SEBS, but linearity was stronger for evaporative fraction. Thus, these ET models have strengths and limitations for applications in water resource management.

  19. Ninth Graders' Energy Balance Knowledge and Physical Activity Behavior: An Expectancy-Value Perspective

    ERIC Educational Resources Information Center

    Chen, Senlin; Chen, Ang

    2012-01-01

    Expectancy beliefs and task values are two essential motivators in physical education. This study was designed to identify the relation between the expectancy-value constructs (Eccles & Wigfield, 1995) and high school students' physical activity behavior as associated with their energy balance knowledge. High school students (N = 195) in two…

  20. Improving surface energy balance closure by reducing errors in soil heat flux measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux plate method is the most commonly employed method for measuring soil heat flux (G) in surface energy balance studies. Although relatively simple to use, the flux plate method is susceptible to significant errors. Two of the most common errors are heat flow divergence around the plate and fa...

  1. Improved Student Achievement Using Personalized Online Homework for a Course in Material and Energy Balances

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.

    2011-01-01

    Personalized, online homework was used to supplement textbook homework, quizzes, and exams for one section of a course in material and energy balances. The objective of this study was to test the hypothesis that students using personalized, online homework earned better grades in the course. The online homework system asks the same questions of…

  2. Changes in Energy Balance Following Smoking Cessation and Resumption of Smoking in Women.

    ERIC Educational Resources Information Center

    Perkins, Kenneth A.; And Others

    1990-01-01

    Prospectively examined caloric intake, resting metabolic rate (RMR), leisure time physical activity, and sensitivity and preference for sweet taste in seven female smokers during normal smoking, complete cessation, and resumption of smoking. Findings suggest that smoking cessation may cause rapid change in energy balance which is quickly reversed…

  3. Across-phase biomass pyrolysis stoichiometry, energy balance, and product formation kinetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predictive correlations between reactions occurring in the gas-, liquid- and solid-phases are necessary to economically utilize the thermochemical conversion of agricultural wastes impacting the food, water, and energy nexus. On the basis of an empirical mass balance (99.7%), this study established...

  4. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of shifts in substrate utilization and energy balance would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...

  5. Enhancing Energy Balance Education through Physical Education and Self-Monitoring Technology

    ERIC Educational Resources Information Center

    Chen, Senlin; Zhu, Xihe; Kim, Youngwon; Welk, Gregory; Lanningham-Foster, Lorraine

    2016-01-01

    Schools are positioned to play a key role in nurturing students with knowledge and behaviours associated with healthful living. Our study examined the effects of an intervention on energy balance (EB) knowledge. Twelve 6th and 7th grade classrooms (n = 140) were assigned to receive either two standardised lessons on EB or a combined intervention…

  6. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  7. Effect of fescue toxicosis on ruminal kinetics, nitrogen and energy balance in Holstein steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to examine alteration of ruminal kinetics, as well as N and energy balance during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=217 ±7 kg) were weight-matched into pairs and pair-fed throughout a cross-over design experiment with a 2x2 factorial treatment str...

  8. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  9. Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.

    2013-01-01

    The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…

  10. Snowpack energy balance analysis using field measurements in an Andean watershed

    NASA Astrophysics Data System (ADS)

    Stehr, Alejandra

    2014-05-01

    Depending on the relative altitude and ambient temperature, Andean watersheds present important snow coverage during winter season. Snowpack stores significant amount of water which is released to surface runoff and groundwater when solar radiation increases, mainly during the spring and summer season, controlling the shape of the annual hydrograph and affecting the water balance at monthly and shorter scales. Field measurements of snow cover in those areas are difficult to perform due to adverse climatic and topographic conditions. Therefore, it is useful to support the hydrological characterization of watersheds located in the high mountains with models representing runoff from melting, for example, models based on the energy balance of the snowpack. The objective of this work is to characterize and quantify the energy flows that control the accumulation and melting of snow cover, using field measurements. The work was done on the upper Malleco watershed, which is located in the Andes Mountain Range (38°20' - 38°41' S and 71°13' - 71°35' W) and has an area of 27 km2, elevations vary between 900 to 1789 m a.m.s.l. For the calculation of the different the energy balance components, two weather stations were installed in the study area, which recorded data every 15 minutes. The variables measured were: global solar radiation, net radiation, shortwave and longwave radiation, air temperature, relative humidity, wind speed and direction, soil heat flux, precipitation and snow depth. Two analyzes were performed: 1) Energy Balance 2010. Two representative periods of accumulation (1st July to 31st July) and melting (10 September to 10 October) were selected in one of the stations. 2) Energy Balance 2011. Energy balance for a 15 days period of accumulation (July 19 to August 3, 2011) was with the aim of comparing both meteorological stations. In all cases hourly energy fluxes, snow water equivalent and daily snow depth were calculated. The latter was compared with the

  11. Oxidative fuel selection and shivering thermogenesis during a 12- and 24-h cold-survival simulation.

    PubMed

    Haman, François; Mantha, Olivier L; Cheung, Stephen S; DuCharme, Michel B; Taber, Michael; Blondin, Denis P; McGarr, Gregory W; Hartley, Geoffrey L; Hynes, Zach; Basset, Fabien A

    2016-03-15

    Because the majority of cold exposure studies are constrained to short-term durations of several hours, the long-term metabolic demands of cold exposure, such as during survival situations, remain largely unknown. The present study provides the first estimates of thermogenic rate, oxidative fuel selection, and muscle recruitment during a 24-h cold-survival simulation. Using combined indirect calorimetry and electrophysiological and isotopic methods, changes in muscle glycogen, total carbohydrate, lipid, protein oxidation, muscle recruitment, and whole body thermogenic rate were determined in underfed and noncold-acclimatized men during a simulated accidental exposure to 7.5 °C for 12 to 24 h. In noncold-acclimatized healthy men, cold exposure induced a decrease of ∼0.8 °C in core temperature and a decrease of ∼6.1 °C in mean skin temperature (range, 5.4-6.9 °C). Results showed that total heat production increased by approximately 1.3- to 1.5-fold in the cold and remained constant throughout cold exposure. Interestingly, this constant rise in Ḣprod and shivering intensity was accompanied by a large modification in fuel selection that occurred between 6 and 12 h; total carbohydrate oxidation decreased by 2.4-fold, and lipid oxidation doubled progressively from baseline to 24 h. Clearly, such changes in fuel selection dramatically reduces the utilization of limited muscle glycogen reserves, thus extending the predicted time to muscle glycogen depletion to as much as 15 days rather than the previous estimates of approximately 30-40 h. Further research is needed to determine whether this would also be the case under different nutritional and/or colder conditions. PMID:26718783

  12. Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures

    PubMed Central

    Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta

    2012-01-01

    Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369

  13. Effect of balanced protein energy supplementation during pregnancy on birth outcomes

    PubMed Central

    2011-01-01

    Background The nutritional status of the mother prior to and during pregnancy plays a vital role in fetal growth and development, and maternal undernourishment may lead to adverse perinatal outcomes including intrauterine growth restriction (IUGR). Several macronutrient interventions had been proposed for adequate protein and energy supplementation during pregnancy. The objective of this paper was to review the effect of balanced protein energy supplementation during pregnancy on birth outcomes. This paper is a part of a series of reviews undertaken for getting estimates of effectiveness of an intervention for input to Lives Saved Tool (LiST) model. Methods A literature search was conducted on PubMed, Cochrane Library and WHO regional data bases to identify randomized trials (RCTs) and quasi RCTs that evaluated the impact of balanced protein energy supplementation in pregnancy. Balanced protein energy supplementation was defined as nutritional supplementation during pregnancy in which proteins provided less than 25% of the total energy content. Those studies were excluded in which the main intervention was dietary advice to pregnant women for increase in protein energy intake, high protein supplementation (i.e. supplementation in which protein provides at least 25% of total energy content), isocaloric protein supplementation (where protein replaces an equal quantity of non-protein energy content), or low energy diet to pregnant women who are either overweight or who exhibit high weight gain earlier in gestation. The primary outcomes were incidence of small for gestational age (SGA) birth, mean birth weight and neonatal mortality. Quality of evidence was evaluated according to the Child Health Epidemiology Reference group (CHERG) adaptation of Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria. Results The final number of studies included in our review was eleven comprising of both RCTs and quasi-RCTs. Our meta-analysis indicates that

  14. Partial sleep deprivation and energy balance in adults: an emerging issue for consideration by dietetics practitioners.

    PubMed

    Shlisky, Julie D; Hartman, Terryl J; Kris-Etherton, Penny M; Rogers, Connie J; Sharkey, Neil A; Nickols-Richardson, Sharon M

    2012-11-01

    During the past 30 years, rates of partial sleep deprivation and obesity have increased in the United States. Evidence linking partial sleep deprivation, defined as sleeping <6 hours per night, to energy imbalance is relevant to weight gain prevention and weight loss promotion. With a majority of Americans overweight or obese, weight loss is a recommended strategy for reducing comorbid conditions. Our purpose was to review the literature regarding the role of partial sleep deprivation on energy balance and weight regulation. An inverse relationship between obesity and sleep duration has been demonstrated in cross-sectional and prospective studies. Several intervention studies have tested mechanisms by which partial sleep deprivation affects energy balance. Reduced sleep may disrupt appetitive hormone regulation, specifically increasing ghrelin and decreasing leptin and, thereby, influence energy intake. Increased wakefulness also may promote food intake episodes and energy imbalance. Energy expenditure may not be greatly affected by partial sleep deprivation, although additional and more accurate methods of measurements may be necessary to detect subtle changes in energy expenditure. Body weight loss achieved by reduced energy intake and/or increased energy expenditure combined with partial sleep deprivation may contribute to undesirable body composition change with proportionately more fat-free soft tissue mass lost compared with fat mass. Evaluating sleep patterns and recommending regular, sufficient sleep for individuals striving to manage weight may be prudent.

  15. High-energy-resolution X-ray monochromator calibration using the detailed-balance principle

    PubMed Central

    Zhao, J. Y.; Sturhahn, W.

    2012-01-01

    A new method is presented to calibrate an X-ray energy scale with sub-meV relative accuracy by using the detailed-balance principle of the phonon creation and annihilation. This method is conveniently used to define or verify the energy scale of high-energy-resolution monochromators that are used in inelastic X-ray scattering and nuclear resonant inelastic X-ray scattering instruments at synchrotron radiation facilities. This method does not rely on sample properties and its precision only depends on the statistical data quality. Well calibrated instruments are essential for reliable comparison of data sets obtained at different synchrotron radiation beamlines, of data with theoretical predictions, and of data from other techniques such as neutron or light scattering. The principle of the detailed-balance method is described in this paper and demonstrated experimentally. PMID:22713897

  16. Energy-balance and melt contributions of supraglacial lakes, Langtang Khola, Nepal

    NASA Astrophysics Data System (ADS)

    Miles, E. S.; Willis, I. C.; Pellicciotti, F.; Steiner, J. F.; Buri, P.; Arnold, N. S.

    2014-12-01

    As Himalayan debris-covered glaciers retreat and thin in response to climate warming, their long, low-gradient tongues generate substantial meltwater which often collects to form surface lakes. Supraglacial lakes on debris covered glaciers present a mechanism of atmosphere-glacier energy transfer that is poorly-studied, and only conceptually included in mass-balance studies. The ponded water can enhance energy transfer as compared to dry debris cover, while also acting as a reservoir of melt-available energy. Supraglacial lakes occur in association with debris-free ice cliffs, another poorly-constrained but critical component of glacier melt. Understanding the role of supraglacial lakes requires precise monitoring of lake volume, estimation of inlet and outlet flows, and consideration of the energy balance across three surfaces: atmosphere-lake, lake-ice, and lake-saturated debris layer. This research progresses previous modeling work on the energy and mass balance of such supraglacial lakes. Lakes were monitored during the monsoon of 2013 on Lirung Glacier in the Langtang Himal of Nepal with pressure transducers and temperature sensors, while UAV-derived DEMs were used to determine lake geometry. Lake albedo was measured to vary between 0.08 and 0.12, and a nearby on-glacier AWS was used to drive the energy balance. Results indicate that the lakes act as a significant recipient of energy, and suggest that lakes are an important part of an active supraglacial hydrologic system during the monsoon. Melt generated by the lake in contact with bare ice is calculated to be 3-5 cm/day, while energy conducted through saturated lake-bottom debris only resulted in 1-2 mm/day melt. The subaqueous melt rates are of similar magnitude to observed ice-cliff melt rates, allowing lake-cliff systems to persist. Energy leaving the lake system through englacial conduits may be the most important contribution to the glacier's mass balance, driving surface evolution to form new ice

  17. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  18. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  19. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase.

    PubMed

    Martínez de Morentin, Pablo B; Whittle, Andrew J; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Vidal-Puig, Antonio; López, Miguel

    2012-04-01

    Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity. PMID:22315316

  20. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase.

    PubMed

    Martínez de Morentin, Pablo B; Whittle, Andrew J; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; Vidal-Puig, Antonio; López, Miguel

    2012-04-01

    Smokers around the world commonly report increased body weight after smoking cessation as a major factor that interferes with their attempts to quit. Numerous controlled studies in both humans and rodents have reported that nicotine exerts a marked anorectic action. The effects of nicotine on energy homeostasis have been mostly pinpointed in the central nervous system, but the molecular mechanisms controlling its action are still not fully understood. The aim of this study was to investigate the effect of nicotine on hypothalamic AMP-activated protein kinase (AMPK) and its effect on energy balance. Here we demonstrate that nicotine-induced weight loss is associated with inactivation of hypothalamic AMPK, decreased orexigenic signaling in the hypothalamus, increased energy expenditure as a result of increased locomotor activity, increased thermogenesis in brown adipose tissue (BAT), and alterations in fuel substrate utilization. Conversely, nicotine withdrawal or genetic activation of hypothalamic AMPK in the ventromedial nucleus of the hypothalamus reversed nicotine-induced negative energy balance. Overall these data demonstrate that the effects of nicotine on energy balance involve specific modulation of the hypothalamic AMPK-BAT axis. These targets may be relevant for the development of new therapies for human obesity.

  1. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows.

    PubMed

    Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V

    2015-05-01

    The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of energy fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative energy balance postpartum. Our hypothesis was that a high-fiber, controlled-energy diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-energy diet (H), or a diet where an intermediate level of energy would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-energy diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and energy balance was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, energy balance, BHBA and NEFA concentrations, milk and energy-corrected milk yield, as well as milk composition. Predicted energy balance tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and

  2. Influence of intense physical activity on energy balance and body fatness.

    PubMed

    Tremblay, A; Doucet, E

    1999-02-01

    The reduced contribution of physical activity to daily energy expenditure and the accessibility to high-fat foods have put an excessive burden on energy balance, resulting in an increase in the prevalence of obesity throughout the world. In this context, fat gain can be seen as a natural adaptation to deal with a fattening lifestyle, since the hormonal adaptations that accompany fat gain favour the readjustment of energy expenditure to energy intake. Intense physical activity would also seem to facilitate the regulation of energy balance, since it increases the energy cost of exercise, increases post-exercise energy expenditure and the potential of skeletal muscles to utilize lipids, and also favours a decrease in post-exercise intake. Moreover, the effects of intense exercise seem to be mediated by an activation of sympathetic nervous system activity that seems to be specific to skeletal muscle. It is also important to manipulate macronutrient composition in order to reduce fat intake, because unhealthy food habits can favour overfeeding and thus overcome the energy deficit caused by regular physical activity. Under free-living conditions, the combination of vigorous activity and healthy food practices can amount to a substantial weight loss which is comparable with that of other non-surgical approaches to treat obesity.

  3. The impact of a 24-h ultra-marathon on salivary antimicrobial protein responses.

    PubMed

    Gill, S K; Teixeira, A M; Rosado, F; Hankey, J; Wright, A; Marczak, S; Murray, A; Costa, R J S

    2014-10-01

    Depressed oral respiratory mucosal immunity and increased incidence of upper respiratory symptoms are commonly reported after bouts of prolonged exercise. The current study observed the impact of a 24-h continuous overnight ultra-marathon competition (distance range: 122-208 km; ambient temperature range: 0-20 °C) on salivary antimicrobial protein responses and incidence of upper respiratory symptoms. Body mass, unstimulated saliva and venous blood samples were taken from ultra-endurance runners (n=25) and controls (n=17), before and immediately after competition. Upper respiratory symptoms were assessed during and until 4-weeks after event completion. Samples were analyzed for salivary IgA, lysozyme, α-amylase and cortisol in addition to plasma osmolality. Decreased saliva flow rate (p<0.001), salivary IgA (p<0.001) and lysozyme (p=0.015) secretion rates, and increased salivary α-amylase secretion rate (p<0.001) and cortisol responses (p<0.001) were observed post-competition in runners, with no changes being observed in controls. No incidences of upper respiratory symptoms were reported by participants. A 24-h continuous overnight ultra-marathon resulted in the depression of some salivary antimicrobial protein responses, but no incidences of upper respiratory symptoms were evident during or following competition. Salivary antimicrobial protein synergism, effective management of non-infectious episodes, maintaining euhydration, and (or) favourable environmental influences could have accounted for the low prevalence of upper respiratory symptoms. PMID:24886918

  4. 24-h blood pressure in Space: The dark side of being an astronaut.

    PubMed

    Karemaker, John M; Berecki-Gisolf, Janneke

    2009-10-01

    Inflight 24-h profiles of blood pressure (BP) and heart rate (HR) were recorded in 2 ESA-astronauts by automatic upper arm cuff measurements. In one astronaut this was combined with Portapres continuous finger blood pressure recordings. It was the intention to contrast the latter to 24-h recordings in an earlier Head-Down-Tilted (HDT) bed rest study [Voogel, A.J., Stok, W.J., Pretorius, P.J., Van Montfrans, G.A., Langewouters, G.J., Karemaker, J.M., 1997. Circadian blood pressure and systemic haemodynamics during 42 days of 6 degrees head-down tilt. Acta Physiol. Scand. 161, pp. 71-80]. BP-levels in Space were not very much changed from preflight; the circadian BP-rhythm seemed dampened. Only daytime diastolic pressures (both subjects) and nighttime HR (one subject) were significantly lower in Space. However, compared to the effect of a control tilt manoeuvre on the ground, even lower BP values might have been expected. Striking were the BP- and HR-surges during the working days in Space, often related to stressful moments like live appearances on public TV. Systemic vascular resistance (SVR) dropped during the night, unlike HDT. Thus, actual spaceflight refuted our earlier findings in HDT both for BP-levels and for daytime to nighttime changes. The combined observations lead to the hypothesis that short-lasting spaceflight may induce strong psychological stress in astronauts. When interpreting space-physiological observations this must be taken into account.

  5. Preliminary estimation of deoxynivalenol excretion through a 24 h pilot study.

    PubMed

    Rodríguez-Carrasco, Yelko; Mañes, Jordi; Berrada, Houda; Font, Guillermina

    2015-02-25

    A duplicate diet study was designed to explore the occurrence of 15 Fusarium mycotoxins in the 24 h-diet consumed by one volunteer as well as the levels of mycotoxins in his 24 h-collected urine. The employed methodology involved solvent extraction at high ionic strength followed by dispersive solid phase extraction and gas chromatography determination coupled to mass spectrometry in tandem. Satisfactory results in method performance were achieved. The method's accuracy was in a range of 68%-108%, with intra-day relative standard deviation and inter-day relative standard deviation lower than 12% and 15%, respectively. The limits of quantitation ranged from 0.1 to 8 µg/Kg. The matrix effect was evaluated and matrix-matched calibrations were used for quantitation. Only deoxynivalenol (DON) was quantified in both food and urine samples. A total DON daily intake amounted to 49.2 ± 5.6 µg whereas DON daily excretion of 35.2 ± 4.3 µg was determined. DON daily intake represented 68.3% of the established DON provisional maximum tolerable daily intake (PMTDI). Valuable preliminary information was obtained as regards DON excretion and needs to be confirmed in large-scale monitoring studies.

  6. Preliminary Estimation of Deoxynivalenol Excretion through a 24 h Pilot Study

    PubMed Central

    Rodríguez-Carrasco, Yelko; Mañes, Jordi; Berrada, Houda; Font, Guillermina

    2015-01-01

    A duplicate diet study was designed to explore the occurrence of 15 Fusarium mycotoxins in the 24 h-diet consumed by one volunteer as well as the levels of mycotoxins in his 24 h-collected urine. The employed methodology involved solvent extraction at high ionic strength followed by dispersive solid phase extraction and gas chromatography determination coupled to mass spectrometry in tandem. Satisfactory results in method performance were achieved. The method’s accuracy was in a range of 68%–108%, with intra-day relative standard deviation and inter-day relative standard deviation lower than 12% and 15%, respectively. The limits of quantitation ranged from 0.1 to 8 µg/Kg. The matrix effect was evaluated and matrix-matched calibrations were used for quantitation. Only deoxynivalenol (DON) was quantified in both food and urine samples. A total DON daily intake amounted to 49.2 ± 5.6 µg whereas DON daily excretion of 35.2 ± 4.3 µg was determined. DON daily intake represented 68.3% of the established DON provisional maximum tolerable daily intake (PMTDI). Valuable preliminary information was obtained as regards DON excretion and needs to be confirmed in large-scale monitoring studies. PMID:25723325

  7. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  8. Average balance equations, scale dependence, and energy cascade for granular materials.

    PubMed

    Artoni, Riccardo; Richard, Patrick

    2015-03-01

    A new averaging method linking discrete to continuum variables of granular materials is developed and used to derive average balance equations. Its novelty lies in the choice of the decomposition between mean values and fluctuations of properties which takes into account the effect of gradients. Thanks to a local homogeneity hypothesis, whose validity is discussed, simplified balance equations are obtained. This original approach solves the problem of dependence of some variables on the size of the averaging domain obtained in previous approaches which can lead to huge relative errors (several hundred percentages). It also clearly separates affine and nonaffine fields in the balance equations. The resulting energy cascade picture is discussed, with a particular focus on unidirectional steady and fully developed flows for which it appears that the contact terms are dissipated locally unlike the kinetic terms which contribute to a nonlocal balance. Application of the method is demonstrated in the determination of the macroscopic properties such as volume fraction, velocity, stress, and energy of a simple shear flow, where the discrete results are generated by means of discrete particle simulation.

  9. Validation and Assessment of Three Methods to Estimate 24-h Urinary Sodium Excretion from Spot Urine Samples in Chinese Adults

    PubMed Central

    Peng, Yaguang; Li, Wei; Wang, Yang; Chen, Hui; Bo, Jian; Wang, Xingyu; Liu, Lisheng

    2016-01-01

    24-h urinary sodium excretion is the gold standard for evaluating dietary sodium intake, but it is often not feasible in large epidemiological studies due to high participant burden and cost. Three methods—Kawasaki, INTERSALT, and Tanaka—have been proposed to estimate 24-h urinary sodium excretion from a spot urine sample, but these methods have not been validated in the general Chinese population. This aim of this study was to assess the validity of three methods for estimating 24-h urinary sodium excretion using spot urine samples against measured 24-h urinary sodium excretion in a Chinese sample population. Data are from a substudy of the Prospective Urban Rural Epidemiology (PURE) study that enrolled 120 participants aged 35 to 70 years and collected their morning fasting urine and 24-h urine specimens. Bias calculations (estimated values minus measured values) and Bland-Altman plots were used to assess the validity of the three estimation methods. 116 participants were included in the final analysis. Mean bias for the Kawasaki method was -740 mg/day (95% CI: -1219, 262 mg/day), and was the lowest among the three methods. Mean bias for the Tanaka method was -2305 mg/day (95% CI: -2735, 1875 mg/day). Mean bias for the INTERSALT method was -2797 mg/day (95% CI: -3245, 2349 mg/day), and was the highest of the three methods. Bland-Altman plots indicated that all three methods underestimated 24-h urinary sodium excretion. The Kawasaki, INTERSALT and Tanaka methods for estimation of 24-h urinary sodium excretion using spot urines all underestimated true 24-h urinary sodium excretion in this sample of Chinese adults. Among the three methods, the Kawasaki method was least biased, but was still relatively inaccurate. A more accurate method is needed to estimate the 24-h urinary sodium excretion from spot urine for assessment of dietary sodium intake in China. PMID:26895296

  10. Hunger can be taught: Hunger Recognition regulates eating and improves energy balance

    PubMed Central

    Ciampolini, Mario; Lovell-Smith, H David; Kenealy, Timothy; Bianchi, Riccardo

    2013-01-01

    A set of spontaneous hunger sensations, Initial Hunger (IH), has been associated with low blood glucose concentration (BG). These sensations may arise pre-meal or can be elicited by delaying a meal. With self-measurement of BG, subjects can be trained to formally identify and remember these sensations (Hunger Recognition). Subjects can then be trained to ensure that IH is present pre-meal for most meals and that their pre-meal BG is therefore low consistently (IH Meal Pattern). IH includes the epigastric Empty Hollow Sensation (the most frequent and recognizable) as well as less specific sensations such as fatigue or light-headedness which is termed inanition. This report reviews the method for identifying IH and the effect of the IH Meal Pattern on energy balance. In adults, the IH Meal Pattern has been shown to significantly decrease energy intake by one-third, decrease preprandial BG, reduce glycosylated hemoglobin, and reduce insulin resistance and weight in those who are insulin resistant or overweight. Young children as well as adults can be trained in Hunger Recognition, giving them an elegant method for achieving energy balance without the stress of restraint-type dieting. The implications of improving insulin sensitivity through improved energy balance are as wide as improving immune activity. PMID:23825928

  11. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance

    NASA Astrophysics Data System (ADS)

    van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z.

    2009-12-01

    This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes), which is a vertical (1-D) integrated radiative transfer and energy balance model. The model links visible to thermal infrared radiance spectra (0.4 to 50 μm) as observed above the canopy to the fluxes of water, heat and carbon dioxide, as a function of vegetation structure, and the vertical profiles of temperature. Output of the model is the spectrum of outgoing radiation in the viewing direction and the turbulent heat fluxes, photosynthesis and chlorophyll fluorescence. A special routine is dedicated to the calculation of photosynthesis rate and chlorophyll fluorescence at the leaf level as a function of net radiation and leaf temperature. The fluorescence contributions from individual leaves are integrated over the canopy layer to calculate top-of-canopy fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between leaf temperatures, leaf chlorophyll fluorescence and radiative fluxes. Leaf temperatures are calculated on the basis of energy balance closure. Model simulations were evaluated against observations reported in the literature and against data collected during field campaigns. These evaluations showed that SCOPE is able to reproduce realistic radiance spectra, directional radiance and energy balance fluxes. The model may be applied for the design of algorithms for the retrieval of evapotranspiration from optical and thermal earth observation data, for validation of existing methods to monitor vegetation functioning, to help interpret canopy fluorescence measurements, and to study the relationships between synoptic observations with diurnally integrated quantities. The model has been implemented in Matlab and has a modular design, thus allowing for great flexibility and scalability.

  12. Serum leptin and insulin levels in lactating protein-restricted rats: implications for energy balance.

    PubMed

    Ferreira, C L P; Macêdo, G M; Latorraca, M Q; Arantes, V C; Veloso, R V; Carneiro, E M; Boschero, A C; Nascimento, C M O; Gaíva, M H

    2007-01-01

    The present study analysed the effect of protein restriction on serum insulin and leptin levels and their relationship with energy balance during lactation. Four groups of rats received isocaloric diets containing 170 g protein/kg or 60 g protein/kg from pregnancy until the 14th day of lactation: control non-lactating, control lactating (both fed a control diet), low-protein non-lactating and low-protein lactating. Energy intake, body composition, energy balance, serum insulin and leptin concentrations and the relationship between these hormones and several factors related to obesity were analysed. Low-protein-intake lactating rats exhibited hypoinsulinaemia, hyperleptinaemia, hypophagia and decreased energy expenditure compared with control lactating rats. The protein level in the carcasses was lower in the low-protein lactating group than in the control lactating group, resulting in a higher fat content in the first group compared with the latter. Body fat correlated inversely with serum insulin and positively with serum leptin level. There was a significant negative correlation between serum leptin and energy intake, and a positive relationship between energy intake and serum insulin level in lactating rats and in the combined data from both groups. Energy expenditure was correlated positively with serum insulin and negatively with serum leptin in lactating rats and when data from control non-lactating and lactating rats were pooled. Lactating rats submitted to protein restriction, compared with lactating control rats, showed that maternal reserves were preserved owing to less severe negative energy balance. This metabolic adaptation was obtained, at least in part, by hypoinsulinaemia that resulted in increased insulin sensitivity favouring enhanced fat deposition, hyperleptinaemia and hypophagia. PMID:17217557

  13. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  14. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  15. Effects of fatty acid supplements on milk yield and energy balance of lactating dairy cows.

    PubMed

    Harvatine, K J; Allen, M S

    2006-03-01

    Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on yield of milk and milk components, concentration of milk components including milk fatty acid profile, and energy balance. Eight ruminally and duodenally cannulated cows and 8 noncannulated cows were used in a replicated 4 x 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). The SAT treatment did not change milk fat concentration, but UNS linearly decreased milk fat in cannulated cows and tended to decrease milk fat in noncannulated cows compared with control. Milk fat depression with UNS corresponded to increased concentrations of trans-10, cis-12 conjugated linoleic acid and trans C18:1 fatty acids in milk. Milk fat profile was similar for SAT and control, but UNS decreased concentration of short- and medium-chain FA. Digestible energy intake tended to decrease linearly with increasing unsaturated FS in cannulated and noncannulated cows. Increasing unsaturated FS linearly increased empty body weight and net energy gain in cannulated cows, whereas increasing saturated FS linearly increased plasma insulin. Efficiency of conversion of digestible energy to milk tended to decrease linearly with increasing unsaturated FS for cannulated cows only. Addition of SAT provided little benefit to production and energy balance, whereas UNS decreased energy intake and milk energy yield.

  16. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank.

    PubMed

    Galante, Julieta; Adamska, Ligia; Young, Alan; Young, Heather; Littlejohns, Thomas J; Gallacher, John; Allen, Naomi

    2016-02-28

    Although dietary intake over a single 24-h period may be atypical of an individual's habitual pattern, multiple 24-h dietary assessments can be representative of habitual intake and help in assessing seasonal variation. Web-based questionnaires are convenient for the participant and result in automatic data capture for study investigators. This study reports on the acceptability of repeated web-based administration of the Oxford WebQ--a 24-h recall of frequency from a set food list suitable for self-completion from which energy and nutrient values can be automatically generated. As part of the UK Biobank study, four invitations to complete the Oxford WebQ were sent by email over a 16-month period. Overall, 176 012 (53% of those invited) participants completed the online version of the Oxford WebQ at least once and 66% completed it more than once, although only 16% completed it on all four occasions. The response rate for any one round of invitations varied between 34 and 26%. On most occasions, the Oxford WebQ was completed on the same day that they received the invitation, although this was less likely if sent on a weekend. Participants who completed the Oxford WebQ tended to be white, female, slightly older, less deprived and more educated, which is typical of health-conscious volunteer-based studies. These findings provide preliminary evidence to suggest that repeated 24-h dietary assessment via the Internet is acceptable to the public and a feasible strategy for large population-based studies. PMID:26652593

  17. Carbon and energy balances for cellulosic biofuel crops in U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Gerlfand, I.; Hamilton, S. K.; Robertson, G. P.

    2012-04-01

    Cellulosic biofuels produced on lands not used for food production have the potential to avoid competition for food and associated indirect land use costs. Understanding the carbon and energy balance implications for different cellulosic production systems is important for the development of decision making tools and policies. Here we present carbon and energy balances of alternative agricultural management. We use 20 years of data from KBS LTER experiments to produce farm level CO2 and energy balances for different management practices. Our analyses include four grain and four perrenial systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; (5) continuous alfalfa (Medicago sativa); (6) Poplar; and (7,8) Successionnal fields, both fertilized and unfertilized. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). Our results indicate that management decisions such as tillage and plant types have a great influence on the net carbon and energy balances and benefits of cellulosic biofuels production. Specifically, we show that cellulosic biofuels produced from an early successional, minimally managed system have a net C sequestration (i.e., negative C balance) of -841±46 gCO2e m-2 yr-1 vs. -594±93 gCO2e m-2 yr-1 for more productive and management intensive alfalfa, and vs. 232±157 gCO2e m-2 for poplar. The reference agricultural system (a conventionally tilled corn-soybean-wheat rotation) has net sequestration of -149±33 g CO2e m-2 yr-1. Among the annual grain crops, average energy costs of farming for the different systems ranged from 4.8 GJ ha-1 for the organic system to 7.1 GJ ha-1 for the conventional; the no-till system was also low at 4.9 GJ ha-1 and the low-chemical input system

  18. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    PubMed

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  19. Energy and radiation balance components for three grass surfaces near Kursk, Russia

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.

    1992-01-01

    The energy and radiation balance components were determined over three grass surfaces, located on the Streletskaya steppe during July 1991. The Bowen ratio energy balance method was used to determine the sensible and latent heat flux densities using six computer controlled systems. A total of 126 variables were sampled, including global, diffuse, and reflected solar radiation, long wave radiation (up and down), net radiation, photosynthetically active radiation above and below the vegetation, infrared surface temperatues, soil temperature and heat flow, air temperature and vapor pressure at two levels, wind speed and direction, and precipitation. The ranking of the sites from greatest to smallest for net radiation and latent heat flux density were preserve, mowed in 1990, and mowed in 1991. The ranking of the sites from greatest to smallest for sensible heat flux density were mowed in 1990, mowed in 1991, and preserve.

  20. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.

    1991-01-01

    Data from the Voyager infrared spectrometer and radiometer (IRIS) investigation are used in determining the albedo, effective temperature, and energy balance of Neptune. From broadband radiometric observations made at phase angles of 14 deg and 134 deg, together with measurements at intermediate phase angles from the literature, an orbital mean value of 0.290 +/-0.067 is obtained for the bolometric Bond albedo. This yields an equilibrium temperature Teq = 46.6 +/-1.1 K. From thermal spectra obtained over latitudes from pole to pole an effective temperature Teff = 59.3 +/-0.8 K is derived. This represents a substantial improvement over previously determined values. The energy balance of Neptune is therefore E = 2.61 +/-0.28, which is in agreement with previous results. The reduced uncertainty in this value is due to the improved determination of the effective temperature.

  1. FTO knockdown in rat ventromedial hypothalamus does not affect energy balance

    PubMed Central

    van Gestel, Margriet A.; Sanders, Loek E.; de Jong, Johannes W.; Luijendijk, Mieneke C. M.; Adan, Roger A. H.

    2014-01-01

    Abstract Single nucleotide polymorphisms (SNPs) clustered in the first intron of the fat mass and obesity‐associated (FTO) gene has been associated with obesity. FTO expression is ubiquitous, with particularly high levels in the hypothalamic area of the brain. To investigate the region‐specific role of FTO, AAV technology was applied to knockdown FTO in the ventromedial hypothalamus (VMH). No effect of FTO knockdown was observed on bodyweight or parameters of energy balance. Animals were exposed twice to an overnight fast, followed by a high‐fat high‐sucrose (HFHS) diet for 1 week. FTO knockdown did not result in a different response to the diets. A region‐specific role for FTO in the VMH in the regulation of energy balance could not be found. PMID:25501432

  2. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  3. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    PubMed

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-01-01

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter. PMID:26694318

  4. Beacon: a novel gene involved in the regulation of energy balance.

    PubMed

    Collier, G R; McMillan, J S; Windmill, K; Walder, K; Tenne-Brown, J; de Silva, A; Trevaskis, J; Jones, S; Morton, G J; Lee, S; Augert, G; Civitarese, A; Zimmet, P Z

    2000-11-01

    The hypothalamus plays a major role in the control of energy balance via the coordination of several neuropeptides and their receptors. We used a unique polygenic animal model of obesity, Psammomys obesus, and performed differential display polymerase chain reaction on hypothalamic mRNA samples to identify novel genes involved in obesity. In this study, we describe a novel gene that encodes a small protein we have termed "beacon." Beacon mRNA gene expression in the hypothalamus was positively correlated with percentage of body fat. Intracerebroventricular infusion of beacon resulted in a dose-dependent increase in food intake and body weight and an increase in hypothalamic expression of neuropeptide Y (NPY). Simultaneous infusion of beacon and NPY significantly potentiated the orexigenic response and resulted in rapid body weight gain. These data suggest a role for beacon in the regulation of energy balance and body weight homeostasis that may be mediated, at least in part, through the NPY pathway.

  5. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    SciTech Connect

    Pearl, J.C.; Conrath, B.J.; Hanel, R.A.; Pirraglia, J.A.; Coustenis, A. Paris, Observatoire, Meudon )

    1990-03-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus. 39 refs.

  6. Aerosol influence on energy balance of the middle atmosphere of Jupiter

    PubMed Central

    Zhang, Xi; West, Robert A.; Irwin, Patrick G. J.; Nixon, Conor A.; Yung, Yuk L.

    2015-01-01

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5–10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter. PMID:26694318

  7. Fluid and electrolyte balance during 24-hour fluid and/or energy restriction.

    PubMed

    James, Lewis J; Shirreffs, Susan M

    2013-12-01

    Weight categorized athletes use a variety of techniques to induce rapid weight loss (RWL) in the days leading up to weigh in. This study examined the fluid and electrolyte balance responses to 24-hr fluid restriction (FR), energy restriction (ER) and fluid and energy restriction (F+ER) compared with a control trial (C), which are commonly used techniques to induce RWL in weight category sports. Twelve subjects (six male, six female) received adequate energy and water (C) intake, adequate energy and restricted water (~10% of C; FR) intake, restricted energy (~25% of C) and adequate water (ER) intake or restricted energy (~25% of C) and restricted (~10% of C) water intake (F+ER) in a randomized counterbalanced order. Subjects visited the laboratory at 0 hr, 12 hr, and 24 hr for blood and urine sample collection. Total body mass loss was 0.33% (C), 1.88% (FR), 1.97% (ER), and 2.44% (F+ER). Plasma volume was reduced at 24 hr during FR, ER, and F+ER, while serum osmolality was increased at 24 hr for FR and F+ER and was greater at 24 hr for FR compared with all other trials. Negative balances of sodium, potassium, and chloride developed during ER and F+ER but not during C and FR. These results demonstrate that 24 hr fluid and/ or energy restriction significantly reduces body mass and plasma volume, but has a disparate effect on serum osmolality, resulting in hypertonic hypohydration during FR and isotonic hypohydration during ER. These findings might be explained by the difference in electrolyte balance between the trials.

  8. Energy balance in advanced audio coding encoder bit-distortion loop algorithm

    NASA Astrophysics Data System (ADS)

    Brzuchalski, Grzegorz; Pastuszak, Grzegorz

    2013-10-01

    The paper presents two techniques of balancing energy in ScaleFactor bands for Advanced Audio Coding. The techniques allows the AAC encoder to get a better audio quality. The first one modifies Scale Factors assigned to each band after the quantization whereas the second finds and changes offsets in the quantization - just before rounding down. The implementations of the algorithms have been tested and results discussed. Results show that these techniques significantly improve the quality. At last hardware implementation possibilities are discussed.

  9. The energy balance relation for weak solutions of the density-dependent Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Leslie, T. M.; Shvydkoy, R.

    2016-09-01

    We consider the incompressible inhomogeneous Navier-Stokes equations with constant viscosity coefficient and density which is bounded and bounded away from zero. We show that the energy balance relation for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov spaces of smoothness 1/3. A density-dependent version of the classical Kármán-Howarth-Monin relation is derived.

  10. Mass by Energy Loss Quantitation as a Practical Sub-Microgram Balance

    SciTech Connect

    Palmblad, M; Bench, G; Vogel, J S

    2004-09-28

    A simple device integrating a thin film support and a standard microcentrifuge tube can be used for making solutions of accurately known concentration of any organic compound in a single step, avoiding serial dilution and the use of microgram balances. Nanogram to microgram quantities of organic material deposited on the thin film are quantified by ion energy loss and transferred to the microcentrifuge tube with high recovery.

  11. Mass and Energy Balance Modeling of Glaciers in the Upper Susitna Basin, Alaska

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Hock, R.; Aubry-Wake, C.; Bliss, A.; Gusmeroli, A.; Liljedahl, A.; Gillispie, L.; Wolken, G. J.

    2014-12-01

    The State of Alaska is reviving analyses of the Susitna River's hydroelectric potential by supporting a multitude of field and modeling studies for the proposed Susitna-Watana Hydroelectric project. Critical to any effective hydroelectric development is a firm understanding of the basin-wide controls on river runoff and how seasonal reservoir recharge may change over the course of the structure's life-span. Effectively projecting future changes in watershed-scale stream flow for the Susitna river demands understanding and quantifying glacier melt in the Alaskan range. Our research is restricted to a sub-catchment of the upper Susitna basin that feeds the Susitna River covering 2,230 km2, of which 25% is glacierized. The goals of our study are to investigate the spatial and seasonal variations of the energy balance and its components across the glaciers and to model resulting streamflow from the catchment for the summer of 2013 using two models of different complexity. We apply DEBAM, a distributive energy balance model and DETIM, an enhanced temperature-index model, both coupled to a linear-reservoir runoff model, to simulate hourly surface energy fluxes, melt rates and glacier runoff using meteorological observations from an automated weather station located in the ablation zone of the West Fork glacier. Model results are compared to measurements of streamflow and mass balance at 20 ablation stakes across the glacierized area. The largest source of energy contributing to 85% of melt is net radiation followed by the sensible and latent heat fluxes. Both models capture well the seasonal and diurnal variations in streamflow and show good agreement with the mass balance point observations. The discrepancies between modeled and measured discharge can be attributed to the high uncertainty in precipitation and initial snow cover across the unglaciated part of the basin which accounts for over 75% of the modeled area.

  12. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.

    1989-01-01

    Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.

  13. Comparison of Four Different Energy Balance Models for Estimating Evapotranspiration in the Midwest United States

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Senay, G. B.; Verdin, J. P.

    2015-12-01

    Availability of no-cost satellite images helped in development and utilization of remotely sensed images for water use estimation. Remotely sensed images are increasingly used for estimating evapotranspiration (ET) at different temporal and spatial scales. However, selecting any particular model from a plethora of energy balance models for estimating ET is challenging as each different model has its strengths and limitations. We compared four commonly used ET models, namely, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model, Surface Energy Balance Algorithm for Land (SEBAL) model, Surface Energy Balance System (SEBS) model, and Operational Simplified Surface Energy Balance (SSEBop) model using Landsat images for estimating ET in the Midwest United States. We validated our model results using three AmeriFlux cropland sites at Mead, Nebraska. Our results showed that the METRIC and the SSEBop model worked very well at these sites with a root mean square error (RMSE) of less than 1 mm/day and an R2 of 0.96 (N=24). The mean bias error (MBE) was less than 10% for both the METRIC and the SSEBop models. In contrast, the SEBAL and the SEBS models have relatively higher RMSE (> 1.7 mm/day) and MBE (> 27%). However, all four models captured the spatial and temporal variation of ET reasonably well (R2 > 0.80). We found that the model simplification of the SSEBop for operational capability was not at the expense of model accuracy. Since the SSEBop model is relatively less data intensive and independent of user/automatic selection of anchor (hot/dry and cold/wet) pixels, it is more user friendly and operationally efficient. The SSEBop model can be reliably used for estimating water use using Landsat and MODIS images at daily, weekly, monthly, or annual time scale even in data scarce regions for sustainable use of limited water resources.

  14. Using a biocultural approach to examine migration/globalization, diet quality, and energy balance.

    PubMed

    Himmelgreen, David A; Cantor, Allison; Arias, Sara; Romero Daza, Nancy

    2014-07-01

    The aim of this paper is to examine the role and impact that globalization and migration (e.g., intra-/intercontinental, urban/rural, and circular) have had on diet patterns, diet quality, and energy balance as reported on in the literature during the last 20 years. Published literature from the fields of anthropology, public health, nutrition, and other disciplines (e.g., economics) was collected and reviewed. In addition, case studies from the authors' own research are presented in order to elaborate on key points and dietary trends identified in the literature. While this review is not intended to be comprehensive, the findings suggest that the effects of migration and globalization on diet quality and energy balance are neither lineal nor direct, and that the role of social and physical environments, culture, social organization, and technology must be taken into account to better understand this relationship. Moreover, concepts such as acculturation and the nutrition transition do not necessarily explain or adequately describe all of the global processes that shape diet quality and energy balance. Theories from nutritional anthropology and critical bio-cultural medical anthropology are used to tease out some of these complex interrelationships.

  15. A role for central nervous system PPAR-γ in the regulation of energy balance.

    PubMed

    Ryan, Karen K; Li, Bailing; Grayson, Bernadette E; Matter, Emily K; Woods, Stephen C; Seeley, Randy J

    2011-05-01

    The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that is activated by lipids to induce the expression of genes involved in lipid and glucose metabolism, thereby converting nutritional signals into metabolic consequences. PPAR-γ is the target of the thiazolidinedione (TZD) class of insulin-sensitizing drugs, which have been widely prescribed to treat type 2 diabetes mellitus. A common side effect of treatment with TZDs is weight gain. Here we report a previously unknown role for central nervous system (CNS) PPAR-γ in the regulation of energy balance. We found that both acute and chronic activation of CNS PPAR-γ, by either TZDs or hypothalamic overexpression of a fusion protein consisting of PPAR-γ and the viral transcriptional activator VP16 (VP16-PPAR-γ), led to positive energy balance in rats. Blocking the endogenous activation of CNS PPAR-γ with pharmacological antagonists or reducing its expression with shRNA led to negative energy balance, restored leptin sensitivity in high-fat-diet (HFD)-fed rats and blocked the hyperphagic response to oral TZD treatment. These findings have implications for the widespread clinical use of TZD drugs and for understanding the etiology of diet-induced obesity.

  16. Energy balance, a new paradigm and methodological issues: the ANIBES study in Spain.

    PubMed

    Varela Moreiras, Gregorio; Ávila, José Manuel; Ruiz, Emma

    2015-02-26

    Energy Balance (EB) is an important topic to understand how an imbalance in its main determinants (energy intake and consumption) may lead to inappropriate weight gain, considered to be "dynamic"and not "static". There are no studies to evaluate EB in Spain and new technologies reveal as key tools to solve the common problems to precisely quantify energy consumption and expenditure at population level. Within this context, the increasing complexity of the diet, but also the common problems of under and over reporting in nutrition surveys have to be taken into account. The overall purpose of the ANIBES ("Anthropometry, Intake and Energy Balance in Spain") Study was to carry out an accurate updating of foods and beverages intake, dietary habits/ behaviour and anthropometric data of the Spanish population as well as the energy expenditure and physical activity patterns, by the use of new tested instruments (i.e. tablet device to assess energy intake and accelerometer to evaluate physical activity). This new ANIBES Study will contribute to a better knowledge of the different key factors contributing to EB in Spain.

  17. Balancing Energy Consumption with Hybrid Clustering and Routing Strategy in Wireless Sensor Networks †

    PubMed Central

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k=1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in gradient k=1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime. PMID:26492248

  18. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    PubMed

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-01-01

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  19. An energy balance perspective on regional CO2-induced temperature changes in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Räisänen, Jouni

    2016-08-01

    An energy balance decomposition of temperature changes is conducted for idealized transient CO2-only simulations in the fifth phase of the Coupled Model Intercomparison Project. The multimodel global mean warming is dominated by enhanced clear-sky greenhouse effect due to increased CO2 and water vapour, but other components of the energy balance substantially modify the geographical and seasonal patterns of the change. Changes in the net surface energy flux are important over the oceans, being especially crucial for the muted warming over the northern North Atlantic and for the seasonal cycle of warming over the Arctic Ocean. Changes in atmospheric energy flux convergence tend to smooth the gradients of temperature change and reduce its land-sea contrast, but they also amplify the seasonal cycle of warming in northern North America and Eurasia. The three most important terms for intermodel differences in warming are the changes in the clear-sky greenhouse effect, clouds, and the net surface energy flux, making the largest contribution to the standard deviation of annual mean temperature change in 34, 29 and 20 % of the world, respectively. Changes in atmospheric energy flux convergence mostly damp intermodel variations of temperature change especially over the oceans. However, the opposite is true for example in Greenland and Antarctica, where the warming appears to be substantially controlled by heat transport from the surrounding sea areas.

  20. The global land surface energy balance and its representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Hakuba, Maria; Schär, Christoph; Seneviratne, Sonia; Kato, Seiji; Rutan, David; Ammann, Christof; Wood, Eric; König-Langlo, Gert

    2015-04-01

    The energy budget over terrestrial surfaces is a key determinant of the land surface climate and governs a variety of physical, chemical and biological surface processes. The purpose of the present study is to establish new reference estimates for the different components of the energy balance over global land surfaces. Thanks to the impressive progress in space-based observation systems in the past decade, we now know the energy exchanges between our planet and the surrounding space with unprecedented accuracy. However, the energy flows at the Earth's surface have not been established with the same accuracy, since they cannot be directly measured from satellites. Accordingly, estimates on the magnitude of the fluxes at terrestrial surfaces largely vary, and latest climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) still show significant differences in their simulated energy budgets on a land mean basis, which prevents a consistent simulation of the land surface processes in these models. In the present study we use to the extent possible direct observations of surface radiative fluxes from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) to better constrain the simulated fluxes over global land surfaces. These model-calculated fluxes stem from the comprehensive set of more than 40 global climate from CMIP5 used in the latest IPCC report AR5. The CMIP5 models overall still show a tendency to overestimate the downward solar and underestimate the downward thermal radiation at terrestrial surfaces, a long standing problem in climate modelling. Based on the direct radiation observations and the bias structure of the CMIP5 models we infer best estimates for the downward solar and thermal radiation averaged over global land surfaces. They amount to 184 Wm-2 and 306 Wm-2, respectively. These values closely agree with the respective quantities independently derived by recent state-of-the-art reanalyses

  1. Future climate-driven glacier energy balance change in the Canadian Rockies using the CMIP5

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samaneh

    2016-04-01

    A fundamental understanding of the climate and the Earth's system is necessary to interpret the short- and long-term impacts of climate change. The interaction between glaciers and climate is a sensitive relationship and and calculating variations in glacier energy is key to estimating future change. It is difficult, however, to accurately project future glacier change due to the complexity in the dynamics controlling glacier response to climate. The primary goal of this paper is to illustrate the future climate-driven glacier change on Haig Glacier, located in the Canadian Rockies. Therefore, the CM3 physical model of the GFDL center for the CMIP5 set of experiments was used to examine the future surface energy balance change. Daily meteorological variables from the historical and future projections under four radiative forcing pathways of RCP2.6, RCP4.5, RCP6.0 and RCP8.6 were used to conduct the full energy balance modeling for Haig Glacier. These scenarios range in complexity and reflect long-term trends (decades to centuries). Hence, changes in the different incoming and outgoing energy from the glacier surface were examined during different decades for different pathways. The data used for these calculations was limited to the summer melt season, May through September (MJJAS), in both the historical and future experiments, from 1975-2100. The results shows that, relative to the control baseline period (1975 to 2005), the glacier's mass balance will be in a moderately stable condition with only a slight increase in melt energy until about mid-century. This relatively stable period will be followed by a sudden acceleration in melt energy around 2050 which increases more than 100% of the baseline amount by the end of 21st century, depending on different pathways.

  2. Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement

    NASA Astrophysics Data System (ADS)

    Zhou, Shengxi; Cao, Junyi; Inman, Daniel J.; Lin, Jing; Li, Dan

    2016-07-01

    Nonlinear energy harvesters are very sensitive to ambient vibrations. If the excitation level is too low, their large-amplitude oscillations for high-energy voltage output cannot be obtained. A nonlinear tristable energy harvester has been previously proposed to achieve more effective broadband energy harvesting for low-level excitations. However, the sensitivity of its dynamic characteristics to the system parameters remains uninvestigated. Therefore, this paper theoretically analyzes the influence of the external load, the external excitation, the internal system parameters and the equilibrium positions on the dynamic responses of nonlinear tristable energy harvesters by using the harmonic balance method. In addition, numerical acceleration excitation thresholds and basins of attraction are provided to investigate the potential for energy harvesting performance enhancement using the suitable equilibrium positions, appropriate initial conditions or external disturbances, due to high-energy interwell oscillations in the multi-solution ranges. More importantly, experimental voltage responses of a given tristable energy harvester versus the external excitation frequency and amplitude verify the existence of experimental multi-solution ranges and the effectiveness of the theoretical analysis. It is also revealed that achieving high-energy interwell oscillations in the multi-solution ranges of tristable energy harvesters will be feasible for improving energy harvesting from low-level ambient excitations.

  3. Glucose enhancement of 24-h memory retrieval in healthy elderly humans.

    PubMed

    Manning, C A; Stone, W S; Korol, D L; Gold, P E

    1998-06-01

    When administered soon before or after training, glucose facilitates memory in rodents and in several populations of humans, including healthy elderly people. Thus, glucose appears to enhance memory formation in a time- and dose-dependent manner. By assessing the effects of glucose at the time of memory tests, the present experiment examined the role of glucose on memory retrieval in healthy elderly people. On four sessions separated by a week, glucose or saccharin were administered immediately before hearing a narrative prose passage, as in previous experiments, or immediately before being tested for recall of the passage (24 h after training). Subjects recalled significantly more information after glucose ingestion than after saccharin ingestion whether the glucose was given before acquisition or memory tests. In addition, recall was significantly better in the preacquisition glucose condition relative to recall in the retrieval glucose condition. These findings provide evidence that glucose enhances both memory storage and retrieval.

  4. Master runners dominate 24-h ultramarathons worldwide—a retrospective data analysis from 1998 to 2011

    PubMed Central

    2013-01-01

    Background The aims of the present study were to examine (a) participation and performance trends and (b) the age of peak running performance in master athletes competing in 24-h ultra-marathons held worldwide between 1998 and 2011. Methods Changes in both running speed and the age of peak running speed in 24-h master ultra-marathoners (39,664 finishers, including 8,013 women and 31,651 men) were analyzed. Results The number of 24-h ultra-marathoners increased for both women and men across years (P < 0.01). The age of the annual fastest woman decreased from 48 years in 1998 to 35 years in 2011. The age of peaking running speed remained unchanged across time at 42.5 ± 5.2 years for the annual fastest men (P > 0.05). The age of the annual top ten women decreased from 42.6 ± 5.9 years (1998) to 40.1 ± 7.0 years (2011) (P < 0.01). For the annual top ten men, the age of peak running speed remained unchanged at 42 ± 2 years (P > 0.05). Running speed remained unchanged over time at 11.4 ± 0.4 km h-1 for the annual fastest men and 10.0 ± 0.2 km/h for the annual fastest women, respectively (P > 0.05). For the annual ten fastest women, running speed increased over time by 3.2% from 9.3 ± 0.3 to 9.6 ± 0.3 km/h (P < 0.01). Running speed of the annual top ten men remained unchanged at 10.8 ± 0.3 km/h (P > 0.05). Women in age groups 25–29 (r2 = 0.61, P < 0.01), 30–34 (r2 = 0.48, P < 0.01), 35–39 (r2 = 0.42, P = 0.01), 40–44 (r2 = 0.46, P < 0.01), 55–59 (r2 = 0.41, P = 0.03), and 60–64 (r2 = 0.57, P < 0.01) improved running speed; while women in age groups 45–49 and 50–54 maintained running speed (P > 0.05). Men improved running speed in age groups 25–29 (r2 = 0.48, P = 0.02), 45–49 (r2 = 0.34, P = 0.03), 50–54 (r2 = 0.50, P < 0.01), 55–59 (r2 = 0.70, P < 0.01), and 60–64 (r2 = 0.44, P = 0.03); while runners in age groups 30–34, 35–39, and 40–44 maintained running speed (P > 0.05). Conclusions Female and male age group runners improved

  5. 24-h blood pressure monitoring in normal tension glaucoma: night-time blood pressure variability.

    PubMed

    Plange, N; Kaup, M; Daneljan, L; Predel, H G; Remky, A; Arend, O

    2006-02-01

    Systemic arterial hypotension, hypertension and altered ocular blood flow are known risk factors in glaucoma. In this study, 24-h ambulatory blood pressure monitoring was performed in patients with normal tension glaucoma (NTG) and controls to evaluate blood pressure variability. In all, 51 patients with NTG and 28 age-matched controls were included in this prospective study. A 24-h ambulatory blood pressure monitoring (SpaceLabs Medical Inc., Redmond, USA) was performed and systolic, diastolic and mean arterial blood pressures were measured every 30 min during daytime (0800-2000) and night time (0000-0600). To evaluate blood pressure variability a variability index was defined as the s.d. of blood pressure measurements. Night-time blood pressure depression ('dip') was calculated (in percent of the daytime blood pressures). Patients with NTG exhibited higher night-time diastolic (P = 0.01) and mean arterial blood pressure values (P = 0.02) compared to controls, whereas systolic blood pressure data were not significantly different. The variability indices of night-time systolic, diastolic and mean arterial blood pressure measurements were significantly increased in patients with NTG compared to controls (P < 0.05). The night-time blood pressure depression of systolic (P = 0.47), diastolic (P = 0.11) and mean arterial blood pressures (P = 0.28) was not significantly different between patients with NTG and controls. In conclusion, patients with NTG showed increased variability of night-time blood pressure measurements compared to controls. Increased fluctuation of blood pressure may lead to ocular perfusion pressure fluctuation and may cause ischaemic episodes at the optic nerve head. PMID:16239898

  6. Limits to prediction of energy balance from milk composition measures at individual cow level.

    PubMed

    Løvendahl, P; Ridder, C; Friggens, N C

    2010-05-01

    Frequently updated energy balance (EB) estimates for individual cows are especially useful for dairy herd management, and individual-level estimates form the basis for group-level EB estimates. The accuracy of EB estimates determines the value of this information for management decision support. This study aimed to assess EB accuracy through ANOVA components and by comparing EB estimates based either on milk composition (EBalMilk) or on body condition score (BCS) and body weight (BW) (EBalBody). Energy balance based on milk composition was evaluated using data in which milk composition was measured at each milking. Three breeds (Danish Red, Holstein-Friesian, and Jersey) of cows (299 cows, 623 lactations) in parities 1 to 4 were used. Milk data were smoothed using a rolling local regression. Energy balance based on milk composition was calculated using a partial least squares (PLS) model based on milk fat, protein, and lactose contents and yields, and the daily change in these variables at each day. Energy balance based on BCS and BW was calculated from changes in body condition and BW scored weekly or fortnightly. Equations for calculation of EBalMilk and EBalBody used no common variables and were, therefore, assumed mathematically independent. Traits were analyzed within 3 stages of lactation expected to have high mobilization of body tissue (1, early), almost balanced (2), and deposition of body energy (3, mid to late lactation). In general, EBalMilk and EBalBody followed similar expected changes through lactation. Estimates of covariance were obtained using single-trait mixed models with random regression terms describing the change with time and used for calculation of repeatability as intraclass correlations. Within stage, EBalMilk was less repeatable than EBalBody (0.53, 0.41, 0.43 vs. 0.93, 0.91, 0.86, respectively, for stages 1, 2, and 3), mainly because of a larger residual variance for EBalMilk. Correlations between individual-level estimates of EBal

  7. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  8. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.

    2001-01-01

    Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.

  9. Measurement of body composition as a surrogate evaluation of energy balance in obese patients.

    PubMed

    Rotella, Carlo Maria; Dicembrini, Ilaria

    2015-03-26

    In clinical practice obesity is primarily diagnosed through the body mass index. In order to characterize patients affected by obesity the use of traditional anthropometric measures appears misleading. Beyond the body mass index, there are overwhelming evidences towards the relevance of a more detailed description of the individual phenotype by characterizing the main body components as free-fat mass, muscle mass, and fat mass. Among the numerous techniques actually available, bioelectrical impedance analysis seems to be the most suitable in a clinical setting because it is simple, inexpensive, noninvasive, and highly reproducible. To date, there is no consensus concerning the use of one preferred equation for the resting energy expenditure in overweight and/or obese population. Energy restriction alone is an effective strategy to achieve an early and significant weight loss, however it results in a reduction of both fat and lean mass therefore promoting or aggravating an unfavourable body composition (as sarcobesity) in terms of mortality and comorbidities. Therefore the implementation of daily levels of physical activity should be simultaneously promoted. The major role of muscle mass in the energy balance has been recently established by the rising prevalence of the combination of two condition as sarcopenia and obesity. Physical exercise stimulates energy expenditure, thereby directly improving energy balance, and also promotes adaptations such as fiber type, mitochondrial biogenesis, improvement of insulin resistance, and release of myokines, which may influence different tissues, including muscle.

  10. Energy balance in olive oil farms: comparison of organic and conventional farming systems.

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Meco, Ramón; Moreno, Carmen

    2013-04-01

    The viability of an agricultural production system not only depends on the crop yields, but especially on the efficient use of available resources. However, the current agricultural systems depend heavily on non-renewable energy consumption in the form of fertilizers, fossil fuels, pesticides and machinery. In developed countries, the economic profitability of different productive systems is dependent on the granting of subsidies of diverse origin that affect both production factors (or inputs) and the final product (or output). Leaving such external aids, energy balance analysis reveals the real and most efficient form of management for each agroclimatic region, and is also directly related to the economic activity and the environmental state. In this work we compare the energy balance resulting from organic and conventional olive oil farms under the semi-arid conditions of Central Spain. The results indicate that the mean energy supplied to the organic farms was sensitively lower (about 30%) in comparison with the conventional management, and these differences were more pronounced for the biggest farms (> 15 ha). Mean energy outputs were about 20% lower in the organic system, although organic small farms (< 15 ha) resulted more productive than the conventional small ones. However, these lower outputs were compensated by the major market value obtained from the organic products. Chemical fertilizers and pesticides reached about 60% of the total energy inputs in conventional farming; in the organic farms, however, this ratio scarcely reached 25%. Human labor item only represented a very small amount of the total energy input in both cases (less than 1%). As conclusions, both management systems were efficient from an energy point of view. The value of the organic production should be focused on the environmental benefits it provides, which are not usually considered in the conventional management on not valuing the damage it produces to the environment. Organic

  11. HERschel Observations of Edge-on Spirals (HEROES). III. Dust energy balance study of IC 2531

    NASA Astrophysics Data System (ADS)

    Mosenkov, Aleksandr V.; Allaert, Flor; Baes, Maarten; Bianchi, Simone; Camps, Peter; De Geyter, Gert; De Looze, Ilse; Fritz, Jacopo; Gentile, Gianfranco; Hughes, Thomas M.; Lewis, Fraser; Verstappen, Joris; Verstocken, Sam; Viaene, Sébastien

    2016-07-01

    We investigate the dust energy balance for the edge-on galaxy IC 2531, one of the seven galaxies in the HEROES sample. We perform a state-of-the-art radiative transfer modelling based, for the first time, on a set of optical and near-infrared galaxy images. We show that by taking into account near-infrared imaging in the modelling significantly improves the constraints on the retrieved parameters of the dust content. We confirm the result from previous studies that including a young stellar population in the modelling is important to explain the observed stellar energy distribution. However, the discrepancy between the observed and modelled thermal emission at far-infrared wavelengths, the so-called dust energy balance problem, is still present: the model underestimates the observed fluxes by a factor of about two. We compare two different dust models, and find that dust parameters, and thus the spectral energy distribution in the infrared domain, are sensitive to the adopted dust model. In general, the THEMIS model reproduces the observed emission in the infrared wavelength domain better than the popular BARE-GR-S model. Our study of IC 2531 is a pilot case for detailed and uniform radiative transfer modelling of the entire HEROES sample, which will shed more light on the strength and origins of the dust energy balance problem. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The reduced images (as FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A71

  12. Effects of ZD7114, a selective beta3-adrenoceptor agonist, on neuroendocrine mechanisms controlling energy balance.

    PubMed

    Savontaus, E; Pesonen, U; Rouru, J; Huupponen, R; Koulu, M

    1998-04-24

    Selective beta3-adrenoceptor agonists increase energy expenditure by increasing non-shivering thermogenesis in brown adipose tissue. The aim of this study was to investigate how changes in energy balance affect energy intake and interaction of peripheral metabolic feedback signals with central neuroendocrine mechanisms participating in the control of body energy balance. Expression of preproneuropeptide Y (preproNPY) mRNA in the arcuate nucleus and preprocorticotropin-releasing factor (CRF) mRNA in the paraventricular nucleus were measured by in situ hybridisation technique after 1 day, 1 and 5 weeks of treatment with ZD7114 ((S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2-methoxyet hyl)phenoxyacetamide, 3 mg kg(-1) day(-1) in drinking water) in obese fa/fa Zucker rats. In addition, expression of leptin mRNA in epididymal fat and serum levels of leptin were analysed. Food intake, body weights, binding of GDP to brown adipose tissue mitochondria, plasma insulin and glucose were also measured. Treatment with ZD7114 significantly reduced weight gain and activated brown adipose tissue thermogenesis, but had no effect on food intake. Expressions of preproNPY or preproCRF mRNAs were similarly not changed by treatment with ZD7114. Furthermore, ZD7114 had no effect on plasma insulin or leptin and the expression of leptin mRNA in epididymal fat. However, statistically significant correlations were found between preproNPY and preproCRF mRNA expressions and brown fat thermogenic activity and plasma insulin levels in the ZD7114 treated rats, but not in the control rats. It is concluded that treatment with ZD7114 markedly activated brown fat thermogenesis, but did not affect neuropeptide Y (NPY) and CRF gene expression per se. However, the correlation analyses suggest that ZD7114 may modulate feedback connections of brown adipose tissue thermogenesis and plasma insulin with the hypothalamic neuroendocrine mechanisms integrating body energy balance. PMID:9653893

  13. The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region

    NASA Astrophysics Data System (ADS)

    Khosla, Radhika

    Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building

  14. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  15. Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kolosov, Vladimir

    1999-01-01

    The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.

  16. A Hybrid Surface Energy Balance Approach for Large Scale Evapotranspiration Estimation and Prediction in Agricultural Areas

    NASA Astrophysics Data System (ADS)

    Neale, C. M.; Vinukollu, R. K.; Chavez, J. L.

    2005-05-01

    Over the last few years, several surface energy balance methods for the estimation of latent heat fluxes from remotely sensed satellite imagery have been introduced and/or refined. These models have shown the ability of obtaining seasonal spatially distributed evapotranspiration fluxes at various scales and over large areas. In the arid western United States, water managers are challenged in balancing the high consumptive use of irrigated agriculture with competing urban and ecological uses of fresh water. Water managers from Irrigation Districts and Federal Agencies such as the US Bureau of Reclamation have a need for improved operational tools for the prediction of evapotranspiration and irrigation water demand on a five to ten day timeframe. The paper will present a hybrid model that couples the surface energy balance approach with a simple empirical reflectance-based crop coefficient model, for estimation and prediction of evapotranspiration over large agricultural areas. The model is applied to a rain-fed intensively cultivated agricultural area, close to Ames, Iowa during the summer of 2002. The satellite, airborne and ground fluxes were collected during the SMACEX 02 experiment. The model is run in both simulation and prediction mode and the derived latent heat fluxes are compared spatially and temporally to aircraft derived fluxes from the USU airborne system and ground measured fluxes at thirteen eddy covariance stations, using appropriate upwind footprint source area functions.

  17. Detailed balance condition and effective free energy in the primitive chain network model

    NASA Astrophysics Data System (ADS)

    Uneyama, Takashi; Masubuchi, Yuichi

    2011-11-01

    We consider statistical mechanical properties of the primitive chain network (PCN) model for entangled polymers from its dynamic equations. We show that the dynamic equation for the segment number of the PCN model does not reduce to the standard Langevin equation which satisfies the detailed balance condition. We propose heuristic modifications for the PCN dynamic equation for the segment number, to make it reduce to the standard Langevin equation. We analyse some equilibrium statistical properties of the modified PCN model, by using the effective free energy obtained from the modified PCN dynamic equations. The PCN effective free energy can be interpreted as the sum of the ideal Gaussian chain free energy and the repulsive interaction energy between slip-links. By using the single chain approximation, we calculate several distribution functions of the PCN model. The obtained distribution functions are qualitatively different from ones for the simple slip-link model without any direct interactions between slip-links.

  18. Detailed balance condition and effective free energy in the primitive chain network model.

    PubMed

    Uneyama, Takashi; Masubuchi, Yuichi

    2011-11-14

    We consider statistical mechanical properties of the primitive chain network (PCN) model for entangled polymers from its dynamic equations. We show that the dynamic equation for the segment number of the PCN model does not reduce to the standard Langevin equation which satisfies the detailed balance condition. We propose heuristic modifications for the PCN dynamic equation for the segment number, to make it reduce to the standard Langevin equation. We analyse some equilibrium statistical properties of the modified PCN model, by using the effective free energy obtained from the modified PCN dynamic equations. The PCN effective free energy can be interpreted as the sum of the ideal Gaussian chain free energy and the repulsive interaction energy between slip-links. By using the single chain approximation, we calculate several distribution functions of the PCN model. The obtained distribution functions are qualitatively different from ones for the simple slip-link model without any direct interactions between slip-links.

  19. Regulation of energy balance by inflammation: common theme in physiology and pathology.

    PubMed

    Wang, Hui; Ye, Jianping

    2015-03-01

    Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and adipose tissue hypoxia. In addition to the detrimental effect on insulin sensitivity, pro-inflammatory cytokines also stimulate energy expenditure and facilitate adipose tissue remodeling. In caloric restriction (CR), inflammatory status is decreased by low energy intake that results in less energy supply to immune cells to favor energy saving under caloric restriction. During physical exercise, inflammatory status is elevated due to muscle production of pro-inflammatory cytokines, which promote fatty acid mobilization from adipose tissue to meet the muscle energy demand. In cancer cachexia, chronic inflammation is elevated by the immune response in the fight against cancer. The energy expenditure from chronic inflammation contributes to weight loss. Immune tolerant cancer cells gains more nutrients during the inflammation. In these conditions, inflammation coordinates energy distribution and energy demand between tissues. If the body lacks response to the pro-inflammatory cytokines (Inflammation Resistance), the energy metabolism will be impaired leading to an increased risk for obesity. In contrast, super-induction of the inflammation activity leads to weight loss and malnutrition in cancer cachexia. In summary, inflammation is a critical component in the maintenance of energy balance in the body. Literature is reviewed in above fields to support this view.

  20. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  1. Energy balance during an ironman triathlon in male and female triathletes.

    PubMed

    Kimber, Nicholas E; Ross, Jenny J; Mason, Sue L; Speedy, Dale B

    2002-03-01

    Energy balance of 10 male and 8 female triathletes participating in an Ironman event (3.8-km swim, 180-km cycle, 42.2-km run) was investigated. Energy intake (EI) was monitored at 7 designated points by dietary recall of food and fluid consumption. Energy expenditure (EE) during cycling and running was calculated using heart rate-VO, regression equations and during swimming by the multiple regression equation: Y = 3.65v+ 0.02W- 2.545 where Yis VO,in L x min(-1), v is the velocity in m s(-1), Wis the body weight in kilograms. Total EE (10,036 +/- 931 and 8,570 +/- 1,014 kcal) was significantly greater than total EI (3,940 +/- 868 and 3,115 +/- 914 kcal, p <.001) for males and females, respectively, although energy balance was not different between genders. Finishing time was inversely related to carbohydrate (CHO) intake (g x kg(-1) x h(-1)) during the marathon run for males (r = -.75,p <.05), and not females, suggesting that increasing CHO ingestion during the run may have been a useful strategy for improving Ironman performance in male triathletes. PMID:11993622

  2. Energy and greenhouse balance of photocatalytic CO2 conversion to methanol

    NASA Astrophysics Data System (ADS)

    Haumann, D.; Goettlicher, G.; Muench, W.

    2012-10-01

    Within the Leading-Edge Cluster "Forum Organic Electronic", the research project "Solar2Fuel" funded by the German Ministry of education and research (BMBF) (2009 - 2012), EnBW, BASF, Karlsruhe Institute of Technology and Ruprecht-Karls-University of Heidelberg aim to develop a future solar powered CO2 to methanol conversion technology. CO2 from stationary sources such as power plants shall be catalytically converted together with water to a product such as methanol by use of solar irradiation. For this purpose a catalyst shall be developed. EnBW investigates the required boundary conditions to make such a principle interesting with respect to energy and greenhouse gas balance as well as economic evaluations. The assessment of boundary conditions includes the analysis of the whole chain from power generation, CO2 capture and transport, a virtual photocatalytic reactor, the product purification and use in the traffic sector. Most important technical factors of the process such as CO2 conversion efficiency is presented. CO2 capturing and liquefaction are the most energy intensive process steps, CO2 transport in pipeline is highly energy efficient and depending on energy need of the photoconversion step and the product purification, the overall greenhouse gas balance is comparable with the underground storage of the captured CO2.

  3. The pressure and energy balance of the cool corona over sunspots

    NASA Technical Reports Server (NTRS)

    Foukal, P. V.

    1976-01-01

    The 22 largest sunspots observed with the Skylab SO55 spectrometer are studied for a relation between their EUV radiation and their umbral size or magnetic classification. The ultimate goal is to determine why the coronal plasma is so cool over a sunspot and how this cool plasma manages to support itself against gravity. Based on the time behavior of the EUV emission, a steady-state model is developed for the pressure and energy balance of the cool coronal-plasma loops over the spots. Analysis of the temperature structure in a typical loop indicates that the loop is exceedingly well insulated from the outside corona, that its energy balance is determined purely by internal heating and cooling processes, and that a heat input of about 0.0001 erg/cu cm per sec is required along the full length of the loop. It is proposed that: (1) coronal material flows steadily across the field lines at the tops of the loops and falls downward along both sides under gravity; (2) the corona is heated by mechanical-energy transport across the very thin transition region immediately over network-cell interiors; and (3) strong magnetic fields tend to inhibit mechanical-energy dissipation in the corona.

  4. Calculation Of A Micro Discharge Energy Balance With PIC-MCC Method

    SciTech Connect

    Benstaali, W.; Belasri, A.; Hagelaar, G. J. M.; Boeuf, J. P.

    2008-09-23

    In this paper, we present a 1D Particle in Cell with Monte Carlo Collisions model, developed in order to calculate the energy balance in a micro-discharge, under conditions similar to those of a Plasma Display Panel (PDP) cell. The discharge takes place in a xenon-neon (10%-;90%) mixture at 560 torr and for a gap length of 100 {mu}m. The model is used to analyze in details the energy deposition during the discharge pulse. The results show the amount of energy dissipated by ions (collisions in the gas and on the cathode), by electrons (excitation of the different electronic states, ionization), and their variations with the applied voltage. This model will be used in the future to test the approximations of the fluid models which are generally used to optimize PDP operating conditions, and to check whether or not fluid models can correctly predict the trends in the variations of the energy balance with parameters such as voltage, pressure, gas mixture.

  5. Irritancy ranking of 31 cleansers in the Indian market in a 24-h patch test.

    PubMed

    Lakshmi, C; Srinivas, C R; Anand, C V; Mathew, A C

    2008-08-01

    Cleansing trends promise freshness, sensory and health benefits but may also be accompanied by an increase in soap-induced skin irritation. The aim of this study was to evaluate the irritant effect of 31 cleansers (28 bar soaps and 3 liquid cleansers) available in the Indian market. Eight percent w/v solutions of the soaps/cleansers were made and 30 microL of each of the solutions were applied to Finn chambers and occluded for 24 h along with distilled water (negative control) and 20% sodium dodecyl sulphate (SDS) as positive control. The sites were graded for erythema and scaling 30 min after removing the patches. The pH of each of the soap solutions was determined. Mean with SD and ANOVA (F-value) was computed separately for each soap/cleanser with respect to the two parameters, erythema and scaling. The total of the means for both the parameters, erythema and scaling was also computed. The cleansers were listed based on this total from the least irritant to the most irritant. The differences between soaps (F-value) was significant for erythema and scaling [erythema = 4.106 (P = 0.000); scaling = 6.006 (P = 0.000)]. Cetaphil cleansing lotion had the lowest erythema score of 0.25. Lowest scaling score of zero was recorded for Cetaphil cleansing lotion and Elovera moisturizing body wash. Aquasoft and Lifebuoy soaps had the highest erythema score of 2.13. Acnex had the highest scaling score of 1.75; Aquasoft, Hamam scrub bath soap and Naturepower sandal soaps were the next with a scaling score of 1.63. Cetaphil cleansing lotion, Aquaderm liquid soap, Dove bar soap and Elovera moisturizing body wash proved to be the least irritant cleansers with a total score of less than 1. The four most irritant soaps/cleansers had an average score of 3.65. The irritant potential of the majority of the cleansers fell between these extremes. The pH of all the soap/cleanser solutions was neutral to alkaline (pH 7-9) except that of Dove bar, Cetaphil cleansing lotion, Aquaderm liquid

  6. Tuberculosis in hospitalized patients: clinical characteristics of patients receiving treatment within the first 24 h after admission*

    PubMed Central

    Silva, Denise Rossato; da Silva, Larissa Pozzebon; Dalcin, Paulo de Tarso Roth

    2014-01-01

    Objective: To evaluate clinical characteristics and outcomes in patients hospitalized for tuberculosis, comparing those in whom tuberculosis treatment was started within the first 24 h after admission with those who did not. Methods: This was a retrospective cohort study involving new tuberculosis cases in patients aged ≥ 18 years who were hospitalized after seeking treatment in the emergency room. Results: We included 305 hospitalized patients, of whom 67 (22.0%) received tuberculosis treatment within the first 24 h after admission ( ≤24h group) and 238 (88.0%) did not (>24h group). Initiation of tuberculosis treatment within the first 24 h after admission was associated with being female (OR = 1.99; 95% CI: 1.06-3.74; p = 0.032) and with an AFB-positive spontaneous sputum smear (OR = 4.19; 95% CI: 1.94-9.00; p < 0.001). In the ≤24h and >24h groups, respectively, the ICU admission rate was 22.4% and 15.5% (p = 0.258); mechanical ventilation was used in 22.4% and 13.9% (p = 0.133); in-hospital mortality was 22.4% and 14.7% (p = 0.189); and a cure was achieved in 44.8% and 52.5% (p = 0.326). Conclusions: Although tuberculosis treatment was initiated promptly in a considerable proportion of the inpatients evaluated, the rates of in-hospital mortality, ICU admission, and mechanical ventilation use remained high. Strategies for the control of tuberculosis in primary care should consider that patients who seek medical attention at hospitals arrive too late and with advanced disease. It is therefore necessary to implement active surveillance measures in the community for earlier diagnosis and treatment. PMID:25029651

  7. Pyrolysis and gasification of meat-and-bone-meal: Energy balance and GHG accounting

    SciTech Connect

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-15

    Highlights: • GHG savings are in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated. • Energy recovery differed in terms of energy products and efficiencies. • The results were largely determined by use of the products for energy purposes. - Abstract: Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used – eventually after upgrading – for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600–1000 kg CO{sub 2}-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

  8. Utilizing hydropower for load balancing non-storable renewable energy sources - technical and environmental challenges

    NASA Astrophysics Data System (ADS)

    Alfredsen, K. T.; Killingtveit, A.

    2011-12-01

    About 99% of the total energy production in Norway comes from hydropower, and the total production of about 120 TWh makes Norway Europe's largest hydropower producer. Most hydropower systems in Norway are based on high-head plants with mountain storage reservoirs and tunnels transporting water from the reservoirs to the power plants. In total, Norwegian reservoirs contributes around 50% of the total energy storage capacity in Europe. Current strategies to reduce emission of greenhouse gases from energy production involve increased focus on renewable energy sources, e.g. the European Union's 202020 goal in which renewable energy sources should be 20% of the total energy production by 2020. To meet this goal new renewable energy installations must be developed on a large scale in the coming years, and wind power is the main focus for new developments. Hydropower can contribute directly to increase renewable energy through new development or extensions to existing systems, but maybe even more important is the potential to use hydropower systems with storage for load balancing in a system with increased amount of non-storable renewable energies. Even if new storage technologies are under development, hydro storage is the only technology available on a large scale and the most economical feasible alternative. In this respect the Norwegian system has a high potential both through direct use of existing reservoirs and through an increased development of pump storage plants utilizing surplus wind energy to pump water and then producing during periods with low wind input. Through cables to Europe, Norwegian hydropower could also provide balance power for the North European market. Increased peaking and more variable operation of the current hydropower system will present a number of technical and environmental challenges that needs to be identified and mitigated. A more variable production will lead to fluctuating flow in receiving rivers and reservoirs, and it will also

  9. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2009-01-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  10. Rayleigh criterion and acoustic energy balance in unconfined self-sustained oscillating flames

    SciTech Connect

    Durox, D.; Schuller, T.; Noiray, N.; Birbaud, A.L.; Candel, S.

    2008-11-15

    Instabilities of confined combustion systems are often discussed in terms of the Rayleigh criterion, which provides a necessary condition for unstable operation and is commonly used to distinguish driving and damping regions. The analysis is also carried out in some cases by making use of an acoustic energy balance in which the Rayleigh term acts as a source. The case of unconfined flames is less well documented but of importance in practical systems used in heating and drying. This study is motivated by problems of self-sustained oscillations of radiant burners for domestic or industrial processes and of various other types of open flames. Application of the Rayleigh criterion and of the balance of acoustic energy to oscillations arising in such unconfined systems is examined. The objective is to see if the Rayleigh condition is fulfilled and to show how the different perturbed variables are linked to each other to develop an unstable oscillation. These issues are investigated by experiments in two geometries. The first case relates to a single ''V''- or ''M''-shaped flame formed by a burner behaving like a Helmholtz resonator. The second geometry features a collection of conical flames (CCF) established by a multipoint injector. This system is fed by a manifold that features a set of plane modes and resonates like an organ pipe at frequencies corresponding to odd multiples of the quarter wave. The Rayleigh criterion and a related result written in the form of an acoustic energy balance are used to define conditions of instability. A link is established between the pressure signal radiated by the burner and the total heat release rate perturbation yielding the phase lag between these two variables and providing conditions for unstable operation. Systematic experiments carried out in the two burner geometries and model predictions are in good agreement indicating that the Rayleigh source term is positive and that the criterion is well fulfilled by the wavefield

  11. On the use of milk composition measures to predict the energy balance of dairy cows.

    PubMed

    Friggens, N C; Ridder, C; Løvendahl, P

    2007-12-01

    Milk composition varies with energy status and was proposed for measuring energy balance on-farm, but the accuracy of prediction using monthly samples is not high. With automated sampling and inline milk analysis, a much higher measurement frequency is possible, and thus improved accuracy of energy balance determination may be expected. Energy balance was evaluated using data in which milk composition was measured at each milking. Three breeds (Danish Holstein, Danish Red, and Jerseys) of cows (623 lactations from 299 cows) in parities 1, 2, and 3+ were used. Data were smoothed using a rolling local regression. Energy balance (EBal) was calculated from changes in body reserves (body weight and body condition score). The relationship between EBal and milk measures was quantified by partial least squares regression (PLS) using group means data. For each day in lactation, the within-breed and parity mean EBal and mean milk measures were used. Further PLS was done using the individual cow data. The initial PLS models included 25 combinations of milk measures allowing a range of nonlinear effects. These combinations were as follows: days in milk (DIM); DIM raised to the powers 2, 3, and 4; milk yield; fat content; protein content; lactose content; fat yield; protein yield; lactose yield; fat:protein ratio; fat:lactose ratio; protein:lactose ratio; and milk yield:lactose ratio, together with 10 "diff()" variables. These variables are the current minus the previous value of the milk measure in question. Using group means data, a very high proportion (96%) of the variability in EBal was explained by the PLS model. A reduced model with only 6 variables explained 94% of the variation in EBal. This model had a prediction error of 3.82 MJ/d; the 25-variable model had a prediction error of 3.11 MJ/d. When using individual rather than group means data, the PLS prediction error was 17.3 MJ/d. In conclusion, the mean Ebal of different parities of Holstein, Danish Red, and Jersey

  12. On the role of energy balance for numerical modeling of tsunami sediment transport

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Naruse, H.; Goto, K.

    2014-12-01

    Large-scale tsunamis in the shallow sea and on land are characterized by greater flow depth and speed than other natural open-channel flows. In-situ instrumental observation of tsunami sediment transport is practically impossible. Our understandings on the dynamics of tsunami sedimentation is mainly founded on the analysis of pre- and post-tsunami geomorphological data, field observation and laboratory analysis of tsunami deposits and modeling of tsunami sediment transport by means of hydraulic, mathematical and numerical approaches. Based on massive dataset of the 2011 Tohoku tsunami deposits, Goto et al. (in press) identified a possible upper threshold of tsunami sedimentation. They found that sediment concentration, which is defined as a ratio of deposit thickness to the local flow depth, can be approximated by a constant value of 2% over the coastal plain of the Sendai Bay, northeast Japan. Energy balance is an important physics to explain the upper threshold of tsunami sediment transport. The concept of energy constraint was described by Parker et al. (1986) for turbidity current. It declares the turbulent kinetic energy should be consumed to pick-up sediments from the bed and keep them in suspension. The loss of the turbulent energy results in decreased capacity of suspended load. Naruse et al. (2014) introduced the energy concept to tsunami sediment transport, and predicted the limiting sediment concentration of ~2% for a flow depth of 10 m and a flow speed of 10 m/s, which are typical for Sendai Plain. The role of energy constraint for tsunami sedimentation was also investigated using a numerical approach. The saturation concentration for wash load (Bagnold, 1962; van Rijn, 2007), which also accounts the energy balance, was implemented to a numerical model of tsunami sediment transport, and the model was applied to the case study of the 2011 Tohoku tsunami. The modeling result showed that the observed limiting concentration of 2% may be caused from flow

  13. Altered cortical activation patterns associated with baroreflex unloading following 24 h of physical deconditioning.

    PubMed

    Shoemaker, J K; Usselman, C W; Rothwell, A; Wong, S W

    2012-12-01

    Cardiovascular arousal is associated with patterned cortical activity changes. Head-down-tilt bed rest (HDBR) dimishes the baroreflex-mediated cardiac control. The present study tested the hypothesis that HDBR deconditioning would modify the forebrain organization for heart rate (HR) control during baroreflex unloading. Heart rate variability (HRV), blood pressure and plasma hormones were analysed at rest, whereas HR and cortical autonomic activation patterns (functional magnetic resonance imaging) were measured during graded and randomly assigned lower body negative pressure treatments (LBNP, -15 and -35 mmHg) both before (Pre) and after (Post) a 24 h HDBR protocol (study 1; n = 8). An additional group was tested before and following diuretic-induced hypovolaemia (study 2; n = 9; spironolactone, 100 mg day(-1) for 3 days) that mimicked the plasma volume lost during HDBR (-15% in both studies; P < 0.05). Head-down bed rest with hypovolaemia did not affect baseline HR, mean arterial pressure, HRV or plasma catecholamines. Head-down bed rest augmented the LBNP-induced HR response (P < 0.05), and this was associated with bed-rest-induced development of the following changes: (i) enhanced activation within the genual anterior cingulate cortex and the right anterior insular cortex; and (ii) deactivation patterns within the subgenual regions of the anterior cingulate cortex. Diuretic treatment (without HDBR) did not affect baseline HR and mean arterial pressure, but did reduce resting HRV and elevated circulating noradrenaline and plasma renin activity (P < 0.05). The greater HR response to LBNP following diuretic (P < 0.05) was associated with diminished activation of the right anterior insula. Our findings indicate that 24 h of HDBR minimized the impact of diuretic treatment on baseline autonomic and cardiovascular variables. The findings also indicate that despite the similar augmentation of HR responses to LBNP and despite similar pre-intervention cortical activation

  14. Impact of percentile computation method on PM 24-h air quality standard.

    PubMed

    Salako, Gbenga Oladoyin; Hopke, Philip K

    2012-09-30

    In 1997, the US Environmental Protection Agency (US EPA) introduced a percentile form of the National Ambient Air Quality Standard (NAAQS) for particulate matter (PM). Studies had shown that a specified percentile in the frequency distribution of measured values of PM increased the probability of detecting non-attainment areas (power) and decreased the likelihood of misclassification of attainment areas as being non-attainment (type 2 error). However, this new NAAQS used a percentile form that was different from a standard percentile in a distribution. Instead of taking the percentile of the distribution of the required 3 years of measurements, the PM(2.5) values for the selected percentile for each year were determined and the average of these 3 values was used as the NAAQS indicator value. However, no studies have been made of this average of the 3 years method and compared to a standard percentile in the multiyear data. The relationships between the values obtained using these two approaches have been explored. PM data measured at selected US EPA Aerometric Information Retrieval System (AIRS) website from January 2004 to December 2008 at 20 sites in 20 different states in United States were utilized. PM samples were collected for 24-h periods from midnight to midnight every third day for PM(2.5) and every sixth day for PM(10). At some sites, continuous measurements of PM(2.5) were made and averaged to provide 24-hr values. Using these data, the NAAQS percentile values were compared with the actual 98th percentile values of the three years of data. Regression and t-test analyses were used to compare these two methods and found high correlation coefficients and no significant difference in most cases. Overall, the two methods showed substantial agreement such that either of the two approaches could serve as the statistical form of the 24-h standard. In exploring the PM(10) standard, an arbitrarily chosen standard value of 85 μg/m(3) was used to explore the

  15. Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2003-01-01

    INTRODUCTION: Plasma volume, heart rate (HR) variability, and stimulus-response relationships for baroreflex control of forearm vascular resistance (FVR) and HR were studied in eight healthy men after and without performing a bout of maximal exercise to test the hypotheses that acute expansion of plasma volume is associated with 1) reduction in baroreflex-mediated HR response, and 2) altered operational range for central venous pressure (CVP). METHODS: The relationship between stimulus (DeltaCVP) and vasoconstrictive reflex response (DeltaFVR) during unloading of cardiopulmonary baroreceptors was assessed with lower-body negative pressure (LBNP, 0, -5, -10, -15, -20 mm Hg). The relationship between stimulus (Deltamean arterial pressure (MAP)) and cardiac reflex response (DeltaHR) during loading of arterial baroreceptors was assessed with steady-state infusion of phenylephrine (PE) designed to increase MAP by 15 mm Hg alone and during application of LBNP (PE+LBNP) and neck pressure (PE+LBNP+NP). Measurements of vascular volume and autonomic baroreflex responses were conducted on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested 24 h after graded cycle exercise to volitional exhaustion. On another day, measurement of baroreflex response was repeated with no exercise (control). The order of exercise and control treatments was counterbalanced. RESULTS: Baseline CVP was elevated (P = 0.04) from a control value of 10.5 +/- 0.4 to 12.3 +/- 0.4 mm Hg 24 h after exercise. Average DeltaFVR/DeltaCVP during LBNP was not different (P = 0.942) between the exercise (-1.35 +/- 0.32 pru x mm Hg-1) and control (-1.32 +/- 0.36 pru x mm Hg-1) conditions. However, maximal exercise caused a shift along the reflex response relationship to a higher CVP and lower FVR. HR baroreflex response (DeltaHR/DeltaMAP) to PE+LBNP+NP was lower (P = 0.015) after maximal exercise (-0.43 +/- 0.15 beats x min-1 x mm Hg-1) compared with the control

  16. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

    PubMed Central

    Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick

  17. Altered cortical activation patterns associated with baroreflex unloading following 24 h of physical deconditioning.

    PubMed

    Shoemaker, J K; Usselman, C W; Rothwell, A; Wong, S W

    2012-12-01

    Cardiovascular arousal is associated with patterned cortical activity changes. Head-down-tilt bed rest (HDBR) dimishes the baroreflex-mediated cardiac control. The present study tested the hypothesis that HDBR deconditioning would modify the forebrain organization for heart rate (HR) control during baroreflex unloading. Heart rate variability (HRV), blood pressure and plasma hormones were analysed at rest, whereas HR and cortical autonomic activation patterns (functional magnetic resonance imaging) were measured during graded and randomly assigned lower body negative pressure treatments (LBNP, -15 and -35 mmHg) both before (Pre) and after (Post) a 24 h HDBR protocol (study 1; n = 8). An additional group was tested before and following diuretic-induced hypovolaemia (study 2; n = 9; spironolactone, 100 mg day(-1) for 3 days) that mimicked the plasma volume lost during HDBR (-15% in both studies; P < 0.05). Head-down bed rest with hypovolaemia did not affect baseline HR, mean arterial pressure, HRV or plasma catecholamines. Head-down bed rest augmented the LBNP-induced HR response (P < 0.05), and this was associated with bed-rest-induced development of the following changes: (i) enhanced activation within the genual anterior cingulate cortex and the right anterior insular cortex; and (ii) deactivation patterns within the subgenual regions of the anterior cingulate cortex. Diuretic treatment (without HDBR) did not affect baseline HR and mean arterial pressure, but did reduce resting HRV and elevated circulating noradrenaline and plasma renin activity (P < 0.05). The greater HR response to LBNP following diuretic (P < 0.05) was associated with diminished activation of the right anterior insula. Our findings indicate that 24 h of HDBR minimized the impact of diuretic treatment on baseline autonomic and cardiovascular variables. The findings also indicate that despite the similar augmentation of HR responses to LBNP and despite similar pre-intervention cortical activation

  18. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-01

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction.

  19. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  20. Infrared spectroscopy of [XFeC24H12]+ (X = C5H5, C5(CH3)5) complexes in the gas phase: experimental and computational studies of astrophysical interest.

    PubMed

    Simon, Aude; Joblin, Christine; Polfer, Nick; Oomens, Jos

    2008-09-18

    We report the first experimental mid-infrared (700-1600 cm (-1)) multiple-photon dissociation (IRMPD) spectra of [XFeC 24H 12] (+) (X = C 5H 5 or Cp, C 5(CH 3) 5 or Cp*) complexes in the gas phase obtained using the free electron laser for infrared experiments. The experimental results are complemented with theoretical infrared (IR) absorption spectra calculated with methods based on density functional theory. The isomers in which the XFe unit is coordinated to an outer ring of C 24H 12 (+) (Out isomers) were calculated to be the most stable ones. From the comparison between the experimental and calculated spectra, we could derive that, (i) for [CpFeC 24H 12] (+) complexes, the (1)A Out isomer appears to be the best candidate to be formed in the experiment but the presence of the (1)A In higher energy isomer in minor abundance is also plausible; and (ii) for [Cp*FeC 24H 12] (+) complexes, the three calculated Out isomers of similar energy are likely to be present simultaneously, in qualitative agreement with the observed dissociation patterns. This study also emphasizes the threshold effect in the IRMPD spectrum below which IR bands cannot be observed and evidence strong mode coupling effects in the [XFeC 24H 12] (+) species. The effect of the coordination of Fe in weakening the bands of C 24H 12 (+) in the 1000-1600 cm (-1) region is confirmed, which is of interest to search for such complexes in interstellar environments.

  1. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  2. Evaluating Thermal Infrared Remote Sensing of Evapotranspiration over Cotton with Two Surface Energy Balance Models

    NASA Astrophysics Data System (ADS)

    French, A. N.; Hunsaker, D.; Thorp, K.

    2014-12-01

    Thermal infrared remote sensing can be used to map evapotranspiration (ET) over irrigated crops, which provides a way to estimate plant water use, detect water stress, and improve water management decision support systems. Multiple thermal infrared surface energy balance models that estimate ET have been developed and refined over recent years and are actively being used at local to continental scales. However, relatively few intensive, field-based studies have been conducted to evaluate model estimates and their relative merits. To help resolve ET estimation accuracy with differing remote sensing models, a study was conducted over an irrigated crop in Central Arizona in 2009 and 2011. Using extensive ground moisture measurements over a 4.9 ha cotton field and seven airborne remote sensing flights, this study evaluated ET provided by two prominent approaches: the two-source energy balance model (TSEB) and the 'Satellite-based energy balance for mapping evapotranspiration with internalized calibration' model (METRIC). Both use thermal infrared data as essential inputs. However, TSEB is characterized by strong linkage to biophysics, while METRIC is distinguished by its use of contextual information. Based on soil moisture profile observations at 112 locations, and the same input remote sensing data, METRIC was found accurate to 2 mm/day in a majority of cases, while TSEB was similarly accurate at a 1.5 mm/day threshold. These accuracies were representative for emergent, full canopy, and late season cotton growth phases. TSEB and METRIC were similarly biased, ~ -0.7 mm/day. Considering similarity of results at field scale, model complexity, input data requirements, and ease of implementation, TSEB would be preferred for well-instrumented sites. In the case of data sparse sites, METRIC would be recommended as a robust ET approach. The role of land surface temperature uncertainty for modeling ET will be discussed.

  3. Energy and water balance response of a vegetated wetland to herbicide treatment of invasive Phragmites australis

    NASA Astrophysics Data System (ADS)

    Mykleby, Phillip M.; Lenters, John D.; Cutrell, Gregory J.; Herrman, Kyle S.; Istanbulluoglu, Erkan; Scott, Durelle T.; Twine, Tracy E.; Kucharik, Christopher J.; Awada, Tala; Soylu, Mehmet E.; Dong, Bo

    2016-08-01

    The energy and water balance of a Phragmites australis dominated wetland in south central Nebraska was analyzed to assess consumptive water use and the potential for "water savings" as a result of vegetation eradication via herbicide treatment. Energy balance measurements were made at the field site for two growing seasons (treated and untreated), including observations of net radiation, heat storage, and sensible heat flux, which was measured using a large-aperture scintillometer. Latent heat flux was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons and with model simulations to examine the relative impacts of vegetation removal and climate variability. Observed ET rates dropped by roughly 32% between the two growing seasons, from a mean of 4.4 ± 0.7 mm day-1 in 2009 (with live vegetation) to 3.0 ± 0.8 mm day-1 in 2010 (with dead P. australis). These results are corroborated by the Agro-IBIS model simulations, and the reduction in ET implies a total "water savings" of 245 mm over the course of the growing season. The significant decreases in ET were accompanied by a more-than-doubling of sensible heat flux, as well as a ∼60% increase in heat storage due to decreased LAI. Removal of P. australis was also found to cause measurable changes in the local micrometeorology at the wetland. Consistent with the observed increase in sensible heat flux during 2010, warmer, drier, windier conditions were observed in the dead, P. australis section of the wetland, compared to an undisturbed section of live, native vegetation. Modeling results suggest that the elimination of transpiration in 2010 was partially offset by an increase in surface evaporation, thereby reducing the subsequent water savings by roughly 60%. Thus, the impact of vegetation removal depends on the local climate, depth to groundwater, and management decisions related to regrowth of vegetation.

  4. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    NASA Astrophysics Data System (ADS)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  5. Effect of the lower boundary position of the Fourier equation on the soil energy balance

    NASA Astrophysics Data System (ADS)

    Shufen, Sun; Xia, Zhang

    2004-12-01

    In this study, the effect of the lower boundary position selection for the Fourier equation on heat transfer and energy balance in soil is evaluated. A detailed numerical study shows that the proper position of the lower boundary is critical when solving the Fourier equation by using zero heat flux as the lower boundary condition. Since the position defines the capacity of soil as a heat sink or source, which absorbs and stores radiation energy from the sky in summer and then releases the energy to the atmosphere in winter, and regulates the deep soil temperature distribution, the depth of the position greatly influences the heat balance within the soil as well as the interaction between the soil and the atmosphere. Based on physical reasoning and the results of numerical simulation, the proper depth of the position should be equal to approximately 3 times of the annual heat wave damping depth. For most soils, the proper lower boundary depth for the Fourier equation should be around 8 m to 15 m, depending on soil texture.

  6. Variation in energy balance components from six sites in a native prairie for three years

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1992-01-01

    Six automatic stations were used to evaluate the surface energy and radiation balances on a native prairie near Manhattan, Kansas, using the Bowen ratio technique for a total of 300 days. Data were taken during the periods from May 26 to October 16, 1987, May 10 to September 18, 1988, and July 21 to August 13, 1989. The station site locations were selected to represent burned and unburned treatments on ridges, valley bottoms, and slopes with various aspects. The measured variables were (1) air and wet bulb temperatures at two heights, (2) net radiation, (3) solar radiation (up and down), (4) total hemispherical radiation (up and down), (5) diffuse radiation, (6) soil heat flow and soil temperature, (7) wind speed, (8) wind direction, and (9) precipitation. Energy balance components at the sites were compared for the 3 years. The variation between sites and years was small, even though some sites were as much as 10 km apart and the years had different rainfall amounts. The average values for the four summer intensive field campaigns (IFCs) were as follows: albedo, 0.2; ratio of net radiation to solar radiation, 62 percent; evaporation equivalent, 4 mm/d; Bowen ratio, 0.32; evaporation fraction, 70 percent; and the ratio of evaporation to solar energy, 40 percent. These values were different for the fall IFC. The latent and sensible heat fluxes were more variable than the radiation terms reflecting soil moisture differences between IFCs.

  7. Variation in energy balance components from six sites in a native prairie for three years

    NASA Astrophysics Data System (ADS)

    Fritschen, Leo J.

    1992-11-01

    Six automatic stations were used to evaluate the surface energy and radiation balances on a native prairie near Manhattan, Kansas, using the Bowen ratio technique for a total of 300 days. Data were taken during the periods from May 26 to October 16, 1987, May 10 to September 18, 1988, and July 21 to August 13, 1989. The station site locations were selected to represent burned and unburned treatments on ridges, valley bottoms, and slopes with various aspects. The measured variables were (1) air and wet bulb temperatures at two heights, (2) net radiation, (3) solar radiation (up and down), (4) total hemispherical radiation (up and down), (5) diffuse radiation, (6) soil heat flow and soil temperature, (7) wind speed, (8) wind direction, and (9) precipitation. Energy balance components at the sites were compared for the 3 years. The variation between sites and years was small, even though some sites were as much as 10 km apart and the years had different rainfall amounts. The average values for the four summer intensive field campaigns (IFCs) were as follows: albedo, 0.2; ratio of net radiation to solar radiation, 62% evaporation equivalent, 4 mm d-1 Bowen ratio, 0.32; evaporation fraction, 70% and the ratio of evaporation to solar energy, 40%. These values were different for the fall IFC. The latent and sensible heat fluxes were more variable than the radiation terms reflecting soil moisture differences between IFCs.

  8. GRACE time-variable gravity field recovery using an improved energy balance approach

    NASA Astrophysics Data System (ADS)

    Shang, Kun; Guo, Junyi; Shum, C. K.; Dai, Chunli; Luo, Jia

    2015-12-01

    A new approach based on energy conservation principle for satellite gravimetry mission has been developed and yields more accurate estimation of in situ geopotential difference observables using K-band ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. This new approach preserves more gravity information sensed by KBR range-rate measurements and reduces orbit error as compared to previous energy balance methods. Results from analysis of 11 yr of GRACE data indicated that the resulting geopotential difference estimates agree well with predicted values from official Level 2 solutions: with much higher correlation at 0.9, as compared to 0.5-0.8 reported by previous published energy balance studies. We demonstrate that our approach produced a comparable time-variable gravity solution with the Level 2 solutions. The regional GRACE temporal gravity solutions over Greenland reveals that a substantially higher temporal resolution is achievable at 10-d sampling as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing.

  9. Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources

    NASA Astrophysics Data System (ADS)

    Khasawneh, Hussam J.; Illindala, Mahesh S.

    2014-09-01

    In this paper, a microgrid consisting of four fuel cell-battery hybrid Distributed Energy Resources (DERs) is devised for an industrial crusher-conveyor load. Each fuel cell was accompanied by a Li-ion battery to provide energy storage support under islanded condition of the microgrid since the fuel cells typically have poor transient response characteristics. After carrying out extensive modeling and analysis in MATLAB®, the battery utilization was found to vary significantly based on the DER's 'electrical' placement within the microgrid. This paper presents, under such conditions, a variety of battery life balancing solutions through the use of the new framework of Flexible Distribution of EneRgy and Storage Resources (FDERS). It is based on an in-situ reconfiguration approach through 'virtual' reactances that help in changing the 'electrical' position of each DER without physically displacing any component in the system. Several possible approaches toward balancing the battery utilization are compared in this paper taking advantage of the flexibility that FDERS offers. It was observed that the estimated battery life is dependent on factors such as cycling sequence, pattern, and occurrence.

  10. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  11. Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals.

    PubMed

    Zhou, Hongyi; Lei, Xinnuo; Benson, Tyler; Mintz, James; Xu, Xiaojing; Harris, Ruth B; Weintraub, Neal L; Wang, Xiaoling; Chen, Weiqin

    2015-10-01

    Mutations in BSCL2/SEIPIN cause Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), but the mechanisms whereby Bscl2 regulates adipose tissue function are unclear. Here, we generated adipose tissue (mature) Bscl2 knockout (Ad-mKO) mice, in which Bscl2 was specifically ablated in adipocytes of adult animals, to investigate the impact of acquired Bscl2 deletion on adipose tissue function and energy balance. Ad-mKO mice displayed reduced adiposity and were protected against high fat diet-induced obesity, but not insulin resistance or hepatic steatosis. Gene expression profiling and biochemical assays revealed increased lipolysis and fatty acid oxidation in white adipose tissue (WAT) and brown adipose tissue , as well as browning of WAT, owing to induction of cAMP/protein kinase A signaling upon Bscl2 deletion. Interestingly, Bscl2 deletion reduced food intake and downregulated adipose β3-adrenergic receptor (ADRB3) expression. Impaired ADRB3 signaling partially offsets upregulated browning-induced energy expenditure and thermogenesis in Ad-mKO mice housed at ambient temperature. However, this counter-regulatory response was abrogated under thermoneutral conditions, resulting in even greater body mass loss in Ad-mKO mice. These findings suggest that Bscl2 regulates adipocyte lipolysis and β-adrenergic signaling to produce complex effects on adipose tissues and whole-body energy balance.

  12. Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications

    PubMed Central

    Ulrich-Lai, Yvonne M.; Ryan, Karen K.

    2014-01-01

    Significant co-morbidities between obesity-related metabolic disease and stress-related psychological disorders suggest important functional interactions between energy balance and brain stress integration. Largely overlapping neural circuits control these systems, and this anatomical arrangement optimizes opportunities for mutual influence. Here we first review the current literature identifying effects of metabolic neuroendocrine signals on stress regulation, and vice versa. Next, the contributions of reward driven food intake to these metabolic and stress interactions are discussed. Lastly, we consider the inter-relationships among metabolism, stress and reward in light of their important implications in the development of therapies for metabolism- or stress-related disease. PMID:24630812

  13. The obesity‐associated gene Negr1 regulates aspects of energy balance in rat hypothalamic areas

    PubMed Central

    Boender, Arjen J.; van Gestel, Margriet A.; Garner, Keith M.; Luijendijk, Mieneke C. M.; Adan, Roger A. H.

    2014-01-01

    Abstract Neural growth regulator 1 (Negr1) is among the first common variants that have been associated with the regulation of body mass index. Using AAV technology directed to manipulate Negr1 expression in vivo, we find that decreased expression of Negr1 in periventricular hypothalamic areas leads to increases in body weight, presumably via increased food intake. Moreover, we observed that both increased and decreased levels of Negr1 lead to reduced locomotor activity and body temperature. In sum, our results provide further support for a role of hypothalamic expressed Negr1 in the regulation of energy balance. PMID:25077509

  14. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1984-01-01

    Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.

  15. Atmospheric correction of LANDSAT TM thermal band using surface energy balance

    NASA Technical Reports Server (NTRS)

    Vidal, Alain; Devaux-Ros, Claire; Moran, M. Susan

    1994-01-01

    Thermal infrared data of LANDSAT Thematic Mapper (TM) are hardly used, probably due to the difficulties met when trying to correct them for atmospheric effects. A method for correcting these data was designed, based on surface energy balance estimation of known wet and dry targets included in the TM image to be corrected. This method, only using the image itself and local meteorological data was tested and validated on various surfaces: agricultural, forest and rangeland. The root mean square error on corrected temperatures is on the order of 1C.

  16. On the Capabilities of Using AIRSAR Data in Surface Energy/Water Balance Studies

    NASA Technical Reports Server (NTRS)

    Moreno, Jose F.; Saatchi, Sasan S.

    1996-01-01

    In this paper an algorithm is described that allows derivation of three fundamental parameters from synthetic aperture radar (SAR) data: soil moisture, soil roughness, and canopy water content, accounting for the effects of vegetation cover by using optical (Landsat) data as auxiliary. The capabilities and limitations of the data and algorithms are discussed, as well as possibilities to use these data in energy/water balance modeling studies. All of the data used in this study was acquired as part of the European Field Experiment in a Desertification Threatened Area.

  17. Gender differences in the impact of daily sadness on 24-h heart rate variability.

    PubMed

    Verkuil, Bart; Brosschot, Jos F; Marques, Andrea H; Kampschroer, Kevin; Sternberg, Esther M; Thayer, Julian F

    2015-12-01

    Reduced heart rate variability (HRV) is proposed to mediate the relation between depressive symptoms and cardiovascular health problems. Yet, several studies have found that in women depression is associated with higher HRV levels, whereas in men depression is associated with lower HRV levels. So far, these studies have only examined gender differences in HRV levels using a single assessment. This study aimed to test the interactive effects of gender and sadness on ambulatory-assessed HRV levels. A sample of 60 (41 women) employees participated in an ambulatory study. HRV levels (mean of successive differences; MSD) were continuously measured for 24 h. During the daytime, hourly assessments of sadness and other mood states were taken, while depressive symptoms were assessed with the Center for Epidemiologic Studies Depression scale (CES-D). Gender differences were observed when examining the impact of average daily sadness on MSD. In women, but not in men, the total amount of sadness experienced during the day was associated with higher circadian MSD levels. These findings suggest that researchers need to take gender differences into account when examining the relation between sadness, HRV, and cardiovascular problems. PMID:26338472

  18. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Murthy, G.; Watenpaugh, D. E.; Breit, G. A.; Deroshia, C. W.; Hargens, A. R.

    1993-01-01

    This study investigates cerebral blood flow (CBF) velocity in humans before, during, and after 24 h of 6 deg head-down tilt (HDT), which is a currently accepted experimental model to simulate microgravity. CBF velocity was measured by use of the transcranial Doppler technique in the right middle cerebral artery of eight healthy male subjects. Mean CBF velocity increased from the pre-HDT upright seated baseline value of 55.5 +/- 3.7 (SE) cm/s to 61.5 +/- 3.3 cm/s at 0.5 h of HDT, reached a peak value of 63.2 +/- 4.1 cm/s at 3 h of HDT, and remained significantly above the pre-HDT baseline for over 6 h of HDT. During upright seated recovery, mean CBF velocity decreased to 87 percent of the pre-HDT baseline value. Mean CBF velocity correlated well with calculated intracranial arterial pressure (IAP). As analyzed by linear regression, mean CBF velocity = 29.6 + 0.32IAP. These results suggest that HDT increases CBF velocity by increasing IAP during several hours after the onset of microgravity. Importantly, the decrease in CBF velocity after HDT may be responsible, in part, for the increased risk of syncope observed in subjects after prolonged bed rest and also in astronauts returning to Earth.

  19. Physiological and biological factors associated with a 24 h treadmill ultra-marathon performance.

    PubMed

    Millet, G Y; Banfi, J C; Kerherve, H; Morin, J B; Vincent, L; Estrade, C; Geyssant, A; Feasson, L

    2011-02-01

    The purpose of this study was to examine the physiological and biological factors associated with ultra-endurance performance. Fourteen male runners volunteered to run on a treadmill as many kilometers as possible over a 24-h period (24TR). Maximal oxygen uptake (VO(2max)), velocity associated with VO(2max)(VO(2max)) and running economy (RE) at 8 km/h were measured. A muscle biopsy was also performed in the vastus lateralis muscle. The subjects ran 149.2 ± 15.7 km in 18 h 39 ± 41 min of effective attendance on the treadmill, corresponding to 39.4 ± 4.2% of . Standard multiple-regression analysis showed that performance was significantly (R(2) = 0.82; P = 0.005) related to VO(2max) and specific endurance, i.e. the average speed sustained over the 24TR expressed in . VO(2max) was associated with a high capillary tortuosity (R(2) = 0.66; P = 0.01). Specific endurance was significantly related to RE and citrate synthase activity. It is concluded that a high VO(2max) and an associated developed capillary network are essential for ultra-endurance running performance. The ability to maintain a high %VO(2max) over a 24TR is another factor associated with performance and is mainly related to RE and high mitochondrial oxidative capacity in the vastus lateralis. PMID:19883385

  20. Open dissipative seismic systems and ensembles of strong earthquakes: energy balance and entropy funnels

    NASA Astrophysics Data System (ADS)

    Akopian, Samvel Ts.

    2015-06-01

    A concept of seismic system (SS), which is responsible for the preparation of an ensemble of strong earthquakes, is considered as an open dissipative system exchanging energy and entropy with the environment. Open dissipative SS allow one to describe the equilibrium and non-equilibrium states of SS, and the lithosphere evolution under different plate tectonic settings on the basis of seismostatistics. Several new seismic parameters (`seismic temperature', `seismic time', dissipation function, efficiency, inelastic energy, dynamical probability) are defined and proposed for better understanding and describing the dynamical processes. The Sakhalin SS is considered to illustrate the behaviour of proposed parameters. By analogy to Liouville's equation in thermodynamics, it is shown that there is no criterion of instability in the domain where the Gutenberg-Richter law is true. In the proposed approach, the instability origination and the formation of seismogenic structures in the lithosphere are based on the energy versus information entropy power law; the existence of `time arrow' also proceeds from such a dependence. Application of energy and trajectory diagrams enables to describe the preparation of strong earthquakes within an ensemble in terms of slow and fast timescales. These diagrams help perform the spatiotemporal-energy monitoring of the instability origination in the lithosphere. It is shown that the information entropy parameter can serve as a measure of the unknown external energy flow into the system (this energy is supplied for the elastic radiation energy in the earthquake sources and for inelastic processes in the system volume). The property of the ensemble of strong earthquakes is periodically to restore the SS equilibrium state that enables to describe the SS energy balance. The results offer possibilities to estimate the fraction of inelastic energy released by the SS medium during the preparation and occurrence of seismic catastrophes. The

  1. Distributed modeling of snow cover mass and energy balance in the Rheraya watershed (High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Marchane, Ahmed; Gascoin, Simon; Jarlan, Lionel; Hanich, Lahoucine

    2016-04-01

    The mountains of the High Moroccan Atlas represent an important source of water for the neighboring arid plains. Despite the importance of snow in the regional water balance, few studies were devoted to the modeling of the snow cover at the watershed scale. This type of modeling is necessary to characterize the contribution of snowmelt to water balance and understanding its sensitivity to natural and human-induced climate fluctuations. In this study, we applied a spatially-distributed model of the snowpack evolution (SnowModel, Liston & Elder 2006) on the Rheraya watershed (225 km²) in the High Atlas in order to simulate the mass and energy balance of the snow cover and the evolution of snow depth over a full season (2008-2009). The model was forced by 6 meteorological stations. The model was evaluated locally at the Oukaimeden meteorological station (3230 m asl) where snow depth is recorded continuously. To evaluate the model at the watershed scale we used the daily MODIS snow cover products and a series of 15 cloud-free optical images acquired by the FORMOSAT-2 satellite at 8-m resolution from February to June 2009. The results showed that the model is able to simulate the snow depth in the Oukaimeden station for the 2008-2009 season, and also to simulate the spatial and temporal variation of of the snow cover area in the watershed Rheraya. Based on the model output we examine the importance of the snow sublimation on the water balance at the watershed scale.

  2. Subcellular energy balance of Odontesthes bonariensis exposed to a glyphosate-based herbicide.

    PubMed

    Menéndez-Helman, Renata J; Miranda, Leandro A; Dos Santos Afonso, Maria; Salibián, Alfredo

    2015-04-01

    Water pollution by agrochemicals is currently one of the most critical problems for the conservation of aquatic ecosystems. Glyphosate [N-(phosphonomethyl) glycine); PMG] is the main broad-spectrum post emergence herbicide used for the control of a wide range of pests in soybean crops. Adenylate energy charge (AEC) reflects the energy balance of the cells, a measure of the energy available from the adenylate pool: adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP). Background adenylates, phosphagens and the AEC index of two year old Odontesthes bonariensis were determined in some tissues by HPLC, and the impact on subcellular energy balance of sublethal glyphosate-based herbicide exposure was analyzed. The doses used were 0 (control tank), 1 or 10mg PMGL(-1), trials were carried out during 15 days. AEC values in brain, liver and muscle from control fish were 0.37 ± 0.02, 0.49 ± 0.05 and 0.56 ± 0.03, respectively (means ± SEM). While brain ATP concentrations were undetectable (hence low values of AEC), the muscle tissue showed the highest concentrations of the more energetic molecules: 0.18 μmole ATP g(-1) and 8 μmole phosphocreatine g(-1) (PCrg(-1)). In the brain, no significant changes were detected in exposed fish compared to controls. Instead, in both the liver and muscle of animals exposed to the highest concentration of the herbicide, significant changes in the AEC (reduction of 26% and 15%, p<0.05) with respect to the control group were determined. Chronic exposure (15 days) of Odontesthes bonariensis to 1 and 10mgL(-1) of formulated glyphosate did not affect brain AEC. However, the highest concentration of the herbicide produced a significant decrease in liver and muscle AEC manifesting adverse sublethal effects on the energy metabolism. These results suggest the usefulness of AEC as a biomarker of fish glyphosate exposure.

  3. On energy balance and the structure of radiated waves in kinetics of crystalline defects

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2016-11-01

    Traveling waves, with well-known closed form expressions, in the context of the defects kinetics in crystals are excavated further with respect to their inherent structure of oscillatory components. These are associated with, so called, Frenkel-Kontorova model with a piecewise quadratic substrate potential, corresponding to the symmetric as well as asymmetric energy wells of the substrate, displacive phase transitions in bistable chains, and brittle fracture in triangular lattice strips under mode III conditions. The paper demonstrates that the power expended theorem holds so that the sum of rate of working and the rate of total energy flux into a control strip moving steadily with the defect equals the rate of energy sinking into the defect, in the sense of N.F. Mott. In the conservative case of the Frenkel-Kontorova model with asymmetric energy wells, this leads to an alternative expression for the mobility in terms of the energy flux through radiated lattice waves. An application of the same to the case of martensitic phase boundary and a crack, propagating uniformly in bistable chains and triangular lattice strips, respectively, is also provided and the energy release is expressed in terms of the radiated energy flux directly. The equivalence between the well-known expressions and their alternative is established via an elementary identity, which is stated and proved in the paper as the zero lemma. An intimate connection between the three distinct types of defects is, thus, revealed in the framework of energy balance, via a structural similarity between the corresponding variants of the 'zero' lemma containing the information about radiated energy flux. An extension to the dissipative models, in the presence of linear viscous damping, is detailed and analog of the zero lemma is proved. The analysis is relevant to the dynamics of dislocations, brittle cracks, and martensitic phase boundaries, besides possible applications to analogous physical contexts which are

  4. Universality of particle production and energy balance in hadronic and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Nath Mishra, Aditya; Sarkisyan, Edward K. G.; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-07-01

    The multihadron production in nucleus-nucleus and (anti)proton-proton collisions is studied by exploring the collision-energy and centrality dependencies of the mean multiplicity in the existing data. The study is performed in the framework of the recently proposed effective-energy approach which combines the constituent quark picture and Landau hydrodynamics counting for the centrality-defined effective energy of participants. Within this approach, the multiplicity energy dependence and the pseudorapidity spectra from the most central nuclear collisions are well reproduced. The study of the multiplicity centrality dependence reveals a new scaling between the measured pseudorapidity spectra and the calculations. Using this scaling, called the energy balanced limiting fragmentation scaling, the pseudorapidity spectra are well reproduced for all centralities. The scaling clarifies some differences in the multiplicity and midrapidity density centrality dependence from RHIC and LHC. A similarity in the multiplicity energy dependence in the most central collisions and centrality data is shown. Predictions are drawn for the mean multiplicities to be measured in hadronic and heavy-ion collisions at the LHC.

  5. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  6. Regulation of Energy Balance via BDNF Expressed in Nonparaventricular Hypothalamic Neurons.

    PubMed

    Yang, Haili; An, Juan Ji; Sun, Chao; Xu, Baoji

    2016-05-01

    Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.

  7. Energy balance and physical demands during an 8-week arduous military training course.

    PubMed

    Richmond, Victoria L; Horner, Fleur E; Wilkinson, David M; Rayson, Mark P; Wright, Antony; Izard, Rachel

    2014-04-01

    This study assessed soldier's physical demands and energy balance during the Section Commanders' Battles Course (SCBC). Forty male soldiers were monitored during the 8-week tactics phase of the SCBC. Energy expenditure was measured using the doubly labeled water method. Cardiovascular strain (heart rate) and physical activity (using triaxial accelerometer) were also monitored. Average sized portions of meals were weighed, with all recipes and meals entered into a dietary analysis program to calculate the calorie content. Energy expenditure averaged 19.6 ± 1.8 MJ · d(-1) in weeks 2 to 3 and 21.3 ± 2.0 MJ · d(-1) in weeks 6 to 7. Soldiers lost 5.1 ± 2.6 kg body mass and body fat percent decreased from 23 ± 4% to 19 ± 5%. This average weight loss equates to an estimated energy deficit of 2.69 MJ · d(-1). The Army provided an estimated 14.0 ± 2.2 MJ · d(-1) in weeks 2 to 3 and 15.7 ± 2.2 MJ · d(-1) in weeks 6 to 7. Although this provision adheres to the minimum requirement of 13.8 MJ · d(-1) set by Army regulations, soldiers were in a theoretical 5.6 MJ · d(-1) energy deficit. The physical demands of SCBC were high, and soldiers were in energy deficit resulting in loss in body mass; primarily attributed to a loss in fat mass. PMID:24690967

  8. Sex difference in the 24-h acetylcholine release profile in the premotor/supplementary motor area of behaving rats.

    PubMed

    Takase, Kenkichi; Mitsushima, Dai; Funabashi, Toshiya; Kimura, Fukuko

    2007-06-18

    The sex differences in various motor functions suggest a sex-specific neural basis in the nonprimary or primary motor area. To examine the sex difference in the 24-h profile of acetylcholine (ACh) release in the rostral frontal cortex area 2 (rFr2), which is equivalent to the premotor/supplementary motor area in primates, we performed an in vivo microdialysis study in both sexes of rats fed pelleted or powdered diet. The dialysate was automatically collected from the rFr2 for 24 h under freely moving conditions. Moreover, the number of cholinergic neurons in the nucleus basalis magnocellularis (NBM) was examined. Further, to confirm the relation between ACh release in the rFr2 and motor function, the spontaneous locomotor activity was monitored for 24 h. Both sexes showed a distinct 24-h rhythm of ACh release, which was high during the dark phase and low during the light phase. Female rats, however, showed a greater ACh release and more cholinergic neurons in the NBM than male rats. Similarly, spontaneous locomotor activity also showed a 24-h rhythm, which paralleled the changes in ACh release in both sexes, and these changes were again greater in female rats than in male rats. In addition, feeding with powdered diet significantly increased the ACh release and spontaneous locomotor activity. The present study is the first to report the sex difference in the 24-h profile of ACh release in the rFr2 in rats. The sex specific ACh release in the rFr2 may partly contribute to the sex difference in motor function in rats.

  9. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults.

    PubMed

    Spaeth, Andrea M; Dinges, David F; Goel, Namni

    2015-01-01

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60-2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability.

  10. Environmental influences on energy balance-related behaviors: A dual-process view

    PubMed Central

    Kremers, Stef PJ; de Bruijn, Gert-Jan; Visscher, Tommy LS; van Mechelen, Willem; de Vries, Nanne K; Brug, Johannes

    2006-01-01

    Background Studies on the impact of the 'obesogenic' environment have often used non-theoretical approaches. In this journal's debate and in other papers authors have argued the necessity of formulating conceptual models for differentiating the causal role of environmental influences on behavior. Discussion The present paper aims to contribute to the debate by presenting a dual-process view on the environment – behavior relationship. This view is conceptualized in the EnRG framework (Environmental Research framework for weight Gain prevention). In the framework, behavior is postulated to be the result of a simultaneous influence of conscious and unconscious processes. Environmental influences are hypothesized to influence behavior both indirectly and directly. The indirect causal mechanism reflects the mediating role of behavior-specific cognitions in the influence of the environment on behavior. A direct influence reflects the automatic, unconscious, influence of the environment on behavior. Specific personal and behavioral factors are postulated to moderate the causal path (i.e., inducing either the automatic or the cognitively mediated environment – behavior relation). In addition, the EnRG framework applies an energy balance-approach, stimulating the integrated study of determinants of diet and physical activity. Conclusion The application of a dual-process view may guide research towards causal mechanisms linking specific environmental features with energy balance-related behaviors in distinct populations. The present paper is hoped to contribute to the evolution of a paradigm that may help to disentangle the role of 'obesogenic' environmental factors. PMID:16700907

  11. The role of willow-birch forest in the surface energy balance at arctic treeline

    SciTech Connect

    Blanken, P.D. ); Rouse, W.R. )

    1994-11-01

    Continuous measurements of the energy balance components were made during the 1991 growing season over a willow-birch forest located near Churchill, Manitoba, Canada. On the basis of measurements of leaf area index, the growing season was divided into three distinct periods: growth, mature, and senescence. Changes in surface albedo were strongly correlated with changing leaf area index during the growth period with albedo increasing as leaf area increased. The latent heat flux density, Q[sub E], represented 74% of net radiation during the mature period compared to 55 and 54% during the growth and senescence periods, respectively. The greater Q[sub E] at plant maturity is due primarily to canopy transpiration. The sensitivity of Q[sub E] to net radiation was largest during the growth period. In contrast, the sensitivity of Q[sub E] to the surface resistance and aerodynamic resistance was the largest during the mature period. The implications of climate variability on the timing of leaf development and the surface energy and water balance are discussed. 28 refs., 8 figs., 1 tab.

  12. Lysimetric Evaluation of Simplified Surface Energy Balance Approach in the Texas High Plains

    USGS Publications Warehouse

    Senay, Gabriel B.; Gowda, P.H.; Howell, T.A.; Marek, T.H.

    2009-01-01

    Numerous energy balance (EB) algorithms have been developed to make use of remote sensing data to estimate evapotranspiration (ET) regionally. However, most EB models are complex to use and efforts are being made to simplify procedures mainly through the scaling of reference ET. The Simplified Surface Energy Balance (SSEB) is one such method. This approach has never been evaluated using measured ET data. In this study, the SSEB approach was applied to fourteen Landsat TM images covering a major portion of the Southern High Plains that were acquired during 2006 and 2007 cropping seasons. Performance of the SSEB was evaluated by comparing estimated ET with measured daily ET from four large monolithic lysimeters at the USDA-ARS Conservation and Production Research Laboratory, Bushland, Texas. Statistical evaluation of results indicated that the SSEB accounted for 84% of the variability in the measured ET values with a slope and intercept of 0.75 and 1.1 mm d-1, respectively. Considering the minimal amount of ancillary data required and excellent performance in predicting daily ET, the SSEB approach is a promising tool for mapping ET in the semiarid Texas High Plains and in other parts of the world with similar hydro-climatic conditions.

  13. Lysimetric evaluation of simplified surface energy balance approach in the Texas high plains

    USGS Publications Warehouse

    Gowda, P.H.; Senay, G.B.; Howell, T.A.; Marek, T.H.

    2009-01-01

    Numerous energy balance (EB) algorithms have been developed to make use of remote sensing data to estimate evapotranspiration (ET) regionally. However, most EB models are complex to use and efforts are being made to simplify procedures mainly through the scaling of reference ET. The Simplified Surface Energy Balance (SSEB) is one such method. This approach has never been evaluated using measured ET data. In this study, the SSEB approach was applied to 14 Landsat TM images covering a major portion of the Southern High Plains that were acquired during 2006 and 2007 cropping seasons. Performance of the SSEB was evaluated by comparing estimated ET with measured daily ET from four large monolithic lysimeters at the USDA-ARS Conservation and Production Research Laboratory, Bushland, Texas. Statistical evaluation of results indicated that the SSEB accounted for 84% of the variability in the measured ET values with a slope and intercept of 0.75 and 1.1 mm d-1, respectively. Considering the minimal amount of ancillary data required and excellent performance in predicting daily ET, the SSEB approach is a promising tool for mapping ET in the semiarid Texas High Plains and in other parts of the world with similar hydro-climatic conditions.

  14. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees.

    PubMed

    Emery Thompson, Melissa; Muller, Martin N; Wrangham, Richard W; Lwanga, Jeremiah S; Potts, Kevin B

    2009-02-01

    C-peptide of insulin presents a promising new tool for behavioral ecologists that allows for regular, non-invasive assessment of energetic condition in wild animals. C-peptide is produced on an equimolar basis with insulin, thus is indicative of the body's response to available glucose and, with repeated measurement, provides a biomarker of energy balance. As yet, few studies have validated the efficacy of C-peptide for monitoring energy balance in wild animals. Here, we assess seasonal and interindividual variation in urinary C-peptide concentrations of East African chimpanzees (Pan troglodytes schweinfurthii). We assayed 519 urine samples from 13 adult male chimpanzees in the Kanyawara community of Kibale National Park, Uganda. C-peptide levels were significantly predicted by the total amount of fruit and the amount of preferred fruit in the diet. However, chimpanzees had very low C-peptide titers during an epidemic of severe respiratory illness, despite highly favorable feeding conditions. Kanyawara males had significantly lower C-peptide levels than males at Ngogo, a nearby chimpanzee community occupying a more productive habitat. Among Kanyawara males, low-ranking males had consistently higher C-peptide levels than dominant males. While counterintuitive, this result supports previous findings of costs associated with dominance in male chimpanzees. Our preliminary investigations demonstrate that C-peptide has wide applications in field research, providing an accessible tool for evaluating seasonal and individual variation in energetic condition, as well as the costs of processes such as immune function and reproduction. PMID:19084530

  15. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance

    PubMed Central

    Caron, Alexandre; Labbé, Sébastien M.; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis

    2016-01-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  16. Improving iterative surface energy balance convergence for remote sensing based flux calculation

    NASA Astrophysics Data System (ADS)

    Dhungel, Ramesh; Allen, Richard G.; Trezza, Ricardo

    2016-04-01

    A modification of the iterative procedure of the surface energy balance was purposed to expedite the convergence of Monin-Obukhov stability correction utilized by the remote sensing based flux calculation. This was demonstrated using ground-based weather stations as well as the gridded weather data (North American Regional Reanalysis) and remote sensing based (Landsat 5, 7) images. The study was conducted for different land-use classes in southern Idaho and northern California for multiple satellite overpasses. The convergence behavior of a selected Landsat pixel as well as all of the Landsat pixels within the area of interest was analyzed. Modified version needed multiple times less iteration compared to the current iterative technique. At the time of low wind speed (˜1.3 m/s), the current iterative technique was not able to find a solution of surface energy balance for all of the Landsat pixels, while the modified version was able to achieve it in a few iterations. The study will facilitate many operational evapotranspiration models to avoid the nonconvergence in low wind speeds, which helps to increase the accuracy of flux calculations.

  17. Phenotypic vulnerability of energy balance responses to sleep loss in healthy adults

    PubMed Central

    Spaeth, Andrea M.; Dinges, David F.; Goel, Namni

    2015-01-01

    Short sleep duration is a risk factor for increased hunger and caloric intake, late-night eating, attenuated fat loss when dieting, and for weight gain and obesity. It is unknown whether altered energy-balance responses to sleep loss are stable (phenotypic) over time, and the extent to which individuals differ in vulnerability to such responses. Healthy adults experienced two laboratory exposures to sleep restriction separated by 60–2132 days. Caloric intake, meal timing and weight were objectively measured. Although there were substantial phenotypic differences among participants in weight gain, increased caloric intake, and late-night eating and fat intake, responses within participants showed stability across sleep restriction exposures. Weight change was consistent in both normal-weight and overweight adults. Weight change and increased caloric intake were more stable in men whereas late-night eating was consistent in both genders. This is the first evidence of phenotypic differential vulnerability and trait-like stability of energy balance responses to repeated sleep restriction, underscoring the need for biomarkers and countermeasures to predict and mitigate this vulnerability. PMID:26446681

  18. Estimation of land surface water and energy balance parameters using conditional sampling of surface states

    NASA Astrophysics Data System (ADS)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido; Sun, Jian

    2014-02-01

    Numerical models of heat and moisture diffusion in the soil-vegetation-atmosphere continuum are linked through the moisture flux from the surface to the atmosphere. This mass flux represents a heat exchange as latent heat flux, coupling water, and energy balance equations. In this paper, a new approach for estimating key parameters governing moisture and heat diffusion equation and the closure function which links these equations, is introduced. Parameters of the system are estimated by developing objective functions that link atmospheric forcing, surface states, and unknown parameters. This approach is based on conditional averaging of heat and moisture diffusion equations on land surface temperature and moisture states, respectively. A single objective function is expressed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to the parameters to identify evaporation and drainage models and estimate water and energy balance flux components. The approach is calibration free (surface flux observations are not required), it is not hampered by missing data and does not require continuous records. Uncertainty of parameter estimates is obtained from the inverse of Hessian of the objective function, which is an approximation of the error covariance matrix. Uncertainty analysis and analysis of the covariance approximation, guides the formulation of a well-posed estimation problem. Accuracy of this method is examined through its application over three different field sites. This approach can be applied to diverse climates and land surface conditions with different spatial scales, using remotely sensed measurements.

  19. Effects of acute intermittent hypoxia on energy balance and hypothalamic feeding pathways.

    PubMed

    Moreau, J M; Ciriello, J

    2013-12-01

    This study was done to investigate the effects of acute intermittent hypoxia (IH) on metabolic factors associated with energy balance and body weight, and on hypothalamic satiety-inducing pathways. Adult male Sprague-Dawley rats were exposed to either 8h IH or normoxic control conditions. Food intake, locomotion and body weights were examined after IH. Additionally, plasma levels of leptin, adiponectin corticosterone, insulin and blood glucose were measured following exposure to IH. Furthermore, adipose tissue was removed and analyzed for leptin and adiponectin content. Finally, the hypothalamic arcuate nucleus (ARC) was assessed for alterations in protein signaling associated with satiety. IH reduced body weight, food intake and active cycle locomotion without altering adipose tissue mass. Leptin protein content was reduced while adiponectin content was elevated in adipose tissue after IH. Plasma concentration of leptin was significantly increased while adiponectin decreased after IH. No changes were found in plasma corticosterone, insulin and blood glucose. In ARC, phosphorylation of signal transducer and activator of transcription-3 and pro-opiomelanocortin (POMC) expression were elevated. In addition, POMC-expressing neurons were activated as determined by immediate early gene FRA-1/2 expression. Finally, ERK1/2 and its phosphorylation were reduced in response to IH. These data suggest that IH induces significant alterations to body energy balance through changes in the secretion of leptin which exert effects on satiety-inducing pathways within the hypothalamus.

  20. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  1. Satellite remote sensing of surface energy and mass balance - Results from FIFE

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Markham, B. J.; Wang, J. R.; Huemmrich, F.; Sellers, P. J.; Strebel, D. E.; Kanemasu, E. T.; Kelly, Robert D.; Blad, Blaine L.

    1991-01-01

    Results obtained from the FIFE experiments conducted in 1987 and 1989 are summarized. Data analyses indicate that the hypotheses linking energy balance components to surface biology and remote sensing are reasonable at a point level, and that satellite remote sensing can potentially provide useful estimates of the surface energy budget. An investigation of atmospheric scattering and absorption effects on satellite remote sensing of surface radiance shows that the magnitude of atmospheric opacity variations within the FIFE site and with season can have a large effect on satellite measured values of surface radiances. Comparisons of atmospherically corrected TM radiances with surface measured radiances agreed to within about two percent at the visible and near-infrared wavelengths and to 6 percent in the midinfrared.

  2. Cost of photovoltaic energy systems as determined by balance-of-system costs

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  3. [Validity of the 24-h previous day physical activity recall (PDPAR-24) in Spanish adolescents].

    PubMed

    Cancela, José María; Lago, Joaquín; Ouviña, Lara; Ayán, Carlos

    2015-04-01

    Introducción: El control del nivel de práctica de actividad física que realizan los adolescentes, de sus factores determinantes y susceptibilidad al cambio resulta indispensable para intervenir sobre la epidemia de obesidad que afecta a la sociedad española. Sin embargo, el número de cuestionarios validados para valorar la actividad física en adolescentes españoles es escaso. Objetivos: Evaluar la validez del cuestionario24hPrevious Day Physical Activity Recall (PDPAR-24) cuando es aplicado a la población de adolescentes españoles. Método: Participaron en este estudio estudiantes de 14-15 años de dos centros de educación secundaria del norte de Galicia. Como criterio objetivo de la actividad física realizada se utilizó el registro proporcionado por el acelerómetro Actigraph GT3X.Se monitorizó a los sujetos durante un día por medio del acelerómetro y al día siguiente se administró el cuestionario de auto-informe. Resultados: Un total de 79 alumnos (15.16 ± 0.81 años, 39% mujeres) finalizaron el estudio. Se observan correlaciones positivas estadísticamente significativas de tamaño medio a grande en ambos sexos (r=0.50-0.98), para la actividad física ligera y moderada. Las correlaciones observadas son más elevadas a medida que aumenta la intensidad de la actividad física realizada. Conclusiones: El cuestionario de auto-informe PDPAR-24 puede ser considerado como una herramienta válida a la hora de valorar el nivel de actividad física en adolescentes españoles.

  4. Parabens in 24 h urine samples of the German Environmental Specimen Bank from 1995 to 2012.

    PubMed

    Moos, Rebecca K; Koch, Holger M; Angerer, Jürgen; Apel, Petra; Schröter-Kermani, Christa; Brüning, Thomas; Kolossa-Gehring, Marike

    2015-10-01

    Parabens are widely used as antimicrobial preservatives in personal care and consumer products, food and pharmaceuticals. Due to their ubiquity, humans are constantly exposed to these chemicals. We assessed exposure to nine parabens (methyl-, ethyl-, n- and iso-propyl-, n- and iso-butyl-, benzyl-, pentyl- and heptyl paraben) in the German population from 1995 to 2012 based on 660 24h urine samples from the German Environmental Specimen Bank (ESB) using on-line HPLC coupled to isotope dilution tandem mass spectrometry. The limit of quantification (LOQ) was 0.5 μg/L for all parabens. We detected methyl-, ethyl- and n-propyl paraben in 79-99% of samples, followed by n-butyl paraben in 40% of samples. We infrequently detected iso-butyl-, iso-propyl- and benzyl paraben in 24%, 4% and 1.4% of samples, respectively. Urinary concentrations were highest for methyl paraben (median 39.8 μg/L; 95th percentile 319 μg/L) followed by n-propyl paraben (4.8 μg/L; 95th percentile 74.0 μg/L) and ethyl paraben (2.1 μg/L; 95th percentile 39.1 μg/L). Women had significantly higher urinary levels for all parabens than men, except for benzyl paraben. Samples from the ESB revealed that over the investigation period of nearly 20 years urinary paraben levels remained surprisingly constant; only methyl paraben had a significant increase, for both men and women. We found strong correlations between methyl- and n-propyl paraben and between n- and iso-butyl paraben. These results indicate that parabens are used in combination and arise from common sources of exposure. Urinary excretion factors are needed to extrapolate from individual urinary concentrations to actual doses.

  5. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  6. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios.

  7. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  8. The fluctuation energy balance in non-suspended fluid-mediated particle transport

    SciTech Connect

    Pähtz, Thomas; Durán, Orencio; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F.

    2015-01-15

    Here, we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids (“saltation” and “bedload,” respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts (“splash”) in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to particle tracking velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an unexpectedly high rate in saltation even under conditions for which the effects of turbulence are usually believed to be small.

  9. Balancing energy development and conservation: A method utilizing species distribution models

    USGS Publications Warehouse

    Jarnevich, C.S.; Laubhan, M.K.

    2011-01-01

    Alternative energy development is increasing, potentially leading to negative impacts on wildlife populations already stressed by other factors. Resource managers require a scientifically based methodology to balance energy development and species conservation, so we investigated modeling habitat suitability using Maximum Entropy to develop maps that could be used with other information to help site energy developments. We selected one species of concern, the Lesser Prairie-Chicken (LPCH; Tympanuchus pallidicinctus) found on the southern Great Plains of North America, as our case study. LPCH populations have been declining and are potentially further impacted by energy development. We used LPCH lek locations in the state of Kansas along with several environmental and anthropogenic parameters to develop models that predict the probability of lek occurrence across the landscape. The models all performed well as indicated by the high test area under the curve (AUC) scores (all >0.9). The inclusion of anthropogenic parameters in models resulted in slightly better performance based on AUC values, indicating that anthropogenic features may impact LPCH lek habitat suitability. Given the positive model results, this methodology may provide additional guidance in designing future survey protocols, as well as siting of energy development in areas of marginal or unsuitable habitat for species of concern. This technique could help to standardize and quantify the impacts various developments have upon at-risk species. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  10. The roles of melanin-concentrating hormone in energy balance and reproductive function: Are they connected?

    PubMed

    Naufahu, Jane; Cunliffe, Adam D; Murray, Joanne F

    2013-01-01

    Melanin-concentrating hormone (MCH) is an anabolic neuropeptide with multiple and diverse physiological functions including a key role in energy homoeostasis. Rodent studies have shown that the ablation of functional MCH results in a lean phenotype, increased energy expenditure and resistance to diet-induced obesity. These findings have generated interest among pharmaceutical companies vigilant for potential anti-obesity agents. Nutritional status affects reproductive physiology and behaviours, thereby optimising reproductive success and the ability to meet energetic demands. This complex control system entails the integration of direct or indirect peripheral stimuli with central effector systems and involves numerous mediators. A role for MCH in the reproductive axis has emerged, giving rise to the premise that MCH may serve as an integratory mediator between those discrete systems that regulate energy balance and reproductive function. Hence, this review focuses on published evidence concerning i) the role of MCH in energy homoeostasis and ii) the regulatory role of MCH in the reproductive axis. The question as to whether the MCH system mediates the integration of energy homoeostasis with the neuroendocrine reproductive axis and, if so, by what means has received limited coverage in the literature; evidence to date and current theories are summarised herein.

  11. Role of stearoyl-CoA desaturase-1 in skin integrity and whole body energy balance.

    PubMed

    Sampath, Harini; Ntambi, James M

    2014-01-31

    The skin is the single largest organ in humans, serving as a major barrier to infection, water loss, and abrasion. The functional diversity of skin requires the synthesis of large amounts of lipids, such as triglycerides, wax esters, squalene, ceramides, free cholesterol, free fatty acids, and cholesterol and retinyl esters. Some of these lipids are used as cell membrane components, signaling molecules, and a source of energy. An important class of lipid metabolism enzymes expressed in skin is the Δ(9)-desaturases, which catalyze the synthesis in Δ(9)-monounsaturated lipids, primarily oleoyl-CoA (18:1n-9) and palmitoyl-CoA (16:1n-7), the major monounsaturated fatty acids in cutaneous lipids. Mice with a deletion of the Δ(9)-desaturase-1 isoform (SCD1) either globally (Scd1(-/-)) or specifically in the skin (skin-specific Scd1-knockout; SKO) present with marked changes in cutaneous lipids and skin integrity. Interestingly, these mice also exhibit increased whole body energy expenditure, protection against diet-induced adiposity, hepatic steatosis, and glucose intolerance. The increased energy expenditure in skin-specific Scd1-knockout (SKO) mice is a surprising phenotype, as it links cutaneous lipid homeostasis with whole body energy balance. This minireview summarizes the role of skin SCD1 in regulating skin integrity and whole body energy homeostasis and offers a discussion of potential pathways that may connect these seemingly disparate phenotypes.

  12. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  13. Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting.

    PubMed

    Cascarosa, Esther; Boldrin, Alessio; Astrup, Thomas

    2013-11-01

    Meat-and-bone-meal (MBM) produced from animal waste has become an increasingly important residual fraction needing management. As biodegradable waste is routed away from landfills, thermo-chemical treatments of MBM are considered promising solution for the future. Pyrolysis and gasification of MBM were assessed based on data from three experimental lab and pilot-scale plants. Energy balances were established for the three technologies, providing different outcomes for energy recovery: bio-oil was the main product for the pyrolysis system, while syngas and a solid fraction of biochar were the main products in the gasification system. These products can be used - eventually after upgrading - for energy production, thereby offsetting energy production elsewhere in the system. Greenhouse gases (GHG) accounting of the technologies showed that all three options provided overall GHG savings in the order of 600-1000kg CO2-eq. per Mg of MBM treated, mainly as a consequence of avoided fossil fuel consumption in the energy sector. Local conditions influencing the environmental performance of the three systems were identified, together with critical factors to be considered during decision-making regarding MBM management.

  14. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    PubMed

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis.

  15. Water and energy balance in a Mediterranean snowpack: the importance of evaposublimation

    NASA Astrophysics Data System (ADS)

    Herrero, Javier; Pimentel, Rafael; María José, Pérez-Palazón; María José, Polo

    2016-04-01

    In low-latitude snowpacks or those located in semiarid regions, snow dynamics becomes an essential driver of the hydrological cycle, as well as an important support for a number of ecosystem services with an influence over the economy and the ecology of the whole region. Therefore, it is crucial to understand the processes that are taking place in the snowpack and the relative importance and timing of the different mass and energy fluxes. Sierra Nevada is a linear mountain range parallel to the Mediterranean coastline of southern Spain at 37°N. It reaches up to 3479 m.a.s.l. in approximately 40 km from the sea. Despite the semiarid climatic conditions that surround the high mountain area, it presents a regular snow cover above 2500 m.a.s.l. during the winter season. Previous studies have shown at this site that this snowpack is very exposed to high insolation rates and strong winds, and, like in other low-latitude areas, the radiative and evaposublimation (combination of the sublimation of ice and the evaporation of the water drops melted on the surface of the snow) fluxes may have a significant and prominent value in the coupled balance. In this work, we study the evaposublimation fraction in the annual water and energy balance over the snowpack in Sierra Nevada. For this, we apply a one-layer mass and energy balance snow model developed in previous works, which has proven to adequately simulate the shallow snowpacks of Sierra Nevada during the year. High evaposublimation rates were simulated and subsequently measured during several field campaigns. Evaposublimation fractions were found to range from 24 to 33% of the total annual ablation at this site. This ratio is very changeable between years, like the local meteorology itself, even though there was not a direct relationship between this rate and the dry or humid nature of each particular year. In fact, it is the particular distribution of the rainfall throughout the year what defines the dynamics of the

  16. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  17. Estimating the actual ET from a pecan farm using the OPEC energy-balance and Penman- Monteith methods

    NASA Astrophysics Data System (ADS)

    Debele, B.; Bawazir, S. A.

    2006-12-01

    Accurate estimation of ET from field crops/orchards is the basis for better irrigation water management. In areas like Mesilla Valley, NM, where water is scarce, it is even more important to precisely determine the crop ET. An OPEC energy balance system was run for 117 days (June 22 October 14, 2001) in a matured pecan farm at Mesilla Valley, NM. The actual evapotranspiration (ET) from pecan orchards was determined from the surface energy balance as a residual, having measured the net radiation, soil heat flux, and sensible heat components using the OPEC method. Since pecans are large trees, we have also examined the effect of including thermal energies stored in the air (Ga) and plant canopy (Gc), on top of the commonly used thermal energy stored in the soil (Gs), on surface energy balance, and hence ET. The results indicate that incorporating thermal energies stored in the air and canopy has a significant effect on total energy storage for shorter temporal resolutions, such as 30-minutes and an hour. Conversely, for longer temporal resolutions (e.g., diurnal and monthly averages), the effect of including thermal energies stored in the air and vegetation on total thermal energy storage is negligible. Our results also showed that the bulk of the total thermal energy storage (G = Gs + Ga + Gc) in the surface energy balance was stored in the soil (Gs). In addition, we have also determined the crop coefficient (Kc) of pecan by combining the actual ET obtained from the OPEC method and potential ET (ET0) calculated using weather data in the surrounding area. Our average pecan Kc values were comparable with the ones reported by other researchers using different methods. We conclude that the OPEC energy balance method can be used to calculate Kc values for pecan whereby farmers and extension agents use the calculated Kc values in combination with ET0 to determine the consumptive use of pecan trees.

  18. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle.

    PubMed

    Hales, K E; Brown-Brandl, T M; Freetly, H C

    2014-01-01

    The optimal roughage concentration required in feedlot diets changes continuously for many reasons such as source, availability, price, and interaction with other ingredients in the diet. Wet distillers grains and solubles (WDGS) are common in finishing diets and they contain relatively high amounts of fiber compared with other grains they replace. Therefore, concentration of roughage could be altered when WDGS are included in feedlot diets. There has been very little data published regarding the effects of roughage concentration on energy metabolism and nutrient balance in beef steers. Therefore, the effects of roughage concentration in dry-rolled corn (DRC)-based diets containing 25% WDGS were evaluated in 8 steers (BW = 362 ± 3.71 kg) using a replicated Latin square. Data were analyzed with the fixed effects of dietary treatment and period and random effects of square and steer within square were included in the model. Diets consisted of 25% WDGS and the balance being DRC and coarsely ground alfalfa hay (AH) replacing corn at 2% (AH-2), 6% (AH-6), 10% (AH-10), and 14% (AH-14) of dietary dry matter. As a proportion of GE intake, fecal energy loss increased linearly (P = 0.02), and DE decreased linearly (P = 0.02) as dietary level of AH increased. Methane energy loss, as a proportion of GE intake, increased linearly (P < 0.01) and ME decreased linearly (P < 0.01) as dietary concentration of AH increased. Heat production tended (P = 0.10) to decrease reaching a minimum of 10% AH and increased from 10 to 14% AH inclusion. Moreover, as a proportion of GE intake, retained energy (RE) decreased (P < 0.01) as AH level increased in the diet. Reasons for the decrease in RE are 1) the increase in fecal energy loss that is associated with decreased ruminal digestibility of NDF when AH replaced DRC and the shift in ruminal VFA produced, 2) the decreased energy available for animal retention when NDF increased linearly as AH increased in the diet, and 3) the methane and heat

  19. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle.

    PubMed

    Hales, K E; Brown-Brandl, T M; Freetly, H C

    2014-01-01

    The optimal roughage concentration required in feedlot diets changes continuously for many reasons such as source, availability, price, and interaction with other ingredients in the diet. Wet distillers grains and solubles (WDGS) are common in finishing diets and they contain relatively high amounts of fiber compared with other grains they replace. Therefore, concentration of roughage could be altered when WDGS are included in feedlot diets. There has been very little data published regarding the effects of roughage concentration on energy metabolism and nutrient balance in beef steers. Therefore, the effects of roughage concentration in dry-rolled corn (DRC)-based diets containing 25% WDGS were evaluated in 8 steers (BW = 362 ± 3.71 kg) using a replicated Latin square. Data were analyzed with the fixed effects of dietary treatment and period and random effects of square and steer within square were included in the model. Diets consisted of 25% WDGS and the balance being DRC and coarsely ground alfalfa hay (AH) replacing corn at 2% (AH-2), 6% (AH-6), 10% (AH-10), and 14% (AH-14) of dietary dry matter. As a proportion of GE intake, fecal energy loss increased linearly (P = 0.02), and DE decreased linearly (P = 0.02) as dietary level of AH increased. Methane energy loss, as a proportion of GE intake, increased linearly (P < 0.01) and ME decreased linearly (P < 0.01) as dietary concentration of AH increased. Heat production tended (P = 0.10) to decrease reaching a minimum of 10% AH and increased from 10 to 14% AH inclusion. Moreover, as a proportion of GE intake, retained energy (RE) decreased (P < 0.01) as AH level increased in the diet. Reasons for the decrease in RE are 1) the increase in fecal energy loss that is associated with decreased ruminal digestibility of NDF when AH replaced DRC and the shift in ruminal VFA produced, 2) the decreased energy available for animal retention when NDF increased linearly as AH increased in the diet, and 3) the methane and heat

  20. Energy balance in urban Mexico City: observation and parameterization during the MILAGRO/MCMA-2006 field campaign

    NASA Astrophysics Data System (ADS)

    Velasco, Erik; Pressley, Shelley; Grivicke, Rasa; Allwine, Eugene; Molina, Luisa T.; Lamb, Brian

    2011-03-01

    The parameterization of the energy balance from a residential and commercial neighborhood of Mexico City was investigated using direct measurements of radiative and heat fluxes carried out during the MILAGRO/MCMA-2006 field campaign as a reference. The measured fluxes were used to evaluate different models of the energy balance based on parameterizations that require standard meteorological observations: ambient temperature, relative humidity, atmospheric pressure and cloudiness. It was found that these models reproduce with reasonable accuracy the diurnal features of the radiative and heat fluxes. The largest differences between modeled and observed fluxes correspond to the incoming longwave radiation, mainly due to errors in the cloudiness data. This paper contributes to the understanding of the energy partitioning in (sub)tropical urban environments, particularly in the developing world, where energy balance models have not been evaluated.

  1. Evaluating ET estimates from the Simplified Surface Energy Balance (SSEB) model using METRIC model output

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Budde, M. E.; Allen, R. G.; Verdin, J. P.

    2008-12-01

    Evapotranspiration (ET) is an important component of the hydrologic budget because it expresses the exchange of mass and energy between the soil-water-vegetation system and the atmosphere. Since direct measurement of ET is difficult, various modeling methods are used to estimate actual ET (ETa). Generally, the choice of method for ET estimation depends on the objective of the study and is further limited by the availability of data and desired accuracy of the ET estimate. Operational monitoring of crop performance requires processing large data sets and a quick response time. A Simplified Surface Energy Balance (SSEB) model was developed by the U.S. Geological Survey's Famine Early Warning Systems Network to estimate irrigation water use in remote places of the world. In this study, we evaluated the performance of the SSEB model with the METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) model that has been evaluated by several researchers using the Lysimeter data. The METRIC model has been proven to provide reliable ET estimates in different regions of the world. Reference ET fractions of both models (ETrF of METRIC vs. ETf of SSEB) were generated and compared using individual Landsat thermal images collected from 2000 though 2005 in Idaho, New Mexico, and California. In addition, the models were compared using monthly and seasonal total ETa estimates. The SSEB model reproduced both the spatial and temporal variability exhibited by METRIC on land surfaces, explaining up to 80 percent of the spatial variability. However, the ETa estimates over water bodies were systematically higher in the SSEB output, which could be improved by using a correction coefficient to take into account the absorption of solar energy by deeper water layers that has little contribution to the ET process. This study demonstrated the usefulness of the SSEB method for large-scale agro-hydrologic applications for operational monitoring and assessing of

  2. Dietary electrolyte balance affects the nutrient digestibility and maintenance energy expenditure of Nile tilapia.

    PubMed

    Saravanan, S; Geurden, I; Orozco, Z G A; Kaushik, S J; Verreth, J A J; Schrama, J W

    2013-12-14

    Acid-base disturbances caused by environmental factors and physiological events including feeding have been well documented in several fish species, but little is known about the impact of dietary electrolyte balance (dEB). In the present study, we investigated the effect of feeding diets differing in dEB (-100, 200, 500 or 800 mEq/kg diet) on the growth, nutrient digestibility and energy balance of Nile tilapia. After 5 weeks on the test diet, the growth of the fish was linearly affected by the dEB levels (P< 0·001), with the lowest growth being observed in the fish fed the 800 dEB diet. The apparent digestibility coefficient (ADC) of fat was unaffected by dEB, whereas the ADC of DM and protein were curvilinearly related to the dEB levels, being lowest and highest in the 200 and 800 dEB diets, respectively. Stomach chyme pH at 3 h after feeding was linearly related to the dEB levels (P< 0·05). At the same time, blood pH of the heart (P< 0·05) and caudal vein (P< 0·01) was curvilinearly related to the dEB levels, suggesting the influence of dEB on postprandial metabolic alkalosis. Consequently, maintenance energy expenditure (MEm) was curvilinearly related to the dEB levels (P< 0·001), being 54 % higher in the 800 dEB group (88 kJ/kg(0·8) per d) than in the 200 dEB group (57 kJ/kg(0·8) per d). These results suggest that varying dEB levels in a diet have both positive and negative effects on fish. On the one hand, they improve nutrient digestibility; on the other hand, they challenge the acid-base homeostasis (pH) of fish, causing an increase in MEm, and thereby reduce the energy required for growth.

  3. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance

    PubMed Central

    Alvarez-Crespo, Mayte; Csikasz, Robert I.; Martínez-Sánchez, Noelia; Diéguez, Carlos; Cannon, Barbara; Nedergaard, Jan; López, Miguel

    2016-01-01

    Objective Classically, metabolic effects of thyroid hormones (THs) have been considered to be peripherally mediated, i.e. different tissues in the body respond directly to thyroid hormones with an increased metabolism. An alternative view is that the metabolic effects are centrally regulated. We have examined here the degree to which prolonged, centrally infused triiodothyronine (T3) could in itself induce total body metabolic effects and the degree to which brown adipose tissue (BAT) thermogenesis was essential for such effects, by examining uncoupling protein 1 (UCP1) KO mice. Methods Wildtype and UPC1 KO mice were centrally-treated with T3 by using minipumps. Metabolic measurements were analyzed by indirect calorimetry and expression analysis by RT-PCR or western blot. BAT morphology and histology were studied by immunohistochemistry. Results We found that central T3-treatment led to reduced levels of hypothalamic AMP-activated protein kinase (AMPK) and elevated body temperature (0.7 °C). UCP1 was essential for the T3-induced increased rate of energy expenditure, which was only observable at thermoneutrality and notably only during the active phase, for the increased body weight loss, for the increased hypothalamic levels of neuropeptide Y (NPY) and agouti-related peptide (AgRP) and for the increased food intake induced by central T3-treatment. Prolonged central T3-treatment also led to recruitment of BAT and britening/beiging (“browning”) of inguinal white adipose tissue (iWAT). Conclusions We conclude that UCP1 is essential for mediation of the central effects of thyroid hormones on energy balance, and we suggest that similar UCP1-dependent effects may underlie central energy balance effects of other agents. PMID:27069867

  4. The dust energy balance in the edge-on spiral galaxy NGC 4565

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Ciesla, Laure; Cortese, Luca; de Geyter, Gert; Groves, Brent; Boquien, Médéric; Boselli, Alessandro; Brondeel, Lena; Cooray, Asantha; Eales, Steve; Fritz, Jacopo; Galliano, Frédéric; Gentile, Gianfranco; Gordon, Karl D.; Hony, Sacha; Law, Ka-Hei; Madden, Suzanne C.; Sauvage, Marc; Smith, Matthew W. L.; Spinoglio, Luigi; Verstappen, Joris

    2012-12-01

    We combine new dust continuum observations of the edge-on spiral galaxy NGC 4565 in all Herschel/Spectral and Photometric Imaging Receiver (250, 350 and 500 μm) wavebands, obtained as part of the Herschel Reference Survey, and a large set of ancillary data (Spitzer, Sloan Digital Sky Survey, Galaxy Evolution Explorer) to analyse its dust energy balance. We fit a radiative transfer model for the stars and dust to the optical maps with the fitting algorithm FITSKIRT. To account for the observed ultraviolet and mid-infrared emission, this initial model was supplemented with both obscured and unobscured star-forming regions. Even though these star-forming complexes provide an additional heating source for the dust, the far-infrared/submillimetre emission long wards of 100 μm is underestimated by a factor of 3-4. This inconsistency in the dust energy budget of NGC 4565 suggests that a sizable fraction (two-thirds) of the total dust reservoir (Md ˜ 2.9 × 108 M⊙) consists of a clumpy distribution with no associated young stellar sources. The distribution of those dense dust clouds would be in such a way that they remain unresolved in current far-infrared/submillimetre observations and hardly contribute to the attenuation at optical wavelengths. More than two-thirds of the dust heating in NGC 4565 is powered by the old stellar population, with localized embedded sources supplying the remaining dust heating in NGC 4565. The results from this detailed dust energy balance study in NGC 4565 are consistent with that of similar analyses of other edge-on spirals.

  5. Remote sensing of energy balance for estimating land evapotranspiration in the semi-arid southwestern USA

    NASA Astrophysics Data System (ADS)

    Mariotto, Isabella

    Modeling spatial variation of evapotranspiration (ET) over heterogeneous landscapes is a difficult task for hydrologists, agronomists, and meteorologists. The application of energy balance algorithms to remotely sensed imagery often fails in properly discriminating ET over spectrally diverse land covers for the complexity of modeling the surface roughness. Furthermore, the assumption of a horizontally homogeneous Lambertian surface reflecting energy equally in all directions affects the albedo and vegetation index calculations. The objective of this study is to improve the accuracy of the Surface Energy Balance Algorithm for Land (SEBAL) for estimating ET from ASTER datasets by analyzing the spatial variation of anisotropic reflectance and surface roughness among different plant species-dominated grasslands, shrublands, and dunelands in Southern New Mexico. The degree to which land cover surfaces are anisotropic is assessed by applying a wavelength-dependent non-Lambertian topographic transformation with the Minnaert function. Surface roughness is modeled using a land cover map in conjunction with the fractional vegetation cover derived from vegetation indices. SEBAL modified for reflectance or for roughness showed stronger agreement with the Eddy-Covariance measurements than the non-modified SEBAL. Furthermore, the former showed higher, intermediate, and lower ET values among grasslands, schrublands, and dunelands respectively, while the latter resulted in more homogeneous ET values among land covers and in overestimation of ET over dunelands and underestimation over grasslands. Multiple pairwise land covers comparisons of ET means showed higher potential of the corrected model in discriminating ET. This study suggests that some assumptions in SEBAL tend to inadvertently homogenize ET on these diverse landscapes.

  6. Two Different Applications of Surface Energy Balance System (SEBS) Based on Point and Regional Scale Datasets

    NASA Astrophysics Data System (ADS)

    Byun, K.

    2013-12-01

    Accurate estimation of evapotranspiration (ET) has been considered as one of the most essential components for understanding of interaction between the land surface and atmosphere in terms of water and energy cycles. In practical aspect, ET is also significant for planning of water resource management such as water-saving irrigation and drought mitigation especially in semi and arid environments where the shortage of water is the most critical issue. Although conventional field measurements of ET including Bowen ratio (BR), eddy covariance (EC), and lysimeter systems can be utilized over a homogeneous area, there is a crucial limitation because field measurements can be hardly extended to regional scale. Numerous algorithms have been developed for accurate estimation of ET in regional scale using remotely sensed data acquired by sensors onboard satellites. As one of the primary remote sensing based ET model, the surface energy balance system (SEBS) determines atmospheric turbulent fluxes based on (1) land surface physical properties such as albedo, emissivity, land surface temperature and vegetation cover etc. (2) the determination of roughness length for heat transfer and (3) a new formulation for determining the evaporative fraction from energy balance at limiting cases. This study focused on the application of SEBS in Korean Peninsula where few researches on ET using remote sensing model have been conducted and evaluation of this model in this region by comparing its estimates with field measurements from EC systems on two topographically different catchments. In addition, two different scale applications of SEBS were assessed based on forcing dataset, i.e. point measurements and GLDAS, respectively. The results of this study show that SEBS estimates latent heat flux in acceptable range of error (7~11 % of relative bias) and can be applied for both irrigated and mixed forest areas. Furthermore, the results of both SEBS application (point and regional) are

  7. Arctic Summer Surface Energy Balance at Two Coastal Drained Lake Basins, Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Liljedahl, A.; Hinzman, L.; Harazono, Y.; Zona, D.; Oechel, W.

    2008-12-01

    We examined the partitioning of the summer surface energy balance at two coastal drained lake basins using measurements from two eddy covariance towers in Barrow, Alaska. Drained lake basins are a common land feature covering approximately one fourth of the Arctic Coastal Plain but have been given limited attention. Overall, wetlands are extensive in the region in spite of an annual precipitation close to a desert and a negative summer P-ET. Included in the analysis was summer 2007, which experienced unusually high air temperatures and low precipitation compared to the long term mean. During the five analyzed summers, most of the energy available at the ground surface was partitioned into sensible heat flux despite saturated or nearly saturated near-surface soils. The maritime conditions resulted in a cool and close to saturated air mass with a few exceptions on individual days. With a ground surface often warmer than the air above and limited air vapor pressure deficits, the dissipation of the available heat at the ground surface was mainly partitioned into sensible heat flux resulting in midday Bowen Ratios (sensible divided by latent heat flux) above unity. Total daily latent heat flux presented in mm of water varied between 0.2 - 4.2 mm/day with a Jun-Aug mean of 1.5 mm. In 80% of the analyzed days, mean midday evapotranspiration occurred below the equilibrium rate resulting in a Priestley-Taylor alpha value below unity. The equilibrium evaporation rates of inland arctic wetlands have previously shown to occur at or above equilibrium rate. Further, the energy balance partitioning of a wetland located in a maritime or continental climate show differences such as in the Bowen Ratio. It is therefore necessary to analyze coastal and inland areas separately when examining the hydrological response of wetlands to climate changes.

  8. Contrasting characteristics of the surface energy balance between the urban and rural areas of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Gao, Zhiqiu; Miao, Shiguang; Guo, Xiaofeng; Sun, Ting; Liu, Maofeng; Li, Dan

    2015-04-01

    A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban-rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy (the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban-rural contrasts in relevant energy-balance components that plausibly arise from urban-rural differences in atmospheric and land-surface conditions.

  9. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  10. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...

  11. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity. PMID:26542800

  12. Preliminary energy balance and economic of a farm-scale ethanol plant

    SciTech Connect

    Jantzen, D.; McKinnon, T.

    1980-05-01

    A small-scale ethanol plant was designed, built, tested, and modified over the past 18 months. The plant currently operating is the second design. A third, and probably final, design will be installed and operating within a few months. The current plant produces approximately 30 gal/hr of 190-proof alcohol on a continuous basis. The new plant will produce 50 gal/hr of 200-proof alcohol. A key feature is the relatively low process heat requirement, which is achieved by extensive use of waste-heat recovery heat exchangers. This is manifested in the low temperatures of the process output streams. Acting on the request of the Office of Alcohol Fuels, US Department of Energy, and at the invitation of the owners, representatives from the Solar Energy Research Institute evaluated the energy balance on the plant. The objective was to help clear up the controversy surrounding the net energy benefit of ethanol production. Although the study was site-specific to the plant and limited in scope, it is indicative of the potential performance of grain-to-ethanol plants in general.

  13. The effect of H3+ cooling on jovian thermospheric energy and momentum balance

    NASA Astrophysics Data System (ADS)

    Ray, L. C.; Achilleos, N. A.; Miller, S.

    2014-12-01

    When the Galileo probe entered Jupiter's equatorial atmosphere, it measured thermospheric exobase temperatures of ~900 K, 700 K higher than what was expected from solar EUV heating. Therefore, there is an 'energy crisis' at Jupiter, in which a large source of equatorial heating is unaccounted for. A prime candidate to explain the high temperatures is the transport of auroral energy equatorwards from high latitudes. However, the combination of strong Coriolis forces from the rapid planetary rotation rate, coupled with ion drag from magnetosphere-ionosphere coupling, results in an 'ion drag fridge' effect (Smith et al., 2007), which acts to transport auroral energy poleward, rather than equatorward. We modify the UCL JASMIN model (Jovian Axisymmetric Simulator with Magnetosphere, Ionosphere, and Neutrals) to include the effects of auroral heating and H3+ cooling. Thus far, auroral heating and H3+ cooling were neglected in dynamical models of the coupled thermosphere-ionosphere-magnetosphere system, in order to focus on the effects of joule heating and ion drag on the jovian thermosphere. We explore how including these heating and cooling terms alters the energy and momentum balance, and subsequently meridional transport through Jupiter's thermosphere.

  14. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  15. Energy Balance, the PI3K-AKT-mTOR Pathway Genes and the Risk of Bladder Cancer

    PubMed Central

    Lin, Jie; Wang, Jianming; Greisinger, Anthony J.; Grossman, H. Barton; Forman, Michele R.; Dinney, Colin P.; Hawk, Ernest T.; Wu, Xifeng

    2010-01-01

    We evaluated the association between energy balance and risk of bladder cancer and assessed joint effects of genetic variants in the mTOR pathway genes with energy balance. The study included 803 Caucasian bladder cancer patients and 803 healthy Caucasian controls matched to cases by age (± 5 years) and gender. High energy intake (OR=1.60; 95% CI=1.23-2.09) and low physical activity (OR=2.82; 95% CI=2.10-3.79) were each associated with significantly increased risk of bladder cancer with dose-response trends (P for trend<0.001). However, obesity (BMI ≥30) was not associated with the risk. Among 222 SNPs, 28 SNPs located in 6 genes of mTOR pathway were significantly associated with the risk. Further, the risk associated with high energy intake and low physical activity was only observed among subjects carrying a high number of unfavorable genotypes in the pathway. Moreover, when physical activity, energy intake and genetic variants were analyzed jointly, the study population was clearly stratified into a range of low to high risk subgroups as defined energy balance status. Compared to subjects within the most favorable energy balance category (low energy intake, intensive physical activity, low number of unfavorable genotypes), subjects in the worst energy balance category (high energy intake, low physical activity, and carrying seven or more unfavorable genotypes) had 21.93-fold increased risk (95% CI=6.7 to 71.77). Our results provide the first strong support that physical activity, energy intake and genetic variants in the mTOR pathway jointly influence bladder cancer susceptibility and these results have implications in bladder cancer prevention. PMID:20354165

  16. Why 24-h Urine Albumin Excretion Rate Method Still is Used for Screening of Diabetic Nephropathy in Isfahan Laboratories?

    PubMed Central

    Teimoury, Azam; Iraj, Bijan; Heidari-Beni, Motahar; Amini, Massoud; Hosseiny, Seyed-Mohsen

    2014-01-01

    Background: The first step in diagnosis of diabetic nephropathy is measurement of albumin in a spot urine sample. The aim of this study was assessment of the accuracy of urinary albumin to creatinine ratio (UACR) in random urine specimens (RUS) for microalbuminuria and macroalbuminuria screening in Iranian diabetic patients. Methods: A total of 200 diabetic patients participated to our study. 24 h timed urine specimens followed by RUS were collected. 24-h urine albumin excretion (24-h urinary albumin excretion (UAE)) and UACR in RUS were measured. Data were analyzed by Pearson's correlation, receiver operating characteristic (ROC) curve and McNemar test. Results: A total of 165 patients finalized the study. Pearson's correlation of coefficient for 24-h UAE versus UACR was 0.64. The area under ROC curve for UACR was 0.83 in microalbuminuria and 0.91 in macroalbuminuria. The cutoff point of 30 mg/g in UACR method had 86% sensitivity and 60% specificity for microalbuminuria screening and cut-off point of 300 mg/g had 75% sensitivity and 99% specificity for macroalbuminuria screening respectively. Conclusions: UACR in RUS showed acceptable performance as a screening test for diagnosis of both micro and macroalbuminuria in Iranian diabetic patients. PMID:24829719

  17. [Use of customer relationship management to improve healthcare for citizens. The 24h Andalusian Health Service: Healthline].

    PubMed

    Quero, Manuel; Ramos, María Belén; López, Wilfredo; Cubillas, Juan José; González, José María; Castillo, José Luis

    2016-01-01

    Salud Responde (in English: Healthline) is a Health Service and Information Centre of the taxpayer-funded Andalusian Health System (AHS) that offers a Telephone Health Advisory Service called SA24h, among other services. The main objective of SA24h is to inform and advise citizens on health issues and the available health resources of the AHS. SA24h has a Customer Relationship Management information technology tool that organises information at various levels of specialization. Depending on the difficulty of the query, the citizen is attended by professionals with dist