Science.gov

Sample records for 24-h glucose rhythms

  1. Ambulant 24-h glucose rhythms mark calendar and biological age in apparently healthy individuals.

    PubMed

    Wijsman, Carolien A; van Heemst, Diana; Hoogeveen, Evelien S; Slagboom, P Eline; Maier, Andrea B; de Craen, Anton J M; van der Ouderaa, Frans; Pijl, Hanno; Westendorp, Rudi G J; Mooijaart, Simon P

    2013-04-01

    Glucose metabolism marks health and disease and is causally inferred in the aging process. Ambulant continuous glucose monitoring provides 24-h glucose rhythms under daily life conditions. We aimed to describe ambulant 24-h glucose rhythms measured under daily life condition in relation to calendar and biological age in apparently healthy individuals. In the general population and families with propensity for longevity, we studied parameters from 24-h glucose rhythms; glucose levels; and its variability, obtained by continuous glucose monitoring. Participants were 21 young (aged 22-37 years), 37 middle-aged (aged 44-72 years) individuals from the general population, and 26 middle-aged (aged 52-74 years) individuals with propensity for longevity. All were free of diabetes. Compared with young individuals, middle-aged individuals from the general population had higher mean glucose levels (5.3 vs. 4.7 mmol L(-1) , P < 0.001), both diurnally (P < 0.001) and nocturnally (P = 0.002). Glucose variability was higher in the middle-aged compared with the young (standard deviation 0.70 vs. 0.57 mmol L(-1) , P = 0.025). Compared with middle-aged individuals from the general population, middle-aged individuals with propensity for longevity had lower overall mean glucose levels (5.2 vs. 5.4 mmol L(-1) , P = 0.047), which were more different nocturnally (4.8 vs. 5.2 mmol L(-1) , P = 0.003) than diurnally (5.3 vs. 5.5 mmol L(-1) , P = 0.14). There were no differences in glucose variability between these groups. Results were independent of body mass index. Among individuals without diabetes, we observed significantly different 24-h glucose rhythms depending on calendar and biological age.

  2. Eplerenone restores 24-h blood pressure circadian rhythm and reduces advanced glycation end-products in rhesus macaques with spontaneous hypertensive metabolic syndrome

    PubMed Central

    Zhang, Yan; Zheng, Wen; Liu, Yuli; Wang, Jue; Peng, Ying; Shang, Haibao; Hou, Ning; Hu, Xiaomin; Ding, Yi; Xiao, Yao; Wang, Can; Zeng, Fanxin; Mao, Jiaming; Zhang, Jun; Ma, Dongwei; Sun, Xueting; Li, Chuanyun; Xiao, Rui-Ping; Zhang, Xiuqin

    2016-01-01

    Hypertension is often associated with metabolic syndrome (MetS), and serves as a risk factor of MetS and its complications. Blood pressure circadian rhythm in hypertensive patients has been suggested to contribute to cardiovascular consequences and organ damage of hypertension. But circadian changes of BP and their response to drugs have not been clearly investigated in non-human primates (NHPs) of MetS with hypertension. Here, we identified 16 elderly, hypertensive MetS rhesus monkeys from our in-house cohort. With implanted telemetry, we investigate BP changes and its circadian rhythm, together with the effect of antihypertensive drugs on BP and its diurnal fluctuation. MetS hypertensive monkeys displayed higher BP, obesity, glucose intolerance, and dyslipidemia. We also confirmed impaired 24-h BP circadian rhythm in MetS hypertensive monkeys. Importantly, Eplerenone, a mineralocorticoid receptor blocker, exerts multiple beneficial effects in MetS hypertensive monkeys, including BP reduction, 24-h BP circadian rhythm restoration, and decreased plasma concentration of inflammation factors and advanced glycation end-products. In summary, we identified a naturally-developed hypertensive MetS NHP model, which is of great value in the studies on pathogenesis of MetS-associated hypertension and development of novel therapeutic strategies. We also provided multiple novel mechanistic insights of the beneficial effect of Eplerenone on MetS with hypertension. PMID:27032687

  3. Eplerenone restores 24-h blood pressure circadian rhythm and reduces advanced glycation end-products in rhesus macaques with spontaneous hypertensive metabolic syndrome.

    PubMed

    Zhang, Yan; Zheng, Wen; Liu, Yuli; Wang, Jue; Peng, Ying; Shang, Haibao; Hou, Ning; Hu, Xiaomin; Ding, Yi; Xiao, Yao; Wang, Can; Zeng, Fanxin; Mao, Jiaming; Zhang, Jun; Ma, Dongwei; Sun, Xueting; Li, Chuanyun; Xiao, Rui-Ping; Zhang, Xiuqin

    2016-04-01

    Hypertension is often associated with metabolic syndrome (MetS), and serves as a risk factor of MetS and its complications. Blood pressure circadian rhythm in hypertensive patients has been suggested to contribute to cardiovascular consequences and organ damage of hypertension. But circadian changes of BP and their response to drugs have not been clearly investigated in non-human primates (NHPs) of MetS with hypertension. Here, we identified 16 elderly, hypertensive MetS rhesus monkeys from our in-house cohort. With implanted telemetry, we investigate BP changes and its circadian rhythm, together with the effect of antihypertensive drugs on BP and its diurnal fluctuation. MetS hypertensive monkeys displayed higher BP, obesity, glucose intolerance, and dyslipidemia. We also confirmed impaired 24-h BP circadian rhythm in MetS hypertensive monkeys. Importantly, Eplerenone, a mineralocorticoid receptor blocker, exerts multiple beneficial effects in MetS hypertensive monkeys, including BP reduction, 24-h BP circadian rhythm restoration, and decreased plasma concentration of inflammation factors and advanced glycation end-products. In summary, we identified a naturally-developed hypertensive MetS NHP model, which is of great value in the studies on pathogenesis of MetS-associated hypertension and development of novel therapeutic strategies. We also provided multiple novel mechanistic insights of the beneficial effect of Eplerenone on MetS with hypertension.

  4. Sleep and 24-h activity rhythms in relation to cortisol change after a very low-dose of dexamethasone.

    PubMed

    Luik, Annemarie I; Direk, Neşe; Zuurbier, Lisette A; Hofman, Albert; Van Someren, Eus J W; Tiemeier, Henning

    2015-03-01

    The hypothalamic-pituitary-adrenal (HPA) axis plays an important role in sleep. Nevertheless, the association of sleep and its 24-h organization with negative feedback control of the HPA axis has received limited attention in population-based studies. We explored this association in 493 middle-aged persons of the Rotterdam Study, a large population-based study (mean age 56 years, standard deviation: 5.3 years; 57% female). The negative feedback of the HPA axis was measured as the change in morning saliva cortisol after the intake of 0.25mg dexamethasone the night before. Actigraphy allowed us to measure the stability and fragmentation of the activity rhythm and to estimate total sleep time, sleep onset latency and wake after sleep onset. A sleep diary kept during the week of actigraphy was used to assess self-reported total sleep time, sleep onset latency, number of awakenings and perceived sleep quality. In our study, enhanced negative feedback of the HPA axis was found in association with unstable activity rhythms (B=0.106, 95% confidence interval (CI): 0.002; 0.210), total sleep time (B=0.108, 95%CI: 0.001; 0.215) and poor subjective sleep quality (B=0.107, 95%CI: 0.009; 0.206) after multivariate adjustment. These results indicated that the 24-h organization, duration and experience of sleep are all associated with the negative feedback control of the HPA axis.

  5. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome.

    PubMed

    Heise, I; Fisher, S P; Banks, G T; Wells, S; Peirson, S N; Foster, R G; Nolan, P M

    2015-02-01

    Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel-running analysis and video-based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep-like behaviour during the light phase of a 12:12-h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night-time was less effective in inducing sleep-like behaviour in Tc1 animals than in wild-type controls. In wheel-running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep-related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.

  6. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.

    PubMed

    López-Yoldi, Miguel; Stanhope, Kimber L; Garaulet, Marta; Chen, X Guoxia; Marcos-Gómez, Beatriz; Carrasco-Benso, María Paz; Santa Maria, Eva M; Escoté, Xavier; Lee, Vivien; Nunez, Marinelle V; Medici, Valentina; Martínez-Ansó, Eduardo; Sáinz, Neira; Huerta, Ana E; Laiglesia, Laura M; Prieto, Jesús; Martínez, J Alfredo; Bustos, Matilde; Havel, Peter J; Moreno-Aliaga, Maria J

    2017-04-01

    Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of oxygen consumption rate (Vo2) was disrupted in aged obese CT-1-deficient (CT-1(-/-)) mice (12 mo). Although circadian rhythms of Vo2 were conserved in young lean CT-1(-/-) mice (2 mo), CT-1 deficiency caused a phase shift of the acrophase. Most of the clock genes studied (Clock, Bmal1, and Per2) displayed a circadian rhythm in adipose tissue of both wild-type (WT) and CT-1(-/-) mice. However, the pattern was altered in CT-1(-/-) mice toward a lower percentage of the rhythm or lower amplitude, especially for Bmal1 and Clock. Moreover, CT-1 mRNA levels in adipose tissue showed significant circadian fluctuations in young WT mice. In humans, CT-1 plasma profile exhibited a 24-h circadian rhythm in normal-weight but not in overweight subjects. The 24-h pattern of CT-1 was characterized by a pronounced increase during the night (from 02:00 to 08:00). These observations suggest a potential role for CT-1 in the regulation of metabolic circadian rhythms.-López-Yoldi, M., Stanhope, K. L., Garaulet, M., Chen, X. G., Marcos-Gómez, B., Carrasco-Benso, M. P., Santa Maria, E. M., Escoté, X., Lee, V., Nunez, M. V., Medici, V., Martínez-Ansó, E., Sáinz, N., Huerta, A. E., Laiglesia, L. M., Prieto, J., Martínez, J. A., Bustos, M., Havel, P. J., Moreno-Aliaga, M. J. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.

  7. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to compare the effectiveness of three 15-min bouts of postmeal walking with 45 min of sustained walking on 24-h glycemic control in older persons at risk for glucose intolerance. Inactive older (=60 years of age) participants (N = 10) were recruited from the community a...

  8. Effects of luseogliflozin, a sodium-glucose co-transporter 2 inhibitor, on 24-h glucose variability assessed by continuous glucose monitoring in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, crossover study.

    PubMed

    Nishimura, R; Osonoi, T; Kanada, S; Jinnouchi, H; Sugio, K; Omiya, H; Ubukata, M; Sakai, S; Samukawa, Y

    2015-08-01

    The aim of the present study was to determine the effects of luseogliflozin on 24-h glucose levels, assessed by continuous glucose monitoring, and on pharmacodynamic variables measured throughout the day. In this double-blind, placebo-controlled, crossover study, 37 patients with type 2 diabetes mellitus inadequately controlled with diet and exercise were randomized into two groups. Patients in each group first received luseogliflozin then placebo for 7 days each, or vice versa. After 7 days of treatment, the mean 24-h glucose level was significantly lower with luseogliflozin than with placebo [mean (95% confidence interval) 145.9 (134.4-157.5) mg/dl vs 168.5 (156.9-180.0) mg/dl; p < 0.001]. The proportion of time spent with glucose levels ≥70 to ≤180 mg/dl was significantly greater with luseogliflozin than with placebo [median (interquartile range) 83.2 (67.7-96.5)% vs 71.9 (46.9-83.3)%; p < 0.001] without inducing hypoglycaemia. The decrease in glucose levels was accompanied by reductions in serum insulin levels throughout the day.

  9. Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue.

    PubMed

    La Fleur, S E

    2003-03-01

    The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes.

  10. Aging-induced changes in 24-h rhythms of mitogenic responses, lymphocyte subset populations and neurotransmitter and amino acid content in rat submaxillary lymph nodes during Freund's adjuvant arthritis.

    PubMed

    Bonacho, M G; Cardinali, D P; Castrillón, P; Cutrera, R A; Esquifino, A I

    2001-02-01

    In young (two months) and aged (18 months) male rats injected s.c. with Freund's adjuvant or adjuvant's vehicle 18 days earlier, 24-h variations in mitogenic responses, lymphocyte subsets and monoamine and amino acid content were examined in submaxillary lymph nodes. Mitogenic responses to concanavalin A (Con A) and lipopolysaccharide (LPS) were higher during the light phase of daily photoperiod. Old rats exhibited a suppressed or impaired mitogenic response to Con A but not to LPS. Acrophases of 24-h rhythm in lymphocyte subset populations in submaxillary lymph nodes were: 18:37-19:44h (B cells), 09:00-10:08h (T and CD4(+) cells) and 12:19-15:58h (CD8(+) cells). Aging augmented B cells and decreased T, CD4(+) and CD8(+) cells. Significant correlations were found between Con A activity and T cells, between lymph node 5HT content and B, T and CD8(+) lymphocytes, and between lymph node 5HT and taurine and GABA content. Aging increased lymph node 5HT content but did not modify NE content. Lymph node concentration of aspartate, glutamate and taurine was higher at night while that of GABA attained peak values at late afternoon. Old rats injected with Freund's adjuvant showed a higher mean value (glutamate) and smaller amplitude (glutamate, taurine) than their respective young controls. The results further document the effects of aging on the chronobiology of the immune system.

  11. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Guerra-Santos, Bartira; López-Olmeda, José Fernando; de Mattos, Bruno Olivetti; Baião, Alice Borba; Pereira, Denise Soledade Peixoto; Sánchez-Vázquez, Francisco Javier; Cerqueira, Robson Bahia; Albinati, Ricardo Castelo Branco; Fortes-Silva, Rodrigo

    2017-02-01

    The light-dark cycle and feeding can be the most important factors acting as synchronizers of biological rhythms. In this research we aimed to evaluate synchronization to feeding schedule of daily rhythms of locomotor activity and digestive enzymes of tilapia. For that purpose, 120 tilapias (65.0±0.6g) were distributed in 12 tanks (10 fish per tank) and divided into two groups. One group was fed once a day at 11:00h (zeitgeber time, ZT6) (ML group) and the other group was fed at 23:00h (ZT18) (MD group). The fish were anesthetized to collect samples of blood, stomach and midgut at 4-hour intervals over a period of 24h. Fish fed at ML showed a diurnal locomotor activity (74% of the total daily activity occurring during the light phase) and synchronization to the feeding schedule, as this group showed anticipation to the feeding time. Fish fed at MD showed a disruption in the pattern of locomotor activity and became less diurnal (59%). Alkaline protease activity in the midgut showed daily rhythm with the achrophase at the beginning of the dark phase in both ML and MD groups. Acid protease and amylase did not show significant daily rhythms. Plasma glucose showed a daily rhythm with the achrophase shifted by 12h in the ML and MD groups. These results revealed that the feeding time and light cycle synchronize differently the daily rhythms of behavior, digestive physiology and plasma metabolites in the Nile tilapia, which indicate the plasticity of the circadian system and its synchronizers.

  12. Serum immunoreactive relaxin in women during a 24-h period.

    PubMed

    Seki, K; Kato, K; Tabei, T

    1987-03-01

    Serum relaxin concentrations were measured every 30 min during a 24-h period in nonpregnant and pregnant women. Relaxin was undetectable in all serum samples obtained from 3 nonpregnant women. Relaxin was detectable in all serum samples obtained from 2 pregnant women. However, neither episodic secretion of relaxin nor a 24-h rhythm in relaxin secretion was discernible in these women.

  13. Daily Fasting Blood Glucose Rhythm in Male Mice: A Role of the Circadian Clock in the Liver.

    PubMed

    Ando, Hitoshi; Ushijima, Kentaro; Shimba, Shigeki; Fujimura, Akio

    2016-02-01

    Fasting blood glucose (FBG) and hepatic glucose production are regulated according to a circadian rhythm. An early morning increase in FBG levels, which is pronounced among diabetic patients, is known as the dawn phenomenon. Although the intracellular circadian clock generates various molecular rhythms, whether the hepatic clock is involved in FBG rhythm remains unclear. To address this issue, we investigated the effects of phase shift and disruption of the hepatic clock on the FBG rhythm. In both C57BL/6J and diabetic ob/ob mice, FBG exhibited significant daily rhythms with a peak at the beginning of the dark phase. Light-phase restricted feeding altered the phase of FBG rhythm mildly in C57BL/6J mice and greatly in ob/ob mice, in concert with the phase shifts of mRNA expression rhythms of the clock and glucose production-related genes in the liver. Moreover, the rhythmicity of FBG and Glut2 expression was not detected in liver-specific Bmal1-deficient mice. Furthermore, treatment with octreotide suppressed the plasma growth hormone concentration but did not affect the hepatic mRNA expression of the clock genes or the rise in FBG during the latter half of the resting phase in C57BL/6J mice. These results suggest that the hepatic circadian clock plays a critical role in regulating the daily FBG rhythm, including the dawn phenomenon.

  14. Endocrine (plasma cortisol and glucose) and behavioral (locomotor and self-feeding activity) circadian rhythms in Senegalese sole (Solea senegalensis Kaup 1858) exposed to light/dark cycles or constant light.

    PubMed

    Oliveira, Catarina C V; Aparício, Rocio; Blanco-Vives, Borja; Chereguini, Olvido; Martín, Ignacio; Javier Sánchez-Vazquez, F

    2013-06-01

    The existence of daily rhythms under light/dark (LD) cycles in plasma cortisol, blood glucose and locomotor and self-feeding activities, as well as their persistence (circadian nature) under constant light (LL), was investigated in Senegalese sole (Solea senegalensis). For the cortisol and glucose rhythms study, 48 soles were equally distributed in 8 tanks and exposed to a 12:12 LD cycle and natural water temperature (experiment 1). After an acclimation period, blood was sampled every 3 h until a 24-h cycle was completed. Blood glucose levels were measured immediately after sampling, while plasma cortisol was measured later by ELISA. In experiment 2, the fish were exposed to LL for 11 days, and after this period, the same sampling procedure was repeated. For the study of locomotor and self-feeding rhythms (experiment 3), two groups of sole were used: one exposed to LD and the other to LL. Each group was distributed within 3 tanks equipped with infrared photocells for the record of locomotor activity, and self-feeders for feeding behavior characterization. The results revealed a marked oscillation in cortisol concentrations during the daily cycle under LD, with a peak (35.65 ± 3.14 ng/ml) in the afternoon (15:00 h) and very low levels during the night (5.30 ± 1.09 ng/ml). This cortisol rhythm persisted under LL conditions, with lower values (mean cortisol concentration = 7.12 ± 1.11 ng/ml) and with the peak shifted by 3 h. Both rhythms were confirmed by COSINOR analysis (p < 0.05). The synchronizing role of temperature and feeding schedule, in addition to light, is also discussed. Diel rhythms of glucose were not evident in LD or LL. As to locomotor and self-feeding activity, a very marked rhythm was observed under LD, with higher activity observed during the night, with acrophases located at 2:14 and 3:37 h, respectively. The statistical significance of daily rhythms was confirmed by COSINOR analysis. Under LL, both feeding and locomotor

  15. Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose.

    PubMed

    Mühlbauer, Eckhard; Gross, Elena; Labucay, Karin; Wolgast, Sabine; Peschke, Elmar

    2009-03-15

    The transmission of circadian rhythms is mediated by specific promoter sequences binding a particular circadian clock factor. The pineal hormone melatonin acts via G-protein-coupled receptors to synchronise these clock-generated circadian rhythms. The study was aimed to elucidate the possible role of melatonin as a zeitgeber for peripheral clocks in pancreas and liver. Reverse transcription polymerase chain reaction (RT-PCR) provided evidence of the simultaneous expression of the melatonin receptors MT(1) and MT(2) in mouse pancreas, liver and hypothalamus. Melatonin receptor knockout mice were analysed with respect to the clock gene- or clock-output transcripts PER1, DBP and RevErbalpha in pancreas and liver, and both the occurrence of phase shifts and amplitude changes were detected. Circadian PER1 protein expression was found to be retained in melatonin receptor double knockout mice with an increased amplitude as measured by semiquantitative Western blot analysis. Moreover, an impact of melatonin receptor deficiency on insulin transcripts, and altered regulation of insulin secretion and glucose homeostasis were monitored in the knockout animals. Insulin secretion from isolated islets of melatonin receptor MT(1), MT(2) or MT(1) and MT(2) double melatonin receptor-knockout animals was found to be increased relative to the wild type. These data support the idea that melatonin synchronises the functions of the major organs involved in blood glucose regulation and negatively acts on the insulin secretion.

  16. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.

    PubMed

    Kumar Jha, Pawan; Challet, Etienne; Kalsbeek, Andries

    2015-12-15

    Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms.

  17. Salivary melatonin levels and sleep-wake rhythms in pregnant women with hypertensive and glucose metabolic disorders: A prospective analysis.

    PubMed

    Shimada, Mieko; Seki, Hiroyuki; Samejima, Michikazu; Hayase, Mako; Shirai, Fumie

    2016-02-01

    In preeclampsia and gestational diabetes, the sympathetic nerves are activated, leading to disrupted sleep. Melatonin, which transmits information to regulate the sleep-wake rhythm and other such biorhythms, has been implicated in insulin resistance, antioxidant behaviors, and metabolic syndrome. In addition, its reduced secretion increases the risk of hypertension and diabetes. The aim of this study was to elucidate the features of melatonin secretion, sleep quality, and sleep-wake rhythms in pregnant women with complications. Fifty-eight pregnant women with pregnancy complications (hypertensive or glucose metabolic disorders) and 40 healthy pregnant women completed questionnaires, including sleep logs and the Pittsburgh Sleep Quality Index (PSQI), during the second to third trimesters. Their salivary melatonin levels were also measured. Pregnant women with complications had significantly lower morning (p < 0.001), daytime (p < 0.01), evening (p < 0.001), night (p < 0.01), daily mean (p < 0.001), peak (p < 0.001), and bottom (p < 0.01) melatonin values than healthy pregnant women. Pregnant women with complications also had significantly smaller melatonin amplitudes than healthy pregnant women (p < 0.001). Among pregnant women with complications, the duration (p < 0.05) and frequency (p < 0.01) of wake after sleep-onset were significantly greater in the poor sleep group than in the favorable sleep group which was divided by PSQI cutoff value. Pregnant women with hypertensive or glucose metabolic disorder complications had smaller circadian variation in salivary melatonin secretion, and their values were lower throughout the day than healthy pregnant women.

  18. Measuring stem cell circadian rhythm.

    PubMed

    Hrushesky, William; Rich, Ivan N

    2015-01-01

    Circadian rhythms are biological rhythms that occur within a 24-h time cycle. Sleep is a prime example of a circadian rhythm and with it melatonin production. Stem cell systems also demonstrate circadian rhythms. This is particularly the case for the proliferating cells within the system. In fact, all proliferating cell populations exhibit their own circadian rhythm, which has important implications for disease and the treatment of disease. Stem cell chronobiology is particularly important because the treatment of cancer can be significantly affected by the time of day a drug is administered. This protocol provides a basis for measuring hematopoietic stem cell circadian rhythm for future stem cell chronotherapeutic applications.

  19. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats.

    PubMed

    Takeshige, Yui; Fujisawa, Yoshihide; Rahman, Asadur; Kittikulsuth, Wararat; Nakano, Daisuke; Mori, Hirohito; Masaki, Tsutomu; Ohmori, Koji; Kohno, Masakazu; Ogata, Hiroaki; Nishiyama, Akira

    2016-06-01

    Studies were performed to examine the effects of the selective sodium-glucose co-transporter 2 (SGLT2) inhibitor empagliflozin on urinary sodium excretion and circadian blood pressure in salt-treated obese Otsuka Long Evans Tokushima Fatty (OLETF) rats. Fifteen-week-old obese OLETF rats were treated with 1% NaCl (in drinking water), and vehicle (0.5% carboxymethylcellulose, n=10) or empagliflozin (10 mg kg(-1)per day, p.o., n=11) for 5 weeks. Blood pressure was continuously measured by telemetry system. Glucose metabolism and urinary sodium excretion were evaluated by oral glucose tolerance test and high salt challenge test, respectively. Vehicle-treated OLETF rats developed non-dipper type blood pressure elevation with glucose intolerance and insulin resistance. Compared with vehicle-treated animals, empagliflozin-treated OLETF rats showed an approximately 1000-fold increase in urinary glucose excretion and improved glucose metabolism and insulin resistance. Furthermore, empagliflozin prevented the development of blood pressure elevation with normalization of its circadian rhythm to a dipper profile, which was associated with increased urinary sodium excretion. These data suggest that empagliflozin elicits beneficial effects on both glucose homeostasis and hypertension in salt-replete obese states.

  20. Effect of octreotide on 24-h blood pressure profile in acromegaly.

    PubMed

    Fallo, F; Barzon, L; Boscaro, M; Casiglia, E; Sonino, N

    1998-05-01

    The aim of the study was to investigate the effect of octreotide, a somatostatin analog drug potentially able to inhibit growth hormone (GH), on the circadian blood pressure profile in a group of patients with acromegaly. Ten patients with GH-secreting pituitary adenoma were studied before and 6 months after treatment with subcutaneous octreotide 0.2 to 0.6 mg/day. Twenty-four hour blood pressure and heart rate were measured every 15 min at daytime (07:00 to 22:59) and every 30 min at nighttime (23:00 to 06:59) using a TM-2420 recorder. No correlation was found between GH levels and 24-h blood pressure in baseline conditions. Untreated patients had a significant nocturnal decrease of both systolic and diastolic blood pressure (P < .01), and all showed a circadian systolic or diastolic blood pressure rhythm. During octreotide treatment, 24 h as well as nighttime systolic and diastolic blood pressures significantly increased (P < .05), whereas daytime systolic and diastolic blood pressures did not change. Treated patients did not have a nocturnal decline in both systolic and diastolic blood pressures (P = NS), and eight lost their systolic or diastolic blood pressure rhythm. In conclusion, blood pressure circadian rhythm seems to be maintained in acromegaly. Octreotide treatment is associated with an increase of 24-h and nighttime blood pressure, and with loss of circadian blood pressure rhythm. Splanchnic vasoconstriction by this drug, shifting blood to peripheral vessels, may explain this phenomenon.

  1. Daily rhythms in activity and mRNA abundance of enzymes involved in glucose and lipid metabolism in liver of rainbow trout, Oncorhynchus mykiss. Influence of light and food availability.

    PubMed

    Hernández-Pérez, Juan; Míguez, Jesús M; Librán-Pérez, Marta; Otero-Rodiño, Cristina; Naderi, Fatemeh; Soengas, José L; López-Patiño, Marcos A

    2015-01-01

    The present research aimed to investigate in a model of teleost fish (rainbow trout) the existence of daily changes in activity and mRNA abundance of several proteins involved in major pathways of carbohydrate and lipid metabolism in liver, and to test whether or not both the light-dark cycle and food availability might influence such rhythms. For this purpose, four cohorts of animals previously adapted to normal housing conditions (12L:12D; Lights on at ZT0; feeding time at ZT2) were subjected to: normal conditions (LD); 48-h constant darkness (DD); 96-h food deprivation (LD + Fasting); or constant darkness and food deprivation (DD + Fasting) respectively. After such time periods, fish were sacrificed and sampled every 4-h on the following 24-h period (ZT/CT0, 4, 8, 12, 16, 20 and 0'). Our results reveal that cortisol and all the analysed genes (gk, pepck, g6pase, pk, glut2, hoad and fas) exhibited well defined daily rhythms, which persisted even in the absence of light and/or food indicating the endogenous nature of such rhythms. Even when the variations of enzyme activities were not significant, their rhythms mostly paralleled those of the respective gene expression. The rhythms of mRNA abundance were apparently dependent on the presence of food, but the light/dark cycle also influenced such rhythms. Since cortisol does not appear to be mainly involved in generating such daily rhythms in liver, alternative mechanisms might be involved, such as a direct interaction between metabolism and the circadian system.

  2. Circadian Rhythms

    MedlinePlus

    ... chronobiology. Are circadian rhythms the same thing as biological clocks? No, but they are related. Our biological clocks drive our circadian rhythms. What are biological clocks? The biological clocks that control circadian rhythms ...

  3. 24-h hydration status: parameters, epidemiology and recommendations.

    PubMed

    Manz, F; Wentz, A

    2003-12-01

    Hydration of individuals and groups is characterised by comparing actual urine osmolality (Uosm) with maximum Uosm. Data of actual, maximum and minimum Uosm in infants, children and adults and its major influencing factors are reviewed. There are remarkable ontogenetic, individual and cultural differences in Uosm. In the foetus and the breast-fed infant Uosm is much lower than plasma osmolality, whereas in children and adults it is usually much higher. Individuals and groups may show long-term differences in Uosm. In industrialised countries, the gender difference of Uosm is common. There are large intercultural differences of mean 24-h Uosm ranging from 860 mosm/kg in Germany, 649 mosm/kg in USA to 392 mosm/kg in Poland. A new physiologically based concept called 'free-water reserve' quantifies differences in 24-h euhydration. In 189 boys of the DONALD Study aged 4.0-6.9 y, median urine volume was 497 ml/24-h and median Uosm 809 mosm/kg. Considering mean-2 s.d. of actual maximum 24-h Uosm of 830 mosm/kg as upper level of euhydration and physiological criterion of adequate hydration in these boys, median free-water reserve was 11 ml/24-h. Based on median total water intake of 1310 ml/24-h and the third percentile of free-water volume of -156 ml/24-h, adequate total water intake was 1466 ml/24-h or 1.01 ml/kcal. Data of Uosm in 24-h urine samples and corresponding free-water reserve values of homogeneous groups of healthy subjects from all over the world might be useful parameters in epidemiology to investigate the health effects of different levels of 24-h euhydration.

  4. Painted Rhythms.

    ERIC Educational Resources Information Center

    Bastian, Duane

    1985-01-01

    In this art activity gifted students, ages 10 to 13, learn about internal and external rhythms and make a painting of an internal rhythm. The lesson can be expanded with a discussion of Kandinsky, Pollock, and other painters who have painted sound or have demonstrated rhythms. (RM)

  5. Circadian rhythms, the molecular clock, and skeletal muscle.

    PubMed

    Harfmann, Brianna D; Schroder, Elizabeth A; Esser, Karyn A

    2015-04-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.

  6. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Harfmann, Brianna D.; Schroder, Elizabeth A.; Esser, Karyn A.

    2015-01-01

    Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle. PMID:25512305

  7. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans123

    PubMed Central

    Johnston, Jonathan D; Scheer, Frank A; Turek, Fred W

    2016-01-01

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population. PMID:26980824

  8. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans.

    PubMed

    Johnston, Jonathan D; Ordovás, José M; Scheer, Frank A; Turek, Fred W

    2016-03-01

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial responses. Recent work has elucidated the metabolic roles of circadian clocks in key metabolic tissues, including liver, pancreas, white adipose, and skeletal muscle. For example, tissue-specific clock disruption in a single peripheral organ can cause obesity or disruption of whole-organism glucose homeostasis. This review explains mechanistic insights gained from transgenic animal studies and how these data are being translated into the study of human genetics and physiology. The principles of chrononutrition have already been demonstrated to improve human weight loss and are likely to benefit the health of individuals with metabolic disease, as well as of the general population.

  9. Activity in the ferret: oestradiol effects and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Stockman, E. R.; Albers, H. E.; Baum, M. J.; Wurtman, R. J. (Principal Investigator)

    1985-01-01

    The present study was conducted to determine whether oestradiol increases activity in the European ferret (Mustela furo), whether this effect is sexually dimorphic, and whether a 24-h rhythm is present in the ferret's daily activity. The activity of male and female adult, postpubertally gonadectomized ferrets was monitored while they were maintained singly on a 13:11 light-dark cycle, before and after implantation with oestradiol-17 beta. Gonadectomized male and female ferrets exhibited equal levels of activity, and neither sex exhibited a significant change in activity following oestradiol implantation. None of the ferrets exhibited a strong circadian rhythm, although weak 24-h rhythms and shorter harmonic rhythms were present. Golden hamsters (Mesocricetus auratus), monitored in an identical manner, exhibited strong circadian rhythms. It was concluded that oestradiol administration may not cause an increase in activity in the ferret, and that this species lacks a strong circadian activity rhythm.

  10. Enhanced vagal baroreflex response during 24 h after acute exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Adams, W. C.

    1991-01-01

    We evaluated carotid-cardiac baroreflex responses in eight normotensive men (25-41 yr) on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested before and at 3, 6, 12, 18, and 24 h after graded supine cycle exercise to volitional exhaustion. On another day, this 24-h protocol was repeated with no exercise (control). Beat-to-beat R-R intervals were measured during external application of graded pressures to the carotid sinuses from 40 to -65 mmHg; changes of R-R intervals were plotted against carotid pressure (systolic pressure minus neck chamber pressure). The maximum slope of the response relationship increased (P less than 0.05) from preexercise to 12 h (3.7 +/- 0.4 to 7.1 +/- 0.7 ms/mmHg) and remained significantly elevated through 24 h. The range of the R-R response was also increased from 217 +/- 24 to 274 +/- 32 ms (P less than 0.05). No significant differences were observed during the control 24-h period. An acute bout of graded exercise designed to elicit exhaustion increases the sensitivity and range of the carotid-cardiac baroreflex response for 24 h and enhances its capacity to buffer against hypotension by increasing heart rate. These results may represent an underlying mechanism that contributes to blood pressure stability after intense exercise.

  11. High-fat meals reduce 24-h circulating leptin concentrations in women.

    PubMed

    Havel, P J; Townsend, R; Chaump, L; Teff, K

    1999-02-01

    Leptin induces weight loss in rodents via its effects on food intake and energy expenditure. High-fat diets induce weight gain, but the mechanism is not well understood. Previous studies have not found an effect of dietary fat content on fasting leptin. There is a nocturnal increase of leptin, however, which is related to insulin responses to meals. We have reported that adipocyte glucose utilization is involved in insulin-induced leptin secretion in vitro. Accordingly, high-fat, low-carbohydrate (HF/LC) meals, which induce smaller insulin and glucose responses, would produce lower leptin concentrations than low-fat, high-carbohydrate (LF/HC) meals. Blood samples were collected every 30-60 min for 24 h from 19 normal-weight (BMI, 24.2 +/- 0.7 kg/m2; percent body fat = 31 +/- 1%) women on 2 days (10 days apart) during which the subjects were randomized to consume three isocaloric 730-kcal meals containing either 60/20 or 20/60% of energy as fat/carbohydrate. Overall insulin and glycemic responses (24-h area under the curve [AUC]) were reduced by 55 and 61%, respectively, on the HF/LC day (P < 0.0001). During LF/HC feeding, there were larger increases of leptin 4-6 h after breakfast (38 +/- 7%, P < 0.001) and lunch (78 +/- 14%, P < 0.001) than after HF/LC meals (both P < 0.02). During LF/HC feeding, leptin increased from a morning baseline of 10.7 +/- 1.6 ng/ml to a nocturnal peak of 21.3 +/- 1.3 ng/ml (change, 10.6 +/- 1.3 ng/ml; percent change, 123 +/- 16%; P < 0.0001). The amplitudes of the nocturnal rise of leptin and the 24-h leptin AUC were 21 +/- 8% (P < 0.005) and 38 +/- 12% (P < 0.0025) larger, respectively, on the LF/HC day. In summary, consumption of HF/LC meals results in lowered 24-h circulating leptin concentrations. This result may be a consequence of decreased adipocyte glucose metabolism. Decreases of 24-h circulating leptin could contribute to the weight gain during consumption of high-fat diets.

  12. Entrainment of the human circadian pacemaker to longer-than-24-h days

    PubMed Central

    Gronfier, Claude; Wright, Kenneth P.; Kronauer, Richard E.; Czeisler, Charles A.

    2007-01-01

    Entrainment of the circadian pacemaker to the light:dark cycle is necessary for rhythmic physiological functions to be appropriately timed over the 24-h day. Nonentrainment results in sleep, endocrine, and neurobehavioral impairments. Exposures to intermittent bright light pulses have been reported to phase shift the circadian pacemaker with great efficacy. Therefore, we tested the hypothesis that a modulated light exposure (MLE) with bright light pulses in the evening would entrain subjects to a light:dark cycle 1 h longer than their own circadian period (τ). Twelve subjects underwent a 65-day inpatient study. Individual subject's circadian period was determined in a forced desynchrony protocol. Subsequently, subjects were released into 30 longer-than-24-h days (daylength of τ + 1 h) in one of three light:dark conditions: (i) ≈25 lux; (ii) ≈100 lux; and (iii) MLE: ≈25 lux followed by ≈100 lux, plus two 45-min bright light pulses of ≈9,500 lux near the end of scheduled wakefulness. We found that lighting levels of ≈25 lux were insufficient to entrain all subjects tested. Exposure to ≈100 lux was sufficient to entrain subjects, although at a significantly wider phase angle compared with baseline. Exposure to MLE was able to entrain the subjects to the imposed sleep–wake cycles but at a phase angle comparable to baseline. These results suggest that MLE can be used to entrain the circadian pacemaker to non-24-h days. The implications of these findings are important because they could be used to treat circadian misalignment associated with space flight and circadian rhythm sleep disorders such as shift-work disorder. PMID:17502598

  13. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  14. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  15. Biological Rhythms in the Skin

    PubMed Central

    Matsui, Mary S.; Pelle, Edward; Dong, Kelly; Pernodet, Nadine

    2016-01-01

    Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. PMID:27231897

  16. Biological Rhythms in the Skin.

    PubMed

    Matsui, Mary S; Pelle, Edward; Dong, Kelly; Pernodet, Nadine

    2016-05-24

    Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism's rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional-translational autoregulatory loops. This master clock, following environmental cues, regulates an organism's sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin.

  17. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men.

    PubMed

    Gonnissen, Hanne K J; Hursel, Rick; Rutters, Femke; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-02-28

    In addition to short sleep duration, reduced sleep quality is also associated with appetite control. The present study examined the effect of sleep fragmentation, independent of sleep duration, on appetite profiles and 24 h profiles of hormones involved in energy balance regulation. A total of twelve healthy male subjects (age 23 (sd 4) years, BMI 24·4 (sd 1·9) kg/m²) completed a 24 h randomised crossover study in which sleep (23.30-07.30 hours) was either fragmented or non-fragmented. Polysomnography was used to determine rapid-eye movement (REM) sleep, slow-wave sleep (SWS) and total sleep time (TST). Blood samples were taken at baseline and continued hourly for the 24 h period to measure glucose, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1) and melatonin concentrations. In addition, salivary cortisol levels were measured. Visual analogue scales were used to score appetite-related feelings. Sleep fragmentation resulted in reduced REM sleep (69·4 min compared with 83·5 min; P< 0·05) and preservation of SWS without changes in TST. In fragmented v. non-fragmented sleep, glucose concentrations did not change, while insulin secretion was decreased in the morning, and increased in the afternoon (P< 0·05), and GLP-1 concentrations and fullness scores were lower (P< 0·05). After dinner, desire-to-eat ratings were higher after fragmented sleep (P< 0·05). A single night of fragmented sleep, resulting in reduced REM sleep, induced a shift in insulin concentrations, from being lower in the morning and higher in the afternoon, while GLP-1 concentrations and fullness scores were decreased. These results may lead to increased food intake and snacking, thus contributing to a positive energy balance.

  18. Neuroscience of glucose homeostasis.

    PubMed

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose uptake to prevent hyperglycemia. Although the term homeostasis mostly refers to stable levels, the blood glucose concentrations fluctuate over the day/night cycle, with the highest concentrations occurring just prior to the activity period in anticipation of increased caloric need. In this chapter we describe how the brain, particularly the hypothalamus, is involved in both the daily rhythm of plasma glucose concentrations and acute glucose challenges.

  19. Comprehensive Mapping of Regional Expression of the Clock Protein PERIOD2 in Rat Forebrain across the 24-h Day

    PubMed Central

    Harbour, Valerie L.; Weigl, Yuval; Robinson, Barry; Amir, Shimon

    2013-01-01

    In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease. PMID:24124556

  20. Acute effect of ephedrine on 24-h energy balance

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Gottesdiener, K.; Jordan, J.; Chen, K.; Flattery, S.; Larson, P. J.; Candelore, M. R.; Gertz, B.; Robertson, D.; Sun, M.

    1999-01-01

    Ephedrine is used to help achieve weight control. Data on its true efficacy and mechanisms in altering energy balance in human subjects are limited. We aimed to determine the acute effect of ephedrine on 24-h energy expenditure, mechanical work and urinary catecholamines in a double-blind, randomized, placebo-controlled, two-period crossover study. Ten healthy volunteers were given ephedrine (50 mg) or placebo thrice daily during each of two 24-h periods (ephedrine and placebo) in a whole-room indirect calorimeter, which accurately measures minute-by-minute energy expenditure and mechanical work. Measurements were taken of 24-h energy expenditure, mechanical work, urinary catecholamines and binding of (+/-)ephedrine in vitro to human beta1-, beta2- and beta3-adrenoreceptors. Twenty-four-hour energy expenditure was 3.6% greater (8965+/-1301 versus 8648+/-1347 kJ, P<0.05) with ephedrine than with placebo, but mechanical work was not different between the ephedrine and placebo periods. Noradrenaline excretion was lower with ephedrine (0.032+/-0.011 microg/mg creatinine) compared with placebo (0.044+/-0.012 microg/mg creatinine) (P<0.05). (+/-)Ephedrine is a relatively weak partial agonist of human beta1- and beta2-adrenoreceptors, and had no detectable activity at human beta3-adrenoreceptors. Ephedrine (50 mg thrice daily) modestly increases energy expenditure in normal human subjects. A lack of binding of ephedrine to beta3-adrenoreceptors and the observed decrease in urinary noradrenaline during ephedrine treatment suggest that the thermogenic effect of ephedrine results from direct beta1-/beta2-adrenoreceptor agonism. An indirect beta3-adrenergic effect through the release of noradrenaline seems unlikely as urinary noradrenaline decreased significantly with ephedrine.

  1. Estimate of dietary phosphorus intake using 24-h urine collection.

    PubMed

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-07-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record.

  2. The daily rhythm of milk synthesis is dependent on the timing of feed intake in dairy cows

    PubMed Central

    Rottman, L. Whitney; Ying, Yun; Zhou, Kan; Bartell, Paul A.; Harvatine, Kevin J.

    2014-01-01

    Abstract Regulation of the daily rhythm of milk synthesis is important to production animals and breastfeeding, but is difficult to observe in nursing animals. The rate of food intake varies over the day and is expected to create a daily rhythm of nutrient absorption. The objective of this study was to determine if the timing of food intake entrains a daily pattern of milk synthesis. Seventeen Holstein cows were used in a crossover design. Treatments were ad libitum feeding of a total mixed ration once daily (1× fed) or fed in four equal meals every 6 h (4× fed). Cows were milked every 6 h the last 7 days of each period. There was a treatment by time of day interaction for milk and milk component yield and concentration. Milk fat and protein concentration and yield exhibited a daily rhythm and the amplitude of the rhythm was reduced in 4× fed. In addition, milk fat percent was higher in 4× fed than 1× fed at three of the four milking intervals (0.22–0.45% higher) and 4× fed increased daily milk fat yield. Treatment by time of day interactions were detected for plasma glucose, insulin, and blood urea nitrogen. These variables also fit a cosine function with a 24 h period and the amplitudes of plasma glucose, insulin, and blood urea nitrogen rhythms were decreased by 4× feeding. In conclusion, there is a circadian pattern of milk synthesis in the dairy cow that is responsive to the timing of food intake. PMID:24963033

  3. Circadian temperature rhythms of older people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1995-01-01

    This collection of studies had the aim of exploring whether older (77+ years) men and women have circadian body temperature rhythms different from those of younger adults. A total of 20 older men and 28 older women were compared with either 22 young men or 14 middle-aged men in four protocols; all but the first protocol using a subset of the sample. The four protocols were: 1) 24 h, and 2) 72 h data collections on a normal laboratory routine (sleeping at night); 3) between 36 h and 153 h of field data collection at home; and 4) 36 h of a constant conditions routine (wakeful bedrest under temporal isolation) in the laboratory. There was some evidence for an age-related phase advance in temperature rhythm, especially for the older men on a normal routine, though this was not present in the constant conditions protocol, where 5 of the older subjects showed major delays in the timing of the body temperature trough (10:00 or later). There was no statistically significant evidence from any of the protocols that older subjects generally had lower temperature rhythm amplitudes than younger adults. Only when older men were compared with younger men in 24-h rhythm amplitude by simple t-test did any comparison involving amplitude achieve statistical significance (p < 0.05).

  4. Diurnal rhythms of visual accommodation and blink responses - Implication for flight-deck visual standards

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1977-01-01

    Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.

  5. Circadian rhythms and molecular noise

    NASA Astrophysics Data System (ADS)

    Gonze, Didier; Goldbeter, Albert

    2006-06-01

    Circadian rhythms, characterized by a period of about 24h, are the most widespread biological rhythms generated autonomously at the molecular level. The core molecular mechanism responsible for circadian oscillations relies on the negative regulation exerted by a protein on the expression of its own gene. Deterministic models account for the occurrence of autonomous circadian oscillations, for their entrainment by light-dark cycles, and for their phase shifting by light pulses. Stochastic versions of these models take into consideration the molecular fluctuations that arise when the number of molecules involved in the regulatory mechanism is low. Numerical simulations of the stochastic models show that robust circadian oscillations can already occur with a limited number of mRNA and protein molecules, in the range of a few tens and hundreds, respectively. Various factors affect the robustness of circadian oscillations with respect to molecular noise. Besides an increase in the number of molecules, entrainment by light-dark cycles, and cooperativity in repression enhance robustness, whereas the proximity of a bifurcation point leads to less robust oscillations. Another parameter that appears to be crucial for the coherence of circadian rhythms is the binding/unbinding rate of the inhibitory protein to the promoter of the clock gene. Intercellular coupling further increases the robustness of circadian oscillations.

  6. Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission

    PubMed Central

    Rund, Samuel S. C.; O’Donnell, Aidan J.; Gentile, James E.; Reece, Sarah E.

    2016-01-01

    The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control. PMID:27089370

  7. Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission.

    PubMed

    Rund, Samuel S C; O'Donnell, Aidan J; Gentile, James E; Reece, Sarah E

    2016-04-14

    The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.

  8. Chronotherapeutic strategy: Rhythm monitoring, manipulation and disruption.

    PubMed

    Ohdo, Shigehiro

    2010-07-31

    Mammalians circadian pacemaker resides in the paired suprachiasmatic nuclei (SCN) and influences a multitude of biological processes, including the sleep-wake rhythm. Clock genes are the genes that control the circadian rhythms in physiology and behavior. 24h rhythm is demonstrated for the function of physiology and the pathophysiology of diseases. The effectiveness and toxicity of many drugs vary depending on dosing time. Such chronopharmacological phenomena are influenced by not only the pharmacodynamics but also pharmacokinetics of medications. The underlying mechanisms are associated with 24h rhythms of biochemical, physiological and behavioral processes under the control of circadian clock. Thus, the knowledge of 24h rhythm in the risk of disease plus evidence of 24h rhythm dependencies of drug pharmacokinetics, effects, and safety constitutes the rationale for pharmacotherapy. Chronotherapy is especially relevant, when the risk and/or intensity of the symptoms of disease vary predictably over time as exemplified by allergic rhinitis, arthritis, asthma, myocardial infarction, congestive heart failure, stroke, and peptic ulcer disease. Morning once-daily administration of corticosteroid tablet medications results in little adrenocortical suppression, while the same daily dose split into four equal administrations to coincide with daily meals and bedtime results in significant hypothalamus-pituitary-adrenal (HPA) axis suppression. However, the drugs for several diseases are still given without regard to the time of day. Identification of a rhythmic marker for selecting dosing time will lead to improved progress and diffusion of chronopharmacotherapy. To monitor the rhythmic marker such as clock genes it may be useful to choose the most appropriate time of day for administration of drugs that may increase their therapeutic effects and/or reduce their side effects. Furthermore, to produce new rhythmicity by manipulating the conditions of living organs by using

  9. Metabolic circadian rhythms in embryonic turtles.

    PubMed

    Loudon, Fiona Kay; Spencer, Ricky-John; Strassmeyer, Alana; Harland, Karen

    2013-07-01

    Oviparous species are model organisms for investigating embryonic development of endogenous physiological circadian rhythms without the influence of maternal biorhythms. Recent studies have demonstrated that heart rates and metabolic rates of embryonic turtles are not constant or always maximal and can be altered in response to the presence of embryos at a more advanced stage of development within the nest. A first step in understanding the physiological mechanisms underpinning these responses in embryonic ectothermic organisms is to develop metabolic profiles (e.g., heart rate) at different temperatures throughout incubation. Heart beat and rhythmic patterns or changes in development may represent important signals or cues within a nest and may be vital to coordinate synchronous hatching well in advance of the final stages of incubation. We developed baseline embryonic heart-rate profiles of embryos of the short-necked Murray River turtle (Emydura macquarii) to determine the stage of embryogenesis that metabolic circadian rhythms become established, if at all. Eggs were incubated at constant temperatures (26°C and 30°C) and heart rates were monitored at 6-h intervals over 24 h every 7-11 days until hatching. Circadian heart rate rhythms were detected at the mid-gestation period and were maintained until hatching. Heart rates throughout the day varied by up to 20% over 24 h and were not related to time of day. This study demonstrated that endogenous metabolic circadian rhythms in developing embryos in turtle eggs establish earlier in embryogenesis than those documented in other vertebrate taxa during embryogenesis. Early establishment of circadian rhythms in heart rates may be critical for communication among embryos and synchrony in hatching and emergence from the nest.

  10. Maternal and infant activity: Analytic approaches for the study of circadian rhythm.

    PubMed

    Thomas, Karen A; Burr, Robert L; Spieker, Susan

    2015-11-01

    The study of infant and mother circadian rhythm entails choice of instruments appropriate for use in the home environment as well as selection of analytic approach that characterizes circadian rhythm. While actigraphy monitoring suits the needs of home study, limited studies have examined mother and infant rhythm derived from actigraphy. Among this existing research a variety of analyses have been employed to characterize 24-h rhythm, reducing ability to evaluate and synthesize findings. Few studies have examined the correspondence of mother and infant circadian parameters for the most frequently cited approaches: cosinor, non-parametric circadian rhythm analysis (NPCRA), and autocorrelation function (ACF). The purpose of this research was to examine analytic approaches in the study of mother and infant circadian activity rhythm. Forty-three healthy mother and infant pairs were studied in the home environment over a 72h period at infant age 4, 8, and 12 weeks. Activity was recorded continuously using actigraphy monitors and mothers completed a diary. Parameters of circadian rhythm were generated from cosinor analysis, NPCRA, and ACF. The correlation among measures of rhythm center (cosinor mesor, NPCRA mid level), strength or fit of 24-h period (cosinor magnitude and R(2), NPCRA amplitude and relative amplitude (RA)), phase (cosinor acrophase, NPCRA M10 and L5 midpoint), and rhythm stability and variability (NPCRA interdaily stability (IS) and intradaily variability (IV), ACF) was assessed, and additionally the effect size (eta(2)) for change over time evaluated. Results suggest that cosinor analysis, NPCRA, and autocorrelation provide several comparable parameters of infant and maternal circadian rhythm center, fit, and phase. IS and IV were strongly correlated with the 24-h cycle fit. The circadian parameters analyzed offer separate insight into rhythm and differing effect size for the detection of change over time. Findings inform selection of analysis and

  11. Unexpected diversity in socially synchronized rhythms of shorebirds.

    PubMed

    Bulla, Martin; Valcu, Mihai; Dokter, Adriaan M; Dondua, Alexei G; Kosztolányi, András; Rutten, Anne L; Helm, Barbara; Sandercock, Brett K; Casler, Bruce; Ens, Bruno J; Spiegel, Caleb S; Hassell, Chris J; Küpper, Clemens; Minton, Clive; Burgas, Daniel; Lank, David B; Payer, David C; Loktionov, Egor Y; Nol, Erica; Kwon, Eunbi; Smith, Fletcher; Gates, H River; Vitnerová, Hana; Prüter, Hanna; Johnson, James A; St Clair, James J H; Lamarre, Jean-François; Rausch, Jennie; Reneerkens, Jeroen; Conklin, Jesse R; Burger, Joanna; Liebezeit, Joe; Bêty, Joël; Coleman, Jonathan T; Figuerola, Jordi; Hooijmeijer, Jos C E W; Alves, José A; Smith, Joseph A M; Weidinger, Karel; Koivula, Kari; Gosbell, Ken; Exo, Klaus-Michael; Niles, Larry; Koloski, Laura; McKinnon, Laura; Praus, Libor; Klaassen, Marcel; Giroux, Marie-Andrée; Sládeček, Martin; Boldenow, Megan L; Goldstein, Michael I; Šálek, Miroslav; Senner, Nathan; Rönkä, Nelli; Lecomte, Nicolas; Gilg, Olivier; Vincze, Orsolya; Johnson, Oscar W; Smith, Paul A; Woodard, Paul F; Tomkovich, Pavel S; Battley, Phil F; Bentzen, Rebecca; Lanctot, Richard B; Porter, Ron; Saalfeld, Sarah T; Freeman, Scott; Brown, Stephen C; Yezerinac, Stephen; Székely, Tamás; Montalvo, Tomás; Piersma, Theunis; Loverti, Vanessa; Pakanen, Veli-Matti; Tijsen, Wim; Kempenaers, Bart

    2016-12-01

    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social

  12. Counterregulatory deficits occur within 24 h of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice

    PubMed Central

    Jacobson, Lauren; Ansari, Tasneem; McGuinness, Owen P.

    2006-01-01

    Hypoglycemia-induced Counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence Counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1,, blood glucose was maintained (euglycemia, 178 ± 4 mg/dl) or decreased to 62 ± 1 mg/dl (hypoglycemia) by insulin (20 mU·kg−1·min−1) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 ± 8 pg/ml), corticosterone (16.1 ± 1.8 μg/dl), and glucagon (35 ± 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of ~80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 ± 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure. PMID:16533951

  13. Clocks within the Master Gland: Hypophyseal Rhythms and Their Physiological Significance.

    PubMed

    Lin, Xue-Wei; Blum, Ian David; Storch, Kai-Florian

    2015-08-01

    Various aspects of mammalian endocrine physiology show a time-of-day variation with a period of 24 h, which represents an adaptation to the daily environmental fluctuations resulting from the rotation of the earth. These 24-h rhythms in hormone abundance and consequently hormone function may rely on rhythmic signals produced by the master circadian clock, which resides in the suprachiasmatic nucleus and is thought to chiefly dictate the pattern of rest and activity in mammals in conjunction with the light/dark (LD) cycle. However, it is likely that clocks intrinsic to elements of the endocrine axes also contribute to the 24-h rhythms in hormone function. Here we review the evidence for rhythm generation in the endocrine master gland, the pituitary, and its physiological significance in the context of endocrine axes regulation and function.

  14. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old

    PubMed Central

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N. S.; Olivier, Patrick; Adamson, Ashley J.; Foster, Emma

    2016-01-01

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11–24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11–24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults. PMID:27294952

  15. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11-24 Year-Old.

    PubMed

    Bradley, Jennifer; Simpson, Emma; Poliakov, Ivan; Matthews, John N S; Olivier, Patrick; Adamson, Ashley J; Foster, Emma

    2016-06-09

    Online dietary assessment tools offer a convenient, low cost alternative to traditional dietary assessment methods such as weighed records and face-to-face interviewer-led 24-h recalls. INTAKE24 is an online multiple pass 24-h recall tool developed for use with 11-24 year-old. The aim of the study was to undertake a comparison of INTAKE24 (the test method) with interviewer-led multiple pass 24-h recalls (the comparison method) in 180 people aged 11-24 years. Each participant completed both an INTAKE24 24-h recall and an interviewer-led 24-h recall on the same day on four occasions over a one-month period. The daily energy and nutrient intakes reported in INTAKE24 were compared to those reported in the interviewer-led recall. Mean intakes reported using INTAKE24 were similar to the intakes reported in the interviewer-led recall for energy and macronutrients. INTAKE24 was found to underestimate energy intake by 1% on average compared to the interviewer-led recall with the limits of agreement ranging from minus 49% to plus 93%. Mean intakes of all macronutrients and micronutrients (except non-milk extrinsic sugars) were within 4% of the interviewer-led recall. Dietary assessment that utilises technology may offer a viable alternative and be more engaging than paper based methods, particularly for children and young adults.

  16. The 24 h blood pressure-R-R interval relation in ambulatory monitoring.

    PubMed

    Recordati, Giorgio; Zanchetti, Alberto

    2008-05-30

    The present study was aimed at investigating whether the blood pressure-R-R interval relation obtained by ABPM may give useful information about autonomic control in the 24 h period. To this purpose ABPM was performed in 60 healthy young subjects (30 females and 30 males, mean age 21.8+/-1.0 years) and the collected variables were copied to a software program to convert heart rate into R-R interval values, for statistical analysis and graphic representation. The following data were calculated: 1) day and night means+/-SD; 2) difference and percent difference in mean night less mean day R-R interval (Delta y), diastolic and systolic blood pressures (Delta x) and their Delta y/Delta x ratios; 3) intercept (a_24 h), slope (b_24 h) and r coefficient (r_24 h) of the linear regressions of 24 h R-R interval over diastolic and systolic blood pressure values. In all subjects night, with respect to day, was characterized by R-R interval lengthening and blood pressure lowering. Despite this common pattern, day and night means and SDs, night and day differences, Delta y/Delta x ratios, a_24 h and b_24 h were different from individual to individual, but they were characteristic and reproducible in 20 out of the 21 subjects in which ABPM was repeated twice. Subjects could thus be classified according to their Delta y/Delta x ratios and slope (b_24 h). The 24 h blood pressure-R-R interval relation as calculated from ABPM yields individually characteristic indices of circadian sympatho-vagal reciprocity. This novel approach may be helpful in characterizing the 24 h autonomic control of several groups of patients.

  17. Rhythm, Timing and the Timing of Rhythm

    PubMed Central

    Arvaniti, Amalia

    2009-01-01

    This article reviews the evidence for rhythmic categorization that has emerged on the basis of rhythm metrics, and argues that the metrics are unreliable predictors of rhythm which provide no more than a crude measure of timing. It is further argued that timing is distinct from rhythm and that equating them has led to circularity and a psychologically questionable conceptualization of rhythm in speech. It is thus proposed that research on rhythm be based on the same principles for all languages, something that does not apply to the widely accepted division of languages into stress- and syllable-timed. The hypothesis is advanced that these universal principles are grouping and prominence and evidence to support it is provided. PMID:19390230

  18. Running for time: circadian rhythms and melanoma.

    PubMed

    Markova-Car, Elitza P; Jurišić, Davor; Ilić, Nataša; Kraljević Pavelić, Sandra

    2014-09-01

    Circadian timing system includes an input pathway transmitting environmental signals to a core oscillator that generates circadian signals responsible for the peripheral physiological or behavioural events. Circadian 24-h rhythms regulate diverse physiologic processes. Deregulation of these rhythms is associated with a number of pathogenic conditions including depression, diabetes, metabolic syndrome and cancer. Melanoma is a less common type of skin cancer yet more aggressive often with a lethal ending. However, little is known about circadian control in melanoma and exact functional associations between core clock genes and development of melanoma skin cancer. This paper, therefore, comprehensively analyses current literature data on the involvement of circadian clock components in melanoma development. In particular, the role of circadian rhythm deregulation is discussed in the context of DNA repair mechanisms and influence of UV radiation and artificial light exposure on cancer development. The role of arylalkylamine N-acetyltransferase (AANAT) enzyme and impact of melatonin, as a major output factor of circadian rhythm, and its protective role in melanoma are discussed in details. We hypothesise that further understanding of clock genes' involvement and circadian regulation might foster discoveries in the field of melanoma diagnostics and treatment.

  19. Circadian Rhythms in Adipose Tissue Physiology.

    PubMed

    Kiehn, Jana-Thabea; Tsang, Anthony H; Heyde, Isabel; Leinweber, Brinja; Kolbe, Isa; Leliavski, Alexei; Oster, Henrik

    2017-03-16

    The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.

  20. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners.

    PubMed

    Waśkiewicz, Zbigniew; Kłapcińska, Barbara; Sadowska-Krępa, Ewa; Czuba, Milosz; Kempa, Katarzyna; Kimsa, Elżbieta; Gerasimuk, Dagmara

    2012-05-01

    The study was conducted to evaluate the metabolic responses to a 24 h ultra-endurance race in male runners. Paired venous and capillary blood samples from 14 athletes (mean age 43.0 ± 10.8 years, body weight 64.3 ± 7.2 kg, VO(2max) 57.8 ± 6.1 ml kg(-1) min(-1)), taken 3 h before the run, after completing the marathon distance (42.195 km), after 12 h, and at the finish of the race, were analyzed for blood morphology, acid-base balance and electrolytes, lipid profile, interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and serum enzyme activities. Mean distance covered during the race was 168.5 ± 23.1 km (range 125.2-218.5 km). Prolonged ultra-endurance exercise triggered immune and inflammatory responses, as evidenced by a twofold increase in total leukocyte count with neutrophils and monocytes as main contributors, nearly 30-fold increase in serum IL-6 and over 20-fold rise in hsCRP. A progressive exponential increase in mean creatine kinase activity up to the level 70-fold higher than the respective pre-race value, a several fold rise in serum activities of aspartate aminotransferase and alanine aminotransferase, and a fairly stable serum γ-glutamyl transferase level, were indicative of muscle, but not of liver damage. With duration of exercise, there was a progressive development of hyperventilation-induced hypocapnic alkalosis, and a marked alteration in substrate utilization towards fat oxidation to maintain blood glucose homeostasis. The results of this study may imply that progressive decline in partial CO(2) pressure (hypocapnia) that develops during prolonged exercise may contribute to increased interleukin-6 production.

  1. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  2. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  3. Persistence of hormonal and metabolic rhythms during fasting in 7 to 9 day-old rabbits entrained by nursing during the night

    PubMed Central

    Morgado, Elvira; Meza, Enrique; Gordon, M. Kathleen; Pau, Francis K.Y.; Juárez, Claudia; Caba, Mario

    2010-01-01

    Rabbit does nurse their litter once every 24 h during the night. We hypothesized that corticosterone, ghrelin, leptin and metabolites like glucose, liver glycogen and free fatty acids could be affected in the pups by the time at which does nurse them. Therefore, we measured these parameters in pups nursed at 02:00 h (nighttime for the doe) to compare them with results from a previous study where does nursed at 10:00 h, during daytime. From postnatal day 7, pups were sacrificed either just before their scheduled time of nursing or at 4, 8, 12, 16 or 20 h after nursing (n = 6 at each time point); additional pups were sacrificed at 4 h intervals between 48 and 72 h after nursing to study the persistence of oscillations during fasting. All pups developed locomotor anticipatory activity to nursing. Corticosterone, ghrelin and free fatty acids exhibited a rhythm that persisted in fasted pups. Glucose concentrations were lower in fasted than in nursed pups, and glycogen was only detected in nursed subjects. Leptin values were stable and low in nursed subjects but increased significantly in fasted subjects up to 72 h after the expected nursing time. The rhythm of ghrelin persisted during fasting, contrary to our previous findings in pups nursed during daytime (i.e. outside the natural time of nursing for this species). Therefore, in 7-day-old rabbit pups, night nursing is a strong zeitgeber for corticosterone, ghrelin, free fatty acids and energy metabolites but not for leptin. PMID:20478309

  4. Rhythm and conduction analysis of patients with acute rheumatic fever.

    PubMed

    Balli, Sevket; Oflaz, Mehmet Burhan; Kibar, Ayse Esin; Ece, Ibrahim

    2013-02-01

    Various rhythm and conduction abnormalities can develop in acute rheumatic fever. This study investigated rhythm and conduction abnormalities in children with acute rheumatic fever using a standard 12-lead electrocardiogram and 24-h rhythm Holter recordings. This multicenter retrospective study, performed between August 2011 and March 2012, enrolled 73 consecutive children with acute rheumatic fever. Standard electrocardiography was used to measure PR and corrected QT intervals. Holter recordings were evaluated for all the patients, and 52 of the patients (71.2 %) had carditis that was either isolated or together with other major criteria. A positive correlation was detected between carditis and the mean PR interval on standard electrocardiography, but this was not significant (p > 0.05). Standard electrocardiography showed a significant positive correlation between PR and corrected QT intervals (p = 0.03; r = 0.55). Standard electrocardiography showed only three patients (4.2 %) with premature contractions, whereas 24-h electrocardiography showed 26 patients (35.6 %) with premature contractions. Carditis was positively correlated with premature contractions (p < 0.01; r = 0.57). One patient with junctional rhythm and one patient with left bundle block were detected by standard electrocardiography. Whereas some patients with carditis exhibited no arrhythmic evidence on standard electrocardiograms, complete atrioventricular block, supraventricular tachycardia, and Mobitz type 1 block were observed on 24-h Holter recordings. A positive correlation also was observed between the presence of premature contractions and serum levels of acute-phase reactants (p = 0.03; r = 0.62). These findings led to the conclusion that rhythm and conduction disorders in acute rheumatic fever are more common than previously thought.

  5. Daily rhythms in the hypothalamus-pituitary-interrenal axis and acute stress responses in a teleost flatfish, Solea senegalensis.

    PubMed

    López-Olmeda, J F; Blanco-Vives, B; Pujante, I M; Wunderink, Y S; Mancera, J M; Sánchez-Vázquez, F J

    2013-05-01

    The endocrine axis controlling the stress response displays daily rhythms in many factors such as adrenal sensitivity and cortisol secretion. These rhythms have mostly been described in mammals, whereas they are poorly understood in teleost fish, so that their impact on fish welfare in aquaculture remains unexplored. In the present research, the authors investigated the daily rhythms in the hypothalamus-pituitary-interrenal (HPI) axis in the flatfish Solea senegalensis, which has both scientific and commercial interest. In a first experiment, hypothalamic expression of corticotropin-releasing hormone (crh) and its binding protein (crhbp), both pituitary proopiomelanocortin A and B (pomca and pomcb) expression, as well as plasma cortisol, glucose, and lactate levels were analyzed throughout a 24-h cycle. All variables displayed daily rhythms (cosinor, p < .05), with acrophases varying depending on the factor analyzed: crh and cortisol peaked at the beginning of the dark phase (zeitgeber time [ZT] = 14.5 and 14.4 h, respectively), pomca and pomcb as well as glucose at the beginning of the light phase (ZT = 1.2, 2.4, and 3.4 h, respectively), and crhbp and lactate at the end of the dark phase (ZT = 22.3 and 23.0 h, respectively). In a second experiment, the influence of an acute stressor (30 s of air exposure), applied at two different time points (ZT 1 and ZT 13), was tested. The stress response differed depending on the time of day, showing higher cortisol values (96.2 ± 10.7 ng/mL) when the stressor was applied at ZT 1 than at ZT 13 (52.6 ± 11.1 ng/mL). This research describes for the first time the daily rhythms in endocrine factors of the HPI axis of the flatfish S. senegalensis, and the influence of daytime on the stress responses. A better knowledge of the chronobiology of fish provides a helpful tool for understanding the circadian physiology of the stress response, and for designing timely sound protocols to improve fish welfare in aquaculture.

  6. Subjective alertness rhythms in elderly people

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.

    1996-01-01

    The aim of this study was to evaluate age-related changes in the circadian rhythm of subjective alertness and to explore the circadian mechanisms underlying such changes. Using a visual analogue scale (VAS) instrument, 25 older men and women (71 y and older; 15 female, 10 male) rated their subjective alertness about 7 times per day during 5 baseline days of temporal isolation during which habitual bedtimes and waketimes were enforced. Comparisons were made with 13 middle-aged men (37-52 y) experiencing the same protocol. Advancing age (particularly in the men) resulted in less rhythmic alertness patterns, as indicated by lower amplitudes and less reliability of fitted 24-h sinusoids. This appeared in spite of the absence of any reliable age-related diminution in circadian temperature rhythm amplitude, thus suggesting the effect was not due to SCN weakness per se, but to weakened transduction of SCN output. In a further experiment, involving 36 h of constant wakeful bedrest, differences in the amplitude of the alertness rhythm were observed between 9 older men (79 y+), 7 older women (79 y+), and 17 young controls (9 males, 8 females, 19-28 y) suggesting that with advancing age (particularly in men) there is less rhythmic input into subjective alertness from the endogenous circadian pacemaker. These results may explain some of the nocturnal insomnia and daytime hypersomnia that afflict many elderly people.

  7. Does an Adolescent’s Accuracy of Recall Improve with a Second 24-h Dietary Recall?

    PubMed Central

    Kerr, Deborah A.; Wright, Janine L.; Dhaliwal, Satvinder S.; Boushey, Carol J.

    2015-01-01

    The multiple-pass 24-h dietary recall is used in most national dietary surveys. Our purpose was to assess if adolescents’ accuracy of recall improved when a 5-step multiple-pass 24-h recall was repeated. Participants (n = 24), were Chinese-American youths aged between 11 and 15 years and lived in a supervised environment as part of a metabolic feeding study. The 24-h recalls were conducted on two occasions during the first five days of the study. The four steps (quick list; forgotten foods; time and eating occasion; detailed description of the food/beverage) of the 24-h recall were assessed for matches by category. Differences were observed in the matching for the time and occasion step (p < 0.01), detailed description (p < 0.05) and portion size matching (p < 0.05). Omission rates were higher for the second recall (p < 0.05 quick list; p < 0.01 forgotten foods). The adolescents over-estimated energy intake on the first (11.3% ± 22.5%; p < 0.05) and second recall (10.1% ± 20.8%) compared with the known food and beverage items. These results suggest that the adolescents’ accuracy to recall food items declined with a second 24-h recall when repeated over two non-consecutive days. PMID:25984743

  8. Circahoralian (ultradian) metabolic rhythms.

    PubMed

    Brodsky, V Y

    2014-06-01

    This review presents data concerning metabolic rhythms with periods close to one hour (20 to 120 min): their occurrence, biochemical organization, nature, and significance for adaptations and age-related changes of cells and organs. Circahoralian (ultradian) rhythms have been detected for cell mass and size, protein synthesis, enzyme activities, concentration of ATP and hormones, cell respiration, and cytoplasm pH. Rhythms have been observed in bacteria, yeasts, and protozoa, as well as in many cells of metazoans, including mammals, in vivo and in cell cultures. In cell populations, the rhythms are organized by direct cell-cell communication. The biochemical mechanism involves membrane signal factors and cytoplasmic processes resulting in synchronization of individual oscillations to a common rhythm. Phosphorylation of proteins is the key process of coordination of protein synthesis and enzyme activity kinetics. The fractal nature of circahoralian rhythms is discussed as well as the involvement of these rhythms in adaptations of the cells and organs. Senescent decrease in rhythm amplitudes and correspondingly in cell-cell communication has been observed. The possibility of remodeling these changes through the intercellular medium has been predicted and experimentally shown. Perspectives for studies of the organizers and disorganizers of cell-cell communication in the intercellular medium along with appropriate receptors are discussed with special emphasis on aging and pathology. One perspective can be more precise definition of the range of normal biochemical and physiological state with the goal of correction of cellular functions.

  9. Rhythm in Translations

    ERIC Educational Resources Information Center

    Ding, Renlun

    2008-01-01

    This research is an attempt at the elucidation of the significance of rhythmic in translations. According to Eugene A. Nada's functional equivalence, the comprehensive effect which the receptors of the versions get should be the same as the one the readers of the original get, and since rhythm is an integral part of the style, rhythm should be…

  10. Circadian Rhythms in Gene Expression: Relationship to Physiology, Disease, Drug Disposition and Drug Action

    PubMed Central

    Sukumaran, Siddharth; Almon, Richard R.; DuBois, Debra C.; Jusko, William J.

    2010-01-01

    Circadian rhythms (24 h cycles) are observed in virtually all aspects of mammalian function from expression of genes to complex physiological processes. The master clock is present in the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus and controls peripheral clocks present in other parts of the body. Components of this core clock mechanism regulate the circadian rhythms in genome-wide mRNA expression, which in turn regulate various biological processes. Disruption of circadian rhythms can be either the cause or the effect of various disorders including metabolic syndrome, inflammatory diseases and cancer. Furthermore, circadian rhythms in gene expression regulate both the action and disposition of various drugs and affect therapeutic efficacy and toxicity based on dosing time. Understanding the regulation of circadian rhythms in gene expression plays an important role in both optimizing the dosing time for existing drugs and in development of new therapeutics targeting the molecular clock. PMID:20542067

  11. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  12. NQRS Data for C24H20BRb (Subst. No. 1578)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BRb (Subst. No. 1578)

  13. NQRS Data for C24H24BN (Subst. No. 1583)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H24BN (Subst. No. 1583)

  14. NQRS Data for C24H20BCs (Subst. No. 1575)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BCs (Subst. No. 1575)

  15. NQRS Data for C24H20BK (Subst. No. 1576)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20BK (Subst. No. 1576)

  16. Probable maximum precipitation for 24 h duration over southeast Asian monsoon region—Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Desa M, M. N.; Noriah, A. B.; Rakhecha, P. R.

    The probable maximum precipitation (PMP) for stations in Malaysia using Hershfield formula is routinely estimated as mean plus 15 standard deviations processed from yearly maximum rainfall values. The value of 15 as frequency factor is too high for a humid region such as Malaysia. In this paper, yearly maximum 1-day rainfall data of about 30-60 years for 33 stations in the region of Selangor, Malaysia, were analysed in an attempt to estimate PMP for 1-day duration based on an appropriate frequency factor for the first time. Based on the actual rainfall data of the stations, the highest value of this frequency factor was found to be 8.7. The frequency factor of 8.7 was subsequently used to estimate 24-h PMP values for the 33 stations. Using these PMP estimates, a generalised map was prepared showing the spatial distribution of 24-h PMP. It was found that 24-h PMP over Selangor, Malaysia, varied from 375 to 500 mm and the average ratio of the 24-h PMP to the highest observed 1-day rainfall was found to be about 2.0. The PMP map is considered as important to determine reliable and consistent PMP estimate for any location in Selangor, Malaysia, for designing costly and large hydraulic structures.

  17. Circadian Rhythm Sleep Disorders

    PubMed Central

    Zhu, Lirong; Zee, Phyllis C.

    2012-01-01

    There have been remarkable advances in our understanding of the molecular, cellular and physiological mechanisms underlying the regulation of circadian rhythms, as well as the impact of circadian dysfunction on health and disease. This information has transformed our understanding of the effect of circadian rhythm sleep disorders (CRSD) on health, performance and safety. CRSDs are caused by alterations of the central circadian time-keeping system, or a misalignment of the endogenous circadian rhythm and the external environment. In this section, we provide a review of circadian biology and discuss the pathophysiology, clinical features, diagnosis, and treatment of the most commonly encountered CRSDs in clinical practice. PMID:23099133

  18. Visible Battle Rhythm

    DTIC Science & Technology

    2006-06-01

    2006 Oculus Info Inc. COP21 TD 1 Visible Battle Rhythm Brian Cort1, Alain Bouchard2, Denis Gouin2, Pascale Proulx1, Bill Wright1 June 21, 2006 1...Oculus Info Inc. 2 DRDC Valcartier www.oculusinfo.com www.drdc-rddc.gc.ca © 2006 Oculus Info Inc. COP21 TD 2 Battle Rhythm “Process where the...commander to make timely decisions.” −Duffy et al, 2004 © 2006 Oculus Info Inc. COP21 TD 3 Visible Battle Rhythm • Real-time coordination and synchronization

  19. Rain reverses diel activity rhythms in an estuarine teleost

    PubMed Central

    Payne, Nicholas L.; van der Meulen, Dylan E.; Gannon, Ruan; Semmens, Jayson M.; Suthers, Iain M.; Gray, Charles A.; Taylor, Matthew D.

    2013-01-01

    Activity rhythms are ubiquitous in nature, and generally synchronized with the day–night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency. PMID:23173211

  20. Rain reverses diel activity rhythms in an estuarine teleost.

    PubMed

    Payne, Nicholas L; van der Meulen, Dylan E; Gannon, Ruan; Semmens, Jayson M; Suthers, Iain M; Gray, Charles A; Taylor, Matthew D

    2013-01-07

    Activity rhythms are ubiquitous in nature, and generally synchronized with the day-night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency.

  1. Sleep and circadian rhythms

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.

    1991-01-01

    Three interacting processes are involved in the preservation of circadian rhythms: (1) endogenous rhythm generation mechanisms, (2) entrainment mechanisms to keep these rhythms 'on track', and (3) exogenous masking processes stemming from changes in environment and bahavior. These processes, particularly the latter two, can be dramatically affected in individuals of advanced age and in space travelers, with a consequent disruption in sleep and daytime functioning. This paper presents results of a phase-shift experiment investigating the age-related effects of the exogeneous component of circadian rhythms in various physiological and psychological functions by comparing these functions in middle aged and old subjects. Dramatic differences were found between the two age groups in measures of sleep, mood, activation, and performance efficiency.

  2. Other Rhythm Disorders

    MedlinePlus

    ... In addition to tachycardia, bradycardia, premature contraction and fibrillation, rhythm disorders include: ADAMS-STOKES DISEASE (also called ... can also occur in someone who has atrial fibrillation (or AFib/flutter), or it can be its ...

  3. [Circadian rhythm and stroke].

    PubMed

    Terayama, Yasuo

    2013-12-01

    Studies on the relationship between stroke incidence and alterations of circadian rhythm are scarce, while pathologically reduced or abolished circadian variation has been described to cause stroke since a long time ago. Although ischemic and hemorrhagic strokes are different entities and are characterized by different pathophysiological mechanisms, they share an identical pattern. A constellation of endogenous circadian rhythms and exogenous cyclic factors are involved. The staging of the circadian rhythms in vascular tone, coagulation balance including platelet function, and blood pressure plus temporal patterns in posture, physical activity, emotional stress, autonomic function, and medication effects play central and/or triggering roles. Features of the circadian rhythm of blood pressure, in terms of their chronic and acute effects on cerebral vessels, and of coagulation are especially important.

  4. Circadian rhythm of hormones is extinguished during prolonged physical stress, sleep and energy deficiency in young men.

    PubMed

    Opstad, K

    1994-07-01

    The circadian rhythm of hormones (N = 10) and mental performance (N = 18) was investigated in male cadets during a 5-day military training course with continuous heavy physical activities corresponding to 35% of the maximal oxygen uptake, with almost total lack of food and sleep. The 24-h means for androstenedione, dihydroepiandrosterone (DHEA), 17 alpha-hydroxyprogesterone, testosterone and thyroid-stimulating hormone decreased strongly during the course, and the circadian rhythm was extinguished below the minimum levels measured during the control experiment. The 24-h means for cortisol, dihydroepiandrosterone sulfate (DHEA-S) and progesterone increased during the course, and the circadian rhythm was abolished above the maximum levels of the control experiment. A gradual increase was found in thyroxine, free thyroxine and triiodothyronine during the first 12 h of activities, followed by a constant decrease for the rest of the course. Mental performance decreased during the course and the amplitude of its circadian rhythm increased from +/- 10% to +/- 30% of the 24-h mean. The circadian rhythms investigated were almost normalized after 4-5 days of rest. However, the nocturnal rise for cortisol, androstenedione and DHEA appeared earlier, and the plasma levels of thyroid hormones, estradiol and DHEA-S were lower during the recovery experiment than in the control experiment. The responses to stress of the circadian rhythm for mental performance and steroid hormones during the course indicate a differential regulation.

  5. High-intensity interval exercise induces 24-h energy expenditure similar to traditional endurance exercise despite reduced time commitment.

    PubMed

    Skelly, Lauren E; Andrews, Patricia C; Gillen, Jenna B; Martin, Brian J; Percival, Michael E; Gibala, Martin J

    2014-07-01

    Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.

  6. Nqrs Data for C24H20MnO4P (Subst. No. 1581)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H20MnO4P (Subst. No. 1581)

  7. Nqrs Data for C24H22Cl2Cu2N6 (Subst. No. 1582)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H22Cl2Cu2N6 (Subst. No. 1582)

  8. Exercise Increases 24-h Fat Oxidation Only When It Is Performed Before Breakfast

    PubMed Central

    Iwayama, Kaito; Kurihara, Reiko; Nabekura, Yoshiharu; Kawabuchi, Ryosuke; Park, Insung; Kobayashi, Masashi; Ogata, Hitomi; Kayaba, Momoko; Satoh, Makoto; Tokuyama, Kumpei

    2015-01-01

    Background As part of the growing lifestyle diversity in modern society, there is wide variation in the time of day individuals choose to exercise. Recent surveys in the US and Japan have reported that on weekdays, more people exercise in the evening, with fewer individuals exercising in the morning or afternoon. Exercise performed in the post-prandial state has little effect on accumulated fat oxidation over 24 h (24-h fat oxidation) when energy intake is matched to energy expenditure (energy-balanced condition). The present study explored the possibility that exercise increases 24-h fat oxidation only when performed in a post-absorptive state, i.e. before breakfast. Methods Indirect calorimetry using a metabolic chamber was performed in 10 young, non-obese men over 24 h. Subjects remained sedentary (control) or performed 60-min exercise before breakfast (morning), after lunch (afternoon), or after dinner (evening) at 50% of VO2max. All trials were designed to be energy balanced over 24 h. Time course of energy and substrate balance relative to the start of calorimetry were estimated from the differences between input (meal consumption) and output (oxidation). Findings Fat oxidation over 24 h was increased only when exercise was performed before breakfast (control, 456 ± 61; morning, 717 ± 64; afternoon, 446 ± 57; and evening, 432 ± 44 kcal/day). Fat oxidation over 24 h was negatively correlated with the magnitude of the transient deficit in energy and carbohydrate. Interpretation Under energy-balanced conditions, 24-h fat oxidation was increased by exercise only when performed before breakfast. Transient carbohydrate deficits, i.e., glycogen depletion, observed after morning exercise may have contributed to increased 24-h fat oxidation. PMID:26844280

  9. Nqrs Data for C24H42Li2N4 (Subst. No. 1587)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H42Li2N4 (Subst. No. 1587)

  10. Development of a UK Online 24-h Dietary Assessment Tool: myfood24

    PubMed Central

    Carter, Michelle C.; Albar, Salwa A.; Morris, Michelle A.; Mulla, Umme Z.; Hancock, Neil; Evans, Charlotte E.; Alwan, Nisreen A.; Greenwood, Darren C.; Hardie, Laura J.; Frost, Gary S.; Wark, Petra A.; Cade, Janet E.

    2015-01-01

    Assessment of diet in large epidemiological studies can be costly and time consuming. An automated dietary assessment system could potentially reduce researcher burden by automatically coding food records. myfood24 (Measure Your Food on One Day) an online 24-h dietary assessment tool (with the flexibility to be used for multiple 24 h-dietary recalls or as a food diary), has been developed for use in the UK population. Development of myfood24 was a multi-stage process. Focus groups conducted with three age groups, adolescents (11–18 years) (n = 28), adults (19–64 years) (n = 24) and older adults (≥65 years) (n = 5) informed the development of the tool, and usability testing was conducted with beta (adolescents n = 14, adults n = 8, older adults n = 1) and live (adolescents n = 70, adults n = 20, older adults n = 4) versions. Median system usability scale (SUS) scores (measured on a scale of 0–100) in adolescents and adults were marginal for the beta version (adolescents median SUS = 66, interquartile range (IQR) = 20; adults median SUS = 68, IQR = 40) and good for the live version (adolescents median SUS = 73, IQR = 22; adults median SUS = 80, IQR = 25). Myfood24 is the first online 24-h dietary recall tool for use with different age groups in the UK. Usability testing indicates that myfood24 is suitable for use in UK adolescents and adults. PMID:26024292

  11. Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum.

    PubMed

    Morán-Diez, Eugenia; Rubio, Belén; Domínguez, Sara; Hermosa, Rosa; Monte, Enrique; Nicolás, Carlos

    2012-04-15

    Trichoderma harzianum is a fungus used as biocontrol agent using its antagonistic abilities against phytopathogenic fungi, although it has also direct effects on plants, increasing or accelerating their growth and resistance to diseases and the tolerance to abiotic stresses. We analyzed Arabidopsis thaliana gene expression changes after 24 h of incubation in the presence of T. harzianum T34 using the Affymetrix GeneChip Arabidopsis ATH1. Because this microarray contains more than 22,500 probe sets representing approximately 24,000 genes, we were able to construct a global picture of the molecular physiology of the plant at 24 h of T. harzianum-Arabidopsis interaction. We identified several differentially expressed genes that are involved in plant responses to stress, regulation of transcription, signal transduction or plant metabolism. Our data support the hypothesis that salicylic acid- and jasmonic acid-related genes were down-regulated in A. thaliana after 24 h of incubation in the presence of T. harzianum T34, while several genes related to abiotic stress responses were up-regulated. These systemic changes elicited by T. harzianum in Arabidopsis are discussed.

  12. Availability of 24-h urine collection method on dietary phosphorus intake estimation

    PubMed Central

    Sakuma, Masae; Morimoto, Yuuka; Suzuki, Yukie; Suzuki, Akitsu; Noda, Saaya; Nishino, Kanaho; Ando, Sakiko; Ishikawa, Makoto; Arai, Hidekazu

    2017-01-01

    Accurate assessment of dietary phosphorus intake is necessary to prevent hyperphosphatemia. The aim of this study was to evaluate the 24-h urine collection method for estimation of phosphate intake in healthy males. Two experiments, a 1-day and a 5-day loading test, were performed. After an overnight fast, subjects consumed test meals, 24-h urine collection was performed, and blood samples were obtained. In the 5-day loading test, a phosphorus supplement was orally administered on day 3. The association between the phosphorus content of test meals and urinary excretion, anthropometric indices, and blood biomarkers was analyzed to develop a more precise formula for estimating phosphorus intake. In the 1-day loading test, the standard deviation of predictive phosphorus intake, based on multiple linear regression analysis, was less than that for the phosphorus absorption rate. In the 5-day loading test, urinary phosphorus excretion was similar on days 2, 4 and 5, but was significantly higher on day 3 after phosphorus supplementation. Our results indicate that estimation of dietary phosphorus intake with the 24-h urine collection method, using the amount of phosphorus and urea nitrogen excretion, may increase the precision of short-term monitoring. PMID:28366992

  13. Immune cell changes in response to a swimming training session during a 24-h recovery period.

    PubMed

    Morgado, José P; Monteiro, Cristina P; Teles, Júlia; Reis, Joana F; Matias, Catarina; Seixas, Maria T; Alvim, Marta G; Bourbon, Mafalda; Laires, Maria J; Alves, Francisco

    2016-05-01

    Understanding the impact of training sessions on the immune response is crucial for the adequate periodization of training, to prevent both a negative influence on health and a performance impairment of the athlete. This study evaluated acute systemic immune cell changes in response to an actual swimming session, during a 24-h recovery period, controlling for sex, menstrual cycle phases, maturity, and age group. Competitive swimmers (30 females, 15 ± 1.3 years old; and 35 males, 16.5 ± 2.1 years old) performed a high-intensity training session. Blood samples were collected before, immediately after, 2 h after, and 24 h after exercise. Standard procedures for the assessment of leukogram by automated counting (Coulter LH 750, Beckman) and lymphocytes subsets by flow cytometry (FACS Calibur BD, Biosciences) were used. Subjects were grouped according to competitive age groups and pubertal Tanner stages. Menstrual cycle phase was monitored. The training session induced neutrophilia, lymphopenia, and a low eosinophil count, lasting for at least 2 h, independent of sex and maturity. At 24 h postexercise, the acquired immunity of juniors (15-17 years old), expressed by total lymphocytes and total T lymphocytes (CD3(+)), was not fully recovered. This should be accounted for when planning a weekly training program. The observed lymphopenia suggests a lower immune surveillance at the end of the session that may depress the immunity of athletes, highlighting the need for extra care when athletes are exposed to aggressive environmental agents such as swimming pools.

  14. Temperature compensation and entrainment in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  15. Biological rhythms during residence in polar regions.

    PubMed

    Arendt, Josephine

    2012-05-01

    At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 × 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with "normal" working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75°S, base personnel adapt the circadian system to night work within a week

  16. Rhythm on Your Lips

    PubMed Central

    Peña, Marcela; Langus, Alan; Gutiérrez, César; Huepe-Artigas, Daniela; Nespor, Marina

    2016-01-01

    The Iambic-Trochaic Law (ITL) accounts for speech rhythm, grouping of sounds as either Iambs—if alternating in duration—or Trochees—if alternating in pitch and/or intensity. The two different rhythms signal word order, one of the basic syntactic properties of language. We investigated the extent to which Iambic and Trochaic phrases could be auditorily and visually recognized, when visual stimuli engage lip reading. Our results show both rhythmic patterns were recognized from both, auditory and visual stimuli, suggesting that speech rhythm has a multimodal representation. We further explored whether participants could match Iambic and Trochaic phrases across the two modalities. We found that participants auditorily familiarized with Trochees, but not with Iambs, were more accurate in recognizing visual targets, while participants visually familiarized with Iambs, but not with Trochees, were more accurate in recognizing auditory targets. The latter results suggest an asymmetric processing of speech rhythm: in auditory domain, the changes in either pitch or intensity are better perceived and represented than changes in duration, while in the visual domain the changes in duration are better processed and represented than changes in pitch, raising important questions about domain general and specialized mechanisms for speech rhythm processing. PMID:27877144

  17. Physiological links between circadian rhythms, metabolism and nutrition.

    PubMed

    Johnston, Jonathan D

    2014-09-01

    Circadian rhythms, metabolism and nutrition are closely interlinked. A great deal of recent research has investigated not only how aspects of metabolic physiology are driven by circadian clocks, but also how these circadian clocks are themselves sensitive to metabolic change. At the cellular level, novel feedback loops have been identified that couple circadian 'clock genes' and their proteins to expression of nuclear receptors, regulation of redox state and other major pathways. Using targeted disruption of circadian clocks, mouse models are providing novel insight into the role of tissue-specific clocks in glucose homeostasis and body weight regulation. The relationship between circadian rhythms and obesity appears complex, with variable alteration of rhythms in obese individuals. However, it is clear from animal studies that the timing and nutritional composition of meals can regulate circadian rhythms, particularly in peripheral tissues. Translation of these findings to human physiology now represents an important goal.

  18. Circadian rhythms in healthy aging--effects downstream from the pacemaker

    NASA Technical Reports Server (NTRS)

    Monk, T. H.; Kupfer, D. J.

    2000-01-01

    Using both previously published findings and entirely new data, we present evidence in support of the argument that the circadian dysfunction of advancing age in the healthy human is primarily one of failing to transduce the circadian signal from the circadian timing system (CTS) to rhythms "downstream" from the pacemaker rather than one of failing to generate the circadian signal itself. Two downstream rhythms are considered: subjective alertness and objective performance. For subjective alertness, we show that in both normal nychthemeral (24 h routine, sleeping at night) and unmasking (36 h of constant wakeful bed rest) conditions, advancing age, especially in men, leads to flattening of subjective alertness rhythms, even when circadian temperature rhythms are relatively robust. For objective performance, an unmasking experiment involving manual dexterity, visual search, and visual vigilance tasks was used to demonstrate that the relationship between temperature and performance is strong in the young, but not in older subjects (and especially not in older men).

  19. Food Intake Recording Software System, version 4 (FIRSSt4): A self-completed 24-h dietary recall for children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Food Intake Recording Software System, version 4 (FIRSSt4), is a web-based 24-h dietary recall (24 hdr) self-administered by children based on the Automated Self-Administered 24-h recall (ASA24) (a self-administered 24 hdr for adults). The food choices in FIRSSt4 are abbreviated to include only ...

  20. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health

    PubMed Central

    Ramkisoensing, Ashna; Meijer, Johanna H.

    2015-01-01

    In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders. PMID:26097465

  1. Entrainment of circadian rhythm by ambient temperature cycles in mice.

    PubMed

    Refinetti, Roberto

    2010-08-01

    Much is known about how environmental light-dark cycles synchronize circadian rhythms in animals. The ability of environmental cycles of ambient temperature to synchronize circadian rhythms has also been investigated extensively but mostly in ectotherms. In the present study, the synchronization of the circadian rhythm of running-wheel activity by environmental cycles of ambient temperature was studied in laboratory mice. Although all mice were successfully entrained by a light-dark cycle, only 60% to 80% of the mice were entrained by temperature cycles (24-32 degrees C or 24-12 degrees C), and attainment of stable entrainment seemed to take longer under temperature cycles than under a light-dark cycle. This suggests that ambient temperature cycles are weaker zeitgebers than light-dark cycles, which is consistent with the results of the few previous studies using mammalian species. Whereas 80% of the mice were entrained by 24-h temperature cycles, only 60% were entrained by 23-h cycles, and none was entrained by 25-h cycles. The results did not clarify whether entrainment by temperature cycles is caused directly by temperature or indirectly through a temperature effect on locomotor activity, but it is clear that the rhythm of running-wheel activity in mice can be entrained by ambient temperature cycles in the nonnoxious range.

  2. Rhythms that Speed You Up

    ERIC Educational Resources Information Center

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-01-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…

  3. Absence of Circadian Rhythms of Gonadotropin Secretion in Women

    PubMed Central

    Klingman, Kara M.; Marsh, Erica E.; Klerman, Elizabeth B.; Anderson, Ellen J.

    2011-01-01

    Context: Diurnal rhythms of LH and FSH have been reported in normal women, but it is unclear whether these reflect underlying circadian control from the suprachiasmatic nucleus and/or external influences. Objective: The aim of this study was to determine whether endogenous circadian rhythms of LH, FSH, and the glycoprotein free α-subunit (FAS) are present in reproductive-aged women. Design and Setting: Subjects were studied in the early follicular phase using a constant routine protocol in a Clinical Research Center at an academic medical center. Subjects: Subjects were healthy, normal-cycling women aged 23–29 yr (n = 11). Main Outcome Measures: Temperature data were collected, and blood samples were assayed for LH, FSH, FAS, and TSH. Results: Core body temperature and TSH were best fit by a sinusoid model, indicating that known circadian rhythms were present in this population. However, the patterns of FSH, LH, and FAS over 24 h were best fit by a linear model. Furthermore, there were no differences in LH and FAS interpulse intervals or pulse amplitudes between evening, night, and morning. Conclusions: Under conditions that control for sleep/wake, light/dark, activity, position, and nutritional cues, there is no circadian rhythm of LH, FSH, or FAS in women during the early follicular phase despite the presence of endogenous rhythms of TSH and core body temperature. These studies indicate that endogenous circadian control does not contribute to previously reported diurnal rhythms in reproductive-aged women and emphasizes the importance of environmental cues in controlling normal reproductive function. PMID:21346063

  4. Measuring Child Rhythm

    ERIC Educational Resources Information Center

    Payne, Elinor; Post, Brechtje; Astruc, Lluisa; Prieto, Pilar; Vanrell, Maria del Mar

    2012-01-01

    Interval-based rhythm metrics were applied to the speech of English, Catalan and Spanish 2, 4 and 6 year-olds, and compared with the (adult-directed) speech of their mothers. Results reveal that child speech does not fall into a well-defined rhythmic class: for all three languages, it is more "vocalic" (higher %V) than adult speech and…

  5. Ageing and Circadian rhythms

    PubMed Central

    Giebultowicz, Jadwiga M.; Long, Dani M.

    2015-01-01

    Circadian clocks are cell-autonomous molecular feedback loops that generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The mechanisms of circadian clocks are well understood in young fruit flies Drosophila melanogaster, but less is known about how circadian system changes during organismal aging. Similar as in humans, rest/activity rhythms tend to weaken with age in fruit flies, suggesting conservation of aging-related changes in the circadian system. It has been shown that aging is associated with reduced expression of core clock genes in peripheral head clocks while similar reduction may not occur in central clock neurons regulating behavioral rhythms. Arrhythmic flies with mutations in core clock genes display accelerated aging and shortened lifespan suggesting that weakened circadian rhythms may contribute to aging phenotypes. To understand whether strong circadian clocks support organism’s healthspan and lifespan, future research needs to focus on age-related changes in clock genes as well as clock-controlled genes in specific organs and tissues. PMID:26000238

  6. Speech rhythm: a metaphor?

    PubMed

    Nolan, Francis; Jeon, Hae-Sung

    2014-12-19

    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep 'prominence gradient', i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a 'stress-timed' language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow 'syntagmatic contrast' between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence of alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and it is this analogical process which allows speech to be matched to external rhythms.

  7. Biological Clocks & Circadian Rhythms

    ERIC Educational Resources Information Center

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  8. Speech rhythm: a metaphor?

    PubMed Central

    Nolan, Francis; Jeon, Hae-Sung

    2014-01-01

    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence of alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and it is this analogical process which allows speech to be matched to external rhythms. PMID:25385774

  9. Monitoring hand flexor fatigue in a 24-h motorcycle endurance race.

    PubMed

    Marina, M; Porta, J; Vallejo, L; Angulo, R

    2011-04-01

    Motorcycle riders must endure high levels of muscle tension for long periods of time, especially in their arms and forearms, when steering and using handlebar controls. Because the right hand operates the gas handle and front brakes, the present research focuses on fatigue in the right hand flexors. Ten adult riders, aged 32.5±5.5years, volunteered to participate in this study. During the 24h race each rider, on completion of a relay stage, visited the assessment box to do the following handgrip test sequence: (1) 10s of EMG recording at rest, (2) one 3-s maximal voluntary contraction (MVC), (3) 1min rest interval and (4) 50% MVC maintained during 10s. EMG amplitude (MP: μV) and median and mean frequency (MF and MPF: Hz) over the superficial finger flexors were recorded during the whole handgrip test sequence with adhesive surface electrodes. MVC values were maintained during the first two relays (50-60min duration in total) and dropped gradually thereafter (p<0.01). During the monitoring of the 50% MVC, mean amplitude increased (p=0.024) while median and mean frequency tended to decrease. These results suggest fatigue is produced in motorcycle riders in a 24h race. However, the expected reduction of EMG frequency was not confirmed given to a potentially large variability.

  10. Effect of tumor necrosis factor-α inhibitors on ambulatory 24-h blood pressure.

    PubMed

    Grossman, Chagai; Bornstein, Gil; Leibowitz, Avshalom; Ben-Zvi, Ilan; Grossman, Ehud

    2017-02-01

    Tumor necrosis factor alpha (TNF-α) inhibitors are increasingly being used in inflammatory rheumatic diseases (IRD). The risk of cardiovascular disease is elevated in patients with IRD and TNF-α inhibitors reduce this risk. We assessed whether the beneficial effect of TNF-α inhibitors on cardiovascular risk is mediated by blood pressure reduction. We measured blood pressure levels with 24-h ambulatory blood pressure measurements device in patients with IRD before and 3 months after treatment with TNF-α inhibitors. The study population consisted of 15 subjects (6 men; mean age 45.9 ± 14.1 years). Most patients had either rheumatoid arthritis or psoriatic arthritis and adalimumab was the most common TNF-α inhibitor used. Mean 24-h systolic and diastolic blood pressure levels remained the same after treatment (121 ± 12/66 ± 7 before and 123 ± 11/67 ± 10 mm Hg after; p = 0.88 and 0.66, respectively). The study demonstrates that TNF-α inhibitors have no effect on blood pressure levels.

  11. BDNFval66met affects neural activation pattern during fear conditioning and 24 h delayed fear recall

    PubMed Central

    Golkar, Armita; Lindström, Kara M.; Haaker, Jan; Öhman, Arne; Schalling, Martin; Ingvar, Martin

    2015-01-01

    Brain-derived neurotrophic factor (BDNF), the most abundant neutrophin in the mammalian central nervous system, is critically involved in synaptic plasticity. In both rodents and humans, BDNF has been implicated in hippocampus- and amygdala-dependent learning and memory and has more recently been linked to fear extinction processes. Fifty-nine healthy participants, genotyped for the functional BDNFval66met polymorphism, underwent a fear conditioning and 24h-delayed extinction protocol while skin conductance and blood oxygenation level dependent (BOLD) responses (functional magnetic resonance imaging) were acquired. We present the first report of neural activation pattern during fear acquisition ‘and’ extinction for the BDNFval66met polymorphism using a differential conditioned stimulus (CS)+ > CS− comparison. During conditioning, we observed heightened allele dose-dependent responses in the amygdala and reduced responses in the subgenual anterior cingulate cortex in BDNFval66met met-carriers. During early extinction, 24h later, we again observed heightened responses in several regions ascribed to the fear network in met-carriers as opposed to val-carriers (insula, amygdala, hippocampus), which likely reflects fear memory recall. No differences were observed during late extinction, which likely reflects learned extinction. Our data thus support previous associations of the BDNFval66met polymorphism with neural activation in the fear and extinction network, but speak against a specific association with fear extinction processes. PMID:25103087

  12. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    PubMed

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells.

  13. Calculating activation energies for temperature compensation in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2011-10-01

    Many biological species possess a circadian clock, which helps them anticipate daily variations in the environment. In the absence of external stimuli, the rhythm persists autonomously with a period of approximately 24 h. However, single pulses of light, nutrients, chemicals or temperature can shift the clock phase. In the case of light- and temperature-cycles, this allows entrainment of the clock to cycles of exactly 24 h. Circadian clocks have the remarkable property of temperature compensation, that is, the period of the circadian rhythm remains relatively constant within a physiological range of temperatures. For several organisms, temperature-regulated processes within the circadian clock have been identified in recent years. However, how these processes contribute to temperature compensation is not fully understood. Here, we theoretically investigate temperature compensation in general oscillatory systems. It is known that every oscillator can be locally temperature compensated around a reference temperature, if reactions are appropriately balanced. A balancing is always possible if the control coefficient with respect to the oscillation period of at least one reaction in the oscillator network is positive. However, for global temperature compensation, the whole physiological temperature range is relevant. Here, we use an approach which leads to an optimization problem subject to the local balancing principle. We use this approach to analyse different circadian clock models proposed in the literature and calculate activation energies that lead to temperature compensation.

  14. Sleep and Circadian Rhythms in Four Orbiting Astronauts

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.; Buysse, Daniel J.; Billy, Bart D.; Kennedy, Kathy S.; Willrich, Linda M.

    1999-01-01

    INTRODUCTION The study of human sleep and circadian rhythms in space has both operational and scientific significance. Operationally, U.S. Spaceflight is moving away from brief missions with durations of less than one week. Most space shuttle missions now last two weeks or more, and future plans involving space stations, lunar bases and interplanetary missions all presume that people will be living away from the gravity and time cues of earth for months at a time. Thus, missions are moving away from situations where astronauts can "tough it out" for comparatively brief durations, to situations where sleep and circadian disruptions are likely to become chronic, and thus resistant to short term pharmacological or behavioral manipulations. As well as the operational significance, there is a strong theoretical imperative for studying the sleep and circadian rhythms of people who are removed from the gravity and time cues of earth. Like other animals, in humans, the Circadian Timekeeping System (CTS) is entrained to the correct period (24h) and temporal orientation by various time cues ("zeitgebers"), the most powerful of which is the alternation of daylight and darkness. In leaving Earth, astronauts are removing themselves from the prime zeitgeber of their circadian system -- the 24h alternation of daylight and darkness.

  15. Safety and Efficacy of 24-h Closed-Loop Insulin Delivery in Well-Controlled Pregnant Women With Type 1 Diabetes

    PubMed Central

    Murphy, Helen R.; Kumareswaran, Kavita; Elleri, Daniela; Allen, Janet M.; Caldwell, Karen; Biagioni, Martina; Simmons, David; Dunger, David B.; Nodale, Marianna; Wilinska, Malgorzata E.; Amiel, Stephanie A.; Hovorka, Roman

    2011-01-01

    OBJECTIVE To evaluate the safety and efficacy of closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS A total of 12 women with type 1 diabetes (aged 32.9 years, diabetes duration 17.6 years, BMI 27.1 kg/m2, and HbA1c 6.4%) were randomly allocated to closed-loop or conventional CSII. They performed normal daily activities (standardized meals, snacks, and exercise) for 24 h on two occasions at 19 and 23 weeks’ gestation. Plasma glucose time in target (63–140 mg/dL) and time spent hypoglycemic were calculated. RESULTS Plasma glucose time in target was comparable for closed-loop and conventional CSII (median [interquartile range]: 81 [59–87] vs. 81% [54–90]; P = 0.75). Less time was spent hypoglycemic (<45 mg/dL [0.0 vs. 0.3%]; P = 0.04), with a lower low blood glucose index (2.4 [0.9–3.5] vs. 3.3 [1.9–5.1]; P = 0.03), during closed-loop insulin delivery. CONCLUSIONS Closed-loop insulin delivery was as effective as conventional CSII, with less time spent in extreme hypoglycemia. PMID:22011408

  16. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.

    PubMed

    Verwey, Michael; Lam, Germain Y M; Amir, Shimon

    2009-06-01

    When food availability is restricted to a single time of day, circadian rhythms of behavior and physiology in rodents shift to anticipate the predictable time of food arrival. It has been hypothesized that certain food-anticipatory rhythms are linked to the induction and entrainment of rhythms in clock gene expression in the dorsomedial hypothalamic nucleus (DMH), a putative food-entrained circadian oscillator. To study this concept further, we made food availability unpredictable by presenting the meal at a random time each day (variable restricted feeding, VRF), either during the day, night or throughout the 24-h cycle. Wheel running activity and the expression of the clock protein, Period1 (PER1), in the DMH and the suprachiasmatic nucleus (SCN) were assessed. Rats exhibited increased levels of activity during the portion of the day when food was randomly presented but, as expected, failed to entrain anticipatory wheel running activity to a single time of day. PER1 expression in the SCN was unchanged by VRF schedules. In the DMH, PER1 expression became rhythmic, peaking at opposite times of day in rats fed only during the day or during the night. In rats fed randomly throughout the entire 24-h cycle, PER1 expression in the DMH remained arrhythmic, but was elevated. These results demonstrate that VRF schedules confined to the day or night can induce circadian rhythms of clock gene expression in the DMH. Such feeding schedules cannot entrain behavioral rhythms, thereby showing that food-entrainment of behavior and circadian rhythms of clock gene expression in the DMH are dissociable.

  17. Circadian Rhythms Differ between Sexes and Closely Related Species of Nasonia Wasps

    PubMed Central

    Bertossa, Rinaldo C.; van Dijk, Jeroen; Diao, Wenwen; Saunders, David; Beukeboom, Leo W.; Beersma, Domien G. M.

    2013-01-01

    Activity rhythms in 24 h light-dark cycles, constant darkness, and constant light conditions were analyzed in four different Nasonia species for each sex separately. Besides similarities, clear differences are evident among and within Nasonia species as well as between sexes. In all species, activity in a light-dark cycle is concentrated in the photophase, typical for diurnal organisms. Contrary to most diurnal insect species so far studied, Nasonia follows Aschoff's rule by displaying long (>24 h) internal rhythms in constant darkness but short (<24 h) in constant light. In constant light, N. vitripennis males display robust circadian activity rhythms, whereas females are usually arrhythmic. In contrast to other Nasonia species, N. longicornis males display anticipatory activity, i.e. activity shortly before light-on in a light-dark cycle. As expected, N. oneida shows activity patterns similar to those of N. giraulti but with important differences in key circadian parameters. Differences in circadian activity patterns and parameters between species may reflect synchronization of specific life-history traits to environmental conditions. Scheduling mating or dispersion to a specific time of the day could be a strategy to avoid interspecific hybridization in Nasonia species that live in sympatry. PMID:23555911

  18. Circadian rhythm and menopause.

    PubMed

    Pines, A

    2016-12-01

    Circadian rhythm is an internal biological clock which initiates and monitors various physiological processes with a fixed time-related schedule. The master circadian pacemaker is located in the suprachiasmatic nucleus in the hypothalamus. The circadian clock undergoes significant changes throughout the life span, at both the physiological and molecular levels. This cyclical physiological process, which is very complex and multifactorial, may be associated with metabolic alterations, atherosclerosis, impaired cognition, mood disturbances and even development of cancer. Sex differences do exist, and the well-known sleep disturbances associated with menopause are a good example. Circadian rhythm was detected in the daily pattern of hot flushes, with a peak in the afternoons. Endogenous secretion of melatonin decreases with aging across genders, and, among women, menopause is associated with a significant reduction of melatonin levels, affecting sleep. Although it might seem that hot flushes and melatonin secretion are likely related, there are not enough data to support such a hypothesis.

  19. Circadian Rhythm Sleep Disorders

    PubMed Central

    Kim, Min Ju; Lee, Jung Hie; Duffy, Jeanne F.

    2014-01-01

    Objective To review circadian rhythm sleep disorders, including underlying causes, diagnostic considerations, and typical treatments. Methods Literature review and discussion of specific cases. Results Survey studies 1,2 suggest that up to 3% of the adult population suffers from a circadian rhythm sleep disorder (CRSD). However, these sleep disorders are often confused with insomnia, and an estimated 10% of adult and 16% of adolescent sleep disorders patients may have a CRSD 3-6. While some CRSD (such as jet lag) can be self-limiting, others when untreated can lead to adverse medical, psychological, and social consequences. The International Classification of Sleep Disorders classifies CRSD as dyssomnias, with six subtypes: Advanced Sleep Phase Type, Delayed Sleep Phase Type, Irregular Sleep Wake Type, Free Running Type, Jet Lag Type, and Shift Work Type. The primary clinical characteristic of all CRSD is an inability to fall asleep and wake at the desired time. It is believed that CRSD arise from a problem with the internal biological clock (circadian timing system) and/or misalignment between the circadian timing system and the external 24-hour environment. This misalignment can be the result of biological and/or behavioral factors. CRSD can be confused with other sleep or medical disorders. Conclusions Circadian rhythm sleep disorders are a distinct class of sleep disorders characterized by a mismatch between the desired timing of sleep and the ability to fall asleep and remain asleep. If untreated, CRSD can lead to insomnia and excessive daytime sleepiness, with negative medical, psychological, and social consequences. It is important for physicians to recognize potential circadian rhythm sleep disorders so that appropriate diagnosis, treatment, and referral can be made. PMID:25368503

  20. Validity and relative validity of a novel digital approach for 24-h dietary recall in athletes

    PubMed Central

    2014-01-01

    Background We developed a digital dietary analysis tool for athletes (DATA) using a modified 24-h recall method and an integrated, customized nutrient database. The purpose of this study was to assess DATA’s validity and relative validity by measuring its agreement with registered dietitians’ (RDs) direct observations (OBSERVATION) and 24-h dietary recall interviews using the USDA 5-step multiple-pass method (INTERVIEW), respectively. Methods Fifty-six athletes (14–20 y) completed DATA and INTERVIEW in randomized counter-balanced order. OBSERVATION (n = 26) consisted of RDs recording participants’ food/drink intake in a 24-h period and were completed the day prior to DATA and INTERVIEW. Agreement among methods was estimated using a repeated measures t-test and Bland-Altman analysis. Results The paired differences (with 95% confidence intervals) between DATA and OBSERVATION were not significant for carbohydrate (10.1%, -1.2–22.7%) and protein (14.1%, -3.2–34.5%) but was significant for energy (14.4%, 1.2–29.3%). There were no differences between DATA and INTERVIEW for energy (-1.1%, -9.1–7.7%), carbohydrate (0.2%, -7.1–8.0%) or protein (-2.7%, -11.3–6.7%). Bland-Altman analysis indicated significant positive correlations between absolute values of the differences and the means for OBSERVATION vs. DATA (r = 0.40 and r = 0.47 for energy and carbohydrate, respectively) and INTERVIEW vs. DATA (r = 0.52, r = 0.29, and r = 0.61 for energy, carbohydrate, and protein, respectively). There were also wide 95% limits of agreement (LOA) for most method comparisons. The mean bias ratio (with 95% LOA) for OBSERVATION vs. DATA was 0.874 (0.551-1.385) for energy, 0.906 (0.522-1.575) for carbohydrate, and 0.895(0.395-2.031) for protein. The mean bias ratio (with 95% LOA) for INTERVIEW vs. DATA was 1.016 (0.538-1.919) for energy, 0.995 (0.563-1.757) for carbohydrate, and 1.031 (0.514-2.068) for protein. Conclusion DATA has good relative

  1. Master runners dominate 24-h ultramarathons worldwide—a retrospective data analysis from 1998 to 2011

    PubMed Central

    2013-01-01

    Background The aims of the present study were to examine (a) participation and performance trends and (b) the age of peak running performance in master athletes competing in 24-h ultra-marathons held worldwide between 1998 and 2011. Methods Changes in both running speed and the age of peak running speed in 24-h master ultra-marathoners (39,664 finishers, including 8,013 women and 31,651 men) were analyzed. Results The number of 24-h ultra-marathoners increased for both women and men across years (P < 0.01). The age of the annual fastest woman decreased from 48 years in 1998 to 35 years in 2011. The age of peaking running speed remained unchanged across time at 42.5 ± 5.2 years for the annual fastest men (P > 0.05). The age of the annual top ten women decreased from 42.6 ± 5.9 years (1998) to 40.1 ± 7.0 years (2011) (P < 0.01). For the annual top ten men, the age of peak running speed remained unchanged at 42 ± 2 years (P > 0.05). Running speed remained unchanged over time at 11.4 ± 0.4 km h-1 for the annual fastest men and 10.0 ± 0.2 km/h for the annual fastest women, respectively (P > 0.05). For the annual ten fastest women, running speed increased over time by 3.2% from 9.3 ± 0.3 to 9.6 ± 0.3 km/h (P < 0.01). Running speed of the annual top ten men remained unchanged at 10.8 ± 0.3 km/h (P > 0.05). Women in age groups 25–29 (r2 = 0.61, P < 0.01), 30–34 (r2 = 0.48, P < 0.01), 35–39 (r2 = 0.42, P = 0.01), 40–44 (r2 = 0.46, P < 0.01), 55–59 (r2 = 0.41, P = 0.03), and 60–64 (r2 = 0.57, P < 0.01) improved running speed; while women in age groups 45–49 and 50–54 maintained running speed (P > 0.05). Men improved running speed in age groups 25–29 (r2 = 0.48, P = 0.02), 45–49 (r2 = 0.34, P = 0.03), 50–54 (r2 = 0.50, P < 0.01), 55–59 (r2 = 0.70, P < 0.01), and 60–64 (r2 = 0.44, P = 0.03); while runners in age groups 30–34, 35–39, and 40–44 maintained running speed (P > 0.05). Conclusions Female and male age group runners improved

  2. Performance and sleepiness during a 24 h wake in constant conditions are affected by diet.

    PubMed

    Lowden, Arne; Holmbäck, Ulf; Akerstedt, Torbjörn; Forslund, Jeanette; Lennernäs, Maria; Forslund, Anders

    2004-02-01

    This study investigated the effects of high-carbohydrate (HC) and high-fat (HF) diet on cognitive performance, and subjective and objective sleepiness. Seven male participants were kept awake for 24 h in a metabolic ward. Meals were given every 4h and cognitive performance and sleepiness ratings were assessed hourly. The Karolinska Drowsiness Test (KDT, EEG derived) was performed twice after meal. Performance in simple reaction time showed a significant interaction of diet and the post-prandial period, a slower reaction time was observed for the HC-diet 3.5 h after meal intake. Diet did not affect EEG measures but a general post-prandial increase of objective sleepiness was observed 3.5h after meal servings. The HC-diet was significantly associated with an increase of subjective sleepiness. The study demonstrated that the HC-diet caused larger oscillation in performance and increased sleepiness as compared to HF-diet throughout day and night.

  3. Circadian Rhythms in Cyanobacteria

    PubMed Central

    Golden, Susan S.

    2015-01-01

    SUMMARY Life on earth is subject to daily and predictable fluctuations in light intensity, temperature, and humidity created by rotation of the earth. Circadian rhythms, generated by a circadian clock, control temporal programs of cellular physiology to facilitate adaptation to daily environmental changes. Circadian rhythms are nearly ubiquitous and are found in both prokaryotic and eukaryotic organisms. Here we introduce the molecular mechanism of the circadian clock in the model cyanobacterium Synechococcus elongatus PCC 7942. We review the current understanding of the cyanobacterial clock, emphasizing recent work that has generated a more comprehensive understanding of how the circadian oscillator becomes synchronized with the external environment and how information from the oscillator is transmitted to generate rhythms of biological activity. These results have changed how we think about the clock, shifting away from a linear model to one in which the clock is viewed as an interactive network of multifunctional components that are integrated into the context of the cell in order to pace and reset the oscillator. We conclude with a discussion of how this basic timekeeping mechanism differs in other cyanobacterial species and how information gleaned from work in cyanobacteria can be translated to understanding rhythmic phenomena in other prokaryotic systems. PMID:26335718

  4. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans

    NASA Technical Reports Server (NTRS)

    Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.

    2001-01-01

    Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.

  5. Molecular Approach to Hypothalamic Rhythms

    DTIC Science & Technology

    1994-03-14

    in vitro to Targeted Cloning Strategy for reset or phase shift circadian rhythms of neuronal G Protein-Coupled Receptors activity in the SCN (Prosser...behavioral circadian rhythms . Light, serotonin and melatonin are the dominant stimuli which affect the phase of the endogenous clock. The grantee has devised...shifting the phase of circadian rhythms , and to rule out the prevailing alternative hypothesis that the effect was mediated by the 5-HT1A receptor coupled

  6. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights.

    PubMed

    Dijk, D J; Neri, D F; Wyatt, J K; Ronda, J M; Riel, E; Ritz-De Cecco, A; Hughes, R J; Elliott, A R; Prisk, G K; West, J B; Czeisler, C A

    2001-11-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  7. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.; Neri, D. F.; Wyatt, J. K.; Ronda, J. M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R. J.; Elliott, A. R.; Prisk, G. K.; West, J. B.; Czeisler, C. A.

    2001-01-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  8. Stability and fragmentation of the activity rhythm across the sleep-wake cycle: the importance of age, lifestyle, and mental health.

    PubMed

    Luik, Annemarie I; Zuurbier, Lisette A; Hofman, Albert; Van Someren, Eus J W; Tiemeier, Henning

    2013-12-01

    The rhythms of activity across the 24-h sleep-wake cycle, determined in part by the circadian clock, change with aging. Few large-scale studies measured the activity rhythm objectively in the general population. The present population-based study in middle-aged and elderly persons evaluated how activity rhythms change with age, and additionally investigated sociodemographics, mental health, lifestyle, and sleep characteristics as determinants of rhythms of activity. Activity rhythms were measured objectively with actigraphy. Recordings of at least 96 h (138 ± 14 h, mean ± SD) were collected from 1734 people (age: 62 ± 9.4 yrs) participating in the Rotterdam Study. Activity rhythms were quantified by calculating interdaily stability, i.e., the stability of the rhythm over days, and intradaily variability, i.e., the fragmentation of the rhythm relative to its 24-h amplitude. We assessed age, gender, presence of a partner, employment, cognitive functioning, depressive symptoms, body mass index (BMI), coffee use, alcohol use, and smoking as determinants. The results indicate that older age is associated with a more stable 24-h activity profile (β = 0.07, p = 0.02), but also with a more fragmented distribution of periods of activity and inactivity (β = 0.20, p < 0.001). Having more depressive symptoms was related to less stable (β = -0.07, p = 0.005) and more fragmented (β = 0.10, p < 0.001) rhythms. A high BMI and smoking were also associated with less stable rhythms (BMI: β = -0.11, p < 0.001; smoking: β = -0.11, p < 0.001) and more fragmented rhythms (BMI: β = 0.09, p < 0.001; smoking: β = 0.11, p < 0.001). We conclude that with older age the 24-h activity rhythm becomes more rigid, whereas the ability to maintain either an active or inactive state for a longer period of time is compromised. Both characteristics appear to be important for major health issues in old age.

  9. Baroreflex-mediated heart rate and vascular resistance responses 24 h after maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    2003-01-01

    INTRODUCTION: Plasma volume, heart rate (HR) variability, and stimulus-response relationships for baroreflex control of forearm vascular resistance (FVR) and HR were studied in eight healthy men after and without performing a bout of maximal exercise to test the hypotheses that acute expansion of plasma volume is associated with 1) reduction in baroreflex-mediated HR response, and 2) altered operational range for central venous pressure (CVP). METHODS: The relationship between stimulus (DeltaCVP) and vasoconstrictive reflex response (DeltaFVR) during unloading of cardiopulmonary baroreceptors was assessed with lower-body negative pressure (LBNP, 0, -5, -10, -15, -20 mm Hg). The relationship between stimulus (Deltamean arterial pressure (MAP)) and cardiac reflex response (DeltaHR) during loading of arterial baroreceptors was assessed with steady-state infusion of phenylephrine (PE) designed to increase MAP by 15 mm Hg alone and during application of LBNP (PE+LBNP) and neck pressure (PE+LBNP+NP). Measurements of vascular volume and autonomic baroreflex responses were conducted on two different test days, each separated by at least 1 wk. On one day, baroreflex response was tested 24 h after graded cycle exercise to volitional exhaustion. On another day, measurement of baroreflex response was repeated with no exercise (control). The order of exercise and control treatments was counterbalanced. RESULTS: Baseline CVP was elevated (P = 0.04) from a control value of 10.5 +/- 0.4 to 12.3 +/- 0.4 mm Hg 24 h after exercise. Average DeltaFVR/DeltaCVP during LBNP was not different (P = 0.942) between the exercise (-1.35 +/- 0.32 pru x mm Hg-1) and control (-1.32 +/- 0.36 pru x mm Hg-1) conditions. However, maximal exercise caused a shift along the reflex response relationship to a higher CVP and lower FVR. HR baroreflex response (DeltaHR/DeltaMAP) to PE+LBNP+NP was lower (P = 0.015) after maximal exercise (-0.43 +/- 0.15 beats x min-1 x mm Hg-1) compared with the control

  10. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

    PubMed Central

    Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick

  11. The friction coefficient of shoulder joints remains remarkably low over 24 h of loading.

    PubMed

    Jones, Brian K; Durney, Krista M; Hung, Clark T; Ateshian, Gerard A

    2015-11-05

    The frictional response of whole human joints over durations spanning activities of daily living has not been reported previously. This study measured the friction of human glenohumeral joints during 24 h of reciprocal loading in a pendulum testing device, at moderate (0.2 mm/s, 4320 cycles) and low (0.02 mm/s, 432 cycles) sliding speeds, under a 200 N load. The effect of joint congruence was also investigated by testing human humeral heads against significantly larger mature bovine glenoids. Eight human joints and six bovine joints were tested in four combinations: human joints tested at moderate (hHCMS, n=6) and low speed (hHCLS, n=3), human humeral heads tested against bovine glenoids at moderate speed (LCMS, n=3), and bovine joints tested at moderate speed (bHCMS, n=3). In the first half hour the mean±standard deviation of the friction coefficient was hHCMS: 0.0016±0.0011, hHCLS: 0.0012±0.0002, LCMS: 0.0008±0.0002 and bHCMS: 0.0024±0.0008; in the last four hours it was hHCMS: 0.0057±0.0025, hHCLS: 0.0047±0.0017, LCMS: 0.0012±0.0003 and bHCMS: 0.0056±0.0016. The initial value was lower than the final value (p<0.0001). The value in LCMS was significantly lower than in hHCMS and bHCMS (p<0.01). No visual damage was observed in any of the specimens. These are the first results to demonstrate that the friction coefficient of natural human shoulders remains remarkably low (averaging as little as 0.0015 and no greater than 0.006) for up to 24 h of continuous loading. The sustained low friction coefficients observed in incongruent joints (~0.001) likely represent rolling rather than sliding friction.

  12. A review of human physiological and performance changes associated with desynchronosis of biological rhythms

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Deroshia, C. W.; Markley, C. L.; Holley, D. C.

    1984-01-01

    This review discusses the effects, in the aerospace environment, of alterations in approximately 24-h periodicities (circadian rhythms) upon physiological and psychological functions and possible therapies for desynchronosis induced by such alterations. The consequences of circadian rhythm alteration resulting from shift work, transmeridian flight, or altered day lengths are known as desynchronosis, dysrhythmia, dyschrony, jet lag, or jet syndrome. Considerable attention is focused on the ability to operate jet aircraft and manned space vehicles. The importance of environmental cues, such as light-dark cycles, which influence physiological and psychological rhythms is discussed. A section on mathematical models is presented to enable selection and verification of appropriate preventive and corrective measures and to better understand the problem of dysrhythmia.

  13. Tuberculosis in hospitalized patients: clinical characteristics of patients receiving treatment within the first 24 h after admission*

    PubMed Central

    Silva, Denise Rossato; da Silva, Larissa Pozzebon; Dalcin, Paulo de Tarso Roth

    2014-01-01

    Objective: To evaluate clinical characteristics and outcomes in patients hospitalized for tuberculosis, comparing those in whom tuberculosis treatment was started within the first 24 h after admission with those who did not. Methods: This was a retrospective cohort study involving new tuberculosis cases in patients aged ≥ 18 years who were hospitalized after seeking treatment in the emergency room. Results: We included 305 hospitalized patients, of whom 67 (22.0%) received tuberculosis treatment within the first 24 h after admission ( ≤24h group) and 238 (88.0%) did not (>24h group). Initiation of tuberculosis treatment within the first 24 h after admission was associated with being female (OR = 1.99; 95% CI: 1.06-3.74; p = 0.032) and with an AFB-positive spontaneous sputum smear (OR = 4.19; 95% CI: 1.94-9.00; p < 0.001). In the ≤24h and >24h groups, respectively, the ICU admission rate was 22.4% and 15.5% (p = 0.258); mechanical ventilation was used in 22.4% and 13.9% (p = 0.133); in-hospital mortality was 22.4% and 14.7% (p = 0.189); and a cure was achieved in 44.8% and 52.5% (p = 0.326). Conclusions: Although tuberculosis treatment was initiated promptly in a considerable proportion of the inpatients evaluated, the rates of in-hospital mortality, ICU admission, and mechanical ventilation use remained high. Strategies for the control of tuberculosis in primary care should consider that patients who seek medical attention at hospitals arrive too late and with advanced disease. It is therefore necessary to implement active surveillance measures in the community for earlier diagnosis and treatment. PMID:25029651

  14. Disruption of Daily Rhythms by High-Fat Diet Is Reversible

    PubMed Central

    Branecky, Katrina L.; Niswender, Kevin D.; Pendergast, Julie S.

    2015-01-01

    In mammals a network of circadian clocks coordinates behavior and physiology with 24-h environmental cycles. Consumption of high-fat diet disrupts this temporal coordination by advancing the phase of the liver molecular clock and altering daily rhythms of eating behavior and locomotor activity. In this study we sought to determine whether these effects of high-fat diet on circadian rhythms were reversible. We chronically fed mice high-fat diet and then returned them to low-fat chow diet. We found that the phase of the liver PERIOD2::LUCIFERASE rhythm was advanced (by 4h) and the daily rhythms of eating behavior and locomotor activity were altered for the duration of chronic high-fat diet feeding. Upon diet reversal, the eating behavior rhythm was rapidly reversed (within 2 days) and the phase of the liver clock was restored by 7 days of diet reversal. In contrast, the daily pattern of locomotor activity was not restored even after 2 weeks of diet reversal. Thus, while the circadian system is sensitive to changes in the macronutrient composition of food, the eating behavior rhythm and liver circadian clock are specifically tuned to respond to changes in diet. PMID:26366733

  15. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    PubMed

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  16. Emergence of coherent oscillations in stochastic models for circadian rhythms

    NASA Astrophysics Data System (ADS)

    Gonze, Didier; Halloy, José; Goldbeter, Albert

    2004-10-01

    Most living organisms have developed the capability of generating autonomously sustained oscillations with a period close to 24 h. The mechanism responsible for these circadian rhythms relies on the negative regulation exerted by a protein on the expression of its own gene. Deterministic models for circadian rhythms account for the occurrence of autonomous oscillations of the limit cycle type, for their entrainment by light-dark cycles, and for their phase shifting by light pulses. Such models, however, do not take into consideration the molecular fluctuations which arise when the number of molecules involved in the regulatory mechanism is low. Here we resort to a stochastic description of a core model for circadian rhythms to study the emergence of coherent oscillations in gene expression in the presence of molecular noise. We show that despite the “bar code” pattern of gene activation, robust circadian oscillations can be observed. Simulations of the deterministic, fully developed version of the circadian model indicate, however, that sustained oscillations only emerge above a critical value of the rate constants characterizing the reversible binding of repressor to the gene, while below this value the system evolves towards an excitable steady state. This explains why, depending on whether or not the critical value of these rate constants is exceeded, stochastic simulations of the model produce coherent oscillations or very noisy oscillations with a highly variable period.

  17. Prolactin circadian rhythm persists throughout lactation in women.

    PubMed

    Stern, J M; Reichlin, S

    1990-01-01

    To determine whether the prolactin (PRL) circadian rhythm, with its characteristic nocturnal rise, persists during the hyperprolactinemia of lactation, PRL levels were analyzed in blood samples collected hourly for 24 h from 20 mothers, 4-46 months postpartum. The circadian rhythm of PRL persisted throughout lactation as manifested by: (1) significantly higher mean nighttime than daytime PRL levels in the whole sample, despite higher daytime nursing durations; (2) the distribution of zenith levels which most frequently occur between 23.00 and 07.00 h, when nursing duration is lowest, and which are almost absent between 07.00 and 23.00 h, when nursing duration is highest, and of nadir levels, which have an opposite pattern; (3) spontaneous PRL surges that are more frequent, longer, and of higher magnitude at night than during the day, and (4) the larger magnitude of suckling-induced PRL release from late afternoon through the night compared to the morning in some women. Our data suggest that the mechanisms responsible for the circadian rhythm in PRL secretion are relatively independent of the mechanisms of suckling-induced release. We propose that the nocturnal rise in PRL during lactation functions to ensure a robust milk supply during an extensive nonsuckling interval.

  18. An endogenous circadian rhythm of respiratory control in humans

    PubMed Central

    Spengler, Christina M; Czeisler, Charles A; Shea, Steven A

    2000-01-01

    Many physiological and behavioural functions have circadian rhythms – endogenous oscillations with a period of approximately 24 h that can occur even in the absence of sleep. We determined whether there is an endogenous circadian rhythm in breathing, metabolism and ventilatory chemosensitivity in humans. Ten healthy, adult males were studied throughout 4 days in a stable laboratory environment. After two initial baseline days (16 h wakefulness plus 8 h sleep) that served to achieve a steady state, subjects were studied under constant behavioural and environmental conditions throughout 41 h of wakefulness. Ventilation, metabolism and the magnitude of the hypercapnic ventilatory response (HCVR) were measured every 2 h. Individuals’ data were aligned according to circadian phase (core body temperature minimum; CBTmin) and averaged. In the group average data, there was a significant and large amplitude circadian variation in HCVR slope (average of ±0.4 l min−1 mmHg−1; corresponding to ±12.1 % of 24 h mean), and a smaller amplitude rhythm in the HCVR x-axis intercept (average of ±1.1 mmHg; ±2.1 % of 24 h mean). Despite a significant circadian variation in metabolism (±3.2 % of 24 h mean), there were no detectable rhythms in tidal volume, respiratory frequency or ventilation. This small discrepancy between metabolism and ventilation led to a small but significant circadian variation in end-tidal PCO2(PET,CO2; ±0.6 mmHg; ±1.5 % of 24 h mean). The circadian minima of the group-averaged respiratory variables occurred 6-8 h earlier than CBTmin, suggesting that endogenous changes in CBT across the circadian cycle have less of an effect on respiration than equivalent experimentally induced changes in CBT. Throughout these circadian changes, there were no correlations between HCVR parameters (slope or x-axis intercept) and either resting ventilation or resting PET,CO2. This suggests that ventilation and PET,CO2 are little influenced by central chemosensory

  19. 24 h electrocardiographic monitoring in morbidly obese patients during short-term zero calorie diet.

    PubMed

    Zuckerman, E; Yeshurun, D; Goldhammer, E; Shiran, A

    1993-06-01

    The medical literature of the previous decades has reported sudden unexpected death among cases of very low calorie dieters. Cardiac arrhythmias, possibly produced by a prolonged QT interval, were suspected to be the main cause of death in a considerable number of these cases. The aim of this study was to investigate the occurrence of significant cardiac arrhythmias and prolongation of the QT interval, during short-term zero calorie diet, in morbidly obese patients. A group of 11 such patients (BMI > 35 kg/m2) were treated with a short-term zero calorie diet, as in-patients for ten days, followed by an out-patient regime on an 800 kcal diet. Their ages ranged from 19-58 years (mean 43.6). None had diabetes mellitus, cardiac, liver or renal disease, or thyroid or pituitary abnormalities, and none took any medication except Allupurinol 300 mg/day. We used a 24h holter monitoring system to detect cardiac arrhythmias or prolonged QT interval. Recordings were performed on the day before starting the fast, while the patients were on their regular diet, and compared with similar recordings of the same patients taken on the 10th day of the fast. No significant cardiac arrhythmias or prolongation of the QT interval were recorded during the fasting period. Short-term zero calorie dieting provided the patients with physical and psychological encouragement and is a safe method for reducing weight if it is carried out under strict medical supervision.

  20. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle

    PubMed Central

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-01-01

    Radiative cooling technology utilizes the atmospheric transparency window (8–13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day–night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance. PMID:27959339

  1. Combined solar thermal and photovoltaic power plants - An approach to 24h solar electricity?

    NASA Astrophysics Data System (ADS)

    Platzer, Werner J.

    2016-05-01

    Solar thermal power plants have the advantage of being able to provide dispatchable renewable electricity even when the sun is not shining. Using thermal energy strorage (TES) they may increase the capacity factor (CF) considerably. However in order to increase the operating hours one has to increase both, thermal storage capacity and solar field size, because the additional solar field is needed to charge the storage. This increases investment cost, although levelised electricity cost (LEC) may decrease due to the higher generation. Photovoltaics as a fluctuating source on the other side has arrived at very low generation costs well below 10 ct/kWh even for Central Europe. Aiming at a capacity factor above 70% and at producing dispatchable power it is shown that by a suitable combination of CSP and PV we can arrive at lower costs than by increasing storage and solar field size in CSP plants alone. Although a complete baseload power plant with more than 90% full load hours may not be the most economic choice, power plants approaching a full 24h service in most days of the year seem to be possible at reasonably low tariffs.

  2. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-01

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  3. Cerebral blood flow velocity in humans exposed to 24 h of head-down tilt

    NASA Technical Reports Server (NTRS)

    Kawai, Y.; Murthy, G.; Watenpaugh, D. E.; Breit, G. A.; Deroshia, C. W.; Hargens, A. R.

    1993-01-01

    This study investigates cerebral blood flow (CBF) velocity in humans before, during, and after 24 h of 6 deg head-down tilt (HDT), which is a currently accepted experimental model to simulate microgravity. CBF velocity was measured by use of the transcranial Doppler technique in the right middle cerebral artery of eight healthy male subjects. Mean CBF velocity increased from the pre-HDT upright seated baseline value of 55.5 +/- 3.7 (SE) cm/s to 61.5 +/- 3.3 cm/s at 0.5 h of HDT, reached a peak value of 63.2 +/- 4.1 cm/s at 3 h of HDT, and remained significantly above the pre-HDT baseline for over 6 h of HDT. During upright seated recovery, mean CBF velocity decreased to 87 percent of the pre-HDT baseline value. Mean CBF velocity correlated well with calculated intracranial arterial pressure (IAP). As analyzed by linear regression, mean CBF velocity = 29.6 + 0.32IAP. These results suggest that HDT increases CBF velocity by increasing IAP during several hours after the onset of microgravity. Importantly, the decrease in CBF velocity after HDT may be responsible, in part, for the increased risk of syncope observed in subjects after prolonged bed rest and also in astronauts returning to Earth.

  4. Effects of 24-h and 36-h sleep deprivation on human postural control and adaptation.

    PubMed

    Patel, M; Gomez, S; Berg, S; Almbladh, P; Lindblad, J; Petersen, H; Magnusson, M; Johansson, R; Fransson, P A

    2008-02-01

    This study investigated whether human postural stability and adaptation were affected by sleep deprivation and the relationship between motor performance and subjective scores of sleepiness (visuo-anlogue sleepiness scores, VAS). Postural stability and subjective sleepiness were examined in 18 healthy subjects (mean age 23.8 years) following 24 and 36 h of continued wakefulness, ensured by portable EEG recordings, and compared to a control test where the assessments were made after a normal night of sleep. The responses were assessed using posturography with eyes open and closed, and vibratory proprioceptive stimulations were used to challenge postural control. Postural control was significantly affected after 24 h of sleep deprivation both in anteroposterior and in lateral directions, but less so after 36 h. Subjective VAS scores showed poor correlation with indicators of postural control performance. The clearest evidence that sleep deprivation decreased postural control was the reduction of adaptation. Also several near falls after 2-3 min during the posturographic tests showed that sleep deprivation might affect stability through momentary lapses of attention. Access to vision, somewhat, but not entirely reduced the effect of sleep deprivation. In conclusion, sleep deprivation can be a contributing factor to decreased postural control and falls.

  5. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.

    PubMed

    Chen, Zhen; Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2016-12-13

    Radiative cooling technology utilizes the atmospheric transparency window (8-13 μm) to passively dissipate heat from Earth into outer space (3 K). This technology has attracted broad interests from both fundamental sciences and real world applications, ranging from passive building cooling, renewable energy harvesting and passive refrigeration in arid regions. However, the temperature reduction experimentally demonstrated, thus far, has been relatively modest. Here we theoretically show that ultra-large temperature reduction for as much as 60 °C from ambient is achievable by using a selective thermal emitter and by eliminating parasitic thermal load, and experimentally demonstrate a temperature reduction that far exceeds previous works. In a populous area at sea level, we have achieved an average temperature reduction of 37 °C from the ambient air temperature through a 24-h day-night cycle, with a maximal reduction of 42 °C that occurs when the experimental set-up enclosing the emitter is exposed to peak solar irradiance.

  6. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner.

    PubMed

    Cameron, Jameason D; Goldfield, Gary S; Doucet, Éric

    2012-06-01

    Changes in smell function can modify feeding behaviour but there is little evidence of how acute negative energy balance may impact olfaction and palatability. In a within-subjects repeated measures design, 15 subjects (nine male; six female) aged 28.6±4.5 years with initial body weight (BW) 74.7±4.9 kg and body mass index (BMI) 25.3±1.4 kg/m(2) were randomized and tested at baseline (FED) and Post Deprivation (FASTED) for nasal chemosensory performance (Sniffin' Sticks) and food palatability (visual analogue scale). Significant main effects for time indicated improvements in the FASTED session for odor threshold, odor discrimination, and total odor scores (TDI), and for increased palatability. There were significant positive correlations between initial BW and the change in odor threshold (r=.52) and TDI scores (r=.53). Positive correlations were also noted between delta identification score and delta palatability (r=.68). When the sample was split by sex, only for females were there significant correlations between delta palatability and: delta BW (r=.88); delta odor identification (r=.94); and delta TDI score (r=.85). Fasting for 24h improved smell function and this was related to increased palatability ratings and initial BW. Further studies should confirm the role of BW and sex in the context of olfaction, energy deprivation and palatability.

  7. Analysis of circadian rhythms in embryonic stem cells.

    PubMed

    Paulose, Jiffin K; Rucker, Edmund B; Cassone, Vincent M

    2015-01-01

    Recent attention on the early development of circadian rhythms has yielded several avenues of potential study regarding molecular and physiological rhythms in embryonic stem cells (ESCs) and their derivatives. While general guidelines of experimental design are-as always-applicable, there are certain idiosyncrasies with respect to experiments involving circadian rhythms that will be addressed. ESCs provide a number of challenges to the circadian biologist: growth rates are normally much higher than in established cell culture systems, the cells' innate drive towards differentiation and the lack of known synchronizing input pathways are a few examples. Some of these challenges can be addressed post hoc, such as normalization to total RNA or protein for transcript abundance studies. Most others, as outlined here, require special handling of the samples before and during experimentation in order to preserve any potential circadian oscillation that is present. Failure to do so may result in a disruption of endogenous oscillation(s) or, potentially worse, generation of an artificial oscillation that has no biological basis. This chapter begins with cultured ESCs, derived from primary blastocysts or in the form of cell lines, and outlines two methods of measuring circadian rhythms: the 2DG method of measuring glucose uptake (Sokoloff et al. J Neurochem 28:897-916, 1977) and real-time measurement of molecular rhythms using transgenic bioluminescence (Yoo et al. Proc Natl Acad Sci U S A 101:5339-5346, 2004).

  8. Society for Research on Biological Rhythms (1st) Held on May 11-14, 1988 in Charleston, South Carolina

    DTIC Science & Technology

    1988-08-10

    and applied research in all aspects of biological 8:00 a.m. to 1:00 p.m., May 12-14 and from 4:30 - 6 :30 rhythms , to disseminate important research...NUCLEUS (SCN) NEU- RONS IN VITRO WITHOUT ALTERING THE GLUCOSE Workshop 6 : UTILIZATION RHYTHM OR PHASE OF THE RHYTHM Involvement of Protein Synthesis in...Medical Science, Seta-Tsukinowa, Otsu- city, Shiga, Japan. Circadian Rhythms 74 RUNNING WHEEL AVAILABILITY ENTRAINS SLEEP- 65 PHASE RESPONSE CURVES AS

  9. Circadian control of glucose metabolism.

    PubMed

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-07-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis.

  10. Circadian rhythms affect electroretinogram, compound eye color, striking behavior and locomotion of the praying mantis Hierodula patellifera.

    PubMed

    Schirmer, Aaron E; Prete, Frederick R; Mantes, Edgar S; Urdiales, Andrew F; Bogue, Wil

    2014-11-01

    Many behaviors and physiological processes oscillate with circadian rhythms that are synchronized to environmental cues (e.g. light onset), but persist with periods of ~24 h in the absence of such cues. We used a multilevel experimental approach to assess whether circadian rhythms modulate several aspects of the visual physiology and behavior of the praying mantis Hierodula patellifera. We used electroretinograms (ERGs) to assess compound eye sensitivity, colorimetric photographic analyses to assess compound eye color changes (screening pigment migration), behavioral assays of responsiveness to computer-generated prey-like visual stimuli and analyses of locomotor activity patterns on a modified treadmill apparatus. Our results indicate that circadian clocks control and/or modulate each of the target behaviors. Strong rhythms, persisting under constant conditions, with periods of ~24 h were evident in photoreceptor sensitivity to light, appetitive responsiveness to prey-like stimuli and gross locomotor activity. In the first two cases, responsiveness was highest during the subjective night and lowest during the subjective day. Locomotor activity was strongly clustered around the transition time from day to night. In addition, pigment migration and locomotor behavior responded strongly to light:dark cycles and anticipated the light-dark transition, suggesting that the circadian clocks modulating both were entrained to environmental light cues. Together, these data indicate that circadian rhythms operate at the cellular, cellular systems and organismal level in H. patellifera. Our results represent an intriguing first step in uncovering the complexities of circadian rhythms in the Mantodea.

  11. Influence of head-down bed rest on the circadian rhythms of hormones and electrolytes involved in hydroelectrolytic regulation

    NASA Technical Reports Server (NTRS)

    Millet, C.; Custaud, M. A.; Allevard, A. M.; Zaouali-Ajina, M.; Monk, T. H.; Arnaud, S. B.; Claustrat, B.; Gharib, C.; Gauquelin-Koch, G.

    2001-01-01

    We investigated in six men the impact of a 17-day head-down bed rest (HDBR) on the circadian rhythms of the hormones and electrolytes involved in hydroelectrolytic regulation. This HDBR study was designed to mimic an actual spaceflight. Urine samples were collected at each voiding before, during and after HDBR. Urinary excretion of aldosterone, arginine vasopressin (AVP), cyclic guanosine monophosphate (cGMP), cortisol, electrolytes (Na+ and K+) and creatinine were determined. HDBR resulted in a significant reduction of body mass (P < 0.01) and of caloric intake [mean (SEM) 2,778 (37) kcal.24 h(-1) to 2,450 (36) kcal.24 h(-1), where 1 kcal.h(-1) = 1.163 J.s(-1); P< 0.01]. There was a significant increase in diastolic blood pressure [71.8 (0.7) mmHg vs 75.6 (0.91) mmHg], with no significant changes in either systolic blood pressure or heart rate. The nocturnal hormonal decrease of aldosterone was clearly evident only before and after HDBR, but the day/night difference did not appear during HDBR. The rhythm of K+ excretion was unchanged during HDBR, whereas for Na+ excretion, a large decrease was shown during the night as compared to the day. The circadian rhythm of cortisol persisted. These data suggest that exposure to a 17-day HDBR could induce an exaggeration of the amplitude of the Na+ rhythm and abolition of the aldosterone rhythm.

  12. Development of a Web-Based 24-h Dietary Recall for a French-Canadian Population

    PubMed Central

    Jacques, Simon; Lemieux, Simone; Lamarche, Benoît; Laramée, Catherine; Corneau, Louise; Lapointe, Annie; Tessier-Grenier, Maude; Robitaille, Julie

    2016-01-01

    Twenty-four-hour dietary recalls can provide high-quality dietary intake data, but are considered expensive, as they rely on trained professionals for both their administration and coding. The objective of this study was to develop an automated, self-administered web-based 24-h recall (R24W) for a French-Canadian population. The development of R24W was inspired by the United States Department of Agriculture (USDA) Automated Multiple-Pass Method. Questions about the context of meals/snacks were included. Toppings, sauces and spices frequently added to each food/dish were suggested systematically. A list of frequently forgotten food was also suggested. An interactive summary allows the respondent to track the progress of the questionnaire and to modify or remove food as needed. The R24W prototype was pre-tested for usability and functionality in a convenience sample of 29 subjects between the ages of 23 and 65 years, who had to complete one recall, as well as a satisfaction questionnaire. R24W includes a list of 2865 food items, distributed into 16 categories and 98 subcategories. A total of 687 recipes were created for mixed dishes, including 336 ethnic recipes. Pictures of food items illustrate up to eight servings per food item. The pre-test demonstrated that R24W is easy to complete and to understand. This new dietary assessment tool is a simple and inexpensive tool that will facilitate diet assessment of individuals in large-scale studies, but validation studies are needed prior to the utilization of the R24W. PMID:27854276

  13. Parabens in 24 h urine samples of the German Environmental Specimen Bank from 1995 to 2012.

    PubMed

    Moos, Rebecca K; Koch, Holger M; Angerer, Jürgen; Apel, Petra; Schröter-Kermani, Christa; Brüning, Thomas; Kolossa-Gehring, Marike

    2015-10-01

    Parabens are widely used as antimicrobial preservatives in personal care and consumer products, food and pharmaceuticals. Due to their ubiquity, humans are constantly exposed to these chemicals. We assessed exposure to nine parabens (methyl-, ethyl-, n- and iso-propyl-, n- and iso-butyl-, benzyl-, pentyl- and heptyl paraben) in the German population from 1995 to 2012 based on 660 24h urine samples from the German Environmental Specimen Bank (ESB) using on-line HPLC coupled to isotope dilution tandem mass spectrometry. The limit of quantification (LOQ) was 0.5 μg/L for all parabens. We detected methyl-, ethyl- and n-propyl paraben in 79-99% of samples, followed by n-butyl paraben in 40% of samples. We infrequently detected iso-butyl-, iso-propyl- and benzyl paraben in 24%, 4% and 1.4% of samples, respectively. Urinary concentrations were highest for methyl paraben (median 39.8 μg/L; 95th percentile 319 μg/L) followed by n-propyl paraben (4.8 μg/L; 95th percentile 74.0 μg/L) and ethyl paraben (2.1 μg/L; 95th percentile 39.1 μg/L). Women had significantly higher urinary levels for all parabens than men, except for benzyl paraben. Samples from the ESB revealed that over the investigation period of nearly 20 years urinary paraben levels remained surprisingly constant; only methyl paraben had a significant increase, for both men and women. We found strong correlations between methyl- and n-propyl paraben and between n- and iso-butyl paraben. These results indicate that parabens are used in combination and arise from common sources of exposure. Urinary excretion factors are needed to extrapolate from individual urinary concentrations to actual doses.

  14. Differential Gene Expression Analysis in Polygonum minus Leaf upon 24 h of Methyl Jasmonate Elicitation

    PubMed Central

    Rahnamaie-Tajadod, Reyhaneh; Loke, Kok-Keong; Goh, Hoe-Han; Noor, Normah M.

    2017-01-01

    Polygonum minus is an herbal plant that grows in Southeast Asian countries and traditionally used as medicine. This plant produces diverse secondary metabolites such as phenolic compounds and their derivatives, which are known to have roles in plant abiotic and biotic stress responses. Methyl jasmonate (MeJA) is a plant signaling molecule that triggers transcriptional reprogramming in secondary metabolism and activation of defense responses against many biotic and abiotic stresses. However, the effect of MeJA elicitation on the genome-wide expression profile in the leaf tissue of P. minus has not been well-studied due to the limited genetic information. Hence, we performed Illumina paired-end RNA-seq for de novo reconstruction of P. minus leaf transcriptome to identify differentially expressed genes (DEGs) in response to MeJA elicitation. A total of 182,111 unique transcripts (UTs) were obtained by de novo assembly of 191.57 million paired-end clean reads using Trinity analysis pipeline. A total of 2374 UTs were identified to be significantly up-/down-regulated 24 h after MeJA treatment. These UTs comprising many genes related to plant secondary metabolite biosynthesis, defense and stress responses. To validate our sequencing results, we analyzed the expression of 21 selected DEGs by quantitative real-time PCR and found a good correlation between the two analyses. The single time-point analysis in this work not only provides a useful genomic resource for P. minus but also gives insights on molecular mechanisms of stress responses in P. minus. PMID:28220135

  15. What are the approaches for evaluating antihypertensive treatment by 24 h ambulatory blood pressure monitoring?

    PubMed

    Neutel, J M; Smith, D H; Weber, M A

    1999-01-01

    Measurements of trough blood pressure in a clinic setting have been the traditional method of assessing the efficacy of antihypertensive agents. The duration of action of antihypertensive drugs has been assessed by calculation of a trough-to-peak ratio; drugs with a trough-to-peak ratio greater than 50% are typically given once-a-day indications. However, the use of clinical measurements to assess antihypertensive agents can be misleading. Ambulatory blood pressure monitoring is a simple technique that provides accurate and reproducible data on both the efficacy and duration of action of antihypertensive agents. Although several complicated techniques have been used for the analysis of ambulatory blood pressure data, studies have demonstrated that calculation of simple blood pressure means (24 h mean, day-time mean and night-time mean) will provide all the data required to assess the efficacy of a drug. Calculations of systolic and diastolic load also provide useful information, and the index correlates closely with target-organ damage. Assessing the reduction of blood pressure during the last 2-6 h of the dosing interval provides critical information on the duration of action of agents with once-a-day dosing. Trough-to-peak ratio can also be calculated from an ambulatory blood pressure monitor. Furthermore, a simple line graph constructed from hourly means makes available, at a simple glance, a large amount of information about a drug. The reproducibility of ambulatory monitoring, together with the absence of placebo effect and the ability to exclude patients with white-coat hypertension, make the technique an extremely powerful tool for the assessment of antihypertensive agents that clearly provides more data on the efficacy and duration of action of an antihypertensive agent than do traditional clinical measurements.

  16. Quality assurance of the international computerised 24 h dietary recall method (EPIC-Soft).

    PubMed

    Crispim, Sandra P; Nicolas, Genevieve; Casagrande, Corinne; Knaze, Viktoria; Illner, Anne-Kathrin; Huybrechts, Inge; Slimani, Nadia

    2014-02-01

    The interview-administered 24 h dietary recall (24-HDR) EPIC-Soft® has a series of controls to guarantee the quality of dietary data across countries. These comprise all steps that are part of fieldwork preparation, data collection and data management; however, a complete characterisation of these quality controls is still lacking. The present paper describes in detail the quality controls applied in EPIC-Soft, which are, to a large extent, built on the basis of the EPIC-Soft error model and are present in three phases: (1) before, (2) during and (3) after the 24-HDR interviews. Quality controls for consistency and harmonisation are implemented before the interviews while preparing the seventy databases constituting an EPIC-Soft version (e.g. pre-defined and coded foods and recipes). During the interviews, EPIC-Soft uses a cognitive approach by helping the respondent to recall the dietary intake information in a stepwise manner and includes controls for consistency (e.g. probing questions) as well as for completeness of the collected data (e.g. system calculation for some unknown amounts). After the interviews, a series of controls can be applied by dietitians and data managers to further guarantee data quality. For example, the interview-specific 'note files' that were created to track any problems or missing information during the interviews can be checked to clarify the information initially provided. Overall, the quality controls employed in the EPIC-Soft methodology are not always perceivable, but prove to be of assistance for its overall standardisation and possibly for the accuracy of the collected data.

  17. Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h.

    PubMed

    Maskell, Peter D; Albeishy, Mohammed; De Paoli, Giorgia; Wilson, Nathan E; Seetohul, L Nitin

    2016-03-01

    The interpretation of postmortem drug levels is complicated by changes in drug blood levels in the postmortem period, a phenomena known as postmortem drug redistribution. We investigated the postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in a rabbit model. Heroin (1 mg/kg) was injected into anesthetised rabbit; after 1 h, an auricular vein blood sample was taken and the rabbit was euthanised. Following death rabbits were placed in a supine position at room temperature and divided into three groups namely (1) immediate autopsy, (2) autopsy after 30 minutes and (3) autopsy 24 h after death. Various samples which included femoral blood, cardiac blood, lung, liver, kidney, vitreous humour, subcutaneous and abdominal fat, liver, bone marrow and skeletal muscle were taken. The samples were analysed with a validated LC-MS/MS method. It was observed that within minutes there was a significant increase in free morphine postmortem femoral blood concentration compared to the antemortem sample (0.01 ± 0.01 to 0.05 ± 0.02 mg/L).Various other changes in free morphine and metabolite concentrations were observed during the course of the experiment in various tissues. Principal component analysis was used to investigate possible correlations between free morphine in the various samples. Some correlations were observed but gave poor predictions (>20 % error) when back calculating. The results suggest that rabbits are a good model for further studies of postmortem redistribution but that further study and understanding of the phenomena is required before accurate predictions of the blood concentration at the time of death are possible.

  18. [Validity of the 24-h previous day physical activity recall (PDPAR-24) in Spanish adolescents].

    PubMed

    Cancela, José María; Lago, Joaquín; Ouviña, Lara; Ayán, Carlos

    2015-04-01

    Introducción: El control del nivel de práctica de actividad física que realizan los adolescentes, de sus factores determinantes y susceptibilidad al cambio resulta indispensable para intervenir sobre la epidemia de obesidad que afecta a la sociedad española. Sin embargo, el número de cuestionarios validados para valorar la actividad física en adolescentes españoles es escaso. Objetivos: Evaluar la validez del cuestionario24hPrevious Day Physical Activity Recall (PDPAR-24) cuando es aplicado a la población de adolescentes españoles. Método: Participaron en este estudio estudiantes de 14-15 años de dos centros de educación secundaria del norte de Galicia. Como criterio objetivo de la actividad física realizada se utilizó el registro proporcionado por el acelerómetro Actigraph GT3X.Se monitorizó a los sujetos durante un día por medio del acelerómetro y al día siguiente se administró el cuestionario de auto-informe. Resultados: Un total de 79 alumnos (15.16 ± 0.81 años, 39% mujeres) finalizaron el estudio. Se observan correlaciones positivas estadísticamente significativas de tamaño medio a grande en ambos sexos (r=0.50-0.98), para la actividad física ligera y moderada. Las correlaciones observadas son más elevadas a medida que aumenta la intensidad de la actividad física realizada. Conclusiones: El cuestionario de auto-informe PDPAR-24 puede ser considerado como una herramienta válida a la hora de valorar el nivel de actividad física en adolescentes españoles.

  19. Functional characterization of left ventricular segmental responses during the initial 24 h and 1 wk after experimental canine myocardial infarction.

    PubMed Central

    Roan, P; Scales, F; Saffer, S; Buja, L M; Willerson, J T

    1979-01-01

    Characterization of the temporal evolution of resting segmental function and inotropic reserve after coronary occlusion may be important in evaluating attempts to salvage ischemic but non-necrotic myocardium. Accordingly, we chronically implanted up to six pairs of pulse-transit piezoelectric crystals in the left ventricular myocardium of dogs to measure segmental wall thickness. Segments were separated into groups according to the loss of net systolic thickening (NET) at 5 min postocclusion of the left anterior descending coronary artery in awake, unsedated dogs. Group 1 included segments with NET values of 67--100+ (percent control); group 2 between 67 and 0; and group 3 less than 0 (paradoxical motion). 5 min after coronary occlusion, group 1 NET was 92 +/- 5% (SEM) although significant decreases occurred in NET in group 2 (36 +/- 4%) and group 3 segments (-33 +/- 5%). Between 5 min and 24 h after coronary occlusion, no further significant changes occurred in NET in groups 1, 2, and 3 crystals. Some segments underwent further functional deterioration between 24 h and 1 wk after left anterior descending coronary artery occlusion, although no overall change occurred in segments with mild to moderate ischemic dysfunction. Segments with NET less than 0 at 24 h, on the other hand, exhibited a reduction in aneurysmal bulging between 24 h and 1 wk from -41 +/- 10 to -23 +/- 11% (n = 12, P = 0.02). Inotropic reserve was assessed with postextrasystolic potentiation (PESP) in 14 dogs, and with infusions of dopamine (11 dogs), and isoproterenol (13 dogs). PESP was the most potent intervention and produced a significant augmentation in NET in group 2 crystals at 1, 2, 4, 6,8, and 24 h after coronary occlusion but only at 1 and 2 h in NET in group 3 crystals. Thus, following experimental coronary occlusion, the evolution of ischemic segmental dysfunction is dynamic and variable. A significant degree of inotropic reserve, as assessed by PESP, dopamine, and isoproterenol

  20. Social interaction and sex differences influence rat temperature circadian rhythm under LD cycles and constant light.

    PubMed

    Cambras, T; Castejón, L; Díez-Noguera, A

    2011-06-01

    Circadian rhythms produce an efficient organization of animal behaviour over the 24h day. In some species, social cues have been found to have a role as synchronizers of these rhythms. Here, the influence of social interaction on rat circadian behaviour was investigated, addressing the question of whether cohabitation would produce a delay in the appearance of arrhythmicity under constant light conditions. To this end, the circadian rhythms of male and female rat body temperature were studied for 10days under light-dark conditions, followed by 33days under constant bright light. Half of the animals were maintained in individual cages, whilst the others were maintained in larger cages in groups of three rats of the same sex. Results showed that individual circadian rhythms under 24hour light-dark (LD) cycles were more stable and with higher amplitude in grouped than in isolated animals, and higher in males than in females. During the first days under constant light (LL), the stability of the rhythm was also higher in males than in females, but there were no differences according to the group. Moreover, we did not find significant differences in the time of circadian rhythm loss under LL, since high individual variability was found for this variable. On the other hand, female rats living in isolation showed a delayed acrophase in the circadian rhythm under LD conditions compared with those living in groups. These results suggest that cohabitation increases the internal coherence of circadian behaviour, and could be interpreted as indicating that living in isolation may induce a level of stress that disturbs manifestation of the circadian rhythm, especially in females, which are also more reactive than males to external signals.

  1. Circadian Rhythms, the Molecular Clock, and Skeletal Muscle

    PubMed Central

    Lefta, Mellani; Wolff, Gretchen; Esser, Karyn A.

    2015-01-01

    Almost all organisms ranging from single cell bacteria to humans exhibit a variety of behavioral, physiological, and biochemical rhythms. In mammals, circadian rhythms control the timing of many physiological processes over a 24-h period, including sleep-wake cycles, body temperature, feeding, and hormone production. This body of research has led to defined characteristics of circadian rhythms based on period length, phase, and amplitude. Underlying circadian behaviors is a molecular clock mechanism found in most, if not all, cell types including skeletal muscle. The mammalian molecular clock is a complex of multiple oscillating networks that are regulated through transcriptional mechanisms, timed protein turnover, and input from small molecules. At this time, very little is known about circadian aspects of skeletal muscle function/metabolism but some progress has been made on understanding the molecular clock in skeletal muscle. The goal of this chapter is to provide the basic terminology and concepts of circadian rhythms with a more detailed review of the current state of knowledge of the molecular clock, with reference to what is known in skeletal muscle. Research has demonstrated that the molecular clock is active in skeletal muscles and that the muscle-specific transcription factor, MyoD, is a direct target of the molecular clock. Skeletal muscle of clock-compromised mice, Bmal1−/− and ClockΔ19 mice, are weak and exhibit significant disruptions in expression of many genes required for adult muscle structure and metabolism. We suggest that the interaction between the molecular clock, MyoD, and metabolic factors, such as PGC-1, provide a potential system of feedback loops that may be critical for both maintenance and adaptation of skeletal muscle. PMID:21621073

  2. Effect of ethanol on 24-h hormonal changes in prolactin release mechanisms in growing male rats.

    PubMed

    Jiménez-Ortega, Vanesa; Cardinali, Daniel P; Cano, Pilar; Fernández-Mateos, Pilar; Reyes-Toso, Carlos; Esquifino, Ana I

    2006-12-01

    This study analyzes the effect of chronic ethanol feeding on 24-h variation of hypothalamic-pituitary mechanisms involved in prolactin regulation in growing male Wistar rats. Animals were maintained under a 12:12 h light/dark photoperiod (lights off at 2000 h), and they received a liquid diet for 4 wk, starting on d 35 of life. The ethanol-fed group received a similar diet to controls except that maltose was isocalorically replaced by ethanol. Ethanol replacement provided 36% of the total caloric content of the diet. Rats were killed at six time intervals every 4 h, beginning at 0900 h. Mean concentration of serum prolactin in ethanol-fed rats was 58.7% higher than in controls. Peak circulating prolactin levels occurred at the early phase of the activity span in both groups of rats, whereas a second peak was found late in the resting phase in ethanol-fed rats only. In control rats, median eminence dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), and taurine levels exhibited two maxima, the major one preceding prolactin release and a second one during the first part of the resting phase. Median eminence DA and 5-HT turnover (as measured by 3,4-dihydroxyphenylacetic acid, DOPAC/DA, and 5-hydroxyindoleacetic acid, 5-HIAA/5-HT ratio) showed a single maximum preceding prolactin, at 0100 h. Ethanol treatment did not affect median eminence DA or 5-HT levels but it decreased significantly their turnover rate. The midday peak in DA and 5-HT levels (at 1300 h) was abolished and the night peak (at 0100 h) became spread and blunted in the ethanol-fed rats. This was accompanied with the disappearance of the 0100 h peak in DA and 5-HT turnover and the occurrence of a peak in 5-HT turnover at 1700 h. Ethanol intake suppressed the night peak in median eminence GABA and taurine (at 0100 h) as well as the midday peak of GABA. Ethanol augmented pituitary levels of DOPAC and 5-HIAA. The results indicate that chronic ethanol administration affects the mechanisms that

  3. 24-h ambulatory recording of aortic pulse wave velocity and central systolic augmentation: a feasibility study.

    PubMed

    Luzardo, Leonella; Lujambio, Inés; Sottolano, Mariana; da Rosa, Alicia; Thijs, Lutgarde; Noboa, Oscar; Staessen, Jan A; Boggia, José

    2012-10-01

    We assessed the feasibility of ambulatory pulse wave analysis by comparing this approach with an established tonometric technique. We investigated 35 volunteers (45.6 years; 51.0% women) exclusively at rest (R study) and 83 volunteers (49.9 years; 61.4% women) at rest and during daytime (1000-2000 h) ambulatory monitoring (R+A study). We recorded central systolic (cSP), diastolic (cDP) and pulse (cPP) pressures, augmentation index (cAI) and pulse wave velocity (PWV) by brachial oscillometry (Mobil-O-Graph 24h PWA Monitor) and radial tonometry (SphygmoCor). We applied the Bland and Altman's statistics. In the R study, tonometric and oscillometric estimates of cSP (105.6 vs. 106.9 mm Hg), cDP (74.6 vs. 74.7 mm Hg), cPP (31.0 vs. 32.1 mm Hg), cAI (21.1 vs. 20.6%) and PWV (7.3 vs. 7.0 m s(-1)) were similar (P0.11). In the R+A study, tonometric vs. oscillometric assessment yielded similar values for cSP (115.4 vs. 113.9 mm Hg; P=0.19) and cAI (26.5 vs. 25.3%; P=0.54), but lower cDP (77.8 vs. 81.9 mm Hg; P<0.0001), so that cPP was higher (37.6 vs. 32.1 mm Hg; P<0.0001). PWV (7.9 vs. 7.4 m s(-1)) was higher (P=0.0002) on tonometric assessment. The differences between tonometric and oscillometric estimates increased (P0.004) with cSP (r=0.37), cAI (r=0.39) and PWV (r=0.39), but not (P0.17) with cDP (r=0.15) or cPP (r=0.13). Irrespective of measurement conditions, brachial oscillometry compared with an established tonometric method provided similar estimates for cSP and systolic augmentation, but slightly underestimated PWV. Pending further validation, ambulatory assessment of central hemodynamic variables is feasible.

  4. [Use of customer relationship management to improve healthcare for citizens. The 24h Andalusian Health Service: Healthline].

    PubMed

    Quero, Manuel; Ramos, María Belén; López, Wilfredo; Cubillas, Juan José; González, José María; Castillo, José Luis

    2016-01-01

    Salud Responde (in English: Healthline) is a Health Service and Information Centre of the taxpayer-funded Andalusian Health System (AHS) that offers a Telephone Health Advisory Service called SA24h, among other services. The main objective of SA24h is to inform and advise citizens on health issues and the available health resources of the AHS. SA24h has a Customer Relationship Management information technology tool that organises information at various levels of specialization. Depending on the difficulty of the query, the citizen is attended by professionals with distinct profiles, providing a consensual response within the professionals working within Salud Responde or within other healthcare levels of the AHS. SA24h provided responses to 757,168 patient queries from late 2008 to the end of 01/12/2015. A total of 9.38% of the consultations were resolved by the non-health professionals working at Salud Responde. The remaining 84.07% were resolved by health staff. A total of 6.5% of users were referred to accident and emergency facilities while 88.77% did not need to attend their general practitioner within the next 24hours, thus avoiding unnecessary visits to health care facilities.

  5. Cadmium effects on 24h changes in glutamate, aspartate, glutamine, GABA and taurine content of rat striatum.

    PubMed

    Fernández-Pérez, B; Caride, A; Cabaleiro, T; Lafuente, A

    2010-07-01

    This work evaluates the possible changes in 24 h variations of striatal aspartate, glutamate, glutamine, gamma-aminobutyric acid (GABA) and taurine content after oral cadmium treatment. Male rats were submitted to cadmium exposure at two doses (25 and 50 mg/L of cadmium chloride (CdCl(2))) in the drinking water for 30 days. Control rats received cadmium-free water. After the treatment, rats were killed at six different time intervals throughout a 24 h cycle. Differential effects of cadmium on 24 h amino acid fluctuations were observed. Metal exposure modified the daily pattern of the amino acids concentration found in control animals, except for GABA and taurine with the lowest dose used. Exposure to 25 mg/L of CdCl(2) decreased mean content of aspartate, as well as GABA concentration. These results suggest that cadmium exposure affects 24 h changes of the studied amino acids concentration in the striatum, and those changes may be related to alterations in striatal function.

  6. Effects of the long-acting calcium channel blocker barnidipine hydrochloride on 24-h ambulatory blood pressure.

    PubMed

    Kuwajima, Iwao; Abe, Keishi

    2002-02-01

    The effect of the long acting calcium channel blocker, barnidipine hydrochloride (barnidipine) on 24-h ambulatory blood pressure (ABP) was evaluated in J-MUBA (Japanese Multicentre Study on Barnidipine with Ambulatory Blood Pressure Monitoring). Following an observation period of two weeks, antihypertensive treatment with barnidipine was continued for at least six months. At the end of each period, ABP were measured. The patients were divided into high- and low-range groups based on ABP measurement. Throughout the 24 h, barnidipine exerted an excellent antihypertensive effect in the high-range group, but not in the low-range group. Barnidipine had comparable effects in the daytime and nighttime in inverted dippers and non-dippers, but it was more effective on daytime ABP than on nighttime ABP in dippers and in extreme dippers. Morning blood pressure before and after waking was evaluated before and after barnidipine administration in 233 patients. Barnidipine inhibited increases in blood pressure before and after waking, especially in surge-type patients whose blood pressure increased rapidly after waking. A positive correlation among 24-h ABP, daytime and night time ABP, morning blood pressure, and clinic blood pressure during the observation period and the antihypertensive effect of barnidipine was observed, with barnidipine exhibiting stronger antihypertensive effects in patients with persistently high blood pressure. It was concluded that the antihypertensive effects of barnidipine are maintained for 24 h but it has no excessive hypotensive effects on lower blood pressure and is thus a safe antihypertensive agent.

  7. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus.

    PubMed

    Connor, Kwasi M; Gracey, Andrew Y

    2011-09-20

    Residents in the marine intertidal, the zone where terrestrial and marine habitats converge, inhabit an environment that is subject to both the 24-h day and night daily rhythm of the terrestrial earth and also the 12.4-h ebb and flow of the tidal cycle. Here, we investigate the relative contribution of the daily and tidal cycle on the physiology of intertidal mussels, Mytilus californianus, by monitoring rhythms of gene expression in both simulated and natural tidal environments. We report that >40% of the transcriptome exhibits rhythmic gene expression, and that depending on the specific tidal conditions, between 80% and 90% of the rhythmic transcripts follow a circadian expression pattern with a period of 24 to 26 h. Consistent with the dominant effect of the circadian cycle we show that the expression of clock genes oscillates with a 24-h period. Our data indicate that the circadian 24-h cycle is the dominant driver of rhythmic gene expression in this intertidal inhabitant despite the profound environmental and physiological changes associated with aerial exposure during tidal emergence.

  8. Circadian rhythms of hormones in primary affective disorders.

    PubMed

    Francesca, B

    1983-08-01

    The study of circadian rhythms of hormones in PAD reveals impairments in the hypothalamo-pituitary-adrenal axis, GH, PRL, TSH and melatonin secretion. Twenty-four hour cortisol curves show increased number of secretory episodes, increased duration of each episode, increased amount of total cortisol secretion for each episode and of cortisol secretion per minute. Moreover, secretory bursts appear in the late afternoon-evening, when in normal subjects secretion is blunted. In some cases the acrophase is phase-advanced by 1-4 h. GH nocturnal peak is often blunted. PRL nocturnal secretion may also be low, especially in bipolar patients, or the acrophase is 6-8 h phase-advanced. Melatonin nocturnal peak may be blunted and abnormal diurnal peaks are sometimes observed. TSH secretion is normal in bipolar patients; in unipolars, the nocturnal peak, the mean 24-h secretion and the ratio sleep/wakefulness are reduced. The acrophase may be advanced.

  9. Association between Parent and Child Dietary Sodium and Potassium Intakes as Assessed by 24-h Urinary Excretion.

    PubMed

    Service, Carrie; Grimes, Carley; Riddell, Lynn; He, Feng; Campbell, Karen; Nowson, Caryl

    2016-04-01

    The aim of this study was to assess the association between parent and child sodium (Na) and potassium (K) intake as assessed by 24-h urinary excretion (24hUE). Primary school children and their parent(s) provided one 24-h urine sample and information on cooking and children's discretionary salt use. Valid urine samples were provided by 108 mothers (mean age 41.8 (5.1) (SD) years, Na 120 (45) mmol/day) (7.0 g/day salt equivalent) and 40 fathers (44.4 (4.9) years, Na 152 (49) mmol/day (8.9 g/day salt), and 168 offspring (51.8% male, age 9.1 (2.0) years, Na 101 (47) mmol/day (5.9 g/day salt). When adjusted for parental age, child age and gender a 17 mmol/day Na (1 g/day salt) increase in mother's 24hUE was associated with a 3.4 mmol/day Na (0.2 g/day salt) increase in child's salt 24hUE (p = 0.04) with no association observed between father and child. Sixty-seven percent of parents added salt during cooking and 37% of children added salt at the table. Children who reported adding table salt had higher urinary excretion than those who did not (p = 0.01). The association between mother and child Na intake may relate to the consumption of similar foods and highlights the importance of the home environment in influencing total dietary sodium intake.

  10. Association between Parent and Child Dietary Sodium and Potassium Intakes as Assessed by 24-h Urinary Excretion

    PubMed Central

    Service, Carrie; Grimes, Carley; Riddell, Lynn; He, Feng; Campbell, Karen; Nowson, Caryl

    2016-01-01

    The aim of this study was to assess the association between parent and child sodium (Na) and potassium (K) intake as assessed by 24-h urinary excretion (24hUE). Primary school children and their parent(s) provided one 24-h urine sample and information on cooking and children’s discretionary salt use. Valid urine samples were provided by 108 mothers (mean age 41.8 (5.1) (SD) years, Na 120 (45) mmol/day) (7.0 g/day salt equivalent) and 40 fathers (44.4 (4.9) years, Na 152 (49) mmol/day (8.9 g/day salt), and 168 offspring (51.8% male, age 9.1 (2.0) years, Na 101 (47) mmol/day (5.9 g/day salt). When adjusted for parental age, child age and gender a 17 mmol/day Na (1 g/day salt) increase in mother’s 24hUE was associated with a 3.4 mmol/day Na (0.2 g/day salt) increase in child’s salt 24hUE (p = 0.04) with no association observed between father and child. Sixty-seven percent of parents added salt during cooking and 37% of children added salt at the table. Children who reported adding table salt had higher urinary excretion than those who did not (p = 0.01). The association between mother and child Na intake may relate to the consumption of similar foods and highlights the importance of the home environment in influencing total dietary sodium intake. PMID:27043620

  11. 24h Urinary Protein Levels and Urine Protein/Creatinine Ratios Could Probably Forecast the Pathological Classification of HSPN

    PubMed Central

    Ye, Qing; Shang, Shi-qiang; Liu, Ai-min; Zhang, Ting; Shen, Hong-qiang; Chen, Xue-jun; Mao, Jian-hua

    2015-01-01

    This study aimed to assess the relevance of laboratory tests in Henoch-Schönlein purpura nephritis (HSPN) classification, and determine accurate classification factors. This prospective study included 694 HSPN patients who underwent ultrasound-guided percutaneous renal biopsy (PRB). Renal specimens were scored according to International Study of Kidney Disease in Children (ISKDC) classification. Meanwhile, blood samples were immediately collected for laboratory examination. The associations between laboratory parameters and HSPN classification were assessed. Significant differences in levels of serum Th1/Th2 cytokines, immunoglobulins, T-lymphocyte subsets, complement, and coagulation markers were obtained between HSPN patients and healthy children. Interestingly, 24h urinary protein (24h-UPRO) levels and urine protein/urine creatinine ratios could determine HPSN grade IIb, IIIa, and IIIb incidences, with areas under ROC curve of 0.767 and 0.731, respectively. At 24h-UPRO >580.35mg/L, prediction sensitivity and specificity were 75.2% and 70.0%, respectively. These values became 53.0% and 82.3%, respectively, with 24h-UPRO exceeding 1006.25mg/L. At urine protein/urine creatinine > 0.97, prediction sensitivity and specificity were 65.5% and 67.2%, respectively, values that became 57.4% and 80.0%, respectively, at ratios exceeding 1.2. Cell and humoral immunity, coagulation and fibrinolytic systems are all involved in the pathogenesis of HSPN, and type I hypersensitivity may be the disease trigger of HSPN. 24h-UPRO levels and urine protein/creatinine ratios could probably forecast the pathological classification of HSPN. PMID:25996387

  12. Circadian Melatonin and Temperature Taus in Delayed Sleep-wake Phase Disorder and Non-24-hour Sleep-wake Rhythm Disorder Patients: An Ultradian Constant Routine Study.

    PubMed

    Micic, Gorica; Lovato, Nicole; Gradisar, Michael; Burgess, Helen J; Ferguson, Sally A; Lack, Leon

    2016-08-01

    Our objectives were to investigate the period lengths (i.e., taus) of the endogenous core body temperature rhythm and melatonin rhythm in delayed sleep-wake phase disorder patients (DSWPD) and non-24-h sleep-wake rhythm disorder patients (N24SWD) compared with normally entrained individuals. Circadian rhythms were measured during an 80-h ultradian modified constant routine consisting of 80 ultrashort 1-h "days" in which participants had 20-min sleep opportunities alternating with 40 min of enforced wakefulness. We recruited a community-based sample of 26 DSWPD patients who met diagnostic criteria (17 males, 9 females; age, 21.85 ± 4.97 years) and 18 healthy controls (10 males, 8 females; age, 23.72 ± 5.10 years). Additionally, 4 full-sighted patients (3 males, 1 female; age, 25.75 ± 4.99 years) were diagnosed with N24SWD and included as a discrete study group. Ingestible core temperature capsules were used to record minute temperatures that were averaged to obtain 80 hourly data points. Salivary melatonin concentration was assessed every half-hour to determine time of dim light melatonin onset at the beginning and end of the 80-h protocol. DSWPD patients had significantly longer melatonin rhythm taus (24 h 34 min ± 17 min) than controls (24 h 22 min ± 15 min, p = 0.03, d = 0.70). These results were further supported by longer temperature rhythm taus in DSWPD patients (24 h 34 min ± 26 min) relative to controls (24 h 13 min ± 15 min, p = 0.01, d = 0.80). N24SWD patients had even longer melatonin (25 h ± 19 min) and temperature (24 h 52 min ± 17 min) taus than both DSWPD (p = 0.007, p = 0.06) and control participants (p < 0.001, p = 0.02, respectively). Between 12% and 19% of the variance in DSWPD patients' sleep timing could be explained by longer taus. This indicates that longer taus of circadian rhythms may contribute to the DSWPD patients' persistent tendency to delay, their frequent failure to respond to treatment, and their relapse following treatment

  13. Daily rhythms of physiological parameters in the dromedary camel under natural and laboratory conditions.

    PubMed

    Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto

    2016-08-01

    Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels.

  14. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light.

    PubMed

    Pablos, M I; Reiter, R J; Ortiz, G G; Guerrero, J M; Agapito, M T; Chuang, J I; Sewerynek, E

    1998-01-01

    Melatonin was recently shown to be a component of the antioxidative defense system of organisms due to its free radical scavenging and antioxidant activities. Pharmacologically, melatonin stimulates the activity of the peroxide detoxifying enzyme glutathione peroxidase in rat brain and in several tissues of chicks. In this report, we studied the endogenous rhythm of two antioxidant enzymes, glutathione peroxidase and glutathione reductase, in five regions (hippocampus, hypothalamus, striatum, cortex and cerebellum) of chick brain and correlated them with physiological blood melatonin concentrations. Glutathione peroxidase exhibited a marked 24 h rhythm with peak activity in each brain region which had acrophases about 8 h after lights off and about 4 h after the serum melatonin peak was detected. Glutathione reductase activity exhibited similar robust rhythms with the peaks occurring roughly 2 h after those of glutathione peroxidase. We suggest that neural glutathione peroxidase increases due to the rise of nocturnal melatonin levels while glutathione reductase activity rises slightly later possibly due to an increase of its substrate, oxidized glutathione. The exposure of chicks to constant light for 6 days eliminated the melatonin rhythm as well as the peaks in both glutathione peroxidase and glutathione reductase activities. These findings suggest that the melatonin rhythm may be related to the nighttime increases in the enzyme activities, although other explanations cannot be excluded.

  15. Effects of exercise on circadian rhythms and mobility in aging Drosophila melanogaster.

    PubMed

    Rakshit, Kuntol; Wambua, Rebecca; Giebultowicz, Tomasz M; Giebultowicz, Jadwiga M

    2013-11-01

    Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge.

  16. Cancer Clocks Out for Lunch: Disruption of Circadian Rhythm and Metabolic Oscillation in Cancer.

    PubMed

    Altman, Brian J

    2016-01-01

    Circadian rhythms are 24-h oscillations present in most eukaryotes and many prokaryotes that synchronize activity to the day-night cycle. They are an essential feature of organismal and cell physiology that coordinate many of the metabolic, biosynthetic, and signal transduction pathways studied in biology. The molecular mechanism of circadian rhythm is controlled both by signal transduction and gene transcription as well as by metabolic feedback. The role of circadian rhythm in cancer cell development and survival is still not well understood, but as will be discussed in this Review, accumulated research suggests that circadian rhythm may be altered or disrupted in many human cancers downstream of common oncogenic alterations. Thus, a complete understanding of the genetic and metabolic alterations in cancer must take potential circadian rhythm perturbations into account, as this disruption itself will influence how gene expression and metabolism are altered in the cancer cell compared to its non-transformed neighbor. It will be important to better understand these circadian changes in both normal and cancer cell physiology to potentially design treatment modalities to exploit this insight.

  17. Behavioral rhythms of the Japanese newts, Cynops pyrrhogaster, under a semi-natural condition

    NASA Astrophysics Data System (ADS)

    Nagai, Kiyoko; Oishi, T.

    Locomotor activity rhythms of the Japanese newt, Cynops pyrrhogaster, were recorded under a semi-natural condition using phototransistor systems. The daily activity rhythm showed a seasonal change: the locomotor activity was mainly diurnal (active during the daytime) from spring to early summer; mainly nocturnal (active during the night-time) from summer to autumn; and showed either a diurnal or nocturnal pattern, depending on the ambient temperature, in winter. To analyze the daily activity in detail, we observed the behavior of a group of newts (three males, three females) throughout 24 h. Four types of behavior (respiration, feeding, mating, and resting on the land) were observed. Each behavior had daily rhythms and showed a seasonal change. The behavior on land showed mainly a nocturnal or bimodal pattern (activity rhythms with two peaks) throughout the year and was more frequently observed in summer. Mating behavior also showed a seasonal change: high activity in spring, with peaks in the early morning and evening, but no activity in summer. Except in winter, feeding and respiratory behavior showed no seasonal changes in either activity period or frequency. Coupling between behavior and the clock seems to be weak in the Japanese newt because of indistinct daily rhythms and frequent phase changes of locomotor activity in water. Physical factors such as humidity and temperature seem to affect strongly the daily activity of the newts.

  18. Rhythms of volatiles release from healthy and insect-damaged Phaseolus vulgaris.

    PubMed

    Sufang, Zhang; Jianing, Wei; Zhen, Zhang; Le, Kang

    2013-10-01

    The release rhythm of volatiles is an important physiological characteristic of plants, because the timing of release can affect the function of each particular volatile compound. However, most studies on volatiles release rhythms have been conducted using model plants, rather than crop plants. Here, we analyzed the variations in volatile compounds released from healthy and leafminer (Liriomyza huidobrensis)-infested kidney bean (Phaseolus vulgaris), an important legume crop plant, over a 24 h period. The constituents of the volatiles mixture released from plants were analyzed every 3 h starting from 08:00. The collected volatiles were identified and quantified by gas chromatography–mass spectrometry. Undamaged kidney bean plants released trace amounts of volatiles, with no obvious release rhythms. However, leafminer-damaged plants released large amounts of volatiles, in two main peaks. The main peak of emission was from 17:00 to 20:00, while the secondary peak was in the early morning. The terpene volatiles and (Z)-3-hexenyl acetate showed similar rhythms as that of total volatiles. However, the green leaf volatile (Z)-3-hexen-ol was emitted during the night with peak emission in the early morning. These results give us a clear picture of the volatiles release rhythms of kidney bean plants damaged by leafminer.

  19. Rhythms of volatiles release from healthy and insect-damaged Phaseolus vulgaris

    PubMed Central

    Sufang, Zhang; Jianing, Wei; Zhen, Zhang; Le, Kang

    2013-01-01

    The release rhythm of volatiles is an important physiological characteristic of plants, because the timing of release can affect the function of each particular volatile compound. However, most studies on volatiles release rhythms have been conducted using model plants, rather than crop plants. Here, we analyzed the variations in volatile compounds released from healthy and leafminer (Liriomyza huidobrensis)-infested kidney bean (Phaseolus vulgaris), an important legume crop plant, over a 24 h period. The constituents of the volatiles mixture released from plants were analyzed every 3 h starting from 08:00. The collected volatiles were identified and quantified by gas chromatography–mass spectrometry. Undamaged kidney bean plants released trace amounts of volatiles, with no obvious release rhythms. However, leafminer-damaged plants released large amounts of volatiles, in two main peaks. The main peak of emission was from 17:00 to 20:00, while the secondary peak was in the early morning. The terpene volatiles and (Z)-3-hexenyl acetate showed similar rhythms as that of total volatiles. However, the green leaf volatile (Z)-3-hexen-ol was emitted during the night with peak emission in the early morning. These results give us a clear picture of the volatiles release rhythms of kidney bean plants damaged by leafminer. PMID:23887493

  20. Substances and Heart Rhythm Disorders

    MedlinePlus

    ... that trigger the heartbeat. Caffeine, Diet and Heart Arrhythmias Caffeine is the most common substance linked with abnormal heart rhythms ( arrhythmias ). Some people feel heart palpitations (fast heartbeats) when ...

  1. Recognizing an Irregular Heart Rhythm

    MedlinePlus

    ... workout, consider checking your rhythm as well. Atrial fibrillation, also referred to as AF, is a common ... chambers, or atria, of the heart. “While atrial fibrillation is not common among young people, it can ...

  2. Daily Rhythms of Hunger and Satiety in Healthy Men during One Week of Sleep Restriction and Circadian Misalignment.

    PubMed

    Sargent, Charli; Zhou, Xuan; Matthews, Raymond W; Darwent, David; Roach, Gregory D

    2016-01-29

    The impact of sleep restriction on the endogenous circadian rhythms of hunger and satiety were examined in 28 healthy young men. Participants were scheduled to 2 × 24-h days of baseline followed by 8 × 28-h days of forced desynchrony during which sleep was either moderately restricted (equivalent to 6 h in bed/24 h; n = 14) or severely restricted (equivalent to 4 h in bed/24 h; n = 14). Self-reported hunger and satisfaction were assessed every 2.5 h during wake periods using visual analogue scales. Participants were served standardised meals and snacks at regular intervals and were not permitted to eat ad libitum. Core body temperature was continuously recorded with rectal thermistors to determine circadian phase. Both hunger and satiety exhibited a marked endogenous circadian rhythm. Hunger was highest, and satiety was lowest, in the biological evening (i.e., ~17:00-21:00 h) whereas hunger was lowest, and satiety was highest in the biological night (i.e., 01:00-05:00 h). The results are consistent with expectations based on previous reports and may explain in some part the decrease in appetite that is commonly reported by individuals who are required to work at night. Interestingly, the endogenous rhythms of hunger and satiety do not appear to be altered by severe--as compared to moderate--sleep restriction.

  3. Biological rhythms and mood disorders.

    PubMed

    Salvatore, Paola; Indic, Premananda; Murray, Greg; Baldessarini, Ross J

    2012-12-01

    Integration of several approaches concerning time and temporality can enhance the pathophysiological study of major mood disorders of unknown etiology. We propose that these conditions might be interpreted as disturbances of temporal profile of biological rhythms, as well as alterations of time-consciousness. Useful approaches to study time and temporality include philological suggestions, phenomenological and psychopathological conceptualizatíons, clinical descriptions, and research on circadian and ultradían rhythms, as well as nonlinear dynamics approaches to their analysis.

  4. Twenty-four-hour osteocalcin, carboxyterminal propeptide of type I procollagen, and aminoterminal propeptide of type III procollagen rhythms in normal and growth-retarded children.

    PubMed

    Saggese, G; Baroncelli, G I; Bertelloni, S; Cinquanta, L; DiNero, G

    1994-04-01

    The relationships between spontaneous variations in serum 24-h osteocalcin (OC), carboxyterminal propeptide of type I procollagen (PICP), and aminoterminal propeptide of type III procollagen (PIIINP) concentrations and GH secretion, measured as GH response to provocative pharmacologic stimuli and spontaneous GH secretion during 24 h, were evaluated in prepubertal normal children and in GH-deficient and GH-secreting short normal children (SNC). All the subjects showed a circadian rhythm in smoothed 24-h OC and PICP mean data with higher nocturnal values in comparison with diurnal values. Conversely, serum PIINP concentrations did not vary throughout the day. In children with classic GH deficiency and nonclassic GH deficiency, mean 24-h serum levels and smoothed 24-h mean data for OC, PICP, and PIIINP were significantly reduced (p < 0.001) with respect to age-matched controls. SNC showed mean 24-h OC concentrations similar (p = NS) to those we found in age-matched controls, but they had significantly lower (p < 0.001) diurnal 12-h mean data in comparison with controls. SNC also showed both 24-h PICP and PIIINP mean data and smoothed 24-h PICP and PIIINP mean data significantly lower (from p < 0.02 to p < 0.001) at all the time points of measurement in comparison with controls. Twenty-four-hour PICP and PIIINP mean data were positively related to spontaneous 24-h GH concentrations (r = 0.77, p < 0.005 and r = 0.69, p < 0.005, respectively) and growth velocity (r = 0.85, p < 0.005, and r = 0.70, p < 0.005, respectively), whereas 24-h OC mean data were not.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Influence of lighting cycles on daily rhythms in concentrations of plasma tri-iodothyronine and thyroxine in intact and pinealectomized immature broiler hens (Gallus domesticus).

    PubMed

    Sharp, P J; Klandorf, H; Lea, R W

    1984-12-01

    The effects of pinealectomy on the daily rhythms of concentrations of tri-iodothyronine (T3) and thyroxine (T4) were investigated in sexually immature female chickens exposed to 21-, 24- and 27-h cycles of light and darkness, or to extended periods of light or darkness for more than 24 h. In pinealectomized and control birds, rhythms in levels of plasma T3 and T4 were entrained by all lighting cycles and decreased in amplitude or disappeared in continuous light or darkness. In pinealectomized and control birds held on 21-h (11 h light:10 h darkness; 11L:10D) and 24-h (14L:10D) lighting cycles, the peak of the T4 rhythm coincided with, or lagged, the trough in the rhythm of T3 while in birds held on a 27-h (14L:13D) lighting cycle, the peak of the T4 rhythm preceded the trough in the rhythm of T3. Pinealectomy resulted in significant effects on the phases or amplitudes of rhythms of T3 or T4 in all lighting schedules except 4L:20D. However, these effects were not consistent in direction between experimental groups and were, therefore, of doubtful physiological significance. Pinealectomy increased the mean level of plasma T4 in birds exposed to continuous light or darkness or to 4L:20D. A corresponding reduction in mean levels of plasma T3 was seen in birds exposed to continuous light or darkness. It is concluded that under the lighting conditions investigated pinealectomy had no clear effect on the phases or amplitude of daily rhythms of levels of T4 or T3. However, after the effects of the feeding pattern on thyroid hormone rhythms imposed by the lighting cycle were removed by placing birds in constant lighting conditions, pinealectomy appeared to exert an inhibitory action on thyroid function.

  6. Biological Rhythms During Residence in Polar Regions

    PubMed Central

    2012-01-01

    At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 × 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75°S, base personnel adapt the circadian system to night work within

  7. Acute Low-Volume High-Intensity Interval Exercise and Continuous Moderate-Intensity Exercise Elicit a Similar Improvement in 24-h Glycemic Control in Overweight and Obese Adults.

    PubMed

    Parker, Lewan; Shaw, Christopher S; Banting, Lauren; Levinger, Itamar; Hill, Karen M; McAinch, Andrew J; Stepto, Nigel K

    2016-01-01

    Background: Acute exercise reduces postprandial oxidative stress and glycemia; however, the effects of exercise intensity are unclear. We investigated the effect of acute low-volume high-intensity interval-exercise (LV-HIIE) and continuous moderate-intensity exercise (CMIE) on glycemic control and oxidative stress in overweight and obese, inactive adults. Methods: Twenty-seven adults were randomly allocated to perform a single session of LV-HIIE (9 females, 5 males; age: 30 ± 1 years; BMI: 29 ± 1 kg·m(-2); mean ± SEM) or CMIE (8 females, 5 males; age: 30 ± 2.0; BMI: 30 ± 2.0) 1 h after consumption of a standard breakfast. Plasma redox status, glucose and insulin were measured. Continuous glucose monitoring (CGM) was conducted during the 24-h period before (rest day) and after exercise (exercise day). Results: Plasma thiobarbituric acid reactive substances (TBARS; 29 ±13%, p < 0.01; mean percent change ±90% confidence limit), hydrogen peroxide (44 ± 16%, p < 0.01), catalase activity (50 ± 16%, p < 0.01), and superoxide dismutase activity (21 ± 6%, p < 0.01) significantly increased 1 h after breakfast (prior to exercise) compared to baseline. Exercise significantly decreased postprandial glycaemia in whole blood (-6 ± 5%, p < 0.01), irrespective of the exercise protocol. Only CMIE significantly decreased postprandial TBARS (CMIE: -33 ± 8%, p < 0.01; LV-HIIE: 11 ± 22%, p = 0.34) and hydrogen peroxide (CMIE: -25 ± 15%, p = 0.04; LV-HIIE: 7 ± 26%; p = 0.37). Acute exercise provided a similar significant improvement in 24-h average glucose levels (-5 ± 2%, p < 0.01), hyperglycemic excursions (-37 ± 60%, p < 0.01), peak glucose concentrations (-8 ± 4%, p < 0.01), and the 2-h postprandial glucose response to dinner (-9 ± 4%, p < 0.01), irrespective of the exercise protocol. Conclusion: Despite elevated postprandial oxidative stress compared to CMIE, LV-HIIE is an equally effective exercise mode for improving 24-h glycemic control in overweight and obese

  8. Acute Low-Volume High-Intensity Interval Exercise and Continuous Moderate-Intensity Exercise Elicit a Similar Improvement in 24-h Glycemic Control in Overweight and Obese Adults

    PubMed Central

    Parker, Lewan; Shaw, Christopher S.; Banting, Lauren; Levinger, Itamar; Hill, Karen M.; McAinch, Andrew J.; Stepto, Nigel K.

    2017-01-01

    Background: Acute exercise reduces postprandial oxidative stress and glycemia; however, the effects of exercise intensity are unclear. We investigated the effect of acute low-volume high-intensity interval-exercise (LV-HIIE) and continuous moderate-intensity exercise (CMIE) on glycemic control and oxidative stress in overweight and obese, inactive adults. Methods: Twenty-seven adults were randomly allocated to perform a single session of LV-HIIE (9 females, 5 males; age: 30 ± 1 years; BMI: 29 ± 1 kg·m−2; mean ± SEM) or CMIE (8 females, 5 males; age: 30 ± 2.0; BMI: 30 ± 2.0) 1 h after consumption of a standard breakfast. Plasma redox status, glucose and insulin were measured. Continuous glucose monitoring (CGM) was conducted during the 24-h period before (rest day) and after exercise (exercise day). Results: Plasma thiobarbituric acid reactive substances (TBARS; 29 ±13%, p < 0.01; mean percent change ±90% confidence limit), hydrogen peroxide (44 ± 16%, p < 0.01), catalase activity (50 ± 16%, p < 0.01), and superoxide dismutase activity (21 ± 6%, p < 0.01) significantly increased 1 h after breakfast (prior to exercise) compared to baseline. Exercise significantly decreased postprandial glycaemia in whole blood (−6 ± 5%, p < 0.01), irrespective of the exercise protocol. Only CMIE significantly decreased postprandial TBARS (CMIE: −33 ± 8%, p < 0.01; LV-HIIE: 11 ± 22%, p = 0.34) and hydrogen peroxide (CMIE: −25 ± 15%, p = 0.04; LV-HIIE: 7 ± 26%; p = 0.37). Acute exercise provided a similar significant improvement in 24-h average glucose levels (−5 ± 2%, p < 0.01), hyperglycemic excursions (−37 ± 60%, p < 0.01), peak glucose concentrations (−8 ± 4%, p < 0.01), and the 2-h postprandial glucose response to dinner (−9 ± 4%, p < 0.01), irrespective of the exercise protocol. Conclusion: Despite elevated postprandial oxidative stress compared to CMIE, LV-HIIE is an equally effective exercise mode for improving 24-h glycemic control in

  9. Relationship between 24-h urine sodium/potassium ratio and central aortic systolic blood pressure in hypertensive patients.

    PubMed

    Rhee, Moo-Yong; Shin, Sung-Joon; Gu, Namyi; Nah, Deuk-Young; Kim, Byong-Kyu; Hong, Kyung-Soon; Cho, Eun-Joo; Sung, Ki-Chul; Lee, Sim-Yeol; Kim, Kwang-Il

    2016-11-24

    Studies evaluating the relationship between measured 24-h urine sodium (24HUNa), potassium (24HUK) and aortic blood pressure (BP) are rare, and no such study has been performed with an Asian population. We evaluated the relationship between 24HUNa, 24HUK, casual BP, 24-h ambulatory BP and aortic BP by analyzing data from 524 participants with valid 24-h urine collection, 24-h ambulatory BP and central BP measurements (mean age 48.1±9.8 years, 193 men). Hypertension was defined as a 24-h ambulatory BP ⩾130/80 mm Hg or current treatment for hypertension (n=219). The participants with hypertension and high 24HUNa (mean 210.5±52.0 mmol  per day, range 151.0-432.0) showed higher 24-h systolic (P=0.037) and diastolic BP (P=0.037) and aortic systolic BP (AoSBP, P=0.038) than the participants with hypertension and low 24HUNa (mean 115.7±25.0 mmol per day, range 45.6-150.0), adjusted for confounders. The participants with hypertension and a high ratio of 24HUNa and 24HUK (24HUNa/24HUK, mean 4.03±1.00, range 2.93-7.96) had higher AoSBP than the participants with hypertension and a low 24HUNa/24HUK ratio (mean 2.13±0.54, range 0.53-2.91), adjusted for confounders (P=0.026). The participants with hypertension demonstrated a significant linear relationship between AoSBP and 24HUNa/24HUK ratio that was independent of 24HUNa, according to the multiple regression analysis (P=0.047). In hypertensive patients, 24HUNa/24HUK was positively and more strongly related to AoSBP compared with 24HUNa alone. The result indicates that high sodium and low potassium intake may increase the subsequent risk of cardiovascular disease by elevating AoSBP.Hypertension Research advance online publication, 24 November 2016; doi:10.1038/hr.2016.161.

  10. Ultradian and circadian rhythms of sleep-wake and food-intake behavior during early infancy.

    PubMed

    Löhr, B; Siegmund, R

    1999-03-01

    The early development of sleep-wake and food-intake rhythms in human infants is reviewed. The development of a 24 h day-night rhythm contains two observable developmental processes: the alterations in the periodic structure of behavior (decreased ultradian, increased circadian components) and the process of synchronization to external time (entrainment). The authors present the results of their studies involving 26 German children and compare them with previous investigations. In their research, it became evident that, during the first weeks of life, the time pattern of sleep-wake and food-intake behavior is characterized by different ultradian periodicities, ranging from 2 h to 8 h. In the course of further ontogenesis, the share of ultradian rhythms in the sleep-wake behavior decreases, while it remains dominant for food-intake behavior. The circadian component is established as early as the first weeks of life and increases in the months that follow. Besides, the authors' study supports the notion of broad interindividual variation in ultradian rhythms and in the development of a day-night rhythm. Examples of free-running rhythms of sleep-wake and food-intake behavior by various authors are strong indicators of the endogenous nature of the circadian rhythms in infants and show that the internal clock is already functioning at birth. It is still uncertain when the process of synchronization to external and social time cues begins and how differences in the maturation of perceptive organs affect the importance of time cues for the entrainment. Prepartally, the physiological maternal entrainment factors and mother-fetus interactions may be most important; during the first weeks of life, the social time cues gain importance, while light acts as a dominant "zeitgeber" at a later time only.

  11. The effects of social defeat and other stressors on the expression of circadian rhythms.

    PubMed

    Meerlo, P; Sgoifo, A; Turek, F W

    2002-02-01

    Most biological functions display a 24 h rhythm that, in mammals, is under the control of an endogenous circadian oscillator located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The circadian system provides an optimal temporal organization for physiological processes and behavior in relation to a cyclic environment imposed upon organisms by the regular alternation of day and night. In line with its function as a clock that serves to maintain a stable phase-relationship between endogenous rhythms and the light-dark cycle, the circadian oscillator appears to be well protected against unpredictable stressful stimuli. Available data do not provide convincing evidence that stress is capable of perturbing the central circadian oscillator in the SCN. However, the shape and amplitude of a rhythm is not determined exclusively by the SCN and certain stressors can strongly affect the output of the clock and the expression of the rhythms. In particular, social stress in rodents has been found to cause severe disruptions of the body temperature, heart rate and locomotor activity rhythms, especially in animals that are subject to uncontrollable stress associated with defeat and subordination. Such rhythm disturbances may be due to effects of stress on sub-oscillators that are known to exist in many tissues, which are normally under the control of the SCN, or due to other effects of stress that mask the output of the circadian system. These disturbances of peripheral rhythms represent an imbalance between normally precisely orchestrated physiological and behavioral processes that may have severe consequence for the health and well being of the organism.

  12. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    PubMed

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-02-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  13. Effects of living at two ambient temperatures on 24-h blood pressure and neuroendocrine function among obese and non-obese humans: a pilot study

    NASA Astrophysics Data System (ADS)

    Kanikowska, Dominika; Sato, Maki; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko; Sugenoya, Junichi

    2013-05-01

    The effects of environmental temperature on blood pressure and hormones in obese subjects in Japan were compared in two seasons: summer vs winter. Five obese (BMI, 32 ± 5 kg/m2) and five non-obese (BMI, 23 ±3 kg/m2) men participated in this experiment at latitude 35°10' N and longitude 136°57.9' E. The average environmental temperature was 29 ± 1 °C in summer and 3 ± 1 °C in winter. Blood samples were analyzed for leptin, ghrelin, catecholamines, thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), total cholesterol, triglycerides, insulin and glucose. Blood pressure was measured over the course of 24 h in summer and winter. A Japanese version of the Profile of Mood States (POMS) questionnaire was also administered each season. Systolic and diastolic blood pressures in obese men were significantly higher in winter (lower environmental temperatures) than in summer (higher environmental temperatures). Noradrenaline and dopamine concentrations were also significantly higher at lower environmental temperatures in obese subjects, but ghrelin, TSH, fT3, fT4, insulin and glucose were not significantly different in summer and winter between obese and non-obese subjects. Leptin, total cholesterol and triglyceride concentrations were significantly higher in winter in obese than non-obese men. Results from the POMS questionnaire showed a significant rise in Confusion at lower environmental temperatures (winter) in obese subjects. In this pilot study, increased blood pressure may have been due to increased secretion of noradrenaline in obese men in winter, and the results suggest that blood pressure control in obese men is particularly important in winter.

  14. Environmental impact on crew of armoured vehicles: effects of 24 h combat exercise in a hot desert.

    PubMed

    Singh, A P; Majumdar, D; Bhatia, M R; Srivastava, K K; Selvamurthy, W

    1995-11-01

    A field study was undertaken to investigate the effects of combined noise, vibration and heat stress on the physiological functions of the crew of armoured vehicles during prolonged combat exercise in a desert. The sound pressure level of noise was measured with a sound level meter and accelerations by vibration analyser. The thermal load on the crew was evaluated by calculating the wet bulb globe temperature index. The physiological responses of the subjects (n = 9), included significant increases in the heart rate, 24 h water intake and urinary catecholamine concentration. A significant decrease was recorded in body mass, peak expiratory flow rate and 24 h urinary output. The high heat load on the crew resulted in a hypohydration of 3% body mass and appeared to be the dominant factor in producing the physiological strain.

  15. Food Intake Recording Software System, version 4 (FIRSSt4): a self-completed 24-h dietary recall for children.

    PubMed

    Baranowski, T; Islam, N; Douglass, D; Dadabhoy, H; Beltran, A; Baranowski, J; Thompson, D; Cullen, K W; Subar, A F

    2014-01-01

    The Food Intake Recording Software System, version 4 (firsst4), is a web-based 24-h dietary recall (24 hdr) self-administered by children based on the Automated Self-Administered 24-h recall (ASA24) (a self-administered 24 hdr for adults). The food choices in firsst4 are abbreviated to include only those reported by children in US national surveys; and detailed food probe questions are simplified to exclude those that children could not be expected to answer (e.g. questions regarding food preparation and added fats). ASA24 and firsst4 incorporate 10 000+ food images, with up to eight images per food, to assist in portion size estimation. We review the formative research conducted during the development of firsst4. When completed, firsst4 will be hosted and maintained for investigator use on the National Cancer Institute's ASA24 website.

  16. Photoperiodic modulation of circadian rhythms in the cricket Gryllus bimaculatus.

    PubMed

    Koga, Mika; Ushirogawa, Hiroshi; Tomioka, Kenji

    2005-06-01

    The waveform and the free-running period of circadian rhythms in constant conditions are often modulated by preceding lighting conditions. We have examined the modulatory effect of variable length of light phase of a 24h light cycle on the ratio of activity (alpha) and rest phase (rho) as well as on the free-running period of the locomotor rhythm in the cricket Gryllus bimaculatus. When experienced the longer light phases, the alpha/rho-ratio was smaller and the free-running period was shorter. The magnitude of changes in alpha/rho-ratio was dependent on the number of cycles exposed, while the free-running period was changed by a single exposure, suggesting that there are separate regulatory mechanisms for the waveform and the free-running period. The neuronal activity of the optic lobe showed the alpha/rho-ratio changing with the preceding photoperiod. When different photoperiodic conditions were given to each of the two optic lobe pacemakers, the alpha/rho-ratio of a single pacemaker was rather intermediate between those of animals treated with either of the two conditions. These results suggest that the storage of the photoperiodic information occurs at least in part in the optic lobe pacemaker, and that the mutual interaction between the bilateral optic lobe pacemakers is involved in the photoperiodic modulation.

  17. Long-term blood pressure changes induced by the 2009 L'Aquila earthquake: assessment by 24 h ambulatory monitoring.

    PubMed

    Giorgini, Paolo; Striuli, Rinaldo; Petrarca, Marco; Petrazzi, Luisa; Pasqualetti, Paolo; Properzi, Giuliana; Desideri, Giovambattista; Omboni, Stefano; Parati, Gianfranco; Ferri, Claudio

    2013-09-01

    An increased rate of cardiovascular and cerebrovascular events has been described during and immediately after earthquakes. In this regard, few data are available on long-term blood pressure control in hypertensive outpatients after an earthquake. We evaluated the long-term effects of the April 2009 L'Aquila earthquake on blood pressure levels, as detected by 24 h ambulatory blood pressure monitoring. Before/after (mean±s.d. 6.9±4.5/14.2±5.1 months, respectively) the earthquake, the available 24 h ambulatory blood pressure monitoring data for the same patients were extracted from our database. Quake-related daily life discomforts were evaluated through interviews. We enrolled 47 patients (25 female, age 52±14 years), divided into three groups according to antihypertensive therapy changes after versus before the earthquake: unchanged therapy (n=24), increased therapy (n=17) and reduced therapy (n=6). Compared with before the quake, in the unchanged therapy group marked increases in 24 h (P=0.004), daytime (P=0.01) and nighttime (P=0.02) systolic blood pressure were observed after the quake. Corresponding changes in 24 h (P=0.005), daytime (P=0.01) and nighttime (P=0.009) diastolic blood pressure were observed. Daily life discomforts were reported more frequently in the unchanged therapy and increased therapy groups than the reduced therapy group (P=0.025 and P=0.018, respectively). In conclusion, this study shows that patients with unchanged therapy display marked blood pressure increments up to more than 1 year after an earthquake, as well as long-term quake-related discomfort. Our data suggest that particular attention to blood pressure levels and adequate therapy modifications should be considered after an earthquake, not only early after the event but also months later.

  18. Changes in the oral health-related quality of life 24 h following insertion of fixed orthodontic appliances

    PubMed Central

    Mansor, Noorhanizar; Saub, Roslan; Othman, Siti Adibah

    2012-01-01

    Objectives: The objective of this study was to assess changes in the oral health-related quality of life (OHRQoL) among patients wearing fixed orthodontic appliances 24 h after insertion. Materials and Methods: Sixty patients aged between 14 and 24 years (29 males and 31 females; mean age, 17.8 years; SD 3.1 years) were recruited from the Postgraduate Clinic, Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya. The oral health-related quality of life (OHRQoL) was measured before treatment and 24 h after insertion of the orthodontic appliance. The instrument used to measure OHRQoL was a modified self-administered short version of Malaysian Oral Health Impact Profile (OHIP-16[M]) questionnaire. The higher the score, the poorer is the OHRQoL. Results: Overall score of OHRQoL increased significantly 24 h after insertion (mean 43.5±10.9) as compared to before insertion (mean 34.1±9.2) (P<0.001). Significant changes were found for the following items: Difficulties in chewing, bad breath, difficulties in pronunciation, discomfort in eating, ulcer, pain, avoidances of eating certain foods, difficulties in cleaning, embarrassment, avoid smiling, disturbed sleep, concentration affected, difficulty carrying out daily activities, and lack of self-confidence (P<0.05). Significant changes were also found in the mean difference of OHRQoL for gender (P<0.001). Conclusion: OHRQoL was found to deteriorate 24 h after insertion of fixed orthodontic appliances in almost all domains, with significant changes in gender. This information can be used as “informed consent”, which might increase patient's compliance as they are aware of what to expect from initial orthodontic treatment. PMID:24987635

  19. Nqrs Data for C24H76BLiN12O4P4 (Subst. No. 1593)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H76BLiN12O4P4 (Subst. No. 1593)

  20. Shock in the first 24 h of intensive care unit stay: observational study of protocol-based fluid management.

    PubMed

    See, Kay Choong; Mukhopadhyay, Amartya; Lau, Samuel Chuan-Xian; Tan, Sandra Ming-Yien; Lim, Tow Keang; Phua, Jason

    2015-05-01

    Precision in fluid management for shock could lead to better clinical outcomes. We evaluated the association of protocol-based fluid management with intensive care unit (ICU) and hospital mortality. We performed an observational study of mechanically ventilated patients admitted directly from our emergency department to the ICU from August 2011 to December 2013, who had circulatory shock in the first 24 h of ICU stay (systolic blood pressure <90 mmHg at ICU admission or lactate >4 mmol/L). Patients with onset of shock beyond 24 h of ICU stay were excluded. Protocol-based fluid management required close physician-nurse cooperation and computerized documentation, checking for fluid response (≥10% arterial pulse pressure or stroke volume increase after two consecutive 250-mL crystalloid boluses), and fluid loading with repeated 500-mL boluses until fluid response became negative. Six hundred twelve mechanically ventilated patients with shock (mean [±SD] age, 63.0 years [16.5]; 252 or 41.2% females; mean Acute Physiology and Chronic Health Evaluation II score, 30.2 [8.8]) were studied. The fluid management protocol was used 455 times for 242 patients (39.5% of 612 patients) within the first 24 h of ICU stay, with 244 (53.6% of 455) positive responses. Adjusted for age, sex, Acute Physiology and Chronic Health Evaluation II score, comorbidity, and admission year, protocol use was associated with reduced ICU mortality (odds ratio, 0.60; 95% confidence interval, 0.39-0.94; P = 0.025) but not hospital mortality (odds ratio, 0.82; 95% confidence interval, 0.54-1.23; P = 0.369). Among mechanically ventilated patients with shock within the first 24 h of ICU stay, about half had positive fluid responses. Adherence to protocol-based fluid management was associated with improved ICU survival.

  1. Nqrs Data for C24H46I2N6O2P2Sn (Subst. No. 1589)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C24H46I2N6O2P2Sn (Subst. No. 1589)

  2. Tyramine pressor sensitivity during treatment with the selegiline transdermal system 6 mg/24 h in healthy subjects.

    PubMed

    Azzaro, Albert J; Vandenberg, Chad M; Blob, Lawrence F; Kemper, Eva M; Sharoky, Melvin; Oren, Dan A; Campbell, Bryan J

    2006-08-01

    The oral tyramine pressor test was administered to healthy males during treatment with a selegiline transdermal system (STS; 6 mg/24 h). The tyramine sensitivity factor (TSF) was calculated from the ratio of baseline and on-treatment tyramine pressor doses. The tyramine sensitivity factor value following 9 days of treatment with the selegiline transdermal system was 1.85 +/- 0.10. Extended treatment, 33 days, produced a small, clinically non-meaningful increase in this value. The tyramine sensitivity factor for the selegiline transdermal system was similar to that following treatment with 10 mg/d of oral selegiline capsules but more than 20 times less than observed during tranylcypromine treatment. A larger increase in the tyramine sensitivity factor was observed following extended selegiline transdermal system treatment at a higher dose (12 mg/24 h), which was significantly decreased following coadministration of tyramine capsules with a meal. These results suggest a wide tyramine safety margin for the selegiline transdermal system and provide evidence that the 6-mg/24-h selegiline transdermal system can be administered safely without dietary tyramine restrictions.

  3. The accuracy of the 24-h activity recall method for assessing sedentary behaviour: the physical activity measurement survey (PAMS) project.

    PubMed

    Kim, Youngwon; Welk, Gregory J

    2017-02-01

    Sedentary behaviour (SB) has emerged as a modifiable risk factor, but little is known about measurement errors of SB. The purpose of this study was to determine the validity of 24-h Physical Activity Recall (24PAR) relative to SenseWear Armband (SWA) for assessing SB. Each participant (n = 1485) undertook a series of data collection procedures on two randomly selected days: wearing a SWA for full 24-h, and then completing the telephone-administered 24PAR the following day to recall the past 24-h activities. Estimates of total sedentary time (TST) were computed without the inclusion of reported or recorded sleep time. Equivalence testing was used to compare estimates of TST. Analyses from equivalence testing showed no significant equivalence of 24PAR for TST (90% CI: 443.0 and 457.6 min · day(-1)) relative to SWA (equivalence zone: 580.7 and 709.8 min · day(-1)). Bland-Altman plots indicated individuals that were extremely or minimally sedentary provided relatively comparable sedentary time between 24PAR and SWA. Overweight/obese and/or older individuals were more likely to under-estimate sedentary time than normal weight and/or younger individuals. Measurement errors of 24PAR varied by the level of sedentary time and demographic indicators. This evidence informs future work to develop measurement error models to correct for errors of self-reports.

  4. 'Life in the age of screens': parent perspectives on a 24-h no screen-time challenge.

    PubMed

    Peláez, Sandra; Alexander, Stephanie; Roberge, Jean-Baptiste; Henderson, Melanie; Bigras, Jean-Luc; Barnett, Tracie A

    2016-08-01

    Screens have become ubiquitous in modern society. Their use frequently underlies sedentary behaviour, a well-established determinant of obesity. As part of a family oriented clinic offering a 2-year lifestyle program for obese children and youth, we explored parents' experiences with a 24-h no screen-time challenge, an intervention designed to raise awareness of screen-time habits and to help families develop strategies to limit their use. In total, 15 parents representing 13 families participated. A focus group with nine parents and six phone interviews with those who could not join in person were conducted. Interviews were transcribed verbatim and analysed qualitatively. Key elements to successful completion of the 24-h no screen-time challenge emerged, namely: clear rules about permitted activities during the 24-h period; togetherness, i.e. involving all family members in the challenge; and busyness, i.e. planning a full schedule in order to avoid idleness and preclude the temptation to use screens. Our findings suggest that practitioners aiming to increase awareness of screen-time or to limit their use may be more likely to succeed if they include all family members, offer concrete alternatives to screen-based activities and provide tailored strategies to manage discretionary time.

  5. 24 h Accelerometry: impact of sleep-screening methods on estimates of sedentary behaviour and physical activity while awake.

    PubMed

    Meredith-Jones, Kim; Williams, Sheila; Galland, Barbara; Kennedy, Gavin; Taylor, Rachael

    2016-01-01

    Although accelerometers can assess sleep and activity over 24 h, sleep data must be removed before physical activity and sedentary time can be examined appropriately. We compared the effect of 6 different sleep-scoring rules on physical activity and sedentary time. Activity and sleep were obtained by accelerometry (ActiGraph GT3X) over 7 days in 291 children (51.3% overweight or obese) aged 4-8.9 years. Three methods removed sleep using individualised time filters and two methods applied standard time filters to remove sleep each day (9 pm-6 am, 12 am-6 am). The final method did not remove sleep but simply defined non-wear as at least 60 min of consecutive zeros over the 24-h period. Different methods of removing sleep from 24-h data markedly affect estimates of sedentary time, yielding values ranging from 556 to 1145 min/day. Estimates of non-wear time (33-193 min), wear time (736-1337 min) and counts per minute (384-658) also showed considerable variation. By contrast, estimates of moderate-to-vigorous activity (MVPA) were similar, varying by less than 1 min/day. Different scoring methods to remove sleep from 24-h accelerometry data do not affect measures of MVPA, whereas estimates of counts per minute and sedentary time depend considerably on which technique is used.

  6. No evidence for genotoxic effects from 24 h exposure of human leukocytes to 1.9 GHz radiofrequency fields.

    PubMed

    McNamee, J P; Bellier, P V; Gajda, G B; Lavallée, B F; Marro, L; Lemay, E; Thansandote, A

    2003-05-01

    The current study extends our previous investigations of 2-h radiofrequency (RF)-field exposures on genotoxicity in human blood cell cultures by examining the effect of 24-h continuous-wave (CW) and pulsed-wave (PW) 1.9 GHz RF-field exposures on both primary DNA damage and micronucleus induction in human leukocyte cultures. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures was maintained at 37.0 +/- 1.0 degrees C for the duration of the 24-h exposure period. No significant differences in primary DNA damage were observed between the sham-treated controls and any of the CW or PW 1.9 GHz RF-field-exposed cultures when processed immediately after the exposure period by the alkaline comet assay. Similarly, no significant differences were observed in the incidence of micronuclei, incidence of micronucleated binucleated cells, frequency of binucleated cells, or proliferation index between the sham-treated controls and any of the CW or PW 1.9 GHz RF-field-exposed cultures. In conclusion, the current study found no evidence of 1.9 GHz RF-field-induced genotoxicity in human blood cell cultures after a 24-h exposure period.

  7. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  8. Effect of moderate cold exposure on 24-h energy expenditure: similar response in postobese and nonobese women.

    PubMed

    Buemann, B; Astrup, A; Christensen, N J; Madsen, J

    1992-12-01

    Twenty-four-hour energy expenditure (EE) and substrate oxidation rates were measured two times in eight postobese women and eight matched controls. On one occasion the subjects were exposed to a room temperature of 16 degrees C, on the other to 24 degrees C. Cold exposure elicited a 2% increment in 24-h EE (P < 0.05), with similar response in the two groups. The slight increase in EE was entirely covered by an enhanced carbohydrate oxidation rate. Fasting plasma norepinephrine (NE) increased from 0.74 +/- 0.08 to 1.29 +/- 0.21 nmol/l under cold exposure (P < 0.05), with no group difference. The cold-induced increase in 24-h EE was positively correlated to the increase in NE concentration (r2 = 0.41, P = 0.01). Sleeping EE was found to be 5% lower in the postobese women than in the controls (P = 0.04). The postobese group also had higher 24-h nonprotein respiratory quotient than the control group (P = 0.04), which was due to a 26% lower lipid-to-carbohydrate oxidation ratio. The study demonstrates that the thermogenic response to cold is normal in women susceptible to obesity, but it supports previous reports of a slightly lower basal EE and lower lipid-to-carbohydrate oxidation ratio in postobese subjects.

  9. The Importance of Different Frequency Bands in Predicting Subcutaneous Glucose Concentration in Type 1 Diabetic Patients

    DTIC Science & Technology

    2010-02-01

    Maran, A. Facchinetti, and C. Cobelli, ―Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series...Polonsky, ―Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm,‖ Am. J. Physiol. Endocrinol. Metab., vol

  10. Endogenous rhythms influence interpersonal synchrony.

    PubMed

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination.

  11. Rhythms that speed you up.

    PubMed

    Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel

    2011-02-01

    This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a slow pace (950 ms IOI). The target was presented after a variable foreperiod of either 200, 400, 900, 1400, or 1600 ms following the offset of the rhythm. In Experiment 1, the rhythmic pace validly predicted the moment of target appearance; i.e., the target appeared after a foreperiod that matched the rhythmic pace on 60% of the trials. The results showed an effect on RT performance of the fast rhythmic pace compared to the slow rhythmic pace at the 200 and 400 ms foreperiods, while no effects were found at the long foreperiods, probably due to a foreperiod effect. In Experiment 2, non-predictive rhythmic paces did not modulate the foreperiod effect. The addition of temporal uncertainty by including catch trials in Experiment 3 clearly unveiled the effect of non-predictive rhythmic pace at short and long foreperiods. Taken together, the results of the experiments reported here highlight the ability of rhythms to orient temporal attention enhancing participants' response speed not only at short intervals but also at long time intervals, suggesting the involvement of a flexible mechanism.

  12. Rhythm control in atrial fibrillation.

    PubMed

    Piccini, Jonathan P; Fauchier, Laurent

    2016-08-20

    Many patients with atrial fibrillation have substantial symptoms despite ventricular rate control and require restoration of sinus rhythm to improve their quality of life. Acute restoration (ie, cardioversion) and maintenance of sinus rhythm in patients with atrial fibrillation are referred to as rhythm control. The decision to pursue rhythm control is based on symptoms, the type of atrial fibrillation (paroxysmal, persistent, or long-standing persistent), patient comorbidities, general health status, and anticoagulation status. Many patients have recurrent atrial fibrillation and require further intervention to maintain long term sinus rhythm. Antiarrhythmic drug therapy is generally recommended as a first-line therapy and drug selection is on the basis of the presence or absence of structural heart disease or heart failure, electrocardiographical variables, renal function, and other comorbidities. In patients who continue to have recurrent atrial fibrillation despite medical therapy, catheter ablation has been shown to substantially reduce recurrent atrial fibrillation, decrease symptoms, and improve quality of life, although recurrence is common despite continued advancement in ablation techniques.

  13. Circadian rhythm sleep disorder, free-running type in a sighted male with severe depression, anxiety, and agoraphobia.

    PubMed

    Brown, Mark A; Quan, Stuart F; Eichling, Philip S

    2011-02-15

    Circadian rhythm sleep disorder, free-running type (CRSD, FRT) is a disorder in which the intrinsic circadian rhythm is no longer entrained to the 24-hour schedule. A unique case of CRSD, FRT in a 67-year-old sighted male is presented. The patient had a progressively delayed time in bed (TIB) each night, so that he would cycle around the 24-h clock approximately every 30 days. This was meticulously documented each night by the patient over the course of 22 years. The patient's CRSD, FRT was associated with severe depression, anxiety, and agoraphobia. The agoraphobia may have exacerbated the CRSD, FRT. Entrainment and stabilization of his circadian rhythm was accomplished after treatment that included melatonin, light therapy, and increased sleep structure.

  14. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  15. Effect of tidal cycle and food intake on the baseline plasma corticosterone rhythm in intertidally foraging marine iguanas.

    PubMed

    Woodley, Sarah K; Painter, Danika L; Moore, Michael C; Wikelski, Martin; Romero, L Michael

    2003-06-15

    In most species, plasma levels of baseline glucocorticoids such as corticosterone (B) have a circadian rhythm. This rhythm can be entrained by both photoperiod and food intake and is related to aspects of energy intake and metabolism. Marine iguanas (Amblyrhynchus cristatus) offer a unique opportunity to better understand the relative importance of the light:dark cycle versus food intake in influencing the rhythm in baseline B in a natural system. Compared to other species, food intake is not as strictly determined by the phase of the light:dark cycle. Animals feed in the intertidal zone so feeding activity is heavily influenced by the tidal cycle. We measured baseline plasma B levels in free-living iguanas over several 24-h periods that varied in the timing of low tide/foraging activity. We found that baseline B levels were higher during the day relative to night. However, when low tide occurred during the day, baseline B levels dropped coincident with the timing of low tide. Whether the baseline B rhythm (including the drop during foraging) is an endogenous rhythm with a circatidal component, or is simply a result of feeding and associated physiological changes needs to be tested. Together, these data suggest that the baseline B rhythm in marine iguanas is influenced by the tidal cycle/food intake as well as the light:dark cycle.

  16. Free-running circadian rhythms of muscle strength, reaction time, and body temperature in totally blind people.

    PubMed

    Squarcini, Camila Fabiana Rossi; Pires, Maria Laura Nogueira; Lopes, Cleide; Benedito-Silva, Ana Amélia; Esteves, Andrea Maculano; Cornelissen-Guillaume, Germaine; Matarazzo, Carolina; Garcia, Danilo; da Silva, Maria Stella Peccin; Tufik, Sergio; de Mello, Marco Túlio

    2013-01-01

    Light is the major synchronizer of circadian rhythms. In the absence of light, as for totally blind people, some variables, such as body temperature, have an endogenous period that is longer than 24 h and tend to be free running. However, the circadian rhythm of muscle strength and reaction time in totally blind people has not been defined in the literature. The objective of this study was to determine the period of the endogenous circadian rhythm of the isometric and isokinetic contraction strength and simple reaction time of totally blind people. The study included six totally blind people with free-running circadian rhythms and four sighted people (control group). Although the control group required only a single session to determine the circadian rhythm, the blind people required three sessions to determine the endogenous period. In each session, isometric strength, isokinetic strength, reaction time, and body temperature were collected six different times a day with an interval of at least 8 h. The control group had better performance for strength and reaction time in the afternoon. For the blind, this performance became delayed throughout the day. Therefore, we conclude that the circadian rhythms of strength and simple reaction time of totally blind people are within their free-running periods. For some professionals, like the blind paralympic athletes, activities that require large physiological capacities in which the maximum stimulus should match the ideal time of competition may result in the blind athletes falling short of their expected performance under this free-running condition.

  17. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    PubMed

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity.

  18. Sleep and cognitive function of crewmembers and mission controllers working 24-h shifts during a simulated 105-day spaceflight mission

    NASA Astrophysics Data System (ADS)

    Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.

    2014-01-01

    The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended

  19. Tired of diabetes genetics? Circadian rhythms and diabetes: the MTNR1B story?

    PubMed

    Nagorny, Cecilia; Lyssenko, Valeriya

    2012-12-01

    Circadian rhythms are ubiquitous in biological systems and regulate metabolic processes throughout the body. Misalliance of these circadian rhythms and the systems they regulate has a profound impact on hormone levels and increases risk of developing metabolic diseases. Melatonin, a hormone secreted by the pineal gland, is one of the major signaling molecules used by the master circadian oscillator to entrain downstream circadian rhythms. Several recent genetic studies have pointed out that a common variant in the gene that encodes the melatonin receptor 2 (MTNR1B) is associated with impaired glucose homeostasis, reduced insulin secretion, and an increased risk of developing type 2 diabetes. Here, we try to review the role of this receptor and its signaling pathways in respect to glucose homeostasis and development of the disease.

  20. Glucose Variability

    PubMed Central

    Le Floch, Jean-Pierre; Kessler, Laurence

    2016-01-01

    Background: Glucose variability has been suspected to be a major factor of diabetic complications. Several indices have been proposed for measuring glucose variability, but their interest remains discussed. Our aim was to compare different indices. Methods: Glucose variability was studied in 150 insulin-treated diabetic patients (46% men, 42% type 1 diabetes, age 52 ± 11 years) using a continuous glucose monitoring system (668 ± 564 glucose values; mean glucose value 173 ± 38 mg/dL). Results from the mean, the median, different indices (SD, MAGE, MAG, glucose fluctuation index (GFI), and percentages of low [<60 mg/dL] and high [>180 mg/dL] glucose values), and ratios (CV = SD/m, MAGE/m, MAG/m, and GCF = GFI/m) were compared using Pearson linear correlations and a multivariate principal component analysis (PCA). Results: CV, MAGE/m (ns), GCF and GFI (P < .05), MAG and MAG/m (P < .01) were not strongly correlated with the mean. The percentage of high glucose values was mainly correlated with indices. The percentage of low glucose values was mainly correlated with ratios. PCA showed 3 main axes; the first was associated with descriptive data (mean, SD, CV, MAGE, MAGE/m, and percentage of high glucose values); the second with ratios MAG/m and GCF and with the percentage of low glucose values; and the third with MAG, GFI, and the percentage of high glucose values. Conclusions: Indices and ratios provide complementary pieces of information associated with high and low glucose values, respectively. The pairs MAG+MAG/m and GFI+GCF appear to be the most reliable markers of glucose variability in diabetic patients. PMID:26880391

  1. Melatonin, Circadian Rhythms, and Sleep.

    PubMed

    Zhdanova, Irina V.; Tucci, Valter

    2003-05-01

    Experimental data show a close relationship among melatonin, circadian rhythms, and sleep. Low-dose melatonin treatment, increasing circulating melatonin levels to those normally observed at night, promotes sleep onset and sleep maintenance without changing sleep architecture. Melatonin treatment can also advance or delay the phase of the circadian clock if administered in the evening or in the morning, respectively. If used in physiologic doses and at appropriate times, melatonin can be helpful for those suffering from insomnia or circadian rhythm disorders. This may be especially beneficial for individuals with low melatonin production, which is established by measuring individual blood or saliva melatonin levels. However, high melatonin doses (over 0.3 mg) may cause side effects and disrupt the delicate mechanism of the circadian system, dissociating mutually dependent circadian body rhythms. A misleading labeling of the hormone melatonin as a "food supplement" and lack of quality control over melatonin preparations on the market continue to be of serious concern.

  2. Evaluating the effect of measurement error when using one or two 24 h dietary recalls to assess eating out: a study in the context of the HECTOR project.

    PubMed

    Orfanos, Philippos; Knüppel, Sven; Naska, Androniki; Haubrock, Jennifer; Trichopoulou, Antonia; Boeing, Heiner

    2013-09-28

    Eating out is often recorded through short-term measurements and the large within-person variability in intakes may not be adequately captured. The present study aimed to understand the effect of measurement error when using eating-out data from one or two 24 h dietary recalls (24hDR), in order to describe intakes and assess associations between eating out and personal characteristics. In a sample of 366 adults from Potsdam, Germany, two 24hDR and a FFQ were collected. Out-of-home intakes were estimated based on either one 24hDR or two 24hDR or the Multiple Source Method (MSM) combining the two 24hDR and the questionnaire. The distribution of out-of-home intakes of energy, macronutrients and selected foods was described. Multiple linear regression and partial correlation coefficients were estimated to assess associations between out-of-home energy intake and participants' characteristics. The mean daily out-of-home intakes estimated from the two 24hDR were similar to the usual intakes estimated through the MSM. The out-of-home energy intake, estimated through either one or two 24hDR, was positively associated with total energy intake, inversely with age and associations were stronger when using the two 24hDR. A marginally significant inverse association between out-of-home energy intake and physical activity at work was observed only on the basis of the two 24hDR. After applying the MSM, all significant associations remained and were more precise. Data on eating out collected through one or two 24hDR may not adequately describe intake distributions, but significant associations between eating out and participants' characteristics are highly unlikely to appear when in reality these do not exist.

  3. Adipose circadian rhythms: translating cellular and animal studies to human physiology.

    PubMed

    Johnston, Jonathan D

    2012-02-05

    Emerging links between circadian rhythms and metabolism promise much for the understanding of metabolic physiology and pathophysiology, in which white adipose tissue (WAT) plays a prominent role. Many WAT endocrine molecules, termed adipokines, display rhythmic plasma concentration. Moreover, similar to most other tissues, WAT exhibits widespread 24-h variation in gene expression, with approximately 20% of the murine adipose transcriptome estimated to undergo daily variation. A major limitation to human chronobiology research is the availability of physiologically defined peripheral tissues. To date most analyses of in vivo human peripheral clocks has been limited to blood leucocytes. However, subcutaneous adipose tissue represents a novel opportunity to study peripheral molecular rhythms that are of clearly defined metabolic relevance. This review summarises basic concepts of circadian and metabolic physiology before then comparing alternative protocols used to analyse the rhythmic properties of human adipose tissue.

  4. 24-Hour Glucose Profiles on Diets Varying in Protein Content and Glycemic Index

    PubMed Central

    van Baak, Marleen A.

    2014-01-01

    Evidence is increasing that the postprandial state is an important factor contributing to the risk of chronic diseases. Not only mean glycemia, but also glycemic variability has been implicated in this effect. In this exploratory study, we measured 24-h glucose profiles in 25 overweight participants in a long-term diet intervention study (DIOGENES study on Diet, Obesity and Genes), which had been randomized to four different diet groups consuming diets varying in protein content and glycemic index. In addition, we compared 24-h glucose profiles in a more controlled fashion, where nine other subjects followed in random order the same four diets differing in carbohydrate content by 10 energy% and glycemic index by 20 units during three days. Meals were provided in the lab and had to be eaten at fixed times during the day. No differences in mean glucose concentration or glucose variability (SD) were found between diet groups in the DIOGENES study. In the more controlled lab study, mean 24-h glucose concentrations were also not different. Glucose variability (SD and CONGA1), however, was lower on the diet combining a lower carbohydrate content and GI compared to the diet combining a higher carbohydrate content and GI. These data suggest that diets with moderate differences in carbohydrate content and GI do not affect mean 24-h or daytime glucose concentrations, but may result in differences in the variability of the glucose level in healthy normal weight and overweight individuals. PMID:25093276

  5. Biological rhythms and mood disorders

    PubMed Central

    Salvatore, Paola; Indic, Premananda; Murray, Greg; Baldessarini, Ross J.

    2012-01-01

    Integration of several approaches concerning time and temporality can enhance the pathophysiological study of major mood disorders of unknown etiology. We propose that these conditions might be interpreted as disturbances of temporal profile of biological rhythms, as well as alterations of time-consciousness. Useful approaches to study time and temporality include philological suggestions, phenomenological and psychopathological conceptualizatíons, clinical descriptions, and research on circadian and ultradían rhythms, as well as nonlinear dynamics approaches to their analysis. PMID:23393414

  6. Routine daily physical activity and glucose variations are strongly coupled in adults with T1DM.

    PubMed

    Farabi, Sarah S; Carley, David W; Cinar, Ali; Quinn, Lauretta

    2015-12-01

    Type 1 Diabetes (T1DM) is characterized by altered glucose homeostasis resulting in wide glucose variations throughout a 24-h period. The relationship between routine daily physical activity and glucose variations has not been systematically investigated in adults with T1DM. The objectives of this study were to characterize and quantify the relationship between routine daily activity and glucose variations in a small group of adults with T1DM. Adults with T1DM treated with an insulin pump were recruited for the study. Over a 3-day period, glucose variations were monitored with a continuous glucose monitoring system (CGMS) and routine daily physical activity was assessed using an accelerometer-based physical activity-monitoring band. Simultaneous glucose and physical activity data for one 24-h period were used for analysis. Cross-correlation function and wavelet coherence analyses were employed to quantify the coupling between physical activity and glucose. Twelve subjects were included in the analysis. Cross-correlation function analysis revealed strong coupling between activity and glucose. Wavelet Coherence demonstrated that slower oscillations (120-340 min) of glucose and physical activity exhibited significantly greater coherence (F = 12.6, P < 0.0001) than faster oscillations (10 and 120 min). Physical activity and glucose demonstrate strong time and frequency-dependent coupling throughout a 24-h time period in adults with T1DM.

  7. Comparison of English Language Rhythm and Kalhori Kurdish Language Rhythm

    ERIC Educational Resources Information Center

    Taghva, Nafiseh; Zadeh, Vahideh Abolhasani

    2016-01-01

    Interval-based method is a method of studying the rhythmic quantitative features of languages. This method use Pairwise Variability Index (PVI) to consider the variability of vocalic duration and inter-vocalic duration of sentences which leads to classification of languages rhythm into stress-timed languages and syllable-timed ones. This study…

  8. Circadian rhythms of pineal function in rats.

    PubMed

    Binkley, S A

    1983-01-01

    In pineal glands melatonin is synthesized daily. Melatonin synthesis in rats kept in most light-dark cycles occurs during the subjective night. This rhythm, which persists in constant dark, is a circadian rhythm which may be a consequence of another circadian rhythm in the pineal gland, of N-acetyltransferase activity (NAT). The NAT rhythm has been studied extensively in rats as a possible component of the system timing circadian rhythms. The NAT rhythm is driven by neural signals transmitted to the pineal gland by the sympathetic nervous system. Environmental lighting exerts precise control over the timing of the NAT rhythm. In rats, there is enough data to describe a daily time course of events in the pineal gland and to describe a pineal "life history." Hypothetical schemes for generation of the NAT rhythm and for its control by light are presented.

  9. Non-invasive monitoring of core body temperature rhythms over 72 h in 10 bedridden elderly patients with disorders of consciousness in a Japanese hospital: a pilot study.

    PubMed

    Matsumoto, Masaru; Sugama, Junko; Okuwa, Mayumi; Dai, Misako; Matsuo, Junko; Sanada, Hiromi

    2013-01-01

    The purpose of this study was to elucidate the body core temperature rhythms of bedridden elderly patients with disorders of consciousness (DOC) in a Japanese hospital using a simple, non-invasive, deep-body thermometer. We measured body core temperature on the surface of abdomen in 10 bedridden elderly patients with DOC continuously over 72 h. A non-heated core body temperature thermometer was used. The cycle of the body core temperature rhythm was initially derived by using the least squares method. Then, based on that rhythm, the mean, amplitude, and times of day of the highest and lowest body temperatures during the optimum cycle were determined using the cosinor method. We found a 24-h cycle in seven of the 10 patients. One patient had a 6-h, one a 12-h, and one a 63-h cycle. The mean value of the cosine curve in the respective optimum cycles was 36.48 ± 0.34 °C, and the amplitude was 0.22 ± 0.09 °C. Of the seven subjects with 24-h cycles, the highest body temperature occurred between 12:58 and 14:44 h in four. In addition to 24-h cycles of core temperature rhythm, short cycles of 12 and 6-h and a long cycle of 63-h were seen. In order to understand the temperature rhythms of bedridden elderly patients with DOC, it is necessary to monitor their core body temperatures, ideally using a simple, non-invasive device. In the future, it will be important to investigate the relationship of the core temperature rhythm to nursing care and living environment.

  10. Daily and seasonal rhythms in immune responses of splenocytes in the freshwater snake, Natrix piscator.

    PubMed

    Tripathi, Manish Kumar; Singh, Ramesh; Pati, Atanu Kumar

    2015-01-01

    Present study was designed to examine daily and seasonal variability in the innate immune responses of splenocytes in the fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleen was aseptically isolated and processed for macrophage phagocytosis, NBT reduction, nitrite production, splenocyte proliferation and serum lysozyme activity. Samples were collected at seven time points, viz., 0000, 0400, 0800, 1200, 1600, 2000 and 0000 h during three different seasons, namely summer, winter and spring. Cosinor analysis revealed that percent phagocytosis had a significant 24-h rhythm during summer and spring seasons. The peaks of rhythms in NBT reduction and nitrite release occurred in the morning hours at 10.88 h and 8.31 h, respectively, in winter. A significant 24-h rhythm was also observed in lysozyme concentration and splenocyte proliferation (both Basal and Concanavalin A stimulated) in all three seasons. A significant phase shift in splenocyte proliferation was obtained with a trend of delayed phase shift from winter to spring and from spring to summer. Of the nine variables, significant annual (seasonal) rhythms were detected in almost all variables, excluding phagocytic and splenosomatic indices. All rhythmic variables, except spleen cellularity, exhibited tightly synchronized peaks coinciding with the progressive and recrudescence phases of annual reproductive cycle. It is concluded that the snake synchronizes its daily and seasonal immune activity with the corresponding external time cues. The enhancement of immune function coinciding with one of its crucial reproductive phases might be helping it to cope with the seasonal stressors, including abundance of pathogens, which would otherwise jeopardize the successful reproduction and eventual survival of the species.

  11. Daily and Seasonal Rhythms in Immune Responses of Splenocytes in the Freshwater Snake, Natrix piscator

    PubMed Central

    Tripathi, Manish Kumar; Singh, Ramesh; Pati, Atanu Kumar

    2015-01-01

    Present study was designed to examine daily and seasonal variability in the innate immune responses of splenocytes in the fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleen was aseptically isolated and processed for macrophage phagocytosis, NBT reduction, nitrite production, splenocyte proliferation and serum lysozyme activity. Samples were collected at seven time points, viz., 0000, 0400, 0800, 1200, 1600, 2000 and 0000 h during three different seasons, namely summer, winter and spring. Cosinor analysis revealed that percent phagocytosis had a significant 24-h rhythm during summer and spring seasons. The peaks of rhythms in NBT reduction and nitrite release occurred in the morning hours at 10.88 h and 8.31 h, respectively, in winter. A significant 24-h rhythm was also observed in lysozyme concentration and splenocyte proliferation (both Basal and Concanavalin A stimulated) in all three seasons. A significant phase shift in splenocyte proliferation was obtained with a trend of delayed phase shift from winter to spring and from spring to summer. Of the nine variables, significant annual (seasonal) rhythms were detected in almost all variables, excluding phagocytic and splenosomatic indices. All rhythmic variables, except spleen cellularity, exhibited tightly synchronized peaks coinciding with the progressive and recrudescence phases of annual reproductive cycle. It is concluded that the snake synchronizes its daily and seasonal immune activity with the corresponding external time cues. The enhancement of immune function coinciding with one of its crucial reproductive phases might be helping it to cope with the seasonal stressors, including abundance of pathogens, which would otherwise jeopardize the successful reproduction and eventual survival of the species. PMID:25723391

  12. The Effects of Unilateral Nephrectomy on Blood Pressure and Its Circadian Rhythm.

    PubMed

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Suzuki, Takahisa; Motoyama, Daisuke; Sugiyama, Takayuki; Nagata, Masao; Kato, Akihiko; Ozono, Seiichiro; Yasuda, Hideo

    Objective Hypertension and diurnal blood pressure (BP) variation are widely accepted as risk factors for renal damage. However, the effects of unilateral nephrectomy on BP and its circadian rhythm have not yet been clarified in patients with a compromised renal function, including dialysis patients. Methods We investigated 22 unilateral nephrectomized patients (16 men and 6 women, age: 64.5±14.3 years). The function of the circulating renin-angiotensin system (RAS) (plasma renin activity and plasma angiotensin II) and 24-h ambulatory BP monitoring (ABPM) were evaluated before and after nephrectomy. Daytime and nighttime 24-h ABPM values were determined based on sleep and waking times. Results In non-dialysis patients, the estimated glomerular filtration rate after nephrectomy was significantly lower than that before (before, 62.4±23.2 mL/min/1.73 m(2) vs. after, 43.7±16.8 mL/min/1.73 m(2); p<0.01). No significant differences were noted in the levels of BPs and circulating RAS before and after nephrectomy. However, the night-to-day (N/D) ratio of systolic BP (SBP) was significantly higher after nephrectomy than before (before, 93.3±6.5% vs. after, 98.4±6.9%; p<0.01), and the patterns of circadian BP rhythm also significantly differed before and after nephrectomy (p=0.022). Namely, the rates of dipper patterns decreased and nondipper and riser patterns increased after nephrectomy. In contrast, in dialysis patients, no significant differences were observed in the N/D ratio of SBP or the patterns of circadian BP rhythm before and after nephrectomy. Conclusion Unilateral nephrectomy affects the circadian rhythm of BP but not absolute values of BP.

  13. Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-sized insects.

    PubMed

    Giannoni-Guzmán, Manuel A; Avalos, Arian; Marrero Perez, Jaime; Otero Loperena, Eduardo J; Kayım, Mehmet; Medina, Jose Alejandro; Massey, Steve E; Kence, Meral; Kence, Aykut; Giray, Tugrul; Agosto-Rivera, José L

    2014-04-15

    Circadian rhythms in social insects are highly plastic and are modulated by multiple factors. In addition, complex behaviors such as sun-compass orientation and time learning are clearly regulated by the circadian system in these organisms. Despite these unique features of social insect clocks, the mechanisms as well as the functional and evolutionary relevance of these traits remain largely unknown. Here we show a modification of the Drosophila activity monitoring (DAM) system that allowed us to measure locomotor rhythms of the honey bee, Apis mellifera (three variants; gAHB, carnica and caucasica), and two paper wasps (Polistes crinitus and Mischocyttarus phthisicus). A side-by-side comparison of the endogenous period under constant darkness (free-running period) led us to the realization that these social insects exhibit significant deviations from the Earth's 24 h rotational period as well as a large degree of inter-individual variation compared with Drosophila. Experiments at different temperatures, using honey bees as a model, revealed that testing the endogenous rhythm at 35°C, which is the hive's core temperature, results in average periods closer to 24 h compared with 25°C (23.8 h at 35°C versus 22.7 h at 25°C). This finding suggests that the degree of tuning of circadian temperature compensation varies among different organisms. We expect that the commercial availability, cost-effectiveness and integrated nature of this monitoring system will facilitate the growth of the circadian field in these social insects and catalyze our understanding of the mechanisms as well as the functional and evolutionary relevance of circadian rhythms.

  14. The Effects of Unilateral Nephrectomy on Blood Pressure and Its Circadian Rhythm

    PubMed Central

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Suzuki, Takahisa; Motoyama, Daisuke; Sugiyama, Takayuki; Nagata, Masao; Kato, Akihiko; Ozono, Seiichiro; Yasuda, Hideo

    2016-01-01

    Objective Hypertension and diurnal blood pressure (BP) variation are widely accepted as risk factors for renal damage. However, the effects of unilateral nephrectomy on BP and its circadian rhythm have not yet been clarified in patients with a compromised renal function, including dialysis patients. Methods We investigated 22 unilateral nephrectomized patients (16 men and 6 women, age: 64.5±14.3 years). The function of the circulating renin-angiotensin system (RAS) (plasma renin activity and plasma angiotensin II) and 24-h ambulatory BP monitoring (ABPM) were evaluated before and after nephrectomy. Daytime and nighttime 24-h ABPM values were determined based on sleep and waking times. Results In non-dialysis patients, the estimated glomerular filtration rate after nephrectomy was significantly lower than that before (before, 62.4±23.2 mL/min/1.73 m2 vs. after, 43.7±16.8 mL/min/1.73 m2; p<0.01). No significant differences were noted in the levels of BPs and circulating RAS before and after nephrectomy. However, the night-to-day (N/D) ratio of systolic BP (SBP) was significantly higher after nephrectomy than before (before, 93.3±6.5% vs. after, 98.4±6.9%; p<0.01), and the patterns of circadian BP rhythm also significantly differed before and after nephrectomy (p=0.022). Namely, the rates of dipper patterns decreased and nondipper and riser patterns increased after nephrectomy. In contrast, in dialysis patients, no significant differences were observed in the N/D ratio of SBP or the patterns of circadian BP rhythm before and after nephrectomy. Conclusion Unilateral nephrectomy affects the circadian rhythm of BP but not absolute values of BP. PMID:27904104

  15. Measuring individual locomotor rhythms in honey bees, paper wasps and other similar-sized insects

    PubMed Central

    Giannoni-Guzmán, Manuel A.; Avalos, Arian; Perez, Jaime Marrero; Loperena, Eduardo J. Otero; Kayım, Mehmet; Medina, Jose Alejandro; Massey, Steve E.; Kence, Meral; Kence, Aykut; Giray, Tugrul; Agosto-Rivera, José L.

    2014-01-01

    Circadian rhythms in social insects are highly plastic and are modulated by multiple factors. In addition, complex behaviors such as sun-compass orientation and time learning are clearly regulated by the circadian system in these organisms. Despite these unique features of social insect clocks, the mechanisms as well as the functional and evolutionary relevance of these traits remain largely unknown. Here we show a modification of the Drosophila activity monitoring (DAM) system that allowed us to measure locomotor rhythms of the honey bee, Apis mellifera (three variants; gAHB, carnica and caucasica), and two paper wasps (Polistes crinitus and Mischocyttarus phthisicus). A side-by-side comparison of the endogenous period under constant darkness (free-running period) led us to the realization that these social insects exhibit significant deviations from the Earth's 24 h rotational period as well as a large degree of inter-individual variation compared with Drosophila. Experiments at different temperatures, using honey bees as a model, revealed that testing the endogenous rhythm at 35°C, which is the hive's core temperature, results in average periods closer to 24 h compared with 25°C (23.8 h at 35°C versus 22.7 h at 25°C). This finding suggests that the degree of tuning of circadian temperature compensation varies among different organisms. We expect that the commercial availability, cost-effectiveness and integrated nature of this monitoring system will facilitate the growth of the circadian field in these social insects and catalyze our understanding of the mechanisms as well as the functional and evolutionary relevance of circadian rhythms. PMID:24436380

  16. Pinealectomy shortens resynchronisation times of house sparrow ( Passer domesticus) circadian rhythms

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Gwinner, Eberhard

    2005-09-01

    In many birds periodic melatonin secretion by the pineal organ is essential for the high-amplitude self-sustained output of the circadian pacemaker, and thus for the persistence of rhythmicity in 24 h oscillations controlled by it. The elimination of the pineal melatonin rhythm, or a reduction of its amplitude, renders the circadian pacemaker a less self-sustained, often highly damped, oscillatory system. A reduction in the degree of self-sustainment of a rhythm should not only increase its range of entrainment but also shorten the resynchronization times following phase-shifts of the zeitgeber. This hypothesis has not yet been directly tested. We therefore carried out the present study in which house sparrows (Passer domesticus) were subjected to both 6-h advance and 6-h delay phase-shifts of the light-dark cycle before and after the pinealectomy, and the rhythms in locomotion and feeding were recorded. The results indicate that following the delay, but not the advance, phase shift, resynchronization times were significantly shorter after pinealectomy. The dependence of resynchronization times on the presence or absence of the pineal organ is not only of theoretical interest but might also be of functional significance in the natural life of birds. A reduction or elimination of the amplitude of the melatonin secretion rhythm by the pineal organ might be responsible for faster adjustment to changes in zeitgeber conditions in nature.

  17. Rethinking the clockwork: redox cycles and non-transcriptional control of circadian rhythms.

    PubMed

    Wu, Lisa; Reddy, Akhilesh B

    2014-02-01

    Circadian rhythms are a hallmark of living organisms, observable in all walks of life from primitive bacteria to highly complex humans. They are believed to have evolved to co-ordinate the timing of biological and behavioural processes to the changing environmental needs brought on by the progression of day and night through the 24-h cycle. Most of the modern study of circadian rhythms has centred on so-called TTFLs (transcription-translation feedback loops), wherein a core group of 'clock' genes, capable of negatively regulating themselves, produce oscillations with a period of approximately 24 h. Recently, however, the prevalence of the TTFL paradigm has been challenged by a series of findings wherein circadian rhythms, in the form of redox reactions, persist in the absence of transcriptional cycles. We have found that circadian cycles of oxidation and reduction are conserved across all domains of life, strongly suggesting that non-TTFL mechanisms work in parallel with the canonical genetic processes of timekeeping to generate the cyclical cellular and behavioural phenotypes that we commonly recognize as circadian rhythms.

  18. On the Role of Histamine Receptors in the Regulation of Circadian Rhythms

    PubMed Central

    Rozov, Stanislav V.; Porkka-Heiskanen, Tarja; Panula, Pertti

    2015-01-01

    Several lines of evidence suggest a regulatory role of histamine in circadian rhythms, but little is known about signaling pathways that would be involved in such a putative role. The aim of this study was to examine whether histamine mediates its effects on the circadian system through Hrh1 or Hrh3 receptors. We assessed both diurnal and free-running locomotor activity rhythms of Hrh1-/- and Hrh3-/- mice. We also determined the expression of Per1, Per2 and Bmal1 genes in the suprachiasmatic nuclei, several areas of the cerebral cortex and striatum under symmetric 24 h light-dark cycle at zeitgeber times 14 and 6 by using radioactive in situ hybridization. We found no differences between Hrh1-/- and wild type mice in the length, amplitude and mesor of diurnal and free-running activity rhythms as well as in expression of Per1, Per2 and Bmal1 genes in any of the examined brain structures. The amplitude of free-running activity rhythm of the Hrh3-/- mice was significantly flattened, whereas the expression of the clock genes in Hrh3-/- mice was similar to the wild type animals in all of the assessed brain structures. Therefore, the knockout of Hrh1 receptor had no effects on the circadian rhythm of spontaneous locomotion, and a knockout of Hrh3 receptor caused a substantial reduction of free-running activity rhythm amplitude, but none of these knockout models affected the expression patterns of the core clock genes in any of the studied brain structures. PMID:26660098

  19. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    PubMed Central

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  20. Temporal variability in urinary excretion of bisphenol A and seven other phenols in spot, morning, and 24-h urine samples.

    PubMed

    Lassen, Tina Harmer; Frederiksen, Hanne; Jensen, Tina Kold; Petersen, Jørgen Holm; Main, Katharina M; Skakkebæk, Niels E; Jørgensen, Niels; Kranich, Selma Kløve; Andersson, Anna-Maria

    2013-10-01

    Human exposure to modern non-persistent chemicals is difficult to ascertain in epidemiological studies as exposure patterns and excretion rates may show temporal and diurnal variations. The aim of this study was to assess the temporal variability in repeated measurements of urinary excretion of bisphenol A (BPA) and seven other phenols. All analytes were determined using TurboFlow-LC-MS/MS. Two spot, three first morning and three 24-h urine samples were collected from 33 young Danish men over a three months period. Temporal variability was estimated by means of intraclass correlation coefficients (ICCs). More than 70% of the urine samples had detectable levels of BPA, triclosan (TCS), benzophenone-3 (BP-3) and sum of 2,4-dichlorophenol and 2,5-dichlorophenol (ΣDCP). We found low to moderate ICCs for BPA (0.10-0.42) and ΣDCP (0.39-0.72), whereas the ICCs for BP-3 (0.69-0.80) and TCS (0.55-0.90) were higher. The ICCs were highest for the two spot urine samples, which were collected approximately 4 days apart, compared with the 24-h urine samples and the first morning urine samples, which were collected approximately 40 days apart. A consequence of the considerable variability in urinary excretion of BPA may be misclassification of individual BPA exposure level in epidemiological studies, which may lead to attenuation of the association between BPA and outcomes. Our data do not support that collection of 24-h samples will improve individual exposure assessment for any of the analysed phenols.

  1. Evaluation of repolarization dynamics using the QT-RR regression line slope and intercept relationship during 24-h Holter ECG.

    PubMed

    Fujiki, Akira; Yoshioka, Ryozo; Sakabe, Masao

    2015-03-01

    QT-RR linear regression consists of two parameters, slope and intercept, and the aim of this study was to evaluate repolarization dynamics using the QT-RR linear regression slope and intercept relationship during 24-h Holter ECG. This study included 466 healthy subjects (54.6 ± 14.6 years; 200 men and 266 women) and 17 patients with ventricular arrhythmias, consisted of 10 patients with idiopathic ventricular fibrillation (IVF) and 7 patients with torsades de pointes (TDP). QT and RR intervals were measured from ECG waves based on a 15-s averaged ECG during 24-h Holter recording using an automatic QT analyzing system. The QT interval dependence on the RR interval was analyzed using a linear regression line for each subject ([QT] = A[RR] + B; where A is the slope and B is the y-intercept). The slope of the QT-RR regression line in healthy subjects was significantly greater in women than in men (0.185 ± 0.036 vs. 0.161 ± 0.033, p < 0.001) and the intercept was significantly smaller in women than in men (0.229 ± 0.028 vs. 0.240 ± 0.027, p < 0.001). A scatter diagram of the QT-RR regression line slope and intercept among healthy subjects demonstrated a statistically significant negative correlation (B = -0.62A + 0.34, r = -0.79). Distribution of both scatter diagrams of the slope and the intercept of the QT-RR regression line in patients with IVF and TDP was different from healthy subjects (left corner for IVF and upward shift for TDP). The slope and intercept relationship of the QT-RR linear regression line based on 24-h Holter ECG may become a simple useful marker for abnormality of ventricular repolarization dynamics.

  2. Neighbourhood food store availability in relation to 24 h urinary sodium and potassium excretion in young Japanese women.

    PubMed

    Murakami, Kentaro; Sasaki, Satoshi; Takahashi, Yoshiko; Uenishi, Kazuhiro

    2010-10-01

    Previous studies on the relationship of local food environment with residents' diets have relied exclusively on self-reported information on diet, producing inconsistent results. Evaluation of dietary intake using biomarkers may obviate the biases inherent to the use of self-reported dietary information. This cross-sectional study examined the association between neighbourhood food store availability and 24 h urinary Na and K excretion. The subjects were 904 female Japanese dietetic students aged 18-22 years. Neighbourhood food store availability was defined as the number of food stores within a 0.5-mile (0.8-km) radius of residence. Urinary Na and K excretion and the ratio of urinary Na to K were estimated from a single 24 h urine sample. After adjustment for potential confounding factors, neighbourhood availability of confectionery stores/bakeries was inversely associated with urinary K, and was positively associated with the ratio of Na to K (P for trend = 0.008 and 0.03, respectively). Neighbourhood availability of rice stores showed an independent inverse association with urinary K (P for trend = 0.03), whereas neighbourhood availability of supermarkets/grocery stores conversely showed an independent positive association with this variable (P for trend = 0.03). Furthermore, neighbourhood availability of fruit/vegetable stores showed an independent inverse association with the ratio of Na to K (P for trend = 0.049). In a group of young Japanese women, increasing neighbourhood availability of supermarkets/grocery stores and fruit/vegetable stores and decreasing availability of confectionery stores/bakeries and rice stores were associated with favourable profiles of 24 h urinary K (and Na) excretion.

  3. Metal element excretion in 24-h urine in patients with Wilson disease under treatment of D-penicillamine.

    PubMed

    Huang, Lisu; Yu, Xiaodan; Zhang, Jun; Liu, Xiaoqing; Zhang, Yongjun; Jiao, Xianting; Yu, Xiaogang

    2012-05-01

    Wilson disease is an inherited autosomal recessive disorder causing copper accumulation and consequent toxicity. D-Penicillamine, a potent metal chelator, is an important therapy for Wilson disease. To investigate the changes of metal elements under the treatment of D-penicillamine, we determined the levels of Cu, Zn, Mg, Ca, Fe, Se, Mn, Pb, Hg, Cd, As, Tl, and Al by ICP-MS in 24-h urine of 115 Wilson disease patients who had received treatment with D: -penicillamine for 1 month to 22 years at maintenance doses, as well as 115 age-matched, healthy controls. The levels of Cu, Mg, Ca, Zn, Hg, Pb, Tl, Cd, and Mn in the 24-h urine of the cases were significantly higher than those of the controls (P < 0.05), and the observed increases in the levels of Mg, Ca, and Zn were directly correlated with the treatment duration with Pearson Correlation Coefficient (R) of 0.356 (Mg), 0.329 (Ca), and 0.313 (Zn), respectively (P < 0.05). On the other hand, the levels of Al and As in the 24-h urine were lower than those of the controls (P < 0.05) and were negatively correlated with the treatment time with R of -0.337 (Al) and -0.398 (As), respectively, (P < 0.05). Thus, this study indicates that the levels of metal elements may be altered in patients with Wilson disease under the treatment of D-penicillamine.

  4. Prediction of hypertensive crisis based on average, variability and approximate entropy of 24-h ambulatory blood pressure monitoring.

    PubMed

    Schoenenberger, A W; Erne, P; Ammann, S; Perrig, M; Bürgi, U; Stuck, A E

    2008-01-01

    Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.

  5. Melatonin, selective and non-selective MT1/MT2 receptors agonists: differential effects on the 24-h vigilance states.

    PubMed

    Ochoa-Sanchez, Rafael; Comai, Stefano; Spadoni, Gilberto; Bedini, Annalida; Tarzia, Giorgio; Gobbi, Gabriella

    2014-02-21

    Melatonin (MLT) is a neurohormone implicated in several physiological processes such as sleep. Contrasting results have been produced on whether or not it may act as a hypnotic agent, and the neurobiological mechanism through which it controls the vigilance states has not yet been elucidated. In this study we investigated the effect of MLT (40 mg/kg), a non-selective MT1/MT2 receptor agonist (UCM793, 40 mg/kg), and a selective MT2 partial agonist (UCM924, 40 mg/kg) on the 24-h vigilance states. EEG and EMG sleep-wake patterns were registered across the 24-h light-dark cycle in adult Sprague-Dawley male rats. MLT decreased (-37%) the latency to the first episode of non rapid eye movement sleep (NREMS), enhanced the power of NREMS delta band (+33%), but did not alter the duration of any of the three vigilance states. Differently, UCM793 increased the number of episodes (+52%) and decreased the length of the episodes (-38%) of wakefulness but did not alter the 24-h duration of wakefulness, NREMS and REMS. UCM924 instead reduced the latency (-56%) and increased (+31%) the duration of NREMS. Moreover, it raised the number of REMS episodes (+57%) but did not affect REMS duration. Taken together, these findings show that MLT and non-selective MT1/MT2 receptor agonists do not increase the quantity of sleep but differently influence the three vigilance states. In addition, they support the evidence that selective MT2 receptor agonists increase NREMS duration compared to MLT and non-selective MT1/MT2 agonists.

  6. Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kosuke; Miwa, Shuhei; Sekine, Shin-ichi; Yoshimochi, Hiroshi; Obayashi, Hiroshi; Koyama, Shin-ichi

    2013-09-01

    In order to confirm the effect of minor actinide additions on the irradiation behavior of MOX fuel pellets, 3 wt.% and 5 wt.% americium-containing MOX (Am-MOX) fuels were irradiated for 10 min at 43 kW/m and for 24 h at 45 kW/m in the experimental fast reactor Joyo. Two nominal values of the fuel pellet oxygen-to-metal ratio (O/M), 1.95 and 1.98, were used as a test parameter. Emphasis was placed on the behavior of restructuring and redistribution of actinides which directly affect the fuel performance and the fuel design for fast reactors. Microstructural evolutions in the fuels were observed by optical microscopy and the redistribution of constituent elements was determined by EPMA using false color X-ray mapping and quantitative point analyses. The ceramography results showed that structural changes occurred quickly in the initial stage of irradiation. Restructuring of the fuel from middle to upper axial positions developed and was almost completed after the 24-h irradiation. No sign of fuel melting was found in any of the specimens. The EPMA results revealed that Am as well as Pu migrated radially up the temperature gradient to the center of the fuel pellet. The increase in Am concentration on approaching the edge of the central void and its maximum value were higher than those of Pu after the 10-min irradiation and the difference was more pronounced after the 24-h irradiation. The increment of the Am and Pu concentrations due to redistribution increased with increasing central void size. In all of the specimens examined, the extent of redistribution of Am and Pu was higher in the fuel of O/M ratio of 1.98 than in that of 1.95.

  7. Biochemical Oscillations and Cellular Rhythms

    NASA Astrophysics Data System (ADS)

    Goldbeter, Albert; Berridge, Foreword by M. J.

    1997-04-01

    1. Introduction; Part I. Glycolytic Oscillations: 2. Oscillatory enzymes: simple periodic behaviour in an allosteric model for glycolytic oscillations; Part II. From Simple to Complex Oscillatory Behaviour; 3. Birhythmicity: coexistence between two stable rhythms; 4. From simple periodic behaviour to complex oscillations, including bursting and chaos; Part III. Oscillations Of Cyclic Amo In Dictyostelium Cells: 5. Models for the periodic synthesis and relay of camp signals in Dictyostelium discoideum amoebae; 6. Complex oscillations and chaos in the camp signalling system of Dictyostelium; 7. The onset of camp oscillations in Dictyostelium as a model for the ontogenesis of biological rhythms; Part IV. Pulsatile Signalling In Intercellular Communication: 8. Function of the rhythm of intercellular communication in Dictyostelium. Link with pulsatile hormone secretion; Part V. Calcium Oscillations: 9. Oscillations and waves of intracellular calcium; Part VI. The Mitotic Oscillator: 10. Modelling the mitotic oscillator driving the cell division cycle; Part VII. Circadian Rhythms: 11. Towards a model for circadian oscillations in the Drosophila period protein (PER); 12. Conclusions and perspectives; References.

  8. The International Sweethearts of Rhythm.

    ERIC Educational Resources Information Center

    Sher, Liz

    1987-01-01

    The International Sweethearts of Rhythm, a popular, long-lived, all-female jazz band of the 1940s, were the first racially integrated women's band in America. Their achievement has been largely neglected by music historians. A brief history of the band is presented, and their significance is discussed. (BJV)

  9. Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease.

    PubMed

    Versteeg, R I; Serlie, M J; Kalsbeek, A; la Fleur, S E

    2015-08-20

    It is evident that eating in misalignment with the biological clock (such as in shift work, eating late at night and skipping breakfast) is associated with increased risk for obesity and diabetes. The biological clock located in the suprachiasmatic nucleus dictates energy balance including feeding behavior and glucose metabolism. Besides eating and sleeping patterns, glucose metabolism also exhibits clear diurnal variations with higher blood glucose concentrations, glucose tolerance and insulin sensitivity prior to waking up. The daily variation in plasma glucose concentrations in rats, is independent of the rhythm in feeding behavior. On the other hand, feeding itself has profound effects on glucose metabolism, but differential effects occur depending on the time of the day. We here review data showing that a disturbed diurnal eating pattern results in alterations in glucose metabolism induced by a disrupted circadian clock. We first describe the role of central serotonin on feeding behavior and glucose metabolism and subsequently describe the effects of central serotonin on the circadian system. We next explore the interaction between the serotonergic system and the circadian clock in conditions of disrupted diurnal rhythms in feeding and how this might be involved in the metabolic dysregulation that occurs with chronodisruption.

  10. Concepts in human biological rhythms

    PubMed Central

    Reinberg, Alain; Ashkenazi, Israel

    2003-01-01

    Biological rhythms and their temporal organization are adaptive phenomena to periodic changes in environmental factors linked to the earth's rotation on its axis and around the sun. Experimental data from the plant and animal kingdoms have led to many models and concepts related to biological clocks that help describe and understand the mechanisms of these changes. Many of the prevailing concepts apply to all organisms, but most of the experimental data are insufficient to explain the dynamics of human biological clocks. This review presents phenomena thai are mainly characteristic ofand unique to - human chronobiology, and which cannot be fully explained by concepts and models drawn from laboratory experiments. We deal with the functional advantages of the human temporal organization and the problem of desynchronization, with special reference to the period (τ) of the circadian rhythm and its interindividual and intraindividual variability. We describe the differences between right- and left-hand rhythms suggesting the existence of different biological clocks in the right and left cortices, Desynchronization of rhythms is rather frequent (one example is night shift workers). In some individuals, desynchronization causes no clinical symptoms and we propose the concept of “allochronism” to designate a variant of the human temporal organization with no pathological implications. We restrict the term “dyschronism” to changes or alterations in temporal organization associated with a set of symptoms similar to those observed in subjects intolerant to shift work, eg, persisting fatigue and mood and sleep alterations. Many diseases involve chronic deprivation of sleep at night and constitute conditions mimicking thai of night shift workers who are intolerant to desynchronization. We also present a genetic model (the dian-circadian model) to explain interindividual differences in the period of biological rhythms in certain conditions. PMID:22033796

  11. Twenty-four Hour Endocrine and Metabolic Profiles Following Consumption of High Fructose Corn Syrup-, Sucrose- Fructose-, and Glucose-Sweetened Beverages with Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that compared with glucose-sweetened beverages, consuming fructose-sweetened beverages with meals results in lower 24-h circulating glucose, insulin and leptin concentrations, and elevated triacylglycerol (TG). However, pure fructose and glucose are not commonly used as sweeteners. ...

  12. Parallel assessment of nutrition and activity in athletes: validation against doubly labelled water, 24-h urea excretion, and indirect calorimetry.

    PubMed

    Koehler, Karsten; Braun, Hans; De Marees, Markus; Fusch, Gerhard; Fusch, Christoph; Mester, Joachim; Schaenzer, Wilhelm

    2010-11-01

    The assessment of nutrition and activity in athletes requires accurate and precise methods. The aim of this study was to validate a protocol for parallel assessment of diet and exercise against doubly labelled water, 24-h urea excretion, and respiratory gas exchange. The participants were 14 male triathletes under normal training conditions. Energy intake and doubly labelled water were weakly associated with each other (r = 0.69, standard error of estimate [SEE] = 304 kcal x day(-1)). Protein intake was strongly correlated with 24-h urea (r = 0.89) but showed considerable individual variation (SEE = 0.34 g kg(-1) x day(-1)). Total energy expenditure based on recorded activities was highly correlated with doubly labelled water (r = 0.95, SEE = 195 kcal x day(-1)) but was proportionally biased. During running and cycling, estimated exercise energy expenditure was highly correlated with gas exchange (running: r = 0.89, SEE = 1.6 kcal x min(-1); cycling: r = 0.95, SEE = 1.4 kcal x min(-1)). High exercise energy expenditure was slightly underestimated during running. For nutrition data, variations appear too large for precise measurements in individual athletes, which is a common problem of dietary assessment methods. Despite the high correlations of total energy expenditure and exercise energy expenditure with reference methods, a correction for systematic errors is necessary for the valid estimation of energetic requirements in individual athletes.

  13. Ingestion of nutrition bars high in protein or carbohydrate does not impact 24-h energy intakes in healthy young adults.

    PubMed

    Trier, Catherine M; Johnston, Carol S

    2012-12-01

    Sales of nutrition bars increased almost 10-fold to $1.7billion over the past decade yet few studies have examined the impact of bar ingestion on dietary parameters. In this crossover trial, 24-h energy intakes were assessed in free-living college students ingesting a high-protein (HP, 280kcal) or a high-carbohydrate (HC, 260kcal) nutrition bar upon waking. Fifty-four students entered the trial, and 37 participants completed the three test days. Daily energy intakes ranged from 1752±99kcal for the non-intervention day to 1846±75 and 1891±110kcal for the days the HP and HC bars were consumed respectively (p=0.591). However, for individuals who reported high levels of physically activity (n=11), daily energy intakes increased significantly compared to the control day for the HC bar day (+45%; p=0.030) and HP bar day (+22%; p=0.038). Macro- and micro-nutrient intakes differed significantly across test days in the total sample mirroring the nutrient profile of the specific bars. These data suggest that young adults adjust caloric intakes appropriately following the ingestion of energy-dense nutrition bars over a 24-h period. Moreover, nutrition bars may represent a unique opportunity to favorably influence nutrient status of young adults.

  14. Schottky barrier height of Ni/TiO2/4H-SiC metal-insulator-semiconductor diodes

    NASA Astrophysics Data System (ADS)

    Kaufmann, Ivan R.; Pereira, Marcelo B.; Boudinov, Henri I.

    2015-12-01

    Ni/TiO2/4H-SiC diodes were analysed through measurements of current-voltage curves varying the temperature. The Schottky Barrier Height (SBH) which increased with temperature was studied by simulation of the Thermionic Emission Model, considering Ni/SiC Schottky structures with an insulator layer between the metal and semiconductor. This model shows that a new method of calculation should be applied to diodes that have a metal-insulator-semiconductor structure. Misleading results for SBH are obtained if the thin insulator layer is not considered. When applying the suggested method to the Ni/TiO2/4H-SiC diodes it was necessary to consider not only the deposited TiO2 layer, but also a second dielectric layer of native SiCxOy at the surface of SiC. By measuring I-V-T curves for two samples with different thicknesses of TiO2, the suggested method allows one to estimate the thicknesses of both dielectric layers: TiO2 and SiOxCy.

  15. Effect of Androctonus bicolor scorpion venom on serum electrolytes in rats: A 24-h time-course study.

    PubMed

    Al-Asmari, A; Khan, H A; Manthiri, R A

    2016-03-01

    Black fat-tailed scorpion (Androctonus bicolor) belongs to the family Buthidae and is one of the most venomous scorpions in the world. The effects of A. bicolor venom on serum electrolytes were not known and therefore investigated in this study. Adult male Wistar rats were randomly divided into seven groups with five animals in each group. One of the groups served as control and received vehicle only. The animals in the remaining groups received a single subcutaneous injection of crude A. bicolor venom (200 μg/kg bodyweight) and were killed at different time intervals including 30 min, 1 h, 2 h, 4 h, 8 h, and 24 h after venom injection. The results showed that scorpion venom caused significant increase in serum sodium levels within 30 min after injection which slightly subsided after 1 h and then persisted over 24 h. Serum potassium levels continued to significantly increase until 4 h and then slightly subsided. There were significant decreases in serum magnesium (Mg(+)) levels following scorpion venom injection, at all the time points during the course of study. Serum calcium levels were significantly increased during the entire course of study, whereas serum chloride was significantly decreased. In conclusion, A. bicolor envenomation in rats caused severe and persistent hypomagnesemia with accompanied hypernatremia, hyperkalemia, and hypercalcemia. It is important to measure serum Mg(+) levels in victims of scorpion envenomation, and patients with severe Mg(+) deficiency should be treated accordingly.

  16. Microdialysis in the rat striatum: effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury.

    PubMed

    Nesbitt, Kathryn M; Varner, Erika L; Jaquins-Gerstl, Andrea; Michael, Adrian C

    2015-01-21

    The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state. We hypothesize that mitigating such disruption would refine microdialysis. Herein, we show that the addition of dexamethasone, an anti-inflammatory drug, to the perfusion fluid protects evoked dopamine responses as measured by fast-scan cyclic voltammetry next to the probes after 24 h. We also show that dexamethasone stabilizes evoked dopamine responses measured at the probe outlet over a 4-24 h postimplantation interval. The effects of dexamethasone are attributable to its anti-inflammatory actions, as dexamethasone had no significant effect on two histochemical markers for dopamine terminals, tyrosine hydroxylase and the dopamine transporter. Using histochemical assays, we confirmed that the actions of dexamethasone are tightly confined to the immediate, local vicinity of the probe.

  17. Microdialysis in the Rat Striatum: Effects of 24 h Dexamethasone Retrodialysis on Evoked Dopamine Release and Penetration Injury

    PubMed Central

    2015-01-01

    The power of microdialysis for in vivo neurochemical monitoring is a result of intense efforts to enhance microdialysis procedures, the probes themselves, and the analytical systems used for the analysis of dialysate samples. Our goal is to refine microdialysis further by focusing attention on what happens when the probes are implanted into brain tissue. It is broadly acknowledged that some tissue damage occurs, such that the tissue nearest the probes is disrupted from its normal state. We hypothesize that mitigating such disruption would refine microdialysis. Herein, we show that the addition of dexamethasone, an anti-inflammatory drug, to the perfusion fluid protects evoked dopamine responses as measured by fast-scan cyclic voltammetry next to the probes after 24 h. We also show that dexamethasone stabilizes evoked dopamine responses measured at the probe outlet over a 4–24 h postimplantation interval. The effects of dexamethasone are attributable to its anti-inflammatory actions, as dexamethasone had no significant effect on two histochemical markers for dopamine terminals, tyrosine hydroxylase and the dopamine transporter. Using histochemical assays, we confirmed that the actions of dexamethasone are tightly confined to the immediate, local vicinity of the probe. PMID:25491242

  18. Impact of a carbohydrate-electrolyte drink on ingestive behaviour, affect and self-selected intensity during recreational exercise after 24-h fluid restriction.

    PubMed

    Peacock, Oliver J; Thompson, Dylan; Stokes, Keith A

    2013-01-01

    This study examined the effects of a carbohydrate-electrolyte drink on voluntary fluid intake, affect and self-selected intensity during recreational exercise after fluid restriction. In a randomised counterbalanced design, ten physically active adults were dehydrated via a 24-h period of fluid restriction before completing two 20-min bouts of cardiovascular exercise, 20-min of resistance exercise and 20 min on a cycle ergometer at a self-selected intensity with ad libitum access to water (W) or a carbohydrate-electrolyte solution (CES). Fluid restriction induced hypohydration of ∼1.2% initial body mass. Fluid intake during exercise was greater with CES (2105 ± 363 vs. 1470 ± 429 mL; P<0.01) and resulted in more adequate hydration (-0.03 ± 0.65 vs. -1.26 ± 0.80%; P<0.01). Plasma glucose concentrations (4.48 ± 0.40 vs. 4.28 ± 0.32 mmol L(-1); P<0.01) and pleasure ratings (2.63 ± 1.17 vs. 1.81 ± 1.37; P<0.01) were greater with CES than W. Mean power output during exercise performed at a self-selected intensity was 5.6% greater with CES (171 ± 63 vs. 162 ± 60 W; P<0.05). In physically active adults performing a 'real-life' recreational exercise simulation, CES resulted in more adequate hydration and an enhanced affective experience that corresponded with an increase in self-selected exercise intensity.

  19. [Circadian rhythm sleep-wake disorder (circadian rhythm sleep disorder)].

    PubMed

    Tagaya, Hirokuni; Murayama, Norio; Fukase, Yuko

    2015-06-01

    The role of the circadian system is forecasting the daily and yearly change of environment. Circadian rhythm sleep-wake disorder (CRSWD) is defined as physical and social impairment caused by misalignment between circadian rhythm and desirable social schedule. CRSWDs are induced by medical or environmental factors as well as dysfunctions of circadian system. Clinicians should be aware that sleep-inducing medications, restless legs syndrome, delirium and less obedience to social schedule are frequent cause of CRSWD among elderly. Bright light therapy and orally administered small dose of melatonin or melatonin agonist at proper circadian phase are recommended treatments. Sleep-inducing medications should not be considered as CRSWD treatments, especially to elderly.

  20. Brain areas and pathways in the regulation of glucose metabolism.

    PubMed

    Diepenbroek, Charlene; Serlie, Mireille J; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.

  1. Four to seven random casual urine specimens are sufficient to estimate 24-h urinary sodium/potassium ratio in individuals with high blood pressure.

    PubMed

    Iwahori, T; Ueshima, H; Torii, S; Saito, Y; Fujiyoshi, A; Ohkubo, T; Miura, K

    2016-05-01

    This study was done to clarify the optimal number and type of casual urine specimens required to estimate urinary sodium/potassium (Na/K) ratio in individuals with high blood pressure. A total of 74 individuals with high blood pressure, 43 treated and 31 untreated, were recruited from the Japanese general population. Urinary sodium, potassium and Na/K ratio were measured in both casual urine samples and 7-day 24-h urine samples and then analyzed by correlation and Bland-Altman analyses. Mean Na/K ratio from random casual urine samples on four or more days strongly correlated with the Na/K ratio of 7-day 24-h urine (r=0.80-0.87), which was similar to the correlation between 1 and 2-day 24-h urine and 7-day 24-h urine (r=0.75-0.89). The agreement quality for Na/K ratio of seven random casual urine for estimating the Na/K ratio of 7-day 24-h urine was good (bias: -0.26, limits of agreements: -1.53-1.01), and it was similar to that of 2-day 24-h urine for estimating 7-day 24-h values (bias: 0.07, limits of agreement: -1.03 to 1.18). Stratified analyses comparing individuals using antihypertensive medication and individuals not using antihypertensive medication showed similar results. Correlations of the means of casual urine sodium or potassium concentrations with 7-day 24-h sodium or potassium excretions were relatively weaker than those for Na/K ratio. The mean Na/K ratio of 4-7 random casual urine specimens on different days provides a good substitute for 1-2-day 24-h urinary Na/K ratio for individuals with high blood pressure.

  2. Association between 24 h urinary sodium and potassium excretion and the metabolic syndrome in Chinese adults: the Shandong and Ministry of Health Action on Salt and Hypertension (SMASH) study.

    PubMed

    Ge, Zeng; Guo, Xiaolei; Chen, Xiaorong; Tang, Junli; Yan, Liuxia; Ren, Jie; Zhang, Jiyu; Lu, Zilong; Dong, Jing; Xu, Jianwei; Cai, Xiaoning; Liang, Hao; Ma, Jixiang

    2015-03-28

    The association of 24 h urinary Na and potassium excretion with the risk of the metabolic syndrome (MetS) has not been studied in China. The aim of the present study was to examine this association by analysing the data from 1906 study participants living in north China. To this end, 24 h urine samples were collected. Of the 1906 participants, 471 (24·7 %) had the MetS. The mean urinary Na and K excretion was 228·7 and 40·8 mmol/d, respectively. After multivariate adjustment, the odds of the MetS significantly increased across the increasing tertiles of urinary Na excretion (1·00, 1·40 and 1·54, respectively). For the components of the MetS, the odds of central obesity, elevated blood pressure and elevated TAG, but not the odds of low HDL-cholesterol and elevated fasting glucose, significantly increased with the successive tertiles of urinary Na excretion. Furthermore, for every 100 mmol/d increase in urinary Na excretion, the odds of the MetS, central obesity, elevated blood pressure and elevated TAG was significantly increased by 29, 63, 22 and 21 %, respectively. However, urinary K excretion was not significantly associated with the risk of the MetS. These findings suggest that high Na intake might be an important risk factor for the MetS in Chinese adults.

  3. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators

    PubMed Central

    Karaganis, Stephen P.; Bartell, Paul A.; Shende, Vikram R.; Moore, Ashli F.; Cassone, Vincent M.

    2009-01-01

    Avian circadian organization involves interactions between three neural pacemakers: the suprachiasmatic nuclei (SCN), pineal, and retina. Each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. However, the contribution of each structure to drive or synchronize peripheral oscillators or circadian outputs in avian species is largely unknown. To explore these interactions in the chick, we measured 2-deoxy[14C]-glucose (2DG) uptake and mRNA expression of the chick clock genes bmal1, cry1, and per3 in three brain areas and in two peripheral organs in chicks that underwent pinealectomy, enucleation, or sham surgery. We found that 2DG uptake rhythms damp under constant darkness in intact animals, while clock gene mRNA levels continue to cycle, demonstrating that metabolic rhythms are not directly driven by clock gene transcription. Moreover, 2DG rhythms are not phase-locked to rhythms of clock gene mRNA. However, pinealectomy and enucleation had similar disruptive effects on both metabolic and clock gene rhythms, suggesting that both of these oscillators act similarly to reinforce molecular and physiological rhythms in the chicken. Finally, we show that the relative phasing of at least one clock gene, cry1, varies between central and peripheral oscillators in a tissue specific manner. These data point to a complex, differential orchestration of central and peripheral oscillators in the chick, and, importantly, indicate a disconnect between canonical clock gene regulation and circadian control of metabolism. PMID:19136000

  4. Sleep, circadian rhythm and body weight: parallel developments.

    PubMed

    Westerterp-Plantenga, Margriet S

    2016-11-01

    Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose-insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic-pituitary-adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  5. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  6. Social rhythms of the heart

    PubMed Central

    Pantzar, Mika; Ruckenstein, Minna; Mustonen, Veera

    2017-01-01

    ABSTRACT A long-term research focus on the temporality of everyday life has become revitalised with new tracking technologies that allow methodological experimentation and innovation. This article approaches rhythms of daily lives with heart-rate variability measurements that use algorithms to discover physiological stress and recovery. In the spirit of the ‘social life of methods’ approach, we aggregated individual data (n = 35) in order to uncover temporal rhythms of daily lives. The visualisation of the aggregated data suggests both daily and weekly patterns. Daily stress was at its highest in the mornings and around eight o’clock in the evening. Weekend stress patterns were dissimilar, indicating a stress peak in the early afternoon especially for men. In addition to discussing our explorations using quantitative data, the more general aim of the article is to explore the potential of new digital and mobile physiological tracking technologies for contextualising the individual in the everyday. PMID:28163655

  7. Circadian rhythms, sleep, and metabolism.

    PubMed

    Huang, Wenyu; Ramsey, Kathryn Moynihan; Marcheva, Biliana; Bass, Joseph

    2011-06-01

    The discovery of the genetic basis for circadian rhythms has expanded our knowledge of the temporal organization of behavior and physiology. The observations that the circadian gene network is present in most living organisms from eubacteria to humans, that most cells and tissues express autonomous clocks, and that disruption of clock genes results in metabolic dysregulation have revealed interactions between metabolism and circadian rhythms at neural, molecular, and cellular levels. A major challenge remains in understanding the interplay between brain and peripheral clocks and in determining how these interactions promote energy homeostasis across the sleep-wake cycle. In this Review, we evaluate how investigation of molecular timing may create new opportunities to understand and develop therapies for obesity and diabetes.

  8. [Fundamental bases of biological rhythms].

    PubMed

    Shabalin, V N; Shatokhina, S N

    2000-01-01

    The data and theoretical points given in the paper mould basically new views of molecular relationships underlying the function of living beings and biological rhythms. The authors' procedure for wedge biological fluid dehydration reveals a wide autowave spectrum that is clearly detectable when the fluid passes into the solid phase. A hypothesis of the autowave interaction of biologically active molecules is forwarded, which considers autowaves as a basis of organization of physiological and pathological processes occurring in the body.

  9. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds

    PubMed Central

    Steiger, Silke S.; Valcu, Mihai; Spoelstra, Kamiel; Helm, Barbara; Wikelski, Martin; Kempenaers, Bart

    2013-01-01

    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light–dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed ‘free-running’ activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions. PMID:23782884

  10. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds.

    PubMed

    Steiger, Silke S; Valcu, Mihai; Spoelstra, Kamiel; Helm, Barbara; Wikelski, Martin; Kempenaers, Bart

    2013-08-07

    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24 h day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We found substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24 h activity cycles, were continuously active (arrhythmic) or showed 'free-running' activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system, and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions.

  11. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men.

    PubMed

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens J; Dela, Flemming; Madsbad, Sten; Vaag, Allan A

    2003-06-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.

  12. Holter monitor (24h)

    MedlinePlus

    ... the machine gets an accurate recording of the heart's activity. While wearing the device, avoid: Electric blankets High- ... Holter monitoring is used to determine how the heart responds to normal activity. The monitor may also be used: After a ...

  13. Hippuric acid in 24 h urine collections as a biomarker of fruits and vegetables intake in kidney stone formers.

    PubMed

    Guerra, Angela; Folesani, Giuseppina; Mena, Pedro; Ticinesi, Andrea; Allegri, Franca; Nouvenne, Antonio; Pinelli, Silvana; Del Rio, Daniele; Borghi, Loris; Meschi, Tiziana

    2014-12-01

    This work aimed to underline the prospects of hippuric acid, a product of the metabolism of polyphenols, as a new biomarker of fruits and vegetables intake associated with lithogenic risk. Biochemical parameters of lithogenic risk and hippuric acid were measured in the 24 h urine collections of a cohort of 696 Italian kidney stone formers divided into two subgroups according to their different dietary habits. The link between lithogenic risk parameters and hippuric acid was assessed and this compound was revealed as a valuable biomarker of fruits and vegetables intake in kidney stone formers. A cut-off value of urinary excretion of hippuric acid, 300 mg/24 h, was set as the threshold of discrimination between low and high intake of fruits and vegetables for these patients. These results highlight the importance of monitoring of the excretion hippuric acid in urine to address proper dietary guidelines for the management of stone former patients.

  14. Effect of boron incorporation on slow interface traps in SiO2/4H-SiC structures

    NASA Astrophysics Data System (ADS)

    Okamoto, Dai; Sometani, Mitsuru; Harada, Shinsuke; Kosugi, Ryoji; Yonezawa, Yoshiyuki; Yano, Hiroshi

    2017-02-01

    The reason for the effective removal of interface traps in SiO2/4H-SiC (0001) structures by boron (B) incorporation was investigated by employing low-temperature electrical measurements. Low-temperature capacitance-voltage and thermal dielectric relaxation current measurements revealed that the density of electrons captured in slow interface traps in B-incorporated oxide is lower than that in dry and NO-annealed oxides. These results suggest that near-interface traps can be removed by B incorporation, which is considered to be an important reason for the increase in the field-effect mobility of 4H-SiC metal-oxide-semiconductor devices. A model for the passivation mechanism is proposed that takes account of stress relaxation during thermal oxidation.

  15. A review of the design and validation of web- and computer-based 24-h dietary recall tools.

    PubMed

    Timon, Claire M; van den Barg, Rinske; Blain, Richard J; Kehoe, Laura; Evans, Katie; Walton, Janette; Flynn, Albert; Gibney, Eileen R

    2016-12-01

    Technology-based dietary assessment offers solutions to many of the limitations of traditional dietary assessment methodologies including cost, participation rates and the accuracy of data collected. The 24-h dietary recall (24HDR) method is currently the most utilised method for the collection of dietary intake data at a national level. Recently there have been many developments using web-based platforms to collect food intake data using the principles of the 24HDR method. This review identifies web- and computer-based 24HDR tools that have been developed for both children and adult population groups, and examines common design features and the methods used to investigate the performance and validity of these tools. Overall, there is generally good to strong agreement between web-based 24HDR and respective reference measures for intakes of macro- and micronutrients.

  16. Airway hyper- or hyporeactivity to inhaled spasmogens 24 h after ovalbumin challenge of sensitized guinea-pigs.

    PubMed Central

    Lewis, C. A.; Broadley, K. J.

    1995-01-01

    1. The aim of this study was to determine whether an inhalation of ovalbumin (OA, 10 or 20 mg ml-1) by conscious OA-sensitized guinea-pigs leads to airway hyperreactivity to spasmogens 24 h later. In contrast to most previous studies, the spasmogens (5-HT, methacholine (MCh), U-46619 and adenosine) were administered by inhalation and airway function was measured in conscious guinea-pigs. 2. Guinea-pigs were sensitized by i.p. injection of 10 micrograms OA and 100 mg aluminium hydroxide in 1 ml normal saline; 14-21 days later they were exposed to an inhalation of 5-HT, MCh, U-46619 or adenosine. Specific airway conductance (sGaw) was measured in conscious animals by whole body plethysmography. The spasmogens caused bronchoconstriction, measured as a reduction in sGaw from the pre-inhalation basal values. Dose-related bronchoconstrictions were observed with 5-HT, MCh and U-46619. 3. The effect of an ovalbumin macroshock challenge upon the responses to each spasmogen were examined by giving an inhalation of aerosolized OA at 24 h (or 7 days in the cause of adenosine) after an initial spasmogen challenge. Eighteen to twenty-four hours after the OA macroshock, the same guinea-pigs were exposed to a repeated inhalation of 5-HT, MCh, U-46619 or adenosine. 4. U-46619 was the only spasmogen to demonstrate hyperresponsiveness, the peak change in sGaw being increased from -12.3 +/- 9.9 to -38.8 +/- 5.0% by 10 mg ml-1 OA challenge. In contrast, the ovalbumin challenge (20 mg ml-1) inhibited the bronchoconstrictions to 5-HT (50 micrograms ml-1) and MCh (100 micrograms ml-1). Adenosine demonstrated bronchoconstriction in sensitized guinea-pigs but no significant change in the response was observed after an OA challenge. 5. All results were compared with a control group of sensitized guinea-pigs receiving a NaCl challenge. The bronchoconstrictor responses to 5-HT, MCh, U-46619 or adenosine did not differ significantly before and after the saline challenge, indicating

  17. The 24-h recall instrument for home nursing to measure the activity profile of home nurses: development and psychometric testing.

    PubMed

    De Vliegher, Kristel; Aertgeerts, Bert; Declercq, Anja; Gosset, Christiane; Heyden, Isabelle; Van Geert, Michel; Moons, Philip

    2015-01-01

    Home health care today is challenged by a shift from an acute to a chronic health-care model, moving the focus of care from the hospital to home-care setting. This increased focus on care at home emphasizes the need for an efficient, effective, and transparent management of home health care. However, it is not precisely known what home-care nurses do; what kind of care is received by patients; what the performance of home nurses is; and what the impact of the increasing need for home nursing is on the current and future role of home nurses. In this respect, it is necessary to gain a clear insight into the activity profile of home nurses, but there is no gold standard to measure their activities. This study reports on the development and psychometric testing of the '24-hour recall instrument for home nursing' to measure the activity profile of home nurses. Five home nurses in Belgium, simultaneously with the researcher, registered the performed activities in a total of 69 patients, using the 24-h recall instrument for home nursing. The validity and the interrater reliability of this instrument were high: the proportions that observed agreement were very high; the strength of kappa agreement was substantial to almost perfect; the prevalence index showed great variety; and the bias index was low. The findings in this study support the validity evidence based on test content and the interrater reliability of the 24-h recall instrument. This instrument can help to shape practice and policy by making the home nursing profession more transparent: a clear insight into the kind of care that is provided by home nurses and is received by the patients in primary care contributes to the development of a clear definition of the role of home nurses in health care.

  18. Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension.

    PubMed

    Zheng, Yali; Poon, Carmen C Y; Yan, Bryan P; Lau, James Y W

    2016-09-01

    Ambulatory blood pressure monitoring (ABPM) has become an essential tool in the diagnosis and management of hypertension. Current standard ABPM devices use an oscillometric cuff-based method which can cause physical discomfort to the patients with repeated inflations and deflations, especially during nighttime leading to sleep disturbance. The ability to measure ambulatory BP accurately and comfortably without a cuff would be attractive. This study validated the accuracy of a cuff-less approach for ABPM using pulse arrival time (PAT) measurements on both healthy and hypertensive subjects for potential use in hypertensive management, which is the first of its kind. The wearable cuff-less device was evaluated against a standard cuff-based device on 24 subjects of which 15 have known hypertension. BP measurements were taken from each subject over a 24-h period by the cuff-less and cuff-based devices every 15 to 30 minutes during daily activities. Mean BP of each subject during daytime, nighttime and over 24-h were calculated. Agreement between mean nighttime systolic BP (SBP) and diastolic (DBP) measured by the two devices evaluated using Bland-Altman plot were -1.4 ± 6.6 and 0.4 ± 6.7 mmHg, respectively. Receiver operator characteristics (ROC) statistics was used to assess the diagnostic accuracy of the cuff-less approach in the detection of BP above the hypertension threshold during nighttime (>120/70 mmHg). The area under ROC curves were 0.975/0.79 for nighttime. The results suggest that PAT-based approach is accurate and promising for ABPM without the issue of sleep disturbances associated with cuff-based devices.

  19. RESP-24: a computer program for the investigation of 24-h breathing abnormalities in heart failure patients.

    PubMed

    Maestri, R; Pinna, G D; Robbi, E; Varanini, M; Emdin, M; Raciti, M; La Rovere, M T

    2002-05-01

    In this paper, we describe a computer program (RESP-24) specifically devised to assess the prevalence and characteristics of breathing disorders in ambulant chronic heart failure patients during the overall 24 h period. The system works on a single channel respiratory signal (RS) recorded through a Holter-like portable device. In the pre-processing stage RESP-24 removes noise, baseline drift and motion artefacts from the RS using a non-linear filter, enhances respiratory frequency components through high-pass filtering and derives an instantaneous tidal volume (ITV) signal. The core processing is devoted to the identification and classification of the breathing pattern into periodic breathing (PB), normal breathing or non-classifiable breathing using a 60 s segmentation, and to the identification and estimation of apnea and hypopnea events. Sustained episodes of PB are detected by cross analysis of both the spectral content and time behavior of the ITV signal. User-friendly interactive facilities allow all the results of the automatic analysis procedure to be edited. The final report provides a set of standard and non-standard parameters quantifying breathing abnormalities during the 24 h period, the night-time and the day-time, including the apnea/hypopnea index, the apnea index, the total time spent in apnea or in hypopnea and the prevalence of non-apneic and apneic PB. The accuracy of these measurements was appraised on a data set of 14 recordings, by comparing them with those provided by a trained analyst. The mean and standard deviation of the error of the automatic procedure were below respectively 6 and 8% of the reference value for all parameters considered and the mean total classification accuracy was 92%. In most cases, the individual error was <12%. We conclude that measurements provided automatically by the RESP-24 software are suitable for screening purposes and clinical trials, although a preventive check of signal quality should be recommended.

  20. 24-h urinary sodium excretion is associated with obesity in a cross-sectional sample of Australian schoolchildren.

    PubMed

    Grimes, Carley A; Riddell, Lynn J; Campbell, Karen J; He, Feng J; Nowson, Caryl A

    2016-03-28

    Emerging evidence indicates that dietary Na may be linked to obesity; however it is unclear whether this relationship is independent of energy intake (EI). The aim of this study was to assess the association between Na intake and measures of adiposity, including BMI z score, weight category and waist:height ratio (WHtR), in a sample of Australian schoolchildren. This was a cross-sectional study of schoolchildren aged 4-12 years. Na intake was assessed via one 24-h urine collection. BMI was converted to age- and sex-specific z scores, and WHtR was used to define abdominal obesity. In children aged ≥8 years, EI was determined via one 24-h dietary recall. Of the 666 children with valid urine samples 55 % were male (average age 9·3 (sd 1·8) years). In adjusted models an additional 17 mmol/d of Na was associated with a 0·10 higher BMI z score (95 % CI 0·07, 0·13), a 23 % (OR 1·23; 95 % CI 1·16, 1·31) greater risk of being overweight/obese and a 15 % (OR 1·15; 95 % CI 1·09, 1·23) greater risk of being centrally obese. In the subsample of 8-12-year-old children (n 458), adjustment for EI did not markedly alter the associations between Na and adiposity outcomes. Using a robust measure of daily Na intake we found a positive association between Na intake and obesity risk in Australian schoolchildren, which could not be explained by total energy consumption. To determine whether this is a causal relationship, longitudinal studies, with high-quality measures of Na and EI, are required.

  1. Pharmacological interventions in the newborn piglet in the first 24 h after hypoxia-ischemia. A hemodynamic and electrophysiological perspective.

    PubMed

    Peeters-Scholte, Cacha; van den Tweel, Evelyn; Ioroi, Tomoaki; Post, Ilka; Braun, Kees; Veldhuis, Wouter; Nicolay, Klaas; Groenendaal, Floris; van Bel, Frank

    2002-11-01

    The purpose of this study was to investigate whether combined inhibition of neuronal and inducible nitric oxide synthase (NOS) by 2-iminobiotin, free radical scavenging by allopurinol, and non-protein-bound iron chelation with deferoxamine improved cerebral oxygenation, electrocortical brain activity, and brain energy status during the first 24 h after hypoxia-ischemia (HI) in the newborn piglet. Forty-three newborn piglets were subjected to 1 h of severe HI by occluding both carotid arteries and phosphorous magnetic resonance spectroscopy ((31)P-MRS)-guided hypoxia, whereas five served as sham-operated controls. Upon reperfusion, piglets received vehicle (n=12), 2-iminobiotin (n=11), allopurinol (n=10), or deferoxamine (n=10). Cerebral oxygenation was recorded with near-infrared spectrophotometry (NIRS), electrocortical brain activity was assessed with amplitude-integrated EEG (aEEG), and cerebral energy status with (31)P-MRS. The oxygenated hemoglobin (HbO(2)) and total hemoglobin (tHb) were significantly increased in vehicle-treated piglets compared with 2-iminobiotin-treated and deferoxamine-treated piglets. No change in deoxygenated Hb (HHb) was demonstrated over time. The aEEG was significantly preserved in 2-iminobiotin- and deferoxamine-treated piglets compared with vehicle-treated piglets. Allopurinol treatment was not as effective as 2-iminobiotin treatment after HI. Phosphocreatine/inorganic phosphate ratios (PCr/P(i)) were significantly decreased for vehicle-treated piglets at 24 h post-HI, whereas 2-iminobiotin, allopurinol, and deferoxamine prevented the development of secondary energy failure. We speculate that the beneficial effects, especially of 2-iminobiotin, but also of deferoxamine, are due to reduced peroxynitrite-mediated oxidation.

  2. Daily rhythm and regulation of clock gene expression in the rat pineal gland.

    PubMed

    Simonneaux, V; Poirel, V-J; Garidou, M-L; Nguyen, D; Diaz-Rodriguez, E; Pévet, P

    2004-01-05

    Rhythms in pineal melatonin synthesis are controlled by the biological clock located in the suprachiasmatic nuclei. The endogenous clock oscillations rely upon genetic mechanisms involving clock genes coding for transcription factors working in negative and positive feedback loops. Most of these clock genes are expressed rhythmically in other tissues. Because of the peculiar role of the pineal gland in the photoneuroendocrine axis regulating biological rhythms, we studied whether clock genes are expressed in the rat pineal gland and how their expression is regulated.Per1, Per3, Cry2 and Cry1 clock genes are expressed in the pineal gland and their transcription is increased during the night. Analysis of the regulation of these pineal clock genes indicates that they may be categorized into two groups. Expression of Per1 and Cry2 genes shows the following features: (1) the 24 h rhythm persists, although damped, in constant darkness; (2) the nocturnal increase is abolished following light exposure or injection with a beta-adrenergic antagonist; and (3) the expression during daytime is stimulated by an injection with a beta-adrenergic agonist. In contrast, Per3 and Cry1 day and night mRNA levels are not responsive to adrenergic ligands (as previously reported for Per2) and daily expression of Per3 and Cry1 appears strongly damped or abolished in constant darkness. These data show that the expression of Per1 and Cry2 in the rat pineal gland is regulated by the clock-driven changes in norepinephrine, in a similar manner to the melatonin rhythm-generating enzyme arylalkylamine N-acetyltransferase. The expression of Per3 and Cry1 displays a daily rhythm not regulated by norepinephrine, suggesting the involvement of another day/night regulated transmitter(s).

  3. Acute and chronic psychostimulant treatment modulates the diurnal rhythm activity pattern of WKY female adolescent rats.

    PubMed

    Jones, Cathleen G; Yang, Pamela B; Wilcox, Victor T; Burau, Keith D; Dafny, Nachum

    2014-05-01

    The psychostimulants considered the gold standard in the treatment of attention deficit hyperactivity disorder, one of the most common childhood disorders, are also finding their way into the hands of healthy young adults as brain augmentation to improve cognitive performance. The possible long-term effects of psychostimulant exposure in adolescence are considered controversial, and thus, the objective of this study was to investigate whether the chronic exposure to the psychostimulant amphetamine affects the behavioral diurnal rhythm activity patterns of female adolescent Wistar-Kyoto (WKY) rat. The hypothesis of this study is that change in diurnal rhythm activity pattern is an indicator for the long-term effect of the treatment. Twenty-four rats were divided into two groups, control (N = 12) and experimental (N = 12), and kept in a 12:12-h light/dark cycle in an open-field cage. After 5-7 days of acclimation, 11 days of consecutive non-stop behavioral recordings began. On experimental day 1 (ED1), all groups were given an injection of saline. On ED2 to ED7, the experimental group was injected with 0.6 mg/kg amphetamine followed by 3 days of washout from ED8 to ED10, and amphetamine re-challenge on ED11 similar to ED2. The locomotor movements were counted by the computerized animal activity monitoring system, and the cosinor statistical test analysis was used to fit a 24-h curve of the control recording to the activity pattern after treatment. The horizontal activity, total distance, number of stereotypy, vertical activity, and stereotypical movements were analyzed to find out whether the diurnal rhythm activity patterns were altered. Data obtained using these locomotor indices of diurnal rhythm activity pattern suggest that amphetamine treatment significantly modulates the locomotor diurnal rhythm activity pattern of female WKY adolescent rats.

  4. Differential resetting process of circadian gene expression in rat pineal glands after the reversal of the light/dark cycle via a 24 h light or dark period transition.

    PubMed

    Wu, Tao; Dong, Yue; Yang, Zhiqiu; Kato, Hisanori; Ni, Yinhua; Fu, Zhengwei

    2009-07-01

    Although studies involving the circadian response to time-zone transitions indicate that the circadian clock usually takes much longer to phase advance than delay, the discrepancy between the circadian resetting induced by photoperiod alteration via a dark or light period transition has yet to be investigated. In mammals, the pineal gland is an important component in the photoneuroendocrine axis, regulating biological rhythms. However, few studies have systematically examined the resetting process of pineal clock-gene expression to date. We investigated the resetting processes of four clock genes (Bmal1, Cry1, Per1, Dec1) and AANAT in the rat pineal gland after the light-dark (LD) reversal via a 24 h light or dark period transition. The resynchronization of the SCN-driven gene AANAT was nearly complete in three days in both situations, displaying similar resetting rates and processes after the differential LD reversals. The resetting processes of the clock genes were characterized by gene-specific, phase-shift modes and differential phase-shift rates between the two different LD reversal modes. The resetting processes of these clock genes were noticeably lengthened after the LD reversal via the light period transition in comparison to via the dark period transition. In addition, among the four examined clock genes, Per1 adjusted most rapidly after the differential LD reversals, while the rhythmic Cry1 expression adjusted most slowly.

  5. A Mobile Phone Based Method to Assess Energy and Food Intake in Young Children: A Validation Study against the Doubly Labelled Water Method and 24 h Dietary Recalls.

    PubMed

    Delisle Nyström, Christine; Forsum, Elisabet; Henriksson, Hanna; Trolle-Lagerros, Ylva; Larsson, Christel; Maddison, Ralph; Timpka, Toomas; Löf, Marie

    2016-01-15

    Mobile phones are becoming important instruments for assessing diet and energy intake. We developed the Tool for Energy Balance in Children (TECH), which uses a mobile phone to assess energy and food intake in pre-school children. The aims of this study were: (a) to compare energy intake (EI) using TECH with total energy expenditure (TEE) measured via doubly labelled water (DLW); and (b) to compare intakes of fruits, vegetables, fruit juice, sweetened beverages, candy, ice cream, and bakery products using TECH with intakes acquired by 24 h dietary recalls. Participants were 39 healthy, Swedish children (5.5 ± 0.5 years) within the ongoing Mobile-based Intervention Intended to Stop Obesity in Preschoolers (MINISTOP) obesity prevention trial. Energy and food intakes were assessed during four days using TECH and 24 h telephone dietary recalls. Mean EI (TECH) was not statistically different from TEE (DLW) (5820 ± 820 kJ/24 h and 6040 ± 680 kJ/24 h, respectively). No significant differences in the average food intakes using TECH and 24 h dietary recalls were found. All food intakes were correlated between TECH and the 24 h dietary recalls (ρ = 0.665-0.896, p < 0.001). In conclusion, TECH accurately estimated the average intakes of energy and selected foods and thus has the potential to be a useful tool for dietary studies in pre-school children, for example obesity prevention trials.

  6. Glucose metabolic gene expression in growth hormone transgenic coho salmon.

    PubMed

    Panserat, Stéphane; Kamalam, Biju Sam; Fournier, Jeanne; Plagnes-Juan, Elisabeth; Woodward, Krista; Devlin, Robert H

    2014-04-01

    Salmonids are generally known to be glucose intolerant. However, previous studies have shown that growth hormone (GH) transgenic coho salmon display modified nutritional regulation of glycolysis and lipogenesis compared to non-transgenic fish, suggesting the potential for better use of glucose in GH transgenic fish. To examine this in detail, GH transgenic and non-transgenic coho salmon were subjected to glucose tolerance test and subsequent metabolic assessments. After intra-peritoneal injection of 250mg/kg glucose, we analysed post-injection kinetics of glycaemia and expression of several key target genes highly involved in glucose homeostasis in muscle and liver tissues. Our data show no significant differences in plasma glucose levels during peak hyperglycaemia (3-6h after injection), demonstrating a similar glucose tolerance between transgenic and non transgenic. However, and unrelated to the hyperglycaemic episode, GH transgenic fish return to a slightly lower basal glycaemia values 24h after injection. Correspondingly, GH transgenic fish exhibited higher mRNA levels of glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6PDH) in liver, and glucose transporter (GLUT4) in muscle. These data suggest that these metabolic actors may be involved in different glucose use in GH transgenic fish, which would be expected to influence the glucose challenge response. Overall, our data demonstrate that GH transgenic coho salmon may be a pertinent animal model for further study of glucose metabolism in carnivorous fish.

  7. [Relation between dementia and circadian rhythm disturbance].

    PubMed

    Nakamura, Kei; Meguro, Kenichi

    2014-03-01

    Dementia and circadian rhythm disturbance are closely linked. First, dementia patient shows circadian rhythm disorders (e.g. insomnia, night wandering, daytime sleep). These symptoms are a burden for caregivers. Circadian rhythm disturbance of dementia relates ADL and cognitive impairment, and diurnal rhythm disorder of blood pressure and body temperature. Some study shows that circadian rhythm disorders in dementia are a disturbance of neural network between suprachiasmatic nucleus and cerebral white matter, and involvement of both frontal lobes, left parietal and occipital cortex, left temporoparietal region. The first-line treatment of circadian rhythm disturbance should be non-drug therapy (e.g. exercise, bright light exposure, reduce caffeine intake, etc.). If physician prescribe drugs, keep the rule of low-dose and short-term and avoid benzodiazepines. Atypical antipsychotic drugs like risperidone and some antidepressants are useful for treatment of insomnia in dementia. But this usage is off-label. So we must well inform to patient and caregiver, and get consent about treatment. Second, some study shows circadian rhythm disorder is a risk factor of dementia. However, we should discuss that circadian rhythm disturbance is "risk factor of dementia" or "prodromal symptom of dementia". If a clinician finds circadian rhythm disorder in elderly people, should be examined cognitive and ADL function, and careful about that patients have dementia or will develop dementia.

  8. Seasonal rhythms of body temperature in the free-ranging raccoon dog (Nyctereutes procyonoides) with special emphasis on winter sleep.

    PubMed

    Mustonen, Anne-Mari; Asikainen, Juha; Kauhala, Kaarina; Paakkonen, Tommi; Nieminen, Petteri

    2007-01-01

    The raccoon dog (Nyctereutes procyonoides) is the only canid with passive overwintering in areas with cold winters, but the depth and rhythmicity of wintertime hypothermia in the wild raccoon dog are unknown. To study the seasonal rhythms of body temperature (T(b)), seven free-ranging animals were captured and implanted with intra-abdominal T(b) loggers and radio-tracked during years 2004-2006. The average size of the home ranges was 306+/-26 ha, and the average 24 h T(b) was 38.0+/-<0.01 degrees C during the snow-free period (May-November). The highest and lowest T(b) were usually recorded around midnight (21:00-02:00 h) and between 05:00-11:00 h, respectively, and the range of the 24 h oscillations was 1.2+/-0.01 degrees C. The animals lost approximately 43+/-6% of body mass in winter (December-April), when the average size of the home ranges was 372+/-108 ha. During the 2-9-wk periods of passivity in January-March, the average 24 h T(b) decreased by 1.4-2.1 degrees C compared to the snow-free period. The raccoon dogs were hypothermic for 5 h in the morning (06:00-11:00 h), whereas the highest T(b) values were recorded between 16:00-23:00 h. The range of the 24 h oscillations increased by approximately 0.6 degrees C, and the rhythmicity was more pronounced than in the snow-free period. The ambient temperature and depth of snow cover were important determinants of the seasonal T(b) rhythms. The overwintering strategy of the raccoon dog resembled the patterns of winter sleep in bears and badgers, but the wintertime passivity of the species was more intermittent and the decrease in the T(b) less pronounced.

  9. Circadian rhythms of prolactin secretion in neonatal female rabbits after acute separation from their mothers.

    PubMed

    Alvarez, M P; Jiménez, V; Cano, P; Rebollar, P; Cardinali, D P; Esquifino, A I

    2006-05-01

    Newborn rabbits (Oryctolagus cuniculus) are only nursed for 3-5 min every 24 h and show a circadian increase in activity in anticipation of nursing. The objective of this study was to determine, in neonatal female rabbits after acute separation from the doe for 48 h, the changes in 24-h rhythms of plasma prolactin and median eminence and anterior pituitary concentration of dopamine (DA) and serotonin (5HT). In addition, median eminence concentration of the excitatory amino acid transmitters glutamate (GLU) and aspartate (ASP) and of the inhibitory amino acid transmitters gamma-aminobutyric acid (GABA) and taurine (TAU) was measured. A significant 21% increase of circulating prolactin occurred in isolated pups. In controls pups, plasma prolactin levels showed two peaks, during the first half of the light phase and at the beginning of the scotophase, respectively. In the isolated pups, a phase advance of about 4 h occurred for the two prolactin peaks. Hemicircadian changes of median eminence DA were found in controls, whereas a single daily peak (at 17:00 h) was found in the separated pups. Plasma prolactin and median eminence DA correlated significantly and inversely in the control group only. Pituitary DA content exhibited a single peak in controls and a hemicircadian pattern in isolated pups. Plasma prolactin and pituitary DA correlated significantly in isolated pups only 00000. Pup isolation decreased median eminence 5HT levels, augmented pituitary 5HT levels and disrupted their 24 h rhythmicity. Circulating prolactin correlated inversely with median eminence 5HT and directly with adenohypophysial 5HT only in controls. Isolation of pups generally modified the 24 h pattern of median eminence excitatory and inhibitory amino acid content by causing a prominent decrease at the beginning of the light phase. The results indicate that circadian rhythmicity of prolactin secretory mechanisms in female rabbit pups is significantly affected by pup's isolation from the doe.

  10. A single prolonged milking interval of 24h compromises the well-being and health of dairy Holstein cows.

    PubMed

    Kohler, P; Alsaaod, M; Dolf, G; O'Brien, R; Beer, G; Steiner, A

    2016-11-01

    Cows are often shown at dairy shows with overfilled udders to achieve a better show placing. However, it is unclear to what degree "over-bagging" affects the health and well-being of show cows. The goal of this study was to assess the effect of a single prolonged milking interval (PMI) of 24h on the measurable signs of health and well-being in dairy cows in early and mid-lactation and to assess the effect of a nonsteroidal anti-inflammatory drug (NSAID) on well-being during a PMI. Fifteen Holstein cows were studied in early lactation (89.5±2.7d in milk) and were given an NSAID or physiological saline in a crossover design. Ten cows were studied again in mid-lactation (151.6±4.0d in milk). Data on clinical signs of cows' health, behavior, and well-being were collected at 1 or 2h intervals before and during a PMI of 24h. Data from the last 6h of a 12h milking interval were compared with the last 6h of the PMI. Compared with that of a cow in the last 6h of a 12-h milking interval, the behavior of cows in early lactation (saline group) changed during the last 6h of the PMI: we observed decreased eating time (22.4 vs. 16.2min/h), increased ruminating time (13.3 vs. 25.0min/h), and increased hind limb abduction while walking (score 41.7 vs. 62.6) and standing (31.2 vs. 38.9cm). Udder firmness was increased (2.9 vs. 4.5kg) during this period and more weight was placed on the hind limbs (46.4 vs. 47.0%). We also found pathological signs at the end of the PMI: all cows showed milk leaking, and 10 of 15 cows developed edema in the subcutaneous udder tissue. Somatic cell count was significantly increased from 12h to 72h after the PMI. Administration of an NSAID had no influence on measured variables, except that the occurrence of edema was not significantly increased during PMI in the flunixin group (10 of 15 and 6 of 15 cows for the saline and flunixin groups, respectively). In the cows in mid-lactation, different variables were not significantly changed in the PMI

  11. Gravitational considerations with animal rhythms

    NASA Technical Reports Server (NTRS)

    Wunder, C. C.

    1974-01-01

    As established in the laboratory and largely confirmed by others, simulated high-g environments influence growth and development of animals as small as or smaller than baby turtles, sometimes accelerating and sometimes decelerating these processes. High-g environments result in many functional changes or adjustments in feeding, metabolism, circulation, fluid balances, and structures for support, and influence life expectancy. An assembly of equipment suitable for measuring oxygen consumption of small mammals as influenced by chronic centrifugation and/or by day-night rhythms is discussed.

  12. [Sleep rhythm and cardiovascular diseases].

    PubMed

    Maemura, Koji

    2012-07-01

    Sleep disturbance is a common problem in general adult population. Recent evidence suggests the link between the occurrence of cardiovascular events and several sleep disturbances including sleep apnea syndrome, insomnia and periodic limb movements during sleep. Sleep duration may affect the cardiovascular outcome. Shift work also may increase the risk of ischemic heart disease. Normalization of sleep rhythm has a potential to be a therapeutic target of ischemic heart diseases, although further study is required to evaluate the preventive effect on cardiovascular events. Here we describe the current understandings regarding the roles of sleep disorders during the pathogenesis of cardiovascular events.

  13. The Neurobiology of Circadian Rhythms.

    PubMed

    Sollars, Patricia J; Pickard, Gary E

    2015-12-01

    There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.

  14. Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels.

    PubMed

    Williams, Cory T; Barnes, Brian M; Buck, C Loren

    2012-02-23

    In indigenous arctic reindeer and ptarmigan, circadian rhythms are not expressed during the constant light of summer or constant dark of winter, and it has been hypothesized that a seasonal absence of circadian rhythms is common to all vertebrate residents of polar regions. Here, we show that, while free-living arctic ground squirrels do not express circadian rhythms during the heterothermic and pre-emergent euthermic intervals of hibernation, they display entrained daily rhythms of body temperature (T(b)) throughout their active season, which includes six weeks of constant sun. In winter, ground squirrels are arrhythmic and regulate core body temperatures to within ±0.2°C for up to 18 days during steady-state torpor. In spring, after the use of torpor ends, male but not female ground squirrels, resume euthermic levels of T(b) in their dark burrows but remain arrhythmic for up to 27 days. However, once activity on the surface begins, both sexes exhibit robust 24 h cycles of body temperature. We suggest that persistence of nycthemeral rhythms through the polar summer enables ground squirrels to minimize thermoregulatory costs. However, the environmental cues (zeitgebers) used to entrain rhythms during the constant light of the arctic summer in these semi-fossorial rodents are unknown.

  15. Development of QTc prolongation model incorporating circadian rhythm using harmonic model.

    PubMed

    Back, Hyun-moon; Lee, Jong-Hwa; Yun, Hwi-yeol; Kwon, Kwang-il

    2015-05-01

    1. QT prolongation is one of the major safety tests used in the development of a new drug. The ICH guidelines for the evaluation of QT prolongation recommend the use of the in vitro hERG assay and the in vivo telemetry test. However, QT intervals change under normal conditions due to circadian rhythm and can affect the results of the tests. In this study, we developed a PK/PD model to describe the QT interval after the administration of astemizole allowing for the normal changes by circadian rhythm. 2. The typical PK parameters of absorption rate constant (ka), volume of distribution (Vc and Vm), metabolism (km), and elimination rate constant (kel and kel-m) were 0.49 h(-1), 4950 L, 20 L, 0.0127 h(-1), 0.0095 h(-1), and 0.95 h(-1), respectively. The final PK/PD model was the biophase model with the modified harmonic model. The typical PK/PD parameters, base QTc interval (QT0), amplitude (T1, T3), period of QTc interval changing (T2, T4), and EC50 were 233 ms, 3.31, 1.5, -9.24 h, 1.85 h, and 0.81 ng/ml, respectively. 3. The PK/PD model to explain the changes of the QT interval that allows normal changes in the circadian rhythm after the administration of astemizole was developed successfully. This final model can be applied to the development of a human model.

  16. The colony environment, but not direct contact with conspecifics, influences the development of circadian rhythms in honey bees.

    PubMed

    Eban-Rothschild, Ada; Shemesh, Yair; Bloch, Guy

    2012-06-01

    Honey bee (Apis mellifera) workers emerge from the pupae with no circadian rhythms in behavior or brain clock gene expression but show strong rhythms later in life. This postembryonic development of circadian rhythms is reminiscent of that of infants of humans and other primates but contrasts with most insects, which typically emerge from the pupae with strong circadian rhythms. Very little is known about the internal and external factors regulating the ontogeny of circadian rhythms in bees or in other animals. We tested the hypothesis that the environment during early life influences the later expression of circadian rhythms in locomotor activity in young honey bees. We reared newly emerged bees in various social environments, transferred them to individual cages in constant laboratory conditions, and monitored their locomotor activity. We found that the percentage of rhythmic individuals among bees that experienced the colony environment for their first 48 h of adult life was similar to that of older sister foragers, but their rhythms were weaker. Sister bees isolated individually in the laboratory for the same period were significantly less likely to show circadian rhythms in locomotor activity. Bees experiencing the colony environment for only 24 h, or staying for 48 h with 30 same-age sister bees in the laboratory, were similar to bees individually isolated in the laboratory. By contrast, bees that were caged individually or in groups in single- or double-mesh enclosures inside a field colony were as likely to exhibit circadian rhythms as their sisters that were freely moving in the same colony. These findings suggest that the development of the circadian system in young adult honey bees is faster in the colony than in isolation. Direct contact with the queen, workers, or the brood, contact pheromones, and trophallaxis, which are all important means of communication in honey bees, cannot account for the influence of the colony environment, since they were all

  17. Weather entrainment and multispectral diel activity rhythm of desert hamsters.

    PubMed

    Wan, Xinrong; Zhang, Xinjie; Huo, Yingjun; Wang, Guiming

    2013-10-01

    The circadian rhythm of animals is an adaptation to predictable variation in environmental conditions. Multiple internal oscillators may allow animals to cope with environmental oscillations in different frequencies. Heat stress and dramatic differences between night and day temperatures are the main selective pressures of the diel activity of desert mammals, particularly small-sized rodents. We tested the hypotheses that the diel activities of desert hamsters (Phodopus roborovskii) would be entrained by ambient humidity and temperature. We predicted that increases in night temperature and humidity would improve the propensity to perform activities of the hamster. We observed hourly activities of desert hamsters under semi natural conditions for 24 consecutive hours, with seven replicates in 7 different days. We fit generalized linear mixed models to observed proportions of active hamsters, temperatures, and relative humidity. Observed diel activities of desert hamsters consisted of three harmonic oscillations in the periodicities of 24 h, 12 h, and 6 h, respectively. Furthermore, probabilities to perform activities were positively related to night temperature and humidity. Therefore, the diel activities of desert hamsters are synchronized by atmospheric humidity, temperatures, and environmental cues of ultradian fluctuations.

  18. Burn trauma disrupts circadian rhythms in rat liver

    PubMed Central

    Rao, Rohit; Yang, Qian; Orman, Mehmet A; Berthiaume, Francois; Ierapetritou, Marianthi G; Androulakis, Ioannis P

    2016-01-01

    Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets. Of the liver specific genes which we hypothesize that exhibit circadian rhythmicity, 88% are not differentially expressed following the burn injury. Specifically, the vast majority of the circadian regulated-genes representing central carbon and nitrogen metabolism are “up-regulated” after the burn injury, indicating the onset of hypermetabolism. In addition, cell-cell junction and membrane structure related genes showing rhythmic behavior in the control group were not differentially expressed across time in the burn group, which could be an indication of hepatic damage due to the burn. Finally, the suppression of the immune function related genes is observed in the postburn phase, implying the severe “immunosuppression”. Our results demonstrated that the short term response (24-h post injury) manifests a loss of circadian variability possibly compromising the host in terms of subsequent challenges. PMID:27335693

  19. Using an algorithm to easily interpret basic cardiac rhythms.

    PubMed

    Atwood, Denise

    2005-11-01

    MANY NURSES STRUGGLE with identifying electrocardiogram (ECG) rhythms, but rapidly interpreting primary ECG rhythms is an essential skill that every nurse should master. THIS ARTICLE PROVIDES an algorithm that nurses can use to easily interpret basic ECG rhythms.

  20. Phenotyping Circadian Rhythms in Mice.

    PubMed

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-09-01

    Circadian rhythms take place with a periodicity of 24 hr, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the "central pacemaker" of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hr as manifest when an animal is placed into constant dark or "free-running" conditions. Simple measurements of an organism's activity in free-running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their homecage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are presented here including the process of entrainment, determination of tau (period length) in free-running conditions, determination of circadian periodicity in response to light disruption (e.g., jet lag studies), and evaluation of clock plasticity in non-24-hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of environmental surroundings.

  1. Boron uptake in tumors, cerebrum and blood from [10B]NA4B24H22S2

    DOEpatents

    Slatkin, Daniel N.; Micca, Peggy L.; Fairchild, Ralph G.

    1988-01-01

    A stable boronated (.sup.10 B-labeled) compound, sodium mercaptoundecahydrododecaborate is infused in the form of the disulfide dimer, [.sup.10 B]Na.sub.4 B.sub.24 H.sub.22 S.sub.2, at a dose of about 200 .mu.g .sup.10 B per gm body weight. The infusion is performed into the blood or peritoneal cavity of the patient slowly over a period of many days, perhaps one week or more, at the rate of roughly 1 .mu.g .sup.10 B per gm body weight per hour. Use of this particular boronated dimer in the manner or similarly to the manner so described permits radiotherapeutically effective amounts of boron to accumulate in tumors to be treated by boron neutron capture radiation therapy and also permits sufficient retention of boron in tumor after the cessation of the slow infusion, so as to allow the blood concentration of .sup.10 B to drop or to be reduced artificially to a radiotherapeutically effective level, less than one-half of the concentration of .sup.10 B in the tumor.

  2. Boron uptake in tumors, cerebrum and blood from [10B]NA4B24H22S2

    DOEpatents

    Slatkin, Daniel N.; Micca, Peggy L.; Fairchild, Ralph G.

    1988-08-02

    A stable boronated (.sup.10 B-labeled) compound, sodium mercaptoundecahydrododecaborate is infused in the form of the disulfide dimer, [.sup.10 B]Na.sub.4 B.sub.24 H.sub.22 S.sub.2, at a dose of about 200 .mu.g .sup.10 B per gm body weight. The infusion is performed into the blood or peritoneal cavity of the patient slowly over a period of many days, perhaps one week or more, at the rate of roughly 1 .mu.g .sup.10 B per gm body weight per hour. Use of this particular boronated dimer in the manner or similarly to the manner so described permits radiotherapeutically effective amounts of boron to accumulate in tumors to be treated by boron neutron capture radiation therapy and also permits sufficient retention of boron in tumor after the cessation of the slow infusion, so as to allow the blood concentration of .sup.10 B to drop or to be reduced artificially to a radiotherapeutically effective level, less than one-half of the concentration of .sup.10 B in the tumor.

  3. Ambulatory 24-h oesophageal impedance-pH recordings: reliability of automatic analysis for gastro-oesophageal reflux assessment.

    PubMed

    Roman, S; Bruley des Varannes, S; Pouderoux, P; Chaput, U; Mion, F; Galmiche, J-P; Zerbib, F

    2006-11-01

    Oesophageal pH-impedance monitoring allows detection of acid and non-acid gastro-oesophageal reflux (GOR) events. Visual analysis of impedance recording requires expertise. Our aim was to evaluate the efficacy of an automated analysis for GOR assessment. Seventy-three patients with suspected GORD underwent 24-h oesophageal pH-impedance monitoring. Recordings analysis was performed visually (V) and automatically using Autoscan function (AS) of Bioview software. A symptom index (SI) > or =50% was considered for a significant association between symptoms and reflux events. AS analysis detected more reflux events, especially non-acid, liquid, pure gas and proximal events. Detection of oesophageal acid exposure and acid reflux events was similar with both analyses. Agreement between V and AS analysis was good (Kendall's coefficient W > 0.750, P < 0.01) for all parameters. During pH-impedance studies, 65 patients reported symptoms. As compared to visual analysis, the sensitivity and specificity of a positive SI determined by AS were respectively 85.7% and 80% for all reflux events, 100% and 98% for acid reflux and 33% and 87.5% for non-acid reflux. Despite good agreement with visual analysis, automatic analysis overestimates the number of non-acid reflux events. Visual analysis remains the gold standard to detect an association between symptoms and non-acid reflux events.

  4. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom

    2013-12-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes.

  5. A Variation on Kodaly's Rhythm Syllable System.

    ERIC Educational Resources Information Center

    McGuire, Kenneth

    2003-01-01

    Discusses the rhythm syllable system within Zoltan Kodaly's method that is often used to teach elementary students in general music classes. Offers background information about this method as well as an alternative technique for teaching students about the single sixteenth-note rhythm. (CMK)

  6. Circadian rhythms in myocardial metabolism and function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  7. Accelerated idioventricular rhythm during flexible fiberoptic bronchoscopy

    SciTech Connect

    Borgeat, A.; Chiolero, R.; Mosimann, B.; Freeman, J.

    1987-03-01

    We report the case of a patient who developed severe hypoxemia and an unusual arrhythmia, accelerated idioventricular rhythm, during flexible fiberoptic bronchoscopy. Coronary artery disease was subsequently suspected despite an unremarkable history and physical examination, and confirmed by a thallium 201 imaging. The appearance of accelerated idioventricular rhythm during fiberoptic bronchoscopy should raise the possibility of underlying coronary artery disease.

  8. Detecting and Correcting Speech Rhythm Errors

    ERIC Educational Resources Information Center

    Yurtbasi, Metin

    2015-01-01

    Every language has its own rhythm. Unlike many other languages in the world, English depends on the correct pronunciation of stressed and unstressed or weakened syllables recurring in the same phrase or sentence. Mastering the rhythm of English makes speaking more effective. Experiments have shown that we tend to hear speech as more rhythmical…

  9. Quantifying Speech Rhythm Abnormalities in the Dysarthrias

    ERIC Educational Resources Information Center

    Liss, Julie M.; White, Laurence; Mattys, Sven L.; Lansford, Kaitlin; Lotto, Andrew J.; Spitzer, Stephanie M.; Caviness, John N.

    2009-01-01

    Purpose: In this study, the authors examined whether rhythm metrics capable of distinguishing languages with high and low temporal stress contrast also can distinguish among control and dysarthric speakers of American English with perceptually distinct rhythm patterns. Methods: Acoustic measures of vocalic and consonantal segment durations were…

  10. The Incarnate Rhythm of Geometrical Knowing

    ERIC Educational Resources Information Center

    Bautista, Alfredo; Roth, Wolff-Michael

    2012-01-01

    Rhythm is a fundamental dimension of human nature at both biological and social levels. However, existing research literature has not sufficiently investigated its role in mathematical cognition and behavior. The purpose of this article is to bring the concept of "incarnate rhythm" into current discourses in the field of mathematical learning and…

  11. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus.

    PubMed

    Enoki, Ryosuke; Oda, Yoshiaki; Mieda, Michihiro; Ono, Daisuke; Honma, Sato; Honma, Ken-Ichi

    2017-03-07

    The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca(2+) rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca(2+) rhythms phase-lead the voltage rhythms in AVP neurons but Ca(2+) and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca(2+) rhythms produce coherent voltage rhythms.

  12. Validation of an Online Food Frequency Questionnaire against Doubly Labelled Water and 24 h Dietary Recalls in Pre-School Children

    PubMed Central

    Delisle Nyström, Christine; Henriksson, Hanna; Alexandrou, Christina; Bergström, Anna; Bonn, Stephanie; Bälter, Katarina; Löf, Marie

    2017-01-01

    The development of easy-to-use and accurate methods to assess the intake of energy, foods and nutrients in pre-school children is needed. KidMeal-Q is an online food frequency questionnaire developed for the LifeGene prospective cohort study in Sweden. The aims of this study were to compare: (i) energy intake (EI) obtained using KidMeal-Q to total energy expenditure (TEE) measured via doubly labelled water and (ii) the intake of certain foods measured using KidMeal-Q to intakes acquired by means of 24 h dietary recalls in 38 children aged 5.5 years. The mean EI calculated using KidMeal-Q was statistically different (p < 0.001) from TEE (4670 ± 1430 kJ/24 h and 6070 ± 690 kJ/24 h, respectively). Significant correlations were observed for vegetables, fruit juice and candy between KidMeal-Q and 24 h dietary recalls. Only sweetened beverage consumption was significantly different in mean intake (p < 0.001), as measured by KidMeal-Q and 24 h dietary recalls. In conclusion, KidMeal-Q had a relatively short answering time and comparative validity to other food frequency questionnaires. However, its accuracy needs to be improved before it can be used in studies in pre-school children. PMID:28098765

  13. Measurement of C{sub 24}H{sub 14} polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol

    SciTech Connect

    Allen, J.O.; Dookeran, N.M.; Sarofim, A.F.; Smith, K.A.; Taghizadeh, K.; Plummer, E.F.; Lafleur, A.L.; Durant, J.L.

    1998-07-01

    Six-ring C{sub 24}H{sub 14} (MW 302) polycyclic aromatic hydrocarbons (PAH), some of which are potent mutagens, are present in urban aerosols. Size-segregated atmospheric aerosol samples from Boston, MA, were analyzed for C{sub 24}H{sub 14} PAH by gas chromatography/mass spectrometry. Eleven peaks were found with mass to charge ratios of 302; of these, eight were identified using authentic standards. Five of the peaks were quantified. For each of these five, the distributions with respect to particle size were bimodal with the majority of the mass associated with accumulation mode particles and a smaller fraction of the mass associated with ultrafine mode particles. These distributions are similar to those observed for PAH of molecular weight 252--278 in the same sample but different from those of benzo[ghi]perylene and coronene which were associated to a greater degree with ultrafine particles. The data suggest that C{sub 24}H{sub 14} PAH repartition to larger particles by vaporization and sorption more rapidly than do benzo[ghi]perylene and coronene. The total concentration of C{sub 24}H{sub 14} PAH was comparable to that of benzo[a]pyrene in the same sample. Because of their mutagenicities, C{sub 24}H{sub 14} PAH may make a contribution to the genotoxicity of urban aerosols comparable to that of benzo[a]pyrene.

  14. Effects of glucose and insulin administration on glucose transporter expression in the North Pacific spiny dogfish (Squalus suckleyi).

    PubMed

    Deck, Courtney A; Gary Anderson, W; Walsh, Patrick J

    2017-01-16

    Elasmobranchs (sharks, skates, and rays) are a primarily carnivorous group of fish, consuming few carbohydrates. Further, they tend to exhibit delayed responses to glucose and insulin administration in vivo relative to mammals, leading to a presumption of glucose-intolerance. To investigate the glucoregulatory capabilities of the spiny dogfish (Squalus suckleyi), plasma glucose concentration, muscle and liver glycogen content, and glucose transporter (glut1 and 4) mRNA levels were measured following intra-arterial administration of bovine insulin (10ngkg(-1)) or an approximate doubling of fasting plasma glucose concentration. Within 6h, following glucose administration, approximately half of the introduced glucose load had been cleared, with control levels being restored by 24h post-injection. It was determined that plasma clearance was due in part to increased uptake by the tissues as muscle and liver glycogen content increased significantly, correlating with an upregulation of glut mRNA levels. Following administration of bovine insulin, plasma glucose steadily decreased through 18h before returning toward control levels. Observed decreases in plasma glucose following insulin injection were, however, relatively minor, and no increases in tissue glycogen content were observed. glut4 and glycogen synthase mRNA levels did significantly increase in the muscle in response to insulin, but no changes occurred in the liver. The responses observed mimic what occurs in mammals and teleosts, thus suggesting a conserved mechanism for glucose homeostasis in vertebrates and a high degree of glucose tolerance in these predominantly carnivorous fish.

  15. Differences in daily rhythms of wrist temperature between obese and normal-weight women: associations with metabolic syndrome features.

    PubMed

    Corbalán-Tutau, M D; Madrid, J A; Ordovás, J M; Smith, C E; Nicolás, F; Garaulet, M

    2011-05-01

    The circadian rhythm of core body temperature is associated with widespread physiological effects. However, studies with other more practical temperature measures, such as wrist (WT) and proximal temperatures, are still scarce. The aim of this study was to investigate whether obesity is associated with differences in mean WT values or in its daily rhythmicity patterns. Daily patterns of cortisol, melatonin, and different metabolic syndrome (MetS) features were also analyzed in an attempt to clarify the potential association between chronodisruption and MetS. The study was conducted on 20 normal-weight women (age: 38 ± 11 yrs and BMI: 22 ± 2.6 kg/m(2)) and 50 obese women (age: 42 ± 10 yrs and BMI: 33.5 ± 3.2 kg/m(2)) (mean ± SEM). Skin temperature was measured over a 3-day period every 10 min with the "Thermochron iButton." Rhythmic parameters were obtained using an integrated package for time-series analysis, "Circadianware." Obese women displayed significantly lower mean WT (34.1°C ± 0.3°C) with a more flattened 24-h pattern, a lower-quality rhythm, and a higher intraday variability (IV). Particularly interesting were the marked differences between obese and normal-weight women in the secondary WT peak in the postprandial period (second-harmonic power [P2]), considered as a marker of chronodisruption and of metabolic alterations. WT rhythmicity characteristics were related to MetS features, obesity-related proteins, and circadian markers, such as melatonin. In summary, obese women displayed a lower-quality WT daily rhythm with a more flattened pattern (particularly in the postprandial period) and increased IV, which suggests a greater fragmentation of the rest/activity rhythm compared to normal-weight women. These 24-h changes were associated with higher MetS risk.

  16. [Biology and genetics of circadian rhythm].

    PubMed

    Bellivier, F

    2009-01-01

    In recent decades our knowledge of the molecular mechanisms of biological clocks has grown expontentially. This has helped to guide the choice of genes studied to explain inter-individual variations seen in circadian rhythms. In recent years analysis of circadian rhythms has advanced considerably into the study of pathological circadian rhythms in human beings. These findings, combined with those obtained from studying mice whose circadian genes have been rendered incapable, have revealed the role of genetic factors in circadian rhythms. This literature review presents an overview of these findings. Beyond our understanding of the functioning of these biological clocks, this knowledge will be extremely useful to analyse genetic factors involved in morbid conditions involving circadian rhythm abnormalities.

  17. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.

    PubMed

    Papagiannakopoulos, Thales; Bauer, Matthew R; Davidson, Shawn M; Heimann, Megan; Subbaraj, Lakshmipriya; Bhutkar, Arjun; Bartlebaugh, Jordan; Vander Heiden, Matthew G; Jacks, Tyler

    2016-08-09

    Circadian rhythms are 24-hr oscillations that control a variety of biological processes in living systems, including two hallmarks of cancer, cell division and metabolism. Circadian rhythm disruption by shift work is associated with greater risk for cancer development and poor prognosis, suggesting a putative tumor-suppressive role for circadian rhythm homeostasis. Using a genetically engineered mouse model of lung adenocarcinoma, we have characterized the effects of circadian rhythm disruption on lung tumorigenesis. We demonstrate that both physiologic perturbation (jet lag) and genetic mutation of the central circadian clock components decreased survival and promoted lung tumor growth and progression. The core circadian genes Per2 and Bmal1 were shown to have cell-autonomous tumor-suppressive roles in transformation and lung tumor progression. Loss of the central clock components led to increased c-Myc expression, enhanced proliferation, and metabolic dysregulation. Our findings demonstrate that both systemic and somatic disruption of circadian rhythms contribute to cancer progression.

  18. Absence of a serum melatonin rhythm under acutely extended darkness in the horse

    PubMed Central

    2011-01-01

    Background In contrast to studies showing gradual adaptation of melatonin (MT) rhythms to an advanced photoperiod in humans and rodents, we previously demonstrated that equine MT rhythms complete a 6-h light/dark (LD) phase advance on the first post-shift day. This suggested the possibility that melatonin secretion in the horse may be more strongly light-driven as opposed to endogenously rhythmic and light entrained. The present study investigates whether equine melatonin is endogenously rhythmic in extended darkness (DD). Methods Six healthy, young mares were maintained in a lightproof barn under an LD cycle that mimicked the ambient natural photoperiod outside. Blood samples were collected at 2-h intervals for 48 consecutive h: 24-h in LD, followed by 24-h in extended dark (DD). Serum was harvested and stored at -20°C until melatonin and cortisol were measured by commercial RIA kits. Results Two-way repeated measures ANOVA (n = 6/time point) revealed a significant circadian time (CT) x lighting condition interaction (p < .0001) for melatonin with levels non-rhythmic and consistently high during DD (CT 0-24). In contrast, cortisol displayed significant clock-time variation throughout LD and DD (p = .0009) with no CT x light treatment interaction (p = .4018). Cosinor analysis confirmed a significant 24-h temporal variation for melatonin in LD (p = .0002) that was absent in DD (p = .51), while there was an apparent circadian component in cortisol, which approached significance in LD (p = .076), and was highly significant in DD (p = .0059). Conclusions The present finding of no 24 h oscillation in melatonin in DD is the first evidence indicating that melatonin is not gated by a self-sustained circadian process in the horse. Melatonin is therefore not a suitable marker of circadian phase in this species. In conjunction with recent similar findings in reindeer, it appears that biosynthesis of melatonin in the pineal glands of some ungulates is strongly driven by the

  19. Circadian rhythms identified in Caenorhabditis elegans by in vivo long-term monitoring of a bioluminescent reporter.

    PubMed

    Goya, María Eugenia; Romanowski, Andrés; Caldart, Carlos S; Bénard, Claire Y; Golombek, Diego A

    2016-11-29

    Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses ∼24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode.

  20. Phase advance of circadian rhythms in Smith-Magenis syndrome: a case study in an adult man.

    PubMed

    Kocher, Laurence; Brun, Jocelyne; Devillard, Françoise; Azabou, Eric; Claustrat, Bruno

    2015-01-12

    Melatonin secretion is usually increased during the daytime and decreased at night in Smith-Magenis syndrome (SMS) and consequently is not a pertinent marker of the circadian phase of the clock in these cases. No data on temperature rhythm is available in SMS, another reliable marker of circadian clock activity. For this reason, we assessed the 24h profiles of core temperature, sleep-wake cycle, hormones (plasma cortisol and melatonin) and plasma and urine 6sulfatoxy-melatonin, the main hepatic melatonin metabolism in a 31-year-old man diagnosed with a SMS. All circadian rhythms, especially temperature rhythm showed a phase-advance, associated with reverse melatonin secretion. Plasma and urine 6sulfatoxy-melatonin profiles showed normal melatonin catabolism and confirmed the reversed melatonin secretion. Taking in consideration the reverse melatonin secretion and the phase-advanced temperature rhythm, which is driven by the suprachiasmatic nucleus, we hypothesize that the central clock is more sensitive to afternoon than to morning melatonin. This different responsiveness to melatonin according to the time of the day (i.e. chronaesthesia) corroborates the phase response curve of melatonin secretion to exogenous melatonin.

  1. Risk factors for stillbirths and mortality during the first 24h of life on dairy farms in Hokkaido, Japan 2005-2009.

    PubMed

    Kayano, M; Kadohira, M; Stevenson, M A

    2016-05-01

    This was a retrospective cohort study using data from the insurance scheme provided by the Japanese Mutual Aid Association (NOSAI). The population of interest comprised all cattle born on NOSAI-client farms in the Japanese prefecture of Hokkaido, Japan for the period 1 April 2005-31 March 2009. The outcome of interest was whether or not at least one calf was stillborn, had died during delivery or died during the first 24 hours of life for a given calving event, termed first 24h mortality risk. A mixed-effects logistic regression model was developed to identify explanatory variables associated with first 24h mortality risk. The final data set comprised details of 1,281,737 calving events on a total of 5172 dairy herds from 19 NOSAI branches located throughout the prefecture of Hokkaido. Throughout the study period 7.68 (95% CI 7.64-7.73) of every 100 calving events had at least one calf that was either stillborn, dead at the time of delivery or dead during the first 24h of life. Factors that were positively associated with an increase in first 24h mortality risk included delivery during the colder months of the year (November-March), being of Wagyu breed, having a multipara dam, multiple (as opposed to single) birth deliveries, and delivery in larger herds. ​After adjusting for the fixed effects included in our multilevel model, 89% of the unexplained variation in first 24h mortality risk was at the calving event level. We propose that the data recording requirements of the NOSAI scheme are extended to include details of calving events (e.g. the presence or absence of dystocia) and details of the way in which calves are managed post delivery. This would allow more subtle risk factors for calf mortality to be identified which, in turn, will lead to refinement of recommendations for calf management during the first 24h of life in this area of Japan.

  2. Long-term invariant parameters obtained from 24-h Holter recordings: A comparison between different analysis techniques

    NASA Astrophysics Data System (ADS)

    Cerutti, Sergio; Esposti, Federico; Ferrario, Manuela; Sassi, Roberto; Signorini, Maria Gabriella

    2007-03-01

    Over the last two decades, a large number of different methods had been used to study the fractal-like behavior of the heart rate variability (HRV). In this paper some of the most used techniques were reviewed. In particular, the focus is set on those methods which characterize the long memory behavior of time series (in particular, periodogram, detrended fluctuation analysis, rescale range analysis, scaled window variance, Higuchi dimension, wavelet-transform modulus maxima, and generalized structure functions). The performances of the different techniques were tested on simulated self-similar noises (fBm and fGn) for values of α, the slope of the spectral density for very small frequency, ranging from -1 to 3 with a 0.05 step. The check was performed using the scaling relationships between the various indices. DFA and periodogram showed the smallest mean square error from the expected values in the range of interest for HRV. Building on the results obtained from these tests, the effective ability of the different methods in discriminating different populations of patients from RR series derived from Holter recordings, was assessed. To this extent, the Noltisalis database was used. It consists of a set of 30, 24-h Holter recordings collected from healthy subjects, patients suffering from congestive heart failure, and heart transplanted patients. All the methods, with the exception at most of rescale range analysis, were almost equivalent in distinguish between the three groups of patients. Finally, the scaling relationships, valid for fBm and fGn, when empirically used on HRV series, also approximately held.

  3. A 24 h investigation of the hydrogeochemistry of baseflow and stormwater in an urban area impacted by mining: Butte, Montana

    USGS Publications Warehouse

    Gammons, Christopher H.; Shope, Christopher L.; Duaime, Terence E.

    2005-01-01

    Changes in water quality during a storm event were continuously monitored over a 24 h period at a single location along an urban stormwater drain in Butte, Montana. The Butte Metro Storm Drain (MSD) collects groundwater baseflow and stormwater draining Butte Hill, a densely populated site that has been severely impacted by 130 years of mining, milling, and smelting of copper-rich, polymetallic mineral deposits. On the afternoon of 26 June 2002, a heavy thunderstorm caused streamflow in the MSD to increase 100-fold, from 0·2 ft3 s−1 to more than 20 ft3 s−1. Hourly discharge and water quality data were collected before, during, and following the storm. The most significant finding was that the calculated loads (grams per hour) of both dissolved and particulate copper passing down the MSD increased more than 100-fold in the first hour following the storm, and remained elevated over baseline conditions for the remainder of the study period. Other metals, such as zinc, cadmium, and manganese, showed a decrease in load from pre-storm to post-storm conditions. In addition to the large flush of copper, loads of soluble phosphorus increased during the storm, whereas dissolved oxygen dropped to low levels (<2 mg l−1). These results show that infrequent storm events in Butte have the potential to generate large volumes of runoff that exceed Montana water quality standards for acute exposure of aquatic life to copper, as well as depressed levels of dissolved oxygen. This study has important implications to ongoing reclamation activities in the upper Clark Fork Superfund site, particularly with respect to management of storm flow, and may be applicable to other watersheds impacted by mining activities.

  4. Adapting a standardised international 24 h dietary recall methodology (GloboDiet software) for research and dietary surveillance in Korea.

    PubMed

    Park, Min Kyung; Park, Jin Young; Nicolas, Geneviève; Paik, Hee Young; Kim, Jeongseon; Slimani, Nadia

    2015-06-14

    During the past decades, a rapid nutritional transition has been observed along with economic growth in the Republic of Korea. Since this dramatic change in diet has been frequently associated with cancer and other non-communicable diseases, dietary monitoring is essential to understand the association. Benefiting from pre-existing standardised dietary methodologies, the present study aimed to evaluate the feasibility and describe the development of a Korean version of the international computerised 24 h dietary recall method (GloboDiet software) and its complementary tools, developed at the International Agency for Research on Cancer (IARC), WHO. Following established international Standard Operating Procedures and guidelines, about seventy common and country-specific databases on foods, recipes, dietary supplements, quantification methods and coefficients were customised and translated. The main results of the present study highlight the specific adaptations made to adapt the GloboDiet software for research and dietary surveillance in Korea. New (sub-) subgroups were added into the existing common food classification, and new descriptors were added to the facets to classify and describe specific Korean foods. Quantification methods were critically evaluated and adapted considering the foods and food packages available in the Korean market. Furthermore, a picture book of foods/dishes was prepared including new pictures and food portion sizes relevant to Korean diet. The development of the Korean version of GloboDiet demonstrated that it was possible to adapt the IARC-WHO international dietary tool to an Asian context without compromising its concept of standardisation and software structure. It, thus, confirms that this international dietary methodology, used so far only in Europe, is flexible and robust enough to be customised for other regions worldwide.

  5. Attenuated benzodiazepine-sensitive tonic GABAA currents of supraoptic magnocellular neuroendocrine cells in 24-h water-deprived rats.

    PubMed

    Pandit, S; Song, J G; Kim, Y J; Jeong, J A; Jo, J Y; Lee, G S; Kim, H-W; Jeon, B H; Lee, J U; Park, J B

    2014-01-01

    In supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs), γ-GABA, via activation of GABAA receptors (GABAA Rs), mediates persistent tonic inhibitory currents (Itonic ), as well as conventional inhibitory postsynaptic currents (IPSCs, Iphasic ). In the present study, we examined the functional significance of Itonic in SON MNCs challenged by 24-h water deprivation (24WD). Although the main characteristics of spontaneous IPSCs were similar in 24WD compared to euhydrated (EU) rats, Itonic , measured by bicuculline (BIC)-induced Iholding shifts, was significantly smaller in 24WD compared to EU rats (P < 0.05). Propofol and diazepam prolonged IPSC decay time to a similar extent in both groups but induced less Itonic in 24WD compared to EU rats, suggesting a selective decrease in GABAA receptors mediating Itonic over Iphasic in 24WD rats. THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol), a preferential δ subunit agonist, and L-655,708, a GABAA receptor α5 subunit selective imidazobenzodiazepine, caused a significantly smaller inward and outward shift in Iholding , respectively, in 24WD compared to EU rats (P < 0.05 in both cases), suggesting an overall decrease in the α5 subunit-containing GABAA Rs and the δ subunit-containing receptors mediating Itonic in 24WD animals. Consistent with a decrease in 24WD Itonic , bath application of GABA induced significantly less inhibition of the neuronal firing activity in 24WD compared to EU SON MNCs (P < 0.05). Taken together, the results of the present study indicate a selective decrease in GABAA Rs functions mediating Itonic as opposed to those mediating Iphasic in SON MNCs, demonstrating the functional significance of Itonic with respect to increasing neuronal excitability and hormone secretion in 24WD rats.

  6. Reproducibility of 24-h post-exercise changes in energy intake in overweight and obese women using current methodology.

    PubMed

    Brown, Gemma L; Lean, Michael E; Hankey, Catherine R

    2012-07-01

    Direct observation(s) of energy intake (EI) via buffet meals served in the laboratory are often carried out within short-term exercise intervention studies. The reproducibility of values obtained has not been assessed either under resting control conditions or post-exercise, in overweight and obese females. A total of fourteen sedentary, pre-menopausal females (BMI 30.0 (SD 5.1) kg/m²) completed four trials; two exercise and two control. Each trial lasted 24 h spanning over 2 d; conducted from afternoon on day 1 and morning on day 2. An exercise session to expend 1.65 MJ was completed on day 1 of exercise trials, and three buffet meals were served during each trial. Reproducibility of post-exercise changes in energy and macronutrient intakes was assessed at each individual buffet meal by intraclass correlation coefficient (r(i)). Only the r(i) values for post-exercise changes in energy (r(i) 0.44 (95 % CI - 0.03, 0.77), P = 0.03) and fat intake (r(i) 0.51 (95 % CI 0.04, 0.81), P = 0.02) at the lunch buffet meal achieved statistical significance; however, these r i values were weak and had large associated 95 % CI, which indicates a large degree of variability associated with these measurements. Energy and macronutrient intakes at the breakfast and evening buffet meals were not reproducible. This study concludes that the frequently used laboratory-based buffet meal method of assessing EI does not produce reliable, reproducible post-exercise changes in EI in overweight and obese women.

  7. Mortality in the first 24h of very low birth weight preterm infants in the Northeast of Brazil

    PubMed Central

    de Castro, Eveline Campos Monteiro; Leite, Álvaro Jorge Madeiro; Guinsburg, Ruth

    2016-01-01

    Abstract Objective: To evaluate factors associated with neonatal death within 24 hours after birth in very low birth weight preterm newborns. Methods: Prospective cohort of live births with gestational age of 230/7–316/7 weeks, birth weight of 500–1499g without malformations, in 19 public maternity hospitals in nine capitals in northeastern Brazil from July to December 2007. The 19 hospitals were assessed in relation to physical resources, equipment, human resources and aiming at quality in care initiatives. Hospital, maternal and neonatal characteristics, neonatal morbidity, neonatal procedures and interventions were compared between preterm newborns that died or survived up to 24 hours of life. The variables associated with death within 24 hours after birth were determined by logistic regression. Results: Of the 627 newborns enrolled in the study, 179 (29%) died within 168 hours after birth, of which 59 (33%) up to 24 hours and 97 (54%) up to 48 hours after birth. The variables associated with death <24h were: weight <1000g (2.94; 1.32–6.53), 5th minute Apgar <7 (7.17; 3.46–14.88), male gender (2.99; 1.39–6.47). A better hospital structure was a protective factor for early neonatal death (odds ratio: 0.34; 95% confidence interval: 0.17–0.71). Conclusions: The high neonatal mortality on the first day of life in capital cities of Northeast Brazil is associated with biological variables such as weight and gender of the newborn, as well as low vitality at birth and a worse infrastructure of the hospital where the birth occurred. PMID:26726002

  8. Twice daily melatonin peaks in Siberian but not Syrian hamsters under 24 h light:dark:light:dark cycles.

    PubMed

    Raiewski, Evan E; Elliott, Jeffrey A; Evans, Jennifer A; Glickman, Gena L; Gorman, Michael R

    2012-11-01

    The daily pattern of blood-borne melatonin varies seasonally under the control of a multi-oscillator circadian pacemaker. Here we examine patterns of melatonin secretion and locomotor activity in Siberian and Syrian hamsters entrained to bimodal LDLD8:4:8:4 and LD20:4 lighting schedules that facilitate novel temporal arrangements of component circadian oscillators. Under LDLD, both species robustly bifurcated wheel-running activity in distinct day scotophase (DS) and night scotophase (NS) bouts. Siberian hamsters displayed significant melatonin increases during each scotophase in LDLD, and in the single daily scotophase of LD20:4. The bimodal melatonin secretion pattern persisted in acutely extended 16 h scotophases. Syrian hamsters, in contrast, showed no significant increases in plasma melatonin during either scotophase of LDLD8:4:8:4 or in LD20:4. In this species, detectable levels were observed only when the DS of LDLD was acutely extended to yield 16 h of darkness. Established species differences in the phase lag of nocturnal melatonin secretion relative to activity onset may underlie the above contrast: In non-bifurcated entrainment to 24 h LD cycles, Siberian hamsters show increased melatonin secretion within ≈ 2 h after activity onset, whereas in Syrian hamsters, detectable melatonin secretion phase lags activity onset and the L/D transition by at least 4 h. The present results provide new evidence indicating multi-oscillator regulation of the waveform of melatonin secretion, specifically, the circadian control of the onset, offset and duration of nocturnal secretion.

  9. Identification of trends in rainfall, rainy days and 24 h maximum rainfall over subtropical Assam in Northeast India

    NASA Astrophysics Data System (ADS)

    Jhajharia, Deepak; Yadav, Brijesh K.; Maske, Sunil; Chattopadhyay, Surajit; Kar, Anil K.

    2012-01-01

    Trends in rainfall, rainy days and 24 h maximum rainfall are investigated using the Mann-Kendall non-parametric test at twenty-four sites of subtropical Assam located in the northeastern region of India. The trends are statistically confirmed by both the parametric and non-parametric methods and the magnitudes of significant trends are obtained through the linear regression test. In Assam, the average monsoon rainfall (rainy days) during the monsoon months of June to September is about 1606 mm (70), which accounts for about 70% (64%) of the annual rainfall (rainy days). On monthly time scales, sixteen and seventeen sites (twenty-one sites each) witnessed decreasing trends in the total rainfall (rainy days), out of which one and three trends (seven trends each) were found to be statistically significant in June and July, respectively. On the other hand, seventeen sites witnessed increasing trends in rainfall in the month of September, but none were statistically significant. In December (February), eighteen (twenty-two) sites witnessed decreasing (increasing) trends in total rainfall, out of which five (three) trends were statistically significant. For the rainy days during the months of November to January, twenty-two or more sites witnessed decreasing trends in Assam, but for nine (November), twelve (January) and eighteen (December) sites, these trends were statistically significant. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the well-reported climatic warming in monsoon and post-monsoon seasons may have implications for human health and water resources management over bio-diversity rich Northeast India.

  10. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial.

    PubMed

    Brüll, Verena; Burak, Constanze; Stoffel-Wagner, Birgit; Wolffram, Siegfried; Nickenig, Georg; Müller, Cornelius; Langguth, Peter; Alteheld, Birgit; Fimmers, Rolf; Naaf, Stefanie; Zimmermann, Benno F; Stehle, Peter; Egert, Sarah

    2015-10-28

    The polyphenol quercetin may prevent CVD due to its antihypertensive and vasorelaxant properties. We investigated the effects of quercetin after regular intake on blood pressure (BP) in overweight-to-obese patients with pre-hypertension and stage I hypertension. In addition, the potential mechanisms responsible for the hypothesised effect of quercetin on BP were explored. Subjects (n 70) were randomised to receive 162 mg/d quercetin from onion skin extract powder or placebo in a double-blinded, placebo-controlled cross-over trial with 6-week treatment periods separated by a 6-week washout period. Before and after the intervention, ambulatory blood pressure (ABP) and office BP were measured; urine and blood samples were collected; and endothelial function was measured by EndoPAT technology. In the total group, quercetin did not significantly affect 24 h ABP parameters and office BP. In the subgroup of hypertensives, quercetin decreased 24 h systolic BP by -3·6 mmHg (P=0·022) when compared with placebo (mean treatment difference, -3·9 mmHg; P=0·049). In addition, quercetin significantly decreased day-time and night-time systolic BP in hypertensives, but without a significant effect in inter-group comparison. In the total group and also in the subgroup of hypertensives, vasoactive biomarkers including endothelin-1, soluble endothelial-derived adhesion molecules, asymmetric dimethylarginine, angiotensin-converting enzyme activity, endothelial function, parameters of oxidation, inflammation, lipid and glucose metabolism were not affected by quercetin. In conclusion, supplementation with 162 mg/d quercetin from onion skin extract lowers ABP in patients with hypertension, suggesting a cardioprotective effect of quercetin. The mechanisms responsible for the BP-lowering effect remain unclear.

  11. Clock genes and clock-controlled genes in the regulation of metabolic rhythms.

    PubMed

    Mazzoccoli, Gianluigi; Pazienza, Valerio; Vinciguerra, Manlio

    2012-04-01

    Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.

  12. Phase-shifting human circadian rhythms: influence of sleep timing, social contact and light exposure

    NASA Technical Reports Server (NTRS)

    Duffy, J. F.; Kronauer, R. E.; Czeisler, C. A.

    1996-01-01

    1. Both the timing of behavioural events (activity, sleep and social interactions) and the environmental light-dark cycle have been reported to contribute to entrainment of human circadian rhythms to the 24 h day. Yet, the relative contribution of those putative behavioural synchronizers to that of light exposure remains unclear. 2. To investigate this, we inverted the schedule of rest, sedentary activity and social contact of thirty-two young men either with or without exposure to bright light. 3. On this inverted schedule, the endogenous component of the core temperature rhythm of subjects who were exposed to bright light showed a significant phase shift, demonstrating that they were adapting to the new schedule. In contrast, the core temperature rhythm of subjects who were not exposed to bright light moved on average 0.2 h later per day and after 10 days had not significantly adapted to the new schedule. 4. The direction of phase shift in the groups exposed to bright light was dependent on the time of bright light exposure, while control subjects drifted to a later hour regardless of the timing of their schedule of sleep timing, social contact and meals. 5. These results support the concept that the light-dark cycle is the most important synchronizer of the human circadian system. They suggest that inversion of the sleep-wake, rest-activity and social contact cycles provides relatively minimal drive for resetting the human circadian pacemaker. 6. These data indicate that interventions designed to phase shift human circadian rhythms for adjustment to time zone changes or altered work schedules should focus on properly timed light exposure.

  13. Phenotyping Circadian Rhythms in Mice

    PubMed Central

    Eckel-Mahan, Kristin; Sassone-Corsi, Paolo

    2015-01-01

    Circadian rhythms take place with a periodicity of twenty-four hours, temporally following the rotation of the earth around its axis. Examples of circadian rhythms are the sleep/wake cycle, feeding, and hormone secretion. Light powerfully entrains the mammalian clock and assists in keeping animals synchronized to the 24-hour cycle of the earth by activating specific neurons in the “central pacemaker” of the brain, the suprachiasmatic nucleus. Absolute periodicity of an animal can deviate slightly from 24 hours as manifest when an animal is placed into constant dark- or “free running”- conditions. Simple measurements of an organism's activity in free running conditions reveal its intrinsic circadian period. Mice are a particularly useful model for studying circadian rhythmicity due to the ease of genetic manipulation, thus identifying molecular contributors to rhythmicity. Furthermore, their small size allows for monitoring locomotion or activity in their home cage environment with relative ease. Several tasks commonly used to analyze circadian periodicity and plasticity in mice are outlined here including the process of entrainment, determination of tau (period length) in free running conditions, determination of circadian periodicity in response to light disruption (i.e. jet lag studies), and evaluation of clock plasticity in non-twenty-four hour conditions (T-cycles). Studying the properties of circadian periods such as their phase, amplitude, and length in response to photic perturbation, can be particularly useful in understanding how humans respond to jet lag, night shifts, rotating shifts, or other transient or chronic disruption of one's environmental surroundings. PMID:26331760

  14. Analysing Biological Rhythms in Fibromyalgia Syndrome

    PubMed Central

    Ucar, M; Sarp, Ü; Gül, Aİ; Tanik, N; Yetisgin, A; Arik, HO; Nas, O; Yılmaz, YK

    2015-01-01

    ABSTRACT Aim: This study evaluated biological rhythm disorders in patients with fibromyalgia syndrome (FMS). Methods: The study enrolled 82 patients with FMS and 82 controls. Pain intensity was evaluated using a visual analogue scale (VAS). The psychological conditions of the patients were evaluated using the Beck Depression Inventory (BDI). The Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) was used to assess disturbances in biological rhythms (ie sleep, activity, social and eating patterns). Results: There was no difference between the two groups at baseline (all p > 0.05). The BDI, BRIAN total, sleep, activity, social, and eating scores were higher in patients with FMS than in the controls (all p < 0.001). Further, a significant correlation was found between biological rhythms and BDI scores (p < 0.001) and there were positive correlations between the VAS score and BRIAN total, sleep, and eating and BDI in patients with FMS (all p < 0.001). Conclusion: There are marked biological rhythm disturbances in FMS. There is an important relationship between rhythm disorders and FMS. The disturbances in sleep, functional activities, social participation, and disordered rhythms like eating patterns show the need for a multidisciplinary approach to treating patients with FMS. PMID:26426177

  15. Neurobiology of food anticipatory circadian rhythms.

    PubMed

    Mistlberger, Ralph E

    2011-09-26

    Circadian rhythms in mammals can be entrained by daily schedules of light or food availability. A master light-entrainable circadian pacemaker located in the suprachiasmatic nucleus (SCN) is comprised of a population of cell autonomous, transcriptionally based circadian oscillators with defined retinal inputs, circadian clock genes and neural outputs. By contrast, the neurobiology of food-entrainable circadian rhythmicity remains poorly understood at the systems and cellular levels. Induction of food-anticipatory activity rhythms by daily feeding schedules does not require the SCN, but these rhythms do exhibit defining properties of circadian clock control. Clock gene rhythms expressed in other brain regions and in peripheral organs are preferentially reset by mealtime, but lesions of specific hypothalamic, corticolimbic and brainstem structures do not eliminate all food anticipatory rhythms, suggesting control by a distributed, decentralized system of oscillators, or the existence of a critical oscillator at an unknown location. The melanocortin system and dorsomedial hypothalamus may play modulatory roles setting the level of anticipatory activity. The metabolic hormones ghrelin and leptin are not required to induce behavioral food anticipatory rhythms, but may also participate in gain setting. Clock gene mutations that disrupt light-entrainable rhythms generally do not eliminate food anticipatory rhythms, suggesting a novel timing mechanism. Recent evidence for non-transcriptional and network based circadian rhythmicity provides precedence, but any such mechanisms are likely to interact closely with known circadian clock genes, and some important double and triple clock gene knockouts remain to be phenotyped for food entrainment. Given the dominant role of food as an entraining stimulus for metabolic rhythms, the timing of daily food intake and the fidelity of food entrainment mechanisms are likely to have clinical relevance.

  16. Effects of long-term microgravity exposure in space on circadian rhythms of heart rate variability.

    PubMed

    Yamamoto, Naomune; Otsuka, Kuniaki; Kubo, Yutaka; Hayashi, Mitsutoshi; Mizuno, Koh; Ohshima, Hiroshi; Mukai, Chiaki

    2015-04-01

    We evaluated their circadian rhythms using data from electrocardiographic records and examined the change in circadian period related to normal RR intervals for astronauts who completed a long-term (≥6-month) mission in space. The examinees were seven astronauts, five men and two women, from 2009 to 2010. Their mean ± SD age was 52.0 ± 4.2 years (47-59 yr). Each stayed in space for more than 160 days; their average length of stay was 172.6 ± 14.6 days (163-199 days). We conducted a 24-h Holter electrocardiography before launch (Pre), at one month after launch (DF1), at two months after launch (DF2), at two weeks before return (DF3), and at three months after landing (Post), comparing each index of frequency-domain analysis and 24-h biological rhythms of the NN intervals (normal RR intervals). Results show that the mean period of Normal Sinus (NN) intervals was within 24 ± 4 h at each examination. Inter-individual variability differed among the stages, being significantly smaller at DF3 (Pre versus DF1 versus DF3 versus Post = 22.36 ± 2.50 versus 25.46 ± 4.37 versus 22.46 ± 1.75 versus 26.16 ± 7.18 h, p < 0.0001). The HF component increased in 2 of 7 astronauts, whereas it decreased in 3 of 7 astronauts and 1 was remained almost unchanged at DF1. During DF3, about 6 months after their stay in space, the HF component of 5 of 7 astronauts recovered from the decrease after launch, with prominent improvement to over 20% in 3 astronauts. Although autonomic nervous functions and circadian rhythms were disturbed until one month had passed in space, well-scheduled sleep and wake rhythms and meal times served as synchronizers.

  17. Irregular Sleep-Wake Rhythm Disorder.

    PubMed

    Abbott, Sabra M; Zee, Phyllis C

    2015-12-01

    Irregular sleep-wake rhythm disorder is a circadian rhythm disorder characterized by multiple bouts of sleep within a 24-hour period. Patients present with symptoms of insomnia, including difficulty either falling or staying asleep, and daytime excessive sleepiness. The disorder is seen in a variety of individuals, ranging from children with neurodevelopmental disorders, to patients with psychiatric disorders, and most commonly in older adults with neurodegenerative disorders. Treatment of irregular sleep-wake rhythm disorder requires a multimodal approach aimed at strengthening circadian synchronizing agents, such as daytime exposure to bright light, and structured social and physical activities. In addition, melatonin may be useful in some patients.

  18. Transcriptional control of circadian metabolic rhythms in the liver

    PubMed Central

    Li, Siming; Lin, Jiandie D.

    2015-01-01

    Diurnal metabolic rhythms add an important temporal dimension to metabolic homeostasis in mammals. While it remains a challenge to untangle the intricate networks of crosstalk among the body clock, nutrient signaling, and tissue metabolism, there is little doubt that the rhythmic nature of nutrient and energy metabolism is a central aspect of metabolic physiology. Disruption of the synchrony between clock and metabolism has been causally linked to diverse pathophysiological states. As such, restoring the rhythmicity of body physiology and therapeutic targeting directed at specific time windows during the day may have important implications in human health and medicine. In this review, we summarize recent findings on the integration of hepatic glucose metabolism and the body clock through a regulatory network centered on the PGC-1 transcriptional coactivators. In addition, we discuss the transcriptional mechanisms underlying circadian control of the autophagy gene program and autophagy in the liver. PMID:26332966

  19. Daily Melatonin Administration Attenuates Age-Dependent Disturbances of Cardiovascular Rhythms.

    PubMed

    Gubin, Denis G; Gubin, Gennady D; Gapon, Ludmila I; Weinert, Dietmar

    2016-01-01

    Increased blood pressure and reduced robustness of circadian rhythms are frequently reported in elderly subjects. The present study was aimed to investigate whether such changes can be reversed by daily melatonin ingestion. 97 normotensive and hypertensive volunteers of both genders and 63 to 91 years old participated. They lived in the Tyumen Elderly Veteran House on a self-chosen sleep-wake regimen to suit their personal convenience. The experiment lasted for three weeks. After one control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen(TM)) each day at 22:30 h for two weeks. The other 34 subjects were placebo-treated. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured using semi-automated devices at 03:00, 08:00, 11:00, 14:00, 17:00, 23:00 h each day of the first and the third week. Specially trained personnel made the measurements, taking care not to disturb subjects' sleep. Rhythm characteristics were estimated by means of single and population-mean cosinor analyses. Bingham test was used to compare rhythm parameters between groups and investigated physiologic variables. The 24-h HR rhythm was monophasic as described in other studies for young subjects though with a steeper increase in the morning. The daily SBP and DBP rhythms were bimodal. In reference to previously reported data of younger subjects, mean blood pressure of our cohort was elevated, particularly the nocturnal fall was less pronounced. Also, the overall SBP variability was higher as was the percentage of the 12-h component. Both values and also the SBP and DBP levels were reduced during melatonin treatment. The hypotensive effect of melatonin was most pronounced between 3:00 and 8:00 in the morning, i.e. at the time of the highest risk of adverse cardiovascular events, and in subjects with highest BP values before treatment. Moreover, the morning increase of HR was gentler what could have been of additional benefit. Melatonin has a

  20. Preliminary nutritional assessment of the Ecuadorian diet based on a 24-h food recall survey in Ecuador.

    PubMed

    Sánchez-Llaguno, S N; Neira-Mosquera, J A; Pérez-Rodríguez, F; Moreno Rojas, R

    2013-01-01

    Objetivos: Realizar una evaluación nutricional de la dieta ecuatoriana y determinar el porcentaje de contribución de la ingesta de diferentes nutrientes en función del tipo de comida (desayuno, almuerzo, comida, merienda, y cena) y de la Referencia de Ingesta Dietética (RID). Métodos: Se realizó una encuesta piloto basada en el método del recordatorio de alimentación de 24 h en tres regiones concretas de Ecuador y se procesó la información recogida, se analizó y se comparó con las RID establecidas para la población latinoamericana. Resultados: El estudio encontró diferencias significativas para energía y ciertas vitaminas en hombres y en mujeres, además de determinar que la mayor contribución energética se obtenía en la comida, seguida de la merienda y el desayuno. Las comidas intermedias (almuerzo, merienda y cena) contribuían de una manera significativamente menor en la dieta diaria en comparación con otros tipos de comidas. Además, se observó que las ingestas analizadas no alcanzaban las RID para hidratos de carbono, algunas vitaminas (tiamina, ácido pantoténico, biotina, folato, vitamina D y vitamina E) y minerales (Ca, K, Cu, Mn, I y Fe). La ingesta de NA estaba bastante por encima de las RID y el Límite Superior Tolerable proporcionado por la USDA, lo que indica un problema de salud pública en relación con este electrolito. Conclusiones: Esta encuesta piloto puede considerarse como un punto de partida para obtener una visión más profunda de la dieta ecuatoriana. Esto permitirá determinar los patrones de consumo que afectan al bienestar de la población y establecer efectos positivos y efectos adversos del patrón de consumo en Ecuador.

  1. No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst).

    PubMed

    Gyllenstrand, Niclas; Karlgren, Anna; Clapham, David; Holm, Karl; Hall, Anthony; Gould, Peter D; Källman, Thomas; Lagercrantz, Ulf

    2014-03-01

    The identification and cloning of full-length homologs of circadian clock genes from Picea abies represent a first step to study the function and evolution of the circadian clock in gymnosperms. Phylogenetic analyses suggest that the sequences of key circadian clock genes are conserved between angiosperms and gymnosperms. though fewer homologous copies were found for most gene families in P. abies. We detected diurnal cycling of circadian clock genes in P. abies using quantitative real-time PCR; however, cycling appeared to be rapidly dampened under free-running conditions. Given the unexpected absence of transcriptional cycling during constant conditions, we employed a complementary method to assay circadian rhythmic outputs and measured delayed fluorescence in seedlings of Norway spruce. Neither of the two approaches to study circadian rhythms in Norway spruce could detect robust ∼24 h cycling behavior under constant conditions. These data suggest gene conservation but fundamental differences in clock function between gymnosperms and other plant taxa.

  2. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research

    PubMed Central

    Tsang, Anthony H.; Astiz, Mariana; Leinweber, Brinja; Oster, Henrik

    2017-01-01

    The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo. PMID:28243224

  3. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  4. Sleep and circadian rhythms in long duration space flight - Antarctica as an analogue environment

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.

    1992-01-01

    The feasibility of using Antarctica as an environment for studying the impact of unusual 24 h environmental cycles (zeitgebers) on the circadian system is discussed. Adaptation of circadian rhythms and sleep of three scientists travelling from New Zealand to Antarctica during summer (which is analogous to arrival at a lunar base during the lunar day) has been studied. Data obtained indicate that sleep occurred at the same clock time, but sleep quality was poorer in Antarctica, which can be explained by the fact that the circadian system delayed by about 2 h in Antarctica, as would be expected in a weaker zeitgeber environment. It is suggested that sleep could be improved by altering patterns of exposure to the available zeitgebers to increase their effective strength.

  5. Circadian rhythm in plasma noradrenaline of healthy sleep-deprived subjects.

    PubMed

    Candito, M; Pringuey, D; Jacomet, Y; Souêtre, E; Salvati, E; Ardisson, J L; Chambon, P; Darcourt, G

    1992-12-01

    Under normal sleep-wake conditions, noradrenaline (NA) secretions in supine subjects exhibit a weak circadian variation with a peak that occurs around noon; the sleep span is characterized by reduced NA secretion. Some investigators have reported that the circadian NA rhythm is completely obliterated during sleep deprivation. In our laboratory, plasma NA was assayed every hour for 24 h in nine healthy men 20-23 years of age. All men were deprived of sleep and were required to eat and walk around every hour to prevent sleep. However, subjects remained supine for 20 min before blood samples were collected to eliminate the effect of activity. Persistence of a slight decrease in the night concentration in several subjects, despite sleep deprivation, suggests that NA secretion may be influenced by a biological clock whose activity becomes visible when the influence of posture is removed.

  6. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men.

    PubMed

    Bérubé-Parent, Sonia; Pelletier, Catherine; Doré, Jean; Tremblay, Angelo

    2005-09-01

    It has been reported that green tea has a thermogenic effect, due to its caffeine content and probably also to the catechin, epigallocatechin-3-gallate (EGCG). The main aim of the present study was to compare the effect of a mixture of green tea and Guarana extracts containing a fixed dose of caffeine and variable doses of EGCG on 24 h energy expenditure and fat oxidation. Fourteen subjects took part to this randomized, placebo-controlled, double-blind, cross-over study. Each subject was tested five times in a metabolic chamber to measure 24 h energy expenditure, substrate oxidation and blood pressure. During each stay, the subjects ingested a capsule of placebo or capsules containing 200 mg caffeine and a variable dose of EGCG (90, 200, 300 or 400 mg) three times daily, 30 min before standardized meals. Twenty-four hour energy expenditure increased significantly by about 750 kJ with all EGCG-caffeine mixtures compared with placebo. No effect of the EGCG-caffeine mixture was observed for lipid oxidation. Systolic and diastolic blood pressure increased by about 7 and 5 mmHg, respectively, with the EGCG-caffeine mixtures compared with placebo. This increase was significant only for 24 h diastolic blood pressure. The main finding of the study was the increase in 24 h energy expenditure with the EGCG-caffeine mixtures. However, this increase was similar with all doses of EGCG in the mixtures.

  7. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exercise might have a persistent effect on energy expenditure and fat oxidation, resulting in increased fat loss. However, even without weight loss, exercise results in positive metabolic effects. The effect of an aerobic exercise program on 24-h total energy expenditure (TEE), and its components-ba...

  8. Myocardial infarction occurs with a similar 24 h pattern in the 4G/5G versions of plasminogen activator inhibitor-1.

    PubMed

    Bergheanu, Sandrin C; Pons, Douwe; Jukema, J Wouter; van der Hoeven, Bas L; Liem, Su-San; Vandenbroucke, Jan P; Rosendaal, Frits R; le Cessie, Saskia; Schalij, Martin J; van der Bom, Johanna G

    2009-05-01

    PAI-1 expression is regulated by a 4G/5G promoter polymorphism. The 4G allele is associated with greater circadian variation of PAI-1 levels. We hypothesized that the 24 h variation of cardiac risk is more pronounced among persons with the 4G4G genotype than among ones with 4G5G and 5G5G genotypes. We assessed the time of onset of symptoms in 623 consecutive patients with acute myocardial infarction (AMI) enrolled in the MISSION! Study between February 1, 2004, and October 29, 2006. All of the patients were genotyped for the PAI-1 4G/5G polymorphism. We quantified the amplitude of the 24 h variation of AMI with a generalized linear model with Poisson distribution. A morning peak, between 06:00-11:59 h (n = 197; 32% of all cases), in the onset of symptoms of AMI was observed. The group composed of patients with the 4G4G genotype did not have a more pronounced morning peak than the groups composed of other genotypes; the 24 h variation was 38% (95% confidence interval 12-70%) in the group of 4G4G patients and 34% (14-58%) and 56% (20-100%) in the 4G5G and 5G5G groups of patients, respectively. Our findings show that 24 h variation of cardiac risk is not more pronounced among the 4G4G genotype of PAI-1.

  9. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  10. Studying circadian rhythms in Drosophila melanogaster

    PubMed Central

    Tataroglu, Ozgur; Emery, Patrick

    2014-01-01

    Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research. PMID:24412370

  11. CIRCADIAN RHYTHM REPROGRAMMING DURING LUNG INFLAMMATION

    PubMed Central

    Haspel, Jeffrey A.; Chettimada, Sukrutha; Shaik, Rahamthulla S.; Chu, Jen-Hwa; Raby, Benjamin A.; Cernadas, Manuela; Carey, Vincent; Process, Vanessa; Hunninghake, G. Matthew; Ifedigbo, Emeka; Lederer, James A.; Englert, Joshua; Pelton, Ashley; Coronata, Anna; Fredenburgh, Laura E.; Choi, Augustine M. K.

    2014-01-01

    Circadian rhythms are known to regulate immune responses in healthy animals, but it is unclear whether they persist during acute illnesses where clock gene expression is disrupted by systemic inflammation. Here, we use a genome-wide approach to investigate circadian gene and metabolite expression in the lungs of endotoxemic mice and find that novel cellular and molecular circadian rhythms are elicited in this setting. The endotoxin-specific circadian program exhibits unique features, including a divergent group of rhythmic genes and metabolites compared to the basal state and a distinct periodicity and phase distribution. At the cellular level endotoxin treatment also alters circadian rhythms of leukocyte counts within the lung in a bmal1-dependent manner, such that granulocytes rather than lymphocytes become the dominant oscillating cell type. Our results show that inflammation produces a complex reorganization of cellular and molecular circadian rhythms that are relevant to early events in lung injury. PMID:25208554

  12. Studying circadian rhythms in Drosophila melanogaster.

    PubMed

    Tataroglu, Ozgur; Emery, Patrick

    2014-06-15

    Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.

  13. Circadian rhythm dysregulation in bipolar disorder.

    PubMed

    Westrich, Ligia; Sprouse, Jeffrey

    2010-07-01

    When circadian rhythms - the daily oscillations of various physiological and behavioral events that are controlled by a central timekeeping mechanism - become desynchronized with the prevailing light:dark cycle, a maladaptative response can result. Animal data based primarily on genetic manipulations and clinical data from biomarker and gene expression studies support the notion that circadian abnormalities underlie certain psychiatric disorders. In particular, bipolar disorder has an interesting link to rhythm-related disease biology; other mood disturbances, such as major depressive disorder, seasonal affective disorder and the agitation and aggression accompanying severe dementia (sundowning), are also linked to changes in circadian rhythm function. Possibilities for pharmacological intervention derive most readily from the molecular oscillator, the cellular machinery that drives daily rhythms.

  14. Pradaxa Beats Warfarin After Heart Rhythm Procedure

    MedlinePlus

    ... correct the heart rhythm disorder known as atrial fibrillation. The risk of having a major bleeding event ... was funded by Pradaxa's maker, Boehringer Ingelheim. Atrial fibrillation affects more than 6 million people in the ...

  15. Circadian rhythms and treatment implications in depression.

    PubMed

    Monteleone, Palmiero; Martiadis, Vassilis; Maj, Mario

    2011-08-15

    In humans almost all physiological and behavioural functions occur on a rhythmic basis. Therefore the possibility that delays, advances or desynchronizations of circadian rhythms may play a role in the pathophysiology of psychiatric disorders is an interesting field of research. In particular mood disorders such as seasonal affective disorder and major depression have been linked to circadian rhythms alterations. Furthermore, the antidepressant efficacy of both pharmacological and non-pharmacological strategies affecting endogenous circadian rhythms, such as new antidepressant medications, light-therapy and sleep deprivation, is consistent with the idea that circadian alterations may represent a core component of depression, at least in a subgroup of depressed patients. This paper briefly describes the molecular and genetic mechanisms regulating the endogenous clock system, and reviews the literature supporting the relationships between depression, antidepressant treatments and changes in circadian rhythms.

  16. Circadian rhythm reprogramming during lung inflammation.

    PubMed

    Haspel, Jeffrey A; Chettimada, Sukrutha; Shaik, Rahamthulla S; Chu, Jen-Hwa; Raby, Benjamin A; Cernadas, Manuela; Carey, Vincent; Process, Vanessa; Hunninghake, G Matthew; Ifedigbo, Emeka; Lederer, James A; Englert, Joshua; Pelton, Ashley; Coronata, Anna; Fredenburgh, Laura E; Choi, Augustine M K

    2014-09-11

    Circadian rhythms are known to regulate immune responses in healthy animals, but it is unclear whether they persist during acute illnesses where clock gene expression is disrupted by systemic inflammation. Here we use a genome-wide approach to investigate circadian gene and metabolite expression in the lungs of endotoxemic mice and find that novel cellular and molecular circadian rhythms are elicited in this setting. The endotoxin-specific circadian programme exhibits unique features, including a divergent group of rhythmic genes and metabolites compared with the basal state and a distinct periodicity and phase distribution. At the cellular level, endotoxin treatment also alters circadian rhythms of leukocyte counts within the lung in a bmal1-dependent manner, such that granulocytes rather than lymphocytes become the dominant oscillating cell type. Our results show that inflammation produces a complex re-organization of cellular and molecular circadian rhythms that are relevant to early events in lung injury.

  17. Circadian rhythms are not involved in the regulation of circannual reproductive cycles in a sub-tropical bird, the spotted munia.

    PubMed

    Budki, Puja; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod

    2014-07-15

    Circannual rhythms regulate seasonal reproduction in many vertebrates. The present study investigated whether circannual reproductive phenotypes (rhythms in growth of gonads and molt) were generated independently of the circadian clocks in the subtropical non-photoperiodic spotted munia (Lonchura punctulata). Birds were subjected to light:dark (LD) cycles with identical light but varying dark hours, such that the period of LD cycle (T) equaled 16 h (T16; 12 h L:4 h D), 21 h (T21; 12 h L:9 h D), 24 h (T24; 12 h L:12 h D) and 27 h (T27; 12 h L:15 h D), or to continuous light (LL, 24 h L:0 h D) at ~18°C. During the ~21 month exposure, munia underwent at least two cycles of gonadal development and molt; changes in body mass were not rhythmic. This was similar to the occurrence of annual cycles in reproduction and molt observed in wild birds. A greater asynchrony between circannual cycles of gonad development and molt indicated their independent regulation. Females showed reproductive rhythms with similar circannual periods, whilst in males, circannual periods measured between peak gonadal size were longer in T21 and T24 than in T16 or T27. This suggested a sex-dependent timing of annual reproduction in the spotted munia. Also, food availability periods may not influence the circannual timing of reproduction, as shown by the results on the rhythm in gonadal growth and regression in munia under T-photocycles and LL that provided differential light (feeding) hours. Further, a short-term experiment revealed that activity-rest patterns in munia were synchronized with T-photocycles, but were arrhythmic under LL. We conclude that circadian rhythms are not involved in the timing of the annual reproductive cycle in the spotted munia.

  18. Circadian rhythms in blood pressure in free-ranging three-toed sloths (Bradypus variegatus).

    PubMed

    Duarte, D P F; Silva, V L; Jaguaribe, A M; Gilmore, D P; Da Costa, C P

    2003-02-01

    Blood pressure (BP) profiles were monitored in nine free-ranging sloths (Bradypus variegatus) by coupling one common carotid artery to a BP telemetry transmitter. Animals moved freely in an isolated and temperature-controlled room (24 degrees C) with 12/12-h artificial light-dark cycles and behaviors were observed during resting, eating and moving. Systolic (SBP) and diastolic (DBP) blood pressures were sampled for 1 min every 15 min for 24 h. BP rhythm over 24 h was analyzed by the cosinor method and the mesor, amplitude, acrophase and percent rhythm were calculated. A total of 764 measurements were made in the light cycle and 721 in the dark cycle. Twenty-four-hour values (mean +/- SD) were obtained for SBP (121 +/- 22 mmHg), DBP (86 +/- 17 mmHg), mean BP (MBP, 98 +/- 18 mmHg) and heart rate (73 +/- 16 bpm). The SBP, DBP and MBP were significantly higher (unpaired Student t-test) during the light period (125 +/- 21, 88 +/- 15 and 100 +/- 17 mmHg, respectively) than during the dark period (120 +/- 21, 85 +/- 17 and 97 +/- 17 mmHg, respectively) and the acrophase occurred between 16:00 and 17:45 h. This circadian variation is similar to that observed in cats, dogs and marmosets. The BP decreased during "behavioral sleep" (MBP down from 110 +/- 19 to 90 +/- 19 mmHg at 21:00 to 8:00 h). Both feeding and moving induced an increase in MBP (96 +/- 17 to 119 +/- 17 mmHg at 17:00 h and 97 +/- 19 to 105 +/- 12 mmHg at 15:00 h, respectively). The results show that conscious sloths present biphasic circadian fluctuations in BP levels, which are higher during the light period and are mainly synchronized with feeding.

  19. Influence of 8 and 24-h storage of whole blood at ambient temperature on prothrombin time, activated partial thromboplastin time, fibrinogen, thrombin time, antithrombin and D-dimer.

    PubMed

    Kemkes-Matthes, Bettina; Fischer, Ronald; Peetz, Dirk

    2011-04-01

    This study evaluates the effect of whole blood storage on common coagulation parameters in order to confirm or revise acceptable storage limits as defined by current guidelines and diverse study reports. Aliquots were taken from the citrated whole blood of inpatients and outpatients (n = 147) within 4 h after blood withdrawal and after extended storage of whole blood for 8 and 24 h at ambient temperature. Aliquots were centrifuged and analyzed for prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (Fbg), antithrombin (AT), thrombin time (TT) and D-dimer. For each parameter, samples from 33-56 patients were investigated covering a wide range of normal and pathological values. Samples from patients receiving heparin were excluded from analyses of APTT and TT. All assays were performed using reagents and an analyzer from Siemens Healthcare Diagnostics Products GmbH. The mean percentage change after 8 and 24-h storage was below 10% for all parameters. Considering the changes in individual samples, all parameters can be reliably tested after 8-h storage, since less than 15% of the samples demonstrated individual changes of above 10%. The acceptable storage time can be extended to 24 h for PT, TT and D-dimer. Clinically relevant changes were detected after 24-h storage for APTT: 41% of the investigated samples demonstrated changes of above 10%. After 24-h storage, changes for Fbg and AT values were more than 15% in five out of 49 and in three out of 45 samples, respectively. This sporadic increase of values is clinically acceptable except for borderline samples.

  20. The effects of telmisartan alone or with hydrochlorothiazide on morning and 24-h ambulatory BP control: results from a practice-based study (SURGE 2).

    PubMed

    Parati, Gianfranco; Bilo, Grzegorz; Redon, Josep

    2013-04-01

    Observational studies have shown that 24-h and morning ambulatory blood pressure (BP) control is low. This large-scale, practice-based study evaluated the effects of telmisartan 40 or 80 mg alone or in combination with hydrochlorothiazide (HCTZ) 12.5 mg on these BP parameters over 8 weeks; treatment was adjusted if clinic BP remained ≥140/90 mm Hg. A total of 863 patients were evaluated (baseline mean clinic BP, morning and 24-h ambulatory BP: 155±15/93±10 mm Hg, 137±15/83±11 mm Hg, 133±14/79±10 mm Hg, respectively; 68% were previously treated at baseline). Telmisartan with/without HCTZ significantly reduced the mean morning ambulatory BP (-8.2/-4.9 mm Hg), daytime ambulatory BP (-8.0/-4.7 mm Hg), 24-h ambulatory BP (-7.9/-4.7 mm Hg) and clinic BP (-22.3/-13.2 mm Hg) (all P<0.001) in previously untreated and in treated patients who switched to telmisartan and telmisartan/HCTZ. After treatment with telmisartan with/without HCTZ, the morning ambulatory BP control increased from 36.5 to 64.4%; daytime ambulatory BP control increased from 40.8 to 67.6%; 53.0% of patients achieved 24-h ambulatory BP <125/80 mm Hg and 62% achieved <130/80 mm Hg targets. Only 0.8% (7/863) reported an adverse event. In summary, telmisartan and telmisartan/HCTZ increased smooth 24-h BP control in daily management of hypertension.

  1. At-sea trial of 24-h-based submarine watchstanding schedules with high and low correlated color temperature light sources.

    PubMed

    Young, Colin R; Jones, Geoffrey E; Figueiro, Mariana G; Soutière, Shawn E; Keller, Matthew W; Richardson, Annely M; Lehmann, Benjamin J; Rea, Mark S

    2015-04-01

    United States Navy submariners have historically lived with circadian disruption while at sea due to 18-h-based watchschedules. Previous research demonstrated that circadian entrainment improved with 24-h-based watchschedules. Twenty-nine male crew members participated in the study, which took place on an actual submarine patrol. The crew were exposed, first, to experimental high correlated color temperature (CCT = 13,500 K) fluorescent light sources and then to standard-issue fluorescent light sources (CCT = 4100 K). A variety of outcome measures were employed to determine if higher levels of circadian-effective light during on-watch times would further promote behavioral alignment to 24-h-based watchschedules. The high CCT light source produced significantly higher circadian light exposures than the low CCT light source, which was associated with significantly greater 24-h behavioral alignment with work schedules using phasor analysis, greater levels of sleep efficiency measured with wrist actigraphy, lower levels of subjective sleepiness measured with the Karolinska Sleepiness Scale, and higher nighttime melatonin concentrations measured by morning urinary 6-sulfatoxymelatonin/creatinine ratios. Unlike these diverse outcome measures, performance scores were significantly worse under the high CCT light source than under the low CCT light source, due to practice effects. As hypothesized, with the exception of the performance scores, all of the data converge to suggest that high CCT light sources, combined with 24-h watchschedules, promote better behavioral alignment with work schedules and greater sleep quality on submarines. Since the order and the type of light sources were confounded in this field study, the results should only be considered as consistent with our theoretical understanding of how regular, 24-h light-dark exposures combined with high circadian light exposures can promote greater behavioral alignment with work schedules and with sleep.

  2. Melatonin, the Pineal Gland, and Circadian Rhythms

    DTIC Science & Technology

    1994-02-28

    astrocytes in the chick visual suprachiasmatic nucleus . Trans, Soc. Res. Biol. Rhythms 4:118 4) Brooks, D.S., AJ. Mitchell and...W.S., T.H. Champney and V.M. Cassone ( in press) The suprachiasmatic nucleus controls circadian rhythms of heart-rate via the sympathetic nervous...sparrows. N•,u•.si.LAbs. 19: 1487 2) Warren, W.S., V.M. Cassone (1993) The regulation of multiple circadian outputs by the suprachiasmatic

  3. Post-Acceleration Chaotic Atrial Rhythm

    DTIC Science & Technology

    1982-04-01

    atrial flutter or two discrete P-wave morphologies with the rate less fibrillation. than 100 bpm). and sinus bradycardia. An occasional The time...mulhilocal paroxysmal atrial tach.- cardia with cclic Wcnckchach phenomenon under observation examinations. The chaotic atrial rhythm in this case ji r 13...CHAOTIC ATRIAL RHYTHM Final Report 1 July 81 - 30 July 81 6. PERFORMING OIG. REPORT NUMBER 7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBERS) r James E

  4. Neurophysiological Analysis of Circadian Rhythm Entrainment

    DTIC Science & Technology

    1994-05-24

    the newly discovered 5 - HT7 receptor have yet to be performed. These results demonstrate that serotonin acting through a 5 -HTIA-like receptor can...ANNUAL 1 Jan 93 TO 31 Dec 93 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS NEUROPHYSIOLOGICAL ANALYSIS OF CIRCADIAN RHYTHM F49620-93-1-0089 ENTRAINMENT j...sensitivity of SCN cells to serotonin ( 5 -HT) and the effects of serotonin on rhythm entrainment. The evidence to date has suggested, however, that

  5. Quantifying Speech Rhythm Abnormalities in the Dysarthrias

    PubMed Central

    Liss, Julie M.; White, Laurence; Mattys, Sven L.; Lansford, Kaitlin; Lotto, Andrew J.; Spitzer, Stephanie M.; Caviness, John N.

    2013-01-01

    Purpose In this study, the authors examined whether rhythm metrics capable of distinguishing languages with high and low temporal stress contrast also can distinguish among control and dysarthric speakers of American English with perceptually distinct rhythm patterns. Methods Acoustic measures of vocalic and consonantal segment durations were obtained for speech samples from 55 speakers across 5 groups (hypokinetic, hyperkinetic, flaccid-spastic, ataxic dysarthrias, and controls). Segment durations were used to calculate standard and new rhythm metrics. Discriminant function analyses (DFAs) were used to determine which sets of predictor variables (rhythm metrics) best discriminated between groups (control vs. dysarthrias; and among the 4 dysarthrias). A cross-validation method was used to test the robustness of each original DFA. Results The majority of classification functions were more than 80% successful in classifying speakers into their appropriate group. New metrics that combined successive vocalic and consonantal segments emerged as important predictor variables. DFAs pitting each dysarthria group against the combined others resulted in unique constellations of predictor variables that yielded high levels of classification accuracy. Conclusions: This study confirms the ability of rhythm metrics to distinguish control speech from dysarthrias and to discriminate dysarthria subtypes. Rhythm metrics show promise for use as a rational and objective clinical tool. PMID:19717656

  6. Circadian rhythms of 6-sulphatoxy melatonin, cortisol and electrolyte excretion at the summer and winter solstices in normal men and women.

    PubMed

    Kennaway, D J; Royles, P

    1986-11-01

    Urinary excretion of 6-sulphatoxy melatonin, cortisol, potassium and sodium was monitored at four hourly intervals for 24 h in 30 normal subjects at the summer and winter solstices. The 24 h profiles were fitted to sine curves and mean 24-h excretion, time of maximum excretion and amplitude of the curves compared. The excretion of 6-sulphatoxy melatonin was remarkably stable at the two times of the year (24-h excretion 108 +/- 6.3 nmol in summer and 105 +/- 6.3 nmol in winter, mean +/- SEM). The time of maximum excretion was significantly delayed in winter by 1 h and 40 min. Urinary cortisol excretion was significantly higher in winter, however, the amplitude was unaltered. The time of maximum excretion of cortisol was significantly delayed by 1 h and 34 min. Postassium and sodium excretion were both unaffected by seasonal influences. These results contrast with results in some animal species in which the duration of the melatonin signal is thought to be the key determinant in subsequent melatonin action. In humans it is likely that the phasing of the melatonin rhythm is of prime importance.

  7. The 24 h pattern of arterial pressure in mice is determined mainly by heart rate‐driven variation in cardiac output

    PubMed Central

    Kurtz, Theodore W.; Lujan, Heidi L.; DiCarlo, Stephen E.

    2014-01-01

    Abstract Few studies have systematically investigated whether daily patterns of arterial blood pressure over 24 h are mediated by changes in cardiac output, peripheral resistance, or both. Understanding the hemodynamic mechanisms that determine the 24 h patterns of blood pressure may lead to a better understanding of how such patterns become disturbed in hypertension and influence risk for cardiovascular events. In conscious, unrestrained C57BL/6J mice, we investigated whether the 24 h pattern of arterial blood pressure is determined by variation in cardiac output, systemic vascular resistance, or both and also whether variations in cardiac output are mediated by variations in heart rate and or stroke volume. As expected, arterial pressure and locomotor activity were significantly (P < 0.05) higher during the nighttime period compared with the daytime period when mice are typically sleeping (+12.5 ± 1.0 mmHg, [13%] and +7.7 ± 1.3 activity counts, [254%], respectively). The higher arterial pressure during the nighttime period was mediated by higher cardiac output (+2.6 ± 0.3 mL/min, [26%], P < 0.05) in association with lower peripheral resistance (−1.5 ± 0.3 mmHg/mL/min, [−13%] P < 0.05). The increased cardiac output during the nighttime was mainly mediated by increased heart rate (+80.0 ± 16.5 beats/min, [18%] P < 0.05), as stroke volume increased minimally at night (+1.6 ± 0.5 μL per beat, [6%] P < 0.05). These results indicate that in C57BL/6J mice, the 24 h pattern of blood pressure is hemodynamically mediated primarily by the 24 h pattern of cardiac output which is almost entirely determined by the 24 h pattern of heart rate. These findings suggest that the differences in blood pressure between nighttime and daytime are mainly driven by differences in heart rate which are strongly correlated with differences in locomotor activity. PMID:25428952

  8. Modification over time of pulse wave velocity parallel to changes in aortic BP, as well as in 24-h ambulatory brachial BP.

    PubMed

    Oliveras, A; Segura, J; Suarez, C; García-Ortiz, L; Abad-Cardiel, M; Vigil, L; Gómez-Marcos, M A; Sans Atxer, L; Martell-Claros, N; Ruilope, L M; de la Sierra, A

    2016-03-01

    Arterial stiffness as assessed by carotid-femoral pulse wave velocity (cfPWV) is a marker of preclinical organ damage and a predictor of cardiovascular outcomes, independently of blood pressure (BP). However, limited evidence exists on the association between long-term variation (Δ) on aortic BP (aoBP) and ΔcfPWV. We aimed to evaluate the relationship of ΔBP with ΔcfPWV over time, as assessed by office and 24-h ambulatory peripheral BP, and aoBP. AoBP and cfPWV were evaluated in 209 hypertensive patients with either diabetes or metabolic syndrome by applanation tonometry (Sphygmocor) at baseline(b) and at 12 months of follow-up(fu). Peripheral BP was also determined by using validated oscillometric devices (office(o)-BP) and on an outpatient basis by using a validated (Spacelabs-90207) device (24-h ambulatory BP). ΔcfPWV over time was calculated as follows: ΔcfPWV=[(cfPWVfu-cfPWVb)/cfPWVb] × 100. ΔBP over time resulted from the same formula applied to BP values obtained with the three different measurement techniques. Correlations (Spearman 'Rho') between ΔBP and ΔcfPWV were calculated. Mean age was 62 years, 39% were female and 80% had type 2 diabetes. Baseline office brachial BP (mm Hg) was 143±20/82±12. Follow-up (12 months later) office brachial BP (mm Hg) was 136±20/79±12. ΔcfPWV correlated with ΔoSBP (Rho=0.212; P=0.002), Δ24-h SBP (Rho=0.254; P<0.001), Δdaytime SBP (Rho=0.232; P=0.001), Δnighttime SBP (Rho=0.320; P<0.001) and ΔaoSBP (Rho=0.320; P<0.001). A multiple linear regression analysis included the following independent variables: ΔoSBP, Δ24-h SBP, Δdaytime SBP, Δnighttime SBP and ΔaoSBP. ΔcfPWV was independently associated with Δ24-h SBP (β-coefficient=0.195; P=0.012) and ΔaoSBP (β-coefficient= 0.185; P=0.018). We conclude that changes in both 24-h SBP and aoSBP more accurately reflect changes in arterial stiffness than do office BP measurements.

  9. The full moon as a synchronizer of circa-monthly biological rhythms: Chronobiologic perspectives based on multidisciplinary naturalistic research.

    PubMed

    Reinberg, Alain; Smolensky, Michael H; Touitou, Yvan

    Biological rhythmicity is presumed to be an advantageous genetic adaptation of fitness and survival value resulting from evolution of life forms in an environment that varies predictably-in-time during the 24 h, month, and year. The 24 h light/dark cycle is the prime synchronizer of circadian periodicities, and its modulation over the course of the year, in terms of daytime photoperiod length, is a prime synchronizer of circannual periodicities. Circadian and circannual rhythms have been the major research focus of most scientists. Circa-monthly rhythms triggered or synchronized by the 29.5 day lunar cycle of nighttime light intensity, or specifically the light of the full moon, although explored in waterborne and certain other species, have received far less study, perhaps because of associations with ancient mythology and/or an attitude naturalistic studies are of lesser merit than ones that entail molecular mechanisms. In this editorial, we cite our recent discovery through multidisciplinary naturalistic investigation of a highly integrated circadian, circa-monthly, and circannual time structure, synchronized by the natural ambient nyctohemeral, lunar, and annual light cycles, of the Peruvian apple cactus (C. peruvianus) flowering and reproductive processes that occur in close temporal coordination with like rhythms of the honey bee as its pollinator. This finding led us to explore the preservation of this integrated biological time structure, synchronized and/or triggered by environmental light cues and cycles, in the reproduction of other species, including Homo sapiens, and how the artificial light environment of today in which humans reside may be negatively affecting human reproduction efficiency.

  10. Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin, (gamma-aminobutyric acid, taurine and somatostatin in young and aged rats.

    PubMed

    Esquifino, A I; Cano, P; Jimenez, V; Reyes Toso, C F; Cardinali, D P

    2004-01-01

    Twenty-four hour rhythmicity of serum prolactin and median eminence and anterior pituitary content of dopamine (DA), serotonin (5HT), gamma-aminobutyric acid (GABA), taurine and somatostatin were examined in 2 months-old and 18-20 months-old Wistar male rats. The concentration of prolactin was higher in aged rats, with peaks in both groups of rats at the early phase of the activity span. Median eminence DA content of young rats attained its maximum at the middle of rest span and decreased as prolactin levels augmented while the lowest values of adenohypophysial DA were observed at the time of prolactin peak. DA rhythmicity disappeared in aged rats. GABA content of median eminence and adenohypophysis was lower in aged rats, with maximal values of median eminence GABA at light-dark transition in young rats and at the second half of activity span in aged rats. Serum prolactin correlated positively with median eminence GABA in young rats and negatively with pituitary GABA in young and aged rats. Median eminence somatostatin peaked at the beginning of the activity phase (young rats) or at the end of the rest phase (aged rats). Prolactin levels and somatostatin content correlated significantly in young rats only. Median eminence and pituitary 5HT and taurine content did not change with age. The results indicate disruption of prolactin regulatory mechanisms with aging in rats.

  11. Convergent Rhythm Generation from Divergent Cellular Mechanisms

    PubMed Central

    Rodriguez, Jason C.; Blitz, Dawn M.

    2013-01-01

    Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca2+ dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role. PMID:24227716

  12. Circadian Rhythm in Cytokines Administration.

    PubMed

    Trufakin, Valery A; Shurlygina, Anna V

    2016-01-01

    In recent times, a number of diseases involving immune system dysfunction have appeared. This increases the importance of research aimed at finding and developing optimized methods for immune system correction. Numerous studies have found a positive effect in using cytokines to treat a variety of diseases, yet the clinical use of cytokines is limited by their toxicity. Research in the field of chronotherapy, aimed at designing schedules of medicine intake using circadian biorhythms of endogenous production of factors, and receptors' expression to the factors on the target cells, as well as chronopharmacodynamics and chronopharmacokinetics of medicines may contribute to the solution of this problem. Advantages of chronotherapy include a greater effectiveness of treatment, reduced dose of required drugs, and minimized adverse effects. This review presents data on the presence of circadian rhythms of spontaneous and induced cytokine production, as well as the expression of cytokine receptors in the healthy body and in a number of diseases. The article reviews various effects of cytokines, used at different times of the day in humans and experimental animals, as well as possible mechanisms underlying the chronodependent effects of cytokines. The article presents the results of chronotherapeutic modes of administering IL-2, interferons, G-CSF, and GM-CSF in treatment of various types of cancer as well as in experimental models of immune suppression and inflammation, which lead to a greater effectiveness of therapy, the possibility of reducing or increasing the dosage, and reduced drug toxicity. Further research in this field will contribute to the effectiveness and safety of cytokine therapy.

  13. First laboratory insight on the behavioral rhythms of the bathyal crab Geryon longipes

    NASA Astrophysics Data System (ADS)

    Nuñez, J. D.; Sbragaglia, V.; García, J. A.; Company, J. B.; Aguzzi, J.

    2016-10-01

    The deep sea is the largest and at the same time least explored biome on Earth, but quantitative studies on the behavior of bathyal organisms are scarce because of the intrinsic difficulties related to in situ observations and maintaining animals in aquaria. In this study, we reported, for the first time, laboratory observations on locomotor rhythms and other behavioral observations (i.e. feeding, exploring and self-grooming) for the bathyal crab Geryon longipes. Crabs were collected on the middle-lower slope (720-1750 m) off the coast of Blanes (Spain). Inertial (18 h) water currents and monochromatic blue (i.e. 470 nm) light-darkness (24 h) cycles were simulated in two different experiments in flume tanks endowed with burrows. Both cycles were simulated in order to investigate activity rhythms regulation in Mediterranean deep-sea benthos. Crabs showed rhythmic locomotor activity synchronized to both water currents and light-darkness cycles. In general terms, feeding and exploring behaviors also followed the same pattern. Results presented here indicate the importance of local inertial (18 h) periodicity of water currents at the seabed as a temporal cue regulating the behavior of bathyal benthic fauna in all continental margin areas where the effects of tides is negligible.

  14. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging.

    PubMed

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y; Yang, Jian-Bo; Zheng, Lei

    2015-06-10

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R(2), 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  15. Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction.

    PubMed

    Webb, Ian C

    2017-02-01

    Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.

  16. Impact of dispersed coupling strength on the free running periods of circadian rhythms

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie

    2016-03-01

    The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.

  17. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  18. Biological Rhythms Modelisation of Vigilance and Sleep in Microgravity State with COSINOR and Volterra's Kernels Methods

    NASA Astrophysics Data System (ADS)

    Gaudeua de Gerlicz, C.; Golding, J. G.; Bobola, Ph.; Moutarde, C.; Naji, S.

    2008-06-01

    The spaceflight under microgravity cause basically biological and physiological imbalance in human being. Lot of study has been yet release on this topic especially about sleep disturbances and on the circadian rhythms (alternation vigilance-sleep, body, temperature...). Factors like space motion sickness, noise, or excitement can cause severe sleep disturbances. For a stay of longer than four months in space, gradual increases in the planned duration of sleep were reported. [1] The average sleep in orbit was more than 1.5 hours shorter than the during control periods on earth, where sleep averaged 7.9 hours. [2] Alertness and calmness were unregistered yield clear circadian pattern of 24h but with a phase delay of 4h.The calmness showed a biphasic component (12h) mean sleep duration was 6.4 structured by 3-5 non REM/REM cycles. Modelisations of neurophysiologic mechanisms of stress and interactions between various physiological and psychological variables of rhythms have can be yet release with the COSINOR method. [3

  19. Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: role of pineal.

    PubMed

    Rani, Sangeeta; Singh, Sudhi; Malik, Shalie; Singh, Jyoti; Kumar, Vinod

    2009-05-01

    This study investigates the relative strengths of food and light zeitgebers in synchronization of circadian rhythms of Indian weaver birds and the role of the pineal gland in food-induced synchronization of the circadian activity rhythms. Two experiments were performed. In the first experiment, six birds were concurrently exposed for 10 days to PA 12/12 (12 h food present: 12 h food absent) and LD 12/12 (12 h light: 12 h dark). Then, the PA 12/12 cycle was reversed: food was present during the dark period of the LD 12/12 cycle. After 15 days, birds were released into constant dim light (LL(dim)). During exposure to overlapping light and food availability periods, birds were active only during the daytime. When light and food availability periods were presented in antiphase, two of six birds became night active. However, with the removal of the light zeitgeber (i.e., under LL(dim)), all birds were synchronized with reversed PA 12/12; hence, they were active during the subjective night (i.e., the period corresponding to darkness [ZT12-0] of the preceding LD 12/12). The second experiment examined whether the pineal contributed to the food-induced synchronization. After two weeks of concurrent PA 12/12 and LD 12/12 exposure, six birds were released into LL(dim) for 2.5 weeks. Under LL(dim), five of six birds were synchronized to PA 12/12 with the circadian period (tau, tau) = 24 h. The LD 12/12 was restored, and after seven days, birds were pinealectomized (pinx). After 2.5 weeks, pinx birds were again released into LL(dim) for 2.5 weeks. Under LL(dim), pinx birds did not become arrhythmic; instead, they appeared synchronized to PA 12/12 with tau = 24 h (n = 4) or approximately 24 h (n = 2). We conclude that both food and light act as zeitgebers, although light appears to be the relatively stronger cue when the two are present together, as in the natural environment. We also found that the pineal is not necessary for food-induced synchronization. The findings suggest

  20. Utilization of potatoes for life support systems in space. III - Productivity at successive harvest dates under 12-h and 24-h photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Tibbitts, Theodore W.

    1987-01-01

    Efficient crop production for controlled ecological life support systems requires near-optimal growing conditions with harvests taken when production per unit area per unit time is maximum. This maximum for potato was determined using data on Norland plants which were grown in walk-in growth rooms under 12-h and 24-h photoperiods at 16 C. Results show that high tuber production can be obtained from potatoes grown under a continuous light regime. The dry weights (dwt) of tuber and of the entire plants were found to increase under both photoperiods until the final harvest date (148 days), reaching 5732 g tuber dwt and 704 g total dwt under 12-h, and 791 g tuber dwt and 972 g total dwt under 24-h.

  1. Effect of X-ray and ethylnitrosourea exposures separated by 24 h on specific-locus mutation frequency in mouse stem-cell spermatogonia.

    PubMed

    Russell, W L; Carpenter, D A; Hitotsumachi, S

    1988-04-01

    Specific-locus mutation frequencies in mouse stem-cell spermatogonia were determined in 3 experiments in which mature male mice were exposed to 100,m 300, or 500 R of X-rays followed, 24 h later, by intraperitoneal injection of 100 mg/kg of ethylnitrosourea (ENU). The purpose was to find out if the mutation frequencies would be augmented over those expected on the basis of additivity of the effects of the separate treatments. Such augmentation had been observed in earlier work in which exposure to 100 or 500 R of X-rays was followed 24 h later by a second exposure of 500 R. No augmentation was observed for X-rays followed by ENU. The mutation frequencies in all 3 experiments actually fell below those expected on the basis of additivity, although the reductions were not statistically significant.

  2. Association Between Estimated 24-h Urinary Sodium Excretion and Metabolic Syndrome in Korean Adults: The 2009 to 2011 Korea National Health and Nutrition Examination Survey.

    PubMed

    Won, Jong Chul; Hong, Jae Won; Noh, Jung Hyun; Kim, Dong-Jun

    2016-04-01

    High sodium intake is 1 of the modifiable risk factors for cardiovascular disease, but in Korea, daily sodium intake is estimated to be double the level recommended by World Health Organization. We investigated the association between the estimated 24-h urinary sodium excretion (24hUNaE) and metabolic syndrome using nationwide population data. In total, 17,541 individuals (weighted n = 33,200,054; weighted men, 52.5% [95% confidence interval, CI = 51.8-53.3]; weighted age, 45.2 years [44.7-45.7]) who participated in the Korean Health and Nutrition Examination Survey 2009 to 2011 were investigated. NCEP-ATP III criteria for metabolic syndrome were used, and sodium intake was estimated by 24hUNaE using Tanaka equation with a spot urine sample. The weighted mean 24hUNaE values were 3964 mg/d (95% CI = 3885-4044) in men and 4736 mg/d (4654-4817) in women. The weighted age-adjusted prevalence of metabolic syndrome was 22.2% (21.4-23.0), and it increased with 24hUNaE quartile in both men and women (mean ± standard error of the mean; men: 22.5 ± 1.0%, 23.0 ± 1.0%, 26.0 ± 1.2%, and 26.0 ± 1.2%; P = 0.026; women: 19.4 ± 0.8%, 17.7 ± 0.8%, 19.8 ± 1.0%, and 23.0 ± 1.1%; P = 0.002, for quartiles 1-4, respectively). Even after adjustment for age, daily calorie intake, heavy alcohol drinking, regular exercise, college graduation, and antihypertensive medication, the weighted prevalence of metabolic syndrome increased with the increase in 24hUNaE in men and women. The weighted 24hUNaE was positively associated with the number of metabolic syndrome components after adjustment for confounding factors in men and women. In subjects without antihypertensive medication, the odds ratio for metabolic syndrome in quartile 4 of 24hUNaE compared with quartile 1 was 1.56 (1.33-1.84, P < 0.001) in the total population, 1.66 (1.34-2.06, P < 0.001) in men, and 1.94 (1.49-2.53, P < 0.001) in women. In this

  3. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank.

    PubMed

    Galante, Julieta; Adamska, Ligia; Young, Alan; Young, Heather; Littlejohns, Thomas J; Gallacher, John; Allen, Naomi

    2016-02-28

    Although dietary intake over a single 24-h period may be atypical of an individual's habitual pattern, multiple 24-h dietary assessments can be representative of habitual intake and help in assessing seasonal variation. Web-based questionnaires are convenient for the participant and result in automatic data capture for study investigators. This study reports on the acceptability of repeated web-based administration of the Oxford WebQ--a 24-h recall of frequency from a set food list suitable for self-completion from which energy and nutrient values can be automatically generated. As part of the UK Biobank study, four invitations to complete the Oxford WebQ were sent by email over a 16-month period. Overall, 176 012 (53% of those invited) participants completed the online version of the Oxford WebQ at least once and 66% completed it more than once, although only 16% completed it on all four occasions. The response rate for any one round of invitations varied between 34 and 26%. On most occasions, the Oxford WebQ was completed on the same day that they received the invitation, although this was less likely if sent on a weekend. Participants who completed the Oxford WebQ tended to be white, female, slightly older, less deprived and more educated, which is typical of health-conscious volunteer-based studies. These findings provide preliminary evidence to suggest that repeated 24-h dietary assessment via the Internet is acceptable to the public and a feasible strategy for large population-based studies.

  4. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32.

    PubMed

    Kostek, Matthew C; Chen, Yi-Wen; Cuthbertson, Daniel J; Shi, Rongye; Fedele, Mark J; Esser, Karyn A; Rennie, Michael J

    2007-09-19

    Resistance training using lengthening (eccentric) contractions induces greater increases in muscle size than shortening (concentric) contractions, but the underlying molecular mechanisms are not clear. Using temporal expression profiling, we compared changes in gene expression within 24 h of an acute bout of each type of contractions conducted simultaneously in the quadriceps of different legs. Five healthy young men performed shortening contractions with one leg while the contralateral leg performed lengthening contractions. Biopsies were taken from both legs before exercise and 3, 6, and 24 h afterwards, in the fed state. Expression profiling (n = 3) was performed using a custom-made Affymetrix MuscleChip containing probe sets of approximately 3,300 known genes and expressed sequence tags expressed in skeletal muscle. We identified 51 transcripts differentially regulated between the two exercise modes. Using unsupervised hierarchical clustering, we identified four distinct clusters, three of which corresponded to unique functional categories (protein synthesis, stress response/early growth, and sarcolemmal structure). Using quantitative RT-PCR (n = 5), we verified expression changes (lengthening/shortening) in SIX1 (3 h, -1.9-fold, P < 0.001), CSRP3 (6 h, 2.9-fold, P < 0.05), and MUSTN1 (24 h, 4.3-fold, P < 0.05). We examined whether FBXO32/atrogin-1/MAFbx, a known regulator of protein breakdown and of muscle atrophy was differentially expressed: the gene was downregulated after lengthening contractions (3 h, 2.7-fold, P < 0.05; 6 h, 3.3-fold, P < 0.05; 24 h, 2.3-fold, P < 0.05). The results suggested that lengthening and shortening contractions activated distinct molecular pathways as early as 3 h postexercise. The molecular differences might contribute to mechanisms underlying the physiological adaptations seen with training using the two modes of exercise.

  5. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters.

    PubMed

    Weinert, Dietmar; Schöttner, Konrad; Müller, Lisa; Wienke, Andreas

    2016-01-01

    Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were

  6. Changes in glucose, insulin, and growth hormone levels associated with bedrest

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Leach, C. S.; Winget, C. M.; Goodwin, A. L.; Rambaut, P. C.

    1976-01-01

    Changes in plasma glucose, insulin, and growth hormone (HGH) resulting from exposure to 56 d of bedrest were determined in five healthy young male subjects. Changes in the daily levels of these factors for each subject were expressed as the mean of six blood samples per 24-h period. The level of HGH dropped after 10 d of bedrest, then showed a 1.5-fold increase at 20 d and subsequently decreased gradually reaching levels of 2.5 mg/ml/24 h, well below pre-bedrest controls of 4.2 mg/ml/24 h, by the 54th d. In spite of a marked increase in the daily plasma insulin levels during the first 30 d of bedrest, glucose levels remained unchanged. Beyond 30 d of bedrest, insulin began decreasing toward pre-bedrest levels and glucose followed with a similar reduction to below the control levels of 75 mg/100 ml/24 h on day 54. The daily mean changes reflect a change in the amplitude of the diurnal variation. The daily peak in plasma insulin shifted progressively to the late evening during the bedrest period.

  7. The circadian body temperature rhythm of Djungarian Hamsters (Phodopus sungorus) revealing different circadian phenotypes.

    PubMed

    Schöttner, Konrad; Waterhouse, Jim; Weinert, Dietmar

    2011-06-01

    Djungarian hamsters (Phodopus sungorus) of our breeding stock show three rhythmic phenotypes: wild type (WT) animals which start their activity shortly after "lights-off" and are active until "lights-on"; delayed activity onset (DAO) hamsters whose activity onset is delayed after "lights-off" but activity offset coincides with "lights-on"; and arrhythmic hamsters (AR) that are episodically active throughout the 24-h day. The main aim of the present study was to investigate whether the observed phenotypic differences are caused by an altered output from the suprachiasmatic nuclei (SCN). As a marker of the circadian clock, the body temperature rhythm purified from masking effects due to motor activity was used. Hamsters were kept singly under standardized laboratory conditions (L:D=14:10h, T: 22°C±2°C, food and water ad libitum). Body temperature and motor activity were monitored by means of implanted G2-E-Mitters and the VitalView(®) System (MiniMitter). Each phenotype showed distinctive rhythms of overt activity and body temperature, these two rhythms being very similar for each phenotype. Correcting body temperatures for the effects of activity produced purified temperature rhythms which retained profiles that were distinctive for the phenotype. These results show that the body temperature rhythm is not simply a consequence of the activity pattern but is caused by the endogenous circadian system. The purification method also allowed estimation of thermoregulatory efficiency using the gradients as a measure for the sensitivity of body temperature to activity changes. In WT and DAO hamsters, the gradients were low during activity period and showed two peaks. The first one occurred after "lights-on", the second one preceded the activity onset. In AR hamsters, the gradients did not reveal circadian changes. The results provide good evidence that the different phenotypes result from differences in the circadian clock. In AR hamsters, the SCN do not produce an

  8. Biological clocks and rhythms in intertidal crustaceans.

    PubMed

    de la Iglesia, Horacio O; Hsu, Yun-Wei A

    2010-06-01

    Animals with habitats within the intertidal zone are exposed to environmental cycles that include the ebb and flow of tidal waters, changes in tidal levels associated with the lunar month, the light-dark cycle and the alternation of seasons. This intricate temporal environment results in the selection of biological timing systems with endogenous clocks that can oscillate with this wide range of periodicities. Whereas great progress has been made in our understanding of the molecular and neural bases of circadian rhythms, that is, endogenous rhythms synchronized to the solar day, there is little understanding on how circatidal rhythms, namely endogenous rhythms synchronized to tides, are generated. Intertidal crustaceans have been a pivotal group for the demonstration of the endogenous nature of circatidal rhythms and their mechanisms of entrainment. We review here some of the classic work using intertidal crustaceans to unmask basic properties of circatidal systems, as well as work from our laboratory that aims to identify putative chemical signals that could be involved in the circatidal systems of decapod crustaceans.

  9. Daily Rhythms in Mobile Telephone Communication

    PubMed Central

    Aledavood, Talayeh; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Moro, Esteban; Dunbar, Robin I. M.; Saramäki, Jari

    2015-01-01

    Circadian rhythms are known to be important drivers of human activity and the recent availability of electronic records of human behaviour has provided fine-grained data of temporal patterns of activity on a large scale. Further, questionnaire studies have identified important individual differences in circadian rhythms, with people broadly categorised into morning-like or evening-like individuals. However, little is known about the social aspects of these circadian rhythms, or how they vary across individuals. In this study we use a unique 18-month dataset that combines mobile phone calls and questionnaire data to examine individual differences in the daily rhythms of mobile phone activity. We demonstrate clear individual differences in daily patterns of phone calls, and show that these individual differences are persistent despite a high degree of turnover in the individuals’ social networks. Further, women’s calls were longer than men’s calls, especially during the evening and at night, and these calls were typically focused on a small number of emotionally intense relationships. These results demonstrate that individual differences in circadian rhythms are not just related to broad patterns of morningness and eveningness, but have a strong social component, in directing phone calls to specific individuals at specific times of day. PMID:26390215

  10. Unmasking ultradian rhythms in gene expression

    PubMed Central

    van der Veen, Daan R.; Gerkema, Menno P.

    2017-01-01

    Biological oscillations with an ultradian time scale of 1 to several hours include cycles in behavioral arousal, episodic glucocorticoid release, and gene expression. Ultradian rhythms are thought to have an extrinsic origin because of a perceived absence of ultradian rhythmicity in vitro and a lack of known molecular ultradian oscillators. We designed a novel, non–spectral-analysis method of separating ultradian from circadian components and applied it to a published gene expression dataset with an ultradian sampling resolution. Ultradian rhythms in mouse hepatocytes in vivo have been published, and we validated our approach using this control by confirming 175 of 323 ultradian genes identified in a prior study and found 862 additional ultradian genes. For the first time, we now report ultradian expression of >900 genes in vitro. Sixty genes exhibited ultradian transcriptional rhythmicity, both in vivo and in vitro, including 5 genes involved in the cell cycle. Within these 60 genes, we identified significant enrichment of specific DNA motifs in the 1000 bp proximal promotor, some of which associate with known transcriptional factors. These findings are in strong support of instrinsically driven ultradian rhythms and expose potential molecular mechanisms and functions underlying ultradian rhythms that remain unknown.—Van der Veen, D. R., Gerkema, M. P. Unmasking ultradian rhythms in gene expression. PMID:27871062

  11. Evaluation of reduction of Fraser incubation by 24h in the EN ISO 11290-1 standard on detection and diversity of Listeria species.

    PubMed

    Gnanou Besse, Nathalie; Favret, Sandra; Desreumaux, Jennifer; Decourseulles Brasseur, Emilie; Kalmokoff, Martin

    2016-05-02

    The EN ISO 11290-1 method for the isolation of Listeria monocytogenes from food is carried out using a double enrichment in Fraser broths. While the method is effective it is also quite long requiring 4-7 days to process a contaminated food, and may be adversely affected by inter-strain and/or inter-species competition in samples containing mixed Listeria populations. Currently, we have little information on the impact of competition on food testing under routine conditions. Food samples (n=130) were analyzed using the standard method and the evolution of Listeria populations in 89 naturally contaminated samples followed over the entire enrichment process. In most instances, maximum increase in L. monocytogenes population occurred over the first 24h following sub-culture in Full Fraser broth and strain recovery was similar at both 24 and 48 h, indicating that the second enrichment step can be reduced by 24h without impacting the recovery of L. monocytogenes or affecting the sensitivity of the method. In approximately 6% of naturally contaminated samples the presence of competing Listeria species adversely impacted L. monocytogenes population levels. Moreover, these effects were more pronounced during the latter 24h of the Fraser enrichment, and potentially could affect or complicate the isolation of these strains.

  12. Effects of aerobic exercise intensity on 24-h ambulatory blood pressure in individuals with type 2 diabetes and prehypertension

    PubMed Central

    Karoline de Morais, Pâmella; Sales, Marcelo Magalhães; Alves de Almeida, Jeeser; Motta-Santos, Daisy; Victor de Sousa, Caio; Simões, Herbert Gustavo

    2015-01-01

    [Purpose] To verify the effects of different intensities of aerobic exercise on 24-hour ambulatory blood pressure (BP) responses in individuals with type 2 diabetes mellitus (T2D) and prehypertension. [Subjects and Methods] Ten individuals with T2D and prehypertension (55.8 ± 7.7 years old; blood glucose 133.0 ± 36.7 mg·dL−1 and awake BP 130.6 ± 1.6/ 80.5 ± 1.8 mmHg) completed three randomly assigned experiments: non-exercise control (CON) and exercise at moderate (MOD) and maximal (MAX) intensities. Heart rate (HR), BP, blood lactate concentrations ([Lac]), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured at rest, during the experimental sessions, and during the 60 min recovery period. After this period, ambulatory blood pressure was monitored for 24 h. [Results] The results indicate that [Lac] (MAX: 6.7±2.0 vs. MOD: 3.8±1.2 mM), RPE (MAX: 19±1.3 vs. MOD: 11±2.3) and VO2peak (MAX: 20.2±4.1 vs. MOD: 14.0±3.0 mL·kg−1·min−1) were highest following the MAX session. Compared with CON, only MAX elicited post-exercise BP reduction that lasted for 8 h after exercise and during sleep. [Conclusion] A single session of aerobic exercise resulted in 24 h BP reductions in individuals with T2D, especially while sleeping, and this reduction seems to be dependent on the intensity of the exercise performed. PMID:25642036

  13. A circadian rhythm in skill-based errors in aviation maintenance.

    PubMed

    Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A

    2010-07-01

    , and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.

  14. Altered circadian rhythm reentrainment to light phase shifts in rats with low levels of brain angiotensinogen.

    PubMed

    Campos, Luciana A; Plehm, Ralph; Cipolla-Neto, José; Bader, Michael; Baltatu, Ovidiu C

    2006-04-01

    In this study, we aimed to investigate the adaptation of blood pressure (BP), heart rate (HR), and locomotor activity (LA) circadian rhythms to light cycle shift in transgenic rats with a deficit in brain angiotensin [TGR(ASrAOGEN)]. BP, HR, and LA were measured by telemetry. After baseline recordings (bLD), the light cycle was inverted by prolonging the light by 12 h and thereafter the dark period by 12 h, resulting in inverted dark-light (DL) or light-dark (LD) cycles. Toward that end, a 24-h dark was maintained for 14 days (free-running conditions). When light cycle was changed from bLD to DL, the acrophases (peak time of curve fitting) of BP, HR, and LA shifted to the new dark period in both SD and TGR(ASrAOGEN) rats. However, the readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. The LA acrophases changed similarly in both strains. When light cycle was changed from DL to LD by prolonging the dark period by 12 h, the reentrainment of BP and LA occurred faster than the previous shift in both strains. The readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. In free-running conditions, the circadian rhythms of the investigated parameters adapted in TGR(ASrAOGEN) and SD rats in a similar manner. These results demonstrate that the brain RAS plays an important role in mediating the effects of light cycle shifts on the circadian variation of BP and HR. The adaptive behavior of cardiovascular circadian rhythms depends on the initial direction of light-dark changes.

  15. Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics.

    PubMed

    Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene

    2007-12-26

    The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.

  16. Thoracic surface temperature rhythms as circadian biomarkers for cancer chronotherapy

    PubMed Central

    Roche, Véronique Pasquale; Mohamad-Djafari, Ali; Innominato, Pasquale Fabio; Karaboué, Abdoulaye; Gorbach, Alexander; Lévi, Francis Albert

    2014-01-01

    The disruption of the temperature circadian rhythm has been associated with cancer progression, while its amplification resulted in cancer inhibition in experimental tumor models. The current study investigated the relevance of skin surface temperature rhythms as biomarkers of the Circadian Timing System (CTS) in order to optimize chronotherapy timing in individual cancer patients. Baseline skin surface temperature at four sites and wrist accelerations were measured every minute for 4 days in 16 patients with metastatic gastro-intestinal cancer before chronotherapy administration. Temperature and rest-activity were recorded, respectively, with wireless skin surface temperature patches (Respironics, Phillips) and an actigraph (Ambulatory Monitoring). Both variables were further monitored in 10 of these patients during and after a 4-day course of a fixed chronotherapy protocol. Collected at baseline, during and after therapy longitudinal data sets were processed using Fast Fourier Transform Cosinor and Linear Discriminant Analyses methods. A circadian rhythm was statistically validated with a period of 24 h (p<0.05) for 49/61 temperature time series (80.3%), and 15/16 rest-activity patterns (93.7%) at baseline. However, individual circadian amplitudes varied from 0.04 °C to 2.86 °C for skin surface temperature (median, 0.72 °C), and from 16.6 to 146.1 acc/min for rest-activity (median, 88.9 acc/min). Thirty-nine pairs of baseline temperature and rest-activity time series (75%) were correlated (r>|0.7|; p<0.05). Individual circadian acrophases at baseline were scattered from 15:18 to 6:05 for skin surface temperature, and from 12:19 to 15:18 for rest-activity, with respective median values of 01:10 (25–75% quartiles, 22:35–3:07) and 14:12 (13:14–14:31). The circadian patterns in skin surface temperature and rest-activity persisted or were amplified during and after fixed chronotherapy delivery for 5/10 patients. In contrast, transient or sustained disruption

  17. Genetic basis of human circadian rhythm disorders.

    PubMed

    Jones, Christopher R; Huang, Angela L; Ptáček, Louis J; Fu, Ying-Hui

    2013-05-01

    Circadian rhythm disorders constitute a group of phenotypes that usually present as altered sleep-wake schedules. Until a human genetics approach was applied to investigate these traits, the genetic components regulating human circadian rhythm and sleep behaviors remained mysterious. Steady advances in the last decade have dramatically improved our understanding of the genes involved in circadian rhythmicity and sleep regulation. Finding these genes presents new opportunities to use a wide range of approaches, including in vitro molecular studies and in vivo animal modeling, to elevate our understanding of how sleep and circadian rhythms are regulated and maintained. Ultimately, this knowledge will reveal how circadian and sleep disruption contribute to various ailments and shed light on how best to maintain and recover good health.

  18. Circadian rhythm asynchrony in man during hypokinesis.

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  19. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options.

  20. Temporaly germinating rhythms of moss Funaria hygrometrica Hedw. spores

    NASA Astrophysics Data System (ADS)

    Pundiak, O.; Demkiv, O.

    The process of an organism development is regular and gradual. These characteristics of the development are especially evident in archegonial plants. It was shown that spores of moss Funar ia hygrometrica Hedw. in Knop's nutrient medium with 0,2% glucose in the dark in vertical orientation of Petry dishes, germinated polarly depending on gravity direction. At the begining, the primary rhyziod developed being usually directed downwards and then after 24 hours primary chloronema developed growing usually upwards. The amyloplasts sedimentation was shown before the rhyzoid and chloronema formation. It determines not only the time, but spatial orientation of the primary rhyzoid and chloronema (Pundjak at al., 2001). EGTA in concentration of 510- 5 M inhibited the initiation of the primary rhyzoid. The primary chloronema developed as usual in 48 h after the spores sowing. Temporary cooling caused analogical effect. Basing on these results we drew the conclusion that the primary rhyzoid and chloronema differently react on the action of EGTA and the cooling. The primary chloronema was more tolerant then the rhyzoid and maintained its usual gravisensitivy. Thus, we can think that EGTA and the cooling stop the development of primary rhyzoid, but it does not disturb physiological rhythm which underlais in the base of the function of the biological clock. The stability of biological rhythms and their indeterminism in respect of described above external and internal factors is real thanks to dissipation, which makes considerable interval of uncertainties of distributions of distances between segments of biopolymers and thus, of their fermentative activities (Pundjak,2001). Therefore the rise of biological clocks of each organism is in certain sense transcendental.

  1. Apparent motion enhances visual rhythm discrimination in infancy.

    PubMed

    Brandon, Melissa; Saffran, Jenny R

    2011-05-01

    Many studies have demonstrated that infants exhibit robust auditory rhythm discrimination, but research on infants' perception of visual rhythm is limited. In particular, the role of motion in infants' perception of visual rhythm remains unknown, despite the prevalence of motion cues in naturally occurring visual rhythms. In the present study, we examined the role of motion in 7-month-old infants' discrimination of visual rhythms by comparing experimental conditions with apparent motion in the stimuli versus stationary rhythmic stimuli. Infants succeeded at discriminating visual rhythms only when the visual rhythm occurred with an apparent motion component. These results support the view that motion plays a role in infants' perception of visual temporal information, consistent with the manner in which natural rhythms appear in the visual world.

  2. Blooming rhythms of cactus Cereus peruvianus with nocturnal peak at full moon during seasons of prolonged daytime photoperiod.

    PubMed

    Ben-Attia, Mossadok; Reinberg, Alain; Smolensky, Michael H; Gadacha, Wafa; Khedaier, Achraf; Sani, Mamane; Touitou, Yvan; Boughamni, Néziha Ghanem

    2016-01-01

    Cereus peruvianus (Peruvian apple cactus) is a large erect and thorny succulent cactus characterized by column-like (cereus [L]: column), that is, candle-shaped, appendages. For three successive years (1100 days), between early April and late November, we studied the flowering patterns of eight cacti growing in public gardens and rural areas of north and central Tunisia, far from nighttime artificial illumination, in relation to natural environmental light, temperature, relative humidity and precipitation parameters. Flower blooming was assessed nightly between 23:00 h and until at least 02:00 h, and additionally around-the-clock at ~1 h intervals for 30 consecutive days during the late summer of each year of study to quantify both nyctohemeral (day-night) and lunar patterns. During the summer months of prolonged daytime photoperiod, flower blooming of C. peruvianus exhibited predictable-in-time variation as "waves" with average period of 29.5 days synchronized by the light of the full moon. The large-sized flower (~16 cm diameter) opens almost exclusively at night, between sunset and sunrise, as a 24 h rhythm during a specific 3-4-day span of the lunar cycle (full moon), with a strong correlation between moon phase and number and proportion of flowers in bloom (ranging from r = +0.59 to +0.91). Black, blue and red cotton sheets were used to filter specific spectral bands of nighttime moonlight from illuminating randomly selected plant appendages as a means to test the hypothesis of a "gating" 24 h rhythm phenomenon of photoreceptors at the bud level. Relative to control conditions (no light filtering), black sheet covering inhibited flower bud induction by 87.5%, red sheet covering by 46.6% and blue sheet covering by 34%, and the respective inhibiting effects on number of flowers in bloom were essentially 100%, ~81% and ~44%. C. peruvianus is a unique example of a terrestrial plant that exhibits a circadian flowering rhythm (peak ~00:00 h) "gated" by 24 h, lunar

  3. What a Nostril Knows: Olfactory Nerve-Evoked AMPA Responses Increase while NMDA Responses Decrease at 24-h Post-Training for Lateralized Odor Preference Memory in Neonate Rat

    ERIC Educational Resources Information Center

    Yuan, Qi; Harley, Carolyn W.

    2012-01-01

    Increased AMPA signaling is proposed to mediate long-term memory. Rat neonates acquire odor preferences in a single olfactory bulb if one nostril is occluded at training. Memory testing here confirmed that only trained bulbs support increased odor preference at 24 h. Olfactory nerve field potentials were tested at 24 h in slices from trained and…

  4. Circadian regulation gene polymorphisms are associated with sleep disruption and duration, and circadian phase and rhythm in adults with HIV.

    PubMed

    Lee, Kathryn A; Gay, Caryl; Byun, Eeeseung; Lerdal, Anners; Pullinger, Clive R; Aouizerat, Bradley E

    2015-01-01

    Genes involved in circadian regulation, such as circadian locomotor output cycles kaput [CLOCK], cryptochrome [CRY1] and period [PER], have been associated with sleep outcomes in prior animal and human research. However, it is unclear whether polymorphisms in these genes are associated with the sleep disturbances commonly experienced by adults living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of this study was to describe polymorphisms in selected circadian genes that are associated with sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among adults living with HIV/AIDS. A convenience sample of 289 adults with HIV/AIDS was recruited from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn for 72 h on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or percentage of wake after sleep onset (WASO) and several circadian rhythm parameters: mesor, amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-h autocorrelation. Circadian phase measures included clock time for peak activity (acrophase) from actigraphy movement data, and bed time and final wake time from actigraphy and self-report. Genotyping was conducted for polymorphisms in five candidate genes involved in circadian regulation: CLOCK, CRY1, PER1, PER2 and PER3. Demographic and clinical variables were evaluated as potential covariates. Interactions between genotype and HIV variables (i.e. viral load, years since HIV diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g. race, gender, CD4+ T-cell count, waist circumference, medication use, smoking and depressive symptoms), CLOCK was associated with WASO, 24-h autocorrelation and objectively-measured bed time; CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported habitual wake time; PER2 was associated with TST

  5. Perceptual Tests of Rhythmic Similarity: I. Mora Rhythm

    ERIC Educational Resources Information Center

    Murty, Lalita; Otake, Takashi; Cutler, Anne

    2007-01-01

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was…

  6. Toward an Effective Pedagogy for Teaching Rhythm: Gordon and Beyond

    ERIC Educational Resources Information Center

    Dalby, Bruce

    2005-01-01

    Rhythm is arguably the most important component of music. In all musics of all cultures, past and present, rhythm is central to musical experience and understanding. Given the enormous diversity of rhythm, perhaps it is no surprise that there is a wide range of opinion about how to teach it. It seems that every approach to music education…

  7. A rhythm landscape approach to the developmental dynamics of birdsong

    PubMed Central

    Sasahara, Kazutoshi; Tchernichovski, Ofer; Takahasi, Miki; Suzuki, Kenta; Okanoya, Kazuo

    2015-01-01

    Unlike simple biological rhythms, the rhythm of the oscine bird song is a learned time series of diverse sounds that change dynamically during vocal ontogeny. How to quantify rhythm development is one of the most important challenges in behavioural biology. Here, we propose a simple method, called ‘rhythm landscape’, to visualize and quantify how rhythm structure, which is measured as durational patterns of sounds and silences, emerges and changes over development. Applying this method to the development of Bengalese finch songs, we show that the rhythm structure begins with a broadband rhythm that develops into diverse rhythms largely through branching from precursors. Furthermore, an information-theoretic measure, the Jensen–Shannon divergence, was used to characterize the crystallization process of birdsong rhythm, which started with a high rate of rhythm change and progressed to a stage of slow refinement. This simple method provides a useful description of rhythm development, thereby helping to reveal key temporal constraints on complex biological rhythms. PMID:26538559

  8. The Features and Training of English Stress and Rhythm

    ERIC Educational Resources Information Center

    Cai, Cui-yun

    2008-01-01

    In second language learning, to possess a perfect pronunciation, the importance of stress and rhythm should not be ignored. This articles explores the nature of sentence and word stress as well as rhythm, thus putting forward some feasible ways of training and acquiring a good English stress and rhythm in EFLT (English as Foreign Language…

  9. Circadian rhythms in Macaca mulatta monkeys during Bion 11 flight

    NASA Technical Reports Server (NTRS)

    Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.; Tumurova, E. G.; Fuller, C. A.

    2000-01-01

    Circadian rhythms of primate brain temperature, head and ankle skin temperature, motor activity, and heart rate were studied during spaceflight and on the ground. In space, the circadian rhythms of all the parameters were synchronized with diurnal Zeitgebers. However, in space the brain temperature rhythm showed a significantly more delayed phase angle, which may be ascribed to an increase of the endogenous circadian period.

  10. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    ERIC Educational Resources Information Center

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  11. Does Melody Assist in the Reproduction of Novel Rhythm Patterns?

    ERIC Educational Resources Information Center

    Kinney, Daryl W.; Forsythe, Jere L.

    2013-01-01

    We examined music education majors' ability to reproduce rhythmic stimuli presented in melody and rhythm only conditions. Participants reproduced rhythms of two-measure music examples by immediately echo-performing through a method of their choosing (e.g., clapping, tapping, vocalizing). Forty examples were presented in melody and rhythm only…

  12. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry.

  13. Case study of psychophysiological diary: infradian rhythms.

    PubMed

    Slover, G P; Morris, R W; Stroebel, C F; Patel, M K

    1987-01-01

    A 4-year case study was made of a 42-year-old white woman as seen through the psychophysiological diary. There was an awakening diary and a bedtime diary composed of 125 variables. The data are divided into two series: series I containing a manic episode, and series II as a control. Spectral analysis shows infradian rhythms in hypoglycemia and fear (11 days) and time to fall asleep (5 days). Depressed feelings showed a circatrigintan (28-day) rhythm, which was not correlated with menses. Mania had an annual rhythm (spring) but no circatrigintan or less rhythm. The following correlations have a P value less than or equal to 0.01: mania was directly correlated with number of sleeping pills, time to really wake up, need for rest, moodiness, and helplessness, and indirectly with expectations, pressure at work, sense of time, and emotional state. Interestingly, awakening pulse is directly correlated with awakening temperature, number of sleeping pills, bedtime pulse, tiredness at bedtime, hypoglycemia, and fear. Bedtime pulse is directly correlated with awakening pulse and awakening temperature. Both pulse and temperature at bedtime are directly correlated with negative variables such as tiredness, moodiness, helplessness, and depression, and inversely correlated with positive variables such as happiness, loving, performance at work, and thinking efficiency. This study demonstrates a significant correlation between physiological variables.

  14. Procedures for numerical analysis of circadian rhythms

    PubMed Central

    REFINETTI, ROBERTO; LISSEN, GERMAINE CORNÉ; HALBERG, FRANZ

    2010-01-01

    This article reviews various procedures used in the analysis of circadian rhythms at the populational, organismal, cellular and molecular levels. The procedures range from visual inspection of time plots and actograms to several mathematical methods of time series analysis. Computational steps are described in some detail, and additional bibliographic resources and computer programs are listed. PMID:23710111

  15. [Circadian rhythm sleep disorders in psychiatric diseases].

    PubMed

    Bromundt, Vivien

    2014-11-01

    Circadian rhythm sleep disorders are prevalent among psychiatric patients. This is most probable due to a close relationship between functional disturbances of the internal clock, sleep regulation and mental health. Mechanisms on molecular level of the circadian clock and neurotransmitter signalling are involved in the development of both disorders. Moreover, circadian disorders and psychiatric diseases favour each other by accessory symptoms such as stress or social isolation. Actimetry to objectively quantify the rest-activity cycle and salivary melatonin profiles as marker for the circadian phase help to diagnose circadian rhythm sleep disorders in psychiatric patients. Chronotherapeutics such as bright light therapy, dark therapy, melatonin administration, and wake therapy are used to synchronise and consolidate circadian rhythms and help in the treatment of depression and other psychiatric disorders, but are still neglected in medicine. More molecular to behavioural research is needed for the understanding of the development of circadian disorders and their relationship to psychiatric illnesses. This will help to boost the awareness and treatment of circadian rhythm sleep disorders in psychiatry.

  16. Characterization of neurospora circadian rhythms in space

    NASA Technical Reports Server (NTRS)

    Ferraro, James S.

    1987-01-01

    To determine whether the circadian rhythm of conidiation in neurospora crassa is endogenously derived or is driven by some geophysical time cue, an experiment was conducted on space shuttle flight STS-9, where inoculated race tubes were exposed to the microgravity environment of space. The results demonstated that the rhythm can persist in space. However, there were several minor alterations noted; an increase in the period of the oscillation and the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of the flight, the tubes were exposed to light while their growth fronts were marked. It appears that some aspects of this marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. It was hypothesized that the damping found prior to the marking procedure on STS-9 may have been a result of the hypergravity pulse of launch and not due to the microgravity of the orbital lab; furthermore, that the marking procedure, by exposing the samples to light, had reinstated rhythmicity. To test this, an investigation was conducted into the effects of acute and chronic exposure to hypergravity.

  17. Respiratory rhythm generation: triple oscillator hypothesis

    PubMed Central

    Anderson, Tatiana M.; Ramirez, Jan-Marino

    2017-01-01

    Breathing is vital for survival but also interesting from the perspective of rhythm generation. This rhythmic behavior is generated within the brainstem and is thought to emerge through the interaction between independent oscillatory neuronal networks. In mammals, breathing is composed of three phases – inspiration, post-inspiration, and active expiration – and this article discusses the concept that each phase is generated by anatomically distinct rhythm-generating networks: the preBötzinger complex (preBötC), the post-inspiratory complex (PiCo), and the lateral parafacial nucleus (pF L), respectively. The preBötC was first discovered 25 years ago and was shown to be both necessary and sufficient for the generation of inspiration. More recently, networks have been described that are responsible for post-inspiration and active expiration. Here, we attempt to collate the current knowledge and hypotheses regarding how respiratory rhythms are generated, the role that inhibition plays, and the interactions between the medullary networks. Our considerations may have implications for rhythm generation in general. PMID:28299192

  18. Environmental synchronizers of squirrel monkey circadian rhythms

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1977-01-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation on the drinking and activity rhythms of unrestrained monkeys was examined. In the absence of other time cues, 24-hr cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of the rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 hr with all possible phase relationships between the rhythms and the environmental cycles being examined.

  19. From Biological Rhythms to Social Rhythms: Physiological Precursors of Mother-Infant Synchrony

    ERIC Educational Resources Information Center

    Feldman, Ruth

    2006-01-01

    Links between neonatal biological rhythms and the emergence of interaction rhythms were examined in 3 groups (N=71): high-risk preterms (HR; birth weight less than 1,000 g), low-risk preterms (LR; birth weight=1,700-1,850 g), and full-term (FT) infants. Once a week for premature infants and on the 2nd day for FT infants, sleep-wake cyclicity was…

  20. Nocturnal sleep-related variables from 24-h free-living waist-worn accelerometry: International Study of Childhood Obesity, Lifestyle and the Environment

    PubMed Central

    Tudor-Locke, C; Mire, E F; Barreira, T V; Schuna, J M; Chaput, J-P; Fogelholm, M; Hu, G; Kurpad, A; Kuriyan, R; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Sarmiento, O L; Standage, M; Tremblay, M S; Zhao, P; Church, T S; Katzmarzyk, P T

    2015-01-01

    Objectives: We describe the process of identifying and defining nocturnal sleep-related variables (for example, movement/non-movement indicators of sleep efficiency, waking episodes, midpoint and so on) using the unique 24-h waist-worn free-living accelerometer data collected in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Methods: Seven consecutive days of 24-h waist-worn accelerometer (GT3X+, ActiGraph LLC) data were collected from over 500 children at each site. An expert subgroup of the research team with accelerometry expertize, frontline data collectors and data managers met on several occasions to categorize and operationally define nocturnal accelerometer signal data patterns. The iterative process was informed by the raw data drawn from a sub set of the US data, and culminated in a refined and replicable delineated definition for each identified nocturnal sleep-related variable. Ultimately based on 6318 participants from all 12 ISCOLE sites with valid total sleep episode time (TSET), we report average clock times for nocturnal sleep onset, offset and midpoint in addition to sleep period time, TSET and restful sleep efficiency (among other derived variables). Results: Nocturnal sleep onset occurred at 2218 hours and nocturnal sleep offset at 0707 hours. The mean midpoint was 0243 hours. The sleep period time of 529.6 min (8.8 h) was typically accumulated in a single episode, making the average TSET very similar in duration (529.0 min). The mean restful sleep efficiency ranged from 86.8% (based on absolute non-movement of 0 counts per minute) to 96.0% (based on relative non-movement of <100 counts per minute). Conclusions: These variables extend the potential of field-based 24-h waist-worn accelerometry to distinguish and categorize the underlying robust patterns of movement/non-movement signals conveying magnitude, duration, frequency and periodicity during the nocturnal sleep period. PMID:27152185

  1. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  2. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  3. Blood Test: Glucose

    MedlinePlus

    ... Your 1- to 2-Year-Old Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose A A A What's in this article? What ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  4. Isotope concentrations from 24-h urine and 3-h serum samples can be used to measure intestinal magnesium absorption in postmenopausal women.

    PubMed

    Hansen, Karen E; Nabak, Andrea C; Johnson, Rachael Erin; Marvdashti, Sheeva; Keuler, Nicholas S; Shafer, Martin M; Abrams, Steven A

    2014-04-01

    Studies suggest a link between magnesium status and osteoporosis. One barrier to more conclusive research on the potential relation is measuring intestinal magnesium absorption (MgA), which requires the use of stable isotopes and a ≥6-d stool or 3-d urine collection. We evaluated alternative methods of measuring MgA. We administered 2 stable magnesium isotopes to 15 postmenopausal women (cohort 1) aged 62 ± 8 y with a dietary magnesium intake of 345 ± 72 mg/d. Participants fasted from 1200 h to 0700 h and then consumed breakfast with ∼23 mg of oral ²⁶Mg and ∼11 mg of i.v. ²⁵Mg. We measured magnesium isotope concentrations in 72-h urine, spot urine (36, 48, 60, and 72 h), and spot serum (1, 3, and 5 h) samples collected after isotope dosing. We calculated MgA using the dose-corrected fraction of isotope concentrations from the 72-h urine collection. We validated new methods in 10 postmenopausal women (cohort 2) aged 59 ± 5 y with a dietary magnesium intake of 325 ± 122 mg/d. In cohort 1, MgA based on the 72-h urine collection was 0.28 ± 0.08. The 72-h MgA correlated most highly with 0-24 h urine MgA value alone (ρ = 0.95, P < 0.001) or the mean of the 0-24 h urine and the 3-h (ρ = 0.93, P < 0.001) or 5-h (ρ = 0.96, P < 0.001) serum MgA values. In cohort 2, Bland-Altman bias was lowest (-0.003, P = 0.82) using means of the 0-24 h urine and 3-h serum MgA values. We conclude that means of 0-24 h urine and 3-h serum MgA provide a reasonable estimate of 72-h MgA. However, if researchers seek to identify small changes in MgA, we recommend a 3-d urine or extended stool collection.

  5. Cadmium-Induced Disruption in 24-h Expression of Clock and Redox Enzyme Genes in Rat Medial Basal Hypothalamus: Prevention by Melatonin

    PubMed Central

    Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Scacchi, Pablo A.; Cardinali, Daniel P.; Esquifino, Ana I.

    2011-01-01

    In a previous study we reported that a low daily p.o. dose of cadmium (Cd) disrupted the circadian expression of clock and redox enzyme genes in rat medial basal hypothalamus (MBH). To assess whether melatonin could counteract Cd activity, male Wistar rats (45 days of age) received CdCl2 (5 ppm) and melatonin (3 μg/mL) or vehicle (0.015% ethanol) in drinking water. Groups of animals receiving melatonin or vehicle alone were also included. After 1 month, MBH mRNA levels were measured by real-time PCR analysis at six time intervals in a 24-h cycle. In control MBH Bmal1 expression peaked at early scotophase, Per1 expression at late afternoon, and Per2 and Cry2 expression at mid-scotophase, whereas neither Clock nor Cry1 expression showed significant 24-h variations. This pattern was significantly disrupted (Clock, Bmal1) or changed in phase (Per1, Per2, Cry2) by CdCl2 while melatonin counteracted the changes brought about by Cd on Per1 expression only. In animals receiving melatonin alone the 24-h pattern of MBH Per2 and Cry2 expression was disrupted. CdCl2 disrupted the 24-h rhythmicity of Cu/Zn- and Mn-superoxide dismutase (SOD), nitric oxide synthase (NOS)-1, NOS-2, heme oxygenase (HO)-1, and HO-2 gene expression, most of the effects being counteracted by melatonin. In particular, the co-administration of melatonin and CdCl2 increased Cu/Zn-SOD gene expression and decreased that of glutathione peroxidase (GPx), glutathione reductase (GSR), and HO-2. In animals receiving melatonin alone, significant increases in mean Cu/Zn and Mn-SOD gene expression, and decreases in that of GPx, GSR, NOS-1, NOS-2, HO-1, and HO-2, were found. The results indicate that the interfering effect of melatonin on the activity of a low dose of CdCl2 on MBH clock and redox enzyme genes is mainly exerted at the level of redox enzyme gene expression. PMID:21442002

  6. The Validity and Reliability of Rhythm Measurements in Automatically Scoring the English Rhythm Proficiency of Chinese EFL Learners

    ERIC Educational Resources Information Center

    Chen, Jin; Lin, Jianghao; Li, Xinguang

    2015-01-01

    This article aims to find out the validity of rhythm measurements to capture the rhythmic features of Chinese English. Besides, the reliability of the valid rhythm measurements applied in automatically scoring the English rhythm proficiency of Chinese EFL learners is also explored. Thus, two experiments were carried out. First, thirty students of…

  7. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift.

    PubMed

    Satoh, Yoko; Kawai, Hiroshi; Kudo, Naomi; Kawashima, Yoichi; Mitsumoto, Atsushi

    2006-07-30

    Mammalian endogenous circadian rhythms are entrained to the environmental light-dark (LD) cycle. Although the circadian rhythms of core body temperature (Tb) and spontaneous locomotor activity (LA) are well synchronized under stable LD conditions, it is thought that these two parameters are regulated by distinct mechanisms. The purpose of the present study was to examine the adaptability of these two rhythms to an abrupt change in the environmental light phase. Tb and LA were simultaneously recorded in individual mice kept under 12:12-h LD cycle conditions before and after an 8-h photic phase advance. The onset of LA required 8 days to reentrain to the new LD cycle, whereas 6 days were required for reentrainment of the acrophase of Tb. Resting Tb, i.e., the Tb level independent of LA, was extracted from the same data source. The resting Tb level exhibited a robust daily rhythm with a difference of 1.0 degrees C between LD phases. After the photic phase advance, the resting Tb rapidly reached a stable level within 4 days, whereas the uncorrected Tb required 6 days for reentrainment. Based on these findings, we revealed that, independent of LA, the adaptability of the Tb rhythm to a new light cycle is half as rapid as that of LA. These results therefore suggest that the circadian rhythms of Tb and LA are intrinsically regulated by different pacemaker or effector mechanisms.

  8. A Novel Quantitative Trait Locus on Mouse Chromosome 18, “era1,” Modifies the Entrainment of Circadian Rhythms

    PubMed Central

    Wisor, Jonathan P.; Striz, Martin; DeVoss, Jason; Murphy, Greer M.; Edgar, Dale M.; O'Hara, Bruce F.

    2007-01-01

    Study Objectives: The mammalian circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus conveys 24-h rhythmicity to sleep-wake cycles, locomotor activity, and other behavioral and physiological processes. The timing of rhythms relative to the light/dark (LD12:12) cycle is influenced in part by the endogenous circadian period and the time of day specific sensitivity of the clock to light. We now describe a novel circadian rhythm phenotype, and a locus influencing that phenotype, in a segregating population of mice. Methods: By crossbreeding 2 genetically distinct nocturnal strains of mice (Cast/Ei and C57BL/6J) and backcrossing the resulting progeny to Cast/Ei, we have produced a novel circadian phenotype, called early runner mice. Results: Early runner mice entrain to a light/dark cycle at an advanced phase, up to 9 hours before dark onset. This phenotype is not significantly correlated with circadian period in constant darkness and is not associated with disruption of molecular circadian rhythms in the SCN, as assessed by analysis of period gene expression. We have identified a genomic region that regulates this phenotype—a major quantitative trait locus on chromosome 18 (near D18Mit184) that we have named era1 for Early Runner Activity locus one. Phase delays caused by light exposure early in the subjective night were of smaller magnitude in backcross offspring that were homozygous Cast/Ei at D18Mit184 than in those that were heterozygous at this locus. Conclusion: Genetic variability in the circadian response to light may, in part, explain the variance in phase angle of entrainment in this segregating mouse population. Citation: Wisor JP; Striz M; DeVoss J; Murphy GM; Edgar DM; O'Hara BF. A novel quantitative trait locus on mouse chromosome 18, “era1,” modifies the entrainment of circadian rhythms. SLEEP 2007;30(10):1255-1263. PMID:17969459

  9. Biologic Rhythms Derived from Siberian Mammoths Hairs

    SciTech Connect

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  10. Biologic rhythms derived from Siberian mammoths' hairs.

    PubMed

    Spilde, Mike; Lanzirotti, Antonio; Qualls, Clifford; Phillips, Genevieve; Ali, Abdul-Mehdi; Agenbroad, Larry; Appenzeller, Otto

    2011-01-01

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  11. Characterisation of circadian rhythms of various duckweeds.

    PubMed

    Muranaka, T; Okada, M; Yomo, J; Kubota, S; Oyama, T

    2015-01-01

    The plant circadian clock controls various physiological phenomena that are important for adaptation to natural day-night cycles. Many components of the circadian clock have been identified in Arabidopsis thaliana, the model plant for molecular genetic studies. Recent studies revealed evolutionary conservation of clock components in green plants. Homologues of clock-related genes have been isolated from Lemna gibba and Lemna aequinoctialis, and it has been demonstrated that these homologues function in the clock system in a manner similar to their functioning in Arabidopsis. While clock components are widely conserved, circadian phenomena display diversity even within the Lemna genus. In order to survey the full extent of diversity in circadian rhythms among duckweed plants, we characterised the circadian rhythms of duckweed by employing a semi-transient bioluminescent reporter system. Using a particle bombardment method, circadian bioluminescent reporters were introduced into nine strains representing five duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna gibba, L. aequinoctialis and Wolffia columbiana. We then monitored luciferase (luc+) reporter activities driven by AtCCA1, ZmUBQ1 or CaMV35S promoters under entrainment and free-running conditions. Under entrainment, AtCCA1::luc+ showed similar diurnal rhythms in all strains. This suggests that the mechanism of biological timing under day-night cycles is conserved throughout the evolution of duckweeds. Under free-running conditions, we observed circadian rhythms of AtCCA1::luc+, ZmUBQ1::luc+ and CaMV35S::luc+. These circadian rhythms showed diversity in period length and sustainability, suggesting that circadian clock mechanisms are somewhat diversified among duckweeds.

  12. [Research advances in circadian rhythm of epileptic seizures].

    PubMed

    Yang, Wen-Qi; Li, Hong

    2017-01-01

    The time phase of epileptic seizures has attracted more and more attention. Epileptic seizures have their own circadian rhythm. The same type of epilepsy has different seizure frequencies in different time periods and states (such as sleeping/awakening state and natural day/night cycle). The circadian rhythm of epileptic seizures has complex molecular and endocrine mechanisms, and currently there are several hypotheses. Clarification of the circadian rhythm of epileptic seizures and prevention and administration according to such circadian rhythm can effectively control seizures and reduce the adverse effects of drugs. The research on the circadian rhythm of epileptic seizures provides a new idea for the treatment of epilepsy.

  13. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma.

    PubMed

    Yu, Chao; Yang, Sheng-Li; Fang, Xiefan; Jiang, Jian-Xin; Sun, Cheng-Yi; Huang, Tao

    2015-05-01

    Disturbance in the expression of circadian rhythm genes is a common feature in certain types of cancer, however the mechanisms mediating this disturbance remain to be elucidated. The present study aimed to investigate the effect of hypoxia on the expression of circadian rhythm genes in liver cancer cells and to identify the mechanisms underlying this effect in hepatocellular carcinoma (HCC). The HCC cell line, PLC/PRF/5. was treated with either a vehicle control or CoCl2 at 50, 100 or 200 µΜ for 24 h. Following treatment, the protein expression levels of hypoxia‑inducible factor (HIF)‑1α and HIF‑2α were detected by western blotting and the mRNA expression levels of circadian rhythm genes, including circadian locomotor output cycles kaput (Clock), brain and muscle Arnt‑like 1 (Bmal1), period (Per)1, Per2, Per3, cryptochrome (Cry)1, Cry2 and casein kinase Iε (CKIε), were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR). Expression plasmids containing HIF‑1α or HIF‑2α were transfected into the PLC/PRF/5 cells using liposomes and RT‑qPCR was used to determine the effects of the transfections on the expression levels of circadian rhythm genes. Following treatment with CoCl2, the protein expression levels of HIF‑1α and HIF‑2α were upregulated in a CoCl2 concentration‑dependent manner. The mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased following CoCl2 treatment (P<0.05). In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑1α, the mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased. In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑2α, the mRNA expression levels of Clock, Bmal1, Per1, Cry1, Cry2 and CKIε were upregulated, and the mRNA expression levels of Per2 and Per3 were

  14. Photic entrainment of the mammalian rhythm in melatonin production.

    PubMed

    Illnerová, H; Sumová, A

    1997-12-01

    This review summarizes studies on the photic entrainment of the circadian rhythm in the rat pineal melatonin production, namely of the rhythm in N-acetyltransferase (NAT) activity, and compares the NAT rhythm resetting with preliminary results on the resetting of an intrinsic rhythmicity in the suprachiasmatic nucleus (SCN) of the hypothalamus, namely with the entrainment of the rhythm in the light-induced c-fos gene expression. Phase delaying of the NAT rhythm after various light stimuli proceeds within 1 day with almost no transients, whereas during phase advancing of the rhythm only the morning NAT decline is phase advanced within 1 day and the evening rise phase shifts through transients. A light stimulus encompassing the middle of the night may phase delay the evening NAT rise, phase advance the morning decline, compress the rhythm waveform, and eventually lower its amplitude. Similarly, a long photoperiod compresses the NAT rhythm waveform. The magnitude of phase shifts of the NAT rhythm, as well as their direction, depends on a previous photoperiod. Phase shifts of the evening rise in c-fos gene photoinduction in the SCN and of the morning decline are similar to those of the pineal NAT rhythm after all light stimuli studied so far. The data indicate that the resetting of the rhythm in melatonin production in the rat pineal gland reflects changes in the SCN functional state and suggest that the underlying SCN pacemaking system is complex.

  15. Nanoscale probing of the lateral homogeneity of donors concentration in nitridated SiO2/4H-SiC interfaces

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Di Franco, Salvatore; Giannazzo, Filippo; Roccaforte, Fabrizio

    2016-08-01

    In this paper, nanoscale resolution scanning capacitance microscopy (SCM) and local capacitance-voltage measurements were used to probe the interfacial donor concentration in SiO2/4H-SiC systems annealed in N2O. Such nitrogen-based annealings are commonly employed to passivate SiO2/SiC interface traps, and result both in the incorporation of N-related donors in SiC and in the increase of the mobility in the inversion layer in 4H-SiC MOS-devices. From our SCM measurements, a spatially inhomogeneous donor distribution was observed in the SiO2/4H-SiC system subjected to N2O annealing. Hence, the effect of a phosphorus implantation before the oxide deposition and N2O annealing was also evaluated. In this case, besides an increased average donor concentration, an improvement of the lateral homogeneity of the active doping was also detected. The possible implications of such a pre-implantation doping of the near-interface region on 4H-SiC MOS-devices are discussed.

  16. Nanoscale probing of the lateral homogeneity of donors concentration in nitridated SiO2/4H-SiC interfaces.

    PubMed

    Fiorenza, Patrick; Di Franco, Salvatore; Giannazzo, Filippo; Roccaforte, Fabrizio

    2016-08-05

    In this paper, nanoscale resolution scanning capacitance microscopy (SCM) and local capacitance-voltage measurements were used to probe the interfacial donor concentration in SiO2/4H-SiC systems annealed in N2O. Such nitrogen-based annealings are commonly employed to passivate SiO2/SiC interface traps, and result both in the incorporation of N-related donors in SiC and in the increase of the mobility in the inversion layer in 4H-SiC MOS-devices. From our SCM measurements, a spatially inhomogeneous donor distribution was observed in the SiO2/4H-SiC system subjected to N2O annealing. Hence, the effect of a phosphorus implantation before the oxide deposition and N2O annealing was also evaluated. In this case, besides an increased average donor concentration, an improvement of the lateral homogeneity of the active doping was also detected. The possible implications of such a pre-implantation doping of the near-interface region on 4H-SiC MOS-devices are discussed.

  17. Discrimination between patients with melancholic depression and healthy controls: comparison between 24-h cortisol profiles, the DST and the Dex/CRH test.

    PubMed

    Paslakis, Georgios; Krumm, Bertram; Gilles, Maria; Schweiger, Ulrich; Heuser, Isabella; Richter, Inga; Deuschle, Michael

    2011-06-01

    Diurnal (24-h) cortisol profiles were compared to DST and Dex/CRH test outcomes with regard to their discriminative power in depressive disorder. With regard to several statistical measures (effect sizes, area under the curve) we found 24-h cortisol profiles to better discriminate between healthy controls and inpatients with the melancholic subtype of depression compared to the DST and Dex/CRH test. In search of a shortened time interval we found the 2-h time window 1000-1200 h of the cortisol profile to be the one with the highest sensitivity (83.3%) and specificity (87.9%). The specificity of the DST was 93.3% and somewhat higher than that of the cortisol profiles and the Dex/CRH test (87.9% and 78.8.%, respectively). However, the sensitivity of the DST was very low (30.8%), in fact similar to that of the Dex/CRH test (30.8%), but much lower than that of the 1000-1200 h interval (83.3%). The assessment of cortisol in plasma is an easy to perform, cost-saving method for the evaluation of the HPA system activity, which may have a series of clinical and scientific implications for the depressive disorder.

  18. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  19. [Assimilation of rhythm by the isolated dog heart during gradual raising of stimulation frequency].

    PubMed

    Gur'ianov, M I

    2003-12-01

    An ability for a forestalling regulation of contractility of the heart with calculation of the tendency of rhythm increasing was revealed under a gradual increasing of heart rhythm. A forestalling regulation of heart contractility occurs with rhythm assimilation at the cell level of the heart and irrespective of the influence of Frank-Starling law and neurohumoral factors on the work of the heart. A 5-10% increasing of heart rhythm is characterized by optimal rhythm assimilation. A 15-40% increasing of heart rhythm is not optimal and results in transformation of the rhythm. The following sequence of events take place in the process of transition from rhythm assimilation to rhythm transformation under a gradual increasing of heart rhythm: rhythm assimilation--rhythm by mechanical function--incomplete rhythm assimilation by electrical function-transformation of rhythm by electrical function.

  20. Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy

    PubMed Central

    Stanley, David A.; Talathi, Sachin S.; Parekh, Mansi B.; Cordiner, Daniel J.; Zhou, Junli; Mareci, Thomas H.; Ditto, William L.

    2013-01-01

    For over a century epileptic seizures have been known to cluster at specific times of the day. Recent studies have suggested that the circadian regulatory system may become permanently altered in epilepsy, but little is known about how this affects neural activity and the daily pattern of seizures. To investigate, we tracked long-term changes in the rate of spontaneous hippocampal EEG spikes (SPKs) in a rat model of temporal lobe epilepsy. In healthy animals, SPKs oscillated with near 24-h period; however, after injury by status epilepticus, a persistent phase shift of ∼12 h emerged in animals that later went on to develop chronic spontaneous seizures. Additional measurements showed that global 24-h rhythms, including core body temperature and theta state transitions, did not phase shift. Instead, we hypothesized that locally impaired circadian input to the hippocampus might be responsible for the SPK phase shift. This was investigated with a biophysical computer model in which we showed that subtle changes in the relative strengths of circadian input could produce a phase shift in hippocampal neural activity. MRI provided evidence that the medial septum, a putative circadian relay center for the hippocampus, exhibits signs of damage and therefore could contribute to local circadian impairment. Our results suggest that balanced circadian input is critical to maintaining natural circadian phase in the hippocampus and that damage to circadian relay centers, such as the medial septum, may disrupt this balance. We conclude by discussing how abnormal circadian regulation may contribute to the daily rhythms of epileptic seizures and related cognitive dysfunction. PMID:23678009

  1. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications

    PubMed Central

    Gnocchi, Davide; Bruscalupi, Giovannella

    2017-01-01

    Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases. PMID:28165421

  2. Clinical skills: cardiac rhythm recognition and monitoring.

    PubMed

    Sharman, Joanna

    With technological advances, changes in provision of healthcare services and increasing pressure on critical care services, ward patients' severity of illness is ever increasing. As such, nurses need to develop their skills and knowledge to care for their client group. Competency in cardiac rhythm monitoring is beneficial to identify changes in cardiac status, assess response to treatment, diagnosis and post-surgical monitoring. This paper describes the basic anatomy and physiology of the heart and its conduction system, and explains a simple and easy to remember process of analysing cardiac rhythms (Resuscitation Council UK, 2000) that can be used in first-line assessment to assist healthcare practitioners in providing care to their patients.

  3. Circadian Rhythms and Obesity in Mammals

    PubMed Central

    Froy, Oren

    2012-01-01

    Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Attempts to understand the causes of obesity and develop new therapeutic strategies have mostly focused on caloric intake and energy expenditure. Recent studies have shown that the circadian clock controls energy homeostasis by regulating the circadian expression and/or activity of enzymes, hormones, and transport systems involved in metabolism. Moreover, disruption of circadian rhythms leads to obesity and metabolic disorders. Therefore, it is plausible that resetting of the circadian clock can be used as a new approach to attenuate obesity. Feeding regimens, such as restricted feeding (RF), calorie restriction (CR), and intermittent fasting (IF), provide a time cue and reset the circadian clock and lead to better health. In contrast, high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. This paper focuses on circadian rhythms and their link to obesity. PMID:24527263

  4. Dissimilar ventricular rhythms: implications for ICD therapy.

    PubMed

    Barold, S Serge; Kucher, Andreas; Nägele, Herbert; Buenfil Medina, José Carlos; Brodsky, Michael; Van Heuverswyn, Frederic E; Stroobandt, Roland X

    2013-04-01

    Sensing of left ventricular (LV) activity in some devices used for cardiac resynchronization therapy (CRT) was designed primarily to prevent the delivery of an LV stimulus into the LV vulnerable period. Such a sensing function of the LV channel is not universally available in contemporary CRT devices. Recordings of LV electrograms may provide special diagnostic data unavailable solely from the standard right ventricular electrogram and corresponding marker channel. We used the LV sensing function of Biotronik CRT defibrillators to find 3 cases of dissimilar ventricular rhythms or tachyarrhythmias. Such arrhythmias are potentially important because concomitant slower right ventricular activity may prevent or delay implantable cardioverter-defibrillator therapy for a life-threatening situation involving a faster and more serious LV tachyarrhythmia. Dissimilar ventricular rhythms may not be rare and may account for cases of unexplained sudden death with a normally functioning implantable cardioverter-defibrillator and no recorded terminal arrhythmia.

  5. Sleep, circadian rhythms, and athletic performance.

    PubMed

    Thun, Eirunn; Bjorvatn, Bjørn; Flo, Elisabeth; Harris, Anette; Pallesen, Ståle

    2015-10-01

    Sleep deprivation and time of day are both known to influence performance. A growing body of research has focused on how sleep and circadian rhythms impact athletic performance. This review provides a systematic overview of this research. We searched three different databases for articles on these issues and inspected relevant reference lists. In all, 113 articles met our inclusion criteria. The most robust result is that athletic performance seems to be best in the evening around the time when the core body temperature typically is at its peak. Sleep deprivation was negatively associated with performance whereas sleep extension seems to improve performance. The effects of desynchronization of circadian rhythms depend on the local time at which performance occurs. The review includes a discussion of differences regarding types of skills involved as well as methodological issues.

  6. Circadian rhythms of performance: new trends

    NASA Technical Reports Server (NTRS)

    Carrier, J.; Monk, T. H.

    2000-01-01

    This brief review is concerned with how human performance efficiency changes as a function of time of day. It presents an overview of some of the research paradigms and conceptual models that have been used to investigate circadian performance rhythms. The influence of homeostatic and circadian processes on performance regulation is discussed. The review also briefly presents recent mathematical models of alertness that have been used to predict cognitive performance. Related topics such as interindividual differences and the postlunch dip are presented.

  7. Endocannabinoid signalling: has it got rhythm?

    PubMed Central

    Vaughn, Linda K; Denning, Gerene; Stuhr, Kara L; de Wit, Harriet; Hill, Matthew N; Hillard, Cecilia J

    2010-01-01

    Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted. This article is part of a themed issue on

  8. Circadian rhythms of women with fibromyalgia

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Goldenberg, D. L.; Brown, E. N.; Maliszewski, A. M.; Adler, G. K.

    2001-01-01

    Fibromyalgia syndrome is a chronic and debilitating disorder characterized by widespread nonarticular musculoskeletal pain whose etiology is unknown. Many of the symptoms of this syndrome, including difficulty sleeping, fatigue, malaise, myalgias, gastrointestinal complaints, and decreased cognitive function, are similar to those observed in individuals whose circadian pacemaker is abnormally aligned with their sleep-wake schedule or with local environmental time. Abnormalities in melatonin and cortisol, two hormones whose secretion is strongly influenced by the circadian pacemaker, have been reported in women with fibromyalgia. We studied the circadian rhythms of 10 women with fibromyalgia and 12 control healthy women. The protocol controlled factors known to affect markers of the circadian system, including light levels, posture, sleep-wake state, meals, and activity. The timing of the events in the protocol were calculated relative to the habitual sleep-wake schedule of each individual subject. Under these conditions, we found no significant difference between the women with fibromyalgia and control women in the circadian amplitude or phase of rhythms of melatonin, cortisol, and core body temperature. The average circadian phases expressed in hours posthabitual bedtime for women with and without fibromyalgia were 3:43 +/- 0:19 and 3:46 +/- 0:13, respectively, for melatonin; 10:13 +/- 0:23 and 10:32 +/- 0:20, respectively for cortisol; and 5:19 +/- 0:19 and 4:57 +/- 0:33, respectively, for core body temperature phases. Both groups of women had similar circadian rhythms in self-reported alertness. Although pain and stiffness were significantly increased in women with fibromyalgia compared with healthy women, there were no circadian rhythms in either parameter. We suggest that abnormalities in circadian rhythmicity are not a primary cause of fibromyalgia or its symptoms.

  9. Speech timing and linguistic rhythm: on the acoustic bases of rhythm typologies.

    PubMed

    Rathcke, Tamara V; Smith, Rachel H

    2015-05-01

    Research into linguistic rhythm has been dominated by the idea that languages can be classified according to rhythmic templates, amenable to assessment by acoustic measures of vowel and consonant durations. This study tested predictions of two proposals explaining the bases of rhythmic typologies: the Rhythm Class Hypothesis which assumes that the templates arise from an extensive vs a limited use of durational contrasts, and the Control and Compensation Hypothesis which proposes that the templates are rooted in more vs less flexible speech production strategies. Temporal properties of segments, syllables and rhythmic feet were examined in two accents of British English, a "stress-timed" variety from Leeds, and a "syllable-timed" variety spoken by Panjabi-English bilinguals from Bradford. Rhythm metrics were calculated. A perception study confirmed that the speakers of the two varieties differed in their perceived rhythm. The results revealed that both typologies were informative in that to a certain degree, they predicted temporal patterns of the two varieties. None of the metrics tested was capable of adequately reflecting the temporal complexity found in the durational data. These findings contribute to the critical evaluation of the explanatory adequacy of rhythm metrics. Acoustic bases and limitations of the traditional rhythmic typologies are discussed.

  10. Respiratory modulation of human autonomic rhythms.

    PubMed

    Badra, L J; Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L

    2001-06-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  11. Brain Networks for Integrative Rhythm Formation

    PubMed Central

    Thaut, Michael H.; Demartin, Martina; Sanes, Jerome N.

    2008-01-01

    Background Performance of externally paced rhythmic movements requires brain and behavioral integration of sensory stimuli with motor commands. The underlying brain mechanisms to elaborate beat-synchronized rhythm and polyrhythms that musicians readily perform may differ. Given known roles in perceiving time and repetitive movements, we hypothesized that basal ganglia and cerebellar structures would have greater activation for polyrhythms than for on-the-beat rhythms. Methodology/Principal Findings Using functional MRI methods, we investigated brain networks for performing rhythmic movements paced by auditory cues. Musically trained participants performed rhythmic movements at 2 and 3 Hz either at a 1∶1 on-the-beat or with a 3∶2 or a 2∶3 stimulus-movement structure. Due to their prior musical experience, participants performed the 3∶2 or 2∶3 rhythmic movements automatically. Both the isorhythmic 1∶1 and the polyrhythmic 3∶2 or 2∶3 movements yielded the expected activation in contralateral primary motor cortex and related motor areas and ipsilateral cerebellum. Direct comparison of functional MRI signals obtained during 3∶2 or 2∶3 and on-the-beat rhythms indicated activation differences bilaterally in the supplementary motor area, ipsilaterally in the supramarginal gyrus and caudate-putamen and contralaterally in the cerebellum. Conclusions/Significance The activated brain areas suggest the existence of an interconnected brain network specific for complex sensory-motor rhythmic integration that might have specificity for elaboration of musical abilities. PMID:18509462

  12. Respiratory modulation of human autonomic rhythms

    NASA Technical Reports Server (NTRS)

    Badra, L. J.; Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    2001-01-01

    We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.

  13. Tonic Neuromodulation of the Inspiratory Rhythm Generator

    PubMed Central

    Peña-Ortega, Fernando

    2012-01-01

    The generation of neural network dynamics relies on the interactions between the intrinsic and synaptic properties of their neural components. Moreover, neuromodulators allow networks to change these properties and adjust their activity to specific challenges. Endogenous continuous (“tonic”) neuromodulation can regulate and sometimes be indispensible for networks to produce basal activity. This seems to be the case for the inspiratory rhythm generator located in the pre-Bötzinger complex (preBötC). This neural network is necessary and sufficient for generating inspiratory rhythms. The preBötC produces normal respiratory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping under hypoxic conditions after a reconfiguration process. The reconfiguration leading to gasping generation involves changes of synaptic and intrinsic properties that can be mediated by several neuromodulators. Over the past years, it has been shown that endogenous continuous neuromodulation of the preBötC may involve the continuous action of amines and peptides on extrasynaptic receptors. I will summarize the findings supporting the role of endogenous continuous neuromodulation in the generation and regulation of different inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve extrasynaptic receptors along with evidence of glial modulation of preBötC activity. PMID:22934010

  14. The effects of pasture availability for twin- and triplet-bearing ewes in mid and late pregnancy on ewe and lamb behaviour 12 to 24 h after birth.

    PubMed

    Corner, R A; Kenyon, P R; Stafford, K J; West, D M; Morris, S T; Oliver, M H

    2010-01-01

    This experiment was conducted to evaluate the effect of offering ewes two different feeding levels, during mid and late pregnancy, on ewe and lamb behaviour 12 to 24 h after birth. Romney ewes, bearing twin (n = 80) or triplet foetuses (n = 56), were allocated to a pasture sward height of 2 or 4 cm between 70 and 107 days of pregnancy. In late pregnancy (day 107 to 147), half of the ewes were reallocated the alternate sward height, which produced four treatments: 2-2, 2-4, 4-2 and 4-4. Ewes were weighed on days 65, 92, 107 and 130 of pregnancy and lamb live weights were recorded 12 to 24 h after birth. Twelve to 24 h after birth the maternal behaviour score (MBS) of the ewes were determined, whilst their lambs were tagged. After the lambs were released, the behaviour of each ewe and her lambs was observed for 5 min. Ewe treatment and litter size had no effect on ewe MBS. However, as MBS increased (ewes stayed closer to lambs during tagging), ewes bleated less in a high-pitch and were quicker to make contact with their lamb. During the observation period, ewes in the 4-4 treatment had a greater percentage of their bleats in a low pitch (P < 0.05) than ewes in the 2-2 and 4-2 treatment (61.3% v. 41.3% and 38.8% low bleats, respectively) and more lambs born to 4-4 ewes (95%) bleated than lambs born to 2-2 ewes (84%; P < 0.05). However, lambs born to ewes in the 2-2 treatment bleated earlier than lambs in all other treatments (P < 0.05). Lambs born to 4-4 ewes were less likely (P < 0.05) to move towards their dam in order to make contact than lambs born to 2-2 or 4-2 ewes (3.1% v. 16.9% and 16.7%, respectively). These findings suggest that under the conditions of the present study, ewe nutrition had little effect on maternal behaviour. However, lambs born to ewes offered 2 cm pasture sward heights during mid and/or late pregnancy (2-2, 2-4 and 4-2 treatments) displayed behaviour that demonstrated greater 'need' whereas lambs born to ewes offered 4 cm during mid and

  15. Taurine Treatment Modulates Circadian Rhythms in Mice Fed A High Fat Diet

    PubMed Central

    Figueroa, Ana Lucia C.; Figueiredo, Hugo; Rebuffat, Sandra A.; Vieira, Elaine; Gomis, Ramon

    2016-01-01

    Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated. We investigated whether taurine can modulate or correct disturbances in daily rhythms caused by a high-fat diet in mice. Male C57BL/6 mice were divided in four groups: control (C), control + taurine (C+T), high-fat diet (HFD) and HFD + taurine (HFD+T). They were administered 2% taurine in their drinking water for 10 weeks. Mice were euthanized at 6:00, 12:00, 18:00, and 24:00. HFD mice increased body weight, visceral fat and food intake, as well as higher levels of glucose, insulin and leptin, throughout the 24 h. Taurine prevented increments in food intake, body weight and visceral fat, improved glucose tolerance and insulin sensitivity and reduced disturbances in the 24 h patterns of plasma insulin and leptin. HFD downregulated the expression of clock genes Rev-erbα, Bmal1, and Per1 in pancreatic islets. Taurine normalized the gene and protein expression of PER1 in beta-cells, which suggests that it could be beneficial for the correction of daily rhythms and the amelioration of obesity and diabetes. PMID:27857215

  16. Circadian Rhythms and Sleep in Drosophila melanogaster.

    PubMed

    Dubowy, Christine; Sehgal, Amita

    2017-04-01

    The advantages of the model organism Drosophila melanogaster, including low genetic redundancy, functional simplicity, and the ability to conduct large-scale genetic screens, have been essential for understanding the molecular nature of circadian (∼24 hr) rhythms, and continue to be valuable in discovering novel regulators of circadian rhythms and sleep. In this review, we discuss the current understanding of these interrelated biological processes in Drosophila and the wider implications of this research. Clock genes period and timeless were first discovered in large-scale Drosophila genetic screens developed in the 1970s. Feedback of period and timeless on their own transcription forms the core of the molecular clock, and accurately timed expression, localization, post-transcriptional modification, and function of these genes is thought to be critical for maintaining the circadian cycle. Regulators, including several phosphatases and kinases, act on different steps of this feedback loop to ensure strong and accurately timed rhythms. Approximately 150 neurons in the fly brain that contain the core components of the molecular clock act together to translate this intracellular cycling into rhythmic behavior. We discuss how different groups of clock neurons serve different functions in allowing clocks to entrain to environmental cues, driving behavioral outputs at different times of day, and allowing flexible behavioral responses in different environmental conditions. The neuropeptide PDF provides an important signal thought to synchronize clock neurons, although the details of how PDF accomplishes this function are still being explored. Secreted signals from clock neurons also influence rhythms in other tissues. SLEEP is, in part, regulated by the circadian clock, which ensures appropriate timing of sleep, but the amount and quality of sleep are also determined by other mechanisms that ensure a homeostatic balance between sleep and wake. Flies have been useful

  17. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. Following your health ...

  18. Blood Glucose Monitoring Devices

    MedlinePlus

    ... the Bar for Blood Glucose Meter Performance Recalls & Alerts Shasta Technologies GenStrip Blood Glucose Test Strips May ... Latest Recalls Report an Adverse Event MedWatch Safety Alerts News Releases Consumer Updates About FDA Contact FDA ...

  19. Characterization and Conductivity Behavior of Magnetic Activated Carbon (MAC) from FeCl2.4H2O-Containing Carbon

    NASA Astrophysics Data System (ADS)

    Aripin, Department Of Physics, Faculty Of Mathematics; Natural Science, Haluoleo University, Kampus Bumi Tridharma Anduonohu Kendari 93232 Indonesia

    2007-05-01

    Activated carbons (AC) and magnetic-containing activated carbons (MAC) have been synthesized using coconut shells as carbon sources and FeCl2.4H2O as magnetic precursor. The samples were characterized by nitrogen sorption, XRD, and FTIR. The BET surface area and total pore volume of MAC increase as the temperature increased. AC has XRD peaks, which evidences an amorphous carbon framework and MAC shows that this material consists of an organized carbon with the nanocrystalline magnetite embedded in its structure. The FTIR spectrum of MAC shows that carboxyl groups decreased as the temperature increased. Absorption bands of MAC shows the stretching and torsional vibration modes of the magnetite Fe-O bond in tetrahedral and octahedral sites, respectively. The electrical conductivity studies showed that conductivity of MAC is more than the AC due to structural properties of carbons exists on a framework containing metal structures.

  20. Cathodoluminescence study of radiative interface defects in thermally grown SiO{sub 2}/4H-SiC(0001) structures

    SciTech Connect

    Fukushima, Yuta; Chanthaphan, Atthawut; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2015-06-29

    Radiative defects in thermally grown SiO{sub 2}/4H-SiC(0001) structures and their location in depth were investigated by means of cathodoluminescence spectroscopy. It was found that while luminescence peaks ascribed to oxygen vacancy and nonbridging oxygen hole centers were observed both from thermal oxides grown on (0001) Si-face and C-face surfaces as with thermal oxides on Si, intense yellow luminescence at a wavelength of around 600 nm was identified only from the oxide interface on the Si-face substrate regardless of the oxide thickness and dopant type. Possible physical origins of the radiative centers localized near an oxide interface of a few nm thick are discussed on the basis of visible light emission from Si backbone structures.

  1. The effects of 24-h exposure to carbaryl or atrazine on the locomotor performance and overwinter growth and survival of juvenile spotted salamanders (Ambystoma maculatum).

    PubMed

    Mitchkash, Matthew G; McPeek, Tammy; Boone, Michelle D

    2014-03-01

    Understanding the effects of pesticide exposure on organisms throughout their life cycle is critical to predict population-level effects. For many taxa, including amphibians, juveniles are the main dispersal stage and are disproportionally important to population persistence when compared with other life stages. In the present study, we examined the effects of a single 24-h exposure to the insecticide carbaryl or the herbicide atrazine on locomotor performance (endurance, distance traveled, speed, and fatigue) in the laboratory and terrestrial growth and survival through overwintering in field enclosures using recent metamorphs of spotted salamanders (Ambystoma maculatum). We found that neither atrazine nor carbaryl impacted endurance, but fatigue increased with carbaryl exposure, which could leave salamanders less able to escape repeated attacks by predators. Terrestrial growth and overwinter survival were not affected by short-term exposure to carbaryl or atrazine, suggesting that when individuals can overcome acute effects, no long-term consequences result for the endpoints measured.

  2. The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing.

    PubMed

    Gubin, D G; Gubin, G D; Waterhouse, J; Weinert, D

    2006-01-01

    did not change (16.93 vs. 16.75 h), although the inter-individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age-dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep-improving effects.

  3. Validation of web-based, multiple 24-h recalls combined with nutritional supplement intake questionnaires against nitrogen excretions to determine protein intake in Dutch elite athletes.

    PubMed

    Wardenaar, F C; Steennis, J; Ceelen, I J M; Mensink, M; Witkamp, R; de Vries, J H M

    2015-12-28

    Information on dietary composition is vitally important for elite athletes to optimise their performance and recovery, which requires valid tools. The aim of the present study was to investigate the validity of assessing protein intake using three web-based 24-h recalls and questionnaires, by comparing these with three urinary N excretions on the same day. A total of forty-seven Dutch elite top athletes, both disabled and non-disabled, aged between 18 and 35 years, with a BMI of 17·5-31 kg/m2, exercising >12 h/week were recruited. Estimated mean dietary protein intake was 109·6 (sd 33·0) g/d by recalls and questionnaires v. 141·3 (sd 38·2) g/d based on N excretions in urine; the difference was 25·5 (sd 21·3) % between the methods (P<0·05). We found a reasonably good association between methods for protein intake of 0·65 (95 % CI 0·45, 0·79). On an individual level, under-reporting was larger with higher protein intakes than with lower intakes. No significant differences were found in reporting absolute differences between subcategories (sex, under-reporting, BMI, collection of recalls within a certain amount of time and using protein supplements or not). In conclusion, combined, multiple, 24-h recalls and questionnaires underestimated protein intake in these young elite athletes more than that reported for non-athlete populations. The method proved to be suitable for ranking athletes according to their protein intake as needed in epidemiological studies. On an individual level, the magnitude of underestimation was about equal for all athletes except for those with very high protein intakes.

  4. Dietary reporting errors on 24 h recalls and dietary questionnaires are associated with BMI across six European countries as evaluated with recovery biomarkers for protein and potassium intake.

    PubMed

    Freisling, Heinz; van Bakel, Marit M E; Biessy, Carine; May, Anne M; Byrnes, Graham; Norat, Teresa; Rinaldi, Sabina; Santucci de Magistris, Maria; Grioni, Sara; Bueno-de-Mesquita, H Bas; Ocké, Marga C; Kaaks, Rudolf; Teucher, Birgit; Vergnaud, Anne-Claire; Romaguera, Dora; Sacerdote, Carlotta; Palli, Domenico; Crowe, Francesca L; Tumino, Rosario; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Khaw, Kay-Tee; Wareham, Nicholas J; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Boeing, Heiner; Illner, Anne-Kathrin; Riboli, Elio; Peeters, Petra H; Slimani, Nadia

    2012-03-01

    Whether there are differences between countries in the validity of self-reported diet in relation to BMI, as evaluated using recovery biomarkers, is not well understood. We aimed to evaluate BMI-related reporting errors on 24 h dietary recalls (24-HDR) and on dietary questionnaires (DQ) using biomarkers for protein and K intake and whether the BMI effect differs between six European countries. Between 1995 and 1999, 1086 men and women participating in the European Prospective Investigation into Cancer and Nutrition completed a single 24-HDR, a DQ and one 24 h urine collection. In regression analysis, controlling for age, sex, education and country, each unit (1 kg/m²) increase in BMI predicted an approximately 1·7 and 1·3 % increase in protein under-reporting on 24-HDR and DQ, respectively (both P < 0·0001). Exclusion of individuals who probably misreported energy intake attenuated BMI-related bias on both instruments. The BMI effect on protein under-reporting did not differ for men and women and neither between countries on both instruments as tested by interaction (all P>0·15). In women, but not in men, the DQ yielded higher mean intakes of protein that were closer to the biomarker-based measurements across BMI groups when compared with 24-HDR. Results for K were similar to those of protein, although BMI-related under-reporting of K was of a smaller magnitude, suggesting differential misreporting of foods. Under-reporting of protein and K appears to be predicted by BMI, but this effect may be driven by 'low-energy reporters'. The BMI effect on under-reporting seems to be the same across countries.

  5. The role of birth weight on litter size and mortality within 24h of life in purebred dogs: What aspects are involved?

    PubMed

    Groppetti, D; Ravasio, G; Bronzo, V; Pecile, A

    2015-12-01

    In humans, scientific evidence emphasizes the role of birth weight on neonatal welfare, morbidity and mortality. In canine species, defining normal ranges of birth weight is a harder issue due to a great morphological variability in size, body weight and breed. The aim of this study was to correlate birth weight with