Science.gov

Sample records for 24-nt small interfering

  1. Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing.

    PubMed

    Zhang, Zhonghui; Liu, Xiuying; Guo, Xinwei; Wang, Xiu-Jie; Zhang, Xiuren

    2016-01-01

    Argonaute (AGO) proteins recruit 21-24-nucleotide (nt) small RNAs (sRNAs) to constitute RNA-induced silencing complexes (RISCs) to regulate gene expression at transcriptional or posttranscriptional levels(1-3). Arabidopsis encodes nine functional AGO proteins. These proteins are classified into three clusters, AGO1/5/10, AGO2/3/7 and AGO4/6/9, based on their sequence similarity, functional redundancy, as well as species and features of AGO-bound sRNAs(4-7). Although most Arabidopsis AGO proteins have been studied well, AGO3-bound sRNAs and their basic function remain unknown. Here we observed that AGO3 could not complement the signature function of AGO2, the closest genetic paralog of AGO3, in host antiviral defence. We also found, surprisingly, that AGO3 predominantly bound 24-nt sRNAs with 5'-terminal adenine. The spectrum of AGO3-associated sRNAs was different from those bound to AGO2, further indicating their functional divergence. By contrast, approximately 30% of AGO3-bound 24-nt sRNAs overlapped with those bound to AGO4, and over 60% of AGO3-associated 24-nt sRNA-enriched loci were identical to those of AGO4. Moreover, the redundancy of AGO3- and AGO4-bound sRNAs is much more than that of AGO6- and AGO4-recruited sRNAs. In addition, expression of AGO3 driven by the AGO4 promoter partially complemented AGO4 function and rescued a DNA methylation defect in the ago4-1 background. Together, our results indicated that AGO3, similarly to AGO4, is a component in the epigenetic pathway. PMID:27243648

  2. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice.

    PubMed

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C; Cao, Xiaofeng

    2014-03-11

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  3. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt) mapping preferentially at the 3'-terminal region of the genomic RNA and affects the host small RNA profile.

    PubMed

    Ruiz-Ruiz, Susana; Navarro, Beatriz; Gisel, Andreas; Peña, Leandro; Navarro, Luis; Moreno, Pedro; Di Serio, Francesco; Flores, Ricardo

    2011-04-01

    To get an insight into the host RNA silencing defense induced by Citrus tristeza virus (CTV) and into the counter defensive reaction mediated by its three silencing suppressors (p25, p20 and p23), we have examined by deep sequencing (Solexa-Illumina) the small RNAs (sRNAs) in three virus-host combinations. Our data show that CTV sRNAs: (i) represent more than 50% of the total sRNAs in Mexican lime and sweet orange (where CTV reaches relatively high titers), but only 3.5% in sour orange (where the CTV titer is significantly lower), (ii) are predominantly of 21-22-nt, with a biased distribution of their 5' nucleotide and with those of (+) polarity accumulating in a moderate excess, and (iii) derive from essentially all the CTV genome (ca. 20 kb), as revealed by its complete reconstruction from viral sRNA contigs, but adopt an asymmetric distribution with a prominent hotspot covering approximately the 3'-terminal 2,500 nt. These results suggest that the citrus homologues of Dicer-like (DCL) 4 and 2 most likely mediate the genesis of the 21 and 22 nt CTV sRNAs, respectively, and show that both ribonucleases act not only on the genomic RNA but also on the 3' co-terminal subgenomic RNAs and, particularly, on their double-stranded forms. The plant sRNA profile, very similar and dominated by the 24-nt sRNAs in the three mock-inoculated controls, was minimally affected by CTV infection in sour orange, but exhibited a significant reduction of the 24-nt sRNAs in Mexican lime and sweet orange. We have also identified novel citrus miRNAs and determined how CTV influences their accumulation. PMID:21327514

  4. Genome-Wide Discovery and Analysis of Phased Small Interfering RNAs in Chinese Sacred Lotus

    PubMed Central

    Zheng, Yun; Wang, Shengpeng; Sunkar, Ramanjulu

    2014-01-01

    Phased small interfering RNA (phasiRNA) generating loci (briefly as PHAS) in plants are a novel class of genes that are normally regulated by microRNAs (miRNAs). Similar to miRNAs, phasiRNAs encoded by PHAS play important regulatory roles by targeting protein coding transcripts in plant species. We performed a genome-wide discovery of PHAS loci in Chinese sacred lotus and identified a total of 106 PHAS loci. Of these, 47 loci generate 21 nucleotide (nt) phasiRNAs and 59 loci generate 24 nt phasiRNAs, respectively. We have also identified a new putative TAS3 and a putative TAS4 loci in the lotus genome. Our results show that some of the nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance proteins and MYB transcription factors potentially generate phasiRNAs. Furthermore, our results suggest that some large subunit (LSU) rRNAs can derive putative phasiRNAs, which is potentially resulted from crosstalk between small RNA biogenesis pathways that are employed to process rRNAs and PHAS loci, respectively. Some of the identified phasiRNAs have putative trans-targets with less than 4 mismatches, suggesting that the identified PHAS are involved in many different pathways. Finally, the discovery of 24 nt PHAS in lotus suggests that there are 24 nt PHAS in dicots. PMID:25469507

  5. Polymers in Small-Interfering RNA Delivery

    PubMed Central

    Singha, Kaushik; Namgung, Ran

    2011-01-01

    This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell. PMID:21749290

  6. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs).

    PubMed

    Sharma, Namisha; Sahu, Pranav Pankaj; Puranik, Swati; Prasad, Manoj

    2013-09-01

    Regulation of several biological functions in plants has now been known to involve diverse RNA silencing pathways. These vital pathways involve various components such as dsRNA, Dicer, RNA-dependent RNA polymerase and Argonaute proteins, which lead to the production of several small RNAs (sRNAs) varying in their sizes. These sRNAs have significant role in the regulation of gene expression at transcriptional and translational levels. Among them, small interfering RNAs (siRNAs; majorly 21, 22 and 24 nt) have been shown to play an important role in plants' resistance against many viruses by inhibiting the viral gene expression. Furthermore, it has also been highlighted that siRNA-mediated methylation of viral DNA confers resistance to various plant DNA viruses. In this review, we have outlined the recent advances made using the siRNA-mediated antiviral strategy, along with methylation-based epigenetic defensive mechanisms as a protective measure against diverse plant viruses. PMID:23086491

  7. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma

    PubMed Central

    Farra, Rossella; Grassi, Mario; Grassi, Gabriele; Dapas, Barbara

    2015-01-01

    Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and represents the third leading cause of cancer-related death worldwide. Current available therapeutic approaches are poorly effective, especially for the advanced forms of the disease. In the last year, short double stranded RNA molecules termed small interfering RNAs (siRNAs) and micro interfering RNAs (miRNA), emerged as interesting molecules with potential therapeutic value for HCC. The practical use of these molecules is however limited by the identification of optimal molecular targets and especially by the lack of effective and targeted HCC delivery systems. Here we focus our discussion on the most recent advances in the identification of siRNAs/miRNAs molecular targets and on the development of suitable siRNA/miRNAs delivery systems. PMID:26290628

  8. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana.

    PubMed

    Xie, Zhixin; Allen, Edwards; Wilken, April; Carrington, James C

    2005-09-01

    Arabidopsis thaliana contains four DICER-LIKE (DCL) genes with specialized functions in small RNA biogenesis for RNA interference-related processes. A mutant with defects in DCL4 was identified and analyzed for microRNA- and endogenous, small interfering RNA (siRNA)-related functions. The dcl4-2 mutant contained normal or near-normal levels of microRNAs (21 nt) and heterochromatin-associated siRNAs (24 nt). In contrast, this mutant lacked each of three families of 21-nt trans-acting siRNAs (ta-siRNAs) and possessed elevated levels of ta-siRNA target transcripts. The dcl4-2 mutant resembled an rna-dependent RNA polymerase 6 mutant in that both mutants lacked ta-siRNAs and displayed heterochronic defects in which vegetative phase change was accelerated. Double mutant analyses with dcl2-1, dcl3-1, and dcl4-2 alleles revealed hierarchical redundancy among DCL activities, leading to alternative processing of ta-siRNA precursors in the absence of DCL4. These data support the concept that plants have specialized and compartmentalized DCL functions for biogenesis of distinct small RNA classes. PMID:16129836

  9. Delivery of Small Interfering RNAs to Cells via Exosomes.

    PubMed

    Wahlgren, Jessica; Statello, Luisa; Skogberg, Gabriel; Telemo, Esbjörn; Valadi, Hadi

    2016-01-01

    Exosomes are small membrane bound vesicles between 30 and 100 nm in diameter of endocytic origin that are secreted into the extracellular environment by many different cell types. Exosomes play a role in intercellular communication by transferring proteins, lipids, and RNAs to recipient cells.Exosomes from human cells could be used as vectors to provide cells with therapeutic RNAs. Here we describe how exogenous small interfering RNAs may successfully be introduced into various kinds of human exosomes using electroporation and subsequently delivered to recipient cells. Methods used to confirm the presence of siRNA inside exosomes and cells are presented, such as flow cytometry, confocal microscopy, and Northern blot. PMID:26472446

  10. Functional Nanostructures for Effective Delivery of Small Interfering RNA Therapeutics

    PubMed Central

    Hong, Cheol Am; Nam, Yoon Sung

    2014-01-01

    Small interfering RNA (siRNA) has proved to be a powerful tool for target-specific gene silencing via RNA interference (RNAi). Its ability to control targeted gene expression gives new hope to gene therapy as a treatment for cancers and genetic diseases. However, siRNA shows poor pharmacological properties, such as low serum stability, off-targeting, and innate immune responses, which present a significant challenge for clinical applications. In addition, siRNA cannot cross the cell membrane for RNAi activity because of its anionic property and stiff structure. Therefore, the development of a safe, stable, and efficient system for the delivery of siRNA therapeutics into the cytoplasm of targeted cells is crucial. Several nanoparticle platforms for siRNA delivery have been developed to overcome the major hurdles facing the therapeutic uses of siRNA. This review covers a broad spectrum of non-viral siRNA delivery systems developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and discusses their characteristics and opportunities for clinical applications of therapeutic siRNA. PMID:25285170

  11. Small interfering RNA delivery through positively charged polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Dragoni, Luca; Ferrari, Raffaele; Lupi, Monica; Cesana, Alberto; Falcetta, Francesca; Ubezio, Paolo; D'Incalci, Maurizio; Morbidelli, Massimo; Moscatelli, Davide

    2016-03-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells.

  12. Small interfering RNAs targeting the rabies virus nucleoprotein gene.

    PubMed

    Yang, Yu-Jiao; Zhao, Ping-Sen; Zhang, Tao; Wang, Hua-Lei; Liang, Hong-Ru; Zhao, Li-Li; Wu, Hong-Xia; Wang, Tie-Cheng; Yang, Song-Tao; Xia, Xian-Zhu

    2012-10-01

    Rabies virus (RABV) infection continues to be a global threat to human and animal health, yet no curative therapy has been developed. RNA interference (RNAi) therapy, which silences expression of specific target genes, represents a promising approach for treating viral infections in mammalian hosts. We designed six small interfering (si)RNAs (N473, N580, N783, N796, N799 and N1227) that target the conserved region of the RABV challenge virus standard (CVS)-11 strain nucleoprotein (N) gene. Using a plasmid-based transient expression model, we demonstrated that N796, N580 and N799 were capable of significantly inhibiting viral replication in vitro and in vivo. These three siRNAs effectively suppressed RABV expression in infected baby hamster kidney-21 (BHK-21) cells, as evidenced by direct immunofluorescence assay, viral titer measurements, real-time PCR, and Western blotting. In addition, liposome-mediated siRNA expression plasmid delivery to RABV-infected mice significantly increased survival, compared to a non-liposome-mediated delivery method. Collectively, our results showed that the three siRNAs, N796, N580 and N799, targeting the N gene could potently inhibit RABV CVS-11 reproduction. These siRNAs have the potential to be developed into new and effective prophylactic anti-RABV drugs. PMID:22884777

  13. Unzipping and binding of small interfering RNA with single walled carbon nanotube: A platform for small interfering RNA delivery

    NASA Astrophysics Data System (ADS)

    Santosh, Mogurampelly; Panigrahi, Swati; Bhattacharyya, Dhananjay; Sood, A. K.; Maiti, Prabal K.

    2012-02-01

    In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference.

  14. Pulmonary administration of small interfering RNA: The route to go?

    PubMed

    Ruigrok, M J R; Frijlink, H W; Hinrichs, W L J

    2016-08-10

    Ever since the discovery of RNA interference (RNAi), which is a post-transcriptional gene silencing mechanism, researchers have been studying the therapeutic potential of using small interfering RNA (siRNA) to treat diseases that are characterized by excessive gene expression. Excessive gene expression can be particularly harmful if it occurs in a vulnerable organ such as the lungs as they are essential for physiological respiration. Consequently, RNAi could offer an approach to treat such lung diseases. Parenteral administration of siRNA has been shown to be difficult due to degradation by nucleases in the systemic circulation and excretion by the kidneys. To avoid these issues and to achieve local delivery and local effects, pulmonary administration has been proposed as an alternative administration route. Regarding this application, various animal studies have been conducted over the past few years. Therefore, this review presents a critical analysis of publications where pulmonary administration of siRNA in animals has been reported. Such an analysis is necessary to determine the feasibility of this administration route and to define directions for future research. First, we provide background information on lungs, pulmonary administration, and delivery vectors. Thereafter, we present and discuss relevant animal studies. Though nearly all publications reported positive outcomes, several reoccurring challenges were identified. They relate to 1) the necessity, efficacy, and safety of delivery vectors, 2) the biodistribution of siRNA in tissues other than the lungs, 3) the poor correlation between in vitro and in vivo models, and 4) the long-term effects upon (repeated) administration of siRNA. Finally, we present recommendations for future research to define the route to go: towards safer and more effective pulmonary administration of siRNA. PMID:27235976

  15. The Inheritance Pattern of 24 nt siRNA Clusters in Arabidopsis Hybrids Is Influenced by Proximity to Transposable Elements

    PubMed Central

    Li, Ying; Varala, Kranthi; Moose, Stephen P.; Hudson, Matthew E.

    2012-01-01

    Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequencing to characterize the inheritance patterns of small RNA levels in reciprocal hybrids of two Arabidopsis thaliana accessions, Columbia and Landsberg erecta. We find 24-nt siRNAs predominate among those small RNAs that are differentially expressed between the parents. Following hybridization, the transposable element (TE)-derived siRNAs are often inherited in an additive manner, whereas siRNAs associated with protein-coding genes are often down-regulated in hybrids to the levels observed for the parent with lower relative siRNA levels. Among the protein-coding genes that exhibit this pattern, genes that function in pathogen defense, abiotic stress tolerance, and secondary metabolism are significantly enriched. Small RNA clusters from protein-coding genes where a TE is present within one kilobase show a different predominant inheritance pattern (additive) from those that do not (low-parent dominance). Thus, down-regulation in the form of low-parent dominance is likely the default pattern of inheritance for genic siRNA, and a different inheritance mechanism for TE siRNA is suggested. PMID:23118865

  16. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes.

    PubMed

    Tam, Oliver H; Aravin, Alexei A; Stein, Paula; Girard, Angelique; Murchison, Elizabeth P; Cheloufi, Sihem; Hodges, Emily; Anger, Martin; Sachidanandam, Ravi; Schultz, Richard M; Hannon, Gregory J

    2008-05-22

    Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals. PMID:18404147

  17. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes

    PubMed Central

    Tam, Oliver H.; Aravin, Alexei A.; Stein, Paula; Girard, Angelique; Murchison, Elizabeth P.; Cheloufi, Sihem; Hodges, Emily; Anger, Martin; Sachidanandam, Ravi; Schultz, Richard M.; Hannon, Gregory J.

    2010-01-01

    Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways1. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals. PMID:18404147

  18. Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis.

    PubMed

    Hu, Tingsong; Liu, Shanrong; Breiter, Deborah R; Wang, Fang; Tang, Ying; Sun, Shuhan

    2008-08-15

    Octamer 4 (Oct4), a member of the POU family of transcription factors, plays a key role in the maintenance of pluripotency and proliferation potential of embryonic stem cells. Cancer stem cell-like cells (CSCLC) are reported to be a minor population in tumors or even in tumor cell lines which also express Oct4. The role of Oct4 in CSCLCs still remains to be defined. In our study, we show that, in vitro, almost all murine Lewis lung carcinoma 3LL cells and human breast cancer MCF7 cells express Oct4 at high levels. This expression of Oct4 is successfully reduced by small interfering RNA, which eventually results in cell apoptosis. The signal pathway Oct4/Tcl1/Akt1 has been observed to be involved in this event. The repression of Oct4 reduces Tcl1 expression and further down-regulates the level of p-Ser.473-Akt1. In vivo, only approximately 5% of tumor cells were detected to express Oct4 in established 3LL and MCF7 tumor models, respectively. Small interfering RNA against Oct4 successfully decreases the CSCLCs and markedly inhibits tumor growth. In summary, we show that Oct4 might maintain the survival of CSCLCs partly through Oct4/Tcl1/Akt1 by inhibiting apoptosis, which strongly indicates that targeting Oct4 may have important clinical applications in cancer therapy. PMID:18701476

  19. What parameters to consider and which software tools to use for target selection and molecular design of small interfering RNAs.

    PubMed

    Matveeva, Olga

    2013-01-01

    The design of small gene silencing RNAs with a high probability of being efficient still has some elements of an art, especially when the lowest concentration of small molecules needs to be utilized. The design of highly target-specific small interfering RNAs or short hairpin RNAs is even a greater challenging task. Some logical schemes and software tools that can be used for simplifying both tasks are presented here. In addition, sequence motifs and sequence composition biases of small interfering RNAs that have to be avoided because of specificity concerns are also detailed. PMID:23027043

  20. Codelivery of paclitaxel and small interfering RNA by octadecyl quaternized carboxymethyl chitosan-modified cationic liposome for combined cancer therapy.

    PubMed

    Zhang, Ran; Wang, Shi-Bin; Chen, Ai-Zheng; Chen, Wei-Guang; Liu, Yuan-Gang; Wu, Wen-Guo; Kang, Yong-Qiang; Ye, Shi-Fu

    2015-09-01

    Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan. The cationic liposome properties were characterized by Fourier transform infrared spectroscopy, dynamic light scattering and zeta potential measurements, transmission electron microscopy, atomic force microscopy, and gel retardation assay. The cationic liposome exhibited good properties, such as a small particle size, a narrow particle size distribution, a good spherical shape, a smooth surface, and a good binding ability with small interfering RNA. Most importantly, when combined with paclitaxel and small interfering RNA, the composite cationic liposome induced a great enhancement in the antitumor activity, which showed a significantly higher in vitro cytotoxicity in Bcap-37 cells than liposomal paclitaxel or small interfering RNA alone. In conclusion, the results indicate that cationic liposome could be further developed as a codelivery system for chemotherapy drugs and therapeutic small interfering RNAs. PMID:25838353

  1. Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs

    PubMed Central

    Fahlgren, Noah; Bollmann, Stephanie R.; Kasschau, Kristin D.; Cuperus, Josh T.; Press, Caroline M.; Sullivan, Christopher M.; Chapman, Elisabeth J.; Hoyer, J. Steen; Gilbert, Kerrigan B.; Grünwald, Niklaus J.; Carrington, James C.

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work. PMID:24204767

  2. Systematic coarse-grained modeling of complexation between small interfering RNA and polycations

    NASA Astrophysics Data System (ADS)

    Wei, Zonghui; Luijten, Erik

    2015-12-01

    All-atom molecular dynamics simulations can provide insight into the properties of polymeric gene-delivery carriers by elucidating their interactions and detailed binding patterns with nucleic acids. However, to explore nanoparticle formation through complexation of these polymers and nucleic acids and study their behavior at experimentally relevant time and length scales, a reliable coarse-grained model is needed. Here, we systematically develop such a model for the complexation of small interfering RNA (siRNA) and grafted polyethyleneimine copolymers, a promising candidate for siRNA delivery. We compare the predictions of this model with all-atom simulations and demonstrate that it is capable of reproducing detailed binding patterns, charge characteristics, and water release kinetics. Since the coarse-grained model accelerates the simulations by one to two orders of magnitude, it will make it possible to quantitatively investigate nanoparticle formation involving multiple siRNA molecules and cationic copolymers.

  3. Trans-acting small interfering RNA4: key to nutraceutical synthesis in 1 grape development?

    PubMed Central

    Rock, Christopher D.

    2013-01-01

    The facility and versatility of microRNAs (miRNAs) to evolve and change likely underlies how they have become dominant constituents of eukaryotic genomes. In this opinion article I propose that trans-acting small interfering RNA gene 4 (TAS4) evolution may be important for biosynthesis of polyphenolics, arbuscular symbiosis, and bacterial pathogen etiologies. Expression-based and phylogenetic evidence shows that TAS4 targets two novel grape (Vitis vinifera L.) MYB transcription factors (VvMYBA6, VvMYBA7) that spawn phased siRNAs and likely function in nutraceutical bioflavonoid biosynthesis and fruit development. Characterization of the molecular mechanisms of TAS4 control of plant development and integration into biotic and abiotic stress- and nutrient signaling regulatory networks has applicability to molecular breeding and development of strategies for engineering healthier foods. PMID:23993483

  4. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA

    PubMed Central

    Fattal, Elias; Barratt, Gillian

    2009-01-01

    Antisense oligonucleotides and small interfering RNA have enormous potential for the treatment of a number of diseases, including cancer. However, several impediments to their widespread use as drugs still have to be overcome: in particular their lack of stability in physiological fluids and their poor penetration into cells. Association with or encapsulation within nano-and microsized drug delivery systems could help to solve these problems. In this review, we describe the progress that has been made using delivery systems composed of natural or synthetic polymers in the form of complexes, nanoparticles or microparticles. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=200 PMID:19366348

  5. Development of a software tool and criteria evaluation for efficient design of small interfering RNA.

    PubMed

    Chaudhary, Aparna; Srivastava, Sonam; Garg, Sanjeev

    2011-01-01

    RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds's design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA. PMID:21145307

  6. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    SciTech Connect

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2014-09-15

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitated lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.

  7. Systematic coarse-grained modeling of complexation between small interfering RNA and polycations

    SciTech Connect

    Wei, Zonghui; Luijten, Erik

    2015-12-28

    All-atom molecular dynamics simulations can provide insight into the properties of polymeric gene-delivery carriers by elucidating their interactions and detailed binding patterns with nucleic acids. However, to explore nanoparticle formation through complexation of these polymers and nucleic acids and study their behavior at experimentally relevant time and length scales, a reliable coarse-grained model is needed. Here, we systematically develop such a model for the complexation of small interfering RNA (siRNA) and grafted polyethyleneimine copolymers, a promising candidate for siRNA delivery. We compare the predictions of this model with all-atom simulations and demonstrate that it is capable of reproducing detailed binding patterns, charge characteristics, and water release kinetics. Since the coarse-grained model accelerates the simulations by one to two orders of magnitude, it will make it possible to quantitatively investigate nanoparticle formation involving multiple siRNA molecules and cationic copolymers.

  8. Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles.

    PubMed

    Hasanzadeh Kafshgari, M; Alnakhli, M; Delalat, B; Apostolou, S; Harding, F J; Mäkilä, E; Salonen, J J; Kuss, B J; Voelcker, N H

    2015-12-01

    In this study, thermally hydrocarbonised porous silicon nanoparticles (THCpSiNPs) capped with polyethylenimine (PEI) were fabricated, and their potential for small interfering RNA (siRNA) delivery was investigated in an in vitro glioblastoma model. PEI coating following siRNA loading enhanced the sustained release of siRNA, and suppressed burst release effects. The positively-charged surface improved the internalisation of the nanoparticles across the cell membrane. THCpSiNP-mediated siRNA delivery reduced mRNA expression of the MRP1 gene, linked to the resistence of glioblastoma to chemotherapy, by 63% and reduced MRP1-protein levels by 70%. MRP1 siRNA loaded nanoparticles did not induce cytotoxicity in glioblastoma cells, but markedly reduced cell proliferation. In summary, the results demonstrated that non-cytotoxic cationic THCpSiNPs are promising vehicles for therapeutic siRNA delivery. PMID:26343506

  9. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro

    PubMed Central

    Paul, Amber M.; Shi, Yongliang; Acharya, Dhiraj; Douglas, Jessica R.; Cooley, Amanda; Anderson, John F.; Huang, Faqing

    2014-01-01

    Dengue virus (DENV) infection in humans can cause flu-like illness, life-threatening haemorrhagic fever or even death. There is no specific anti-DENV therapeutic or approved vaccine currently available, partially due to the possibility of antibody-dependent enhancement reaction. Small interfering RNAs (siRNAs) that target specific viral genes are considered a promising therapeutic alternative against DENV infection. However, in vivo, siRNAs are vulnerable to degradation by serum nucleases and rapid renal excretion due to their small size and anionic character. To enhance siRNA delivery and stability, we complexed anti-DENV siRNAs with biocompatible gold nanoparticles (AuNPs) and tested them in vitro. We found that cationic AuNP–siRNA complexes could enter Vero cells and significantly reduce DENV serotype 2 (DENV-2) replication and infectious virion release under both pre- and post-infection conditions. In addition, RNase-treated AuNP–siRNA complexes could still inhibit DENV-2 replication, suggesting that AuNPs maintained siRNA stability. Collectively, these results demonstrated that AuNPs were able to efficiently deliver siRNAs and control infection in vitro, indicating a novel anti-DENV strategy. PMID:24828333

  10. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au

  11. Global Analyses of Small Interfering RNAs from Sour Orange seedlings Infected with Different Citrus tristeza virus Genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA silencing is a sequence-specific regulatory mechanism in development and maintenance of genome integrity and functions in plant antiviral defense mechanisms. Small interfering RNAs (siRNAs) are key mediators of RNA silencing. To study CTV-host interactions and disease expression, profiles of v...

  12. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs

    SciTech Connect

    Li, Fengfeng; Ruan, Hongjiang; Fan, Cunyi; Zeng, Bingfang; Wang, Chunyang; Wang, Xiang

    2010-01-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which extracellular signal-regulated kinase (ERK)2 is considered to be crucial. Based on these theories, we examined the effects of a lentivirus-mediated small interfering RNA (siRNA) targeting ERK2 on the suppression of joint adhesion formation in vivo. The effects were assessed in vivo from different aspects including the adhesion score, histology and joint contracture angle. We found that the adhesions in the ERK2 siRNA group became soft and weak, and were easily stretched. Accordingly, the flexion contracture angles in the ERK2 siRNA group were also reduced (P < 0.05 compared with the control group). The animals appeared healthy, with no signs of impaired wound healing. In conclusion, local delivery of a lentivirus-mediated siRNA targeting ERK2 can ameliorate joint adhesion formation effectively and safely.

  13. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

    NASA Astrophysics Data System (ADS)

    Woodrow, Kim A.; Cu, Yen; Booth, Carmen J.; Saucier-Sawyer, Jennifer K.; Wood, Monica J.; Mark Saltzman, W.

    2009-06-01

    Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.

  14. Host Factors Modulating RSV Infection: Use of Small Interfering RNAs to Probe Functional Importance.

    PubMed

    Caly, Leon; Li, Hong-Mei; Jans, David

    2016-01-01

    Although respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide [1], the protein-protein interactions between the host cell and virus remain poorly understood. We have used a focused small interfering RNA (siRNA) approach to knock-down and examine the role(s) of various host cell proteins. Here, we describe approaches for casein kinase 2α (CK2α) as a key example. We show how to study the effect of host gene (CK2α) knockdown using siRNA on cell-associated and released virus titers, using both quantitative RT-PCR, which measures the level of viral RNA, and plaque assay, which measures infectious virus directly. Both assays identified reduced viral titers with CK2α gene knock-down, indicating that it is likely required for efficient viral assembly and/or release. Effects were confirmed in RSV infected cells using the specific CK2α inhibitor 4,5,6,7-tetrabromobenzotriazole, revealing a similar reduction in viral titers as CK2α specific siRNA. This demonstrates that siRNA can be used to characterize critical host cell-RSV protein-protein interactions, and establishes CK2α as a future druggable target. PMID:27464690

  15. Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer

    PubMed Central

    Kennedy, Edward M.; Whisnant, Adam W.; Kornepati, Anand V. R.; Marshall, Joy B.; Bogerd, Hal P.; Cullen, Bryan R.

    2015-01-01

    Although RNA interference (RNAi) functions as a potent antiviral innate-immune response in plants and invertebrates, mammalian somatic cells appear incapable of mounting an RNAi response and few, if any, small interfering RNAs (siRNAs) can be detected. To examine why siRNA production is inefficient, we have generated double-knockout human cells lacking both Dicer and protein kinase RNA-activated. Using these cells, which tolerate double-stranded RNA expression, we show that a mutant form of human Dicer lacking the amino-terminal helicase domain can process double-stranded RNAs to produce high levels of siRNAs that are readily detectable by Northern blot, are loaded into RNA-induced silencing complexes, and can effectively and specifically inhibit the expression of cognate mRNAs. Remarkably, overexpression of this mutant Dicer, but not wild-type Dicer, also resulted in a partial inhibition of Influenza A virus—but not poliovirus—replication in human cells. PMID:26621737

  16. Safe and effective delivery of small interfering RNA with polymer- and liposomes-based complexes.

    PubMed

    Kodama, Yukinobu; Harauchi, Satoe; Kawanabe, Saki; Ichikawa, Nobuhiro; Nakagawa, Hiroo; Muro, Takahiro; Higuchi, Norihide; Nakamura, Tadahiro; Kitahara, Takashi; Sasaki, Hitoshi

    2013-01-01

    We developed binary and ternary complexes based on polymers and liposomes for safe and effective delivery of small interfering RNA (siRNA). Anti-luciferase siRNA was used as a model of nucleic acid medicine. The binary complexes of siRNA were prepared with cationic polymers and cationic liposomes such as polyethylenimine (PEI), polyamidoamine (PAMAM) dendrimer, poly-L-arginine (PLA), trimethyl[2,3-(dioleoxy)-propyl]ammonium chloride (DOTMA), and cholesteryl 3β-N-(dimetylaminnoethyl)carbamate hydrochloride (DC-Chol). The ternary complexes were constructed by the addition of γ-polyglutamic acid (γ-PGA) to the binary complexes. The complexes were approximately 54-153 nm in particle size. The binary complexes showed a cationic surface charge although an anionic surface charge was observed in the ternary complexes. The polymer-based complexes did not show a silencing effect in the mouse colon carcinoma cell line expressing luciferase regularly (Colon26/Luc cells). The binary complexes based on liposomes and their ternary complexes coated by γ-PGA showed a significant silencing effect. The binary complexes showed significant cytotoxicity although the ternary complexes coated by γ-PGA did not show significant cytotoxicity. The ternary complexes coated by γ-PGA suppressed luciferase activity in the tumor after their direct injection into the tumors of mice bearing Colon26/Luc cells. Thus, we have newly identified safe and efficient ternary complexes of siRNA for clinical use. PMID:23727920

  17. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.

    PubMed

    Rudzinski, Walter E; Palacios, Adriana; Ahmed, Abuzar; Lane, Michelle A; Aminabhavi, Tejraj M

    2016-08-20

    Small interfering RNA (siRNA) molecules specifically target messenger RNA species, decreasing intracellular protein levels. β-Catenin protein concentrations are increased in 70-80% of colon tumors, promoting tumor progression. Chitosan exhibits low levels of toxicity and can be transported across mucosal membranes; therefore, our objective was to develop chitosan and poly(ethylene glycol)-grafted (PEGylated) chitosan nanoparticles, 100-150nm in diameter, encapsulating anti-β-catenin siRNA for transfection into colon cancer cells. Encapsulation efficiencies up to 97% were observed. Confocal microscopy visualized the entry of fluorescently-tagged siRNA into cells. Western blot analysis showed that both chitosan and PEGylated chitosan nanoparticles containing anti-β-catenin siRNA decreased β-catenin protein levels in cultured colon cancer cells. These results indicate that nanoparticles made with chitosan and PEGylated chitosan can successfully enter colon cancer cells and decrease the level of a protein that promotes tumor progression. These or similar nanoparticles may prove beneficial for the treatment of colon cancer in humans. PMID:27178938

  18. Targeted Delivery of Small Interfering RNA Using Reconstituted High-Density Lipoprotein Nanoparticles12

    PubMed Central

    Shahzad, Mian MK; Mangala, Lingegowda S; Han, Hee Dong; Lu, Chunhua; Bottsford-Miller, Justin; Nishimura, Masato; Mora, Edna M; Lee, Jeong-Won; Stone, Rebecca L; Pecot, Chad V; Thanapprapasr, Duangmani; Roh, Ju-Won; Gaur, Puja; Nair, Maya P; Park, Yun-Yong; Sabnis, Nirupama; Deavers, Michael T; Lee, Ju-Seog; Ellis, Lee M; Lopez-Berestein, Gabriel; McConathy, Walter J; Prokai, Laszlo; Lacko, Andras G; Sood, Anil K

    2011-01-01

    RNA interference holds tremendous potential as a therapeutic approach, especially in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). To maintain a high level of growth, tumor cells scavenge high-density lipoprotein (HDL) particles by overexpressing its receptor: scavenger receptor type B1 (SR-B1). In this study, we exploited this cellular characteristic to achieve efficient siRNA delivery and established a novel formulation of siRNA by incorporating it into reconstituted HDL (rHDL) nanoparticles. Here, we demonstrate that rHDL nanoparticles facilitate highly efficient systemic delivery of siRNA in vivo, mediated by the SR-B1. Moreover, in therapeutic proof-of-concept studies, these nanoparticles were effective in silencing the expression of two proteins that are key to cancer growth and metastasis (signal transducer and activator of transcription 3 and focal adhesion kinase) in orthotopic mouse models of ovarian and colorectal cancer. These data indicate that an rHDL nanoparticle is a novel and highly efficient siRNA carrier, and therefore, this novel technology could serve as the foundation for new cancer therapeutic approaches. PMID:21472135

  19. Delivery of small interfering RNA (siRNA) using the sleeping beauty transposon.

    PubMed

    Fletcher, Bradley S

    2010-11-01

    RNA interference (RNAi) is an evolutionarily conserved process that silences gene expression through double-stranded RNA species in a sequence-specific manner. Small interfering RNAs (siRNAs) can promote sequence-specific degradation and/or translational repression of target RNA by activation of the RNA-induced silencing complex (RISC). Traditionally, silencing in mammalian cells had been achieved by transfection of synthetically derived siRNA duplexes, resulting in transient gene suppression of the target sequence. As the technology was advanced, inhibitory short-hairpin-shaped RNAs (shRNAs) could be produced by transcription from RNA polymerase-III (pol-III)-driven promoters, such as H1, U6, or cytomegalovirus (CMV)-enhanced pol III promoters. Following transcription, the shRNAs are processed by the enzyme Dicer into active siRNA. This approach allows for the continuous production of siRNA within cells using a DNA template and offers increased options for delivery of the pol-III-driven transcriptional units. A number of different viral vectors, as well as plasmid DNAs, have been utilized to deliver shRNA to mammalian cells. Here, the Tc1/mariner DNA transposon Sleeping Beauty (SB) is used as a tool to deliver shRNA-encoding transcriptional units. The SB transposon system uses a "cut-and-paste" mechanism to insert the transposon into random TA dinucleotides within the target genome. The shRNAs are then processed and used for gene knockdown. PMID:21041394

  20. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy.

    PubMed

    Guzman-Aranguez, A; Loma, P; Pintor, J

    2013-10-01

    RNA interference (RNAi) can be used to inhibit the expression of specific genes in vitro and in vivo, thereby providing an extremely useful tool for investigating gene function. Progress in the understanding of RNAi-based mechanisms has opened up new perspectives in therapeutics for the treatment of several diseases including ocular disorders. The eye is currently considered a good target for RNAi therapy mainly because it is a confined compartment and, therefore, enables local delivery of small-interfering RNAs (siRNAs) by topical instillation or direct injection. However, delivery strategies that protect the siRNAs from degradation and are suitable for long-term treatment would be help to improve the efficacy of RNAi-based therapies for ocular pathologies. siRNAs targeting critical molecules involved in the pathogenesis of glaucoma, retinitis pigmentosa and neovascular eye diseases (age-related macular degeneration, diabetic retinopathy and corneal neovascularization) have been tested in experimental animal models, and clinical trials have been conducted with some of them. This review provides an update on the progress of RNAi in ocular therapeutics, discussing the advantages and drawbacks of RNAi-based therapeutics compared to previous treatments. PMID:23937539

  1. Coarse-grained Simulation of Complexation between Small Interfering RNA and Polycations

    NASA Astrophysics Data System (ADS)

    Wei, Zonghui; Ren, Yong; Williford, John-Michael; Mao, Hai-Quan; Luijten, Erik; Northwestern University Collaboration; Johns Hopkins University Collaboration

    Nanoparticles formed through self-assembly of polycations and nucleic acids are promising systems for gene delivery. A full understanding of the behavior of these particles in physiological context requires detailed knowledge of their physical properties. All-atom molecular dynamics simulations can provide insight into the interaction of polymeric carriers with genomic material, but only at limited time and length scales. To overcome these limitations and explore the full complexation process, a reliable coarse-grained model is needed. Here, we systematically develop such a model for a system comprised of small interfering RNA (siRNA) and polyethyleneimine-based carriers, and evaluate the quality of the coarse-grained model through comparison with all-atom simulations. We show that our coarse-grained model provides a reliable description of detailed binding pictures, charge characteristics, and water dynamics, while accelerating the simulations by two orders of magnitude. This makes it possible to quantitatively investigate nanoparticle formation involving multiple siRNA molecules and cationic copolymers.

  2. Development of a software tool and criteria evaluation for efficient design of small interfering RNA

    SciTech Connect

    Chaudhary, Aparna; Srivastava, Sonam; Garg, Sanjeev

    2011-01-07

    Research highlights: {yields} The developed tool predicted siRNA constructs with better thermodynamic stability and total score based on positional and other criteria. {yields} Off-target silencing below score 30 were observed for the best siRNA constructs for different genes. {yields} Immunostimulation and cytotoxicity motifs considered and penalized in the developed tool. {yields} Both positional and compositional criteria were observed to be important. -- Abstract: RNA interference can be used as a tool for gene silencing mediated by small interfering RNAs (siRNA). The critical step in effective and specific RNAi processing is the selection of suitable constructs. Major design criteria, i.e., Reynolds's design rules, thermodynamic stability, internal repeats, immunostimulatory motifs were emphasized and implemented in the siRNA design tool. The tool provides thermodynamic stability score, GC content and a total score based on other design criteria in the output. The viability of the tool was established with different datasets. In general, the siRNA constructs produced by the tool had better thermodynamic score and positional properties. Comparable thermodynamic scores and better total scores were observed with the existing tools. Moreover, the results generated had comparable off-target silencing effect. Criteria evaluations with additional criteria were achieved in WEKA.

  3. Allele dependent silencing of COL1A2 using small interfering RNAs

    PubMed Central

    Lindahl, Katarina; Rubin, Carl-Johan; Kindmark, Andreas; Ljunggren, Östen

    2008-01-01

    Osteogenesis imperfecta (OI) is generally caused by a dominant mutation in Collagen I, encoded by the genes COL1A1 and COL1A2. To date there is no satisfactory therapy for OI, but inactivation of the mutant allele through small interfering RNAs (siRNA) is a promising approach, as siRNAs targeting each allele of a polymorphism could be used for allele-specific silencing irrespective of the location of the actual mutations. In this study we examined the allele dependent effects of several tiled siRNAs targeting a region surrounding an exonic COL1A2 T/C polymorphism (rs1800222) in heterozygous primary human bone cells. Relative abundances of COL1A2 alleles were determined by cDNA sequencing and overall COL1A2 abundance was analyzed by quantitative PCR. One of the siRNAs decreased overall COL1A2 abundance by 71% of which 75% was due to silencing of the targeted T-allele. In conclusion, allele-preferential silencing of Collagen type I genes may be a future therapeutic approach for OI. PMID:19015742

  4. Inhibition of pathologic immunoglobulin free light chain production by small interfering RNA molecules

    PubMed Central

    Phipps, Jonathan E.; Kestler, Daniel P.; Foster, James S.; Kennel, Stephen J.; Donnell, Robert; Weiss, Deborah T.; Solomon, Alan; Wall, Jonathan S.

    2010-01-01

    Objectives Morbidity and mortality occurring in patients with multiple myeloma, AL amyloidosis, and light chain deposition disease can result from the pathologic deposition of monoclonal Ig light chains (LCs) in kidneys and other organs. To reduce synthesis of such components, therapy for these disorders typically has involved anti-plasma cell agents; however, this approach is not always effective and can have adverse consequences. We have investigated another means to achieve this objective; namely, RNA interference (RNAi). Materials and Methods SP2/O mouse myeloma cells were stably transfected with a construct encoding a λ6 LC (Wil) under control of the CMV promoter, while λ2-producing myeloma cell line RPMI 8226 was purchased from the ATCC. Both were treated with small interfering RNA (siRNA) directed specifically to the V, J, or C portions of the molecules and then analyzed by ELISA, flow cytometry and real time PCR. Results Transfected cells were found to constitutively express detectable quantities of mRNA and protein Wil and, after exposure to siRNAs, an ~40% reduction in mRNA and LC production was evidenced at 48 hours. An even greater effect was seen with the 8226 cells. Conclusion Our results have shown that RNAi can markedly reduce LC synthesis and provide the basis for testing the therapeutic potential of this strategy using in vivo experimental models of multiple myeloma. PMID:20637260

  5. A Multi-RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs.

    PubMed

    Roh, Young Hoon; Deng, Jason Z; Dreaden, Erik C; Park, Jae Hyon; Yun, Dong Soo; Shopsowitz, Kevin E; Hammond, Paula T

    2016-03-01

    Packaging multiple small interfering RNA (siRNA) molecules into nanostructures at precisely defined ratios is a powerful delivery strategy for effective RNA interference (RNAi) therapy. We present a novel RNA nanotechnology based approach to produce multiple components of polymerized siRNA molecules that are simultaneously self-assembled and densely packaged into composite sponge-like porous microstructures (Multi-RNAi-MSs) by rolling circle transcription. The Multi-RNAi-MSs were designed to contain a combination of multiple polymeric siRNA molecules with precisely controlled stoichiometry within a singular microstructure by manipulating the types and ratios of the circular DNA templates. The Multi-RNAi-MSs were converted into nanosized complexes by polyelectrolyte condensation to manipulate their physicochemical properties (size, shape, and surface charge) for favorable delivery, while maintaining the multifunctional properties of the siRNAs for combined therapeutic effects. These Multi-RNAi-MS systems have great potential in RNAi-mediated biomedical applications, for example, for the treatment of cancer, genetic disorders, and viral infections. PMID:26695874

  6. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Di Fabrizio, Enzo; Ferretti, Elisabetta; Tomao, Silverio; Gulino, Alberto

    2012-01-01

    During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and

  7. Colored petri net modeling of small interfering RNA-mediated messenger RNA degradation

    PubMed Central

    Nickaeen, Niloofar; Moein, Shiva; Heidary, Zarifeh; Ghaisari, Jafar

    2016-01-01

    Background: Mathematical modeling of biological systems is an attractive way for studying complex biological systems and their behaviors. Petri Nets, due to their ability to model systems with various levels of qualitative information, have been wildly used in modeling biological systems in which enough qualitative data may not be at disposal. These nets have been used to answer questions regarding the dynamics of different cell behaviors including the translation process. In one stage of the translation process, the RNA sequence may be degraded. In the process of degradation of RNA sequence, small-noncoding RNA molecules known as small interfering RNA (siRNA) match the target RNA sequence. As a result of this matching, the target RNA sequence is destroyed. Materials and Methods: In this context, the process of matching and destruction is modeled using Colored Petri Nets (CPNs). The model is constructed using CPNs which allow tokens to have a value or type on them. Thus, CPN is a suitable tool to model string structures in which each element of the string has a different type. Using CPNs, long RNA, and siRNA strings are modeled with a finite set of colors. The model is simulated via CPN Tools. Results: A CPN model of the matching between RNA and siRNA strings is constructed in CPN Tools environment. Conclusion: In previous studies, a network of stoichiometric equations was modeled. However, in this particular study, we modeled the mechanism behind the silencing process. Modeling this kind of mechanisms provides us with a tool to examine the effects of different factors such as mutation or drugs on the process. PMID:27376039

  8. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs.

    PubMed

    Donaire, Livia; Barajas, Daniel; Martínez-García, Belén; Martínez-Priego, Llucia; Pagán, Israel; Llave, César

    2008-06-01

    In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs. TRV siRNAs are mostly 21 nucleotides in length and derive from positive and negative viral RNA strands, although TRV siRNAs of positive polarity are significantly more abundant. This asymmetry appears not to correlate with the presence of highly structured regions of single-stranded viral RNA. The Dicer-like enzyme DCL4, DCL3, or DCL2 targets, alone or in combination, viral templates to promote synthesis of siRNAs of both polarities from all regions of the viral genome. The heterogeneous distribution profile of TRV siRNAs reveals differential contributions throughout the TRV genome to siRNA formation. Indirect evidence suggests that DCL2 is responsible for production of a subset of siRNAs derived from the 3' end region of TRV. TRV siRNA biogenesis and antiviral silencing are strongly dependent on the combined activity of the host-encoded RNA-dependent RNA polymerases RDR1, RDR2, and RDR6, thus providing evidence that perfectly complementary double-stranded RNA serves as a substrate for siRNA production. We conclude that the overall composition of viral siRNAs in TRV-infected plants reflects the combined action of several interconnected pathways involving different DCL and RDR activities. PMID:18353962

  9. In silico reconstruction of viral genomes from small RNAs improves virus-derived small interfering RNA profiling.

    PubMed

    Vodovar, Nicolas; Goic, Bertsy; Blanc, Hervé; Saleh, Maria-Carla

    2011-11-01

    RNA interference (RNAi) is the essential component of antiviral immunity in invertebrates and plants. One of the landmarks of the antiviral RNAi response is the production of virus-derived small interfering RNA (vsiRNA) from viral double-stranded RNA (dsRNA). vsiRNAs constitute a fragmented image of the viral genome sequence that results from Dicer cleavage. vsiRNA sequence profiling is used extensively as a surrogate to study the antiviral RNAi response by determining the nature of the viral dsRNA molecules exposed to and processed by the RNAi machinery. The accuracy of these profiles depends on the actual viral genome sequence used as a reference to align vsiRNA reads, and the interpretation of inaccurate profiles can be misleading. Using Flock house virus and Drosophila melanogaster as a model RNAi-competent organism, we show accurate reconstruction of full-length virus reference sequence from vsiRNAs and prediction of the structure of defective interfering particles (DIs). We developed a Perl script, named Paparazzi, that reconstitutes viral genomes through an iterative alignment/consensus call procedure using a related reference sequence as scaffold. As prevalent DI-derived reads introduce artifacts during reconstruction, Paparazzi eliminates DI-specific reads to improve the quality of the reconstructed genome. Paparazzi constitutes a promising alternative to Sanger sequencing in this context and an effective tool to study antiviral RNAi mechanisms by accurately quantifying vsiRNA along the replicating viral genome. We further discuss Paparazzi as a companion tool for virus discovery as it provides full-length genome sequences and corrects for potential artifacts of assembly. PMID:21880776

  10. In Silico Reconstruction of Viral Genomes from Small RNAs Improves Virus-Derived Small Interfering RNA Profiling ▿ † ‡

    PubMed Central

    Vodovar, Nicolas; Goic, Bertsy; Blanc, Hervé; Saleh, Maria-Carla

    2011-01-01

    RNA interference (RNAi) is the essential component of antiviral immunity in invertebrates and plants. One of the landmarks of the antiviral RNAi response is the production of virus-derived small interfering RNA (vsiRNA) from viral double-stranded RNA (dsRNA). vsiRNAs constitute a fragmented image of the viral genome sequence that results from Dicer cleavage. vsiRNA sequence profiling is used extensively as a surrogate to study the antiviral RNAi response by determining the nature of the viral dsRNA molecules exposed to and processed by the RNAi machinery. The accuracy of these profiles depends on the actual viral genome sequence used as a reference to align vsiRNA reads, and the interpretation of inaccurate profiles can be misleading. Using Flock house virus and Drosophila melanogaster as a model RNAi-competent organism, we show accurate reconstruction of full-length virus reference sequence from vsiRNAs and prediction of the structure of defective interfering particles (DIs). We developed a Perl script, named Paparazzi, that reconstitutes viral genomes through an iterative alignment/consensus call procedure using a related reference sequence as scaffold. As prevalent DI-derived reads introduce artifacts during reconstruction, Paparazzi eliminates DI-specific reads to improve the quality of the reconstructed genome. Paparazzi constitutes a promising alternative to Sanger sequencing in this context and an effective tool to study antiviral RNAi mechanisms by accurately quantifying vsiRNA along the replicating viral genome. We further discuss Paparazzi as a companion tool for virus discovery as it provides full-length genome sequences and corrects for potential artifacts of assembly. PMID:21880776

  11. Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation

    SciTech Connect

    Cho, Seung-Woo; Hartle, Lauren; Son, Sun Mi; Yang, Fan; Goldberg, Michael; Xu, Qiaobing; Langer, Robert; Anderson, Daniel G.

    2008-11-07

    RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-{alpha} (TNF-{alpha}). siRNA was designed and synthesized targeting tumor necrosis factor-{alpha} receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-{alpha} expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-{alpha} expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia.

  12. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons

    PubMed Central

    Luo, Miaw-Chyi; Zhang, Dong-Qin; Ma, Shou-Wu; Huang, Yuan-Yuan; Shuster, Sam J; Porreca, Frank; Lai, Josephine

    2005-01-01

    We have developed a highly effective method for in vivo gene silencing in the spinal cord and dorsal root ganglia (DRG) by a cationic lipid facilitated delivery of synthetic, small interfering RNA (siRNA). A siRNA to the delta opioid receptor (DOR), or a mismatch RNA, was mixed with the transfection reagent, i-Fect™ (vehicle), and delivered as repeated daily bolus doses (0.5 μg to 4 μg) via implanted intrathecal catheter to the lumbar spinal cord of rats. Twenty-four hours after the last injection, rats were tested for antinociception by the DOR selective agonist, [D-Ala2, Glu4]deltorphin II (DELT), or the mu opioid receptor (MOR) selective agonist, [D-Ala2, N-Me-Phe4, Gly-ol5]enkephalin (DAMGO). Pretreatment with the siRNA, but not the mismatch RNA or vehicle alone, blocked DELT antinociception dose-dependently. The latter was concomitant with a reduction in the spinal immunoreactivity and receptor density of DOR, and in DOR transcripts in the lumbar DRG and spinal dorsal horn. Neither siRNA nor mismatch RNA pretreatment altered spinal immunoreactivity of MOR or antinociception by spinal DAMGO, and had no effect on the baseline thermal nociceptive threshold. The inhibition of function and expression of DOR by siRNA was reversed by 72 hr after the last RNA injection. The uptake of fluorescence-tagged siRNA was detected in both DRG and spinal cord. The low effective dose of siRNA/i-Fect™ complex reflects an efficient delivery of the siRNA to peripheral and spinal neurons, produced no behavioral signs of toxicity. This delivery method may be optimized for other gene targets. PMID:16191203

  13. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. PMID:22001930

  14. Optimized In Vivo Transfer of Small Interfering RNA Targeting Dermal Tissue Using In Vivo Surface Electroporation

    PubMed Central

    Broderick, Kate E; Chan, Amy; Lin, Feng; Shen, Xuefei; Kichaev, Gleb; Khan, Amir S; Aubin, Justin; Zimmermann, Tracy S; Sardesai, Niranjan Y.

    2012-01-01

    Electroporation (EP) of mammalian tissue is a technique that has been used successfully in the clinic for the delivery of genetic-based vaccines in the form of DNA plasmids. There is great interest in platforms which efficiently deliver RNA molecules such as messenger RNA and small interfering RNA (siRNA) to mammalian tissue. However, the in vivo delivery of RNA enhanced by EP has not been extensively characterized. This paper details the optimization of electrical parameters for a novel low-voltage EP method to deliver oligonucleotides (both DNA and RNA) to dermal tissue in vivo. Initially, the electrical parameters were optimized for dermal delivery of plasmid DNA encoding green fluorescent protein (GFP) using this novel surface dermal EP device. While all investigated parameters resulted in visible transfection, voltage parameters in the 10 V range elicited the most robust signal. The parameters optimized for DNA, were then assessed for translation of successful electrotransfer of siRNA into dermal tissue. Robust tagged-siRNA transfection in skin was detected. We then assessed whether these parameters translated to successful transfer of siRNA resulting in gene knockdown in vivo. Using a reporter gene construct encoding GFP and tagged siRNA targeting the GFP message, we show simultaneous transfection of the siRNA to the skin via EP and the concomitant knockdown of the reporter gene signal. The siRNA delivery was accomplished with no evidence of injection site inflammation or local tissue damage. The minimally invasive low-voltage EP method is thus capable of efficiently delivering both DNA and RNA molecules to dermal tissue in a tolerable manner. PMID:23344722

  15. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C.

    PubMed

    Duan, Liang; Yan, Yan; Liu, Jingyi; Wang, Bo; Li, Pu; Hu, Qin; Chen, Weixian

    2016-01-01

    RNA interference (RNAi) represents a promising strategy for the treatment of HCV infection. However, the development of an effective system for in vivo delivery of small interfering RNA (siRNA) to target organ remains a formidable challenge. Here, we develop a unique nanoparticle platform (VE-DC) composed of α-tocopherol (vitamin E) and cholesterol-based cationic liposomes (DOTAP-Chol) for systemic delivery of siRNAs to the liver. A HCV-replicable cell line, Huh7.5.1-HCV, and a transient HCV core expressing cell line, Huh7.5.1-Core, were constructed and used to assess the in vitro anti-HCV activity of VE-DC/siRNAs. A transient in vivo HCV model was also constructed by hydrodynamic injection of pCDNA3.1(+)-3FLAG-Core (pCore-3FLAG) plasmid expressing core protein or pGL3-5'UTR-luciferase (pGL3-5'UTR-luc) plasmid expressing luciferase driven by HCV 5'UTR. Nanoscale VE-DC/siRNA was intravenously injected to assess the liver-targeting property as well as antiviral activity. The nanoscale VE-DC effectively exerted an anti-HCV activity in the in vitro cell models. Post-administration of VE-DC/siRNAs also effectively delivered siRNAs to the liver, suppressing core protein production and firefly luciferase activity, without inducing an innate immunity response or off-target and toxicity effects. The VE-DC platform has high potential as a vehicle for delivery of siRNAs to the liver for gene therapy for targeting hepatitis C. PMID:27113197

  16. Small interfering RNA suppression of polyamine analog-induced spermidine/spermine n1-acetyltransferase.

    PubMed

    Chen, Ying; Kramer, Debora L; Jell, Jason; Vujcic, Slavoljub; Porter, Carl W

    2003-11-01

    N1,N11-diethylnorspermine (DENSPM) is a polyamine analog that down-regulates polyamine biosynthesis and potently upregulates the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT). In certain cells, such as SKMEL-28 human melanoma cells, induction of SSAT is associated with rapid apoptosis. In this study, we used small interfering RNA (siRNA) to examine the role of SSAT induction in mediating polyamine pool depletion and apoptosis. siRNA duplexes were designed to target three independent sites in the SSAT mRNA coding region (siSSAT). When transfected under nontoxic conditions, two of the duplexes selectively reduced basal SSAT mRNA in HEK-293 cells by >80% and prevented DENSPM-induced SSAT mRNA by 95% in SK-MEL-28 cells. Treatment of SK-MEL-28 cells with 10 muM DENSPM in the presence of 83 nM siSSAT selectively prevented the 1400-fold induction of SSAT activity by approximately 90% and, in turn, prevented analog depletion of spermine (Spm) pools by approximately 35%. siSSAT also prevented DENSPM-induced cytochrome c release and caspase-3 cleavage at 36 h and apoptosis at 48 h as measured by annexin V staining. Overall, the data directly link analog induction of SSAT to Spm pool depletion and to caspase-dependent apoptosis in DENSPM-treated SK-MEL-28 cells. This represents the first use of siRNA technology directed toward a polyamine gene and the first unequivocal demonstration that SSAT induction initiates events leading to polyamine analog-induced apoptosis. PMID:14573765

  17. Optimized in vivo transfer of small interfering RNA targeting dermal tissue using in vivo surface electroporation.

    PubMed

    Broderick, Kate E; Chan, Amy; Lin, Feng; Shen, Xuefei; Kichaev, Gleb; Khan, Amir S; Aubin, Justin; Zimmermann, Tracy S; Sardesai, Niranjan Y

    2012-01-01

    Electroporation (EP) of mammalian tissue is a technique that has been used successfully in the clinic for the delivery of genetic-based vaccines in the form of DNA plasmids. There is great interest in platforms which efficiently deliver RNA molecules such as messenger RNA and small interfering RNA (siRNA) to mammalian tissue. However, the in vivo delivery of RNA enhanced by EP has not been extensively characterized. This paper details the optimization of electrical parameters for a novel low-voltage EP method to deliver oligonucleotides (both DNA and RNA) to dermal tissue in vivo. Initially, the electrical parameters were optimized for dermal delivery of plasmid DNA encoding green fluorescent protein (GFP) using this novel surface dermal EP device. While all investigated parameters resulted in visible transfection, voltage parameters in the 10 V range elicited the most robust signal. The parameters optimized for DNA, were then assessed for translation of successful electrotransfer of siRNA into dermal tissue. Robust tagged-siRNA transfection in skin was detected. We then assessed whether these parameters translated to successful transfer of siRNA resulting in gene knockdown in vivo. Using a reporter gene construct encoding GFP and tagged siRNA targeting the GFP message, we show simultaneous transfection of the siRNA to the skin via EP and the concomitant knockdown of the reporter gene signal. The siRNA delivery was accomplished with no evidence of injection site inflammation or local tissue damage. The minimally invasive low-voltage EP method is thus capable of efficiently delivering both DNA and RNA molecules to dermal tissue in a tolerable manner. PMID:23344722

  18. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.

    PubMed

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2013-01-01

    Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. PMID:23913913

  19. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C

    PubMed Central

    Duan, Liang; Yan, Yan; Liu, Jingyi; Wang, Bo; Li, Pu; Hu, Qin; Chen, Weixian

    2016-01-01

    RNA interference (RNAi) represents a promising strategy for the treatment of HCV infection. However, the development of an effective system for in vivo delivery of small interfering RNA (siRNA) to target organ remains a formidable challenge. Here, we develop a unique nanoparticle platform (VE-DC) composed of α-tocopherol (vitamin E) and cholesterol-based cationic liposomes (DOTAP-Chol) for systemic delivery of siRNAs to the liver. A HCV-replicable cell line, Huh7.5.1-HCV, and a transient HCV core expressing cell line, Huh7.5.1-Core, were constructed and used to assess the in vitro anti-HCV activity of VE-DC/siRNAs. A transient in vivo HCV model was also constructed by hydrodynamic injection of pCDNA3.1(+)-3FLAG-Core (pCore-3FLAG) plasmid expressing core protein or pGL3-5′UTR-luciferase (pGL3-5′UTR-luc) plasmid expressing luciferase driven by HCV 5′UTR. Nanoscale VE-DC/siRNA was intravenously injected to assess the liver-targeting property as well as antiviral activity. The nanoscale VE-DC effectively exerted an anti-HCV activity in the in vitro cell models. Post-administration of VE-DC/siRNAs also effectively delivered siRNAs to the liver, suppressing core protein production and firefly luciferase activity, without inducing an innate immunity response or off-target and toxicity effects. The VE-DC platform has high potential as a vehicle for delivery of siRNAs to the liver for gene therapy for targeting hepatitis C. PMID:27113197

  20. Identification of Druggable Targets for Radiation Mitigation Using a Small Interfering RNA Screening Assay

    PubMed Central

    Zellefrow, Crystal D.; Sharlow, Elizabeth R.; Epperly, Michael W.; Reese, Celeste E.; Shun, Tongying; Lira, Ana; Greenberger, Joel S.; Lazo, John S.

    2013-01-01

    Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D0 = 1.3 ± 0.1 Gy and ñ = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D0 = 1.3 ± 0.1 Gy and ñ = 2.3 ± 0.3 for the vehicle control treated cells compared to D0 = 1.2 ± 0.1 Gy and ñ = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation

  1. Identification of druggable targets for radiation mitigation using a small interfering RNA screening assay.

    PubMed

    Zellefrow, Crystal D; Sharlow, Elizabeth R; Epperly, Michael W; Reese, Celeste E; Shun, Tongying; Lira, Ana; Greenberger, Joel S; Lazo, John S

    2012-09-01

    Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and that are suitable for high-throughput screening have not been established. Therefore, we examined two human pluripotent embryonal carcinoma cell lines for use in an unbiased phenotypic small interfering RNA (siRNA) assay to identify proteins with the potential of being drug targets for the protection of human cell populations against clinically relevant ionizing radiation doses that cause acute radiation syndrome. Of the two human cell lines tested, NCCIT cells had optimal growth characteristics in a 384 well format, exhibited radiation sensitivity (D(0) = 1.3 ± 0.1 Gy and ñ = 2.0 ± 0.6) comparable to the radiosensitivity of stem cell populations associated with human death within 30 days after total-body irradiation. Moreover, they internalized siRNA after 4 Gy irradiation enabling siRNA library screening. Therefore, we used the human NCCIT cell line for the radiation mitigation study with a siRNA library that silenced 5,520 genes known or hypothesized to be potential therapeutic targets. Exploiting computational methodologies, we identified 113 siRNAs with potential radiomitigative properties, which were further refined to 29 siRNAs with phosphoinositide-3-kinase regulatory subunit 1 (p85α) being among the highest confidence candidate gene products. Colony formation assays revealed radiation mitigation when the phosphoinositide-3-kinase inhibitor LY294002 was given after irradiation of 32D cl 3 cells (D(0) = 1.3 ± 0.1 Gy and ñ = 2.3 ± 0.3 for the vehicle control treated cells compared to D(0) = 1.2 ± 0.1 Gy and ñ = 6.0 ± 0.8 for the LY294002 treated cells, P = 0.0004). LY294002 and two other PI3K inhibitors, PI 828 and GSK 1059615, also mitigated radiation

  2. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma

    PubMed Central

    Varshosaz, Jaleh; Farzan, Maryam

    2015-01-01

    Hepatocellular carcinoma (HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorable systemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs (siRNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and siRNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited side-effects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is over-expressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and non-viral siRNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic siRNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein

  3. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Pin; Lin, I.-Jou; Chen, Chih-Chen; Hsu, Yi-Chiang; Chang, Chi-Chang; Lee, Mon-Juan

    2013-06-01

    Carbon nanotubes are capable of penetrating the cell membrane and are widely considered as potential carriers for gene or drug delivery. Because the C-C and C=C bonds in carbon nanotubes are nonpolar, functionalization is required for carbon nanotubes to interact with genes or drugs as well as to improve their biocompatibility. In this study, polyethylenimine (PEI)-functionalized single-wall (PEI-NH-SWNTs) and multiwall carbon nanotubes (PEI-NH-MWNTs) were produced by direct amination method. PEI functionalization increased the positive charge on the surface of SWNTs and MWNTs, allowing carbon nanotubes to interact electrostatically with the negatively charged small interfering RNAs (siRNAs) and to serve as nonviral gene delivery reagents. PEI-NH-MWNTs and PEI-NH-SWNTs had a better solubility in water than pristine carbon nanotubes, and further removal of large aggregates by centrifugation produced a stable suspension of reduced particle size and improved homogeneity and dispersity. The amount of grafted PEI estimated by thermogravimetric analysis was 5.08% ( w/ w) and 5.28% ( w/ w) for PEI-NH-SWNTs and PEI-NH-MWNTs, respectively. For the assessment of cytotoxicity, various concentrations of PEI-NH-SWNTs and PEI-NH-MWNTs were incubated with human cervical cancer cells, HeLa-S3, for 48 h. PEI-NH-SWNTs and PEI-NH-MWNTs induced cell deaths in a dose-dependent manner but were less cytotoxic compared to pure PEI. As determined by electrophoretic mobility shift assay, siRNAs directed against glyceraldehyde-3-phosphate dehydrogenase (siGAPDH) were completely associated with PEI-NH-SWNTs or PEI-NH-MWNTs at a PEI-NH-SWNT/siGAPDH or PEI-NH-MWNT/siGAPDH mass ratio of 80:1 or 160:1, respectively. Furthermore, PEI-NH-SWNTs and PEI-NH-MWNTs successfully delivered siGAPDH into HeLa-S3 cells at PEI-NH-SWNT/siGAPDH and PEI-NH-MWNT/siGAPDH mass ratios of 1:1 to 20:1, resulting in suppression of the mRNA level of GAPDH to an extent similar to that of DharmaFECT, a common transfection

  4. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    SciTech Connect

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  5. Functional Specialization of the Small Interfering RNA Pathway in Response to Virus Infection

    PubMed Central

    Marques, Joao Trindade; Wang, Ji-Ping; Wang, Xiaohong; de Oliveira, Karla Pollyanna Vieira; Gao, Catherine; Aguiar, Eric Roberto Guimaraes Rocha; Jafari, Nadereh; Carthew, Richard W.

    2013-01-01

    In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) cofactor called Loquacious (Loqs-PD). siRNAs are then loaded onto Argonaute-2 (Ago2) by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA) biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response. PMID:24009507

  6. The Exosome and Trans-Acting Small Interfering RNAs Regulate Cuticular Wax Biosynthesis during Arabidopsis Inflorescence Stem Development1[OPEN

    PubMed Central

    Lam, Patricia; Zhao, Lifang; Eveleigh, Nathan; Yu, Yu; Chen, Xuemei

    2015-01-01

    The primary aerial surfaces of land plants are covered with a cuticle, a protective layer composed of the cutin polyester matrix and cuticular waxes. Previously, we discovered a unique mechanism of regulating cuticular wax biosynthesis during Arabidopsis (Arabidopsis thaliana) stem elongation that involves ECERIFERUM7 (CER7), a core subunit of the exosome. Because loss-of-function mutations in CER7 result in reduced expression of the wax biosynthetic gene CER3, we proposed that CER7 is involved in degrading a messenger RNA encoding a CER3 repressor. To identify this putative repressor, we performed a cer7 suppressor screen that resulted in the isolation of the posttranscriptional gene-silencing components RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, indicating that small RNAs regulate CER3 expression. To establish the identity of the effector RNA species and determine whether these RNAs control CER3 transcript levels directly, we cloned additional genes identified in our suppressor screen and performed next-generation sequencing of small RNA populations that differentially accumulate in the cer7 mutant in comparison with the wild type. Our results demonstrate that the trans-acting small interfering RNA class of small RNAs are the effector molecules involved in direct silencing of CER3 and that the expression of five additional genes (EARLY RESPONSE TO DEHYDRATION14, AUXIN RESISTANT1, a translation initiation factor SUI1 family protein, and two genes of unknown function) is controlled by both CER7 and trans-acting small interfering RNAs. PMID:25502190

  7. Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors

    PubMed Central

    2014-01-01

    Small-interfering RNA (siRNA) is both a powerful tool in research and a promising therapeutic platform to modulate expression of disease-related genes. Malignant tumors are attractive disease targets for nucleic acid-based therapies. siRNA directed against oncogenes, and genes driving metastases or angiogenesis have been evaluated in animal models and in some cases, in humans. The outcomes of these studies indicate that drug delivery is a significant limiting factor. This review provides perspectives on in vivo validated nanoparticle-based siRNA delivery systems. Results of recent advances in liposomes and polymeric and inorganic formulations illustrate the need for mutually optimized attributes for performance in systemic circulation, tumor interstitial space, plasma membrane, and endosomes. Physiochemical properties conducive to efficient siRNA delivery are summarized and directions for future research are discussed. PMID:25221632

  8. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eukaryotes, RNA silencing pathways utilize 20–30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focuse...

  9. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification.

    PubMed

    Lippman, Zachary; May, Bruce; Yordan, Cristy; Singer, Tatjana; Martienssen, Rob

    2003-12-01

    Heritable, but reversible, changes in transposable element activity were first observed in maize by Barbara McClintock in the 1950s. More recently, transposon silencing has been associated with DNA methylation, histone H3 lysine-9 methylation (H3mK9), and RNA interference (RNAi). Using a genetic approach, we have investigated the role of these modifications in the epigenetic regulation and inheritance of six Arabidopsis transposons. Silencing of most of the transposons is relieved in DNA methyltransferase (met1), chromatin remodeling ATPase (ddm1), and histone modification (sil1) mutants. In contrast, only a small subset of the transposons require the H3mK9 methyltransferase KRYPTONITE, the RNAi gene ARGONAUTE1, and the CXG methyltransferase CHROMOMETHYLASE3. In crosses to wild-type plants, epigenetic inheritance of active transposons varied from mutant to mutant, indicating these genes differ in their ability to silence transposons. According to their pattern of transposon regulation, the mutants can be divided into two groups, which suggests that there are distinct, but interacting, complexes or pathways involved in transposon silencing. Furthermore, different transposons tend to be susceptible to different forms of epigenetic regulation. PMID:14691539

  10. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector

    PubMed Central

    Lan, Hanhong; Wang, Haitao; Chen, Qian; Chen, Hongyan; Jia, Dongsheng; Mao, Qianzhuo; Wei, Taiyun

    2016-01-01

    Plant reoviruses, rhabdoviruses, tospoviruses, and tenuiviruses are transmitted by insect vectors in a persistent-propagative manner. How such persistent infection of plant viruses in insect vectors is established and maintained remains poorly understood. In this study, we used rice gall dwarf virus (RGDV), a plant reovirus, and its main vector leafhopper Recilia dorsalis as a virus–insect system to determine how the small interference (siRNA) pathway modulates persistent infection of a plant virus in its insect vector. We showed that a conserved siRNA antiviral response was triggered by the persistent replication of RGDV in cultured leafhopper cells and in intact insects, by appearance of virus-specific siRNAs, primarily 21-nt long, and the increased expression of siRNA pathway core components Dicer-2 and Argonaute-2. Silencing of Dicer-2 using RNA interference strongly suppressed production of virus-specific siRNAs, promoted viral accumulation, and caused cytopathological changes in vitro and in vivo. When the viral accumulation level rose above a certain threshold of viral genome copy (1.32 × 1014 copies/μg insect RNA), the infection of the leafhopper by RGDV was lethal rather than persistent. Taken together, our results revealed a new finding that the siRNA pathway in insect vector can modulate persistent infection of plant viruses. PMID:26864546

  11. Zwitterionic Poly(carboxybetaine)-based Cationic Liposomes for Effective Delivery of Small Interfering RNA Therapeutics without Accelerated Blood Clearance Phenomenon

    PubMed Central

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis. PMID:25825598

  12. Subcellular distribution of small interfering RNA: directed delivery through RNA polymerase III expression cassettes and localization by in situ hybridization.

    PubMed

    Paul, Cynthia P

    2005-01-01

    Reduction in the expression of specific genes through small interfering RNAs (siRNAs) is dependent on the colocalization of siRNAs with other components of the RNA interference (RNAi) pathways within the cell. The expression of siRNAs within cells from cassettes that are derived from genes transcribed by RNA polymerase III (pol III) and provide for selective subcellular distribution of their products can be used to direct siRNAs to the cellular pathways. Expression from the human U6 promoter, resulting in siRNA accumulation in the nucleus, is effective in reducing gene expression, whereas cytoplasmic and nucleolar localization of the siRNA when expressed from the 5S or 7 SL promoters is not effective. The distribution of siRNA within the cell is determined by fluorescence in situ hybridization. Although the long uninterrupted duplex of siRNA makes it difficult to detect with DNA oligonucleotide probes, labeled oligonucleotide probes with 2'-O-methyl RNA backbones provide the stability needed for a strong signal. These methods contribute to studies of the interconnected cellular RNAi pathways and are useful in adapting RNAi as a tool to determine gene function and develop RNA-based therapeutics. PMID:15644179

  13. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon.

    PubMed

    Li, Yan; Liu, Ruiyuan; Shi, Yuanjie; Zhang, Zhenzhong; Zhang, Xin

    2015-01-01

    For efficient delivery of small interfering RNA (siRNA) to the target diseased site in vivo, it is important to design suitable vehicles to control the blood circulation of siRNA. It has been shown that surface modification of cationic liposome/siRNA complexes (lipoplexes) with polyethylene glycol (PEG) could enhance the circulation time of lipoplexes. However, the first injection of PEGylated lipoplexes in vivo induces accelerated blood clearance and enhances hepatic accumulation of the following injected PEGylated lipoplexes, which is known as the accelerated blood clearance (ABC) phenomenon. Herein, we developed zwitterionic poly(carboxybetaine) (PCB) modified lipoplexes for the delivery of siRNA therapeutics, which could avoid protein adsorption and enhance the stability of lipoplexes as that for PEG. Quite different from the PEGylation, the PCBylated lipoplexes could avoid ABC phenomenon, which extended the blood circulation time and enhanced the tumor accumulation of lipoplexes in vivo. After accumulation in tumor site, the PCBylation could promote the cellular uptake and endosomal/lysosomal escape of lipoplexes due to its unique chemical structure and pH-sensitive ability. With excellent tumor accumulation, cellular uptake and endosomal/lysosomal escape abilities, the PCBylated lipoplexes significantly inhibited tumor growth and induced tumor cell apoptosis. PMID:25825598

  14. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    PubMed

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M; Yang, Liwei; LaRocque, Jeannine R; Hall, Julie; Miska, Eric A; Ahmed, Shawn

    2014-10-14

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing. PMID:25258416

  15. Inhibition of PARP1 by small interfering RNA enhances docetaxel activity against human prostate cancer PC3 cells

    SciTech Connect

    Wu, Wenqi; Kong, Zhenzhen; Duan, Xiaolu; Zhu, Hanliang; Li, Shujue; Zeng, Shaohua; Liang, Yeping; Iliakis, George; Gui, Zhiming; Yang, Dong

    2013-12-06

    Highlights: •PARP1 siRNA enhances docetaxel’s activity against PC3 cells. •PARP1 siRNA enhances docetaxel’s activity against EGFR/Akt/FOXO1 pathway. •PARP1 siRNA and PARP1 inhibitor differently affect the phosphorylation and expression of FOXO1. -- Abstract: Though poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have benefits in combination with radiotherapy in prostate cancers, few is known about the exactly role and underlying mechanism of PARP1 in combination with chemotherapy agents. Here our data revealed that inhibition of PARP1 by small interfering RNA (siRNA) could enhance docetaxel’s activity against PC3 cells, which is associated with an accelerate repression of EGF/Akt/FOXO1 signaling pathway. Our results provide a novel role of PARP1 in transcription regulation of EGFR/Akt/FOXO1 signaling pathway and indicate that PARP1 siRNA combined with docetaxel can be an innovative treatment strategy to potentially improve outcomes in CRPC patients.

  16. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  17. Therapeutic Potential of a Combination of Two Gene-Specific Small Interfering RNAs against Clinical Strains of Acanthamoeba▿

    PubMed Central

    Lorenzo-Morales, Jacob; Martín-Navarro, Carmen M.; López-Arencibia, Atteneri; Santana-Morales, María A.; Afonso-Lehmann, Raquel N.; Maciver, Sutherland K.; Valladares, Basilio; Martínez-Carretero, Enrique

    2010-01-01

    Pathogenic strains of the genus Acanthamoeba are causative agents of severe infections, such as fatal encephalitis and a sight-threatening amoebic keratitis. Antimicrobial therapy for these infections is generally empirical, and patient recovery is often problematic, due to the existence of a highly resistant cyst stage in these amoebae. In previous studies, small interfering RNAs (siRNAs) against the catalytic domains of extracellular serine proteases and glycogen phosphorylase from Acanthamoeba were designed and evaluated for future therapeutic use. The silencing of proteases resulted in Acanthamoeba failing to degrade human corneal cells, and silencing of glycogen phosphorylase caused amoebae to be unable to form mature cysts. After the siRNA design and concentration were optimized in order to avoid toxicity problems, cultures of Acanthamoeba were treated with a combination of both siRNAs, and cells were evaluated under an inverted microscope. This siRNA-based treatment dramatically affected the growth rate and cellular survival of the amoebae. These results were observed less than 48 h after the initiation of the treatment. In order to check possible toxic effects of the siRNA combination, three eukaryotic cell lines (HeLa, murine macrophages, and osteosarcoma cells) were treated with the same molecules, and cytotoxicity was examined by measuring lactate dehydrogenase release. The future use of the combination of these siRNAs is proposed as a potential therapeutic approach against pathogenic strains of Acanthamoeba. PMID:20855732

  18. Automated parallel synthesis of 5'-triphosphate oligonucleotides and preparation of chemically modified 5'-triphosphate small interfering RNA.

    PubMed

    Zlatev, Ivan; Lackey, Jeremy G; Zhang, Ligang; Dell, Amy; McRae, Kathy; Shaikh, Sarfraz; Duncan, Richard G; Rajeev, Kallanthottathil G; Manoharan, Muthiah

    2013-02-01

    A fully automated chemical method for the parallel and high-throughput solid-phase synthesis of 5'-triphosphate and 5'-diphosphate oligonucleotides is described. The desired full-length oligonucleotides were first constructed using standard automated DNA/RNA solid-phase synthesis procedures. Then, on the same column and instrument, efficient implementation of an uninterrupted sequential cycle afforded the corresponding unmodified or chemically modified 5'-triphosphates and 5'-diphosphates. The method was readily translated into a scalable and high-throughput synthesis protocol compatible with the current DNA/RNA synthesizers yielding a large variety of unique 5'-polyphosphorylated oligonucleotides. Using this approach, we accomplished the synthesis of chemically modified 5'-triphosphate oligonucleotides that were annealed to form small-interfering RNAs (ppp-siRNAs), a potentially interesting class of novel RNAi therapeutic tools. The attachment of the 5'-triphosphate group to the passenger strand of a siRNA construct did not induce a significant improvement in the in vitro RNAi-mediated gene silencing activity nor a strong specific in vitro RIG-I activation. The reported method will enable the screening of many chemically modified ppp-siRNAs, resulting in a novel bi-functional RNAi therapeutic platform. PMID:23260577

  19. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation

    PubMed Central

    Jensen, Kirsty; Anderson, Jennifer A.; Glass, Elizabeth J.

    2014-01-01

    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA. PMID:24598124

  20. Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication.

    PubMed

    Sui, Hong-Yan; Zhao, Guang-Yu; Huang, Jian-Dong; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2009-01-01

    RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection. PMID:19479060

  1. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA.

    PubMed

    Villares, Gabriel J; Zigler, Maya; Wang, Hua; Melnikova, Vladislava O; Wu, Hong; Friedman, Ran; Leslie, Michael C; Vivas-Mejia, Pablo E; Lopez-Berestein, Gabriel; Sood, Anil K; Bar-Eli, Menashe

    2008-11-01

    The thrombin receptor [protease-activated receptor-1 (PAR-1)] is overexpressed in highly metastatic melanoma cell lines and in patients with metastatic lesions. Activation of PAR-1 leads to cell signaling and up-regulation of genes involved in adhesion, invasion, and angiogenesis. Herein, we stably silence PAR-1 through the use of lentiviral short hairpin RNA and found significant decreases in both tumor growth (P < 0.01) and metastasis (P < 0.001) of highly metastatic melanoma cell lines in vivo. The use of viruses for therapy is not ideal as it can induce toxic immune responses and possible gene alterations following viral integration. Therefore, we also used systemic delivery of PAR-1 small interfering RNA (siRNA) incorporated into neutral liposomes [1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)] to decrease melanoma growth and metastasis in vivo. Significant decreases in tumor growth, weight, and metastatic lung colonies (P < 0.001 for all) were found in mice treated with PAR-1 siRNA-DOPC. The in vivo effects of PAR-1 on invasion and angiogenesis were analyzed via immunohistochemistry. Concomitant decreases in vascular endothelial growth factor, interleukin-8, and matrix metalloproteinase-2 expression levels, as well as decreased blood vessel density (CD31), were found in tumor samples from PAR-1 siRNA-treated mice, suggesting that PAR-1 is a regulator of melanoma cell growth and metastasis by affecting angiogenic and invasive factors. We propose that siRNA incorporated into DOPC nanoparticles could be delivered systemically and used as a new modality for melanoma treatment. PMID:18974154

  2. Suppression of Breast Cancer Cell Migration by Small Interfering RNA Delivered by Polyethylenimine-Functionalized Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Pin; Hung, Chao-Ming; Hsu, Yi-Chiang; Zhong, Cai-Yan; Wang, Wan-Rou; Chang, Chi-Chang; Lee, Mon-Juan

    2016-05-01

    The carbon-based nanomaterial graphene can be chemically modified to associate with various molecules such as chemicals and biomolecules and developed as novel carriers for drug and gene delivery. In this study, a nonviral gene transfection reagent was produced by functionalizing graphene oxide (GO) with a polycationic polymer, polyethylenimine (PEI), to increase the biocompatibility of GO and to transfect small interfering RNA (siRNA) against C-X-C chemokine receptor type 4 (CXCR4), a biomarker associated with cancer metastasis, into invasive breast cancer cells. PEI-functionalized GO (PEI-GO) was a homogeneous aqueous solution that remained in suspension during storage at 4 °C for at least 6 months. The particle size of PEI-GO was 172 ± 4.58 and 188 ± 5.00 nm at 4 and 25 °C, respectively, and increased slightly to 262 ± 17.6 nm at 37 °C, but remained unaltered with time. Binding affinity of PEI-GO toward siRNA was assessed by electrophoretic mobility shift assay (EMSA), in which PEI-GO and siRNA were completely associated at a PEI-GO:siRNA weight ratio of 2:1 and above. The invasive breast cancer cell line, MDA-MB-231, was transfected with PEI-GO in complex with siRNAs against CXCR4 (siCXCR4). Suppression of the mRNA and protein expression of CXCR4 by the PEI-GO/siCXCR4 complex was confirmed by real-time PCR and western blot analysis. In addition, the metastatic potential of MDA-MB-231 cells was attenuated by the PEI-GO/siCXCR4 complex as demonstrated in wound healing assay. Our results suggest that PEI-GO is effective in the delivery of siRNA and may contribute to targeted gene therapy to suppress cancer metastasis.

  3. NBS1 knockdown by small interfering RNA increases ionizing radiation mutagenesis and telomere association in human cells

    NASA Technical Reports Server (NTRS)

    Zhang, Ying; Lim, Chang U K.; Williams, Eli S.; Zhou, Junqing; Zhang, Qinming; Fox, Michael H.; Bailey, Susan M.; Liber, Howard L.

    2005-01-01

    Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (gamma-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiation-induced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease.

  4. Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs†

    PubMed Central

    Molnár, Attila; Csorba, Tibor; Lakatos, Lóránt; Várallyay, Éva; Lacomme, Christophe; Burgyán, József

    2005-01-01

    RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA. PMID:15919934

  5. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs.

    PubMed

    Molnár, Attila; Csorba, Tibor; Lakatos, Lóránt; Várallyay, Eva; Lacomme, Christophe; Burgyán, József

    2005-06-01

    RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected with Cymbidium ringspot tombusvirus (CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show that Tobacco mosaic virus (TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation of PDS siRNAs than the corresponding antisense PDS sequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA. PMID:15919934

  6. Biodistribution of Small Interfering RNA at the Organ and Cellular Levels after Lipid Nanoparticle-mediated Delivery

    PubMed Central

    Shi, Bin; Keough, Ed; Matter, Andrea; Leander, Karen; Young, Stephanie; Carlini, Ed; Sachs, Alan B.; Tao, Weikang; Abrams, Marc; Howell, Bonnie; Sepp-Lorenzino, Laura

    2011-01-01

    Chemically stabilized small interfering RNA (siRNA) can be delivered systemically by intravenous injection of lipid nanoparticles (LNPs) in rodents and primates. The biodistribution and kinetics of LNP–siRNA delivery in mice at organ and cellular resolution have been studied using immunofluorescence (IF) staining and quantitative polymerase chain reaction (qPCR). At 0.5 and 2 hr post tail vein injection of Cy5-labeled siRNA encapsulated in LNP, the organ rank-order of siRNA levels is liver > spleen > kidney, with only negligible accumulation in duodenum, lung, heart, and brain. Similar conclusions were drawn by using qPCR to measure tissue siRNA levels as a secondary end point. siRNA levels in these tissues decreased by more than 10-fold after 24 hr. Within the liver, LNPs delivered siRNA to hepatocytes, Kupffer cells, and sinusoids in a time-dependent manner, as revealed by IF staining and signal quantitation methods established using OPERA/Columbus software. siRNA first accumulated in liver sinusoids and trafficked to hepatocytes by 2 hr post dose, corresponding to the onset of target mRNA silencing. Fluorescence in situ hybridization methods were used to detect both strands of siRNA in fixed tissues. Collectively, the authors have implemented a platform to evaluate biodistribution of siRNA across cell types and across tissues in vivo, with the objective of elucidating the pharmacokinetic and pharmacodynamic relationship to guide optimization of delivery vehicles. PMID:21804077

  7. Effect of small interfering RNA against Paracin 1.7 bacteriocin produced by Lactobacillus paracasei HD1-7.

    PubMed

    Ge, Jingping; Wang, Yang; Gao, Dongni; Ping, Wenxiang

    2015-09-01

    Lactobacillus paracasei HD1-7 (CCTCCM 205015), isolated from Chinese sauerkraut fermentation broth, contains the bacteriocin Paracin 1.7 which possesses broad-spectrum antibacterial activity. The gene-silencing effect of small interfering RNA (siRNA) is a potential strategy for further understanding the mechanism of production of Paracin 1.7 by L. paracasei HD1-7. In this study, the effect of siRNA on the expression of the most important proteins in the production of Paracin 1.7, sensor kinase (prcK) and response regulator (prcR), was investigated. SiRNA were designed against prcK and prcR, and qRT-PCR was performed to examine the expression of prcK and prcR mRNA. The efficacy of siRNA was determined by comparing the level of antimicrobial activity of the strains. qRT-PCR showed that siRNA-K4 and siRNA-K5 significantly inhibited the expression of prcK mRNA, and siRNA-R4 and siRNA-R6 significantly inhibited the expression of prcR mRNA. The proteins levels and antibacterial activities of mutant strains were lower than the original and control groups, respectively. The results demonstrate that siRNA inhibited both mRNA expression and the production of Paracin 1.7 in L. paracasei HD1-7. Targeting of prcK and prcR with siRNA appears to be a novel strategy for researching the mechanism of Paracin 1.7 production by L. paracasei HD1-7. PMID:26011063

  8. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA.

    PubMed

    Khaled, Sm Z; Cevenini, Armando; Yazdi, Iman K; Parodi, Alessandro; Evangelopoulos, Michael; Corbo, Claudia; Scaria, Shilpa; Hu, Ye; Haddix, Seth G; Corradetti, Bruna; Salvatore, Francesco; Tasciotti, Ennio

    2016-05-01

    This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression. PMID:26901429

  9. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions

    PubMed Central

    ZHENG, GUILANG; LYU, JUANJUAN; LIU, SHU; HUANG, JINDA; LIU, CUI; XIANG, DAN; XIE, MEIYAN; ZENG, QIYI

    2015-01-01

    Uncoupling protein 2 (UCP2) regulates the production of mitochondrial reactive oxygen species (ROS) and cellular energy transduction under physiological or pathological conditions. In this study, we aimed to determine whether mitochondrial UCP2 plays a protective role in cardiomyocytes under septic conditions. In order to mimic the septic condition, rat embryonic cardiomyoblast-derived H9C2 cells were cultured in the presence of lipopolysaccharide (LPS) plus peptidoglycan G (PepG) and small interfering RNA (siRNA) against UCP2 (siUCP2) was used to suppress UCP2 expression. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR), western blot analysis, transmission electron microscopy (TEM), confocal microscopy and flow cytometry (FCM) were used to detect the mRNA levels, protein levels, mitochondrial morphology and mitochondrial membrane potential (MMP or ΔΨm) in qualitative and quantitative analyses, respectively. Indicators of cell damage [lactate dehydrogenase (LDH), creatine kinase (CK), interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the culture supernatant] and mitochondrial function [ROS, adenosine triphosphate (ATP) and mitochondrial DNA (mtDNA)] were detected. Sepsis enhanced the mRNA and protein expression of UCP2 in the H9C2 cells, damaged the mitochondrial ultrastructure, increased the forward scatter (FSC)/side scatter (SSC) ratio, increased the CK, LDH, TNF-α and IL-6 levels, and lead to the dissipation of MMP, as well as the overproduction of ROS; in addition, the induction of sepsis led to a decrease in ATP levels and the deletion of mtDNA. The silencing of UCP2 aggravated H9C2 cell damage and mitochondrial dysfunction. In conclusion, our data demonstrate that mitochondrial morphology and funtion are damaged in cardiomyocytes under septic conditions, while the silencing of UCP2 using siRNA aggravated this process, indicating that UCP2 may play a protective role in cardiomyocytes under septic conditions. PMID:25873251

  10. MicroRNA Superfamilies Descended from miR390 and Their Roles in Secondary Small Interfering RNA Biogenesis in Eudicots[W

    PubMed Central

    Xia, Rui; Meyers, Blake C.; Liu, Zhongchi; Beers, Eric P.; Ye, Songqing; Liu, Zongrang

    2013-01-01

    Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported tasiRNA pathway, that of miR173-TAS1/2, produces tasiRNAs regulating a set of pentatricopeptide repeat (PPR) genes and has been characterized only in Arabidopsis thaliana to date. Here, we demonstrate that the microRNA (miRNA)-trans-acting small interfering RNA gene (TAS)-pentatricopeptide repeat-containing gene (PPR)-small interfering RNA pathway is a highly dynamic and widespread feature of eudicots. Nine eudicot plants, representing six different plant families, have evolved similar tasiRNA pathways to initiate phased small interfering RNA (phasiRNA) production from PPR genes. The PPR phasiRNA production is triggered by different 22-nucleotide miRNAs, including miR7122, miR1509, and fve-PPRtri1/2, and through distinct mechanistic strategies exploiting miRNA direct targeting or indirect targeting through TAS-like genes (TASL), one-hit or two-hit, or even two layers of tasiRNA–TASL interactions. Intriguingly, although those miRNA triggers display high sequence divergence caused by the occurrence of frequent point mutations and splicing shifts, their corresponding MIRNA genes show pronounced identity to the Arabidopsis MIR173, implying a common origin of this group of miRNAs (super-miR7122). Further analyses reveal that super-miR7122 may have evolved from a newly defined miR4376 superfamily, which probably originated from the widely conserved miR390. The elucidation of this evolutionary path expands our understanding of the course of miRNA evolution, especially for relatively conserved miRNA families. PMID:23695981

  11. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots.

    PubMed

    Xia, Rui; Meyers, Blake C; Liu, Zhongchi; Beers, Eric P; Ye, Songqing; Liu, Zongrang

    2013-05-01

    Trans-acting small interfering RNAs (tasiRNAs) are a major class of small RNAs performing essential biological functions in plants. The first reported tasiRNA pathway, that of miR173-TAS1/2, produces tasiRNAs regulating a set of pentatricopeptide repeat (PPR) genes and has been characterized only in Arabidopsis thaliana to date. Here, we demonstrate that the microRNA (miRNA)-trans-acting small interfering RNA gene (TAS)-pentatricopeptide repeat-containing gene (PPR)-small interfering RNA pathway is a highly dynamic and widespread feature of eudicots. Nine eudicot plants, representing six different plant families, have evolved similar tasiRNA pathways to initiate phased small interfering RNA (phasiRNA) production from PPR genes. The PPR phasiRNA production is triggered by different 22-nucleotide miRNAs, including miR7122, miR1509, and fve-PPRtri1/2, and through distinct mechanistic strategies exploiting miRNA direct targeting or indirect targeting through TAS-like genes (TASL), one-hit or two-hit, or even two layers of tasiRNA-TASL interactions. Intriguingly, although those miRNA triggers display high sequence divergence caused by the occurrence of frequent point mutations and splicing shifts, their corresponding MIRNA genes show pronounced identity to the Arabidopsis MIR173, implying a common origin of this group of miRNAs (super-miR7122). Further analyses reveal that super-miR7122 may have evolved from a newly defined miR4376 superfamily, which probably originated from the widely conserved miR390. The elucidation of this evolutionary path expands our understanding of the course of miRNA evolution, especially for relatively conserved miRNA families. PMID:23695981

  12. Effect of Interleukin-8 Gene Silencing With Liposome-Encapsulated Small Interfering RNA on Ovarian Cancer Cell Growth

    PubMed Central

    Merritt, William M.; Lin, Yvonne G.; Spannuth, Whitney A.; Fletcher, Mavis S.; Kamat, Aparna A.; Han, Liz Y.; Landen, Charles N.; Jennings, Nicholas; De Geest, Koen; Langley, Robert R.; Villares, Gabriel; Sanguino, Angela; Lutgendorf, Susan K.; Lopez-Berestein, Gabriel; Bar-Eli, Menashe M.; Sood, Anil K.

    2009-01-01

    Background Interleukin-8 (IL-8) is a proangiogenic cytokine that is overexpressed in many human cancers. We investigated the clinical and biologic significance of IL-8 in ovarian carcinoma using human samples and orthotopic mouse models. Methods Tumor expression of IL-8 was assessed by immunohistochemistry among ovarian cancer patients (n = 102) with available clinical and survival data. We examined the effect of IL-8 gene silencing with small interfering RNAs incorporated into neutral liposomes (siRNA-DOPCs), alone and in combination with docetaxel, on in vivo tumor growth, angiogenesis (microvessel density), and tumor cell proliferation in mice (n = 10 per treatment group) bearing orthotopic taxane-sensitive (HeyA8 and SKOV3ip1) and taxane-resistant (SKOV3ip2.TR) ovarian tumors. All statistical tests were two-sided. Results Of the 102 cancer specimens, 43 (42%) had high IL-8 expression and 59 (58%) had low or no IL-8 expression; high IL-8 expression was associated with advanced tumor stage (P = .019), high tumor grade (P = .031), and worse survival (median survival for patients with high vs low IL-8 expression: 1.62 vs 3.79 years; P < .001). Compared with empty liposomes, IL-8 siRNA-DOPC reduced the mean tumor weight by 32% (95% confidence interval [CI] = 14% to 50%; P = .03) and 52% (95% CI = 27% to 78%; P = .03) in the HeyA8 and SKOV3ip1 mouse models, respectively. In all three mouse models, treatment with IL-8 siRNA-DOPC plus the taxane docetaxel reduced tumor growth the most compared with empty liposomes (77% to 98% reduction in tumor growth; P < .01 for all). In the HeyA8 and SKOV3ip1 models, tumors from mice treated with IL-8 siRNA-DOPC alone had lower microvessel density than tumors from mice treated with empty liposomes (HeyA8: 34% lower, 95% CI = 32% to 36% lower [P = .002]; SKOV3ip1: 39% lower, 95% CI = 34% to 44% lower [P = .007]). Compared with empty liposomes, IL-8 siRNA-DOPC plus docetaxel reduced tumor cell proliferation by 35% (95% CI = 25% to 44

  13. Suppression of Breast Cancer Cell Migration by Small Interfering RNA Delivered by Polyethylenimine-Functionalized Graphene Oxide.

    PubMed

    Huang, Yuan-Pin; Hung, Chao-Ming; Hsu, Yi-Chiang; Zhong, Cai-Yan; Wang, Wan-Rou; Chang, Chi-Chang; Lee, Mon-Juan

    2016-12-01

    The carbon-based nanomaterial graphene can be chemically modified to associate with various molecules such as chemicals and biomolecules and developed as novel carriers for drug and gene delivery. In this study, a nonviral gene transfection reagent was produced by functionalizing graphene oxide (GO) with a polycationic polymer, polyethylenimine (PEI), to increase the biocompatibility of GO and to transfect small interfering RNA (siRNA) against C-X-C chemokine receptor type 4 (CXCR4), a biomarker associated with cancer metastasis, into invasive breast cancer cells. PEI-functionalized GO (PEI-GO) was a homogeneous aqueous solution that remained in suspension during storage at 4 °C for at least 6 months. The particle size of PEI-GO was 172 ± 4.58 and 188 ± 5.00 nm at 4 and 25 °C, respectively, and increased slightly to 262 ± 17.6 nm at 37 °C, but remained unaltered with time. Binding affinity of PEI-GO toward siRNA was assessed by electrophoretic mobility shift assay (EMSA), in which PEI-GO and siRNA were completely associated at a PEI-GO:siRNA weight ratio of 2:1 and above. The invasive breast cancer cell line, MDA-MB-231, was transfected with PEI-GO in complex with siRNAs against CXCR4 (siCXCR4). Suppression of the mRNA and protein expression of CXCR4 by the PEI-GO/siCXCR4 complex was confirmed by real-time PCR and western blot analysis. In addition, the metastatic potential of MDA-MB-231 cells was attenuated by the PEI-GO/siCXCR4 complex as demonstrated in wound healing assay. Our results suggest that PEI-GO is effective in the delivery of siRNA and may contribute to targeted gene therapy to suppress cancer metastasis. PMID:27173676

  14. [Corrigendum] Transient transfection of macrophage migration inhibitory factor small interfering RNA disrupts the biological behavior of oral squamous carcinoma cells.

    PubMed

    Zeng, Jie; Quan, Jingjing; Xia, Xuefeng

    2016-07-01

    Due to an inability to contact various of the contributors to this study at the time of submission and a desire to publish this work, the published article did not include the full complement of authors who should have been credited on the paper. All of the existing authors have agreed that the following authors, whose names were omitted, should also have been included as co-authors: Professor Jin Gao (now at the School of Dentistry and Oral Health, Griffith University, Queensland, Australia), who was involved with project design and revisions of the manuscript; Dr Shuyu Luo (now at the School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China), who was involved in project development, data collection (Figs 3 and 6) and manuscript writing; and Dr Jianming Zhang (now at the Department of Stomatology, General Hospital of Tianjin Medical University, Tianjin, China), who was involved in project development, data collection and analysis (Fig. 4) The full author list for this paper is presented below, showing the corrected order of the authors as they should have appeared on the paper. We regret the omission of the three aforementioned authors on the published article. Note that Professor Jin Gao should be considered as the co-corresponding author (with Xuefeng Xia), and Jie Zeng and Shuyu Luo contributed equally to this study. [the original article was published in the Molecular Medicine Reports 13: 174‑180, 2015; DOI: 10.3892/mmr.2015.4525] Transient transfection of macrophage migration inhibitory factor small interfering RNA disrupts the biological behavior of oral squamous carcinoma cells Jie Zeng1*, Shuyu Luo2*, Jianming Zhang3, Jingjing Quan4, Xuefeng Xia1 and Jin Gao5 1The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150; 2School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, 3Department of Stomatology, General Hospital of Tianjin Medical University, Tianjin 300052; 4Guanghua

  15. Small interfering RNA targeting S100A4 sensitizes non-small-cell lung cancer cells (A549) to radiation treatment

    PubMed Central

    Qi, Ruixue; Qiao, Tiankui; Zhuang, Xibing

    2016-01-01

    Objective This study aimed to investigate the impact of S100A4-small interfering RNA (S100A4-siRNA) on apoptosis and enhanced radiosensitivity in non-small-cell lung cancer (A549) cells. We also explored the mechanisms of radiosensitization and identified a new target to enhance radiosensitivity and gene therapy for non-small-cell lung cancer. Methods RNA interference is a powerful tool for gene silencing. In this study, we constructed an effective siRNA to knock down S100A4. A549 cells were randomly divided into three groups: blank, negative control, and S100A4-siRNA. To investigate the effect of S100A4-siRNA, the expression of S100A4, E-cadherin, and p53 proteins and their messenger RNA (mRNA) was detected by Western blot and quantitative real-time polymerase chain reaction. Transwell chambers were used to assess cell invasion. Cell cycle and apoptosis were analyzed by flow cytometry. Radiosensitivity was determined by colony formation ability. Results Our results demonstrate that S100A4-siRNA effectively silenced the S100A4 gene. When siRNA against S100A4 was used, S100A4 protein expression was downregulated, whereas the expressions of E-cadherin and p53 were upregulated. In addition, a clear reduction in S100A4 mRNA levels was noted compared with the blank and negative control groups, whereas E-cadherin and p53 mRNA levels increased. Transfection with S100A4-siRNA significantly reduced the invasiveness of A549 cells. S100A4 silencing induced immediate G2/M arrest in cell cycle studies and increased apoptosis rates in A549 cells. In clonogenic assays, we used a multitarget, single-hit model to detect radiosensitivity after S100A4 knockdown. All parameters (D0, Dq, α, β) indicated that the downregulation of S100A4 enhanced radiosensitivity in A549 cells. Furthermore, S100A4-siRNA upregulated p53 expression, suggesting that S100A4 may promote A549 cell proliferation, invasion, and metastasis by regulating the expression of other proteins. Therefore, si

  16. Controlled Delivery of T-box21 Small Interfering RNA Ameliorates Autoimmune Alopecia (Alopecia Areata) in a C3H/HeJ Mouse Model

    PubMed Central

    Nakamura, Motonobu; Jo, Jun-ichiro; Tabata, Yasuhiko; Ishikawa, Osamu

    2008-01-01

    Autoimmune alopecia (alopecia areata) is considered to be triggered by a collapse of immune privilege in hair follicles. Here we confirmed that infiltrating CD4 T lymphocytes around hair follicles of patients with alopecia areata were primarily CCR5-positive with few CCR4-positive cells, suggesting a dominant role of Th1 cells in the alopecic lesion. Given this finding, we sought to elucidate the effect of cytokine therapy in C3H/HeJ mice, a mouse model of alopecia areata, by applying recombinant interleukin-4 and neutralizing anti-interferon-γ antibody. We found that local injections of both interleukin-4 and neutralizing anti-interferon-γ antibody effectively treated alopecia in C3H/HeJ mice. Results from immunohistochemistry and semiquantitative reverse transcription-polymerase chain reaction demonstrated that intralesional injection of interleukin-4 suppressed CD8 T cell infiltrates around the hair follicles and repressed enhanced interferon-γ mRNA expression in the affected alopecic skin. Furthermore, Th1 transcription factor T-box21 small interfering RNAs conjugated to cationized gelatin showed mitigating effects on alopecia in C3H/HeJ mice, resulting in the restoration of hair shaft elongation. Taken together, the use of gelatin–small interfering RNA conjugates promises to be a novel, efficient, and safe tool as an alternative gene therapy for the treatment of various human diseases. To our knowledge, this is the first report of effective controlled delivery of small interfering RNA using biodegradable cationized gelatin microspheres in an animal model of disease. PMID:18245811

  17. Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model.

    PubMed

    Nakamura, Motonobu; Jo, Jun-ichiro; Tabata, Yasuhiko; Ishikawa, Osamu

    2008-03-01

    Autoimmune alopecia (alopecia areata) is considered to be triggered by a collapse of immune privilege in hair follicles. Here we confirmed that infiltrating CD4 T lymphocytes around hair follicles of patients with alopecia areata were primarily CCR5-positive with few CCR4-positive cells, suggesting a dominant role of Th1 cells in the alopecic lesion. Given this finding, we sought to elucidate the effect of cytokine therapy in C3H/HeJ mice, a mouse model of alopecia areata, by applying recombinant interleukin-4 and neutralizing anti-interferon-gamma antibody. We found that local injections of both interleukin-4 and neutralizing anti-interferon-gamma antibody effectively treated alopecia in C3H/HeJ mice. Results from immunohistochemistry and semiquantitative reverse transcription-polymerase chain reaction demonstrated that intralesional injection of interleukin-4 suppressed CD8 T cell infiltrates around the hair follicles and repressed enhanced interferon-gamma mRNA expression in the affected alopecic skin. Furthermore, Th1 transcription factor T-box21 small interfering RNAs conjugated to cationized gelatin showed mitigating effects on alopecia in C3H/HeJ mice, resulting in the restoration of hair shaft elongation. Taken together, the use of gelatin-small interfering RNA conjugates promises to be a novel, efficient, and safe tool as an alternative gene therapy for the treatment of various human diseases. To our knowledge, this is the first report of effective controlled delivery of small interfering RNA using biodegradable cationized gelatin microspheres in an animal model of disease. PMID:18245811

  18. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design

    PubMed Central

    Fahlgren, Noah; Hill, Steven T.; Carrington, James C.; Carbonell, Alberto

    2016-01-01

    Summary: The Plant Small RNA Maker Site (P-SAMS) is a web tool for the simple and automated design of artificial miRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) for efficient and specific targeted gene silencing in plants. P-SAMS includes two applications, P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer. The navigation through both applications is wizard-assisted, and the job runtime is relatively short. Both applications output the sequence of designed small RNA(s), and the sequence of the two oligonucleotides required for cloning into ‘B/c’ compatible vectors. Availability and implementation: The P-SAMS website is available at http://p-sams.carringtonlab.org. Contact: acarbonell@ibmcp.upv.es or nfahlgren@danforthcenter.org PMID:26382195

  19. Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry1[OPEN

    PubMed Central

    Xia, Rui; Ye, Songqing; Liu, Zongrang; Meyers, Blake C.; Liu, Zhongchi

    2015-01-01

    The wild strawberry (Fragaria vesca) has recently emerged as an excellent model for cultivated strawberry (Fragaria × ananassa) as well as other Rosaceae fruit crops due to its short seed-to-fruit cycle, diploidy, and sequenced genome. Deep sequencing and parallel analysis of RNA ends were used to identify F. vesca microRNAs (miRNAs) and their target genes, respectively. Thirty-eight novel and 31 known miRNAs were identified. Many known miRNAs targeted not only conserved mRNA targets but also developed new target genes in F. vesca. Significantly, two new clusters of miRNAs were found to collectively target 94 F-BOX (FBX) genes. One of the miRNAs in the new cluster is 22 nucleotides and triggers phased small interfering RNA production from six FBX genes, which amplifies the silencing to additional FBX genes. Comparative genomics revealed that the main novel miRNA cluster evolved from duplications of FBX genes. Finally, conserved trans-acting siRNA pathways were characterized and confirmed with distinct features. Our work identified novel miRNA-FBX networks in F. vesca and shed light on the evolution of miRNAs/phased small interfering RNA networks that regulate large gene families in higher plants. PMID:26143249

  20. Novel and Recently Evolved MicroRNA Clusters Regulate Expansive F-BOX Gene Networks through Phased Small Interfering RNAs in Wild Diploid Strawberry.

    PubMed

    Xia, Rui; Ye, Songqing; Liu, Zongrang; Meyers, Blake C; Liu, Zhongchi

    2015-09-01

    The wild strawberry (Fragaria vesca) has recently emerged as an excellent model for cultivated strawberry (Fragaria × ananassa) as well as other Rosaceae fruit crops due to its short seed-to-fruit cycle, diploidy, and sequenced genome. Deep sequencing and parallel analysis of RNA ends were used to identify F. vesca microRNAs (miRNAs) and their target genes, respectively. Thirty-eight novel and 31 known miRNAs were identified. Many known miRNAs targeted not only conserved mRNA targets but also developed new target genes in F. vesca. Significantly, two new clusters of miRNAs were found to collectively target 94 F-BOX (FBX) genes. One of the miRNAs in the new cluster is 22 nucleotides and triggers phased small interfering RNA production from six FBX genes, which amplifies the silencing to additional FBX genes. Comparative genomics revealed that the main novel miRNA cluster evolved from duplications of FBX genes. Finally, conserved trans-acting siRNA pathways were characterized and confirmed with distinct features. Our work identified novel miRNA-FBX networks in F. vesca and shed light on the evolution of miRNAs/phased small interfering RNA networks that regulate large gene families in higher plants. PMID:26143249

  1. SINGLE-WALLED CARBON NANOTUBE–MEDIATED SMALL INTERFERING RNA DELIVERY AND SILENCING GASTRIN-RELEASING PEPTIDE RECEPTOR IN HUMAN NEUROBLASTOMA CELLS

    PubMed Central

    Qiao, Jingbo; Hong, Tu; Guo, Honglian; Xu, Ya-Qiong; Chung, Dai H.

    2015-01-01

    Small interfering RNA (siRNA) has the potential to influence expression with a high degree of target gene specificity. However, the clinical application of siRNA therapeutics has proven to be less promising as evidenced by poor intracellular uptake, instability in vivo, and non-specific immune stimulations. Recently, we have demonstrated that single-walled carbon nanotube (SWNT)-mediated siRNA delivery can enhance the efficiency of siRNA-mediated gastrin-releasing peptide receptor (GRP-R) gene silencing by stabilizing siRNA while selectively targeting tumor tissues. Based on our recent findings, we introduce a novel technique to silence specific gene(s) in human neuroblastoma through SWNT-mediated siRNA delivery in vitro and in vivo. PMID:23749575

  2. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development.

    PubMed

    Wan, Qun; Guan, Xueying; Yang, Nannan; Wu, Huaitong; Pan, Mengqiao; Liu, Bingliang; Fang, Lei; Yang, Shouping; Hu, Yan; Ye, Wenxue; Zhang, Hua; Ma, Peiyong; Chen, Jiedan; Wang, Qiong; Mei, Gaofu; Cai, Caiping; Yang, Donglei; Wang, Jiawei; Guo, Wangzhen; Zhang, Wenhua; Chen, Xiaoya; Zhang, Tianzhen

    2016-06-01

    Natural antisense transcripts (NATs) are commonly observed in eukaryotic genomes, but only a limited number of such genes have been identified as being involved in gene regulation in plants. In this research, we investigated the function of small RNA derived from a NAT in fiber cell development. Using a map-based cloning strategy for the first time in tetraploid cotton, we cloned a naked seed mutant gene (N1 ) encoding a MYBMIXTA-like transcription factor 3 (MML3)/GhMYB25-like in chromosome A12, GhMML3_A12, that is associated with fuzz fiber development. The extremely low expression of GhMML3_A12 in N1 is associated with NAT production, driven by its 3' antisense promoter, as indicated by the promoter-driven histochemical staining assay. In addition, small RNA deep sequencing analysis suggested that the bidirectional transcriptions of GhMML3_A12 form double-stranded RNAs and generate 21-22 nt small RNAs. Therefore, in a fiber-specific manner, small RNA derived from the GhMML3_A12 locus can mediate GhMML3_A12 mRNA self-cleavage and result in the production of naked seeds followed by lint fiber inhibition in N1 plants. The present research reports the first observation of gene-mediated NATs and siRNA directly controlling fiber development in cotton. PMID:26832840

  3. Comprehensive Annotation of Physcomitrella patens Small RNA Loci Reveals That the Heterochromatic Short Interfering RNA Pathway Is Largely Conserved in Land Plants[OPEN

    PubMed Central

    Coruh, Ceyda; Cho, Sung Hyun; Shahid, Saima; Liu, Qikun; Wierzbicki, Andrzej; Axtell, Michael J.

    2015-01-01

    Many plant small RNAs are sequence-specific negative regulators of target mRNAs and/or chromatin. In angiosperms, the two most abundant endogenous small RNA populations are usually 21-nucleotide microRNAs (miRNAs) and 24-nucleotide heterochromatic short interfering RNAs (siRNAs). Heterochromatic siRNAs are derived from repetitive regions and reinforce DNA methylation at targeted loci. The existence and extent of heterochromatic siRNAs in other land plant lineages has been unclear. Using small RNA-sequencing (RNA-seq) of the moss Physcomitrella patens, we identified 1090 loci that produce mostly 23- to 24-nucleotide siRNAs. These loci are mostly in intergenic regions with dense DNA methylation. Accumulation of siRNAs from these loci depends upon P. patens homologs of DICER-LIKE3 (DCL3), RNA-DEPENDENT RNA POLYMERASE2, and the largest subunit of DNA-DEPENDENT RNA POLYMERASE IV, with the largest subunit of a Pol V homolog contributing to expression at a smaller subset of the loci. A MINIMAL DICER-LIKE (mDCL) gene, which lacks the N-terminal helicase domain typical of DCL proteins, is specifically required for 23-nucleotide siRNA accumulation. We conclude that heterochromatic siRNAs, and their biogenesis pathways, are largely identical between angiosperms and P. patens, with the notable exception of the P. patens-specific use of mDCL to produce 23-nucleotide siRNAs. PMID:26209555

  4. Endogenous MCM7 MicroRNA Cluster as a Novel Platform to Multiplex Small Interfering and Nucleolar RNAs for Combinational HIV-1 Gene Therapy

    PubMed Central

    Chung, Janet; Zhang, Jane; Li, Haitang; Ouellet, Dominique L.; DiGiusto, David L.

    2012-01-01

    Abstract Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications. PMID:22834872

  5. The system with zwitterionic lactose-based surfactant for complexation and delivery of small interfering ribonucleic acid—A structural and spectroscopic study

    NASA Astrophysics Data System (ADS)

    Skupin, Michalina; Sobczak, Krzysztof; Zieliński, Ryszard; Kozak, Maciej

    2016-05-01

    Systems suitable for the effective preparation of complexes with siRNA (small interfering RNA) are at the center of interest in the area of research work on the delivery of the RNA-based drugs (RNA-therapeutics). This article presents results of a study on the structural effects associated with siRNA complexation by a surfactant comprising a lactose group (N-(3-propanesulfone)-N-dodecyl-amino-beta-D-lactose hydrochloride, LA12). The double stranded siRNA oligomer (21 base pairs) used in this study is responsible for silencing a gene that can be important in the therapy of myotonic dystrophy type 1. The obtained siRNA/LA12 lipoplexes were studied using the methods of small angle scattering of synchrotron radiation, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and electrophoretic mobility tests. Lipoplexes form in solution stable lamellar or cubic phases. The surfactant selected for the study shows much lower cytotoxicity and good complexation abilities of siRNA than dicationic or polycationic surfactants.

  6. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection.

    PubMed

    Garcia-Ruiz, Hernan; Takeda, Atsushi; Chapman, Elisabeth J; Sullivan, Christopher M; Fahlgren, Noah; Brempelis, Katherine J; Carrington, James C

    2010-02-01

    Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins. PMID:20190077

  7. Arabidopsis RNASE THREE LIKE2 Modulates the Expression of Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation[OPEN

    PubMed Central

    Hachet, Mélanie; Comella, Pascale; Zytnicki, Matthias; Vaucheret, Hervé

    2016-01-01

    RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression. PMID:26764378

  8. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  9. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells. PMID:15936841

  10. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    PubMed Central

    Chen, Zhongjian; Zhang, Tianpeng; Wu, Baojian; Zhang, Xingwang

    2016-01-01

    Malignant melanoma (MM) represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs) for hypoxia-inducible factor-1α (HIF-1α) small interfering (siRNA) delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs) were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. PMID:27042054

  11. Host-virus interaction: the antiviral defense function of small interfering RNAs can be enhanced by host microRNA-7 in vitro

    PubMed Central

    Zhang, Xiaoying; Liu, Dongyun; Zhang, Sheng; Wei, Xiujuan; Song, Jie; Zhang, Yupei; Jin, Min; Shen, Zhiqiang; Wang, Xinwei; Feng, Zhichun; Li, Junwen

    2015-01-01

    Small interfering RNAs (siRNAs) directed against poliovirus (PV) and other viruses effectively inhibit viral replication and have been developed as antiviral agents. Here, we demonstrate that a specific siRNA targeting the region between nucleotides 100–125 (siRNA-100) from the 5′-untranslated region (5′-UTR) of PV plays a critical role in inhibiting PV replication. Our data demonstrate that siRNA-100 treatment can greatly reduce PV titers, resulting in up-regulation of host microRNA-7 (miR-7), which in turn, leads to enhance inhibition of PV infection further. Moreover, our results suggest that siRNA-100 can also impair the spread of PV to uninfected cells by increasing host resistance to PV, resulting in decreasing necrosis and cytopathic effects (CPE) levels, as well as prolonging the survival of infected cells. Indeed, the active antiviral effect of siRNA-100 was potentially supplemented by the activity of miR-7, and both of them can serve as stabilizing factors for maintenance of cellular homeostasis. Results of this study identify a molecular mechanism of RNAi for antiviral defense, and extend our knowledge of the complex interplay between host and PV, which will provide a basis for the development of effective RNAi-based therapies designed to inhibit PV replication and protect host cells. PMID:26067353

  12. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines

    PubMed Central

    Muller, Ryan Y.; Hammond, Ming C.

    2015-01-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion. PMID:26543439

  13. Resistance to Ditylenchus destructor Infection in Sweet Potato by the Expression of Small Interfering RNAs Targeting unc-15, a Movement-Related Gene.

    PubMed

    Fan, Weijuan; Wei, Zhaorong; Zhang, Min; Ma, Peiyong; Liu, Guiling; Zheng, Jianli; Guo, Xiaoding; Zhang, Peng

    2015-11-01

    Stem nematode (Ditylenchus destructor) is one of most serious diseases that limit the productivity and quality of sweet potato (Ipomoea batatas), a root crop with worldwide importance for food security and nutrition improvement. Hence, there is a global demand for developing sweet potato varieties that are resistant to the disease. In this study, we have investigated the interference of stem nematode infectivity by the expression of small interfering RNAs (siRNAs) in transgenic sweet potato that are homologous to the unc-15 gene, which affects the muscle protein paramyosin of the pathogen. The production of double-stranded RNAs and siRNAs in transgenic lines with a single transgene integration event was verified by Northern blot analysis. The expression of unc-15 was reduced dramatically in stem nematodes collected from the inoculated storage roots of transgenic plants, and the infection areas of their storage roots were dramatically smaller than that of wild-type (WT). Compared with the WT, the transgenic plants showed increased yield in the stem nematode-infested field. Our results demonstrate that the expression of siRNAs targeting the unc-15 gene of D. destructor is an effective approach in improving stem nematode resistance in sweet potato, in adjunct with the global integrated pest management programs. PMID:26034810

  14. Topical Anti-Nuclear Factor-Kappa B Small Interfering RNA with Functional Peptides Containing Sericin-Based Hydrogel for Atopic Dermatitis

    PubMed Central

    Kanazawa, Takanori; Shizawa, Yuki; Takeuchi, Mayu; Tamano, Kuniko; Ibaraki, Hisako; Seta, Yasuo; Takashima, Yuuki; Okada, Hiroaki

    2015-01-01

    The small interfering RNA (siRNA) is suggested to offer a novel means of treating atopic dermatitis (AD) because it allows the specific silencing of genes related to AD pathogenesis. In our previous study, we found that siRNA targeted against RelA, an important nuclear factor-kappa B (NF-κB) subdomain, with functional peptides, showed therapeutic effects in a mouse model of AD. In the present study, to develop a topical skin application against AD, we prepared a hydrogel containing anti-RelA siRNA and functional peptides and determined the intradermal permeation and the anti-AD effects in an AD mouse model. We selected the silk protein, sericin (SC), which is a versatile biocompatible biomaterial to prepare hydrogel as an aqueous gel base. We found that the siRNA was more widely delivered to the site of application in AD-induced ear skin of mice after topical application via the hydrogel containing functional peptides than via the preparation without functional peptides. In addition, the ear thickness and clinical skin severity of the AD-induced mice treated with hydrogel containing anti-RelA siRNA with functional peptides improved more than that of mice treated with the preparation formulated with negative siRNA. PMID:26371030

  15. Topical Anti-Nuclear Factor-Kappa B Small Interfering RNA with Functional Peptides Containing Sericin-Based Hydrogel for Atopic Dermatitis.

    PubMed

    Kanazawa, Takanori; Shizawa, Yuki; Takeuchi, Mayu; Tamano, Kuniko; Ibaraki, Hisako; Seta, Yasuo; Takashima, Yuki; Okada, Hiroaki

    2015-01-01

    The small interfering RNA (siRNA) is suggested to offer a novel means of treating atopic dermatitis (AD) because it allows the specific silencing of genes related to AD pathogenesis. In our previous study, we found that siRNA targeted against RelA, an important nuclear factor-kappa B (NF-κB) subdomain, with functional peptides, showed therapeutic effects in a mouse model of AD. In the present study, to develop a topical skin application against AD, we prepared a hydrogel containing anti-RelA siRNA and functional peptides and determined the intradermal permeation and the anti-AD effects in an AD mouse model. We selected the silk protein, sericin (SC), which is a versatile biocompatible biomaterial to prepare hydrogel as an aqueous gel base. We found that the siRNA was more widely delivered to the site of application in AD-induced ear skin of mice after topical application via the hydrogel containing functional peptides than via the preparation without functional peptides. In addition, the ear thickness and clinical skin severity of the AD-induced mice treated with hydrogel containing anti-RelA siRNA with functional peptides improved more than that of mice treated with the preparation formulated with negative siRNA. PMID:26371030

  16. Small interfering RNAs targeting cyclin D1 and cyclin D2 enhance the cytotoxicity of chemotherapeutic agents in mantle cell lymphoma cell lines.

    PubMed

    Tiemann, Katrin; Alluin, Jessica V; Honegger, Anja; Chomchan, Pritsana; Gaur, Shikha; Yun, Yen; Forman, Stephen J; Rossi, John J; Chen, Robert W

    2011-11-01

    Cyclin D1 (CCND1) is a known cell cycle regulator whose overexpression is a hallmark of mantle cell lymphoma (MCL). Although molecular techniques have unified the diagnostic approach to MCL, no therapeutic advances have been made to target this particular pathway. The significance of CCND1 in the pathogenesis and treatment of MCL has yet to be defined. We have taken advantage of RNA interference (RNAi) to down-regulate CCND1 expression in two MCL cell lines (Granta-519 and Jeko-1) to investigate the cytotoxic effect of combining RNAi with conventional chemotherapeutic agents. We designed four small interfering RNAs (siRNAs) specific to CCND1, one specific to CCND2, and one dual-targeting siRNA that simultaneously down-regulates CCND1 and CCND2. Etoposide and doxorubicin were used as chemotherapeutics in combination with the siRNAs. The transfected siRNAs in MCL cell lines triggered 40-60% reduction in target mRNA and protein levels. Importantly, the siRNA-mediated reduction in cyclins resulted in decreased IC(50) (50% inhibitory concentration) values for both doxorubicin and etoposide. The combination of siRNA-mediated inhibition of the cyclins along with chemotherapeutic agents could potentially be used to lower the effective doses of the chemotherapeutic agents and reduce drug-related toxicities. PMID:21745168

  17. Epithelial Cell Apoptosis and Neutrophil Recruitment in Acute Lung Injury—A Unifying Hypothesis? What We Have Learned from Small Interfering RNAs

    PubMed Central

    Perl, Mario; Lomas-Neira, Joanne; Chung, Chun-Shiang; Ayala, Alfred

    2008-01-01

    In spite of protective ventilatory strategies, Acute Lung Injury (ALI) remains associated with high morbidity and mortality. One reason for the lack of therapeutic options might be that ALI is a co-morbid event associated with a diverse family of diseases and, thus, may be the result of distinct pathological processes. Among them, activated neutrophil- (PMN-) induced tissue injury and epithelial cell apoptosis mediated lung damage represent two potentially important candidate pathomechanisms that have been put forward. Several approaches have been undertaken to test these hypotheses, with substantial success in the treatment of experimental forms of ALI. With this in mind, we will summarize these two current hypotheses of ALI briefly, emphasizing the role of apoptosis in regulating PMN and/or lung epithelial cell responses. In addition, the contribution that Fas-mediated inflammation may play as a potential biological link between lung cell apoptosis and PMN recruitment will be considered, as well as the in vivo application of small interfering RNA (siRNA) as a novel approach to the inhibition of ALI and its therapeutic implications. PMID:18368145

  18. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion. PMID:26543439

  19. Molecular characterization of geminivirus-derived small RNAs in different plant species.

    PubMed

    Akbergenov, Rashid; Si-Ammour, Azeddine; Blevins, Todd; Amin, Imran; Kutter, Claudia; Vanderschuren, Herve; Zhang, Peng; Gruissem, Wilhelm; Meins, Frederick; Hohn, Thomas; Pooggin, Mikhail M

    2006-01-01

    DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs-the hallmarks of silencing-associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5' end phosphorylated, as shown by phosphatase treatments, and methylated at the 3'-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to beta-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interactions. PMID:16421273

  20. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection.

    PubMed

    Shekhawat, Upendra K S; Ganapathi, Thumballi R; Hadapad, Ashok B

    2012-08-01

    The banana aphid-transmitted Banana bunchy top virus (BBTV) is the most destructive viral pathogen of bananas and plantains worldwide. Lack of natural sources of resistance to BBTV has necessitated the exploitation of proven transgenic technologies for obtaining BBTV-resistant banana cultivars. In this study, we have explored the concept of using intron-hairpin-RNA (ihpRNA) transcripts corresponding to viral master replication initiation protein (Rep) to generate BBTV-resistant transgenic banana plants. Two ihpRNA constructs namely ihpRNA-Rep and ihpRNA-ProRep generated using Rep full coding sequence or Rep partial coding sequence together with its 5' upstream regulatory region, respectively, and castor bean catalase intron were successfully transformed into banana embryogenic cells. ihpRNA-Rep- and ihpRNA-ProRep-derived transgenic banana plants, selected based on preliminary screening for efficient reporter gene expression, were completely resistant to BBTV infection as indicated by the absence of disease symptoms after 6 months of viruliferous aphid inoculation. The resistance to BBTV infection was also evident by the inability to detect cDNAs coding for viral coat protein, movement protein and Rep protein by RT-PCR from inoculated transgenic leaf extracts. Southern analysis of the two groups of transgenics showed that ihpRNA transgene was stably integrated into the banana genome. The detection of small interfering RNAs (siRNAs) derived from the ihpRNA transgene sequence in transformed BBTV-resistant plants positively established RNA interference as the mechanism underlying the observed resistance to BBTV. Efficient screening of optimal transformants in this vegetatively propagated non-segregating fruit crop ensured that all the transgenic plants assayed were resistant to BBTV infection. PMID:22552945

  1. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot.

    PubMed

    Moon, Jae-Su; Lee, Seung-Hoon; Kim, Eun-Jung; Cho, Hee; Lee, Wooseong; Kim, Geon-Woo; Park, Hyun-Ji; Cho, Seung-Woo; Lee, Choongho; Oh, Jong-Won

    2016-01-01

    The hepatitis C virus (HCV) internal ribosome entry site (IRES) that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA)-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts) 277-343. Based on their antiviral activity, we mapped a druggable region (nts 313-343) where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5' or 3' direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens. PMID:26751678

  2. Small interfering RNA targeting of Recepteur d'Origine Nantais induces apoptosis via modulation of nuclear factor-kappaB and Bcl-2 family in gastric cancer cells.

    PubMed

    Park, Jung Sun; Park, Ji Hye; Lee, Soong; Joo, Young Eun; Jung, Young Do

    2010-09-01

    The abnormal accumulation and activation of the receptor tyrosine kinase, Recepteur d'Origine Nantais (RON), has been implicated in tumorigenesis and metastasis in epithelial tumors including gastric cancer. This study examined whether the sequence-specific small interfering RNA (siRNA) suppression of the RON expression could induce apoptotic cell death, and investigated the involved molecular mechanisms. Sequence-specific siRNA effectively suppressed the RON expression at both the mRNA and protein levels. Silencing of the RON expression significantly inhibited gastric cancer cell proliferation and induced apoptosis in a time-dependent manner. The induction of apoptosis was confirmed by the ladder-patterned DNA fragmentation, the presence of cleaved and condensed nuclear chromatin and the increased number of annexin V-positive cells. RON-targeted siRNA effectively inhibited the constitutive nuclear factor-kappaB (NF-kappaB) activation as revealed by an altered electrophoretic mobility shift. In agreement with this, silencing of the RON expression resulted in a decrease in the nuclear level of the p65 subunit of NF-kappaB. The transfection of siRNA, which blocked the RON expression, also caused a change in the ratio of Bax/Bcl-2 in a manner that favored apoptosis. The siRNA silencing of RON induced cytochrome c release and the activation of caspase-8 and caspase-9. These results indicate that RON-targeted siRNA could be therapeutically efficacious by inducing cell apoptosis through the modulation of the NF-kappaB and Bcl-2 family in gastric cancer cells. PMID:20664977

  3. A Short Open Reading Frame Encompassing the MicroRNA173 Target Site Plays a Role in trans-Acting Small Interfering RNA Biogenesis.

    PubMed

    Yoshikawa, Manabu; Iki, Taichiro; Numa, Hisataka; Miyashita, Kyoko; Meshi, Tetsuo; Ishikawa, Masayuki

    2016-05-01

    trans-Acting small interfering RNAs (tasiRNAs) participate in the regulation of organ morphogenesis and determination of developmental timing in plants by down-regulating target genes through mRNA cleavage. The production of tasiRNAs is triggered by microRNA173 (miR173) and other specific microRNA-mediated cleavage of 5'-capped and 3'-polyadenylated primary TAS transcripts (pri-TASs). Although pri-TASs are not thought to encode functional proteins, they contain multiple short open reading frames (ORFs). For example, the primary TAS2 transcript (pri-TAS2) contains 11 short ORFs, and the third ORF from the 5' terminus (ORF3) encompasses the miR173 target site. Here, we show that nonsense mutations in ORF3 of pri-TAS2 upstream of the miR173 recognition site suppress tasiRNA accumulation and that ORF3 is translated in vitro. Glycerol gradient centrifugation analysis of Arabidopsis (Arabidopsis thaliana) plant extracts revealed that pri-TAS2 and its miR173-cleaved 5' and 3' fragments are fractionated together in the polysome fractions. These and previous results suggest that the 3' fragment of pri-TAS2, which is a source of tasiRNAs, forms a huge complex containing SGS3, miR173-programmed AGO1 RNA-induced silencing complex, the 5' fragment, and ribosomes. This complex overaccumulated, moderately accumulated, and did not accumulate in rdr6, sde5, and sgs3 mutants, respectively. The sgs3 sde5 and rdr6 sde5 double mutants showed phenotypes similar to those of sgs3 and sde5 single mutants, respectively, with regard to the TAS2-related RNA accumulation, suggesting that the complex is formed in an SGS3-dependent manner, somehow modified and stabilized by SDE5, and becomes competent for RDR6 action. Ribosomes in this complex likely play an important role in this process. PMID:26966170

  4. The p122 Subunit of Tobacco Mosaic Virus Replicase Is a Potent Silencing Suppressor and Compromises both Small Interfering RNA- and MicroRNA-Mediated Pathways▿

    PubMed Central

    Csorba, Tibor; Bovi, Aurelie; Dalmay, Tamás; Burgyán, József

    2007-01-01

    One of the functions of RNA silencing in plants is to defend against molecular parasites, such as viruses, retrotransposons, and transgenes. Plant viruses are inducers, as well as targets, of RNA silencing-based antiviral defense. Replication intermediates or folded viral RNAs activate RNA silencing, generating small interfering RNAs (siRNAs), which are the key players in the antiviral response. Viruses are able to counteract RNA silencing by expressing silencing-suppressor proteins. It has been shown that many of the identified silencing-suppressor proteins bind long double-stranded RNA or siRNAs and thereby prevent assembly of the silencing effector complexes. In this study, we show that the 122-kDa replicase subunit (p122) of crucifer-infecting Tobacco mosaic virus (cr-TMV) is a potent silencing-suppressor protein. We found that the p122 protein preferentially binds to double-stranded 21-nucleotide (nt) siRNA and microRNA (miRNA) intermediates with 2-nt 3′ overhangs inhibiting the incorporation of siRNA and miRNA into silencing-related complexes (e.g., RNA-induced silencing complex [RISC]) both in vitro and in planta but cannot interfere with previously programmed RISCs. In addition, our results also suggest that the virus infection and/or sequestration of the siRNA and miRNA molecules by p122 enhances miRNA accumulation despite preventing its methylation. However, the p122 silencing suppressor does not prevent the methylation of certain miRNAs in hst-15 mutants, in which the nuclear export of miRNAs is compromised. PMID:17715232

  5. The p122 subunit of Tobacco Mosaic Virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways.

    PubMed

    Csorba, Tibor; Bovi, Aurelie; Dalmay, Tamás; Burgyán, József

    2007-11-01

    One of the functions of RNA silencing in plants is to defend against molecular parasites, such as viruses, retrotransposons, and transgenes. Plant viruses are inducers, as well as targets, of RNA silencing-based antiviral defense. Replication intermediates or folded viral RNAs activate RNA silencing, generating small interfering RNAs (siRNAs), which are the key players in the antiviral response. Viruses are able to counteract RNA silencing by expressing silencing-suppressor proteins. It has been shown that many of the identified silencing-suppressor proteins bind long double-stranded RNA or siRNAs and thereby prevent assembly of the silencing effector complexes. In this study, we show that the 122-kDa replicase subunit (p122) of crucifer-infecting Tobacco mosaic virus (cr-TMV) is a potent silencing-suppressor protein. We found that the p122 protein preferentially binds to double-stranded 21-nucleotide (nt) siRNA and microRNA (miRNA) intermediates with 2-nt 3' overhangs inhibiting the incorporation of siRNA and miRNA into silencing-related complexes (e.g., RNA-induced silencing complex [RISC]) both in vitro and in planta but cannot interfere with previously programmed RISCs. In addition, our results also suggest that the virus infection and/or sequestration of the siRNA and miRNA molecules by p122 enhances miRNA accumulation despite preventing its methylation. However, the p122 silencing suppressor does not prevent the methylation of certain miRNAs in hst-15 mutants, in which the nuclear export of miRNAs is compromised. PMID:17715232

  6. In vivo study of Dicer-2-mediated immune response of the small interfering RNA pathway upon systemic infections of virulent and avirulent viruses in Bombus terrestris.

    PubMed

    Niu, Jinzhi; Smagghe, Guy; De Coninck, Dieter I M; Van Nieuwerburgh, Filip; Deforce, Dieter; Meeus, Ivan

    2016-03-01

    Recent studies suggest a potent role of the small interfering RNA (siRNA) pathway in the control of bee viruses and its usefulness to tackle these viral diseases. However, the involvement of the siRNA pathway in the defense against different bee viruses is still poorly understood. Therefore, in this report, we comprehensively analyzed the response of the siRNA pathway in bumblebees of Bombus terrestris to systemic infections of the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that IAPV and SBPV infections induced the expression of Dicer-2. IAPV infections also triggered the production of predominantly 22 nt-long virus-derived siRNAs (vsiRNAs). Intriguingly, these 22 nt-long vsiRNAs showed a high proportion of antigenomic IAPV sequences. Conversely, these predominantly 22 nt-long vsiRNAs of SBPV were not detected in SBPV infected bees. Furthermore, an "RNAi-of-RNAi" experiment on Dicer-2 did not result in altered genome copy numbers of IAPV (n = 17-18) and also not of SBPV (n = 11-12). Based on these results, we can speculate about the importance of the siRNA pathway in bumblebees for the antiviral response. During infection of IAPV, this pathway is probably recruited but it might be insufficient to control viral infection in our experimental setup. The host can control SBPV infection, but aside from the induction of Dicer-2 expression, no further evidence of the antiviral activity of the siRNA pathway was observed. This report may also enhance the current understanding of the siRNA pathway in the innate immunity of non-model insects upon different viral infections. PMID:26711439

  7. Effects of brain IKKβ gene silencing by small interfering RNA on P-glycoprotein expression and brain damage in the rat kainic acid-induced seizure model.

    PubMed

    Yu, Nian; Liu, Hao; Zhang, Yan-Fang; Su, Ling-Ying; Liu, Xin-Hong; Li, Le-Chao; Hao, Jin-Bo; Huang, Xian-Jing; Di, Qing

    2014-01-01

    Multidrug resistance mediated by over-expression of P-glycoprotein (P-gp) in brain is an important mechanism accounting for the drug-therapy failure in epilepsy. Over-expression of P-gp in epilepsy rat brain may be regulated by inflammation and nuclear factor-kappa B (NF-κB) activation. Inhibitory κ B kinase subunit β (IKKβ) is an up-stream molecular controlling NF-κB activation. With the small interfering RNA (siRNA) technique and kainic acid (KA)-induced rat epileptic seizure model, the present study was aimed to further evaluate the role of NF-κB inhibition, via blocking IKKβ gene transcription, in the epileptic brain P-gp over-expression, seizure susceptibility, and post-seizure brain damage. siRNA targeting IKKβ was administered to rats via intracerebroventricular injection before seizure induction by KA microinjection; scrambled siRNA was used as control. Brain mRNA and protein levels of IKKβ and P-gp were detected by RT-PCR and immunohistochemistry. NF-κB activity was measured by electrophoretic mobility shift assay. Latency to grade III or V seizure onset was recorded, brain damage was evaluated by neuronal cell counting and epileptiform activity was monitored by electroencephalography. IKKβ siRNA pre-treatment inhibited NF-κB activation and abolished P-gp over-expression in KA-induced epileptic rat brain, accompanied by decreased seizure susceptibility. These findings suggested that epileptogenic-induced P-gp over-expression could be regulated by IKKβ through the NF-κB pathway. PMID:24040792

  8. Inhibition of Hepatitis C Virus in Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence in Viral IRES Pseudoknot

    PubMed Central

    Kim, Eun-Jung; Cho, Hee; Lee, Wooseong; Kim, Geon-Woo; Park, Hyun-Ji; Cho, Seung-Woo; Lee, Choongho; Oh, Jong-Won

    2016-01-01

    The hepatitis C virus (HCV) internal ribosome entry site (IRES) that directs cap-independent viral translation is a primary target for small interfering RNA (siRNA)-based HCV antiviral therapy. However, identification of potent siRNAs against HCV IRES by bioinformatics-based siRNA design is a challenging task given the complexity of HCV IRES secondary and tertiary structures and association with multiple proteins, which can also dynamically change the structure of this cis-acting RNA element. In this work, we utilized siRNA tiling approach whereby siRNAs were tiled with overlapping sequences that were shifted by one or two nucleotides over the HCV IRES stem-loop structures III and IV spanning nucleotides (nts) 277–343. Based on their antiviral activity, we mapped a druggable region (nts 313–343) where the targets of potent siRNAs were enriched. siIE22, which showed the greatest anti-HCV potency, targeted a highly conserved sequence across diverse HCV genotypes, locating within the IRES subdomain IIIf involved in pseudoknot formation. Stepwise target shifting toward the 5′ or 3′ direction by 1 or 2 nucleotides reduced the antiviral potency of siIE22, demonstrating the importance of siRNA accessibility to this highly structured and sequence-conserved region of HCV IRES for RNA interference. Nanoparticle-mediated systemic delivery of the stability-improved siIE22 derivative gs_PS1 siIE22, which contains a single phosphorothioate linkage on the guide strand, reduced the serum HCV genome titer by more than 4 log10 in a xenograft mouse model for HCV replication without generation of resistant variants. Our results provide a strategy for identifying potent siRNA species against a highly structured RNA target and offer a potential pan-HCV genotypic siRNA therapy that might be beneficial for patients resistant to current treatment regimens. PMID:26751678

  9. Silencing tumor necrosis factor-alpha in vitro from small interfering RNA-decorated titanium nanotube array can facilitate osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Wang, Zhenlin; Hu, Zhiqiang; Zhang, Dawei; Zhuo, Mengchuan; Cheng, Jiwei; Xu, Xingping; Xing, Yongming; Fan, Jie

    2016-01-01

    Titanium implants are known for their bone bonding ability. However, the osseointegration may be severely disturbed in the inflammation environment. In order to enhance osseointegration of the implant in an inflamed environment, the small interfering RNA (siRNA) targeting tumor necrosis factor alpha (TNF-α) was used to functionalize titanium surface for gene silencing. The chitosan–tripolyphosphate–hyaluronate complexes were used to formulate nanoparticles (NPs) with siRNA, which were adsorbed directly by the anodized titanium surface. The surface characterization was analyzed by scanning electron microscope, atomic force microscopy, as well as contact angle measurement. The fluorescence microscope was used to monitor the degradation of the layer. The coculture system was established with mesenchymal stem cells (MSCs) grown directly on functionalized titanium surface and RAW264.7 cells (preactivated by lipopolysaccharide) grown upside in a transwell chamber. The transfection and knockdown efficiency of TNF-α in RAW264.7 cells were determined by fluorescence microscope, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. The cytoskeleton and osteogenic differentiation of MSCs were also analyzed. Regular vertical aligned nanotubes (~100 nm diameter and ~300 nm length) were generated after anodization of polished titanium. After loading with NPs, the nanotubes were filled and covered by a layer of amorphous particles. The surface topography changed and wettability decreased after covering with NPs. As expected, a burst degradation of the film was observed, which could provide sufficient NPs in the released supernatant and result in transfection and knockdown effects in RAW264.7 cells. The cytoskeleton arrangement of MSCs was elongated and the osteogenic differentiation was also significantly improved on NPs loading surface. In conclusion, the siRNA decorated titanium implant could simultaneously suppress inflammation and improve

  10. Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence ▿

    PubMed Central

    Stein, David A.; Perry, Stuart T.; Buck, Michael D.; Oehmen, Christopher S.; Fischer, Matthew A.; Poore, Elizabeth; Smith, Jessica L.; Lancaster, Alissa M.; Hirsch, Alec J.; Slifka, Mark K.; Nelson, Jay A.; Shresta, Sujan; Früh, Klaus

    2011-01-01

    The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5′ cyclization sequence (5′CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an “in vivo-ready” version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses. PMID:21795337

  11. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1. PMID:24141263

  12. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana.

    PubMed

    Wang, Xian-Bing; Jovel, Juan; Udomporn, Petchthai; Wang, Ying; Wu, Qingfa; Li, Wan-Xiang; Gasciolli, Virginie; Vaucheret, Herve; Ding, Shou-Wei

    2011-04-01

    Arabidopsis thaliana defense against distinct positive-strand RNA viruses requires production of virus-derived secondary small interfering RNAs (siRNAs) by multiple RNA-dependent RNA polymerases. However, little is known about the biogenesis pathway and effector mechanism of viral secondary siRNAs. Here, we describe a mutant of Cucumber mosaic virus (CMV-Δ2b) that is silenced predominantly by the RNA-DEPENDENT RNA POLYMERASE6 (RDR6)-dependent viral secondary siRNA pathway. We show that production of the viral secondary siRNAs targeting CMV-Δ2b requires SUPPRESSOR OF GENE SILENCING3 and DICER-LIKE4 (DCL4) in addition to RDR6. Examination of 25 single, double, and triple mutants impaired in nine ARGONAUTE (AGO) genes combined with coimmunoprecipitation and deep sequencing identifies an essential function for AGO1 and AGO2 in defense against CMV-Δ2b, which act downstream the biogenesis of viral secondary siRNAs in a nonredundant and cooperative manner. Our findings also illustrate that dicing of the viral RNA precursors of primary and secondary siRNA is insufficient to confer virus resistance. Notably, although DCL2 is able to produce abundant viral secondary siRNAs in the absence of DCL4, the resultant 22-nucleotide viral siRNAs alone do not guide efficient silencing of CMV-Δ2b. Possible mechanisms for the observed qualitative difference in RNA silencing between 21- and 22-nucleotide secondary siRNAs are discussed. PMID:21467580

  13. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs.

    PubMed

    Diaz-Pendon, Juan A; Li, Feng; Li, Wan-Xiang; Ding, Shou-Wei

    2007-06-01

    We investigated the genetic pathway in Arabidopsis thaliana targeted during infection by cucumber mosaic virus (CMV) 2b protein, known to suppress non-cell-autonomous transgene silencing and salicylic acid (SA)-mediated virus resistance. We show that 2b expressed from the CMV genome drastically reduced the accumulation of 21-, 22-, and 24-nucleotide classes of viral small interfering RNAs (siRNAs) produced by Dicer-like4 (DCL4), DCL2, and DCL3, respectively. The defect of a CMV 2b-deletion mutant (CMV-Delta2b) in plant infection was efficiently rescued in Arabidopsis mutants producing neither 21- nor 22-nucleotide viral siRNAs. Since genetic analysis further identifies a unique antiviral role for DCL3 upstream of DCL4, our data indicate that inhibition of the accumulation of distinct viral siRNAs plays a key role in 2b suppression of antiviral silencing. Strikingly, disease symptoms caused by CMV-Delta2b in Arabidopsis mutants defective in antiviral silencing were as severe as those caused by CMV, demonstrating an indirect role for the silencing suppressor activity in virus virulence. We found that production of CMV siRNAs without 2b interference depended largely on RNA-dependent RNA polymerase 1 (RDR1) inducible by SA. Given the known role of RDR6-dependent transgene siRNAs in non-cell-autonomous silencing, our results suggest a model in which 2b inhibits the production of RDR1-dependent viral siRNAs that confer SA-dependent virus resistance by directing non-cell-autonomous antiviral silencing. PMID:17586651

  14. Mu opioid receptor knockdown in the substantia nigra/ventral tegmental area by synthetic small interfering RNA blocks the rewarding and locomotor effects of heroin

    PubMed Central

    Zhang, Yong; Landthaler, Markus; Schlussman, Stefan D.; Yuferov, Vadim; Ho, Ann; Tuschl, Thomas; Kreek, Mary Jeanne

    2014-01-01

    Mu opioid receptors (MOP-r) play an important role in the rewarding and locomotor stimulatory effects of heroin. The aim of the current study was to determine whether infusion of small interfering RNAs (siRNA) targeting MOP-r into the midbrain could knock down MOP-r mRNA and affect heroin-induced locomotor activity or heroin-induced conditioned place preference. Ten week old male C57BL/6J mice were surgically implanted bilaterally with guide cannulae directed between the substantia nigra and ventral tegmental area. After 4 days recovery, mice were infused bilaterally with siRNAs that target the MOP-r (2mM × 0.75 μl/side/day for 3 days) or control siRNA. Seven days after the last infusion, a procedure for conditioned place preference was begun with four heroin (3mg/kg i.p.) administration sessions alternating with four saline sessions. While heroin induced an increase in locomotor activity in all groups, siRNAs targeting specific regions of MOP-r significantly attenuated this effect. Of particular interest, mice infused with specific siRNAs targeting the MOP-r failed to develop and express conditioned place preference to heroin, or showed a significantly attenuated preference. These alterations in reward related behaviors are likely due to the reduction in MOP-r mRNA and protein, shown in separate studies by in situ hybridization and autoradiography using the same MOP-r- siRNA infusions. Taken together, these studies demonstrate the utility of siRNA in the neurobiological study of specific components of the reward system and should contribute to the study of other complex behaviors. PMID:18938225

  15. Genome-Wide Small Interfering RNA Screens Reveal VAMP3 as a Novel Host Factor Required for Uukuniemi Virus Late Penetration

    PubMed Central

    Meier, Roger; Franceschini, Andrea; Horvath, Peter; Tetard, Marilou; Mancini, Roberta; von Mering, Christian; Helenius, Ari

    2014-01-01

    ABSTRACT The Bunyaviridae constitute a large family of enveloped animal viruses, many of which are important emerging pathogens. How bunyaviruses enter and infect mammalian cells remains largely uncharacterized. We used two genome-wide silencing screens with distinct small interfering RNA (siRNA) libraries to investigate host proteins required during infection of human cells by the bunyavirus Uukuniemi virus (UUKV), a late-penetrating virus. Sequence analysis of the libraries revealed that many siRNAs in the screens inhibited infection by silencing not only the intended targets but additional genes in a microRNA (miRNA)-like manner. That the 7-nucleotide seed regions in the siRNAs can cause a perturbation in infection was confirmed by using synthetic miRNAs (miRs). One of the miRs tested, miR-142-3p, was shown to interfere with the intracellular trafficking of incoming viruses by regulating the v-SNARE VAMP3, a strong hit shared by both siRNA screens. Inactivation of VAMP3 by the tetanus toxin led to a block in infection. Using fluorescence-based techniques in fixed and live cells, we found that the viruses enter VAMP3+ endosomal vesicles 5 min after internalization and that colocalization was maximal 15 min thereafter. At this time, LAMP1 was associated with the VAMP3+ virus-containing endosomes. In cells depleted of VAMP3, viruses were mainly trapped in LAMP1-negative compartments. Together, our results indicated that UUKV relies on VAMP3 for penetration, providing an indication of added complexity in the trafficking of viruses through the endocytic network. IMPORTANCE Bunyaviruses represent a growing threat to humans and livestock globally. Unfortunately, relatively little is known about these emerging pathogens. We report here the first human genome-wide siRNA screens for a bunyavirus. The screens resulted in the identification of 562 host cell factors with a potential role in cell entry and virus replication. To demonstrate the robustness of our approach, we

  16. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells

    PubMed Central

    Mitra, Moutushy; Kandalam, Mallikarjuna; Rangasamy, Judith; Shankar, Balaji; Maheswari, Uma K.; Swaminathan, Sethuraman

    2013-01-01

    Background Several nanoconjugates have been designed to deliver nucleic acids such as small interfering RNA (siRNA) and DNA to cells to study silencing and expression efficacies. In the present study, we prepared novel epithelial cell adhesion molecule (EpCAM) monoclonal antibody conjugated polyethyleneimine (PEI) capped gold nanoparticles (AuNPs) loaded with EpCAM-specific siRNA molecules to knock-down the EpCAM gene in retinoblastoma (RB) cells. We chose EpCAM as a target moiety to deliver siRNA because this molecule is highly expressed in various epithelial cancers and is an ideal target as it is highly expressed in the apical surface of tumor cells while showing basolateral expression in normal cells. Methods The EpCAM antibody was conjugated to AuNP-PEI loaded with siRNA molecules to specifically deliver siRNA to EpCAM-expressing RB cells. Conjugation efficiencies were confirmed with ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, and agarose and SDS–polyacrylamide gel electrophoresis. The size and zeta potential were measured using a Zeta sizer analyzer. Nanoparticle internalization and uptake were studied using fluorescent microscopy and flow cytometry. Gene silencing efficacy was monitored with western blot analysis and real-time quantitative PCR. Results Optimal size and neutral zeta potential properties of the AuNP-PEI- EpCAM antibody (EpAb) antibody were achieved for the transfection studies. The AuNP-PEI nanoparticles did not show any cytotoxicity to the cells, which means these nanomaterials are suitable for intracellular delivery of siRNA for therapeutic interventions. With EpCAM antibody conjugation, PEI-capped AuNPs loaded with EpCAM siRNA were significantly internalized in the Y79 cells as observed with fluorescence microscopy and flow cytometry and induced a highly significant reduction in the cell viability of the Y79 cells. Through increased binding of EpCAM antibody–conjugated AuNP-PEI nanoparticles

  17. Allele Dependent Silencing of Collagen Type I Using Small Interfering RNAs Targeting 3'UTR Indels - a Novel Therapeutic Approach in Osteogenesis Imperfecta

    PubMed Central

    Lindahl, Katarina; Kindmark, Andreas; Laxman, Navya; Åström, Eva; Rubin, Carl-Johan; Ljunggren, Östen

    2013-01-01

    Osteogenesis imperfecta, also known as “brittle bone disease”, is a heterogeneous disorder of connective tissue generally caused by dominant mutations in the genes COL1A1 and COL1A2, encoding the α1 and α2 chains of type I (pro)collagen. Symptomatic patients are usually prescribed bisphosphonates, but this treatment is neither curative nor sufficient. A promising field is gene silencing through RNA interference. In this study small interfering RNAs (siRNAs) were designed to target each allele of 3'UTR insertion/deletion polymorphisms (indels) in COL1A1 (rs3840870) and COL1A2 (rs3917). For both indels, the frequency of heterozygous individuals was determined to be approximately 50% in Swedish cohorts of healthy controls as well as in patients with osteogenesis imperfecta. Cultures of primary human bone derived cells were transfected with siRNAs through magnet-assisted transfection. cDNA from transfected cells was sequenced in order to measure targeted allele/non-targeted allele ratios and the overall degree of silencing was assessed by quantitative PCR. Successful allele dependent silencing was observed, with promising results for siRNAs complementary to both the insertion and non-insertion harboring alleles. In COL1A1 cDNA the indel allele ratios were shifted from 1 to 0.09 and 0.19 for the insertion and non-insertion allele respectively while the equivalent resulting ratios for COL1A2 were 0.05 and 0.01. Reductions in mRNA abundance were also demonstrated; in cells treated with siRNAs targeting the COL1A1 alleles the average COL1A1 mRNA levels were reduced 65% and 78% compared to negative control levels and in cells treated with COL1A2 siRNAs the average COL1A2 mRNA levels were decreased 26% and 49% of those observed in the corresponding negative controls. In conclusion, allele dependent silencing of collagen type I utilizing 3'UTR indels common in the general population constitutes a promising mutation independent therapeutic approach for osteogenesis

  18. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.

  19. Effects of 5‑fluorouracil and class III phosphoinositide 3‑kinase small interfering RNA combination therapy on SGC7901 human gastric cancer cells.

    PubMed

    Zhu, Bao-Song; Sun, Jia-Lei; Gong, Wei; Zhang, Xing-Ding; Wu, Yong-You; Xing, Chun-Gen

    2015-03-01

    The aim of the present study was to investigate the effects of small interfering RNA‑mediated inhibition of Class III phosphoinositide 3‑kinase (PI3K) signal transduction on the proliferation, apoptosis and autophagy of SGC7901 gastric cancer cells. The present study also aimed to examine the contribution of autophagic inhibition to the antitumor effects of 5‑fluorouracil (5‑FU). A PI3K(III)‑RNA interference (i)‑green fluorescent protein (GFP) recombinant replication adenovirus (AD) and the negative control (NC)‑RNAi‑GFP control AD were constructed and infected into SGC7901 cells. A methyl thiazolyl tetrazolium assay was used to determine the growth rate of the SGC7901 cells. Immunofluorescent staining was used to detect microtubule‑associated protein 1 light chain 3 expression. The mitochondrial membrane potential was measured using the JC‑1 fluorescent probe. Autophagic expression was monitored with MDC staining and transmission electron microscopy. The results revealed that following combination treatment of the SGC7901 gastric cancer cells with 5‑FU + PI3K(III)‑RNAi‑AD, the optical density absorbance values at 24, 48 and 72 h were 0.17 ± 1.64, 0.13 ± 4.64 and 0.11 ± 3.56%, respectively, with cell viability inhibition ratios of 45.89 ± 6.67, 72.57 ± 9.48 and 87.51 ± 4.65%, respectively. As compared with the other treatment groups, the inhibition rate in the combined treatment group was significantly higher (P<0.05). The percentages of the cells with green fluorescence in the combined treatment group were 74.4 ± 3.86 (24 h), 82.3 ± 1.84 (48 h) and 92.5 ± 1.1% (72 h), which were larger than those of the other groups. The percentage of cells with green fluorescence became larger, which indicated that the mitochondrion membrane potential had been reduced to a greater extent. MDC staining revealed that the number of autophagic vacuoles in the cells (measured at 24, 48 and 72 h) decreased gradually with time, with more autophagic

  20. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    PubMed Central

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  1. Synthesis of small interfering RNAs containing acetal-type nucleoside analogs at their 3'-ends and analysis of their silencing activity and their ability to bind to the Argonaute2 PAZ domain.

    PubMed

    Inada, Natsumi; Nakamoto, Kosuke; Yokogawa, Takashi; Ueno, Yoshihito

    2015-10-20

    In this study, we aimed to create small interfering RNAs (siRNAs) with increased silencing activities and nuclease resistance properties. Therefore, we designed and synthesized five types of siRNA containing acetal-type nucleoside analogs at their 3'-dangling ends. We found that the siRNA containing 1-O-(2,2,2-trifluoroethyl)-β-D-ribofuranose at the 3'-dangling end was the most potent among the synthesized siRNAs and showed more resistance to nucleolytic degradation by a 3' exonuclease than a natural RNA did. Thus, modification of siRNAs by addition of 1-O-(2,2,2-trifluoroethyl)-β-D-ribofuranose may hold promise as a means of improving the silencing activity and nuclease resistance of siRNAs. PMID:26397394

  2. Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo.

    PubMed

    Ji, Kun; Wang, Bo; Shao, Yue-Ting; Zhang, Ling; Liu, Ya-Nan; Shao, Chen; Li, Xiao-Jie; Li, Xin; Hu, Jia-di; Zhao, Xue-Jian; Xu, De-Qi; Li, Yang; Cai, Lu

    2011-07-01

    Our objective was to evaluate cell growth and death effects by inhibiting Murine Double Minute 2 (MDM2) expression in human prostate cancer cells overexpressing the wild-type (WT) p53 gene. Prostate PC-3 tumor cells were transfected with a plasmid containing either mdm2 small interfering (Si-mdm2) or the WT p53 gene (Pp53) alone, or both (Pmp53), using Lipofectamine in vitro and attenuated Salmonella enterica serovar Typhi vaccine strain Ty21a (Salmonella Typhi Ty21a) in vivo. Cell growth, apoptosis, and the expression of related genes and proteins were examined in vitro and in vivo by flow cytometry and Western blot assays. We demonstrated that human prostate tumors had increased expression of MDM2 and mutant p53 proteins. Transfection of the PC-3 cells with the Pmp53 plasmid in vitro offered significant inhibition of cell growth and an increase in apoptotic cell death compared with that of the Si-mdm2 or Pp53 group. These effects were associated with up-regulation of p21 and down-regulation of hypoxia-inducible factor 1α expression in Pmp53-transfected cells. To validate the in vitro findings, the nude mice implanted with PC-3 cells were treated with attenuated Salmonella Typhi Ty21a carrying the plasmids, which showed that the Pmp53 plasmid significantly inhibited the tumor growth rate in vivo compared with that of the Si-mdm2 or Pp53 plasmid alone. Tumor tissues from mice treated with the Pmp53 plasmid showed increased expression of p21 and decreased expression of hypoxia-inducible factor 1α proteins, with an increased apoptotic effect. These results suggest that knockdown of mdm2 expression by its specific small interfering RNA with overexpression of the WT p53 gene offers synergistic inhibition of prostate cancer cell growth in vitro and in vivo. PMID:21444629

  3. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA biogenesis in eudicots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MiRNAs have been demonstrated to regulate diverse biological processes through cleavage of gene transcripts. Some of miRNAs acquire additional function and their cleavage can incite production of secondary small RNAs which possibly provoke a novel regulatory cascade. In this study, we investigated...

  4. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max

    PubMed Central

    2012-01-01

    Background Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gained mostly through studies with Arabidopsis. In recent years, high throughput sequencing of smRNA populations has enabled extension of knowledge from model systems to plants with larger, more complex genomes. Soybean (Glycine max) now has many genomics resources available including a complete genome sequence and predicted gene models. Relatively little is known, however, about the full complement of its endogenous smRNAs populations and the silenced genes. Results Using Illumina sequencing and computational analysis, we characterized eight smRNA populations from multiple tissues and organs of soybean including developing seed and vegetative tissues. A total of 41 million raw sequence reads collapsed into 135,055 unique reads were mapped to the soybean genome and its predicted cDNA gene models. Bioinformatic analyses were used to distinguish miRNAs and siRNAs and to determine their genomic origins and potential target genes. In addition, we identified two soybean TAS3 gene homologs, the miRNAs that putatively guide cleavage of their transcripts, and the derived tasiRNAs that could target soybean genes annotated as auxin response factors. Tissue-differential expression based on the flux of normalized miRNA and siRNA abundances in the eight smRNA libraries was evident, some of which was confirmed by smRNA blotting. Our global view of these smRNA populations also revealed that the size classes of smRNAs varied amongst different tissues, with the developing seed and seed coat having greater numbers of unique smRNAs of the 24-nt class compared to the vegetative tissues of germinating seedlings. The 24-nt class is known to be derived from repetitive elements including transposons

  5. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells

    SciTech Connect

    Wang Beibei; Lu Rui; Wang Weicheng; Jin Ying . E-mail: yjin@sibs.ac.cn

    2006-09-08

    The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present First application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation.

  6. Function and Evolution of a MicroRNA That Regulates a Ca2+-ATPase and Triggers the Formation of Phased Small Interfering RNAs in Tomato Reproductive Growth[W][OA

    PubMed Central

    Wang, Ying; Itaya, Asuka; Zhong, Xuehua; Wu, Yang; Zhang, Jianfeng; van der Knaap, Esther; Olmstead, Richard; Qi, Yijun; Ding, Biao

    2011-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes in most eukaryotes. We investigated the function and evolution of miR4376 in the family Solanaceae. We report that the 22-nucleotide miR4376 regulates the expression of an autoinhibited Ca2+-ATPase, tomato (Solanum lycopersicum) ACA10, which plays a critical role in tomato reproductive growth. Deep phylogenetic mapping suggested (1) an evolution course of MIR4376 loci and posttranscriptional processing of pre-miR4376 as a likely limiting step for the evolution of miR4376, (2) an independent phylogenetic origin of the miR4376 target site in ACA10 homologs, and (3) alternative splicing as a possible mechanism of eliminating such a target in some ACA10 homologs. Furthermore, miR4376 triggers the formation of phased small interfering RNAs (siRNAs) from Sl ACA10 and its Solanum tuberosum homolog. Together, our data provide experimental evidence of miRNA-regulated expression of universally important Ca2+-ATPases. The miR4376-regulated expression of ACA10 itself, and possibly also the associated formation of phased siRNAs, may function as a novel layer of molecular mechanisms underlying tomato reproductive growth. Finally, our data suggest that the stochastic emergence of a miRNA-target gene combination involves multiple molecular events at the genomic, transcriptional, and posttranscriptional levels that may vary drastically in even closely related species. PMID:21917547

  7. A Genome-wide Small Interfering RNA (siRNA) Screen Reveals Nuclear Factor-κB (NF-κB)-independent Regulators of NOD2-induced Interleukin-8 (IL-8) Secretion*

    PubMed Central

    Warner, Neil; Burberry, Aaron; Pliakas, Maria; McDonald, Christine; Núñez, Gabriel

    2014-01-01

    NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8. PMID:25170077

  8. A genome-wide small interfering RNA (siRNA) screen reveals nuclear factor-κB (NF-κB)-independent regulators of NOD2-induced interleukin-8 (IL-8) secretion.

    PubMed

    Warner, Neil; Burberry, Aaron; Pliakas, Maria; McDonald, Christine; Núñez, Gabriel

    2014-10-10

    NOD2 encodes an intracellular multidomain pattern recognition receptor that is the strongest known genetic risk factor in the pathogenesis of Crohn disease (CD), a chronic relapsing inflammatory disorder of the intestinal tract. NOD2 functions as a sensor for bacterial cell wall components and activates proinflammatory and antimicrobial signaling pathways. Here, using a genome-wide small interfering RNA (siRNA) screen, we identify numerous genes that regulate secretion of the proinflammatory cytokine IL-8 in response to NOD2 activation. Moreover, many of the identified IL-8 regulators are linked by protein-protein interactions, revealing subnetworks of highly connected IL-8 regulators implicated in processes such as vesicle formation, mRNA stability, and protein ubiquitination and trafficking. A TNFα counterscreen to induce IL-8 secretion in an NOD2-independent manner reveals that the majority of the identified regulators affect IL-8 secretion irrespective of the initiating stimuli. Using immortalized macrophages, we validate the ubiquitin protease, USP8, and the endosomal sorting protein, VPS28, as negative regulators of NOD2-induced cytokine secretion. Interestingly, several genes that affect NOD2-induced IL-8 secretion are present in loci associated with CD risk by genome-wide association studies, supporting a role for the NOD2/IL-8 pathway, and not just NOD2, in the pathogenesis of CD. Overall, this screen provides a valuable resource in the advancement of our understanding of the genes that regulate the secretion of IL-8. PMID:25170077

  9. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  10. A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery

    PubMed Central

    Zou, Yu; Guo, Chuan-Gen; Yang, Zheng-Gang; Sun, Jun-Hui; Zhang, Min-Ming; Fu, Cai-Yun

    2016-01-01

    Introduction Hepatocellular carcinoma is currently the second leading cause of cancer-related deaths worldwide with an increasing incidence. Objective The objective of this study is to investigate the effect of vascular endothelial growth factor small interfering RNA (VEGF-siRNA) on rabbit VX2 carcinoma cell viability in vitro and the effect of transarterial embolization (TAE)-mediated VEGF-siRNA delivery on the growth of rabbit VX2 liver-transplanted model in vivo. Methods Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot technologies were used to detect the expression level of VEGF. TAE and computed tomography scan were used to deliver the VEGF-siRNA and detect the tumor volume in vivo, respectively. Microvessel density was detected by immunohistochemistry with CD34 antibody. A biochemical autoanalyzer was used to evaluate the hepatic and renal toxicity. Results The designed VEGF-siRNAs could effectively decrease the expression levels of VEGF mRNA and protein in vitro and in vivo. In vitro, the viability of rabbit VX2 carcinoma cells was reduced by 38.5%±7.3% (VEGF-siRNA no 1) and 30.0%±5.8% (VEGF-siRNA no 3) at 48 hours after transfection. Moreover, in rabbit VX2 liver-transplanted model, the growth ratios of tumors at 28 days after TAE-mediated siRNA delivery were 155.18%±19.42% in the control group, 79.67%±19.63% in the low-dose group, and 36.09%±15.73% in the high-dose group, with significant differences among these three groups. Microvessel density dropped to 34.22±4.01 and 22.63±4.07 in the low-dose group and high-dose group, respectively, compared with the control group (57.88±5.67), with significant differences among these three groups. Furthermore, inoculation of VX2 tumor into the liver itself at later stage induced significant increase in alanine aminotransferase and aspartate aminotransferase, indicating an obvious damage of liver functions, while treatment of VX2 tumor via TAE

  11. Intronic regions of plant genes potentially encode RDR (RNA-dependent RNA polymerase)-dependent small RNAs

    PubMed Central

    Qin, Jingping; Ma, Xiaoxia; Yi, Zili; Tang, Zhonghai; Meng, Yijun

    2015-01-01

    Recent research has linked the non-coding intronic regions of plant genes to the production of small RNAs (sRNAs). Certain introns, called ‘mirtrons’ and ‘sirtrons’, could serve as the single-stranded RNA precursors for the generation of microRNA and small interfering RNA, respectively. However, whether the intronic regions could serve as the template for double-stranded RNA synthesis and then for sRNA biogenesis through an RDR (RNA-dependent RNA polymerase)-dependent pathway remains unclear. In this study, a genome-wide search was made for the RDR-dependent sRNA loci within the intronic regions of the Arabidopsis genes. Hundreds of intronic regions encoding three or more RDR-dependent sRNAs were found to be covered by dsRNA-seq (double-stranded RNA sequencing) reads, indicating that the intron-derived sRNAs were indeed generated from long double-stranded RNA precursors. More interestingly, phase-distributed sRNAs were discovered on some of the dsRNA-seq read-covered intronic regions, and those sRNAs were largely 24 nt in length. Based on these results, the opinion is put forward that the intronic regions might serve as the genomic origins for the RDR-dependent sRNAs. This opinion might add a novel layer to the current biogenesis model of the intron-derived sRNAs. PMID:25609829

  12. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses1[OPEN

    PubMed Central

    Lunardon, Alice; Forestan, Cristian; Farinati, Silvia; Axtell, Michael J.; Varotto, Serena

    2016-01-01

    Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf. PMID:26747286

  13. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brachypodium distachyon is a promising model for studying temperate grasses, most importantly wheat. Small RNA (smRNAs), especially 21 nt and 24 nt smRNAs, play essential roles in plant development and physiology. We performed seep sequencing of smRNA repertoires in Brachypodium and wheat and found ...

  14. Small RNAs in plants: recent development and application for crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  15. Small RNAs in plants: recent development and application for crop improvement

    PubMed Central

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20–24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  16. Unsteady transonic flow calculations for interfering lifting surface configurations

    NASA Technical Reports Server (NTRS)

    Batina, J. T.

    1985-01-01

    Unsteady transonic flow calculations are presented for aerodynamically interfering lifting surface configurations. Calculations are performed by extending the XTRAN3S (Version 1.5) unsteady transonic small-disturbance code to allow the treatment of an additional lifting surface. The research was conducted as a first-step toward developing the capability to treat a complete flight vehicle. Grid generation procedures for swept tapered interfering lifting surface applications of XTRAN3S are described. Transonic calculations are presented for wing-tail and canard-wing configurations for several values of mean angle of attack. The effects of aerodynamic interference on transonic steady pressure distributions and steady and oscillatory spanwise lift distributions are demonstrated. Results due to wing, tail, or canard pitching motions are presented and discussed in detail.

  17. Strand-asymmetric endogenous Tetrahymena small RNA production requires a previously uncharacterized uridylyltransferase protein partner

    PubMed Central

    Talsky, Kristin Benjamin; Collins, Kathleen

    2012-01-01

    Many eukaryotes initiate pathways of Argonaute-bound small RNA (sRNA) production with a step that specifically targets sets of aberrant and/or otherwise deleterious transcripts for recognition by an RNA-dependent RNA polymerase complex (RDRC). The biogenesis of 23- to 24-nt sRNAs in growing Tetrahymena occurs by physical and functional coupling of the growth-expressed Dicer, Dcr2, with one of three RDRCs each containing the single genome-encoded RNA-dependent RNA polymerase, Rdr1. Tetrahymena RDRCs contain an active uridylyltransferase, either Rdn1 or Rdn2, and Rdn1 RDRCs also contain the Rdf1 and Rdf2 proteins. Although Rdn2 is nonessential and RDRC-specific, Rdn1 is genetically essential and interacts with a non-RDRC protein of 124 kDa. Here we characterize this 124-kDa protein, designated RNA silencing protein 1 (Rsp1), using endogenous locus tagging, affinity purification, and functional assays, as well as gene-knockout studies. We find that Rsp1 associates with Rdn1-Rdf1 or Rdn1-Rdf2 subcomplexes as an alternative to Rdr1, creating Rsp1 complexes (RSPCs) that are physically separate from RDRCs. The uridylyltransferase activity of Rdn1 is greatly reduced in RSPCs compared with RDRCs, suggesting enzyme regulation by the alternative partners. Surprisingly, despite the loss of all known RDRC-generated classes of endogenous sRNAs, RSP1 gene knockout was tolerated in growing cells. A minority class of Dcr2-dependent sRNAs persists in cells lacking Rsp1 with increased size heterogeneity. These findings bring new insights about the essential and nonessential functions of RNA silencing in Tetrahymena, about mechanisms of endogenous small interfering RNA production, and about the roles of cellular uridylyltransferases. PMID:22706992

  18. Mobile small RNAs regulate genome-wide DNA methylation

    PubMed Central

    Lewsey, Mathew G.; Hardcastle, Thomas J.; Melnyk, Charles W.; Molnar, Attila; Valli, Adrián; Urich, Mark A.; Nery, Joseph R.; Baulcombe, David C.; Ecker, Joseph R.

    2016-01-01

    RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21–24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession. PMID:26787884

  19. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  20. Genome-wide profiling of Populus small RNAs

    PubMed Central

    2009-01-01

    Background Short RNAs, and in particular microRNAs, are important regulators of gene expression both within defined regulatory pathways and at the epigenetic scale. We investigated the short RNA (sRNA) population (18-24 nt) of the transcriptome of green leaves from the sequenced Populus trichocarpa using a concatenation strategy in combination with 454 sequencing. Results The most abundant size class of sRNAs were 24 nt. Long Terminal Repeats were particularly associated with 24 nt sRNAs. Additionally, some repetitive elements were associated with 22 nt sRNAs. We identified an sRNA hot-spot on chromosome 19, overlapping a region containing both the proposed sex-determining locus and a major cluster of NBS-LRR genes. A number of phased siRNA loci were identified, a subset of which are predicted to target PPR and NBS-LRR disease resistance genes, classes of genes that have been significantly expanded in Populus. Additional loci enriched for sRNA production were identified and characterised. We identified 15 novel predicted microRNAs (miRNAs), including miRNA*sequences, and identified a novel locus that may encode a dual miRNA or a miRNA and short interfering RNAs (siRNAs). Conclusions The short RNA population of P. trichocarpa is at least as complex as that of Arabidopsis thaliana. We provide a first genome-wide view of short RNA production for P. trichocarpa and identify new, non-conserved miRNAs. PMID:20021695

  1. Interfering with Gendered Development: A Timely Intervention

    ERIC Educational Resources Information Center

    Blaise, Mindy

    2014-01-01

    Instead of relying on colonial and Western developmental logic to understand and research gender, this paper proposes interfering as a strategy toward generating gender knowledges that are more inclusive to other-than-Western concepts and contexts. This paper shows how post-developmental perspectives interfere with psychological and biological…

  2. Adaptive antenna arrays for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Gupta, I. J.

    1985-01-01

    The interference protection provided by adaptive antenna arrays to an Earth station or satellite receive antenna system is studied. The case where the interference is caused by the transmission from adjacent satellites or Earth stations whose signals inadverently enter the receiving system and interfere with the communication link is considered. Thus, the interfering signals are very weak. To increase the interference suppression, one can either decrease the thermal noise in the feedback loops or increase the gain of the auxiliary antennas in the interfering signal direction. Both methods are examined. It is shown that one may have to reduce the noise correlation to impractically low values and if directive auxiliary antennas are used, the auxiliary antenna size may have to be too large. One can, however, combine the two methods to achieve the specified interference suppression with reasonable requirements of noise decorrelation and auxiliary antenna size. Effects of the errors in the steering vector on the adaptive array performance are studied.

  3. Coupling Aptamers to Short Interfering RNAs as Therapeutics

    PubMed Central

    Cerchia, Laura; Esposito, Carla Lucia; Camorani, Simona; Catuogno, Silvia; de Franciscis, Vittorio

    2011-01-01

    RNA-based approaches are among the most promising strategies aimed at developing safer and more effective therapeutics. RNA therapeutics include small non-coding miRNAs, small interfering RNA, RNA aptamers and more recently, small activating RNAs. However, major barriers exist to the use of RNAs as therapeutics such as resistance to nucleases present in biological fluids, poor chemical stability, need of specific cell targeted delivery and easy entry into the cell. Such issues have been addressed by several recent reports that show the possibility of introducing chemical modifications in small RNAs to stabilize the molecular conformation and increase by several fold their integrity, while still preserving the functional activity. Further, several aptamers have been developed as excellent candidates for the specific recognition of cell surface targets. In the last few years, by taking advantage of recent advances in the small RNA field, molecular bioconjugates have been designed that permit specific targeting and may act as cargoes for cell internalization of small RNAs acting on gene expression that will be discussed in this review.

  4. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis.

    PubMed

    Di Serio, Francesco; Gisel, Andreas; Navarro, Beatriz; Delgado, Sonia; Martínez de Alba, Angel-Emilio; Donvito, Giacinto; Flores, Ricardo

    2009-01-01

    Northern-blot hybridization and low-scale sequencing have revealed that plants infected by viroids, non-protein-coding RNA replicons, accumulate 21-24 nt viroid-derived small RNAs (vd-sRNAs) similar to the small interfering RNAs, the hallmarks of RNA silencing. These results strongly support that viroids are elicitors and targets of the RNA silencing machinery of their hosts. Low-scale sequencing, however, retrieves partial datasets and may lead to biased interpretations. To overcome this restraint we have examined by deep sequencing (Solexa-Illumina) and computational approaches the vd-sRNAs accumulating in GF-305 peach seedlings infected by two molecular variants of Peach latent mosaic viroid (PLMVd) inciting peach calico (albinism) and peach mosaic. Our results show in both samples multiple PLMVd-sRNAs, with prevalent 21-nt (+) and (-) RNAs presenting a biased distribution of their 5' nucleotide, and adopting a hotspot profile along the genomic (+) and (-) RNAs. Dicer-like 4 and 2 (DCL4 and DCL2, respectively), which act hierarchically in antiviral defense, likely also mediate the genesis of the 21- and 22-nt PLMVd-sRNAs. More specifically, because PLMVd replicates in plastids wherein RNA silencing has not been reported, DCL4 and DCL2 should dice the PLMVd genomic RNAs during their cytoplasmic movement or the PLMVd-dsRNAs generated by a cytoplasmic RNA-dependent RNA polymerase (RDR), like RDR6, acting in concert with DCL4 processing. Furthermore, given that vd-sRNAs derived from the 12-14-nt insertion containing the pathogenicity determinant of peach calico are underrepresented, it is unlikely that symptoms may result from the accidental targeting of host mRNAs by vd-sRNAs from this determinant guiding the RNA silencing machinery. PMID:19847296

  5. 32 CFR 1903.8 - Interfering with Agency functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Interfering with Agency functions. 1903.8 Section 1903.8 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.8 Interfering with Agency functions. The following are...

  6. 32 CFR 1903.8 - Interfering with Agency functions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Interfering with Agency functions. 1903.8 Section 1903.8 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.8 Interfering with Agency functions. The following are...

  7. 32 CFR 1903.8 - Interfering with Agency functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Interfering with Agency functions. 1903.8 Section 1903.8 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.8 Interfering with Agency functions. The following are...

  8. 32 CFR 1903.8 - Interfering with Agency functions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Interfering with Agency functions. 1903.8 Section 1903.8 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.8 Interfering with Agency functions. The following are...

  9. 32 CFR 1903.8 - Interfering with Agency functions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Interfering with Agency functions. 1903.8 Section 1903.8 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY CONDUCT ON AGENCY INSTALLATIONS § 1903.8 Interfering with Agency functions. The following are...

  10. 32 CFR 234.6 - Interfering with agency functions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Interfering with agency functions. 234.6 Section 234.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CONDUCT ON THE PENTAGON RESERVATION § 234.6 Interfering with agency functions. The following...

  11. 32 CFR 234.6 - Interfering with agency functions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Interfering with agency functions. 234.6 Section 234.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CONDUCT ON THE PENTAGON RESERVATION § 234.6 Interfering with agency functions. The following...

  12. 32 CFR 234.6 - Interfering with agency functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Interfering with agency functions. 234.6 Section 234.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CONDUCT ON THE PENTAGON RESERVATION § 234.6 Interfering with agency functions. The following...

  13. 32 CFR 234.6 - Interfering with agency functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Interfering with agency functions. 234.6 Section 234.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CONDUCT ON THE PENTAGON RESERVATION § 234.6 Interfering with agency functions. The following...

  14. 32 CFR 234.6 - Interfering with agency functions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Interfering with agency functions. 234.6 Section 234.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CONDUCT ON THE PENTAGON RESERVATION § 234.6 Interfering with agency functions. The following...

  15. Characterization of defective interfering RNAs associated with RNA plant viruses

    SciTech Connect

    Morris, T.J. . School of Biological Sciences); Jackson, A.O. . Dept. of Plant Pathology)

    1993-01-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since the original observation with TBSV, we discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), and many other reports have now appeared characterizing DI and DI-like RNAs in other plant viral infections. We are seeking to improve our understanding of the mechanisms of DI generation and the precise nature of the RNA sequences necessary for DI replication and encapsidation. We also want to address the nature of the DI mediated symptom attenuation and interference effects in plants, and to determine the feasibility of using transgenic plants constitutively expressing DI RNAs for disease control. The progress made on each of these objectives is summarized along with the proposed experiments for the continuation period.

  16. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication

    PubMed Central

    de la Torre, Beatriz G.; Valle, Javier; Andreu, David; Sobrino, Francisco

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target. PMID:26505190

  17. 47 CFR 73.185 - Computation of interfering signal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interfering station to be considered as pertinent to transmission by one reflection. To provide for variation... angle than the pertinent angle for one reflection, the method of calculating interference will not...

  18. 47 CFR 73.185 - Computation of interfering signal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... interfering station to be considered as pertinent to transmission by one reflection. To provide for variation... angle than the pertinent angle for one reflection, the method of calculating interference will not...

  19. 47 CFR 73.185 - Computation of interfering signal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... interfering station to be considered as pertinent to transmission by one reflection. To provide for variation... angle than the pertinent angle for one reflection, the method of calculating interference will not...

  20. 47 CFR 73.185 - Computation of interfering signal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... interfering station to be considered as pertinent to transmission by one reflection. To provide for variation... angle than the pertinent angle for one reflection, the method of calculating interference will not...

  1. 47 CFR 73.185 - Computation of interfering signal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... interfering station to be considered as pertinent to transmission by one reflection. To provide for variation... angle than the pertinent angle for one reflection, the method of calculating interference will not...

  2. 36 CFR 2.32 - Interfering with agency functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized to maintain order and control public access and movement during fire fighting operations, search... resources, or other activities where the control of public movement and activities is necessary to maintain... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Interfering with...

  3. 36 CFR 2.32 - Interfering with agency functions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authorized to maintain order and control public access and movement during fire fighting operations, search... resources, or other activities where the control of public movement and activities is necessary to maintain... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Interfering with...

  4. Spin O decay angular distribution for interfering mesons in electroproduction

    SciTech Connect

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  5. Incremental learning methods with retrieving of interfered patterns.

    PubMed

    Yamauchi, K; Yamaguchi, N; Ishii, N

    1999-01-01

    There are many cases that a neural-network-based system must memorize some new patterns incrementally. However, if the network learns the new patterns only by referring to them, it probably forgets old memorized patterns, since parameters in the network usually correlate not only to the old memories but also to the new patterns. A certain way to avoid the loss of memories is to learn the new patterns with all memorized patterns. It needs, however, a large computational power. To solve this problem, we propose incremental learning methods with retrieving interfered patterns (ILRI). In these methods, the system employs a modified version of a resource allocating network (RAN) which is one variation of a generalized radial basis function (GRBF). In ILRI, the RAN learns new patterns with a relearning of a few number of retrieved past patterns that are interfered with the incremental learning. In this paper, we construct ILRI in two steps. In the first step, we construct a system which searches the interfered patterns from past input patterns stored in a database. In the second step, we improve the first system in such a way that the system does not need the database. In this case, the system regenerates the input patterns approximately in a random manner. The simulation results show that these two systems have almost the same ability, and the generalization ability is higher than other similar systems using neural networks and k-nearest neighbors. PMID:18252636

  6. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae

    PubMed Central

    Zhang, Xin; Mysore, Keshava; Flannery, Ellen; Michel, Kristin; Severson, David W.; Zhu, Kun Yan

    2015-01-01

    SHORT ABSTRACT Here we describe a procedure for inhibiting gene function in disease vector mosquitoes through the use of chitosan/interfering RNA nanoparticles that are ingested by larvae. LONG ABSTRACT Vector mosquitoes inflict more human suffering than any other organism—and kill more than one million people each year. The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the primary African malaria vector Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti. RNA interference- (RNAi-) mediated gene silencing has been used to target genes of interest in both of these disease vector mosquito species. Here, we describe a procedure for preparation of chitosan/interfering RNA nanoparticles that are combined with food and ingested by larvae. This technically straightforward, high-throughput, and relatively inexpensive methodology, which is compatible with long double stranded RNA (dsRNA) or small interfering RNA (siRNA) molecules, has been used for the successful knockdown of a number of different genes in A. gambiae and A. aegypti larvae. Following larval feedings, knockdown, which is verified through qRT-PCR or in situ hybridization, can persist at least through the late pupal stage. This methodology may be applicable to a wide variety of mosquito and other insect species, including agricultural pests, as well as other non-model organisms. In addition to its utility in the research laboratory, in the future, chitosan, an inexpensive, non-toxic and biodegradable polymer, could potentially be utilized in the field. PMID:25867635

  7. Two-Pronged Approach to Overcome Spectroscopically Interfering Organic Compounds with Isotopic Water Analysis

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Hsiao, Gregor; Chapellet-Volpini, London; Vu, Danthu

    2013-04-01

    The ability to measure the stable isotopes of hydrogen (dD) and oxygen (d18O) has become much more accessible with the advent of Cavity Ring-Down Spectroscopy (CRDS) laser optical devices. These small and inexpensive analyzers have led to a significant increase in the acquisition of data from a variety of studies in the fields of groundwater, watershed, and other water source applications. However for some samples, such as those linked to fracking, mining, and other activities where higher than normal concentrations of organic materials are to be found, optical spectroscopy may require an adaptation from current methodologies in order to ensure data confidence. That is because CRDS is able to measure all the components within a spectral region - which will include the spectral characteristics of the isotopologues of water as well as the available features from interfering organic molecules. Although, at the first level, the information from the organic material provides spectral overlaps that can perturb the isotopic ratios, a more thorough review shows that these features are a source of information that will be inherently useful. This presentation will examine the approaches developed within the past year to allow for more accurate analyses of such samples by optical methods. The first approach uses an advanced spectroscopic model to flag the presence of organic material in the sample. Signals from known interfering compounds (i.e., alcohols, ketones, aldehydes, short-chain hydrocarbons, etc.) are incorporated into the overall fit of the measured spectra used to calculate the concentration of the individual isotopes. The second approach uses physical treatment of the sample to break down the organic molecules into non-interfering species. The vaporized liquid or solid sample travels through a cartridge packed with an oxidation catalyst. The interfering organic molecules will undergo high temperature oxidation using O2 present in the air carrier gas stream prior

  8. Hot Regions of Noninterfering Crossovers Coexist with a Nonuniformly Interfering Pathway in Arabidopsis thaliana

    PubMed Central

    Basu-Roy, Sayantani; Gauthier, Franck; Giraut, Laurène; Mézard, Christine; Falque, Matthieu; Martin, Olivier C.

    2013-01-01

    In most organisms that have been studied, crossovers formed during meiosis exhibit interference: nearby crossovers are rare. Here we provide an in-depth study of crossover interference in Arabidopsis thaliana, examining crossovers genome-wide in >1500 backcrosses for both male and female meiosis. This unique data set allows us to take a two-pathway modeling approach based on superposing a fraction p of noninterfering crossovers and a fraction (1 − p) of interfering crossovers generated using the gamma model characterized by its interference strength nu. Within this framework, we fit the two-pathway model to the data and compare crossover interference strength between chromosomes and then along chromosomes. We find that the interfering pathway has markedly higher interference strength nu in female than in male meiosis and also that male meiosis has a higher proportion p of noninterfering crossovers. Furthermore, we test for possible intrachromosomal variations of nu and p. Our conclusion is that there are clear differences between left and right arms as well as between central and peripheral regions. Finally, statistical tests unveil a genome-wide picture of small-scale heterogeneities, pointing to the existence of hot regions in the genome where crossovers form preferentially without interference. PMID:24026099

  9. Defective Interfering Particles of Poliovirus I. Isolation and Physical Properties

    PubMed Central

    Cole, Charles N.; Smoler, Donna; Wimmer, Eckard; Baltimore, David

    1971-01-01

    A class of defective interfering (DI) poliovirus particles has been identified. The first was found as a contaminant of a viral stock; others have been isolated by serial passage at a high multiplicity of infection. The DI particles are less dense than standard virus and sediment more slowly. Their ribonucleic acid (RNA) sediments more slowly than standard RNA and has a higher electrophoretic mobility. Competition hybridization experiments with double-stranded viral RNA indicate that DI RNA is 80 to 90% of the length of standard RNA. The proteins of DI particles are indistinguishable from those of standard poliovirus. PMID:4329564

  10. Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice.

    PubMed

    Li, Xiang; Shahid, Muhammad Qasim; Wu, Jinwen; Wang, Lan; Liu, Xiangdong; Lu, Yonggen

    2016-01-01

    MicroRNAs (miRNAs) play key roles in plant reproduction. However, knowledge on microRNAome analysis in autotetraploid rice is rather limited. Here, high-throughput sequencing technology was employed to analyze miRNAomes during pollen development in diploid and polyploid rice. A total of 172 differentially expressed miRNAs (DEM) were detected in autotetraploid rice compared to its diploid counterpart, and 57 miRNAs were specifically expressed in autotetraploid rice. Of the 172 DEM, 115 and 61 miRNAs exhibited up- and down-regulation, respectively. Gene Ontology analysis on the targets of up-regulated DEM showed that they were enriched in transport and membrane in pre-meiotic interphase, reproduction in meiosis, and nucleotide binding in single microspore stage. osa-miR5788 and osa-miR1432-5p_R+1 were up-regulated in meiosis and their targets revealed interaction with the meiosis-related genes, suggesting that they may involve in the genes regulation associated with the chromosome behavior. Abundant 24 nt siRNAs associated with transposable elements were found in autotetraploid rice during pollen development; however, they significantly declined in diploid rice, suggesting that 24 nt siRNAs may play a role in pollen development. These findings provide a foundation for understanding the effect of polyploidy on small RNA expression patterns during pollen development that cause pollen sterility in autotetraploid rice. PMID:27077850

  11. Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice

    PubMed Central

    Li, Xiang; Shahid, Muhammad Qasim; Wu, Jinwen; Wang, Lan; Liu, Xiangdong; Lu, Yonggen

    2016-01-01

    MicroRNAs (miRNAs) play key roles in plant reproduction. However, knowledge on microRNAome analysis in autotetraploid rice is rather limited. Here, high-throughput sequencing technology was employed to analyze miRNAomes during pollen development in diploid and polyploid rice. A total of 172 differentially expressed miRNAs (DEM) were detected in autotetraploid rice compared to its diploid counterpart, and 57 miRNAs were specifically expressed in autotetraploid rice. Of the 172 DEM, 115 and 61 miRNAs exhibited up- and down-regulation, respectively. Gene Ontology analysis on the targets of up-regulated DEM showed that they were enriched in transport and membrane in pre-meiotic interphase, reproduction in meiosis, and nucleotide binding in single microspore stage. osa-miR5788 and osa-miR1432-5p_R+1 were up-regulated in meiosis and their targets revealed interaction with the meiosis-related genes, suggesting that they may involve in the genes regulation associated with the chromosome behavior. Abundant 24 nt siRNAs associated with transposable elements were found in autotetraploid rice during pollen development; however, they significantly declined in diploid rice, suggesting that 24 nt siRNAs may play a role in pollen development. These findings provide a foundation for understanding the effect of polyploidy on small RNA expression patterns during pollen development that cause pollen sterility in autotetraploid rice. PMID:27077850

  12. β-sheet interfering molecules acting against β-amyloid aggregation and fibrillogenesis.

    PubMed

    Francioso, Antonio; Punzi, Pasqualina; Boffi, Alberto; Lori, Clorinda; Martire, Sara; Giordano, Cesare; D'Erme, Maria; Mosca, Luciana

    2015-04-15

    β-Sheet aggregates and amyloid fibrils rising from conformational changes of proteins are observed in several pathological human conditions. These structures are organized in β-strands that can reciprocally interact by hydrophobic and π-π interactions. The amyloid aggregates can give rise to pathological conditions through complex biochemical mechanisms whose physico-chemical nature has been understood in recent times. This review focuses on the various classes of natural and synthetic small molecules able to act against β-amyloid fibrillogenesis and toxicity that may represent new pharmacological tools in Alzheimer's diseases. Some peptides, named 'β-sheet breaker peptides', are able to hamper amyloid aggregation and fibrillogenesis by interfering with and destabilizing the non native β-sheet structures. Other natural compounds, like polyphenols or indolic molecules such as melatonin, can interfere with β-amyloid peptide pathogenicity by inhibiting aggregation and counteracting oxidative stress that is a key hallmark in Alzheimer's disease. PMID:25769517

  13. A self-interfering clock as a "which path" witness.

    PubMed

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. PMID:26249229

  14. Discrimination against interfering signals at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Several on line and off line data processing techniques are used to remove interfering signals due to ground clutter, aircraft, instrumental effects, and external transmissions from the desired atmospheric echoes of Mesosphere Stratosphere, Troposphere (MST) radar. The on line, real time techniques are necessarily simple in order to minimize processing delays. This algorithm examines the individual Doppler spectra which are computed every two to four seconds (for oblique antenna beams). The total spectral power in each individual spectrum is computed by summing all the spectral points. If this integrated power increases from one spectrum to the next by a factor greater than a preselected threshold, then that spectrum is not added to the spectral sum. Succeeding spectra are compared to the last acceptable spectrum. Only a certain maximum number of spectra are allowed to be rejected in succession.

  15. Adenovirus Virus-Associated RNA Is Processed to Functional Interfering RNAs Involved in Virus Production

    PubMed Central

    Aparicio, Oscar; Razquin, Nerea; Zaratiegui, Mikel; Narvaiza, Iñigo; Fortes, Puri

    2006-01-01

    Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression. PMID:16415015

  16. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome

    SciTech Connect

    Morris, T.J.; Jackson, A.O.

    1991-01-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  17. Short interfering RNA guide strand modifiers from computational screening.

    PubMed

    Onizuka, Kazumitsu; Harrison, Jason G; Ball-Jones, Alexi A; Ibarra-Soza, José M; Zheng, Yuxuan; Ly, Diana; Lam, Walter; Mac, Stephanie; Tantillo, Dean J; Beal, Peter A

    2013-11-13

    Short interfering RNAs (siRNAs) are promising drug candidates for a wide range of targets including those previously considered "undruggable". However, properties associated with the native RNA structure limit drug development, and chemical modifications are necessary. Here we describe the structure-guided discovery of functional modifications for the guide strand 5'-end using computational screening with the high-resolution structure of human Ago2, the key nuclease on the RNA interference pathway. Our results indicate the guide strand 5'-end nucleotide need not engage in Watson-Crick (W/C) H-bonding but must fit the general shape of the 5'-end binding site in MID/PIWI domains of hAgo2 for efficient knockdown. 1,2,3-Triazol-4-yl bases formed from the CuAAC reaction of azides and 1-ethynylribose, which is readily incorporated into RNA via the phosphoramidite, perform well at the guide strand 5'-end. In contrast, purine derivatives with modified Hoogsteen faces or N2 substituents are poor choices for 5'-end modifications. Finally, we identified a 1,2,3-triazol-4-yl base incapable of W/C H-bonding that performs well at guide strand position 12, where base pairing to target was expected to be important. This work expands the repertoire of functional nucleotide analogues for siRNAs. PMID:24152142

  18. Short Interfering RNA Guide Strand Modifiers from Computational Screening

    PubMed Central

    Onizuka, Kazumitsu; Harrison, Jason G.; Ball-Jones, Alexi A.; Ibarra-Soza, José M.; Zheng, Yuxuan; Ly, Diana; Lam, Walter; Mac, Stephanie; Tantillo, Dean J.; Beal, Peter A.

    2013-01-01

    Short interfering RNAs (siRNAs) are promising drug candidates for a wide range of targets including those previously considered “undruggable”. However, properties associated with the native RNA structure limit drug development and chemical modifications are necessary. Here we describe the structure-guided discovery of functional modifications for the guide strand 5’ end using computational screening with the high resolution structure of human Ago2, the key nuclease on the RNA interference pathway. Our results indicate the guide strand 5’-end nucleotide need not engage in Watson-Crick (W/C) H-bonding but must fit the general shape of the 5’-end binding site in MID/PIWI domains of hAgo2 for efficient knockdown. 1,2,3-Triazol-4-yl bases formed from the CuAAC reaction of azides and 1-ethynylribose, which is readily incorporated into RNA via the phosphoramidite, perform well at the guide strand 5’-end. In contrast, purine derivatives with modified Hoogsteen faces or N2 substituents are poor choices for 5’-end modifications. Finally, we identified a 1,2,3-triazol-4-yl base incapable of W/C H-bonding that performs well at guide strand position 12, where base pairing to target was expected to be important. This work expands the repertoire of functional nucleotide analogs for siRNAs. PMID:24152142

  19. Effective Small Interfering RNA Therapy to Treat CLCN7-dependent Autosomal Dominant Osteopetrosis Type 2

    PubMed Central

    Capulli, Mattia; Maurizi, Antonio; Ventura, Luca; Rucci, Nadia; Teti, Anna

    2015-01-01

    In about 70% of patients affected by autosomal dominant osteopetrosis type 2 (ADO2), osteoclast activity is reduced by heterozygous mutations of the CLCN7 gene, encoding the ClC-7 chloride/hydrogen antiporter. CLCN7G215R-, CLCN7R767W-, and CLCN7R286W-specific siRNAs silenced transfected mutant mRNA/EGFP in HEK293 cells, in RAW264.7 cells and in human osteoclasts, with no change of CLCN7WT mRNA and no effect of scrambled siRNA on the mutant transcripts. Osteoclasts from Clcn7G213R ADO2 mice showed reduced bone resorption, a condition rescued by Clcn7G213R-specific siRNA. Treatment of ADO2 mice with Clcn7G213R-specific siRNA induced increase of bone resorption variables and decrease of trabecular bone mass, leading to an overall improvement of the osteopetrotic bone phenotype. Treatment did not induce overt adverse effects and was effective also with siRNAs specific for other mutants. These results demonstrate that a siRNA-based experimental treatment of ADO2 is feasible, and underscore a translational impact for future strategy to cure this therapeutically neglected form of osteopetrosis. PMID:26325626

  20. Small Interfering RNA Targeted to ASPP2 Promotes Progression of Experimental Proliferative Vitreoretinopathy

    PubMed Central

    Bai, Yu-Jing; Huang, Lv-Zhen; Li, Xiao-Xin

    2016-01-01

    Background. Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) is vital in proliferative vitreoretinopathy (PVR) development. Apoptosis-stimulating proteins of p53 (ASPP2) have recently been reported to participate in EMT. However, the role of ASPP2 in PVR pathogenesis has not been identified. Methods. Immunohistochemistry was used to investigate the expression of ASPP2 in epiretinal membranes of PVR patients. ARPE-19 cells were transfected with ASPP2-siRNA, followed with measurement of cell cytotoxicity, proliferation, and migration ability. EMT markers and related inflammatory and fibrosis cytokines were measured by western blot or flow cytometry. Additionally, PVR rat models were induced by intravitreal injection of ARPE-19 cells transfected with ASPP2-siRNA and evaluated accordingly. Results. Immunofluorescence analysis revealed less intense expression of ASPP2 in PVR membranes. ASPP2 knockdown facilitated the proliferation and migration of RPE cells and enhanced the expression of mesenchymal markers such as alpha smooth muscle actin, fibronectin, and ZEB1. Meanwhile, ASPP2-siRNA increased EMT-related and inflammatory cytokines, including TGF-β, CTGF, VEGF, TNF-α, and interleukins. PVR severities were more pronounced in the rat models with ASPP2-siRNA treatment. Conclusions. ASPP2 knockdown promoted EMT of ARPE-19 cells in vitro and exacerbated the progression of experimental PVR in vivo, possibly via inflammatory and fibrosis cytokines. PMID:27378826

  1. A small interfering RNA targeting Lnk accelerates bone fracture healing with early neovascularization.

    PubMed

    Kawakami, Yohei; Ii, Masaaki; Matsumoto, Tomoyuki; Kawamoto, Atsuhiko; Kuroda, Ryosuke; Akimaru, Hiroshi; Mifune, Yutaka; Shoji, Taro; Fukui, Tomoaki; Asahi, Michio; Kurosaka, Masahiro; Asahara, Takayuki

    2013-09-01

    Lnk, an intracellular adapter protein, is expressed in hematopoietic cell lineages, which has recently been proved as an essential inhibitory signaling molecule for stem cell self-renewal in the stem cell factor-c-Kit signaling pathway with enhanced hematopoietic and osteogenic reconstitution in Lnk-deficient mice. Moreover, the therapeutic potential of hematopoietic stem/endothelial progenitor cells (EPCs) for fracture healing has been demonstrated with mechanistic insight into vasculogenesis/angiogenesis and osteogenesis enhancement in the fracture sites. We report here, Lnk siRNA-transfected endothelial commitment of c-kit+/Sca-1+/lineage- subpopulations of bone marrow cells have high EPC colony-forming capacity exhibiting endothelial markers, VE-Cad, VEGF and Ang-1. Lnk siRNA-transfected osteoblasts also show highly osteoblastic capacity. In vivo, locally transfected Lnk siRNA could successfully downregulate the expression of Lnk at the fracture site up to 1 week, and radiological and histological examination showed extremely accelerated fracture healing in Lnk siRNA-transfected mice. Moreover, Lnk siRNA-transfected mice exhibited sufficient therapeutic outcomes with intrinstic enhancement of angiogenesis and osteogenesis, specifically, the mice demonstrated better blood flow recovery in the sites of fracture. In our series of experiments, we clarified that a negatively regulated Lnk system contributed to a favorable circumstance for fracture healing by enhancing vasculogenesis/angiogenesis and osteogenesis. These findings suggest that downregulation of Lnk system may have the clinical potential for faster fracture healing, which contributes to the reduction of delayed unions or non-unions. PMID:23897412

  2. Non-Viral Nanoparticle Delivers Small Interfering RNA to Macrophages In Vitro and In Vivo

    PubMed Central

    Zhang, Mei; Gao, Yunxiang; Caja, Kevin; Zhao, Bocheng; Kim, Julian A.

    2015-01-01

    Macrophages are increasingly being viewed as therapeutic target for various cancers and many inflammatory diseases. Sequence specific gene reduction by siRNA represents an attractive approach to modulate macrophage function. However, delivery of the therapeutic siRNA into macrophages by non-viral nanoparticles has been a major technical challenge. In this study, we developed a glucan-based siRNA carrier system (BG34-10-Re-I) and demonstrated that the BG34-10-Re-I can effectively assemble siRNA into uniformly distributed nanoparticles of the novel core-shell structure. The BG34-10-Re-I/siRNA nanoparticles effectively reduced gene expression of macrophage migration inhibitory factor (MIF) in primary macrophages at both protein and mRNA level. The nanoparticles also mediated a sustained reduction of MIF within primary macrophages. Moreover, systemic injection of the nanoparticles into the Balb/c mice bearing 4T1 mammary tumors resulted in the MIF reduction in tumor-associated macrophages. Mechanistic studies demonstrated that the glucan-shell and the siRNA-core structure contribute to the effective delivery of MIF siRNA to macrophages both in vitro and in vivo. This study represents the first development of the primary macrophage MIF gene targeted non-viral nanoparticle system for both in vitro and in vivo applications. PMID:25799489

  3. Efficient delivery of small interfering RNA into injured spinal cords in rats by photomechanical waves

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-03-01

    In the central nervous system, lack of axonal regeneration leads to permanent functional disabilities. In spinal cord injury (SCI), the over-expressions of intermediate filament (IF) proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are mainly involved in glial scar formation; these proteins work as both physical and biochemical barriers to axonal regeneration. Thus, silencing of these IF proteins would be an attractive strategy to treat SCI. In this study, we first attempted to deliver fluorescent probe-labeled siRNAs into injured spinal cords in rats by applying photomechanical waves (PMWs) to examine the capability of PMWs as a tool for siRNA delivery. Intense fluorescence from siRNAs was observed in much broader regions in the spinal cords with PMW application when compared with those with siRNA injection alone. Based on this result, we delivered siRNAs for GFAP and vimentin into injured spinal tissues in rats by applying PMWs. The treatment resulted in efficient silencing of the proteins at five days after SCI and a decrease of the cavity area in the injured tissue at three weeks after SCI when compared with those with siRNA injection alone. These results demonstrate the capability of PMWs for efficient delivery of siRNAs into injured spinal cords and treatment of SCIs.

  4. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics.

    PubMed

    Lee, Soo Hyeon; Kang, Yoon Young; Jang, Hyo-Eun; Mok, Hyejung

    2016-09-01

    Recent promising clinical results of RNA therapeutics have drawn big attention of academia and industries to RNA therapeutics and their carrier systems. To improve their feasibility in clinics, systemic evaluations of currently available carrier systems under clinical trials and preclinical studies are needed. In this review, we focus on recent noticeable preclinical studies and clinical results regarding siRNA-based conjugates for clinical translations. Advantages and drawbacks of siRNA-based conjugates are discussed, compared to particle-based delivery systems. Then, representative siRNA-based conjugates with aptamers, peptides, carbohydrates, lipids, polymers, and nanostructured materials are introduced. To improve feasibility of siRNA conjugates in preclinical studies, several considerations for the rational design of siRNA conjugates in terms of cleavability, immune responses, multivalent conjugations, and mechanism of action are also presented. Lastly, we discuss lessons from previous preclinical and clinical studies related to siRNA conjugates and perspectives of their clinical applications. PMID:26514375

  5. Ribo-gnome: the big world of small RNAs.

    PubMed

    Zamore, Phillip D; Haley, Benjamin

    2005-09-01

    Small RNA guides--microRNAs, small interfering RNAs, and repeat-associated small interfering RNAs, 21 to 30 nucleotides in length--shape diverse cellular pathways, from chromosome architecture to stem cell maintenance. Fifteen years after the discovery of RNA silencing, we are only just beginning to understand the depth and complexity of how these RNAs regulate gene expression and to consider their role in shaping the evolutionary history of higher eukaryotes. PMID:16141061

  6. Failure of the Tomato Trans-Acting Short Interfering RNA Program to Regulate AUXIN RESPONSE FACTOR3 and ARF4 Underlies the Wiry Leaf Syndrome[C][W

    PubMed Central

    Yifhar, Tamar; Pekker, Irena; Peled, Dror; Friedlander, Gilgi; Pistunov, Anna; Sabban, Moti; Wachsman, Guy; Alvarez, John Paul; Amsellem, Ziva; Eshed, Yuval

    2012-01-01

    Interfering with small RNA production is a common strategy of plant viruses. A unique class of small RNAs that require microRNA and short interfering (siRNA) biogenesis for their production is termed trans-acting short interfering RNAs (ta-siRNAs). Tomato (Solanum lycopersicum) wiry mutants represent a class of phenotype that mimics viral infection symptoms, including shoestring leaves that lack leaf blade expansion. Here, we show that four WIRY genes are involved in siRNA biogenesis, and in their corresponding mutants, levels of ta-siRNAs that regulate AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 are reduced, while levels of their target ARFs are elevated. Reducing activity of both ARF3 and ARF4 can rescue the wiry leaf lamina, and increased activity of either can phenocopy wiry leaves. Thus, a failure to negatively regulate these ARFs underlies tomato shoestring leaves. Overexpression of these ARFs in Arabidopsis thaliana, tobacco (Nicotiana tabacum), and potato (Solanum tuberosum) failed to produce wiry leaves, suggesting that the dramatic response in tomato is exceptional. As negative regulation of orthologs of these ARFs by ta-siRNA is common to land plants, we propose that ta-siRNA levels serve as universal sensors for interference with small RNA biogenesis, and changes in their levels direct species-specific responses. PMID:23001036

  7. Sequential Development of Interfering Metamorphic Core Complexes: Numerical Experiments and Comparison to the Cyclades, Greece

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Gautier, P.; van Hinsbergen, D.; Wortel, R.

    2007-12-01

    The Cycladic extensional province (Greece) contains classical examples of metamorphic core complexes (MCCs), where exhumation was accommodated along multiple interfering and/or sequentially developed syn- and antithetic extensional detachment zones. Previous studies on the development of MCCs did not take into account the possible interference between multiple and closely spaced MCCs. In the present study, we have performed new lithosphere-scale experiments in which the deformation is not a priori localized so as to explore the conditions of the development of several MCCs in a direction parallel to extension. In a narrow range of conditions, MCCs are closely spaced, interfere with each other, and develop in sequence. From a comparison between numerical results and geological observations, we find that the Cyclades metamorphic core complexes are in good agreement with the model in terms of Moho geometry and depth, kinematic and structural history, timing and duration of core complex formation and metamorphic history. We infer that, for Cycladic MCC-type to develop, an initial crustal thickness prior to the onset of post-orogenic extension between 40 and 44 km, a boundary velocity close to 2 cm/yr and an initial thermal lithospheric thickness of about 60 km are required. The latter may be explained by a significant heating due to delamination of subducting continental crust or vigorous small-scale thermal convection.

  8. On the Degrees of Freedom of Interference Alignment for Multicell MIMO Interfering Broadcast Channels

    PubMed Central

    2014-01-01

    The interference alignment (IA) is a promising technique to efficiently mitigate interference and to enhance capacity of a wireless network. This paper proposes an interference alignment scheme for a cellular network with L cells and K users under a multiple-input multiple-output (MIMO) Gaussian interfering broadcast channel (IFBC) scenario. The proposed IA scheme aligns intercell interferences (ICI) into a small dimensional subspace through a cooperative receive beamforming and cancels both the ICI and interuser interferences (IUI) simultaneously through a transmit beamforming. We characterize the feasibility condition for the proposed IA to achieve a total number of degrees of freedom (DoF) of LK in terms of the numbers of transmit antennas and receive antennas. Then we derive the maximum number of DoF achieved by the proposed IA by finding an optimal dimension of ICI alignment subspace for a given antenna configuration. The numerical results show that the proposed IA scheme has a better DoF performance than the conventional schemes. PMID:24683362

  9. Characterization of defective interfering RNAs associated with RNA plant viruses. Progress report

    SciTech Connect

    Morris, T.J.; Jackson, A.O.

    1993-04-01

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since the original observation with TBSV, we discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), and many other reports have now appeared characterizing DI and DI-like RNAs in other plant viral infections. We are seeking to improve our understanding of the mechanisms of DI generation and the precise nature of the RNA sequences necessary for DI replication and encapsidation. We also want to address the nature of the DI mediated symptom attenuation and interference effects in plants, and to determine the feasibility of using transgenic plants constitutively expressing DI RNAs for disease control. The progress made on each of these objectives is summarized along with the proposed experiments for the continuation period.

  10. Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector.

    PubMed

    Jiang, Jianfei; McDonald, Peter R; Dixon, Tracy M; Franicola, Darcy; Zhang, Xichen; Nie, Suhua; Epperly, Laura D; Huang, Zhentai; Kagan, Valerian E; Lazo, John S; Epperly, Michael W; Greenberger, Joel S

    2009-10-01

    To assist in screening existing drugs for use as potential radioprotectors, we used a human unbiased 16,560 short interfering RNA (siRNA) library targeting the druggable genome. We performed a synthetic protection screen that was designed to identify genes that, when silenced, protected human glioblastoma T98G cells from gamma-radiation-induced cell death. We identified 116 candidate protective genes, then identified 10 small molecule inhibitors of 13 of these candidate gene products and tested their radioprotective effects. Glyburide, a clinically used second-generation hypoglycemic drug, effectively decreased radiation-induced cell death in several cell lines including T98G, glioblastoma U-87 MG, and normal lung epithelial BEAS-2B and in primary cultures of astrocytes. Glyburide significantly increased the survival of 32D cl3 murine hematopoietic progenitor cells when administrated before irradiation. Glyburide was radioprotective in vivo (90% of C57BL/6NHsd female mice pretreated with 10 mg/kg glyburide survived 9.5 Gy total-body irradiation compared to 42% of irradiated controls, P = 0.0249). These results demonstrate the power of unbiased siRNA synthetic protection screening with a druggable genome library to identify new radioprotectors. PMID:19772462

  11. Wide-Field Common-Path Incoherent Correlation Microscopy with a Perfect Overlapping of Interfering Beams

    NASA Astrophysics Data System (ADS)

    Bouchal, P.; Bouchal, Z.

    2013-01-01

    Incoherent correlation microscopy is recently discovered technique for digital imaging of three-dimensional objects in a quasimonochromatic spatially incoherent light. Its operation is based on wavefront division carried out by a spatial light modulator and capturing correlation recordings of the observed scene. To achieve image reconstruction, at least a partial overlapping of the signal and reference waves created by the spatial light modulator is necessary. In the known experimental configurations, the overlapping of interfering beams is strongly reduced in off-axis areas of the object and the image can be reconstructed only in a very small portion of the field of view provided by the used microscope objective lens. Here, we propose and successfully demonstrate modified experimental system working with two-component relay optics inserted between the microscope objective and the spatial light modulator and providing full overlapping of correlated beams in all areas of the field of view of the objective lens. The benefits and applicability of the proposed system design are clearly demonstrated on the imaging of the USAF resolution targets.

  12. Development and applications of supersonic unsteady consistent aerodynamics for interfering parallel wings

    NASA Technical Reports Server (NTRS)

    Appa, K.; Smith, G. C. C.

    1973-01-01

    The analytical development of unsteady supersonic aerodynamic influence coefficients for isolated and nearly parallel interfering coplanar and noncoplanar wings is described. Numerical formulations based on triangular discretizations of wings and diaphragms are handled in a kinematically consistent manner. Examples of isolated wing cases are compared with respect to aerodynamic influence coefficients and flutter boundaries. Aerodynamic influence coefficients for interfering wings are compared where corresponding results are available.

  13. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants

    PubMed Central

    Adkar-Purushothama, Charith Raj; Perreault, Jean-Pierre; Sano, Teruo

    2015-01-01

    In order to analyze the production of small RNA (sRNA) by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers) were inoculated with the variants of Potato spindle tuber viroid (PSTVd). After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+) and antigenomic (−) strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA) revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE69225. PMID:26697336

  14. Analysis of small RNA production patterns among the two potato spindle tuber viroid variants in tomato plants.

    PubMed

    Adkar-Purushothama, Charith Raj; Perreault, Jean-Pierre; Sano, Teruo

    2015-12-01

    In order to analyze the production of small RNA (sRNA) by viroids upon infecting the plants, the tomato plants (Solanum lycopersicum cultivar Rutgers) were inoculated with the variants of Potato spindle tuber viroid (PSTVd). After 21-days of postinoculation, total RNA was extracted and subjected for deep-sequencing using Illumina HiSeq platform. The primers were trimmed and only 21- to 24-nt long sRNAs were filtered after quality check of the raw data. The filtered sRNA population was then mapped against both the genomic (+) and antigenomic (-) strands of the respective PSTVd variants using standard pattern-matching algorithm. The profiling of viroid derived sRNA (vd-sRNA) revealed that the viroids are susceptible to host RNA silencing mechanism. High-throughput sequence data linked to this project have been deposited in the Gene Expression Omnibus (GEO) database under accession number GSE69225. PMID:26697336

  15. Fangchinoline Inhibits Human Immunodeficiency Virus Type 1 Replication by Interfering with gp160 Proteolytic Processing

    PubMed Central

    Wan, Zhitao; Lu, Yimei; Liao, Qingjiao; Wu, Yang; Chen, Xulin

    2012-01-01

    The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 enve1ope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach. PMID:22720080

  16. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing.

    PubMed

    Wan, Zhitao; Lu, Yimei; Liao, Qingjiao; Wu, Yang; Chen, Xulin

    2012-01-01

    The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 envelope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach. PMID:22720080

  17. [Discrimination of spectral patterns of sound signals in conditions of interfering noise].

    PubMed

    Supin, A Ia

    2007-06-01

    The method of probes with rippled spectra makes possible to measure the frequency resolving power (FRP) of human hearing using no frequency-selective masking techniques. This allows studying the influence of interfering noises on the FRP. In conditions of diotic presentation (parallel to both ears), FRP markedly decreases on- or low-frequency noise markedly decreases FRP. The dependence of this effect on sound intensity and noise-to-probe ratio is different for the on- and low-frequence noise, which indicates different mechanisms of action of these two kinds of interfering noise. However, in both cases, a loud enough interfering noise results in complete inability to discriminate the fine spectral pattern of the probe. On the contrary, in conditions of dichotic presentation (the probe to one ear and the noise to the other), the interfering noise does not influence FRP noticeably within a wide range of frequency relations of the probe and noise and noise-to-probe level ratios. Thus, almost entire dichotic release of influence of interfering noise on FRP takes place. This feature can be used for designing bearing aids. PMID:17850017

  18. Deficiencies or Excesses of Metabolites Interfering with Differentiation

    PubMed Central

    Freese, Ernst; Ichikawa, Tomio; Oh, Yong K.; Freese, Elisabeth B.; Prasad, Chandan

    1974-01-01

    Auxotrophic mutants of Bacillus subtilis need much higher concentrations of the required adenine, nicotinic acid, riboflavin, thiamine, or tryptophan for optimal sporulation than for maximal growth. Acetate can partially replace thiamine, indicating the importance of the pyruvate dehydrogenase system for differentiation. A glycerol-requiring mutant can sporulate only if its cells contain a small concentration of L-α-glycerol phosphate during development. This can best be achieved by excess (≥5 mM) of extracellular α-glycerol phosphate, which enters B. subtilis very slowly. The results show that both biosynthetic and catabolic enzymes are often needed to maintain the precise balance of metabolites required for differentiation. Mutants unable to catabolize fructose 6-phosphate, glucose 6-phosphate, or α-glycerol phosphate do not sporulate as long as these compounds accumulate inside the cells; their development is blocked before prespore septa have formed. PMID:4215077

  19. Adaptive Arrays for Weak Interfering Signals: An Experimental System. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ward, James

    1987-01-01

    An experimental adaptive antenna system was implemented to study the performance of adaptive arrays in the presence of weak interfering signals. It is a sidelobe canceler with two auxiliary elements. Modified feedback loops, which decorrelate the noise components of the two inputs to the loop correlators, control the array weights. Digital processing is used for algorithm implementation and performance evaluation. The results show that the system can suppress interfering signals which are 0 to 10 dB below the thermal noise level in the main channel by 20 to 30 dB. When the desired signal is strong in the auxiliary elements the amount of interference suppression decreases. The amount of degradation depends on the number of interfering signals incident on the communication system. A modified steering vector which overcomes this problem is proposed.

  20. The effect of pre-pulse on the gratings coded by two interfered femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Han, Yanhua; Fan, Guanghua; Qu, Shiliang

    2016-07-01

    The effect of pre-pulse on the gratings coded with two interfered femtosecond pulses is studied on silica glass. The results show that the modulation depth of the gratings is deeper than that in absence of pre-pulse, and decreases with increased arrival time of pre-pulse. For the arrival time within 120-200 fs, the free electrons produced by pre-pulse can act as seed electrons for the subsequent interfered pulses to multiply, thus deepening the depth of the gratings. With the arrival time beyond 200 fs, the self-trapped excitons can provide seed electrons for the subsequent pulse multiplying, thus deepening the gratings.

  1. Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses

    PubMed Central

    Xu, Qiu-Fang; Cheng, Wei-Shun; Zhang, Zhi-Xin; Xu, You-Ping; Zhou, Xue-Ping; Cai, Xin-Zhong

    2012-01-01

    Identification of hypersensitive cell death (HCD) regulators is essential to dissect the molecular mechanisms underlying plant disease resistance. In this study, combined proteomic and RNA interfering (RNAi) analyses were employed to identify genes required for the HCD conferred by the tomato resistance gene Cf-4 and the Cladosporium fulvum avirulence gene Avr4. Forty-nine proteins differentially expressed in the tomato seedlings mounting and those not mounting Cf-4/Avr4-dependent HCD were identified through proteomic analysis. Among them were a variety of defence-related proteins including a cysteine protease, Pip1, an operative target of another C. fulvum effector, Avr2. Additionally, glutathione-mediated antioxidation is a major response to Cf-4/Avr4-dependent HCD. Functional analysis through tobacco rattle virus-induced gene silencing and transient RNAi assays of the chosen 16 differentially expressed proteins revealed that seven genes, which encode Pip1 homologue NbPip1, a SIPK type MAP kinase Nbf4, an asparagine synthetase NbAsn, a trypsin inhibitor LeMir-like protein NbMir, a small GTP-binding protein, a late embryogenesis-like protein, and an ASR4-like protein, were required for Cf-4/Avr4-dependent HCD. Furthermore, the former four genes were essential for Cf-9/Avr9-dependent HCD; NbPip1, NbAsn, and NbMir, but not Nbf4, affected a nonadaptive bacterial pathogen Xanthomonas oryzae pv. oryzae-induced HCD in Nicotiana benthamiana. These data demonstrate that Pip1 and LeMir may play a general role in HCD and plant immunity and that the application of combined proteomic and RNA interfering analyses is an efficient strategy to identify genes required for HCD, disease resistance, and probably other biological processes in plants. PMID:22275387

  2. Characterization of a defective interfering RNA that contains a mosaic of a plant viral genome. Final report

    SciTech Connect

    Morris, T.J.; Jackson, A.O.

    1991-12-31

    Our lab was the first to describe and characterize a defective interfering RNA (DI RNAs or DIs) in association with a small RNA plant virus. The features of the DIs that we discovered in infections of tomato bushy stunt virus were compatible with the properties of DIs identified in many animal virus infections. Animal virologists have generally recognized the importance of studying DIs because they are invaluable tools for identifying cis-acting sequences important in virus multiplication and because they offer the opportunity to elucidate mechanisms involved in viral persistence and disease attenuation. Hence our discovery offered a comparably valuable tool for use in plant virus studies for the first time. Since then, we have also discovered the second example of plant viral DI RNAs associated with turnip crinkle virus (TCV), a virus structurally related to TBSV. We proposed a thorough characterization of this unique class of symptom modulating RNAs with the overall objective of identifying viral RNA nucleotide, sequences involved in such fundamental processes as virus replication and encapsidation as well as the degree of symptom expression resulting from the viral-DI-host interaction. The proposed research focused on the molecular characterization of the DI RNAs and the helper virus. We had demonstrated that the DIs were collinear deletion mutants of the genome of a cherry strain of tomato bushy stunt virus (TBSV). We had also shown that these low molecular weight RNAs interfered with the helper plant virus and modulated disease expression by preventing the development of a lethal necrotic disease in susceptible host plants. We also suggested that by exploring the mechanisms associated with the symptom attenuation effect, we might be able to devise novel strategies useful for engineering viral disease resistance.

  3. Temperature Measurement of a Miniature Ceramic Heater in the Presence of an Extended Interfering Background Radiation Source Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry applications in an environment with an interfering radiation source of extended dimension adds extra complexity to the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter (mm) size ceramic heater under these demanding conditions.

  4. Validation of Learning Effort Algorithm for Real-Time Non-Interfering Based Diagnostic Technique

    ERIC Educational Resources Information Center

    Hsu, Pi-Shan; Chang, Te-Jeng

    2011-01-01

    The objective of this research is to validate the algorithm of learning effort which is an indicator of a new real-time and non-interfering based diagnostic technique. IC3 Mentor, the adaptive e-learning platform fulfilling the requirements of intelligent tutor system, was applied to 165 university students. The learning records of the subjects…

  5. Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs.

    PubMed

    Chiumenti, M; Torchetti, E M; Di Serio, F; Minafra, A

    2014-08-01

    Viroids are small (246-401 nt) circular and non coding RNAs infecting higher plants. They are targeted by host Dicer-like enzymes (DCLs) that generate small RNAs of 21-24 nt (sRNAs), which are involved in the host RNA silencing pathways. The accumulation in plant tissues of such viroid-derived small RNAs (vd-sRNAs) is a clear sign of an ongoing viroid infection. In this study, next generation sequencing of a sRNAs library and assembling of the sequenced vd-sRNAs were instrumental for the identification of a viroid resembling apple dimple fruit viroid (ADFVd) in a fig accession. After confirming by molecular methods the presence of this viroid in the fig tree, its population was characterized, showing that the ADFVd master sequence from fig diverges from that of the ADFVd reference variant from apple. Moreover, since this viroid accumulates at a low level in fig, a semi-nested RT-PCR assay was developed for detecting it in other fig accessions. ADFVd seems to have a wider host range than thought before and this poses questions about its epidemiology. A further characterization of ADFVd-sRNAs showed similar accumulation of (+) or (-) vd-sRNAs that mapped on the viroid genome generating hotspot profiles. Moreover, similarly to other nuclear-replicating viroids, vd-sRNAs of 21, 22 and 24 nt in size prevailed in the distribution profiles. Altogether, these data support the involvement of double-stranded RNAs and different DCLs, targeting the same restricted viroid regions, in the genesis of ADFVd-sRNAs. PMID:24704673

  6. In vitro transcription activities of Pol IV, Pol V and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing

    SciTech Connect

    Haag, Jeremy R.; Ream, Thomas S.; Marasco, Michelle; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2012-12-14

    In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases, Pol IV and Pol V and the putative RNA-dependent RNA polymerase, RDR2. Here, we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to alpha-amanitin and differ in their ability to displace non-template DNA during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs) requires both Pol IV and RDR2, which physically associate in vivo. Pol IV does not require RDR2 for activity, but RDR2 is nonfunctional in the absence of associated Pol IV, suggesting that their coupling explains the channeling of Pol IV transcripts into double-stranded RNAs that are then diced into 24 nt siRNAs.

  7. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  8. Development and applications of supersonic unsteady consistent aerodynamics for interfering parallel wings: User's manual

    NASA Technical Reports Server (NTRS)

    Paine, A. A.

    1972-01-01

    The input data required to execute the computer program AIC/INT (aerodynamic influence coefficients with interference) are presented. The purpose of the computer program is to generate aerodynamic forces for a pair of plane and interfering nearly parallel, non-coplanar wings at supersonic Mach numbers. A finite element technique has been employed. Planforms are described by triangular elements and diaphragm regions are generated automatically.

  9. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  10. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling.

    PubMed

    Witsø, Ingun Lund; Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  11. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  12. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    NASA Astrophysics Data System (ADS)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  13. Big Impacts by Small RNAs in Plant Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The identification and study of small RNAs, including microRNAs and trans-acting small interfering RNAs, have added a layer of complexity to the many pathways that regulate plant development. These molecules, which function as negative regulators of gene expression, are now known to have greatly exp...

  14. Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector.

    PubMed

    Singh, Niraj K; Meshram, Chetan D; Sonwane, Arvind A; Dahiya, Shyam S; Pawar, Sachin S; Chaturvedi, V K; Saini, Mohini; Singh, R P; Gupta, Praveen K

    2014-02-01

    The antiviral potential of small interfering RNAs (siRNAs) targeting rabies virus (RV) polymerase (L) and nucleoprotein (N) genes delivered through lentiviral vector was investigated. For in vitro evaluation, siRNAs expressing BHK-21 cell lines (BHK-L and BHK-N) were developed using transduction with Lenti-L and Lenti-N lentiviruses encoding siRNAs against RV-L and N genes, respectively. When these cell lines were challenged in vitro with RV Pasteur virus-11 (PV-11) strain, there was reduction in number of RV-specific foci and target gene transcripts indicating inhibitory effect on RV multiplication. For in vivo evaluation, mice were treated intracerebrally with lentiviruses and challenged with 20 LD50 of RV challenge virus standard-11 (CVS-11) strain by intramuscular route in masseter muscle. Five out of eight mice treated with Lenti-N survived indicating 62.5 % protection. The control and Lenti-L-treated mice died within 7-10 days indicating lethal nature of challenge virus and no protection. These results demonstrated that siRNA targeting RV-N could not only inhibit RV multiplication, but also conferred protection in mice against lethal RV challenge. These findings have implication on therapeutic use of siRNA targeting RV-N against RV infection. PMID:23877894

  15. Roles of Interfering Radiation Emitted from Decaying Pulses Obeying Soliton Equations Belonging to the Ablowitz-Kaup-Newell-Segur Systems

    NASA Astrophysics Data System (ADS)

    Fujishima, Hironobu; Yajima, Tetsu

    2015-06-01

    The nonlinear Schrödinger (NLS) equation under the box-type initial condition, which models general multiple pulses deviating from pure solitons, is analyzed. Following the approximation by splitting the initial pulse into many small bins [G. Boffetta and A. R. Osborne, J. Comp. Phys. 102, 252 (1992)], we can analyze the Zakharov-Shabat eigenvalue problem to construct transfer matrices connecting the Jost functions in each interval without direct numerical computation. We can obtain analytical expressions for the scattering data that describe interfering radiation emitted from initial pulses. The number of solitons that appear in the final stage is predicted theoretically, and the condition generating an unusual wave such as a double-pole soliton is derived. Numerical analyses under box-type initial conditions are also performed to show that the interplay between the tails from decaying pulses can affect the asymptotic profile.

  16. Nuclear-translocated endostatin downregulates hypoxia inducible factor-1α activation through interfering with Zn(II) homeostasis.

    PubMed

    Guo, Lifang; Chen, Yang; He, Ting; Qi, Feifei; Liu, Guanghua; Fu, Yan; Rao, Chunming; Wang, Junzhi; Luo, Yongzhang

    2015-05-01

    Hypoxia‑inducible factor‑1α (HIF‑1α) is key in tumor progression and aggressiveness as it regulates a series of genes involved in angiogenesis and anaerobic metabolism. Previous studies have shown that the transcriptional levels of HIF‑1α may be downregulated by endostatin. However, the molecular mechanism by which endostatin represses HIF‑1α expression remains unknown. The current study investigated the mechanism by which nuclear‑translocated endostatin suppresses HIF‑1α activation by disrupting Zn(II) homeostasis. Endostatin was observed to downregulate HIF‑1α expression at mRNA and protein levels. Blockage of endostatin nuclear translocation by RNA interference of importin α1/β1 or ectopic expression of NLS‑deficient mutant nucleolin in human umbilical vein endothelial cells co‑transfected with small interfering (si)‑nucleolin siRNA compromises endostatin‑reduced HIF‑1α expression. Nuclear‑translocated apo‑endostatin, but not holo‑endostatin, significantly disrupts the interaction between CBP/p300 and HIF‑1α by disturbing Zn(II) homeostasis, which leads to the transcriptional inactivation of HIF‑1α. The results reveal mechanistic insights into the method by which nuclear‑translocated endostatin downregulates HIF‑1α activation and provides a novel way to investigate the function of endostatin in endothelial cells. PMID:25607980

  17. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects

    PubMed Central

    Shang, Renfu; Zhang, Fengjuan; Xu, Beiying; Xi, Hairui; Zhang, Xue; Wang, Weihua; Wu, Ligang

    2015-01-01

    Short-hairpin RNAs (shRNAs) are widely used to produce small-interfering RNAs (siRNAs) for gene silencing. Here we design an alternative siRNA precursor, named single-stranded, Argonaute 2 (Ago2)-processed interfering RNA (saiRNA), containing a 16–18 bp stem and a loop complementary to the target transcript. The introduction of a self-cleaving ribozyme derived from hepatitis delta virus to the 3′ end of the transcribed saiRNA dramatically improves its silencing activity by generating a short 3′ overhang that facilitates the efficient binding of saiRNA to Ago2. The same ribozyme also enhances the activity of Dicer-dependent shRNAs. Unlike a classical shRNA, the strand-specific cleavage of saiRNA by Ago2 during processing eliminates the passenger strand and prevents the association of siRNA with non-nucleolytic Ago proteins. As a result, off-target effects are reduced. In addition, saiRNA exhibits less competition with the biogenesis of endogenous miRNAs. Therefore, ribozyme-enhanced saiRNA provides a reliable tool for RNA interference applications. PMID:26455506

  18. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources

    SciTech Connect

    Yang Jian; Zhang Han; Peng Chengzhi; Chen Zengbing; Bao Xiaohui; Chen Shuai; Pan Jianwei

    2009-10-15

    In this paper, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high-demanding synchronization techniques in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multiphoton source will have applications in some advanced quantum communication protocols and linear optical quantum computation.

  19. Polymer-stabilized blue-phase liquid crystal grating cured with interfered visible light.

    PubMed

    Yuan, Yachao; Li, Yan; Chen, Chao Ping; Liu, Shuxin; Rong, Na; Li, Weihuan; Li, Xiao; Zhou, Pengcheng; Lu, Jiangang; Liu, Ruili; Su, Yikai

    2015-07-27

    In this paper, we demonstrate a holographic polymer-stabilized blue-phase liquid crystal grating fabricated using a visible laser. As blue phase is stabilized by the interfered light, polymer-concentration gradient is achieved simultaneously. With the application of a uniform vertical electric field, periodic index distribution is obtained due to polymer-concentration gradient. The grating exhibits several attractive features such as polarization-independency, a broad temperature range, sub-millisecond response, simple fabrication, and low cost, thus holding great potential for photonics applications. PMID:26367659

  20. Isolation of vesicular stomatitis virus defective interfering genomes with different amounts of 5'-terminal complementarity.

    PubMed Central

    Kolakofsky, D

    1982-01-01

    I isolated at least 30 different vesicular stomatitis virus defective interfering (DI) genomes, distinguished by chain length, by five independent undiluted passages of a repeatedly cloned virus plaque. Labeling of the 3' hydroxyl ends of these DI genomes and RNase digestion studies demonstrated that the ends of these DI genomes were terminally complementary to different extents (approximately 46 to 200 nucleotides). Mapping studies showed that the complementary ends of all of the DI genomes were derived from the 5' ends of the nondefective minus-strand genome. Regardless of the extent of terminal complementarity, all of the DI genomes synthesized the same 46-nucleotide minus-strand leader RNA. Images PMID:6281468

  1. R-matrix study of ionization in barium via two-photon interfering routes

    NASA Astrophysics Data System (ADS)

    Aymar, M.; Luc-Koenig, E.; Lecomte, J. M.; Millet, M.; Lyras, A.

    2000-02-01

    A quantitative analysis of part of the experimental data reported by Wang, Chen and Elliott [1,3] who studied in barium coherent control through two-color resonant interfering paths is reported. Dynamics of the two-color photoionization process, described as an adiabatic process in the rotating wave approximation, is governed by the coherent excitation of the 6s6p and 6s7p 1P1 intermediate states. Interference effects are found to play a minor role. The required atomic parameters are obtained from a theoretical approach based on a combination of jj-coupled eigenchannel R-matrix and Multichannel Quantum Defect Theory.

  2. Heterophilic antibodies interfering with radioimmunoassay. A false-positive pregnancy test

    SciTech Connect

    Vladutiu, A.O.; Sulewski, J.M.; Pudlak, K.A.; Stull, C.G.

    1982-11-19

    A young woman with amenorrhea had a consistently positive pregnancy test result (serum radioimmunoassay measurement of ..beta..-human chorionic gonadotropin hormone). No fetal or placental tissue was found after uterine curettage and exploratory laparotomy. The false-positive pregnancy test result was due to heterophilic antibovine and antigoat antibodies in the patient's serum. These antibodies interfered with radioimmunoassays using goat antibodies. This case shows that serum heterophilic antibodies can interfere with immunoassays and result in unnecessary diagnostic procedures and/or unnecessary treatment.

  3. A genome-wide survey of small interfering RNA and micro RNA pathway genes in a galling insect

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mayetiola destructor (Say), Hessian fly, is a significant pest of wheat in most production regions worldwide. Deployment of resistance (R) genes is the most effective control for this pest; however, deployment of R genes results in an increased frequency of pest genotypes that display virulence to t...

  4. Design of cyclic RGD-conjugated Aib-containing amphipathic helical peptides for targeted delivery of small interfering RNA.

    PubMed

    Wada, Shun-Ichi; Iwata, Masashi; Ozaki, Yuka; Ozaki, Takashi; Hayashi, Junsuke; Urata, Hidehito

    2016-09-15

    To achieve the targeted delivery of siRNA, five conjugates of Aib-containing amphipathic helical peptides with mono-, di-, and trivalent cRGDfC [cyclo(-Arg-Gly-Asp-d-Phe-Cys-)], which is known to bind to αVβ3 integrin, at several positions of the amphipathic helical peptide were designed and synthesized. Among the five conjugates, the monovalent cRGDfC conjugating at position 20 of the amino acid sequence of the helical peptide through the formation of a disulfide bond (PI) and the divalent cRGDfC conjugating at positions 2 and 14 of the amino acid sequence of the helical peptide through the formation of disulfide bonds (PIII) significantly enhanced the delivery of fluorescence-labeled siRNA into A549 cells as the peptide/siRNA complex formed by electrostatic interaction. The cellular uptake of the PI/siRNA complex was mediated by both endocytic and non-endocytic pathways, whereas that of the PIII/siRNA complex was enabled by endocytosis. Furthermore, the cellular uptake of the PI/siRNA complex might involve specific interactions of the RGD group with the αVβ3 integrin receptor. Next, the RNAi effect of the peptide/siRNA complex on luciferase expression in A549-Luc cells was examined. Luciferase expression was significantly decreased in the presence of the complex at the concentration of 1.0μM PI/10nM siRNA. In contrast, the PIII/siRNA complex did not show the RNAi effect under the same conditions. However, extending the incubation time led to the suppression of the luciferase expression in the presence of the PIII/siRNA complex. Considering that the cellular uptake of the PIII/siRNA complex is mediated by the endocytic pathway, the release of siRNA from the endosome into the cytosol might require a long time. We present herein a useful and unique tool for the delivery of siRNA. PMID:27480031

  5. Small interfering RNA targeting ILK inhibits metastasis in human tongue cancer cells through repression of epithelial-to-mesenchymal transition

    SciTech Connect

    Xing, Yu; Qi, Jin; Deng, Shixiong; Wang, Cheng; Zhang, Luyu; Chen, Junxia

    2013-08-01

    Integrin-linked kinase (ILK) is a multifunctional serine/threonine kinase. Accumulating evidences suggest that ILK are involved in cell–matrix interactions, cell proliferation, invasion, migration, angiogenesis and Epithelial–mesenchymal transition (EMT). However, the underlying mechanisms remain largely unknown. EMT has been postulated as a prerequisite for metastasis. The reports have demonstrated that EMT was implicated in metastasis of oral squamous cell carcinomas. Therefore, here we further postulate that ILK might participate in EMT of tongue cancer. We showed that ILK siRNA inhibited EMT with low N-cadherin, Vimentin, Snail, Slug and Twist as well as high E-cadherin expression in vivo and in vitro. We found that knockdown of ILK inhibited cell proliferation, migration and invasion as well as changed cell morphology. We also demonstrated that ILK siRNA inhibited phosphorylation of downstream signaling targets Akt and GSK3β as well as reduced expression of MMP2 and MMP9. Furthermore, we found that the tongue tumor with high metastasis capability showed higher ILK, Vimentin, Snail, Slug and Twist as well as lower E-cadherin expression in clinical specimens. Finally, ILK siRNA led to the suppression for tumorigenesis and metastasis in vivo. Our findings suggest that ILK could be a novel diagnostic and therapeutic target for tongue cancer. Highlights: • ILK siRNA influences cell morphology, cell cycle, migration and invasion. • ILK siRNA affects the expression of proteins associated with EMT. • ILK expression is related to EMT in clinical human tongue tumors. • ILK siRNA inhibits metastasis of the tongue cancer cells through suppressing EMT.

  6. A small-scale, inexpensive method for detecting formaldehyde or methanol in biochemical reactions containing interfering substances.

    PubMed

    Jiang, Wen Zhi; Adamec, Jiri; Weeks, Donald P

    2013-11-15

    A simple, inexpensive microdistillation device is described for capturing methanol or formaldehyde as end products of biochemical reactions or in environmental samples. We demonstrate that the microdistillation protocol, coupled with the use of alcohol oxidase and the formaldehyde-sensitive reagent Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole), serves as a quick and inexpensive alternative to chromatographic and mass spectrometer analyses for determining if formaldehyde or methanol is a product of reactions that contain substances that interfere with the Purpald reaction. These techniques were used to affirm formaldehyde as the end product of the dicamba monooxygenase-catalyzed O-demethylation of the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid). PMID:23938775

  7. Small-Interfering RNAs from Natural Antisense Transcripts Derived from a Cellulose Synthase Gene Modulate Cell Wall Biosynthesis in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viral-induced gene silencing of members of the cellulose synthase/cellulose synthase-like (CesA/Csl) gene superfamily in barley (Hordeum vulgare cv. Blackhulless) using the Barley Stripe Mosaic Virus reduced theincorporation of D-14C-Glc into cellulose and into mixed-linkage (1'3),(1'4)-'-D-glucans ...

  8. The expanding world of small RNAs in plants

    PubMed Central

    Borges, Filipe; Martienssen, Robert A.

    2016-01-01

    Plant genomes produce a variety of small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small RNA classes varies in different plant species, suggesting co-evolution between environmental adaptations and gene silencing mechanisms. Small RNA biogenesis in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary small-interfering RNAs and heterochromatic small-interfering RNAs, and their diverse cellular and developmental functions, including reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, Dicer and Argonaute proteins. PMID:26530390

  9. Quantifying BTEX in aqueous solutions with potentially interfering hydrocarbons using a partially selective sensor array.

    PubMed

    Cooper, J S; Kiiveri, H; Hubble, L J; Chow, E; Webster, M S; Müller, K-H; Sosa-Pintos, A; Bendavid, A; Raguse, B; Wieczorek, L

    2015-05-01

    Partially selective gold nanoparticle sensors have the sensitivity and selectivity to discriminate and quantify benzene, toluene, ethylbenzene, p-xylene and naphthalene (BTEXN) at concentrations relevant to the US Environmental Protection Agency. In this paper we demonstrate that gold nanoparticle chemiresistors can do so in the presence of 16 other hydrocarbons and that they did not reduce the discriminating power of the array. A two-level full factorial designed experiment was performed on unary, binary, ternary, quaternary, quinary combinations of BTEXN analytes with and without the possibly interfering hydrocarbons. The nominal component concentration of the mixtures was 100 μg L(-1), equivalent to approximately 100 parts per billion (ppb). Concentrations predicted with the random forests method had an average root mean square error of 10-20% of the component concentrations. This level of accuracy was achieved regardless of whether or not the 16 possibly interfering hydrocarbons were present. This work shows that the sensitivity and selectivity of gold nanoparticles chemiresistor sensors towards BTEXN analytes are not unduly affected by the other hydrocarbons that are expected to be present at a petroleum remediation site. PMID:25768651

  10. Interfering passages of Sindbis virus: concomitant appearance of interference, morphological variants, and trucated viral RNA.

    PubMed Central

    Johnston, R E; Tovell, D R; Brown, D T; Faulkner, P

    1975-01-01

    Serial passage of Sindbis at high multiplicities of infection resulted in cyclical variations in virus titer. Decreases in virus titer were correlated with the appearance of smaller-sized virions, interference and truncated viral RNA. The smaller particles were 37 nm in diameter, exclusive of the hemagglutinin spikes as compared with a diameter of 50 nm for standard virions. Passages which contained 37-nm partilces also interfered with infectious center formation by standard, plaque-purified virus. Polyacrylamide gel analysis of RNA isolated from virions present in interfering passages demonstrated the sequential appearance of three RNA species smaller than standard RNA with approximate molecular weights of 3.3 X 106, 2.7 X 106, and 2.2 X 106. The 3.3 X 106 RNA was evident in passage 5, by passage 8 both the 3.3 X 106 and 2.7 X 106 RNAs were present, and by passage 13 all three were present with the 2.2 X 106 RNA predominating. Images PMID:1165599

  11. Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia.

    PubMed

    Lepère, Gersende; Nowacki, Mariusz; Serrano, Vincent; Gout, Jean-François; Guglielmi, Gérard; Duharcourt, Sandra; Meyer, Eric

    2009-02-01

    Distinct small RNA pathways are involved in the two types of homology-dependent effects described in Paramecium tetraurelia, as shown by a functional analysis of Dicer and Dicer-like genes and by the sequencing of small RNAs. The siRNAs that mediate post-transcriptional gene silencing when cells are fed with double-stranded RNA (dsRNA) were found to comprise two subclasses. DCR1-dependent cleavage of the inducing dsRNA generates approximately 23-nt primary siRNAs from both strands, while a different subclass of approximately 24-nt RNAs, characterized by a short untemplated poly-A tail, is strictly antisense to the targeted mRNA, suggestive of secondary siRNAs that depend on an RNA-dependent RNA polymerase. An entirely distinct pathway is responsible for homology-dependent regulation of developmental genome rearrangements after sexual reproduction. During early meiosis, the DCL2 and DCL3 genes are required for the production of a highly complex population of approximately 25-nt scnRNAs from all types of germline sequences, including both strands of exons, introns, intergenic regions, transposons and Internal Eliminated Sequences. A prominent 5'-UNG signature, and a minor fraction showing the complementary signature at positions 21-23, indicate that scnRNAs are cleaved from dsRNA precursors as duplexes with 2-nt 3' overhangs at both ends, followed by preferential stabilization of the 5'-UNG strand. PMID:19103667

  12. Small RNA-mediated chromatin silencing directed to the 3' region of the Arabidopsis gene encoding the developmental regulator, FLC.

    PubMed

    Swiezewski, Szymon; Crevillen, Pedro; Liu, Fuquan; Ecker, Joseph R; Jerzmanowski, Andrzej; Dean, Caroline

    2007-02-27

    Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression. PMID:17360694

  13. A steady and oscillatory kernel function method for interfering surfaces in subsonic, transonic and supersonic flow. [prediction analysis techniques for airfoils

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1976-01-01

    The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.

  14. Biochemical requirements for two Dicer-like activities from wheat germ.

    PubMed

    Shivaprasad, Padubidri V; Hohn, Thomas; Akbergenov, Rashid

    2015-01-01

    RNA silencing pathways were first discovered in plants. Through genetic analysis, it has been established that the key silencing components called Dicer-like (DCL) genes have been shown to cooperatively process RNA substrates of multiple origin into distinct 21, 22 and 24 nt small RNAs. However, only few detailed biochemical analysis of the corresponding complexes has been carried out in plants, mainly due to the large unstable complexes that are hard to obtain or reconstitute in heterologous systems. Reconstitution of activity needs thorough understanding of all protein partners in the complex, something that is still an ongoing process in plant systems. Here, we use biochemical analysis to uncover properties of two previously identified native dicer-like activities from wheat germ. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs of 21 and 24 nt in size. The 21 nt dicing activity, likely an siRNA producing complex known as DCL4, is 950 kDa-1.2 mDa in size and is highly unstable during purification processes but has a rather vast range for activity. On the contrary, the 24 nt dicing complex, likely the DCL3 activity, is relatively stable and comparatively smaller in size, but has stricter conditions for effective processing of dsRNA substrates. While both activities could process completely complementary dsRNA albeit with varying abilities, we show that DCL3-like 24 nt producing activity is equally good in processing incompletely complementary RNAs. PMID:25615604

  15. Biochemical Requirements for Two Dicer-Like Activities from Wheat Germ

    PubMed Central

    Shivaprasad, Padubidri V.; Hohn, Thomas; Akbergenov, Rashid

    2015-01-01

    RNA silencing pathways were first discovered in plants. Through genetic analysis, it has been established that the key silencing components called Dicer-like (DCL) genes have been shown to cooperatively process RNA substrates of multiple origin into distinct 21, 22 and 24 nt small RNAs. However, only few detailed biochemical analysis of the corresponding complexes has been carried out in plants, mainly due to the large unstable complexes that are hard to obtain or reconstitute in heterologous systems. Reconstitution of activity needs thorough understanding of all protein partners in the complex, something that is still an ongoing process in plant systems. Here, we use biochemical analysis to uncover properties of two previously identified native dicer-like activities from wheat germ. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs of 21 and 24 nt in size. The 21 nt dicing activity, likely an siRNA producing complex known as DCL4, is 950 kDa-1.2 mDa in size and is highly unstable during purification processes but has a rather vast range for activity. On the contrary, the 24 nt dicing complex, likely the DCL3 activity, is relatively stable and comparatively smaller in size, but has stricter conditions for effective processing of dsRNA substrates. While both activities could process completely complementary dsRNA albeit with varying abilities, we show that DCL3-like 24 nt producing activity is equally good in processing incompletely complementary RNAs. PMID:25615604

  16. Insights into the Complexity of Weak Intermolecular Interactions Interfering in Host-Guest Systems.

    PubMed

    Zhang, Dawei; Chatelet, Bastien; Serrano, Eloisa; Perraud, Olivier; Dutasta, Jean-Pierre; Robert, Vincent; Martinez, Alexandre

    2015-10-01

    The recognition properties of heteroditopic hemicryptophane hosts towards anions, cations, and neutral pairs, combining both cation-π and anion-π interaction sites, were investigated to probe the complexity of interfering weak intermolecular interactions. It is suggested from NMR experiments, and supported by CASSCF/CASPT2 calculations, that the binding constants of anions can be modulated by a factor of up to 100 by varying the fluorination sites on the electron-poor aromatic rings. Interestingly, this subtle chemical modification can also reverse the sign of cooperativity in ion-pair recognition. Wavefunction calculations highlight how short- and long-range interactions interfere in this recognition process, suggesting that a disruption of anion-π interactions can occur in the presence of a co-bound cation. Such molecules can be viewed as prototypes for examining complex processes controlled by the competition of weak interactions. PMID:26401973

  17. Detection and determination of interfering 5-hydroxymethylfurfural in the analysis of caramel-coloured pharmaceutical syrups.

    PubMed

    Hewala, I I; Blaih, S M; Zoweil, A M; Onsi, S M

    1993-02-01

    A comparison between different caramels described for use in the pharmaceutical industry is presented. An interfering substance, 5-hydroxymethylfurfural (5-HMF), was detected in some caramels. Conditions and proofs for the formation of 5-HMF are presented. Interference by 5-HMF during the analysis of the active drugs and the possibility of interaction with the active drugs during the shelf-life of the drug formulation are discussed. A limit test for 5-HMF in caramel was developed. The test depends on measuring the difference in absorbance between two equimolar solutions of caramel, one of which contains sodium borohydride. The test is sensitive and selective for the detection and determination of trace amounts of 5-HMF without interference from the brown products of caramel. PMID:8192718

  18. Nanograting formation on metals in air with interfering femtosecond laser pulses

    SciTech Connect

    Miyazaki, Kenzo E-mail: kmiyazaki@wind.ocn.ne.jp; Miyaji, Godai; Inoue, Toshishige

    2015-08-17

    It is demonstrated that a homogeneous nanograting having the groove period much smaller than the laser wavelength (∼800 nm) can be fabricated on metals in air through ablation induced by interfering femtosecond laser pulses (100 fs at a repetition rate of 10 Hz). Morphological changes on stainless steel and Ti surfaces, observed with an increase in superimposed shots of the laser pulses at a low fluence, have shown that the nanograting is developed through bonding structure change at the interference fringes, plasmonic near-field ablation to create parallel grooves on the fringe, and subsequent excitation of surface plasmon polaritons to regulate the groove intervals at 1/3 or 1/4 of the fringe period over the whole irradiated area. Calculation for a model target having a thin oxide layer on the metal substrate reproduces well the observed groove periods and explains the mechanism for the nanograting formation.

  19. Adaptive Array for Weak Interfering Signals: Geostationary Satellite Experiments. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steadman, Karl

    1989-01-01

    The performance of an experimental adaptive array is evaluated using signals from an existing geostationary satellite interference environment. To do this, an earth station antenna was built to receive signals from various geostationary satellites. In these experiments the received signals have a frequency of approximately 4 GHz (C-band) and have a bandwidth of over 35 MHz. These signals are downconverted to a 69 MHz intermediate frequency in the experimental system. Using the downconverted signals, the performance of the experimental system for various signal scenarios is evaluated. In this situation, due to the inherent thermal noise, qualitative instead of quantitative test results are presented. It is shown that the experimental system can null up to two interfering signals well below the noise level. However, to avoid the cancellation of the desired signal, the use a steering vector is needed. Various methods to obtain an estimate of the steering vector are proposed.

  20. Fabrication of Optoelectronic Devices in Lithium Fluoride Crystals by Interfering Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Obayashi, Yoshihiro; Suzuki, Kenji; Hirose, Yukio; Sakai, Toshiaki; Aoshima, Shin-ichiro

    2008-01-01

    Fine-pitched microgratings either on or beneath surface of bulk lithium fluoride (LiF) are holographically fabricated by interfering with the second harmonic (400 nm) of a mode-locked Ti:sapphire oscillator-amplifier laser. The laser-active F2 and F3+ color centers in LiF are excellent candidates for producing visible laser action from the green-to-red spectral range when excited with a single wavelength. Here a green distributed feedback (DFB) laser action with a narrower oscillating linewidth is demonstrated by utilizing simultaneous formation of the F3+ color centers and waveguide with the microgratings encoded by interference of 400 nm femtosecond laser pulses. In addition, the possibility of a dual-beam DFB laser based on these color centers in LiF is discussed.

  1. Cloned Defective Interfering Influenza RNA and a Possible Pan-Specific Treatment of Respiratory Virus Diseases

    PubMed Central

    Dimmock, Nigel J.; Easton, Andrew J.

    2015-01-01

    Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials. PMID:26184282

  2. Changes in connectivity profiles as a mechanism for strategic control over interfering subliminal information.

    PubMed

    Wolbers, Thomas; Schoell, Eszter D; Verleger, Rolf; Kraft, Stefanie; McNamara, Adam; Jaskowski, Piotr; Büchel, Christian

    2006-06-01

    Human behavior can be influenced by information that is not consciously perceived. Recent behavioral and electrophysiological evidence suggests, however, that the processing of subliminal stimuli is not completely beyond an observer's conscious control. The present study aimed to characterize the cortical network that implements strategic control over interfering subliminal information at multiple stages. Fourteen participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a metacontrast masking paradigm. We systematically varied the amount of conflicting versus non-conflicting trials across experimental blocks, and behavioral performance demonstrated strategic effects whenever a high proportion of subliminal prime stimuli induced response competition. A psychophysiological interaction analysis revealed the pre-supplementary motor area (pre-SMA) to exhibit context-dependent covariation with activation in the lateral occipital complex (LOC) and the putamen. The pre-SMA thereby appears to fulfill a superordinate function in the control of processing subliminal information by simultaneously modulating perceptual analysis and motor selection. PMID:16135779

  3. Establishing an Infrastructure for High-Throughput Short-Interfering RNA Screening.

    PubMed

    Yin, Hongwei; Sereduk, Chris; Tang, Nanyun

    2016-01-01

    RNA interference (RNAi) is a readily available research tool that can be used to accelerate the identification and functional validation of a multitude of new candidate drug targets by experimentally perturbing gene expression and function. High-throughput RNAi technology using libraries of short-interfering RNA (siRNA) makes it possible to rapidly identify genes and biomarkers associated with biological processes such as diseases or a cellular response to therapy. Thus, RNAi-based screening is an extremely powerful technology that can provide tremendous insights into the mechanisms of action and contexts of vulnerability of a particular drug treatment. This chapter describes the infrastructure requirements needed to successfully perform HT-RNAi screening. Information on the methodology, instrumentation, experimental design, and workflow aspects is provided, as well as insights on how to successfully implement a high-throughput RNAi screen. PMID:27581280

  4. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  5. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.

    PubMed

    Bailly, Aurélien; Groenhagen, Ulrike; Schulz, Stefan; Geisler, Markus; Eberl, Leo; Weisskopf, Laure

    2014-12-01

    Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development. PMID:25227998

  6. A new small accelerator for radiocarbon dating

    SciTech Connect

    Suter, M.; Huber, R.; Jacob, S. A. W.; Synal, H.-A.; Schroeder, J. B.

    1999-06-10

    A new small and compact radiocarbon dating facility based on a 500 kV Pelletron accelerator has been built. The novel feature is that it operates with 1{sup +} ions. The interfering molecules are destroyed by collisions in the gas stripper. The results of first test measurements demonstrate that stability, background and transmission are equal to the performance of conventional AMS systems based on larger accelerators.

  7. Low-Fidelity Polymerases of Alphaviruses Recombine at Higher Rates To Overproduce Defective Interfering Particles

    PubMed Central

    Poirier, Enzo Z.; Mounce, Bryan C.; Rozen-Gagnon, Kathryn; Hooikaas, Peter Jan; Stapleford, Kenneth A.; Moratorio, Gonzalo

    2015-01-01

    ABSTRACT Low-fidelity RNA-dependent RNA polymerases for many RNA virus mutators have been shown to confer attenuated phenotypes, presumably due to increased mutation rates. Additionally, for many RNA viruses, replication to high titers results in the production of defective interfering particles (DIs) that also attenuate infection. We hypothesized that fidelity, recombination, and DI production are tightly linked. We show that a Sindbis virus mutator replicating at a high multiplicity of infection manifests an earlier and greater accumulation of DIs than its wild-type counterpart. The isolated DIs interfere with the replication of full-length virus in a dose-dependent manner. Importantly, the ability of the mutator virus to overproduce DIs could be linked to an increased recombination frequency. These data confirm that RNA-dependent RNA polymerase fidelity and recombination are inversely correlated for this mutator. Our findings suggest that defective interference resulting from higher recombination rates may be more detrimental to RNA virus mutators than the increase in mutational burden. IMPORTANCE Replication, adaptation, and evolution of RNA viruses rely in large part on their low-fidelity RNA-dependent RNA polymerase. Viruses artificially modified in their polymerases to decrease fidelity (mutator viruses) are attenuated in vivo, demonstrating the important role of fidelity in viral fitness. However, attenuation was attributed solely to the modification of the viral mutation rate and the accumulation of detrimental point mutations. In this work, we described an additional phenotype of mutator viruses: an increased recombination rate leading to defective interfering particle (DI) overproduction. Because DIs are known for their inhibitory effect on viral replication, our work suggests that fidelity variants may be attenuated in vivo via several mechanisms. This has important implications in the development of fidelity variants as live attenuated vaccine strains

  8. Modeling the intracellular replication of influenza A virus in the presence of defective interfering RNAs.

    PubMed

    Laske, Tanja; Heldt, Frank Stefan; Hoffmann, Helene; Frensing, Timo; Reichl, Udo

    2016-02-01

    Like many other viral pathogens, influenza A viruses can form defective interfering particles (DIPs). These particles carry a large internal deletion in at least one of their genome segments. Thus, their replication depends on the co-infection of cells by standard viruses (STVs), which supply the viral protein(s) encoded by the defective segment. However, DIPs also interfere with STV replication at the molecular level and, despite considerable research efforts, the mechanism of this interference remains largely elusive. Here, we present a mechanistic mathematical model for the intracellular replication of DIPs. In this model, we account for the common hypothesis that defective interfering RNAs (DI RNAs) possess a replication advantage over full-length (FL) RNAs due to their reduced length. By this means, the model captures experimental data from yield reduction assays and from studies testing different co-infection timings. In addition, our model predicts that one important aspect of interference is the competition for viral proteins, namely the heterotrimeric viral RNA-dependent RNA polymerase (RdRp) and the viral nucleoprotein (NP), which are needed for encapsidation of naked viral RNA. Moreover, we find that there may be an optimum for both the DI RNA synthesis rate and the time point of successive co-infection of a cell by DIPs and STVs. Comparing simulations for the growth of DIPs with a deletion in different genome segments suggests that DI RNAs derived from segments which encode for the polymerase subunits are more competitive than others. Overall, our model, thus, helps to elucidate the interference mechanism of DI RNAs and provides a novel hypothesis why DI RNAs derived from the polymerase-encoding segments are more abundant in DIP preparations. PMID:26592173

  9. Protótipo do primeiro interferômetro brasileiro - BDA

    NASA Astrophysics Data System (ADS)

    Cecatto, J. R.; Fernandes, F. C. R.; Neri, J. A. C. F.; Bethi, N.; Felipini, N. S.; Madsen, F. R. H.; Andrade, M. C.; Soares, A. C.; Alonso, E. M. B., Sawant, H. S.

    2004-04-01

    A interferometria é uma poderosa ferramenta usada para investigar estruturas espaciais de fontes astrofísicas fornecendo uma riqueza de detalhes inatingível pelas técnicas convencionais de imageamento. Em particular, a interferometria com ondas de rádio abre o horizonte de conhecimento do Universo nesta ampla banda do espectro eletromagnético, que vai de cerca de 20 kHz até centenas de GHz já próximo ao infravermelho, e que está acessível a partir de instrumentos instalados em solo. Neste trabalho, apresentamos o interferômetro designado por Arranjo Decimétrico Brasileiro (BDA). Trata-se do primeiro interferômetro a ser desenvolvido no Brasil e América Latina que já está em operação na fase de protótipo. Apresentamos o desenvolvimento realizado até o momento, o sítio de instalação do instrumento, o protótipo e os principais resultados dos testes de sua operação, as perspectivas futuras e a ciência a ser desenvolvida com o instrumento nas fases II e III. Neste trabalho é dada ênfase ao desenvolvimento, testes de operação e principais resultados do protótipo. É discutida brevemente a ciência que pode ser feita com o instrumento. Tanto os detalhes técnicos quanto os principais parâmetros estimados para o instrumento nas próximas fases de desenvolvimento e o desempenho do protótipo serão publicados em breve.

  10. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development.

    PubMed

    Song, Xianwei; Wang, Dekai; Ma, Lijia; Chen, Zhiyu; Li, Pingchuan; Cui, Xia; Liu, Chunyan; Cao, Shouyun; Chu, Chengcai; Tao, Yuezhi; Cao, Xiaofeng

    2012-08-01

    Higher plants have evolved multiple RNA-dependent RNA polymerases (RDRs), which work with Dicer-like (DCL) proteins to produce different classes of small RNAs with specialized molecular functions. Here we report that OsRDR6, the rice (Oryza sativa L.) homolog of Arabidopsis RDR6, acts in the biogenesis of various types and sizes of small RNAs. We isolated a rice osrdr6-1 mutant, which was temperature sensitive and showed spikelet defects. This mutant displays reduced accumulation of tasiR-ARFs, the conserved trans-acting siRNAs (tasiRNAs) derived from the TAS3 locus, and ectopic expression of tasiR-ARF target genes, the Auxin Response Factors (including ARF2 and ARF3/ETTIN). The loss of tasiR-mediated repression of ARFs in osrdr6-1 can explain its morphological defects, as expression of two non-targeted ARF3 gene constructs (ARF3muts) in a wild-type background mimics the osrdr6 and osdcl4-1 mutant phenotypes. Small RNA high-throughput sequencing also reveals that besides tasiRNAs, 21-nucleotide (nt) phased small RNAs are also largely dependent on OsRDR6. Unexpectedly, we found that osrdr6-1 has a strong impact on the accumulation of 24-nt phased small RNAs, but not on unphased ones. Our work uncovers the key roles of OsRDR6 in small RNA biogenesis and directly illustrates the crucial functions of tasiR-ARFs in rice development. PMID:22443269

  11. Interference with virus and bacteria replication by the tissue specific expression of antibodies and interfering molecules.

    PubMed

    Enjuanes, L; Sola, I; Izeta, A; Sánchez-Morgado, J M; González, J M; Alonso, S; Escors, D; Sánchez, C M

    1999-01-01

    Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes. We have developed two strategies to target

  12. Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information

    PubMed Central

    Winters, Boyer D.; Bartko, Susan J.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    In a previous study, we reported apparently paradoxical facilitation of object recognition memory following infusions of the cholinergic muscarinic receptor antagonist scopolamine into the perirhinal cortex (PRh) of rats. We attributed these effects to the blockade by scopolamine of the acquisition of interfering information. The present study tested this possibility directly by modifying the spontaneous object recognition memory task to allow the presentation of a potentially interfering object either before the sample phase or in the retention delay between the sample and choice phases. Presentation of an object between the sample and choice phases disrupted subsequent recognition of the sample object (retroactive interference), and intra-PRh infusions of scopolamine prior to the presentation of the irrelevant object prevented this retroactive interference effect. Moreover, presentation of an irrelevant object prior to the sample phase interfered proactively with sample object recognition, and intra-PRh infusions of scopolamine prior to the presentation of the pre-sample object prevented this proactive interference effect. These results suggest that blocking muscarinic cholinergic receptors in PRh can disrupt the acquisition of potentially interfering object information, thereby facilitating object recognition memory. This finding provides further, strong evidence that acetylcholine is important for the acquisition of object information in PRh. PMID:17823242

  13. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  14. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  15. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  16. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  17. 36 CFR 261.3 - Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Interfering with a Forest officer, volunteer, or human resource program enrollee or giving false report to a Forest officer. 261.3 Section 261.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.3...

  18. Continuous Influenza Virus Production in Cell Culture Shows a Periodic Accumulation of Defective Interfering Particles

    PubMed Central

    Pflugmacher, Antje; Behrendt, Ilona; Jordan, Ingo; Flockerzi, Dietrich; Genzel, Yvonne; Reichl, Udo

    2013-01-01

    Influenza viruses are a major public health burden during seasonal epidemics and a continuous threat due to their potential to cause pandemics. Annual vaccination provides the best protection against the contagious respiratory illness caused by influenza viruses. However, the current production capacities for influenza vaccines are insufficient to meet the increasing demands. We explored the possibility to establish a continuous production process for influenza viruses using the duck-derived suspension cell line AGE1.CR. A two-stage bioreactor setup was designed in which cells were cultivated in a first stirred tank reactor where an almost constant cell concentration was maintained. Cells were then constantly fed to a second bioreactor where virus infection and replication took place. Using this two-stage reactor system, it was possible to continuously produce influenza viruses. Surprisingly, virus titers showed a periodic increase and decrease during the run-time of 17 days. These titer fluctuations were caused by the presence of defective interfering particles (DIPs), which we detected by PCR. Mathematical modeling confirmed this observation showing that constant virus titers can only emerge in the absence of DIPs. Even with very low amounts of DIPs in the seed virus and very low rates for de novo DIP generation, defective viruses rapidly accumulate and, therefore, represent a serious challenge for continuous vaccine production. Yet, the continuous replication of influenza virus using a two-stage bioreactor setup is a novel tool to study aspects of viral evolution and the impact of DIPs. PMID:24039749

  19. Sub-micron period metal lattices fabricated by interfering ultraviolet femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshiki; Matsuba, Yoshiki; Miyanaga, Noriaki

    2016-05-01

    The interference pattern of a femtosecond laser has been utilized to fabricate nanostructures in the lattice. In this paper, SH (second-harmonic) waves (λ = 392.5 {{nm}}) of a femtosecond laser were applied to four beams interfering laser processing using a demagnification system as a beam correlator. The lattice constant of the resultant matrix was shortened to 760 nm. The unit structures fabricated on gold thin films were nanoholes, nanobumps, nanodrops or nanowhiskers, and their unit size was minimized compared to the case with a greater lattice constant formed by fundamental wavelengths. The radius of a nanoball on top of a nanodrop was between 42 and 76 nm, and the radius of metallic hole arrays (MHA) was 220 nm. The energy efficiency of the laser increased by 4.79 times due to better absorption coefficient of gold at ultraviolet wavelengths. In addition, the smallest lattice constant was estimated with the use of a commercial plano-convex fused-silica lens and a NIR (near-infrared) achromatic lens.

  20. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes

    PubMed Central

    Wahlgren, Jessica; Karlson, Tanya De L.; Brisslert, Mikael; Vaziri Sani, Forugh; Telemo, Esbjörn; Sunnerhagen, Per; Valadi, Hadi

    2012-01-01

    Despite the promise of RNA interference (RNAi) and its potential, e.g. for use in cancer therapy, several technical obstacles must first be overcome. The major hurdle of RNAi-based therapeutics is to deliver nucleic acids across the cell’s plasma membrane. This study demonstrates that exosome vesicles derived from humans can deliver short interfering RNA (siRNA) to human mononuclear blood cells. Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication, i.e. antigen presentation, tolerance development and shuttle RNA (mainly mRNA and microRNA). Having tested different strategies, an optimized method (electroporation) was used to introduce siRNA into human exosomes of various origins. Plasma exosomes (exosomes from peripheral blood) were used as gene delivery vector (GDV) to transport exogenous siRNA to human blood cells. The vesicles effectively delivered the administered siRNA into monocytes and lymphocytes, causing selective gene silencing of mitogen-activated protein kinase 1. These data suggest that human exosomes can be used as a GDV to provide cells with heterologous nucleic acids such as therapeutic siRNAs. PMID:22618874

  1. Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism.

    PubMed

    Giuliani, Fabienne; Vernay, André; Leuba, Geneviève; Schenk, Françoise

    2009-10-28

    The performance of mice expressing PDAPP (+/+ or +/-) was studied in the Morris place navigation task. Different lines of questions were investigated using PDAPP+/- mice in which the activity of the cytokine Tumor Necrosing Factor alpha (TNFalpha) was attenuated by chronic treatment with anti-TNF or deleting TNFalpha (TNF-/-). Two different categories of behavior were analyzed in adult (6 months) and middle aged (15 months) subjects. Classically, the cognitive performance was assessed from the escape efficacy and quantitative bias toward the training position in a Morris water maze. Second, stereotyped circling was quantified, along with more qualitative behavioral impairments such as self-mutilation or increased reactivity. Our results can be summarized as follows. (1) All of the PDAPP mice expressed reduced cognitive performance in the Morris task, but only those with a clear-cut amyloid burden in the hippocampus showed behavioral abnormalities such as stereotyped circling. (2) Chronic treatment with anti-TNF prevented the development of pathological circling in the 6-month-old mice but not in the 15-month-old mice and had no significant effect on amyloid burden. (3) The absence of TNFalpha prevented the development of stereotyped circling in 6- and 15-month-old mice but increased amyloid burden after 15 months. These data indicate that PDAPP mice express cognitive impairments disregarding absence of TNF. The pathological behavioral anomalies related to the PDAPP mutation seem reduced by treatments interfering with TNFalpha. PMID:19622386

  2. Clofarabine Acts as Radiosensitizer In Vitro and In Vivo by Interfering With DNA Damage Response

    SciTech Connect

    Cariveau, Mickael J.; Stackhouse, Murray; Cui Xiaoli; Tiwari, Kamal; Waud, William; Secrist, John A.; Xu Bo

    2008-01-01

    Purpose: Combination treatment with radiotherapy and chemotherapy has emerged as the dominant form of cancer adjuvant regimens in recent years. Clofarabine, a newly approved drug for pediatric leukemia, is a second-generation purine nucleoside analogue that can block DNA synthesis and inhibit DNA repair. Therefore, we hypothesized that clofarabine could work synergistically with radiotherapy to increase the tumor cell response. Methods and Materials: The effects of clofarabine on radiosensitivity have been established in several tumor cell lines in vitro and in vivo using colony-forming assays and tumor xenografts. The effect of clofarabine on the DNA damage response was also studied in vitro by measuring {gamma}-H2AX focus formation. Results: Clonogenic survival was significantly reduced in irradiated cells treated with clofarabine, demonstrating the strong radiosensitizing effect of clofarabine. Furthermore, clofarabine displayed a radiosensitizing effect that was greater than gemcitabine or 5-fluorouracil. We also found that low doses of clofarabine can prolong the presence of radiation-induced {gamma}-H2AX nuclear focus formation, and high doses of clofarabine can induce DNA double-strand breaks, suggesting that clofarabine can interfere with DNA damage response pathways. In addition, clofarabine-induced radiosensitization was also established in vivo using a colorectal cancer model, DLD-1, in athymic nude mice. When combined with fractionated radiotherapy, a moderate dose of clofarabine led to a significant increase in tumor growth inhibition. Conclusion: Clofarabine acts as a powerful radiosensitizer both in vitro and in vivo by interfering with the DNA damage response.

  3. Evaluation of short-interfering RNAs treatment in experimental rabies due to wild-type virus.

    PubMed

    Appolinario, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Fonseca, Clovis Reynaldo; Vicente, Acacia Ferreira; Antunes, João Marcelo Azevedo de Paula; Pantoja, José Carlos Figueiredo; Megid, Jane

    2015-01-01

    We have evaluated the efficacy of short-interfering RNAs targeting the nucleoprotein gene and also the brain immune response in treated and non-treated infected mice. Mice were inoculated with wild-type virus, classified as dog (hv2) or vampire bat (hv3) variants and both groups were treated or left as controls. No difference was observed in the lethality rate between treated and non-treated groups, although clinical evaluation of hv2 infected mice showed differences in the severity of clinical disease (p=0.0006). Evaluation of brain immune response 5 days post-inoculation in treated hv2 group showed no difference among the analyzed genes, whereas after 10 days post-inoculation there was increased expression of 2',5'-oligoadenylate synthetase 1, tumor necrosis factor alpha, interleukin 12, interferon gamma, and C-X-C motif chemokine 10 associated with higher expression of N gene in the same period (p<0.0001). In hv2 non-treated group only higher interferon beta expression was found at day 5. The observed differences in results of the immune response genes between treated and non-treated groups is not promising as they had neither impact on mortality nor even a reduction in the expression of N gene in siRNA treated animals. This finding suggests that the use of pre-designed siRNA alone may not be useful in rabies treatment. PMID:26254692

  4. Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation

    NASA Technical Reports Server (NTRS)

    Ng, Daniel L. P. (Inventor)

    1994-01-01

    A method and apparatus for detecting the temperature of gray and non-gray bodies in the presence of interfering radiation are presented. A gray body has a constant emissivity less than 1 and a non-gray body has an emissivity which varies with wavelength. The emissivity and reflectivity of the surface is determined over a range of wavelengths. Spectra are also measured of the extraneous interference radiation source and the surface of the object to be measured in the presence of the extraneous interference radiation source. An auxiliary radiation source is used to determine the reflectivity of the surface and also the emissivity. The measured spectrum of the surfaces in the presence of the extraneous interference radiation source is set equal to the emissivity of the surface multiplied by a Planck function containing a temperature term T plus the surface reflectivity multiplied by the spectrum of the extraneous interference radiation source. The equation is then solved for T to determine the temperature of the surface.

  5. Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses

    SciTech Connect

    Mason, Daniel R.; Gramotnev, Dmitri K.; Gramotnev, Galina

    2008-09-15

    We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique--thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metal film or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surface thermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of {approx}100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surface thermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surface patterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.

  6. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo.

    PubMed

    Yagi, Nobuhiro; Manabe, Ichiro; Tottori, Tsuneaki; Ishihara, Atsushi; Ogata, Fusa; Kim, Jong Heon; Nishimura, Satoshi; Fujiu, Katsuhito; Oishi, Yumiko; Itaka, Keiji; Kato, Yasuki; Yamauchi, Masahiro; Nagai, Ryozo

    2009-08-15

    Use of short interfering RNA (siRNA) is a promising new approach thought to have a strong potential to lead to rapid development of gene-oriented therapies. Here, we describe a newly developed, systemically injectable siRNA vehicle, the "wrapsome" (WS), which contains siRNA and a cationic lipofection complex in a core that is fully enveloped by a neutral lipid bilayer and hydrophilic polymers. WS protected siRNA from enzymatic digestion, providing a long half-life in the systemic circulation. Moreover, siRNA/WS leaked from blood vessels within tumors into the tumor tissue, where it accumulated and was subsequently transfected into the tumor cells. Because the transcription factor KLF5 is known to play a role in tumor angiogenesis, we designed KLF5-siRNA to test the antitumor activity of siRNA/WS. KLF5-siRNA/WS exhibited significant antitumor activity, although neither WS containing control scrambled-siRNA nor saline containing KLF5-siRNA affected tumor growth. KLF5-siRNA/WS inhibited Klf5 expression within tumors at both mRNA and protein levels, significantly reducing angiogenesis, and we detected no significant acute or long-term toxicity. Our findings support the idea that siRNA/WS can be used to knock down specific genes within tumors and thereby exert therapeutic effects against cancers. PMID:19654315

  7. Characterization of homologous defective interfering RNA during persistent infection of Vero cells with Japanese encephalitis virus.

    PubMed

    Yoon, Sung Wook; Lee, Sang-Yong; Won, Sung-Yong; Park, Sun-Hee; Park, Soo-Young; Jeong, Yong Seok

    2006-02-28

    It has been suggested that defective interfering (DI) RNA contributes to the persistence of Japanese en-cephalitis virus (JEV). In this study, we characterized molecular and biological aspects of the DI RNA and its relation to viral persistence. We identified a homolo-gous DI virus intimately associated with JEV persis-tence in Vero cells. The production of DI RNA during undiluted serial passages of JEV coincided with the appearance of cells refractory to acute infection with JEV. We also established a Vero cell clone with a per-sistent JEV infection in which the DI RNA co-replicated efficiently at the expense of helper virus. The infectious virus yield of the clone fluctuated dur-ing its growth depending upon the amount of DI RNA accumulated in the previous replication cycle. Identifi-cation of the corresponding negative-sense RNA of the DI RNA indicated that the DI RNA functioned as a replication unit. Most of the DI RNA molecules re-tained their open reading frames despite a large dele-tion, encompassing most of the prM, the entire E, and the 5' half of the NS1 gene. Taken together, these ob-servations suggest that the generation of homologous DI RNA during successive JEV acute infections in Vero cells probably participates actively in persistent JEV infection. PMID:16511353

  8. Vertical scanning white light interfering profilometer based on Linnik interference microscope

    NASA Astrophysics Data System (ADS)

    Wang, Shuzhen; Xie, Tiebang; Chang, Suping

    2010-10-01

    In this paper we provide a vertical scanning white light interfering profilometer based on Linnik type interference microscope. A vertical scanning system with coarse-fine dual-stage actuators is developed, in which the coarse positioning is performed by inclined sliding guides, AC servo motor, ballscrew and the fine positioning is performed by parallel board flexure hinge and piezoelectric ceramic, respectively. The displacement range of the vertical scanning system is 0~2mm and 0.4nm theoretical motion resolution can be achieved. The whole interference microscope of the profilometer is driven by the vertical scanning system, which will eliminate the movement coupling error of vertical direction caused by horizontal movement of 2D precision stage. The interference fringes or the focal plane can be automatically located by moving the vertical scanning system. To eliminate the measurement errors of the profilometer caused by incorrect positioning of the vertical scanning system, its displacement is measured in real-time by a laser interferometer with theoretical resolution of 0.01nm. A single groove specimen with the depth of 1.26μm calibrated by National Institute of Metrology P.R.China, MEMS device and textured steel sheet was measured to illustrate the capabilities of the profilometer.

  9. Interfering EZH2 Expression Reverses the Cisplatin Resistance in Human Ovarian Cancer by Inhibiting Autophagy.

    PubMed

    Sun, Yang; Jin, Long; Liu, Jia-Hua; Sui, Yu-Xia; Han, Li-Li; Shen, Xiao-Li

    2016-09-01

    We aimed to determine the effects of the inhibition of enhancer of zeste homolog 2 (EZH2) gene expression on the cisplatin resistance of the human ovarian cancer cell line, SKOV3/DDP, and to identify the underlying mechanisms. SKOV3/DDP cells were stably transfected with pSUPER-EZH2 (EZH2 RNA interference plasmid) or pcDNA3.1-EZH2 (EZH2 gene overexpression plasmid) using the lipofection method. Real-time fluorescence quantitative reverse transcription polymerase chain reaction and western blotting confirmed that EZH2 expression was downregulated in pSUPER-EZH2-transfected cells. Flow cytometry revealed that EZH2 inhibition did not induce apoptosis, but significantly inhibited autophagy. In addition, it significantly increased the expression of the cellular senescence-signaling proteins p14(ARF), p16(INK4a), p53, pRb, and p21, and significantly decreased the expression of cyclin-dependent kinase (CDK)1, CDK2, and H3K27me3. Cellular senescence was characterized by a significant increase in the G0/G1 ratio and the restoration of sensitivity to cisplatin in the drug-resistant cells. These findings suggest that interfering with EZH2 expression can inhibit SKOV3/DDP cell autophagy and reverse resistance to cisplatin. The underlying mechanisms could be associated with the regulation of the cellular senescence-signaling pathway. PMID:27610467

  10. High Density Lipoproteins for the Systemic Delivery of short interfering RNA

    PubMed Central

    McMahon, Kaylin M.; Thaxton, C. Shad

    2014-01-01

    Introduction RNA interference (RNAi) is a powerful mechanism for gene silencing with the potential to greatly impact the development of new therapies for many human diseases. Short interfering RNAs (siRNAs) may be the ideal molecules for therapeutic RNAi. However, therapeutic siRNAs face significant challenges that must be overcome prior to widespread clinical use. Many efforts have been made to overcome the hurdles associated with systemic administration of siRNA; however, current approaches are still limited. As such, there is an urgent need to develop new strategies for siRNA delivery that have the potential to impact a broad spectrum of systemic diseases. Areas covered This review focuses on the promise of siRNA therapies and highlights current siRNA delivery methods. With an eye toward new strategies, this review first introduces high density lipoproteins (HDL) and their natural functions, and then transitions into how HDLs may provide significant opportunities as next generation siRNA delivery vehicles. Importantly, this review describes how synthetic HDLs leverage the natural ability of HDL to stabilize and deliver siRNAs. Expert Opinion HDLs are natural nanoparticles that are critical to understanding the systemic delivery of therapeutic nucleic acids, like siRNA. Methods to synthesize biomimetic HDLs are being explored and data demonstrate that this type of delivery vehicle may be highly beneficial for targeted and efficacious systemic delivery of siRNAs. PMID:24313310

  11. Serum ultrafiltration for the elimination of endogenous interfering substances in creatinine determination.

    PubMed

    da Fonseca-Wollheim, F; Heinze, K G; Lomsky, K; Schreiner, H

    1988-08-01

    Serum, at neutral pH, was submitted to a simple filtration, using centrifugation in the disposable Centrisart. The ultrafiltrate was similar to serum in its creatinine content but was virtually free from proteins, including protein-bound bilirubin, haemoglobin and lipoproteins. The creatinine concentrations of anicteric serum specimens and the corresponding ultrafiltrates as determined with Jaffé and enzymic procedures show a high correlation and are convertible. With icteric sera the negative interference effect of bilirubin in a particular analytical procedure can be quantified using ultrafiltrate as the reference. It is suggested that ultrafiltration is useful in selected cases for eliminating elevated concentrations of bilirubin, haemoglobin and turbidity, which would interfere in the direct creatinine determination. Relative to the continuous flow methods with dialysis of the analyte, direct methods for creatinine are more susceptible to interference by endogenous factors like hyperbilirubinaemia, hypertriglyceridaemia and haemolysis (1). The negative interference by bilirubin is of special importance, since it interferes in some modifications of the kinetic Jaffé method (2) and in the chromogenic enzymatic method (3). As a simple alternative, we evaluated the use of serum ultrafiltrate for the accurate determination of creatinine by the Jaffé and enzymatic methods, free from interfering by the high-molecular serum matrix and compounds bound to it. PMID:3221182

  12. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex.

    PubMed

    Garibaldi, F; Falcone, E; Trisciuoglio, D; Colombo, T; Lisek, K; Walerych, D; Del Sal, G; Paci, P; Bossi, G; Piaggio, G; Gurtner, A

    2016-07-21

    Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, -519a, -218, -105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer. PMID:26996669

  13. Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection.

    PubMed

    Tsai, Kuen-Nan; Tsang, Shih-Fang; Huang, Chung-Hao; Chang, Ruey-Yi

    2007-03-01

    Defective interfering (DI) RNAs are deletion mutants of viral genomes that are known in many cases to contribute to persistent infection and modification of viral pathogenesis. Cell type also plays a critical role in the establishment of viral persistence. In this study we have identified for the first time the generation of DI RNAs of Japanese encephalitis virus in C6/36 mosquito cells. A persistent infection was established by replacing growth medium on surviving cells and continued cell passaging. Persistent infection was demonstrated by a continual release of infectious virus, fluorescent antibody staining, and Northern analysis. A population of DI RNAs of approximately 8.2-9.7 kb, not detectable in acutely infected cells, became apparent in the persistently infected cells by 25 days postinfection. Sequence analyses revealed a population of DI RNAs that contained in-frame deletions of 1.3-2.8 kb covering the region of the E gene and some flanking C or prM and NS1 gene sequences. Transcripts from one cDNA clone of a DI RNA replicated in uninfected mosquito cells as demonstrated by RT-PCR. DI RNA-containing virions in supernatant fluids from persistently infected mosquito cells could be used to establish persistent infection in BHK-21 cells. The correlation of DI RNA presence with cell survival suggests that DI RNAs are contributing mechanistically to the establishment of persistent infection in both the mosquito and mammalian cells. PMID:17134784

  14. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles

    PubMed Central

    Press, Adrian T.; Traeger, Anja; Pietsch, Christian; Mosig, Alexander; Wagner, Michael; Clemens, Mark G.; Jbeily, Nayla; Koch, Nicole; Gottschaldt, Michael; Bézière, Nicolas; Ermolayev, Volodymyr; Ntziachristos, Vasilis; Popp, Jürgen; Kessels, Michael M.; Qualmann, Britta; Schubert, Ulrich S.; Bauer, Michael

    2014-01-01

    Efficient delivery of short interfering RNAs reflects a prerequisite for the development of RNA interference therapeutics. Here, we describe highly specific nanoparticles, based on near infrared fluorescent polymethine dye-derived targeting moieties coupled to biodegradable polymers. The fluorescent dye, even when coupled to a nanoparticle, mimics a ligand for hepatic parenchymal uptake transporters resulting in hepatobiliary clearance of approximately 95% of the dye within 45 min. Body distribution, hepatocyte uptake and excretion into bile of the dye itself, or dye-coupled nanoparticles can be tracked by intravital microscopy or even non-invasively by multispectral optoacoustic tomography. Efficacy of delivery is demonstrated in vivo using 3-hydroxy-3-methyl-glutaryl-CoA reductase siRNA as an active payload resulting in a reduction of plasma cholesterol levels if siRNA was formulated into dye-functionalised nanoparticles. This suggests that organ-selective uptake of a near infrared dye can be efficiently transferred to theranostic nanoparticles allowing novel possibilities for personalised silencing of disease-associated genes. PMID:25470305

  15. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast

    PubMed Central

    Bumgarner, Stacie L.; Dowell, Robin D.; Grisafi, Paula; Gifford, David K.; Fink, Gerald R.

    2009-01-01

    The identification of specific functional roles for the numerous long noncoding (nc)RNAs found in eukaryotic transcriptomes is currently a matter of intense study amid speculation that these ncRNAs have key regulatory roles. We have identified a pair of cis-interfering ncRNAs in yeast that contribute to the control of variegated gene expression at the FLO11 locus by implementing a regulatory circuit that toggles between two stable states. These capped, polyadenylated ncRNAs are transcribed across the large intergenic region upstream of the FLO11 ORF. As with mammalian long intervening (li)ncRNAs, these yeast ncRNAs (ICR1 and PWR1) are themselves regulated by transcription factors (Sfl1 and Flo8) and chromatin remodelers (Rpd3L) that are key elements in phenotypic transitions in yeast. The mechanism that we describe explains the unanticipated role of a histone deacetylase complex in activating gene expression, because Rpd3L mutants force the ncRNA circuit into a state that silences the expression of the adjacent variegating gene. PMID:19805129

  16. Copsin, a Novel Peptide-based Fungal Antibiotic Interfering with the Peptidoglycan Synthesis*

    PubMed Central

    Essig, Andreas; Hofmann, Daniela; Münch, Daniela; Gayathri, Savitha; Künzler, Markus; Kallio, Pauli T.; Sahl, Hans-Georg; Wider, Gerhard; Schneider, Tanja; Aebi, Markus

    2014-01-01

    Fungi and bacteria compete with an arsenal of secreted molecules for their ecological niche. This repertoire represents a rich and inexhaustible source for antibiotics and fungicides. Antimicrobial peptides are an emerging class of fungal defense molecules that are promising candidates for pharmaceutical applications. Based on a co-cultivation system, we studied the interaction of the coprophilous basidiomycete Coprinopsis cinerea with different bacterial species and identified a novel defensin, copsin. The polypeptide was recombinantly produced in Pichia pastoris, and the three-dimensional structure was solved by NMR. The cysteine stabilized α/β-fold with a unique disulfide connectivity, and an N-terminal pyroglutamate rendered copsin extremely stable against high temperatures and protease digestion. Copsin was bactericidal against a diversity of Gram-positive bacteria, including human pathogens such as Enterococcus faecium and Listeria monocytogenes. Characterization of the antibacterial activity revealed that copsin bound specifically to the peptidoglycan precursor lipid II and therefore interfered with the cell wall biosynthesis. In particular, and unlike lantibiotics and other defensins, the third position of the lipid II pentapeptide is essential for effective copsin binding. The unique structural properties of copsin make it a possible scaffold for new antibiotics. PMID:25342741

  17. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus i...

  18. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant.

    PubMed

    Lu, Cheng; Kulkarni, Karthik; Souret, Frédéric F; MuthuValliappan, Ramesh; Tej, Shivakundan Singh; Poethig, R Scott; Henderson, Ian R; Jacobsen, Steven E; Wang, Wenzhong; Green, Pamela J; Meyers, Blake C

    2006-10-01

    The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs. PMID:16954541

  19. Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other.

    PubMed

    Nesher, Nir; Levy, Guy; Grasso, Frank W; Hochner, Binyamin

    2014-06-01

    Controlling movements of flexible arms is a challenging task for the octopus because of the virtually infinite number of degrees of freedom (DOFs) [1, 2]. Octopuses simplify this control by using stereotypical motion patterns that reduce the DOFs, in the control space, to a workable few [2]. These movements are triggered by the brain and are generated by motor programs embedded in the peripheral neuromuscular system of the arm [3-5]. The hundreds of suckers along each arm have a tendency to stick to almost any object they contact [6-9]. The existence of this reflex could pose significant problems with unplanned interactions between the arms if not appropriately managed. This problem is likely to be accentuated because it is accepted that octopuses are "not aware of their arms" [10-14]. Here we report of a self-recognition mechanism that has a novel role in motor control, restraining the arms from interfering with each other. We show that the suckers of amputated arms never attach to octopus skin because a chemical in the skin inhibits the attachment reflex of the suckers. The peripheral mechanism appears to be overridden by central control because, in contrast to amputated arms, behaving octopuses sometime grab amputated arms. Surprisingly, octopuses seem to identify their own amputated arms, as they treat arms of other octopuses like food more often than their own. This self-recognition mechanism is a novel peripheral component in the embodied organization of the adaptive interactions between the octopus's brain, body, and environment [15, 16]. PMID:24835454

  20. HIV Tat protein affects circadian rhythmicity by interfering with the circadian system

    PubMed Central

    Wang, T; Jiang, Z; Hou, W; Li, Z; Cheng, S; Green, LA; Wang, Y; Wen, X; Cai, L; Clauss, M; Wang, Z

    2014-01-01

    Objectives Sleep disorders are common in patients with HIV/AIDS, and can lead to poor quality of life. Although many studies have investigated the aetiology of these disorders, it is still unclear whether impaired sleep quality is associated with HIV itself, social problems, or side effects of antiretroviral therapy (ART). Moreover, despite its known neurological associations, little is known about the role of the trans-activator of transcription (Tat) protein in sleep disorders in patients with HIV/AIDS. The purpose of this study was to test the hypothesis that the sleep quality of patients with HIV/AIDS affected by an altered circadian rhythm correlates with cerebrospinal HIV Tat protein concentration. Methods Ninety-six patients with HIV/AIDS between 20 and 69 years old completed the Pittsburgh Sleep Quality Index. Their circadian rhythm parameters of blood pressure, Tat concentration in cerebrospinal fluid, melatonin concentration, CD4 cell count and HIV RNA viral load in serum were measured. Results The circadian amplitude of systolic blood pressure and the score for sleep quality (Pittsburgh Sleep Quality Index) were negatively correlated with HIV Tat protein concentration, while the melatonin value was positively correlated with Tat protein concentration. Conclusions The HIV Tat protein affects circadian rhythmicity by interfering with the circadian system in patients with HIV/AIDS and further increases the melatonin excretion value. A Tat protein-related high melatonin value may counteract HIV-related poor sleep quality during the progression of HIV infection. This study provides the first clinical evidence offering an explanation for why sleep quality did not show an association with progression of HIV infection in previous studies. PMID:24750691

  1. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  2. Novel Strategy To Protect against Influenza Virus-Induced Pneumococcal Disease without Interfering with Commensal Colonization.

    PubMed

    Greene, Christopher J; Marks, Laura R; Hu, John C; Reddinger, Ryan; Mandell, Lorrie; Roche-Hakansson, Hazeline; King-Lyons, Natalie D; Connell, Terry D; Hakansson, Anders P

    2016-06-01

    Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx. PMID:27001538

  3. Short interfering RNA induced generation and translation of stable 5' mRNA cleavage intermediates.

    PubMed

    Singhania, Richa; Pavey, Sandra; Payne, Elizabeth; Gu, Wenyi; Clancy, Jennifer; Jubair, Luqman; Preiss, Thomas; Saunders, Nicholas; McMillan, Nigel A J

    2016-08-01

    Sequence-specific degradation of homologous mRNA is the main mechanism by which short-interfering RNAs (siRNAs) suppress gene expression. Generally, it is assumed that the mRNA fragments resulting from Ago2 cleavage are rapidly degraded, thus making the transcript translation-incompetent. However, the molecular mechanisms involved in the post-cleavage mRNA decay are not completely understood and the fate of cleavage intermediates has been poorly studied. Using specific siRNAs and short-hairpin RNAs (shRNAs) we show that the 5' and 3' mRNA cleavage fragments of human papilloma virus type 16 (HPV-16) E6/7 mRNA, over-expressed in cervical malignancies, are unevenly degraded. Intriguingly, the 5' mRNA fragment was more abundant and displayed a greater stability than the corresponding 3' mRNA fragment in RNAi-treated cells. Further analysis revealed that the 5' mRNA fragment was polysome-associated, indicating its active translation, and this was further confirmed by using tagged E7 protein to show that C-terminally truncated proteins were produced in treated cells. Overall, our findings provide new insight into the degradation of siRNA-targeted transcripts and show that RNAi can alter protein expression in cells as a result of preferential stabilization and translation of the 5' cleavage fragment. These results challenge the current model of siRNA-mediated RNAi and provide a significant step forward towards understanding non-canonical pathways of siRNA gene silencing. PMID:27321990

  4. A cis-acting function for the coronavirus leader in defective interfering RNA replication.

    PubMed Central

    Chang, R Y; Hofmann, M A; Sethna, P B; Brian, D A

    1994-01-01

    To test the hypothesis that the 65-nucleotide (nt) leader on subgenomic mRNAs suffices as a 5'-terminal cis-acting signal for RNA replication, a corollary to the notion that coronavirus mRNAs behave as replicons, synthetic RNA transcripts of a cloned, reporter-containing N mRNA (mRNA 7) of the bovine coronavirus with a precise 5' terminus and a 3' poly(A) of 68 nt were tested for replication after being transfected into helper virus-infected cells. No replication was observed, but synthetic transcripts of a cloned reporter-containing defective interfering (DI) RNA differing from the N mRNA construct by 433 nt of continuous 5'-proximal genomic sequence between the leader and the N open reading frame did replicate and become packaged, indicating the insufficiency of the leader alone as a 5' signal for replication of transfected RNA molecules. The leader was shown to be a necessary part of the cis-acting signal for DI RNA replication, however, since removal of terminal bases that destroyed a predicted intraleader stem-loop also destroyed replicating ability. Surprisingly, when the same stem-loop was disrupted by base substitutions, replication appeared only minimally impaired and the leader was found to have rapidly reverted to wild type during DI RNA replication, a phenomenon reminiscent of high-frequency leader switching in the mouse hepatitis coronavirus. These results suggest that once a minimal structural requirement for leader is fulfilled for initiation of DI RNA replication, the wild-type leader is strongly preferred for subsequent replication. They also demonstrate that, in contrast to reported natural mouse hepatitis coronavirus DI RNAs, the DI RNA of the bovine coronavirus does not require sequence elements originating from discontinuous downstream regions within the polymerase gene for replication or for packaging. Images PMID:7966615

  5. Intensity distribution of Fizeau fringes in transmission with the real path of the interfered multiple-beams

    NASA Astrophysics Data System (ADS)

    Ramadan, W. A.

    2014-07-01

    In this paper, a theory is presented to estimate the intensity distribution of Fizeau fringes in transmission. In this theory the real path of the interfered light beams, through the wedge interferometer, has been considered. Interference of multiple beams has been estimated up to 12 beams considering the phase and amplitude for each beam. The summation of these waves has been done using the vector summation theory. The numerical construction of Fizeau fringes in space has been calculated considering the superposition of different number of beams. The influence of the wedge angle, number of the interfered beams and the wedge gap on the intensity distribution has been investigated. The most interesting observation in this study is the intensity distribution in different planes above the interferometer in both calculated and experimental Fizeau fringes using a He-Ne laser. Some experimental interferograms have been illustrated to confirm the validity of the proposed theory.

  6. Depletion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activity

    PubMed Central

    Zhang, Pei; Zhong, Lilin; Struble, Evi Budo; Watanabe, Hisayoshi; Kachko, Alla; Mihalik, Kathleen; Virata-Theimer, Maria Luisa; Alter, Harvey J.; Feinstone, Stephen; Major, Marian

    2009-01-01

    Using human immune globulins made from antihepatitis C virus (HCV)-positive plasma, we recently identified two antibody epitopes in the E2 protein at residues 412–426 (epitope I) and 434–446 (epitope II). Whereas epitope I is highly conserved among genotypes, epitope II varies. We discovered that epitope I was implicated in HCV neutralization whereas the binding of non-neutralizing antibody to epitope II disrupted virus neutralization mediated by antibody binding at epitope I. These findings suggested that, if this interfering mechanism operates in vivo during HCV infection, a neutralizing antibody against epitope I can be restrained by an interfering antibody, which may account for the persistence of HCV even in the presence of an abundance of neutralizing antibodies. We tested this hypothesis by affinity depletion and peptide-blocking of epitope-II-specific antibodies in plasma of a chronically HCV-infected patient and recombinant E1E2 vaccinated chimpanzees. We demonstrate that, by removing the restraints imposed by the interfering antibodies to epitope-II, neutralizing activity can be revealed in plasma that previously failed to neutralize viral stock in cell culture. Further, cross-genotype neutralization could be generated from monospecific plasma. Our studies contribute to understanding the mechanisms of antibody-mediated neutralization and interference and provide a practical approach to the development of more potent and broadly reactive hepatitis C immune globulins. PMID:19380744

  7. Small RNA profiles of wild-type and silencing suppressor-deficient tomato spotted wilt virus infected Nicotiana benthamiana.

    PubMed

    Margaria, Paolo; Miozzi, Laura; Rosa, Cristina; Axtell, Michael J; Pappu, Hanu R; Turina, Massimo

    2015-10-01

    Tospoviruses are plant-infecting viruses belonging to the family Bunyaviridae. We used a collection of wild-type, phylogenetically distinct tomato spotted wilt virus isolates and related silencing-suppressor defective mutants to study the effects on the small RNA (sRNA) accumulation during infection of Nicotiana benthamiana. Our data showed that absence of a functional silencing suppressor determined a marked increase of the total amount of viral sRNAs (vsRNAs), and specifically of the 21 nt class. We observed a common under-representation of vsRNAs mapping to the intergenic region of S and M genomic segments, and preferential mapping of the reads against the viral sense open reading frames, with the exception of the NSs gene. The NSs-mutant strains showed enrichment of NSm-derived vsRNA compared to the expected amount based on gene size. Analysis of 5' terminal nucleotide preference evidenced a significant enrichment in U for the 21 nt- and in A for 24 nt-long endogenous sRNAs in all the samples. Hotspot analysis revealed a common abundant accumulation of reads at the 5' end of the L segment, mostly in the antiviral sense, for the NSs-defective isolates, suggesting that absence of the silencing suppressor can influence preferential targeting of the viral genome. PMID:26047586

  8. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi.

    PubMed

    Zhang, Xiaoyu; Gamarra, Jaime; Castro, Steven; Carrasco, Estela; Hernandez, Aaron; Mock, Thomas; Hadaegh, Ahmad R; Read, Betsy A

    2016-01-01

    Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18-24 nt and 71-252 nt, respectively), genome copy number (3-1,459), and the number of genes targeted (2-107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways. PMID:27101007

  9. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi

    PubMed Central

    Zhang, Xiaoyu; Gamarra, Jaime; Castro, Steven; Carrasco, Estela; Hernandez, Aaron; Mock, Thomas; Hadaegh, Ahmad R.; Read, Betsy A.

    2016-01-01

    Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18–24 nt and 71–252 nt, respectively), genome copy number (3–1,459), and the number of genes targeted (2–107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways. PMID:27101007

  10. Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles.

    PubMed

    Dalzell, Johnathan J; McMaster, Steven; Fleming, Colin C; Maule, Aaron G

    2010-01-01

    The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence, increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles. Both knockdown at the transcript level through quantitative (q)PCR analysis and functional data derived from migration assay, indicate that siRNAs targeting certain areas of the FMRFamide-like peptide (FLP) transcripts are potent and specific in the silencing of gene function. In addition, we present a method of manipulating siRNA activity through the management of strand thermodynamics. Initial evaluation of strand thermodynamics as a determinant of RNA-Induced Silencing Complex (RISC) strand selection (inferred from knockdown efficacy) in the siRNAs presented here suggested that the purported influence of 5' stand stability on guide incorporation may be somewhat promiscuous. However, we have found that on strategically incorporating base mismatches in the sense strand of a G. pallida-specific siRNA, we could specifically increase or decrease the knockdown of its target (specific to the antisense strand), presumably through creating more favourable thermodynamic profiles for incorporation of either the sense (non-target-specific) or antisense (target

  11. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium

    SciTech Connect

    Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj; Behera, Jyotirmaya; Muthumani, Kandasamy; Madhuwanti, Srinivasan; Saran, Uttara; Chatterjee, Suvro

    2013-06-01

    the treatments of breast cancer drugs. • Breast cancer drugs induce vasoconstriction by interfering with NO pathway. • NO donors, cGMP analogs rescue breast cancer drug induced endothelial dysfunctions.

  12. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals.

    PubMed

    Rast, Luke I; Rouzine, Igor M; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D; Weinberger, Leor S

    2016-05-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV's mutational escape (i.e., be 'resistance-proof'). However, an outstanding question has been whether these engineered interfering particles-termed Therapeutic Interfering Particles (TIPs)-would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV ('unilaterally') evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. PMID:27152856

  13. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals

    PubMed Central

    Rast, Luke I.; Rouzine, Igor M.; Rozhnova, Ganna; Bishop, Lisa; Weinberger, Ariel D.; Weinberger, Leor S.

    2016-01-01

    The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. PMID:27152856

  14. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  ‑150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  15. Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gaine...

  16. An interfering n-back task facilitates the detection of concealed information with EDA but impedes it with cardiopulmonary physiology.

    PubMed

    Ambach, Wolfgang; Stark, Rudolf; Vaitl, Dieter

    2011-06-01

    One approach to investigate psychophysiological processes occurring in the Concealed Information Test (CIT) is to use a parallel task, which engages specific mental activity in addition to the CIT. In the present study, the influence of an interfering n-back task on the physiological responses in a Concealed Information Test (CIT) was investigated. Forty participants underwent a mock-crime experiment with a modified CIT. In a within-subject design, the CIT was applied in blocks with and without an additional n-back task. Electrodermal activity (EDA), respiration line length (RLL), heart rate (HR), and finger pulse waveform length (FPWL) were registered. Reaction times in the n-back task and the CIT were recorded. The parallel task enhanced the differential EDA response to probe vs. irrelevant items, while it diminished the response differences for RLL and phasic HR. Results shed light upon working-memory-related processes in the CIT. The diverging effects of the interfering mental activity on electrodermal and cardiopulmonary measures, if replicable, might contribute to a better understanding of the psychophysiological responsiveness underlying the CIT. PMID:21440579

  17. Potential misinterpretation of the nutritional value of dietary fiber: correcting fiber digestibility values for nondietary gut-interfering material.

    PubMed

    Montoya, Carlos A; Henare, Sharon J; Rutherfurd, Shane M; Moughan, Paul J

    2016-08-01

    The aim of this review is to identify the origin and implications of a nondietary material present in digesta and feces that interferes with the determination of dietary fiber in gastrointestinal contents. Negative values for ileal and fecal digestibility of dietary fiber are commonly reported in the literature for monogastric animal species, including humans. As negative values are not possible physiologically, this suggests the existence of a nondietary material in the gastrointestinal contents and feces that interferes with the accurate determination of dietary fiber digestibility when conventional methods of fiber determination are applied. To date, little attention has been given to this nondietary interfering material, which appears to be influenced by the type and concentration of fiber in the diet. Interestingly, estimates of dietary fiber digestibility increase substantially when corrected for the nondietary interfering material, which suggests that currently reported values underestimate the digestibility of dietary fiber and may misrepresent where, in the digestive tract, fermentation of fiber occurs. A new perspective of dietary fiber digestion in the gastrointestinal tract is developing, leading to a better understanding of the contribution of dietary fiber to health. PMID:27330145

  18. Small RNAs regulate plant responses to filamentous pathogens.

    PubMed

    Kuan, Tung; Zhai, Yi; Ma, Wenbo

    2016-08-01

    Small RNAs are central players of RNA silencing in eukaryotes. These short RNA molecules (20-25 nucleotides in length) repress target gene expression based on sequence complementarity. While small RNAs are well-known for their essential function in regulating growth and development, recent research has revealed that they also influence plant immunity. Extensive changes in small RNA accumulation have been observed during infection. This review focuses on specific small RNA changes that are involved in plant responses to filamentous eukaryotic pathogens including fungi and oomycetes. We describe how changes in small RNA accumulation influence plant immunity and summarize the cellular processes affected by these small RNAs. In particular, we discuss secondary small interfering RNAs that directly modulate the expression of defense-related genes. PMID:27208726

  19. The 6-Aminoquinolone WC5 Inhibits Human Cytomegalovirus Replication at an Early Stage by Interfering with the Transactivating Activity of Viral Immediate-Early 2 Protein ▿ †

    PubMed Central

    Loregian, Arianna; Mercorelli, Beatrice; Muratore, Giulia; Sinigalia, Elisa; Pagni, Silvana; Massari, Serena; Gribaudo, Giorgio; Gatto, Barbara; Palumbo, Manlio; Tabarrini, Oriana; Cecchetti, Violetta; Palù, Giorgio

    2010-01-01

    WC5 is a 6-aminoquinolone that potently inhibits the replication of human cytomegalovirus (HCMV) but has no activity, or significantly less activity, against other herpesviruses. Here we investigated the nature of its specific anti-HCMV activity. Structure-activity relationship studies on a small series of analogues showed that WC5 possesses the most suitable pattern of substitutions around the quinolone scaffold to give potent and selective anti-HCMV activity. Studies performed to identify the possible target of WC5 indicated that it prevents viral DNA synthesis but does not significantly affect DNA polymerase activity. In yield reduction experiments with different multiplicities of infection, the anti-HCMV activity of WC5 appeared to be highly dependent on the viral inoculum, suggesting that WC5 may act at an initial stage of virus replication. Consistently, time-of-addition and time-of-removal studies demonstrated that WC5 affects a phase of the HCMV replicative cycle that precedes viral DNA synthesis. Experiments to monitor the effects of the compound on virus attachment and entry showed that it does not inhibit either process. Evaluation of viral mRNA and protein expression revealed that WC5 targets an event of the HCMV replicative cycle that follows the transcription and translation of immediate-early genes and precedes those of early and late genes. In cell-based assays to test the effects of WC5 on the transactivating activity of the HCMV immediate-early 2 (IE2) protein, WC5 markedly interfered with IE2-mediated transactivation of viral early promoters. Finally, WC5 combined with ganciclovir in checkerboard experiments exhibited highly synergistic activity. These findings suggest that WC5 deserves further investigation as a candidate anti-HCMV drug with a novel mechanism of action. PMID:20194695

  20. Construction of p66Shc gene interfering lentivirus vectors and its effects on alveolar epithelial cells apoptosis induced by hyperoxia

    PubMed Central

    Zhang, Chan; Dong, Wen-Bin; Zhao, Shuai; Li, Qing-Ping; Kang, Lan; Lei, Xiao-Ping; Guo, Lin; Zhai, Xue-Song

    2016-01-01

    Background The aim of this study is to observe the inhibitive effects of p66Shc gene interfering lentivirus vectors on the expression of p66Shc, and to explore its effects on alveolar epithelial cells apoptosis induced by hyperoxia. Methods The gene sequences were cloned into the pLenR-GPH-shRNA lentiviral vector, which was selected by Genebank searches. The pLenR-GPH-shRNA and lentiviral vector packaging plasmid mix were cotransfected into 293T cells to package lentiviral particles. Culture virus supernatant was harvested, and then the virus titer was determined by serial dilution assay. A549 cells were transduced with the constructed lentiviral vectors, and real-time polymerase chain reaction (RT-PCR) and Western blot were used to evaluate p66Shc expression. This study is divided into a control group, a hyperoxia group, an A549-p66ShcshRNA hyperoxia group, and a negative lentivirus group. Cell apoptosis was detected by flow cytometry after 24 hours; the expression of X-linked inhibitor of apoptosis protein (XIAP) and caspase-9 were detected by immunohistochemistry assay. The production of reactive oxygen species and cellular mitochondria membrane potential (ΔΨm) were determined by fluorescence microscopy. Results We successfully established the p66Shc gene interfering lentivirus vectors, A549-p66ShcshRNA. The A549-p66ShcshRNA was transfected into alveolar epithelial cells, and the inhibitive effects on the expression of p66Shc were observed. Both RT-PCR and Western blot demonstrated downregulation of p66Shc expression in A549 cells. In the A549-p66ShcshRNA hyperoxia group, we found dampened oxidative stress. A549-p66ShcshRNA can cause p66Shc gene silencing, reduce mitochondrial reactive oxygen species generation, reduce membrane potential decrease, reduce the apoptosis of A549 cells, and reduce alveolar epithelial cell injury, while the lentiviral empty vector group had no such changes. Conclusion p66Shc gene interfering lentivirus vector can affect the

  1. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    PubMed Central

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  2. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    PubMed

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-01-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis. PMID:27477591

  3. Specific argonautes selectively bind small RNAs derived from potato spindle tuber viroid and attenuate viroid accumulation in vivo.

    PubMed

    Minoia, Sofia; Carbonell, Alberto; Di Serio, Francesco; Gisel, Andreas; Carrington, James C; Navarro, Beatriz; Flores, Ricardo

    2014-10-01

    The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to

  4. Template free synthesis of free-standing silver nanowhisker and nanocrown superlattice by interfering femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshiki; Miyanaga, Noriaki; Momoo, Kazuma; Hiromoto, Takuya

    2014-09-01

    We report the fabrication and control of a nanostructure superlattice of silver using a solid-liquid-solid (SLS) mechanism induced on a silver thin film by interfering femtosecond laser irradiation. An interference pattern induces fluid flows of silver, which is followed by freezing of a free-standing nanowhisker, nanobump, or nanocrown superlattice fixed on a substrate. The smallest curvature radius of the nanowhisker’s apex was 4 nm, which is smaller than one-fifth of the silver nanorods fabricated by chemosynthesis. The SLS process is a superior alternative to sequential bottom-up processes involving bottom-up synthesis of nanorods, purification, alignment or self-assembling, stabilization, and preservation.

  5. In vitro transcription of defective interfering particles of influenza virus produces polyadenylic acid-containing complementary RNAs.

    PubMed Central

    Chanda, P K; Chambers, T M; Nayak, D P

    1983-01-01

    Influenza virus defective interfering (DI) RNAs, which originate from polymerase genes by simple internal deletion, can be transcribed in vitro. These DI RNA transcripts contain covalently linked polyadenylic acid, and their synthesis is dependent on ApG or capped RNAs as primers. Furthermore, like the standard viral RNA transcripts, they are complementary in nature and are slightly smaller in size compared with the corresponding DI RNAs. Hybridization of the specific DI RNA transcripts with the corresponding DI RNA segments and analysis of the duplex RNA by gel electrophoresis indicate that they are not incomplete polymerase gene transcripts, but rather the transcripts of the DI RNAs. Since influenza virus DI RNAs contain both the 5' and the 3' termini and transcribe polyadenylic acid-containing complementary RNAs in vitro the mechanism of interference may differ from that of the 5' DI RNAs of Sendai and vesicular stomatitis viruses. Images PMID:6185696

  6. Solid-liquid-solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Nakata, Y.; Miyanaga, N.; Momoo, K.; Hiromoto, T.

    2013-06-01

    One-dimensional nanomaterial superlattices are fundamental components in plasmonics, nanophotonics, and nanoelectronics. Bottom-up techniques such as vapour-liquid-solid (VLS) and chemosynthesis have been used to fabricate the structure but are nonoptimal for controlling alignment and size. Here we report the fabrication of gold nanowhisker superlattice, based on a novel mechanism termed solid-liquid-solid (SLS). An interfering femtosecond laser pulse induces fluid flows of nanosize gold, which is followed by droplets pinching off from them and freezing of a free-standing nanowhisker superlattice fixed on a substrate. The shape is defined by liquid motion and not by crystallographic growth although its structure is polycrystalline. The smallest curvature radius of its vertex was 3.4 nm, which is one-half of the smallest nanorods fabricated by chemosynthesis. SLS process is a superior alternative to sequential bottom-up processes involving catalyst fabrication, bottom-up synthesis, purification, alignment, stabilization, and preservation.

  7. Small Wins.

    ERIC Educational Resources Information Center

    Rhatigan, James J.; Schuh, John H.

    2003-01-01

    Examines how it easy for people to overlook small successes when they are overwhelmed by and preoccupied with large projects and goals. Explores the concept of "small wins" in organizational theory, which have the potential to become a prominent part of institutional culture and impact organizational behavior and change. (GCP)

  8. Reprint of "Modeling the intracellular replication of influenza A virus in the presence of defective interfering RNAs.

    PubMed

    Laske, Tanja; Heldt, Frank Stefan; Hoffmann, Helene; Frensing, Timo; Reichl, Udo

    2016-06-15

    Like many other viral pathogens, influenza A viruses can form defective interfering particles (DIPs). These particles carry a large internal deletion in at least one of their genome segments. Thus, their replication depends on the co-infection of cells by standard viruses (STVs), which supply the viral protein(s) encoded by the defective segment. However, DIPs also interfere with STV replication at the molecular level and, despite considerable research efforts, the mechanism of this interference remains largely elusive. Here, we present a mechanistic mathematical model for the intracellular replication of DIPs. In this model, we account for the common hypothesis that defective interfering RNAs (DI RNAs) possess a replication advantage over full-length (FL) RNAs due to their reduced length. By this means, the model captures experimental data from yield reduction assays and from studies testing different co-infection timings. In addition, our model predicts that one important aspect of interference is the competition for viral proteins, namely the heterotrimeric viral RNA-dependent RNA polymerase (RdRp) and the viral nucleoprotein (NP), which are needed for encapsidation of naked viral RNA. Moreover, we find that there may be an optimum for both the DI RNA synthesis rate and the time point of successive co-infection of a cell by DIPs and STVs. Comparing simulations for the growth of DIPs with a deletion in different genome segments suggests that DI RNAs derived from segments which encode for the polymerase subunits are more competitive than others. Overall, our model, thus, helps to elucidate the interference mechanism of DI RNAs and provides a novel hypothesis why DI RNAs derived from the polymerase-encoding segments are more abundant in DIP preparations. PMID:27208847

  9. Maternal supportive and interfering control as predictors of adaptive and social development in children with and without developmental delays

    PubMed Central

    Green, S.; Caplan, B.; Baker, B.

    2016-01-01

    Background Parents of children with developmental delays (DD) have been found to use more controlling behaviour with their children than parents of children with typical development (TD). While controlling behaviour is related to poorer developmental outcomes in TD children, there is little research on how it predicts outcomes in DD children. Furthermore, existing research tends to use inconsistent or non-specific definitions of controlling behaviour, often combining parent control which follows the child’s goal (e.g. supportive direction) and that which interferes with the child’s goal (e.g. interference). Methods Participants were 200 mother–child dyads observed at child age 3, with follow-up assessments of adaptive behaviour and social skills administered at child ages 5 and 6, respectively. We coded the frequency of both types of controlling behaviour based on mothers’ interactions with their children with TD (n = 113) or DD (n = 87) at age 3. Results Mothers in the DD group used more interfering but not more supportive directive acts compared to mothers in the TD group. Adaptive behaviour was assessed at child age 5 and social skills were assessed at age 6. Higher frequency of supportive directive acts predicted better adaptive functioning for the TD group and better social skills for the DD group. Higher frequency of interfering acts predicted lower adaptive and social skills for children with DD but not with TD. Conclusions Results are discussed in terms of the differential developmental needs of children with and without DD as well as implications for early intervention. PMID:23865770

  10. Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ying; Rana, Tariq M.

    Small (19-31-nucleotides) noncoding RNAs were identified in the past 10 years for their distinct function in gene silencing. The best known gene-silencing phenomenon, RNA interference (RNAi), is triggered in a sequence-specific manner by endogenously produced or exogenously introduced small doubled-stranded RNAs. As knowledge of the structure and function of the RNAi machinery has expanded, this phenomenon has become a powerful tool for biochemical research; it has enormous potential for therapeutics. This chapter summarizes significant aspects of three major classes of small noncoding, regulatory RNAs: small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Here, we focus on the biogenesis of these small RNAs, their structural features and coupled effectors as well as the mechanisms of each small regulatory RNA pathway which reveal fascinating ways by which gene silencing is controlled and fine-tuned at an epigenetic level.

  11. Identification of a dicer homologue gene (DCL2) in Nicotiana tabacum.

    PubMed

    Udriste, A A; Stan, V; Radu, G L; Tabler, M; Cucu, N

    2012-11-01

    Eukaryotes possess a mechanism that generates small interfering RNA (siRNA) and microRNA (miRNA) and use these to regulate gene expression at the transcriptional or post-transcriptional level. These small RNAs (21-24nt) are processed from long double-stranded RNA precursors by type III RNase enzymes, referred to as DICER or DICER-LIKE proteins (DCLs). In Arabidopsis, there are four DCL genes and their role in small RNA biogenesis and silencing has been the subject of intense study. DCL2 is less well studied than the other DCL proteins although it is known to play a role in formation of natural antisense siRNA and may be involved in transitive silencing of transgene transcripts. This study provides basic genomic information on DCL2 in the Nicotiana tabacum (NtDCL2) gene family and its probable roles in plant growth and development. PMID:22812643

  12. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses.

    PubMed

    Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E C; Taylor, Nigel J

    2016-04-01

    Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5'-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD. PMID:26811902

  13. Targeting HER3 by interfering with its Sec61-mediated cotranslational insertion into the endoplasmic reticulum

    PubMed Central

    Ruiz-Saenz, Ana; Sandhu, Manbir; Carrasco, Yazmin; Maglathlin, Rebecca L.; Taunton, Jack; Moasser, Mark M.

    2014-01-01

    There is increasing evidence implicating HER3 in several types of cancer. But the development of targeted therapies to inactivate HER3 function has been a challenging endeavor. Its kinase domain functions in allostery not catalysis, and the classical ATP-analog class of tyrosine kinase inhibitors fail to inactivate it. Here we describe a novel approach that eliminates HER3 expression. The small-molecule cotransin CT8 binds the Sec61 translocon and prevents the signal peptide of the nascent HER3 protein from initiating its cotranslational translocation, resulting in the degradation of HER3 but not the other HER proteins. CT8 treatment suppresses the induction of HER3 that accompanies lapatinib treatment of HER2-amplified cancers and synergistically enhances the apoptotic effects of lapatinib. The target selectivities of cotransins are highly dependent on their structure and the signal sequence of targeted proteins and can be narrowed through structure-function studies. Targeting Sec61-dependent processing identifies a novel strategy to eliminate HER3 function. PMID:25619841

  14. PITPs as Targets for Selectively Interfering With Phosphoinositide Signaling in Cells

    PubMed Central

    Nile, Aaron H.; Tripathi, Ashutosh; Yuan, Peihua; Mousley, Carl J.; Suresh, Sundari; Wallace, Iain Michael; Shah, Sweety D.; Pohlhaus, Denise Teotico; Temple, Brenda; Nislow, Corey; Giaever, Guri; Tropsha, Alexander; Davis, Ronald W.; St Onge, Robert P.; Bankaitis, Vytas A.

    2013-01-01

    Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production, and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs, nor PITPs in general, have been exploited as targets for chemical inhibition for such purposes. Herein, we validate the first small molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and are effective inhibitors in vitro and in vivo. We further establish Sec14 is the sole essential NPPM target in yeast, that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects, and demonstrate NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof-of-concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies. PMID:24292071

  15. Comparison of distribution and activity of nanoparticles with short interfering DNA (Dbait) in various living systems.

    PubMed

    Berthault, N; Maury, B; Agrario, C; Herbette, A; Sun, J-S; Peyrieras, N; Dutreix, M

    2011-10-01

    Introducing small DNA molecules (Dbait) impairs the repair of damaged chromosomes and provides a new method for enhancing the efficiency of radiotherapy in radio-resistant tumors. The radiosensitizing activity is dependent upon the efficient delivery of Dbait molecules into the tumor cells. Different strategies have been compared, to improve this key step. We developed a pipeline of assays to select the most efficient nanoparticles and administration protocols before preclinical assays: (i) molecular analyses of complexes formed with Dbait molecules, (ii) cellular tests for Dbait uptake and activity, (iii) live zebrafish embryo confocal microscopy monitoring for in vivo distribution and biological activity of the nanoparticles and (iv) tumor growth and survival measurement on mice with xenografted tumors. Two classes of nanoparticles were compared, polycationic polymers with linear or branched polyethylenimine (PEI) and covalently attached cholesterol (coDbait). The most efficient Dbait transfection was observed with linear PEI complexes, in vitro and in vivo. Doses of coDbait ten-fold higher than PEI/Dbait nanoparticles, and pretreatment with chloroquine, were required to obtain the same antitumoral effect on xenografted melanoma. However, with a 22-fold lower 'efficacy dose/toxicity dose' ratio as compared with Dbait/PEI, coDbait was selected for clinical trials. PMID:21799529

  16. The hub protein loquacious connects the microRNA and short interfering RNA pathways in mosquitoes

    PubMed Central

    Haac, Mary Etna; Anderson, Michelle A.E.; Eggleston, Heather; Myles, Kevin M.; Adelman, Zach N.

    2015-01-01

    Aedes aegypti mosquitoes vector several arboviruses of global health significance, including dengue viruses and chikungunya virus. RNA interference (RNAi) plays an important role in antiviral immunity, gene regulation and protection from transposable elements. Double-stranded RNA binding proteins (dsRBPs) are important for efficient RNAi; in Drosophila functional specialization of the miRNA, endo-siRNA and exo-siRNA pathway is aided by the dsRBPs Loquacious (Loqs-PB, Loqs-PD) and R2D2, respectively. However, this functional specialization has not been investigated in other dipterans. We were unable to detect Loqs-PD in Ae. aegypti; analysis of other dipteran genomes demonstrated that this isoform is not conserved outside of Drosophila. Overexpression experiments and small RNA sequencing following depletion of each dsRBP revealed that R2D2 and Loqs-PA cooperate non-redundantly in siRNA production, and that these proteins exhibit an inhibitory effect on miRNA levels. Conversely, Loqs-PB alone interacted with mosquito dicer-1 and was essential for full miRNA production. Mosquito Loqs interacted with both argonaute 1 and 2 in a manner independent of its interactions with dicer. We conclude that the functional specialization of Loqs-PD in Drosophila is a recently derived trait, and that in other dipterans, including the medically important mosquitoes, Loqs-PA participates in both the miRNA and endo-siRNA based pathways. PMID:25765650

  17. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications

    PubMed Central

    Zhang, Weiwei; Li, Chenghua

    2016-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  18. Exploiting Quorum Sensing Interfering Strategies in Gram-Negative Bacteria for the Enhancement of Environmental Applications.

    PubMed

    Zhang, Weiwei; Li, Chenghua

    2015-01-01

    Quorum sensing (QS) is a widespread intercellular form of communication to coordinate physiological processes and cooperative activities of bacteria at the population level, and it depends on the production, secretion, and detection of small diffusible autoinducers, such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2. In this review, the function of QS autoinducers of gram-negative bacteria in different aspects of wastewater treatment systems is examined. Based on research primarily performed over the past 10 years, QS involvement in the formation of biofilm and aerobic granules and changes of the microbial community and degradation/transformation pathways is discussed. In particular, the QS pathway in the role of bacterial infections and disease prevention in aquaculture is addressed. Interference of QS autoinducer-regulated pathways is considered potential treatment for a variety of environmentally related problems. This review is expected to serve as a stepping stone for further study and development strategies based on the mediation of QS-regulated pathways to enhance applications in both wastewater treatment systems and aquaculture. PMID:26779175

  19. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa)

    PubMed Central

    2011-01-01

    Background Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. Results Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. Conclusions In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of cs

  20. Argonaute: The executor of small RNA function.

    PubMed

    Azlan, Azali; Dzaki, Najat; Azzam, Ghows

    2016-08-20

    The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment. PMID:27569398

  1. Synthetic Multivariate Models to Accommodate Unmodeled Interfering Components During Quantitative Spectral Analyses

    SciTech Connect

    Haaland, David M.

    1999-07-14

    The analysis precision of any multivariate calibration method will be severely degraded if unmodeled sources of spectral variation are present in the unknown sample spectra. This paper describes a synthetic method for correcting for the errors generated by the presence of unmodeled components or other sources of unmodeled spectral variation. If the spectral shape of the unmodeled component can be obtained and mathematically added to the original calibration spectra, then a new synthetic multivariate calibration model can be generated to accommodate the presence of the unmodeled source of spectral variation. This new method is demonstrated for the presence of unmodeled temperature variations in the unknown sample spectra of dilute aqueous solutions of urea, creatinine, and NaCl. When constant-temperature PLS models are applied to spectra of samples of variable temperature, the standard errors of prediction (SEP) are approximately an order of magnitude higher than that of the original cross-validated SEPs of the constant-temperature partial least squares models. Synthetic models using the classical least squares estimates of temperature from pure water or variable-temperature mixture sample spectra reduce the errors significantly for the variable temperature samples. Spectrometer drift adds additional error to the analyte determinations, but a method is demonstrated that can minimize the effect of drift on prediction errors through the measurement of the spectra of a small subset of samples during both calibration and prediction. In addition, sample temperature can be predicted with high precision with this new synthetic model without the need to recalibrate using actual variable-temperature sample data. The synthetic methods eliminate the need for expensive generation of new calibration samples and collection of their spectra. The methods are quite general and can be applied using any known source of spectral variation and can be used with any multivariate

  2. A therapeutic trial of human melanomas with combined small interfering RNAs targeting adaptor molecules p130Cas and paxillin activated under expression of ganglioside GD3.

    PubMed

    Makino, Yusuke; Hamamura, Kazunori; Takei, Yoshifumi; Bhuiyan, Robiul Hasan; Ohkawa, Yuki; Ohmi, Yuhsuke; Nakashima, Hideyuki; Furukawa, Keiko; Furukawa, Koichi

    2016-08-01

    We previously demonstrated that focal adhesion kinase (FAK), p130Cas and paxillin are crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Therefore, molecules existing in the GD3-mediated signaling pathway could be considered as suitable targets for therapeutic intervention in malignant melanoma. The aim of this study was to determine whether blockade of p130Cas and/or paxillin by RNAi suppresses melanoma growth. We found a suitable dose (40 μM siRNA, 25 μl/tumor) of the siRNA to suppress p130Cas in the xenografts generated in nu/nu mice. Based on these results, we performed intratumoral (i.t.) treatment with anti-p130Cas and/or anti-paxillin siRNAs mixed with atelocollagen as a drug delivery system in a xenograft tumor of a human melanoma cell line, SK-MEL-28. Mixture of atelocollagen (1.75%) and an siRNA (500 or 1000 pmol/tumor) was injected into the tumors every 3 days after the first injection. An siRNA against human p130Cas markedly suppressed tumor growth of the xenograft in a dose-dependent manner, whereas siRNA against human paxillin slightly inhibited the tumor growth. A control siRNA against firefly luciferase showed no effect. To our surprise, siRNA against human p130Cas (500 or 1000 pmol/tumor) combined with siRNA against human paxillin dramatically suppressed tumor growth. In agreement with the tumor suppression effects of the anti-p130Cas siRNA, reduction in Ki-67 positive cell number as well as in p130Cas expression was demonstrated by immunohistostaining. These results suggested that blockade of GD3-mediated growth signaling pathways by siRNAs might be a novel and promising therapeutic strategy against malignant melanomas, provided signaling molecules such as p130Cas and paxillin are significantly expressed in individual cases. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. PMID:27068854

  3. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.

    PubMed

    Krol, Jacek; Sobczak, Krzysztof; Wilczynska, Urszula; Drath, Maria; Jasinska, Anna; Kaczynska, Danuta; Krzyzosiak, Wlodzimierz J

    2004-10-01

    We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC). PMID:15292246

  4. Traceable Nanoparticle Delivery of Small Interfering RNA and Retinoic Acid with Temporally Release Ability to Control Neural Stem Cell Differentiation for Alzheimer's Disease Therapy.

    PubMed

    Zhang, Ran; Li, Yan; Hu, Bingbing; Lu, Zhiguo; Zhang, Jinchao; Zhang, Xin

    2016-08-01

    Nanoparticles that can efficiently control the differentiation of neural stem cells (NSCs) into neurons are developed for Alzheimer's disease (AD) therapy. The treatment with these nanoparticles results in an attenuation of neuronal loss and rescues memory deficiencies in mice. The system can also be used to monitor the transplantation site, as well as the migration of NSCs in real time. Therefore, the system is proposed to open up new avenues for AD treatment. PMID:27168033

  5. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    SciTech Connect

    Zhou Hongsheng; Zhang Donghua . E-mail: hanson2008@gmail.com; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-08-18

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs.

  6. Design and validation of small interfering RNA on respiratory syncytial virus M2-2 gene: A potential approach in RNA interference on viral replication.

    PubMed

    Chin, V K; Atika Aziz, Nur A; Hudu, Shuaibu A; Harmal, Nabil S; Syahrilnizam, A; Jalilian, Farid A; Zamberi, S

    2016-10-01

    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection. PMID:27432115

  7. Analysis of the small interfering RNA profiles of randomly inserted pTRM-TRI6 Fusarium graminearum mutants and their DON related phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deoxynivalenol (DON) production by Fusarium graminearum requires activation of the trichothecene pathway in which TRI5 catalyzes the first step of trichothecene synthesis and TRI6 is a transcription factor activates the pathway. RNA interference (RNAi) has emerged as a useful fungal genetics tool f...

  8. Using Small RNA Technology to Efficiently Identify Tomato Viruses and Viroids in Mixed-Infected Field Samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small interfering RNAs (siRNA) are produced in plants as a defense mechanism against virus or viroid infection. Analysis of a siRNA profile upon virus infection in plants may allow the de novo assembly of the viral genome. In the present study, we were interested in developing an efficient sequenc...

  9. The Gathering Storm: Federal Laws That Have a Serious Potential of Interfering with the Mission and Character of Evangelical Christian Colleges and Universities

    ERIC Educational Resources Information Center

    Davids, James A.

    2012-01-01

    In the early 1980s, the University of Notre Dame Law School's Center for Constitutional Studies surveyed 801 religiously affiliated colleges to determine which federal laws and regulations had a "serious potential" of interfering with the character and mission of the schools. From the 226 responses, the Center identified 11 issues,…

  10. Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants

    PubMed Central

    Fujikawa, Takashi; Kouzai, Yusuke; Minami, Eiichi; Yano, Shigekazu; Koga, Hironori; Meshi, Tetsuo; Nishimura, Marie

    2012-01-01

    Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is

  11. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants.

    PubMed

    Fujikawa, Takashi; Sakaguchi, Ayumu; Nishizawa, Yoko; Kouzai, Yusuke; Minami, Eiichi; Yano, Shigekazu; Koga, Hironori; Meshi, Tetsuo; Nishimura, Marie

    2012-01-01

    Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is

  12. Small ethics.

    PubMed

    Chambers, David W

    2007-01-01

    Traditionally, ethics in the professions has focused on big problems that could be found on other peoples' back porches. Small, habitual, frequent, and personal lapses get little attention. In this essay, the literature on opportunism is applied to dentistry with a view toward bringing matters of "near ethics" within reach. Examples of small lapses are discussed under the headings of shirking, free riding, shrinkage, pressing, adverse selection, moral hazard, and risk shifting. The conditions that support opportunism include relationships with small numbers of transactions and uneven access to information. Practical limits on understanding all the consequences of agreements and the costs of supervising others and enforcing corrections of breaches are inescapable aspects of opportunism. Opportunism may not be accepted by all as the subject matter of ethical, but curbing it is a worthy goal and understanding the causes and management of opportunism casts some light on the ethical enterprise. Four suggestions are offered for addressing issue of opportunism. PMID:17691498

  13. Small Magnetometer

    NASA Technical Reports Server (NTRS)

    Kuhnke, Falko; Musmann, Gunter; Glassmeier, K. H.; Tsurutani, Bruce

    1995-01-01

    Small, lightweight, low-power magnetometer measures three-dimensional magnetic field. Includes three toroidal cores - one for each dimension. Exhibits high sensitivity, low zero-point drift, and low noise. Magnetometer circuit includes driver circuit and three analog signal-processing circuits. Output of analog signal-processing circuit proportional to one of components of external magnetic field.

  14. Strain-specific mobilization and amplification of a transgenic defective-interfering DNA of the geminivirus beet curly top virus.

    PubMed

    Stenger, D C

    1994-09-01

    Transgenic Nicotiana benthamiana plants have been constructed which bear integrated, tandemly repeated copies of a beet curly top virus (BCTV) defective-interfering (DI) DNA derived from the Logan strain. Transgenic DI-DNA plant lines challenge-inoculated with BCTV-Logan exhibited delayed and attenuated symptoms compared to nontransgenic plants. Infection of transgenic plants with the Logan strain resulted in the mobilization of the integrated DI-DNA sequence, which was subsequently amplified as an episome. The accumulation of Logan helper virus DNA forms was reduced in transgenic plants, relative to nontransgenic plants. In contrast, no delay or attenuation of symptoms was observed for transgenic plants challenge-inoculated with the BCTV strains CFH and Worland. Infection by the CFH and Worland strains did not result in mobilization or amplification of the integrated Logan DI-DNA sequence, and no consistent differences in the accumulation of CFH or Worland genomic viral DNA forms were observed among transgenic and nontransgenic plants. These results, and a comparison of putative DNA replication origin sequences, suggest that BCTV strains display specificity with respect to recognition of heterologous DNA replication origin cis-elements. PMID:8053165

  15. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction

    SciTech Connect

    Iwatani, Kazunori; Fujimoto, Tetsuhiro; Ito, Takaaki

    2010-09-24

    Research highlights: {yields} Cyclin D1 interacts with RUNX3 and inhibits the interaction and collaboration of RUNX3 with coactivator p300. {yields} Cyclin D1 blocks the ability of RUNX3 to induce the expression of cdk inhibitor p21. {yields} Cyclin D1 releases cancer cells from the inhibition of proliferation induced by RUNX3. -- Abstract: Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.

  16. Pivotal Role of the Non-hr Origin of DNA Replication in the Genesis of Defective Interfering Baculoviruses

    PubMed Central

    Pijlman, Gorben P.; Dortmans, Jos C. F. M.; Vermeesch, Angela M. G.; Yang, Kai; Martens, Dirk E.; Goldbach, Rob W.; Vlak, Just M.

    2002-01-01

    The generation of deletion mutants, including defective interfering viruses, upon serial passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in insect cell culture has been studied. Sequences containing the non-homologous region origin of DNA replication (non-hr ori) became hypermolar in intracellular viral DNA within 10 passages in Se301 insect cells, concurrent with a dramatic drop in budded virus and polyhedron production. These predominant non-hr ori-containing sequences accumulated in larger concatenated forms and were generated de novo as demonstrated by their appearance and accumulation upon infection with a genetically homogenous bacterial clone of SeMNPV (bacmid). Sequences were identified at the junctions of the non-hr ori units within the concatemers, which may be potentially involved in recombination events. Deletion of the SeMNPV non-hr ori using RecE/RecT-mediated homologous ET recombination in Escherichia coli resulted in a recombinant bacmid with strongly enhanced stability of virus and polyhedron production upon serial passage in insect cells. This suggests that the accumulation of non-hr oris upon passage is due to the replication advantage of these sequences. The non-hr ori deletion mutant SeMNPV bacmid can be exploited as a stable eukaryotic heterologous protein expression vector in insect cells. PMID:11991989

  17. Dimethyl Cardamonin Exhibits Anti-inflammatory Effects via Interfering with the PI3K-PDK1-PKCα Signaling Pathway

    PubMed Central

    Yu, Wan-Guo; He, Hao; Yao, Jing-Yun; Zhu, Yi-Xiang; Lu, Yan-Hua

    2015-01-01

    Consumption of herbal tea [flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry (Myrtaceae)] is associated with health beneficial effects against multiple diseases including diabetes, asthma, and inflammatory bowel disease. Emerging evidences have reported that High mobility group box 1 (HMGB1) is considered as a key “late” proinflammatory factor by its unique secretion pattern in aforementioned diseases. Dimethyl cardamonin (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone, DMC) is a major ingredient of C. operculatus flower buds. In this study, the anti-inflammatory effects of DMC and its underlying molecular mechanisms were investigated on lipopolysaccharide (LPS)-induced macrophages. DMC notably suppressed the mRNA expressions of TNF-α, IL-1β, IL-6, and HMGB1, and also markedly decreased their productions in a time- and dose-dependent manner. Intriguingly, DMC could notably reduce LPS-stimulated HMGB1 secretion and its nucleo-cytoplasmic translocation. Furthermore, DMC dose-dependently inhibited the activation of phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1), and protein kinase C alpha (PKCα). All these data demonstrated that DMC had anti-inflammatory effects through reducing both early (TNF-α, IL-1β, and IL-6) and late (HMGB1) cytokines expressions via interfering with the PI3K-PDK1-PKCα signaling pathway. PMID:26535080

  18. Anion sensing and interfering behaviors of electrolyte-insulator-semiconductor sensors with nitrogen plasma-treated samarium oxide

    NASA Astrophysics Data System (ADS)

    Ye, Yu-Ren; Wang, Jer-Chyi; Chan, Ya-Ting

    2015-04-01

    In this article, we demonstrate a samarium oxide (Sm2O3) electrolyte-insulator-semiconductor (EIS) sensor with nitrogen plasma immersion ion implantation (PIII) treatment for anion sensing and interfering characterization. Chloride (Cl-), nitrite (NO2-), and nitrate (NO3-) ions were detected, and the sensitivity was about 49.75 mV/pCl, 53.8 mV/pNO2, and 56.19 mV/pNO3, respectively. Ion sensitivity was enhanced with the increase in ionic radius of the target ion. Titration was performed to analyze the interference of anions. To assess interferences from these ions (Cl-, NO2-, and NO3-), selectivity coefficients obtained by fixed interference method (FIM) measurements were presented. In result, the coefficients indicate that the interference can be ignored. Furthermore, characteristics of drift demonstrates that the sample exhibits long-term stability for significantly lower drift of chloride, nitrite, and nitrate ions, respectively. The Sm2O3 EIS sensor with nitrogen PIII treatment exhibits superior anion sensitivity, selectivity, and stability; therefore, this sensor is suitable for future biosensing applications.

  19. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral.

    PubMed

    Smith, Claire M; Scott, Paul D; O'Callaghan, Christopher; Easton, Andrew J; Dimmock, Nigel J

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  20. Alkylrhodamines enhance the toxicity of clotrimazole and benzalkonium chloride by interfering with yeast pleiotropic ABC-transporters.

    PubMed

    Knorre, Dmitry A; Besedina, Elizaveta; Karavaeva, Iuliia E; Smirnova, Ekaterina A; Markova, Olga V; Severin, Fedor F

    2016-06-01

    ABC-transporters with broad substrate specificity are responsible for pathogenic yeast resistance to antifungal compounds. Here we asked whether highly hydrophobic chemicals with delocalized positive charge can be used to overcome the resistance. Such molecules efficiently penetrate the plasma membrane and accumulate inside the cells. We reasoned that these properties can convert an active efflux of the compounds into a futile cycle thus interfering with the extrusion of the antibiotics. To test this, we studied the effects of several alkylated rhodamines on the drug resistance of yeast Saccharomyces cerevisiae We found that octylrhodamine synergetically increases toxicity of Pdr5p substrate-clotrimazole, while the others were less effective. Next, we compared the contributions of three major pleiotropic ABC-transporters (Pdr5p, Yor1p, Snq2p) on the accumulation of the alkylated rhodamines. While all of the tested compounds were extruded by Pdr5p, Yor1p and Snq2p showed narrower substrate specificity. Interestingly, among the tested alkylated rhodamines, inactivation of Pdr5p had the strongest effect on the accumulation of octylrhodamine inside the cells, which is consistent with the fact that clotrimazole is a substrate of Pdr5p. As alkylated rhodamines were shown to be non-toxic on mice, our study makes them potential components of pharmacological antifungal compositions. PMID:27044313

  1. Deacetylase inhibitors repress STAT5-mediated transcription by interfering with bromodomain and extra-terminal (BET) protein function

    PubMed Central

    Pinz, Sophia; Unser, Samy; Buob, Dominik; Fischer, Philipp; Jobst, Belinda; Rascle, Anne

    2015-01-01

    Signal transducer and activator of transcription STAT5 is essential for the regulation of proliferation and survival genes. Its activity is tightly regulated through cytokine signaling and is often upregulated in cancer. We showed previously that the deacetylase inhibitor trichostatin A (TSA) inhibits STAT5-mediated transcription by preventing recruitment of the transcriptional machinery at a step following STAT5 binding to DNA. The mechanism and factors involved in this inhibition remain unknown. We now show that deacetylase inhibitors do not target STAT5 acetylation, as we initially hypothesized. Instead, they induce a rapid increase in global histone acetylation apparently resulting in the delocalization of the bromodomain and extra-terminal (BET) protein Brd2 and of the Brd2-associated factor TBP to hyperacetylated chromatin. Treatment with the BET inhibitor (+)-JQ1 inhibited expression of STAT5 target genes, supporting a role of BET proteins in the regulation of STAT5 activity. Accordingly, chromatin immunoprecipitation demonstrated that Brd2 is associated with the transcriptionally active STAT5 target gene Cis and is displaced upon TSA treatment. Our data therefore indicate that Brd2 is required for the proper recruitment of the transcriptional machinery at STAT5 target genes and that deacetylase inhibitors suppress STAT5-mediated transcription by interfering with Brd2 function. PMID:25769527

  2. Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging.

    PubMed

    Tripathi, Ashish; Emmons, Erik D; Wilcox, Phillip G; Guicheteau, Jason A; Emge, Darren K; Christesen, Steven D; Fountain, Augustus W

    2011-06-01

    We have previously demonstrated the use of wide-field Raman chemical imaging (RCI) to detect and identify the presence of trace explosives in contaminated fingerprints. In this current work we demonstrate the detection of trace explosives in contaminated fingerprints on strongly Raman scattering surfaces such as plastics and painted metals using an automated background subtraction routine. We demonstrate the use of partial least squares subtraction to minimize the interfering surface spectral signatures, allowing the detection and identification of explosive materials in the corrected Raman images. The resulting analyses are then visually superimposed on the corresponding bright field images to physically locate traces of explosives. Additionally, we attempt to address the question of whether a complete RCI of a fingerprint is required for trace explosive detection or whether a simple non-imaging Raman spectrum is sufficient. This investigation further demonstrates the ability to nondestructively identify explosives on fingerprints present on commonly found surfaces such that the fingerprint remains intact for further biometric analysis. PMID:21639982

  3. Development and preclinical efficacy of novel transforming growth factor-β1 short interfering RNAs for pulmonary fibrosis.

    PubMed

    D'Alessandro-Gabazza, Corina N; Kobayashi, Tetsu; Boveda-Ruiz, Daniel; Takagi, Takehiro; Toda, Masaaki; Gil-Bernabe, Paloma; Miyake, Yasushi; Yasukawa, Atsushi; Matsuda, Yoshikazu; Suzuki, Noboru; Saito, Hiromitsu; Yano, Yutaka; Fukuda, Ayako; Hasegawa, Tetsuya; Toyobuku, Hidekazu; Rennard, Stephen I; Wagner, Peter D; Morser, John; Takei, Yoshiyuki; Taguchi, Osamu; Gabazza, Esteban C

    2012-03-01

    Idiopathic pulmonary fibrosis is a chronic devastating disease of unknown etiology. No therapy is currently available. A growing body of evidence supports the role of transforming growth factor (TGF)-β1 as the major player in the pathogenesis of the disease. However, attempts to control its expression and to improve the outcome of pulmonary fibrosis have been disappointing. We tested the hypothesis that TGF-β1 is the dominant factor in the acute and chronic phases of pulmonary fibrosis and developed short interfering (si)RNAs directed toward molecules implicated in the disease. This study developed novel sequences of siRNAs targeting the TGF-β1 gene and evaluated their therapeutic efficacy in two models of pulmonary fibrosis: a model induced by bleomycin and a novel model of the disease developed spontaneously in mice overexpressing the full length of human TGF-β1 in the lungs. Intrapulmonary delivery of aerosolized siRNAs of TGF-β1 with sequences common to humans and rodents significantly inhibited bleomycin-induced pulmonary fibrosis in the acute and chronic phases of the disease and in a dose-dependent manner. Aerosolized human-specific siRNA also efficiently inhibited pulmonary fibrosis, improved lung function, and prolonged survival in human TGF-β1 transgenic mice. Mice showed no off-target effects after intratracheal administration of siRNA. These results suggest the applicability of these novel siRNAs as tools for treating pulmonary fibrosis in humans. PMID:22033267

  4. A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes.

    PubMed

    Cipri, Andrea; Schulz, Christopher; Ludwig, Roland; Gorton, Lo; Del Valle, Manel

    2016-05-15

    A novel application of cellobiose dehydrogenase (CDH) as sensing element for a Bioelectronic Tongue (BioET) system has been tested. In this work CDHs from various fungi, which exhibit different substrate specificities, were used to discriminate between lactose and glucose in presence of the interfering matrix compound Ca(2+) in various mixtures. This work exploits the advantage of an electronic tongue system with practically zero pre-treatment of samples and operation at low voltages in a direct electron transfer mode. The Artificial Neural Network (ANN) used in the BioET system to interpret the voltammetric data was able to provide a correct prediction of the concentrations of the analytes considered. Correlation coefficients in the comparison of obtained vs. expected concentrations were highly significant, especially for lactose (R(2)=0.975) and Ca(2+) (R(2)=0.945). This BioET application has a high potential especially for the food and dairy industry and also, if further miniaturised in screen printed format, for its in-situ use. PMID:26748369

  5. 5-Fluorouracil sensitizes colorectal tumor cells towards double stranded DNA breaks by interfering with homologous recombination repair

    PubMed Central

    Srinivas, Upadhyayula Sai; Dyczkowski, Jerzy; Beißbarth, Tim; Gaedcke, Jochen; Mansour, Wael Y.; Borgmann, Kerstin; Dobbelstein, Matthias

    2015-01-01

    Malignant tumors of the rectum are treated by neoadjuvant radiochemotherapy. This involves a combination of 5-fluorouracil (5-FU) and double stranded DNA-break (DSB)-inducing radiotherapy. Here we explored how 5-FU cooperates with DSB-induction to achieve sustainable DNA damage in colorectal cancer (CRC) cells. After DSB induction by neocarzinostatin, phosphorylated histone 2AX (γ-H2AX) rapidly accumulated but then largely vanished within a few hours. In contrast, when CRC cells were pre-treated with 5-FU, gammaH2AX remained for at least 24 hours. GFP-reporter assays revealed that 5-FU decreases the efficiency of homologous recombination (HR) repair. However, 5-FU did not prevent the initial steps of HR repair, such as the accumulation of RPA and Rad51 at nuclear foci. Thus, we propose that 5-FU interferes with the continuation of HR repair, e. g. the synthesis of new DNA strands. Two key mediators of HR, Rad51 and BRCA2, were found upregulated in CRC biopsies as compared to normal mucosa. Inhibition of HR by targeting Rad51 enhanced DNA damage upon DSB-inducing treatment, outlining an alternative way of enhancing therapeutic efficacy. Taken together, our results strongly suggest that interfering with HR represents a key mechanism to enhance the efficacy when treating CRC with DNA-damaging therapy. PMID:25909291

  6. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    PubMed Central

    Smith, Claire M.; Scott, Paul D.; O’Callaghan, Christopher; Easton, Andrew J.; Dimmock, Nigel J.

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  7. Small satellites

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.; Dermott, S.

    1986-01-01

    Satellites smaller than Mimas (r = 195 km) are distinguished by irregular overall shapes and by rough limb topography. Material properties and impact cratering dominate the shaping of these objects. Long fragmentation histories can produce a variety of internal structures, but so far there is no direct evidence that any small satellite is an equilibrium ellipsoid made up of noncohesive gravitationally bound rubble. One many bodies that orbit close to their primary the tidal and rotational components of surface gravity strongly affect the directions of local g and thereby affect the redistribution of regolith by mass wasting. Downslope movement of regolith is extensive on Deimos, and is probably effective on many other small satellites. It is shown that in some cases observed patterns of downslope mass wasting cold produce useful constraints on the satellite's mean density. The diversity of features seen in the few high-resolution images of small satellites currently available suggests that these objects have undergone complex histories of cratering, fragmentation, and regolith evolution.

  8. The evolving world of small RNAs from RNA viruses.

    PubMed

    Li, Mei-Ling; Weng, Kuo-Feng; Shih, Shin-Ru; Brewer, Gary

    2016-09-01

    RNA virus infection in plants and invertebrates can produce virus-derived small RNAs. These RNAs share features with host endogenous small interfering RNAs (siRNAs). They can potentially mediate RNA interference (RNAi) and related RNA silencing pathways, resulting in specific antiviral defense. Although most RNA silencing components such as Dicer, Ago2, and RISC are conserved among eukaryotic hosts, whether RNA virus infection in mammals can generate functional small RNAs that act in antiviral defense remains under discussion. Here, we review recent studies on the molecular and biochemical features of viral siRNAs and other virus-derived small RNAs from infected plants, arthropods, nematodes, and vertebrates and discuss the genetic pathways for their biogenesis and their roles in antiviral activity. WIREs RNA 2016, 7:575-588. doi: 10.1002/wrna.1351 For further resources related to this article, please visit the WIREs website. PMID:27046163

  9. Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions.

    PubMed

    Capala, Marta E; Pruis, Maurien; Vellenga, Edo; Schuringa, Jan Jacob

    2016-03-01

    A high proliferation rate of malignant cells requires an increased energy production, both by anaerobic glucose metabolism and mitochondrial respiration. Moreover, increased levels of mitochondria-produced reactive oxygen species (ROS) promote survival of transformed cells and contribute to the disease progression both in solid tumors and leukemia. Consequently, interfering with mitochondrial metabolism has been used as a strategy to specifically target leukemic cells. SAM50 is a mitochondrial outer membrane protein involved in the formation of mitochondrial intermembrane space bridging (MIB) complex. Although the importance of SAM50 in maintaining MIB integrity and in the assembly of mitochondrial respiratory chain complexes has been described, its specific role in the normal and leukemic hematopoietic cells remains unknown. We observed that human leukemic cells display a specific dependency on SAM50 expression, as downregulation of SAM50 in BCR-ABL-expressing, but not normal CD34(+) human hematopoietic stem and progenitor cells (HSPCs) caused a significant decrease in growth, colony formation, and replating capacity. Mitochondrial functions of BCR-ABL-expressing HSPCs were compromised, as seen by a decreased mitochondrial membrane potential and respiration. This effect of SAM50 downregulation was recapitulated in normal HSPCs exposed to cytokine-rich culture conditions that stimulate proliferation. Both oncogene-transduced and cytokine-stimulated HSPCs showed increased mitochondrial membrane potential and increased ROS levels compared to their normal counterparts. Therefore, we postulate that human leukemic HSPCs are highly dependent on the proper functioning of mitochondria and that disruption of mitochondrial integrity may aid in targeting leukemic cells. PMID:26855047

  10. Evaluation of performance including influence by interfering substances of the Innovance D-dimer assay on the Sysmex coagulation analyzer.

    PubMed

    Park, Seo-Jin; Chi, Hyun-Sook; Chun, Soh Hyun; Jang, Seongsoo; Park, Chan-Jeoung

    2011-01-01

    D-dimer is formed during activation of the coagulation system and is commonly assayed in order to diagnose disseminated intravascular coagulation, deep vein thrombosis, and pulmonary embolism. Enzyme-linked immunosorbent assay has been validated as the reference method, but it is a time-consuming procedure. The objective of this study was to evaluate a new immunoturbidimetric, particle-enhanced, Innovance(®) D-dimer immunoassay. A total of 129 plasma samples from apparently healthy individuals and 298 samples from patients were collected for linearity, precision, and correlation studies. Testing the precision of low- and high-controls yielded CV values of 2.08% and 1.76%, respectively. The central 95% non-parametric reference interval estimated from healthy controls was 0.093-0.68 mg/L Fibrinogen Equivalent Units (FEU; median, 0.26 mg/L FEU). Comparison analysis yielded acceptable correlation with the STA Liatest(®) D-dimer assay (R(2) = 0.9471). At a cut-off level of <0.5 mg/L FEU, the sensitivity and specificity indices of the Innovance D-dimer assay were 99.7% and 89.1%, respectively. Thus the Innovance D-dimer method showed acceptable precision and linearity, and the assay results showed acceptable correlation with the STA Liatest D-dimer method. The Innovance method was relatively unaffected by potential interfering substances such as bilirubin and hemoglobin. In conclusion, the Innovance D-dimer assay is suitable for monitoring D-dimer concentrations in various clinical conditions and should be useful in clinical laboratories. PMID:21325250

  11. Thermal denaturation produced degenerative proteins and interfered with MS for proteins dissolved in lysis buffer in proteomic analysis.

    PubMed

    Wang, Xuchu; Wang, Haiyan; Wang, Dan; Wang, Dongyang; Han, Bing; Tian, Weimin; Guo, Anping

    2011-02-01

    In 1-DE, proteins were traditionally mixed with the standard Laemmli buffer and boiled for several minutes. Recently, proteins dissolved in lysis buffer were used to produce better-resolved 2-DE gels, but thermal denaturation procedure still remained in some proteomic analysis. To determine the detailed effects of thermal denaturation on SDS-PAGE and MS, both 1-DE and 2-DE were performed using proteins heated at 100°C for different periods of time, and 17 protein bands/spots were positively identified by MALDI TOF/TOF MS/MS. Protein profiles on both 1-DE and 2-DE gels changed obviously and more polydisperse bands/spots were observed with increased heating time for over-heated samples. Based on these observations, an alternative protein marker-producing method was designed by directly dissolving protein standards without BSA into lysis buffer. This new kind of protein marker could be stored at room temperature for a long time, thus was more convenient for using and shipping. The identification of 17 proteins via MS and comparison of their identities revealed MASCOT-searched scores, number of both matched peptides, total searched peptides and sequence coverage became progressively lower with increasing denaturation intensity, probably due to the interference of thermal denaturation on trypsin cleavage efficiency and produced redundant modified peptides. Therefore, it was concluded that thermal denaturation not only changed the protein profiles and produced more polydisperse protein bands/spots, but also heavily interfered with the subsequent MS analysis, hence not recommended in future proteomic analysis for proteins dissolved in lysis buffer. PMID:21298662

  12. Identification of an interfering substrate in apple juice and improvement for determination of patulin with high-performance liquid chromatography analyses.

    PubMed

    Mochizuki, Naoki; Hoshino, Mariko; Suga, Keiko; Sugita-Konishi, Yoshiko

    2009-04-01

    An interfering substance that is not 5-hydroxymethylfurfural appears in some apple juices during high-performance liquid chromatography (HPLC) analysis of patulin based on the AOAC 995.10 method. Because this interfering substance could cause the overestimation of patulin in the apple juices, we tried to identify the substance and to develop an improved method of analyzing patulin free from the influence of this substance. We isolated the substance from the apple juice and identified it as adenosine based on its mass spectrometry, proton nuclear magnetic resonance, and photo diode array spectra. Because of the chemical properties of adenosine, changes in the extraction method under acidic conditions and the HPLC conditions (wavelength and analytical column) were effective for avoiding the influence of adenosine and more specifically for analyzing the patulin. The most effective and simple improvement of the official method was the use of column in-point carbon contents greater than 15.5%. PMID:19435230

  13. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation.

    PubMed

    Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang

    2016-07-19

    DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183

  14. High-Throughput Single-Cell Kinetics of Virus Infections in the Presence of Defective Interfering Particles

    PubMed Central

    Akpinar, Fulya; Timm, Andrea

    2015-01-01

    ABSTRACT Defective interfering particles (DIPs) are virus mutants that lack essential genes for growth. In coinfections with helper virus, the diversion of viral proteins to the replication and packaging of DIP genomes can interfere with virus production. Mounting cases of DIPs and DIP-like genomes in clinical and natural isolates, as well as growing interest in DIP-based therapies, underscore a need to better elucidate how DIPs work. DIP activity is primarily measured by its inhibition of virus infection yield, an endpoint that masks the dynamic and potentially diverse individual cell behaviors. Using vesicular stomatitis virus (VSV) as a model, we coinfected BHK cells with VSV DIPs and recombinant helper virus carrying a gene encoding a red fluorescent protein (RFP) whose expression correlates with the timing and level of virus release. For single cells within a monolayer, 10 DIPs per cell suppressed the reporter expression in only 1.2% of the cells. In most cells, it slowed and reduced viral gene expression, manifested as a shift in mean latent time from 4 to 6 h and reduced virus yields by 10-fold. For single cells isolated in microwells, DIP effects were more pronounced, reducing virus yields by 100-fold and extending latent times to 12 h, including individual instances above 20 h. Together, these results suggest that direct or indirect cell-cell interactions prevent most coinfected cells from being completely suppressed by DIPs. Finally, a gamma distribution model captures well how the infection kinetics quantitatively depends on the DIP dose. Such models will be useful for advancing a predictive biology of DIP-associated virus growth and infection spread. IMPORTANCE During the last century, basic studies in virology have focused on developing a molecular mechanistic understanding of how infectious viruses reproduce in their living host cells. However, over the last 10 years, the advent of deep sequencing and other powerful technologies has revealed in

  15. Criterion to Evaluate the Quality of Infrared Small Target Images

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Diao, Wei-He

    2009-01-01

    In this paper, we propose a new criterion to estimate the quality of infrared small target images. To describe the criterion quantitatively, two indicators are defined. One is the “degree of target being confused” that represents the ability of infrared small target image to provide fake targets. The other one is the “degree of target being shielded”, which reflects the contribution of the image to shield the target. Experimental results reveal that this criterion is more robust than the traditional method (Signal-to-Noise Ratio). It is not only valid to infrared small target images which Signal-to-Noise Ratio could correctly describe, but also to the images that the traditional criterion could not accurately estimate. In addition, the results of this criterion can provide information about the cause of background interfering with target detection.

  16. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. PMID:26210184

  17. A single RNA-dependent RNA polymerase assembles with mutually exclusive nucleotidyl transferase subunits to direct different pathways of small RNA biogenesis.

    PubMed

    Lee, Suzanne Rebecca; Talsky, Kristin Benjamin; Collins, Kathleen

    2009-07-01

    Members of the conserved family of eukaryotic RNA-dependent RNA polymerases (Rdrs) synthesize double-stranded RNA (dsRNA) intermediates in diverse pathways of small RNA (sRNA) biogenesis and RNA-mediated silencing. Rdr-dependent pathways of sRNA production are poorly characterized relative to Rdr-independent pathways, and the Rdr enzymes themselves are poorly characterized relative to their viral RNA-dependent RNA polymerase counterparts. We previously described a physical and functional coupling of the Tetrahymena thermophila Rdr, Rdr1, and a Dicer enzyme, Dcr2, in the production of approximately 24-nucleotide (nt) sRNA in vitro. Here we characterize the endogenous complexes that harbor Rdr1, termed RDRCs. Distinct RDRCs assemble to contain Rdr1 and subsets of the total of four tightly Rdr1-associated proteins. Of particular interest are two RDRC subunits, Rdn1 and Rdn2, which possess noncanonical ribonucleotidyl transferase motifs. We show that the two Rdn proteins are uridine-specific polymerases of separate RDRCs. Two additional RDRC subunits, Rdf1 and Rdf2, are present only in RDRCs containing Rdn1. Rdr1 catalytic activity is retained in RDRCs purified from cell extracts lacking any of the nonessential RDRC subunits (Rdn2, Rdf1, Rdf2) or if the RDRC harbors a catalytically inactive Rdn. However, specific disruption of each RDRC imposes distinct loss-of-function consequences at the cellular level and has a differential impact on the accumulation of specific 23-24-nt sRNA sequences in vivo. The biochemical and biological phenotypes of RDRC subunit disruption reveal a previously unanticipated complexity of Rdr-dependent sRNA biogenesis in vivo. PMID:19451546

  18. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  19. FIA-automated system used to electrochemically measure nitrite and its interfering chemicals through a 1-2 DAB / Au electrode: gain of sensitivity at upper potentials

    NASA Astrophysics Data System (ADS)

    Almeida, F. L.; dos Santos Filho, S. G.; Fontes, M. B. A.

    2013-03-01

    The measurement of nitrite and its interfering-chemicals (paracetamol, ascorbic acid and uric acid) was performed employing a Flow-injection Analysis (FIA) system, which was automated using solenoid valves and air-pump. It is very important to quantify nitrite from river water, food and biologic fluids due to its antibacterial capacity in moderated concentrations, or its toxicity for human health even at low concentrations (> 20 μmol L-1 in blood fluids). Electrodes of the electrochemical planar sensor were defined by silk-screen technology. The measuring electrode was made from gold paste covered with 1-2 cis Diaminobenzene (DAB), which allowed good selectivity, linearity, repeatability, stability and optimized gain of sensitivity at 0.5 VAg/AgCl Nafion®117 (6.93 μA mol-1 L mm-2) compared to 0.3 VAg/AgCl Nafion® 117. The reference electrode was obtained from silver/palladium paste modified with chloride and covered with Nafion® 117. The auxiliary electrode was made from platinum paste. It was noteworthy that nitrite response adds to the response of the studied interfering-chemicals and it is predominant for concentrations lower than 175 μmol L-1.

  20. Chemometrics-assisted high performance liquid chromatography-diode array detection strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for beverage analysis.

    PubMed

    Yin, Xiao-Li; Wu, Hai-Long; Gu, Hui-Wen; Hu, Yong; Wang, Li; Xia, Hui; Xiang, Shou-Xia; Yu, Ru-Qin

    2016-02-26

    This work reports a chemometrics-assisted high performance liquid chromatography-diode array detection (HPLC-DAD) strategy to solve varying interfering patterns from different chromatographic columns and sample matrices for the rapid simultaneous determination of six synthetic colorants in five kinds of beverages with little sample pretreatment. The investigation was performed using two types of LC columns under the same elution conditions. Although analytes using different columns have different co-elution patterns that appear more seriously in complex backgrounds, all colorants were properly resolved by alternating trilinear decomposition (ATLD) method and accurate chromatographic elution profiles, spectral profiles as well as relative concentrations were obtained. The results were confirmed by those obtained from traditional HPLC-UV method at a particular wavelength and the results of both methods were consistent with each other. All results demonstrated that the proposed chemometrics-assisted HPLC-DAD method is accurate, economical and universal, and can be promisingly applied to solve varying interfering patterns from different chromatographic columns and sample matrices for the analysis of complex food samples. PMID:26830638

  1. Novel spectrophotometric determination of chloramphenicol and dexamethasone in the presence of non labeled interfering substances using univariate methods and multivariate regression model updating

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha A.; Lotfy, Hayam M.; Rezk, Mamdouh R.; Omran, Yasmin Rostom

    2015-04-01

    Smart and novel spectrophotometric and chemometric methods have been developed and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and dexamethasone sodium phosphate (DSP) in presence of interfering substances without prior separation. The first method depends upon derivative subtraction coupled with constant multiplication. The second one is ratio difference method at optimum wavelengths which were selected after applying derivative transformation method via multiplying by a decoding spectrum in order to cancel the contribution of non labeled interfering substances. The third method relies on partial least squares with regression model updating. They are so simple that they do not require any preliminary separation steps. Accuracy, precision and linearity ranges of these methods were determined. Moreover, specificity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied for analysis of both drugs in their pharmaceutical formulation. The obtained results have been statistically compared to that of an official spectrophotometric method to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision.

  2. Review of Adverse Events Associated With False Glucose Readings Measured by GDH-PQQ–Based Glucose Test Strips in the Presence of Interfering Sugars

    PubMed Central

    Frias, Juan P.; Lim, Christine G.; Ellison, John M.; Montandon, Carol M.

    2010-01-01

    OBJECTIVE To assess the implications of falsely elevated glucose readings measured with glucose dehydrogenase pyrroloquinolinequinone (GDH-PQQ) test strips. RESEARCH DESIGN AND METHODS We conducted a review of the Food and Drug Administration's Manufacturer and User Facility Device Experience database and medical literature for adverse events (AEs) associated with falsely elevated glucose readings with GDH-PQQ test strips in the presence of interfering sugars. RESULTS Eighty-two reports were identified: 16 (20%) were associated with death, 46 (56%) with severe hypoglycemia, and 12 (15%) with nonsevere hypoglycemia. In eight reports (10%), the AE was not described. Forty-two events (51%) occurred in the U.S. Although most events occurred in hospitalized patients, at least 14 (17%) occurred in outpatients. Agents most commonly associated with AEs were icodextrin-containing peritoneal dialysate and maltose-containing intravenous immune globulin. CONCLUSIONS GDH-PQQ test strips pose a safety risk to insulin-using patients treated with agents containing or metabolized to interfering sugars. PMID:20351227

  3. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death.

    PubMed

    Andrabi, Shaida A; Kang, Ho Chul; Haince, Jean-François; Lee, Yun-Il; Zhang, Jian; Chi, Zhikai; West, Andrew B; Koehler, Raymond C; Poirier, Guy G; Dawson, Ted M; Dawson, Valina L

    2011-06-01

    Glutamate acting on N-methyl-D-aspartate (NMDA) receptors induces neuronal injury following stroke, through activation of poly(ADP-ribose) polymerase-1 (PARP-1) and generation of the death molecule poly(ADP-ribose) (PAR) polymer. Here we identify Iduna, a previously undescribed NMDA receptor-induced survival protein that is neuroprotective against glutamate NMDA receptor-mediated excitotoxicity both in vitro and in vivo and against stroke through interfering with PAR polymer-induced cell death (parthanatos). Iduna's protective effects are independent and downstream of PARP-1 activity. Iduna is a PAR polymer-binding protein, and mutation at the PAR polymer binding site abolishes the PAR binding activity of Iduna and attenuates its protective actions. Iduna is protective in vivo against NMDA-induced excitotoxicity and middle cerebral artery occlusion-induced stroke in mice. To our knowledge, these results define Iduna as the first known endogenous inhibitor of parthanatos. Interfering with PAR polymer signaling could be a new therapeutic strategy for the treatment of neurologic disorders. PMID:21602803

  4. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts.

    PubMed

    Baulcombe, David C

    2015-08-01

    Recent evidence indicates two-way traffic of silencing RNA between filamentous organisms and their plant hosts. There are also indications that suppressors of RNA silencing are transferred from filamentous organisms into host plant cells where they influence the innate immune system. Here I use virus disease as a template for interpretation of RNA silencing in connection with filamentous organisms and infected plant cells. I propose that host plant interactions of these organisms are influenced by RNA silencing networks in which there are: small interfering RNAs from the host that are transported into the filamentous organism and vice versa; silencing suppressors from the organism that are transported into the host; endogenous small interfering RNAs and micro RNAs that target components of the innate immune system or endogenous suppressors of the innate immune system. PMID:26247121

  5. Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex

    PubMed Central

    Holoch, Daniel; Moazed, Danesh

    2015-01-01

    Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute’s association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein–containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes. PMID:25730778

  6. Dynamique et interférence de paquets d'ondes dans les atomes et dimères d'alcalins

    NASA Astrophysics Data System (ADS)

    Bouchene, M. A.

    2002-11-01

    (saturation regime, chirped pulse, ...) that allow us to determine the advantages and limits of this technique. In the case of molecules, the interaction of the two-pulse sequence leads to the interference of vibrational wave packets. We analyse and discuss in this case the effects of a thermal distribution of initial states on the temporal coherent control signal. Ce travail porte sur l'étude expérimentale résolue en temps de la dynamique atomique et moléculaire prenant place sur une échelle de temps femtoseconde. Il présente deux orientations distinctes et complémentaires. La première concerne l'étude de la dynamique de paquets d'ondes dans des atomes et dimères d'alcalins (K, K2) par des méthodes pompe-sonde. Dans le cas du potassium atomique le paquet d'ondes est une superposition des états de structure fine de l'état 4p et représente un paquet de spin électronique. Nous observons la dynamique de ce paquet d'ondes au cours du temps et montrons que celle-ci correspond à une inversion du sens d'orientation du spin. Le formalisme théorique des états brillants et noirs est particulièrement adapté à la description de ce type de dynamique. Nous présentons alors une méthode originale qui, tirant avantage du mouvement d'inversion du spin, permet de produire des électrons polarisés en spin à l'échelle femtoseconde. Dans le cas des molécules, le paquet d'ondes créé est une superposition d'états vibrationnels. Nous présentons les résultats d'une étude systématique de la dynamique de paquet d'ondes vibrationnel dans les états électroniques A^1Σ^+_u et 2^1Pi_g. Le signal pompe-sonde dépend alors de la compétition entre les dynamiques associées aux paquets d'ondes créés dans les deux états électroniques. La deuxième partie traite d'expériences d'interférences de paquets d'ondes dans des systèmes similaires (K, Cs, Cs2). Cette technique, complémentaire de la première, consiste à faire interagir une séquence de deux impulsions

  7. Corticosterone suppresses vasotocin-enhanced clasping behavior in male rough-skinned newts by novel mechanisms interfering with V1a receptor availability and receptor-mediated endocytosis.

    PubMed

    Davis, Audrey; Abraham, Emily; McEvoy, Erin; Sonnenfeld, Sarah; Lewis, Christine; Hubbard, Catherine S; Dolence, E Kurt; Rose, James D; Coddington, Emma

    2015-03-01

    In rough-skinned newts, Taricha granulosa, exposure to an acute stressor results in the rapid release of corticosterone (CORT), which suppresses the ability of vasotocin (VT) to enhance clasping behavior. CORT also suppresses VT-induced spontaneous activity and sensory responsiveness of clasp-controlling neurons in the rostromedial reticular formation (Rf). The cellular mechanisms underlying this interaction remain unclear. We hypothesized that CORT blocks VT-enhanced clasping by interfering with V1a receptor availability and/or VT-induced endocytosis. We administered a physiologically active fluorescent VT conjugated to Oregon Green (VT-OG) to the fourth ventricle 9 min after an intraperitoneal injection of CORT (0, 10, 40 μg/0.1mL amphibian Ringers). The brains were collected 30 min post-VT-OG, fixed, and imaged with confocal microscopy. CORT diminished the number of endocytosed vesicles, percent area containing VT-OG, sum intensity of VT-OG, and the amount of VT-V1a within each vesicle; indicating that CORT was interfering with V1a receptor availability and VT-V1a receptor-mediated endocytosis. CORT actions were brain location-specific and season-dependent in a manner that is consistent with the natural and context-dependent expression of clasping behavior. Furthermore, the sensitivity of the Rf to CORT was much higher in animals during the breeding season, arguing for ethologically appropriate seasonal variation in CORT's ability to prevent VT-induced endocytosis. Our data are consistent with the time course and interaction effects of CORT and VT on clasping behavior and neurophysiology. CORT interference with VT-induced endocytosis may be a common mechanism employed by hormones across taxa for mediating rapid context- and season-specific behavioral responses. PMID:25528549

  8. Correction partielle des Effets de la Turbulence atmosphérique en Interférométrie optique: Traitement des Données et Développement d'Optiques adaptatives pour l'Interféromètre GI2T

    NASA Astrophysics Data System (ADS)

    Vérinaud, Christophe

    2000-11-01

    Dans le domaine de la haute résolution angulaire en astronomie, les techniques de l'interférométrie optique et de l'optique adaptative sont en plein essor. La principale limitation de l'interférométrie est laturbulence atmosphérique qui entraîne des pertes de cohérence importantes, préjudiciables à la sensibilité et à la précision des mesures. L'optique adaptative appliquée à l'interférométrie va permettre un gain en sensibilité considérable. Le but de cette thèse est l'étude de l'influence de l'optique adaptative sur les mesures interférométriques et son application au Grand Interféromètre à DeuxTélescopes (GI2T) situé sur le Mont Calern dans le sud de la France. Deux problèmes principaux sont étudiés de manière théorique par des développements analytiques et des simulations numériques: le premier est le contrôle en temps réel de la variation des différences de marche optique, encore appelée piston différentiel, induite par l'optique adaptative ; le deuxième problème important est la calibration des mesures de contraste des franges dans le cas de la correction partielle. Je limite mon étude au cas d'un interféromètre multi-modes en courtes poses, mode de fonctionnement principal du GI2T également prévu sur le Very Large Telescope Interferometer installé au Cerro Paranal au Chili. Je développe une méthode de calibration des pertes de cohérence spatio-temporelles connaissant la fonction de structure des fronts d'onde corrigés. Je montre en particulier qu'il est possible d'estimer fréquence par fréquence la densité spectrale des images en courtes poses, méthode très utile pour augmenter la couverture du plan des fréquences spatiales dans l'observation d'objets étendus. La dernière partie de ce mémoire est consacrée au développements instrumentaux auxquels j'ai participé. J'ai développé un banc de qualification du système d'optique adaptative à courbure destiné au GI2T et j'ai étudié l

  9. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  10. Lung cancer - small cell

    MedlinePlus

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  11. Small Scale Organic Techniques

    ERIC Educational Resources Information Center

    Horak, V.; Crist, DeLanson R.

    1975-01-01

    Discusses the advantages of using small scale experimentation in the undergraduate organic chemistry laboratory. Describes small scale filtration techniques as an example of a semi-micro method applied to small quantities of material. (MLH)

  12. Small bowel resection

    MedlinePlus

    Small intestine surgery; Bowel resection - small intestine; Resection of part of the small intestine; Enterectomy ... her hand inside your belly to feel the intestine or remove the diseased segment. Your belly is ...

  13. Reduced mismatch repair of heteroduplexes reveals "non"-interfering crossing over in wild-type Saccharomyces cerevisiae.

    PubMed

    Getz, Tony J; Banse, Stephen A; Young, Lisa S; Banse, Allison V; Swanson, Johanna; Wang, Grace M; Browne, Barclay L; Foss, Henriette M; Stahl, Franklin W

    2008-03-01

    Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a "non"-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the "non"-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers. PMID:18385111

  14. Small RNA Detection by in Situ Hybridization Methods

    PubMed Central

    Urbanek, Martyna O.; Nawrocka, Anna U.; Krzyzosiak, Wlodzimierz J.

    2015-01-01

    Small noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression. These include molecular biology methods such as real-time RT-PCR, northern blotting, hybridization to microarrays, cloning and sequencing, as well as single cell miRNA detection by microscopy with in situ hybridization (ISH). In this review, we focus on the ISH method, including its fluorescent version (FISH), and we present recent methodological advances that facilitated its successful adaptation for small RNA detection. We discuss relevant technical aspects as well as the advantages and limitations of ISH. We also refer to numerous applications of small RNA ISH in basic research and molecular diagnostics. PMID:26068454

  15. Big impacts by small RNAs in plant development.

    PubMed

    Chuck, George; Candela, Héctor; Hake, Sarah

    2009-02-01

    The identification and study of small RNAs, including microRNAs and trans-acting small interfering RNAs, have added a layer of complexity to the many pathways that regulate plant development. These molecules, which function as negative regulators of gene expression, are now known to have greatly expanded roles in a variety of developmental processes affecting all major plant structures, including meristems, leaves, roots, and inflorescences. Mutants with specific developmental phenotypes have also advanced our knowledge of the biogenesis and mode of action of these diverse small RNAs. In addition, previous models on the cell autonomy of microRNAs may have to be revised as more data accumulate supporting their long distance transport. As many of these small RNAs appear to be conserved across different species, knowledge gained from one species is expected to have general application. However, a few surprising differences in small RNA function seem to exist between monocots and dicots regarding meristem initiation and sex determination. Integrating these unique functions into the overall scheme for plant growth will give a more complete picture of how they have evolved as unique developmental systems. PMID:18980858

  16. Small RNA Detection by in Situ Hybridization Methods.

    PubMed

    Urbanek, Martyna O; Nawrocka, Anna U; Krzyzosiak, Wlodzimierz J

    2015-01-01

    Small noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression. These include molecular biology methods such as real-time RT-PCR, northern blotting, hybridization to microarrays, cloning and sequencing, as well as single cell miRNA detection by microscopy with in situ hybridization (ISH). In this review, we focus on the ISH method, including its fluorescent version (FISH), and we present recent methodological advances that facilitated its successful adaptation for small RNA detection. We discuss relevant technical aspects as well as the advantages and limitations of ISH. We also refer to numerous applications of small RNA ISH in basic research and molecular diagnostics. PMID:26068454

  17. Small Molecule-Mediated Cleavage of RNA in Living Cells

    PubMed Central

    Guan, Lirui

    2013-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecules have been previously described to cleave RNA in living cells. Herein, we describe the development of a potentially general approach to design small molecules that specifically cleave an RNA in a living cell, affecting biological function. Specifically, a designed, modularly assembled small molecule that binds the RNA that causes myotonic dystrophy type 1 (DM1)[3] was appended with a moiety that generates hydroxyl radicals upon irradiation. Cleavage of the transcript improves DM1-associated defects in cell culture, and compounds are non-toxic at an efficacious dose as determined by a MTT viability assay. This approach may allow for the site-specific cleavage and inactivation of other cellular RNAs.[4] Compounds that bind to and cleave RNA have the potential to serve as chemical genetics probes of function or lead therapeutics with spatial and temporal control. PMID:23280953

  18. Small RNA profiles from virus-infected fresh market vegetables.

    PubMed

    Frizzi, Alessandra; Zhang, Yuanji; Kao, John; Hagen, Charles; Huang, Shihshieh

    2014-12-10

    Functional small RNAs, such as short interfering RNAs (siRNAs) and microRNAs (miRNAs), exist in freshly consumed fruits and vegetables. These siRNAs can be derived either from endogenous sequences or from viruses that infect them. Symptomatic tomatoes, watermelons, zucchini, and onions were purchased from grocery stores and investigated by small RNA sequencing. By aligning the obtained small RNA sequences to sequences of known viruses, four different viruses were identified as infecting these fruits and vegetables. Many of these virally derived small RNAs along with endogenous small RNAs were found to be highly complementary to human genes. However, the established history of safe consumption of these vegetables suggests that this sequence homology has little biological relevance. By extension, these results provide evidence for the safe use by humans and animals of genetically engineered crops using RNA-based suppression technologies, especially vegetable crops with virus resistance conferred by expression of siRNAs or miRNAs derived from viral sequences. PMID:25389086

  19. A Monoclonal Antibody (MCPR3-7) Interfering with the Activity of Proteinase 3 by an Allosteric Mechanism*

    PubMed Central

    Hinkofer, Lisa C.; Seidel, Susanne A. I.; Korkmaz, Brice; Silva, Francisco; Hummel, Amber M.; Braun, Dieter; Jenne, Dieter E.; Specks, Ulrich

    2013-01-01

    Proteinase 3 (PR3) is an abundant serine protease of neutrophil granules and a major target of autoantibodies (PR3 anti-neutrophil cytoplasmic antibodies) in granulomatosis with polyangiitis. Some of the PR3 synthesized by promyelocytes in the bone marrow escapes the targeting to granules and occurs on the plasma membrane of naive and primed neutrophils. This membrane-associated PR3 antigen may represent pro-PR3, mature PR3, or both forms. To discriminate between mature PR3 and its inactive zymogen, which have different conformations, we generated and identified a monoclonal antibody called MCPR3-7. It bound much better to pro-PR3 than to mature PR3. This monoclonal antibody greatly reduced the catalytic activity of mature PR3 toward extended peptide substrates. Using diverse techniques and multiple recombinant PR3 variants, we characterized its binding properties and found that MCPR3-7 preferentially bound to the so-called activation domain of the zymogen and changed the conformation of mature PR3, resulting in impaired catalysis and inactivation by α1-proteinase inhibitor (α1-antitrypsin). Noncovalent as well as covalent complexation between PR3 and α1-proteinase inhibitor was delayed in the presence of MCPR3-7, but cleavage of certain thioester and paranitroanilide substrates with small residues in the P1 position was not inhibited. We conclude that MCPR3-7 reduces PR3 activity by an allosteric mechanism affecting the S1′ pocket and further prime side interactions with substrates. In addition, MCPR3-7 prevents binding of PR3 to cellular membranes. Inhibitory antibodies targeting the activation domain of PR3 could be exploited as highly selective inhibitors of PR3, scavengers, and clearers of the PR3 autoantigen in granulomatosis with polyangiitis. PMID:23902773

  20. A small molecule enhances RNA interference and promotes microRNA processing

    PubMed Central

    Shan, Ge; Li, Yujing; Zhang, Junliang; Li, Wendi; Szulwach, Keith E; Duan, Ranhui; Faghihi, Mohammad A; Khalil, Ahmad M; Lu, Lianghua; Paroo, Zain; Chan, Anthony W S; Shi, Zhangjie; Liu, Qinghua; Wahlestedt, Claes; He, Chuan; Jin, Peng

    2010-01-01

    Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are sequence-specific post-transcriptional regulators of gene expression. Although major components of the RNA interference (RNAi) pathway have been identified, regulatory mechanisms for this pathway remain largely unknown. Here we demonstrate that the RNAi pathway can be modulated intracellularly by small molecules. We have developed a cell-based assay to monitor the activity of the RNAi pathway and find that the small-molecule enoxacin (Penetrex) enhances siRNA-mediated mRNA degradation and promotes the biogenesis of endogenous miRNAs. We show that this RNAi-enhancing activity depends on the trans-activation-responsive region RNA-binding protein. Our results provide a proof-of-principle demonstration that small molecules can be used to modulate the activity of the RNAi pathway. RNAi enhancers may be useful in the development of research tools and therapeutics. PMID:18641635

  1. Analysis of small RNAs derived from Chinese wheat mosaic virus.

    PubMed

    Yang, Jian; Zheng, Shi-Ling; Zhang, Heng-Mu; Liu, Xiao-Ya; Li, Jing; Li, Jun-Min; Chen, Jian-Ping

    2014-11-01

    The virus-derived small interfering RNAs (vsiRNAs) of Chinese wheat mosaic virus (CWMV), a member of the genus Furovirus, were characterised from wheat plants by deep sequencing. CWMV vsiRNAs of 21-22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CWMV-infected wheat plants. The 5'-terminal base of vsiRNAs was biased towards A/U, suggesting that CWMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants. Possible targets for some of the vsiRNAs were predicted. PMID:24997977

  2. Small RNAs in angiosperms: sequence characteristics, distribution and generation.

    PubMed

    Chen, Dijun; Meng, Yijun; Ma, Xiaoxia; Mao, Chuanzao; Bai, Youhuang; Cao, Junjie; Gu, Haibin; Wu, Ping; Chen, Ming

    2010-06-01

    High-throughput sequencing (HTS) has opened up a new era for small RNA (sRNA) exploration. Using HTS data for a global survey of sRNAs in 26 angiosperms, elevated GC contents were detected in the monocots, whereas the 5(')-terminal compositions were quite uniform among the angiosperms. Chromosome-wide distribution patterns of sRNAs were investigated by using scrolling-window analysis. We performed de novo natural antisense transcript (NAT) prediction, and found that the overlapping regions of trans-NATs, but not cis-NATs, were hotspots for sRNA generation. One cis-NAT generates phased natural antisense short interfering RNAs (nat-siRNAs) specifically from flowers in Arabidopsis, while one in rice produces phased nat-siRNAs from grains, suggesting their organ-specific regulatory roles. PMID:20378553

  3. Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata.

    PubMed

    Reynolds, Julie A; Clark, Jennifer; Diakoff, Stephen J; Denlinger, David L

    2013-10-01

    Understanding the molecular basis of diapause, a phenotypically plastic, alternative developmental pathway, is key to predicting the seasonal distribution of economically and medically important insect species. Small regulatory RNAs, including piwi-related RNAs, small-interfering RNAs, and miRNAs, represent one type of epigenetic process that can alter the phenotype of organisms independent of changes in genome sequence. We hypothesize that small RNAs regulate pupal diapause and a maternal block of diapause in the flesh fly Sarcophaga bullata. We assessed the relative abundance of eight genes related to small RNA biogenesis and function using qRT-PCR in pre-diapause and diapause stages compared to their non-diapause counterparts. Elevated mRNA expression of piwi and spindle-E, as well as argonaute2 and r2d2, in photosensitive 1st instar larvae reared in diapause-inducing conditions indicate involvement of the piwi-associated RNA and small-interfering RNA pathways, respectively, in programming the switch from direct development to a developmental pathway that includes diapause. Two genes, related to the microRNA pathway, argonaute1 and loquacious, are upregulated during pupal diapause, suggesting a role for this pathway in maintaining diapause. Substantial reduction in transcript abundance of small RNA-related genes in photosensitive 1st instar larvae from mothers with a diapause history compared to those from mothers with no diapause history also suggest a role for small RNA pathways in regulating a diapause maternal effect in S. bullata. Together, the results point to a role for small RNAs in regulating the developmental trajectory in this species. PMID:23933212

  4. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons.

    PubMed

    Eberhardt, Wolfgang; Badawi, Amel; Biyanee, Abhiruchi; Pfeilschifter, Josef

    2016-01-01

    The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets ("HuR mRNA regulons") encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy. PMID:27582706

  5. PACT- and RIG-I-Dependent Activation of Type I Interferon Production by a Defective Interfering RNA Derived from Measles Virus Vaccine

    PubMed Central

    Ho, Ting-Hin; Kew, Chun; Lui, Pak-Yin; Chan, Chi-Ping; Satoh, Takashi; Akira, Shizuo

    2015-01-01

    ABSTRACT The live attenuated measles virus vaccine is highly immunostimulatory. Identification and characterization of its components that activate the innate immune response might provide new strategies and agents for the rational design and development of chemically defined adjuvants. In this study, we report on the activation of type I interferon (IFN) production by a defective interfering (DI) RNA isolated from the Hu-191 vaccine strain of measles virus. We found that the Hu-191 virus induced IFN-β much more potently than the Edmonston strain. In the search for IFN-inducing species in Hu-191, we identified a DI RNA specifically expressed by this strain. This DI RNA, which was of the copy-back type, was predicted to fold into a hairpin structure with a long double-stranded stem region of 206 bp, and it potently induced the expression of IFN-β. Its IFN-β-inducing activity was further enhanced when both cytoplasmic RNA sensor RIG-I and its partner, PACT, were overexpressed. On the contrary, this activity was abrogated in cells deficient in PACT or RIG-I. The DI RNA was found to be associated with PACT in infected cells. In addition, both the 5′-di/triphosphate end and the double-stranded stem region on the DI RNA were essential for its activation of PACT and RIG-I. Taken together, our findings support a model in which a viral DI RNA is sensed by PACT and RIG-I to initiate an innate antiviral response. Our work might also provide a foundation for identifying physiological PACT ligands and developing novel adjuvants or antivirals. IMPORTANCE The live attenuated measles virus vaccine is one of the most successful human vaccines and has largely contained the devastating impact of a highly contagious virus. Identifying the components in this vaccine that stimulate the host immune response and understanding their mechanism of action might help to design and develop better adjuvants, vaccines, antivirals, and immunotherapeutic agents. We identified and characterized

  6. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons

    PubMed Central

    Eberhardt, Wolfgang; Badawi, Amel; Biyanee, Abhiruchi; Pfeilschifter, Josef

    2016-01-01

    The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets (“HuR mRNA regulons”) encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy. PMID:27582706

  7. Silencing tissue inhibitors of metalloproteinases (TIMPs) with short interfering RNA reveals a role for TIMP-1 in hepatic stellate cell proliferation

    SciTech Connect

    Fowell, Andrew J.; Collins, Jane E.; Duncombe, Dale R.; Pickering, Judith A.; Rosenberg, William M.C.; Benyon, R. Christopher

    2011-04-08

    Research highlights: {yields} Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis. {yields} We used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. {yields} Specific silencing of TIMP-1, but not TIMP-2, significantly reduces HSC proliferation and is associated with reduced Akt phosphorylation. {yields} TIMP-1 is localised in part to the HSC nucleus. {yields} TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. -- Abstract: Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover

  8. Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT4 endocytosis without affecting insulin signaling.

    PubMed

    Kao, A W; Ceresa, B P; Santeler, S R; Pessin, J E

    1998-09-25

    To examine the role of clathrin-coated vesicle endocytosis in insulin receptor signaling and GLUT4 trafficking, we used recombinant adenovirus to express a dominant interfering mutant of dynamin (K44A/dynamin) in 3T3L1 adipocytes. Functional expression of K44A/dynamin, as measured by inhibition of transferrin receptor internalization, did not affect insulin-stimulated insulin receptor autophosphorylation, Shc tyrosine phosphorylation, or mitogen-activated protein kinase activation. Although the tyrosine phosphorylation of insulin receptor substrate-1 was slightly reduced, correlating with a 25% decrease in insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, insulin-stimulated Akt kinase activation was unaffected. In contrast, expression of K44A/dynamin resulted in the cell-surface accumulation of GLUT4 under basal conditions and an inhibition of GLUT4 endocytosis without affecting insulin-stimulated GLUT4 exocytosis. These data demonstrate that disruption of clathrin-mediated endocytosis does not significantly perturb insulin receptor signal transduction pathways. Furthermore, K44A/dynamin expression causes an accumulation of GLUT4 at the cell surface, suggesting that GLUT4 vesicles exist in at least two distinct intracellular compartments, one that undergoes continuous recycling and a second that is responsive to insulin. PMID:9738014

  9. Shp-2 contributes to anti-RSV activity in human pulmonary alveolar epithelial cells by interfering with the IFN-α-induced Jak/Stat1 pathway

    PubMed Central

    Wang, Saisai; Zheng, Gang; Zhao, Lifang; Xu, Feng; Qian, Jing

    2015-01-01

    Src homology phosphotyrosyl phosphatase 2 (Shp-2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp-2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp-2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp-2 does not affect viral replication or virus-induced interferon-alpha (IFN-α) production. Interestingly, whereas A549 cells were activated by IFN-α, the blocking of Shp-2 resulted in increased viral replication that was associated with the reduced expression of the IFN-stimulated genes of 2′,5′-oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp-2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN-α-induced Jak/Stat1 pathway activation rather than by affecting the production of IFN-α itself. PMID:26119280

  10. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  11. Effectiveness of Cyantraniliprole for Managing Bemisia tabaci (Hemiptera: Aleyrodidae) and Interfering with Transmission of Tomato Yellow Leaf Curl Virus on Tomato.

    PubMed

    Caballero, Rafael; Schuster, David J; Peres, Natalia A; Mangandi, Jozer; Hasing, Tomas; Trexler, Fred; Kalb, Steve; Portillo, Héctor E; Marçon, Paula C; Annan, I B

    2015-06-01

    Cyantraniliprole is the second xylem-systemic active ingredient in the new anthranilic diamide class. Greenhouse (2006), growth chamber (2007), and field studies (2009-2010) were conducted to determine the efficacy of cyantraniliprole for managing Bemisia tabaci (Gennadius) biotype B and in interfering with transmission of tomato yellow leaf curl virus (TYLCV) by this whitefly. Cyantraniliprole applied as soil treatments (200 SC) or foliar sprays (100 OD) provided excellent adult whitefly control, TYLCV suppression, and reduced oviposition and nymph survival, comparable to current standards. The positive results observed in these greenhouse experiments with a high level of insect pressure (10× the field threshold of one adult per plant) and disease pressure (five adults per plant, with a high level of confidence that TYLCV virulent adults were used), indicate a great potential for cyantraniliprole to be used in a whitefly management program. Field evaluations of soil drench treatments confirmed the suppression of TYLCV transmission demonstrated in the greenhouse studies. Field studies in 2009 and 2010 showed that cyantraniliprole (200 SC) provided TYLCV suppression for 2 wk after a drench application, when using a susceptible (2009) or imidacloprid-tolerant (2010) whitefly population. Cyantraniliprole was demonstrated to be a promising tool for management of TYLCV in tomato production, which is very difficult and expensive, and which has limited options. The integration of cyantraniliprole into a resistance management program will help to ensure the continued sustainability of this and current insecticides used for the management of insect vectors, including whiteflies and the TYLCV they spreads. PMID:26470209

  12. Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles.

    PubMed Central

    Meyers, G; Thiel, H J; Rümenapf, T

    1996-01-01

    The 5'- and 3'-terminal sequences of the genomic RNA from classical swine fever virus (CSFV) were determined, and the resulting information was used for construction of full-length CSFV cDNA clones. After transfection of in vitro-transcribed RNA derived from a cDNA construct, infectious CSFV was recovered from porcine cells. To confirm the de novo generation of infectious CSFV from cloned DNA, a genetically tagged CSFV was constructed. In comparison with parental CSFV, the recombinant viruses were retarded in growth by about 1 order of magnitude. Introduction of a deletion by exchange of part of the full-length construct for corresponding cDNA fragments derived from the genomes of cytopathogenic CSFV defective interfering particles (DIs) (G. Meyers and H.-J. Thiel, J. Virol. 69:3683-3689. 1995) resulted in recovery of cytopathogenic DIs in the DI genomes is responsible for their cytopathogenicity. The established system will allow novel approaches to analysis of pestiviral molecular biology and in particular to elucidation of the molecular basis of attenuation and cytopathogenicity of these viruses. PMID:8627678

  13. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome.

    PubMed

    Diez, Concepcion M; Meca, Esteban; Tenaillon, Maud I; Gaut, Brandon S

    2014-04-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24:22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  14. Plant siRNAs from introns mediate DNA methylation of host genes.

    PubMed

    Chen, Dijun; Meng, Yijun; Yuan, Chunhui; Bai, Lin; Huang, Donglin; Lv, Shaolei; Wu, Ping; Chen, Ling-Ling; Chen, Ming

    2011-06-01

    Small RNAs (sRNAs), largely known as microRNAs (miRNAs) and short interfering RNAs (siRNAs), emerged as the critical components of genetic and epigenetic regulation in eukaryotic genomes. In animals, a sizable portion of miRNAs reside within the introns of protein-coding genes, designated as mirtron genes. Recently, high-throughput sequencing (HTS) revealed a huge amount of sRNAs that derived from introns in plants, such as the monocot rice (Oryza sativa). However, the biogenesis and the biological functions of this kind of sRNAs remain elusive. Here, we performed a genome-scale survey of intron-derived sRNAs in rice based on HTS data. Several introns were found to have great potential to form internal hairpin structures, and the short hairpins could generate miRNAs while the larger ones could produce siRNAs. Furthermore, 22 introns, termed "sirtrons," were identified from the rice protein-coding genes. The single-stranded sirtrons produced a diverse set of siRNAs from long hairpin structures. These sirtron-derived siRNAs are dominantly 21 nt, 22 nt, and 24 nt in length, whose production relied on DCL4, DCL2, and DCL3, respectively. We also observed a strong tendency for the sirtron-derived siRNAs to be coexpressed with their host genes. Finally, the 24-nt siRNAs incorporated with Argonaute 4 (AGO4) could direct DNA methylation on their host genes. In this regard, homeostatic self-regulation between intron-derived siRNAs and their host genes was proposed. PMID:21518803

  15. A Systemic Small RNA Signaling System in Plants

    PubMed Central

    Yoo, Byung-Chun; Kragler, Friedrich; Varkonyi-Gasic, Erika; Haywood, Valerie; Archer-Evans, Sarah; Lee, Young Moo; Lough, Tony J.; Lucas, William J.

    2004-01-01

    Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes. PMID:15258266

  16. Transfer RNA-derived small RNAs in the cancer transcriptome.

    PubMed

    Green, Darrell; Fraser, William D; Dalmay, Tamas

    2016-06-01

    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis. These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity. RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of interest in a 'larger' small RNA, the transfer RNA (tRNA). Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation. Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control

  17. Chairing a Small Department.

    ERIC Educational Resources Information Center

    Bowker, Lee H.; Lynch, David M.

    Ten management problems for chairs of small departments in small colleges are discussed, along with problem-solving strategies for these administrators. Serious disagreements within a small and intimate department may create a country club culture in which differences are smoothed over and the personal idiosyncrasies of individual members are…

  18. Small Colleges, Big Missions.

    ERIC Educational Resources Information Center

    Griffin, W. A., Jr., Ed.

    This monograph by the members of the American Association of Community Colleges' Commission on Small and/or Rural Community Colleges shares small and rural community college experiences. In "Leaders through Community Service," Jacqueline D. Taylor provides a model for how small and rural community colleges can be involved in building leaders…

  19. Small Business Pedagogic Practices

    ERIC Educational Resources Information Center

    Billett, Stephen; Hernon-Tinning, Barnie; Ehrich, Lisa

    2003-01-01

    Understanding how learning for small businesses should best proceed constitutes a worthwhile, yet challenging, pedagogic project. In order to maintain their viability, small businesses need to be able to respond to new practices and tasks. Yet small businesses seem neither attracted to nor to value the kinds of taught courses that are the standard…

  20. Interfering with Bacterial Quorum Sensing

    PubMed Central

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  1. Self-Interfering Wave Packets.

    PubMed

    Colas, David; Laussy, Fabrice P

    2016-01-15

    We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields-much like self-accelerating beams-shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal. PMID:26824554

  2. Self-Interfering Wave Packets

    NASA Astrophysics Data System (ADS)

    Colas, David; Laussy, Fabrice P.

    2016-01-01

    We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal.

  3. Interfering with Bacterial Quorum Sensing.

    PubMed

    Reuter, Kerstin; Steinbach, Anke; Helms, Volkhard

    2016-01-01

    Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery. PMID:26819549

  4. Rapid and Efficient Isolation of High-Quality Small RNAs from Recalcitrant Plant Species Rich in Polyphenols and Polysaccharides

    PubMed Central

    Pu, Jinji; Guo, Jianrong; Fan, Zaifeng

    2014-01-01

    Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are important regulators of plant development and gene expression. The acquisition of high-quality small RNAs is the first step in the study of its expression and function analysis, yet the extraction method of small RNAs in recalcitrant plant tissues with various secondary metabolites is not well established, especially for tropical and subtropical plant species rich in polysaccharides and polyphenols. Here, we developed a simple and efficient method for high quality small RNAs extraction from recalcitrant plant species. Prior to RNA isolation, a precursory step with a CTAB-PVPP buffer system could efficiently remove compounds and secondary metabolites interfering with RNAs from homogenized lysates. Then, total RNAs were extracted by Trizol reagents followed by a differential precipitation of high-molecular-weight (HMW) RNAs using polyethylene glycol (PEG) 8000. Finally, small RNAs could be easily recovered from supernatant by ethanol precipitation without extra elimination steps. The isolated small RNAs from papaya showed high quality through a clear background on gel and a distinct northern blotting signal with miR159a probe, compared with other published protocols. Additionally, the small RNAs extracted from papaya were successfully used for validation of both predicted miRNAs and the putative conserved tasiARFs. Furthermore, the extraction method described here was also tested with several other subtropical and tropical plant tissues. The purity of the isolated small RNAs was sufficient for such applications as end-point stem-loop RT-PCR and northern blotting analysis, respectively. The simple and feasible extraction method reported here is expected to have excellent potential for isolation of small RNAs from recalcitrant plant tissues rich in polyphenols and polysaccharides. PMID:24787387

  5. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  6. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway.

    PubMed

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A S; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-08-01

    -inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway. PMID:24880493

  7. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function.

    PubMed

    Adelmant, G; Gilbert, J D; Freytag, S O

    1998-06-19

    Human translocation liposarcoma (TLS)-CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is a fusion oncoprotein found specifically in a malignant tumor of adipose tissue and results from a t(12;16) translocation that fuses the amino-terminal part of TLS to the entire coding region of CHOP. Being that CHOP is a member of the C/EBP transcription factor family, proteins that comprise part of the adipocyte differentiation machinery, we examined whether TLS-CHOP blocked adipocyte differentiation by directly interfering with C/EBP function. Using a single-step retroviral infection protocol, either wild-type or mutant TLS-CHOP were co-expressed along with C/EBPbeta in naïve NIH3T3 cells, and their ability to inhibit C/EBPbeta-driven adipogenesis was determined. TLS-CHOP was extremely effective at blocking adipocyte differentiation when expressed at a level comparable to that observed in human myxoid liposarcoma. This effect of TLS-CHOP required a functional leucine zipper domain and correlated with its ability to heterodimerize with C/EBPbeta and inhibit C/EBPbeta DNA binding and transactivation activity in situ. In contrast, the TLS-CHOP basic region was dispensable, making it unlikely that the inhibitory effect of TLS-CHOP is attributable to unscheduled gene expression resulting from TLS-CHOP's putative transactivation activity. Another adipogenic transcription factor, PPARgamma2, was able to rescue TLS-CHOP-inhibited cells, indicating that TLS-CHOP interferes primarily with C/EBPbeta-driven adipogenesis and not with other requisite events of the adipocyte differentiation program. Together, the results demonstrate that TLS-CHOP blocks adipocyte differentiation by directly preventing C/EBPbeta from binding to and transactivating its target genes. Moreover, they provide strong support for the thesis that a blockade to normal differentiation is an important aspect of the cancer process. PMID:9624148

  8. The Slicer Activity of ARGONAUTE1 Is Required Specifically for the Phasing, Not Production, of Trans-Acting Short Interfering RNAs in Arabidopsis.

    PubMed

    Arribas-Hernández, Laura; Marchais, Antonin; Poulsen, Christian; Haase, Bettina; Hauptmann, Judith; Benes, Vladimir; Meister, Gunter; Brodersen, Peter

    2016-07-01

    ARGONAUTE1 (AGO1) mediates posttranscriptional silencing by microRNAs (miRNAs) and short interfering RNAS (siRNAs). AGO1-catalyzed RNA cleavage (slicing) represses miRNA targets, but current models also highlight the roles of slicing in formation of siRNAs and siRNA-AGO1 complexes. miRNA-guided slicing is required for biogenesis of phased, trans-acting siRNAs (tasiRNAs), whose cleaved precursor fragments are converted to double-stranded RNA by RNA-dependent RNA polymerase 6 (RDR6). In addition, unwinding of duplex siRNA bound to AGO1 requires passenger strand cleavage in vitro. In this study, we analyze how mutation of four metal ion-coordinating residues of Arabidopsis thaliana AGO1 affects slicer activity in vitro and siRNA function in vivo. We show that while all four residues are required for slicer activity, they do not contribute equally to catalysis. Moreover, passenger strand cleavage is required for assembly of active AGO1-siRNA complexes in vivo, and many AGO1-bound siRNAs are trimmed in the absence of slicer activity. Remarkably, seedlings defective in AGO1 slicer activity produce abundant siRNAs from tasiRNA loci in vivo. These siRNAs depend on RDR6 and SUPPRESSOR OF GENE SILENCING3, but unlike wild-type tasiRNAs, they are unphased. These results demonstrate that slicing is solely required for phase definition of tasiRNAs, and they strongly support recruitment of RDR6 by AGO1 rather than by cleavage fragments. PMID:27354557

  9. A novel betapartitivirus RnPV6 from Rosellinia necatrix tolerates host RNA silencing but is interfered by its defective RNAs.

    PubMed

    Chiba, Sotaro; Lin, Yu-Hsin; Kondo, Hideki; Kanematsu, Satoko; Suzuki, Nobuhiro

    2016-07-01

    The family Partitiviridae comprises of five genera with bi-segmented dsRNA genomes that accommodate members infecting plants, fungi or protists. All partitiviruses with only a few exceptions cause asymptomatic infections. We report the characterization of a novel betapartitivirus termed Rosellinia necatrix partitivirus 6 (RnPV6) from a field isolate of a plant pathogenic fungus, white root rot fungus. RnPV6 has typical partitivirus features: dsRNA1 and dsRNA2 are 2462 and 2499bps in length encoding RNA-dependent RNA polymerase and capsid protein. Purified particles are spherical with a diameter of 30nm. Taking advantage of infectivity as virions, RnPV6 was introduced into a model filamentous fungal host, chestnut blight fungus to investigate virus/host interactions. Unlike other partitiviruses tested previously, RnPV6 induced profound phenotypic alterations with symptoms characterized by a reduced growth rate and enhanced pigmentation and was tolerant to host RNA silencing. In addition, a variety of defective RNAs derived from dsRNA1 appear after virion transfection. These sub-viral RNAs were shown to interfere with RnPV6 replication, at least for that of cognate segment dsRNA1. Presence of these sub-viral elements resulted in reduced symptom expression by RnPV6, suggesting their nature as defective-interfering RNAs. The features of RnPV6 are similar to but distinct from those of a previously reported alphapartitivirus, Rosellinia necatrix partitivirus 2 that is susceptible to RNA silencing. PMID:26494168

  10. The Slicer Activity of ARGONAUTE1 Is Required Specifically for the Phasing, Not Production, of Trans-Acting Short Interfering RNAs in Arabidopsis[OPEN

    PubMed Central

    Marchais, Antonin; Poulsen, Christian; Hauptmann, Judith; Meister, Gunter

    2016-01-01

    ARGONAUTE1 (AGO1) mediates posttranscriptional silencing by microRNAs (miRNAs) and short interfering RNAS (siRNAs). AGO1-catalyzed RNA cleavage (slicing) represses miRNA targets, but current models also highlight the roles of slicing in formation of siRNAs and siRNA-AGO1 complexes. miRNA-guided slicing is required for biogenesis of phased, trans-acting siRNAs (tasiRNAs), whose cleaved precursor fragments are converted to double-stranded RNA by RNA-dependent RNA polymerase 6 (RDR6). In addition, unwinding of duplex siRNA bound to AGO1 requires passenger strand cleavage in vitro. In this study, we analyze how mutation of four metal ion-coordinating residues of Arabidopsis thaliana AGO1 affects slicer activity in vitro and siRNA function in vivo. We show that while all four residues are required for slicer activity, they do not contribute equally to catalysis. Moreover, passenger strand cleavage is required for assembly of active AGO1-siRNA complexes in vivo, and many AGO1-bound siRNAs are trimmed in the absence of slicer activity. Remarkably, seedlings defective in AGO1 slicer activity produce abundant siRNAs from tasiRNA loci in vivo. These siRNAs depend on RDR6 and SUPPRESSOR OF GENE SILENCING3, but unlike wild-type tasiRNAs, they are unphased. These results demonstrate that slicing is solely required for phase definition of tasiRNAs, and they strongly support recruitment of RDR6 by AGO1 rather than by cleavage fragments. PMID:27354557

  11. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    PubMed Central

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  12. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    PubMed Central

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A.S.; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-01-01

    Sulforaphane, a naturally-occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited TNF-α-induced adhesion of monocytes to human umbilical vein endothelial cells (HUVECs), a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 (MCP-1), adhesion molecule sVCAM-1 and sE-Selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced NF-κB transcriptional activity, IκBα degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers’ delicate organization as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced VCAM-1 and monocytes-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway. PMID:24880493

  13. Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling

    PubMed Central

    Xue, Yuan-Liang; Meng, Xiang-Qi; Ma, Long-Jun; Yuan, Zhen

    2016-01-01

    Plumbagin, a naphthoquinone constituent of Plumbago zeylanica L. (Plumbaginaceae) is widely used in traditional Chinese medicine as an antifungal, antibacterial and anti-inflammatory agent. Plumbagin is known to exhibit proapoptotic, antiangiogenic and antimetastatic effects in cancer cells. The transcriptional co-factor four and a half LIM domains 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of gene expression, signal transduction and cell proliferation and differentiation, and also acts as a tumor suppressor or oncoprotein depending on the tissue microenvironment. The present study investigated the effect of plumbagin on FHL2 expression, Wnt/β-catenin signalling and its anti-proliferative activity in various human osteosarcoma cell lines, including SaOS2, MG63, HOS and U2OS. The cells were exposed to plumbagin and the expression of FHL2 was evaluated using western blot analysis. Furthermore, the anti-proliferative effect of plumbagin was evaluated using a 3-(4,5 dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, since FHL2 is involved in Wnt/β-catenin signaling, the effect of plumbagin on β-catenin and its primary target genes, including v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) and WNT1 inducible signaling pathway protein-1 (WISP-1), was evaluated using western blot analysis. It was observed that plumbagin suppressed the expression of FHL2 and exhibited significant anti-proliferative activity in osteosarcoma cells. It also attenuated Wnt/β-catenin signalling by downregulating β-catenin and its target genes, including c-Myc and WISP-1. In conclusion, plumbagin demonstrated anti-proliferative activity in osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling. PMID:27446400

  14. Small turbines, big unknown

    SciTech Connect

    Gipe, P.

    1995-07-01

    While financial markets focus on the wheeling and dealing of the big wind companies, the small wind turbine industry quietly keeps churning out its smaller but effective machines. Some, the micro turbines, are so small they can be carried by hand. Though worldwide sales of small wind turbines fall far short of even one large windpower plant, figures reach $8 million to $10 million annually and could be as much as twice that if batteries and engineering services are included.

  15. Small Intestine Disorders

    MedlinePlus

    ... disease Crohn's disease Infections Intestinal cancer Intestinal obstruction Irritable bowel syndrome Ulcers, such as peptic ulcer Treatment of disorders of the small intestine depends on the cause.

  16. Small bowel radiology

    SciTech Connect

    Antes, G.; Eggemann, F.

    1987-01-01

    This book deals mainly with technique, experiences and results of the biphasic small bowel enema (enteroclysis) with barium and methyl cellulose. The method allows the evaluation of both morphology and function of the small bowel. The introduction describes the examination technique, basic patterns, interpretation and indications, while the atlas shows a broad spectrum of small bowel diseases (Crohn's disease, other inflammatory diseases, tumors, motility disorders, obstructions and malformations). The possibilities of small bowel radiology are demonstrated with reference to clinical findings and differential diagnoses.

  17. Small Schools, Big Future

    ERIC Educational Resources Information Center

    Halsey, R. John

    2011-01-01

    Historically, small schools have played a very important role in the provision of schooling in Australia. Numerically, using an enrollment of 200 or less, small schools represent approximately 45% of the schools in Australia. Population growth and the consequences of this, in particular for food production, water and energy, mean that the…

  18. Small Mammal Intrigue.

    ERIC Educational Resources Information Center

    Cristol, Daniel A.

    1985-01-01

    Gives introductory information about the study of small mammals including the selection and use of harmless live-traps, handling and identification, techniques for observation and trapping in the wild, and safety measures. Suggests useful references for teachers wishing to develop a small mammal study program for their students. (JHZ)

  19. Small College, Big Research

    ERIC Educational Resources Information Center

    Markin, Karen M.

    2008-01-01

    When scientists at small colleges and universities seek research grants, they often run into challenges not faced by their colleagues at major institutions. It is, nonetheless, possible to maintain a research program at a small institution, says the writer, if people have a great deal of passion and a little ingenuity. Issues to consider at…

  20. Small Animal Care.

    ERIC Educational Resources Information Center

    Livesey, Dennis W.; Fong, Stephen

    This small animal care course guide is designed for students who will be seeking employment in veterinary hospitals, kennels, grooming shops, pet shops, and small-animal laboratories. The guide begins with an introductory section that gives the educational philosophy of the course, job categories and opportunities, units of instruction required…

  1. Industrial Education. "Small Engines".

    ERIC Educational Resources Information Center

    Parma City School District, OH.

    Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…

  2. Sensitive Small Area Photometer

    ERIC Educational Resources Information Center

    Levenson, M. D.

    1970-01-01

    Describes a simple photometer capable of measuring small light intensities over small areas. The inexpensive, easy-to- construct instrument is intended for use in a student laboratory to measure the light intensities in a diffraction experiment from single or multiple slits. Typical experimental results are presented along with the theoretical…

  3. Small Wind Information (Postcard)

    SciTech Connect

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  4. Big Project, Small Leaders

    ERIC Educational Resources Information Center

    Schon, Jennifer A.; Eitel, Karla B.; Bingaman, Deirdre; Miller, Brant G.; Rittenburg, Rebecca A.

    2014-01-01

    Donnelly, Idaho, is a small town surrounded by private ranches and Forest Service property. Through the center of Donnelly runs Boulder Creek, a small tributary feeding into Cascade Lake Reservoir. Boulder Creek originates from a mountain lake north of Donnelly. Since 1994 it has been listed as "impaired" by the Environmental Protection…

  5. Technology for small spacecraft

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report gives the results of a study by the National Research Council's Panel on Small Spacecraft Technology that reviewed NASA's technology development program for small spacecraft and assessed technology within the U.S. government and industry that is applicable to small spacecraft. The panel found that there is a considerable body of advanced technology currently available for application by NASA and the small spacecraft industry that could provide substantial improvement in capability and cost over those technologies used for current NASA small spacecraft. These technologies are the result of developments by commercial companies, Department of Defense agencies, and to a lesser degree NASA. The panel also found that additional technologies are being developed by these same entities that could provide additional substantial improvement if development is successfully completed. Recommendations for future technology development efforts by NASA across a broad technological spectrum are made.

  6. Small intestinal ischemia and infarction

    MedlinePlus

    ... small intestine; Atherosclerosis - small intestine; Hardening of the arteries - small intestine ... Embolus: Blood clots can block one of the arteries supplying the intestine. People who have had a ...

  7. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    SciTech Connect

    Doller, Anke; Badawi, Amel

    2015-01-01

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  8. SmallSat Database

    NASA Technical Reports Server (NTRS)

    Petropulos, Dolores; Bittner, David; Murawski, Robert; Golden, Bert

    2015-01-01

    The SmallSat has an unrealized potential in both the private industry and in the federal government. Currently over 70 companies, 50 universities and 17 governmental agencies are involved in SmallSat research and development. In 1994, the U.S. Army Missile and Defense mapped the moon using smallSat imagery. Since then Smart Phones have introduced this imagery to the people of the world as diverse industries watched this trend. The deployment cost of smallSats is also greatly reduced compared to traditional satellites due to the fact that multiple units can be deployed in a single mission. Imaging payloads have become more sophisticated, smaller and lighter. In addition, the growth of small technology obtained from private industries has led to the more widespread use of smallSats. This includes greater revisit rates in imagery, significantly lower costs, the ability to update technology more frequently and the ability to decrease vulnerability of enemy attacks. The popularity of smallSats show a changing mentality in this fast paced world of tomorrow. What impact has this created on the NASA communication networks now and in future years? In this project, we are developing the SmallSat Relational Database which can support a simulation of smallSats within the NASA SCaN Compatability Environment for Networks and Integrated Communications (SCENIC) Modeling and Simulation Lab. The NASA Space Communications and Networks (SCaN) Program can use this modeling to project required network support needs in the next 10 to 15 years. The SmallSat Rational Database could model smallSats just as the other SCaN databases model the more traditional larger satellites, with a few exceptions. One being that the smallSat Database is designed to be built-to-order. The SmallSat database holds various hardware configurations that can be used to model a smallSat. It will require significant effort to develop as the research material can only be populated by hand to obtain the unique data

  9. Small Intestinal Bacterial Overgrowth

    PubMed Central

    Dukowicz, Andrew C.; Levine, Gary M.

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optimal treatment regimen remains elusive. Recently there has been renewed interest in SIBO and its putative association with irritable bowel syndrome. In this comprehensive review, we will discuss the epidemiology, pathogenesis, clinical manifestations, diagnosis, and treatment of SIBO. PMID:21960820

  10. Horizontal Transfer of Small RNAs to and from Plants

    PubMed Central

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  11. Horizontal Transfer of Small RNAs to and from Plants.

    PubMed

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  12. Small satellites - An overview

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    The present review of small satellites examines spacecraft activities in the U.K. and compiles a checklist of advantages and applications for the class. These advantages are illustrated with references to recent small satellite missions and technologies developed to facilitate such launches and projects. Specific programs examined include AMPTE-UKS, Viking, and the UoSAT program, and information is given regarding the Small Explorer program, the RAE Space Technology Research Vehicle, the AEA Argos Program, and space research programs in both Japan and India. Low-cost launches are shown to be available in the form of the Ariane Structure for Auxiliary Payloads, the Pegasus and Delta vehicles, and with the Shuttle Free-flying Getaway Special. Small-satellite technologies that play key roles in their effective implementation are: structure/thermal advances, attitude control systems, on-board communications, and power and data-handling systems.

  13. CASC: Small Is Beautiful

    ERIC Educational Resources Information Center

    McNamara, William

    1976-01-01

    The rise of the Council for the Advancement of Small Colleges (CASC) to a position of national leadership within the higher education community is described. Its success in fund-raising, college services, and intercollegiate relations is reported. (LBH)

  14. Small bowel bacterial overgrowth

    MedlinePlus

    Overgrowth - intestinal bacteria; Bacterial overgrowth - intestine ... Unlike the large intestine, the small intestine does not have a high number of bacteria. When there are too many bacteria in the ...

  15. Small bowel bacterial overgrowth

    MedlinePlus

    ... Surgical procedures that create a loop of small intestine where excess bacteria can grow. An example is a Billroth II type of stomach removal ( gastrectomy ). Some cases of irritable bowel syndrome (IBS) Symptoms The most common symptoms are: Abdominal ...

  16. Small islands adrift

    NASA Astrophysics Data System (ADS)

    Petherick, Anna

    2015-07-01

    With the charismatic former president of the Maldives, Mohamed Nasheed, behind bars on a widely derided terrorism charge, Anna Petherick asks whether small island states can really make themselves heard in Paris.

  17. Small bowel resection

    MedlinePlus

    ... cause inflammation include regional ileitis , regional enteritis , and Crohn disease . Cancer Carcinoid tumor Injuries to the small intestine ... you have a chronic condition, such as cancer, Crohn disease or ulcerative colitis, you may need ongoing medical ...

  18. Closed Small Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Small Cell Clouds in the South Pacific     ... the Multi-angle Imaging SpectroRadiometer (MISR). Closed cell clouds are formed under conditions of widespread sinking of the air above. ...

  19. Small infrared sensors

    NASA Astrophysics Data System (ADS)

    Horn, Stuart B.; Lohrmann, Dieter; Miller, James E.; McCormack, Kent; Newsome, Gwendolyn W.; Brown, James C.; Campbell, James, Jr.; Perconti, Philip; Klager, Gene A.

    2001-09-01

    Small, low cost, low poer infrared imaging sensors are relatively recent innovation, employing the most advanced MEMS processing techniques, integrated circuit design, optical materials, and focal plane array packaging. We will review the rationale behind the development of low cost, small IR cameras, discuss several of the medium performance applications for these sensors via a modeling analysis, discuss the goals and status of our applied research uncooled focal plane array technology programs, and discuss the future of uncooled focal plane arrays.

  20. Small-x physics

    SciTech Connect

    Mueller, A.H.

    1997-06-01

    After a brief review of the kinematics of deep inelastic lepton-proton scattering, the parton model is described. Small-x behavior coming from DGLAP evolution and from BFKL evolution is discussed, and the two types of evolution are contrasted and compared. Then a more detailed discussion of BFKL dynamics is given. The phenomenology of small-x physics is discussed with an emphasis on ways in which BFKL dynamics may be discussed and measured. 45 refs., 12 figs.

  1. How Small are Small Stars Really?

    NASA Astrophysics Data System (ADS)

    2002-11-01

    VLT Interferometer Measures the Size of Proxima Centauri and Other Nearby Stars [1] Summary At a distance of only 4.2 light-years, Proxima Centauri is the nearest star to the Sun currently known [2]. It is visible as an 11-magnitude object in the southern constellation of Centaurus and is the faintest member of a triple system, together with Alpha Centauri , the brightest (double) star in this constellation. Proxima Centauri is a very-low-mass star, in fact barely massive enough to burn hydrogen to helium in its interior. It is about seven times smaller than the Sun, and the surface temperature is "only" about 3000 degrees, about half of that of our own star. Consequently, it is also much fainter - the intrinsic brightness is only 1/150th of that of our Sun. Low-mass stars are very interesting objects , also because the physical conditions in their interiors have much in common with those of giant planets, like Jupiter in our solar system. A determination of the sizes of the smallest stars has been impossible until now because of their general faintness and lack of adequate instrumentation. However, astronomers have long been keen to move forward in this direction, since such measurements would provide indirect, crucial information about the behaviour of matter under extreme conditions. When the first observations with the VLT Interferometer (VLTI), combining the light from two of the 8.2-m VLT Unit Telescopes (ANTU and MELIPAL), were made one year ago ( ESO PR 23/01 ), interferometric measurements were also obtained of Proxima Centauri . They formed part of the VLTI commissioning and the data were soon released to the ESO community, cf. the special website. Now, an international team of astronomers from Switzerland, France and ESO/Chile has successfully analysed these observations by means of newly developed, advanced software. For the first time ever, they obtained a highly accurate measurement of the size of such a small star . Three other small stars were also

  2. MINERVA: Small Planets from Small Telescopes

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Johnson, John Asher; Wright, Jason; McCrady, Nate; Swift, Jonathan; Bottom, Michael; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; Vera, Jon De; Szentgyorgyi, Andrew

    2015-09-01

    The Kepler mission has shown that small planets are extremely common. It is likely that nearly every star in the sky hosts at least one rocky planet. We just need to look hard enough-but this requires vast amounts of telescope time. MINERVA (MINiature Exoplanet Radial Velocity Array) is a dedicated exoplanet observatory with the primary goal of discovering rocky, Earth-like planets orbiting in the habitable zone of bright, nearby stars. The MINERVA team is a collaboration among UNSW Australia, Harvard-Smithsonian Center for Astrophysics, Penn State University, University of Montana, and the California Institute of Technology. The four-telescope MINERVA array will be sited at the F.L. Whipple Observatory on Mt Hopkins in Arizona, USA. Full science operations will begin in mid-2015 with all four telescopes and a stabilised spectrograph capable of high-precision Doppler velocity measurements. We will observe ~100 of the nearest, brightest, Sun-like stars every night for at least five years. Detailed simulations of the target list and survey strategy lead us to expect new low-mass planets.

  3. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  4. [Small-Bowel Cancer].

    PubMed

    Kagaya, Yuka; Sakamoto, Hirotsugu; Yamamoto, Hironori

    2016-05-01

    Diagnosis of small-bowel cancer has become easier thanks to the development of both balloon-assisted endoscopy and capsule endoscopy. Balloon-assisted endoscopy allows not only for observation of the deep intestine but also for biopsies and for establishing a histological diagnosis. Although endoscopic diagnosis is reported to improve the prognosis of small-bowel cancer by early detection, it is still difficult and the prognosis in general is poor. Surgery and chemotherapy protocols for this disease are similar to those for colon cancer. At present, the response rate to chemotherapy for small-bowel cancer is low. There is an urgent need in this patient population to establish a new diagnostic and therapeutic algorithm using balloon-assisted endoscopy and capsule endoscopy. PMID:27210079

  5. A Small as Possible

    NASA Technical Reports Server (NTRS)

    Tibbitts, Scott

    2003-01-01

    This story begins with a bit of serendipity: I was on a trip to see a Shuttle launch and I happened to sit next to a guy who was in charge of batteries for Space Systems/Loral. He told me that they needed to create a new battery bypass switch, the device that takes a battery out of commission if it goes bad. After discussing the conversation back at my company, we decided that we could create the switch. We contacted the folks at Loral and they said, 'Okay, let s see what you can come up with. We need it as small as possible.' We asked, 'How small?' They said, 'We need it as small as you can possibly make it.'

  6. Small Intestinal Infections.

    PubMed

    Munot, Khushboo; Kotler, Donald P

    2016-06-01

    Small intestinal infections are extremely common worldwide. They may be bacterial, viral, or parasitic in etiology. Most are foodborne or waterborne, with specific etiologies differing by region and with diverse pathophysiologies. Very young, very old, and immune-deficient individuals are the most vulnerable to morbidity or mortality from small intestinal infections. There have been significant advances in diagnostic sophistication with the development and early application of molecular diagnostic assays, though these tests have not become mainstream. The lack of rapid diagnoses combined with the self-limited nature of small intestinal infections has hampered the development of specific and effective treatments other than oral rehydration. Antibiotics are not indicated in the absence of an etiologic diagnosis, and not at all in the case of some infections. PMID:27168147

  7. Small-world networks

    NASA Astrophysics Data System (ADS)

    Strogatz, Steven

    Everyone is familiar with the small-world phenomenon: soon after meeting a stranger, we are often suprised to discover that we have a mutual friend, or that we are somehow linked by a short chain of friends. In this talk, I'll present evidence that the small-world phenomenon is more than a curiosity of social networks — it is actually a general property of large, sparse networks whose topology is neither completely regular nor completely random. To check this idea, Duncan Watts and I have analyzed three networks of scientific interest: the neural network of the nematode worm C. elegans, the electrical power grid of the western United States, and the collaboration graph of actors in feature films. All three are small worlds, in the sense that the average number of "handshakes" separating any two members is extremely small (close to the theoretical lower limit set by a random graph). Yet at the same time, all three networks exhibit much more local clustering than a random net, demonstrating that they are not random. I'll also discuss a class of model networks that interpolate between regular lattices and random graphs. Previous theoretical research on complex systems in a wide range of disciplines has focused almost exclusively on networks that are either regular or random. Real networks often lie somewhere in between. Our mathematical model shows that networks in this middle ground tend to exhibit the small-world phenomenon, thanks to the presence of a few long-range edges that link parts of the graph that would otherwise be far apart. Furthermore, we find that when various dynamical systems are coupled in a small-world fashion, they exhibit much greater propagation speed, computational power, and synchronizability than their locally connected, regular counterparts. We explore the implications of these results for simple models of disease spreading, global computation in cellular automata, and collective locking of biological oscillators.

  8. Programming in the small.

    PubMed

    Gersten, David B; Langer, Steve G

    2011-02-01

    Academic medical centers, in general, and radiation oncology research, in particular, rely heavily on custom software tools and applications. The code development is typically the responsibility of a single individual or at most a small team. Often these individuals are not professional programmers but physicists, students, and physicians. While they possess domain expertise and algorithm knowledge, they often are not fully aware of general "safe coding" practices--nor do they need the full complexity familiar in large commercial software projects to succeed. Rather, some simple guidelines we refer to as "programming in the small" can be used. PMID:20162440

  9. Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis[C][W

    PubMed Central

    Yan, Jun; Gu, Yiyou; Jia, Xiaoyun; Kang, Wenjun; Pan, Shangjin; Tang, Xiaoqing; Chen, Xuemei; Tang, Guiliang

    2012-01-01

    MicroRNAs (miRNAs) and other endogenous small RNAs act as sequence-specific regulators of the genome, transcriptome, and proteome in eukaryotes. The interrogation of small RNA functions requires an effective, widely applicable method to specifically block small RNA function. Here, we report the development of a highly effective technology that targets specific endogenous miRNAs or small interfering RNAs for destruction in Arabidopsis thaliana. We show that the expression of a short tandem target mimic (STTM), which is composed of two short sequences mimicking small RNA target sites, separated by a linker of an empirically determined optimal size, leads to the degradation of targeted small RNAs by small RNA degrading nucleases. The efficacy of the technology was demonstrated by the strong and specific developmental defects triggered by STTMs targeting three miRNAs and an endogenous siRNA. In summary, we developed an effective approach for the destruction of endogenous small RNAs, thereby providing a powerful tool for functional genomics of small RNA molecules in plants and potentially animals. PMID:22345490

  10. Global analyses of endonucleolytic cleavage in mammals reveal expanded repertoires of cleavage-inducing small RNAs and their targets

    PubMed Central

    Cass, Ashley A.; Bahn, Jae Hoon; Lee, Jae-Hyung; Greer, Christopher; Lin, Xianzhi; Kim, Yong; Hsiao, Yun-Hua Esther; Xiao, Xinshu

    2016-01-01

    In mammals, small RNAs are important players in post-transcriptional gene regulation. While their roles in mRNA destabilization and translational repression are well appreciated, their involvement in endonucleolytic cleavage of target RNAs is poorly understood. Very few microRNAs are known to guide RNA cleavage. Endogenous small interfering RNAs are expected to induce target cleavage, but their target genes remain largely unknown. We report a systematic study of small RNA-mediated endonucleolytic cleavage in mouse through integrative analysis of small RNA and degradome sequencing data without imposing any bias toward known small RNAs. Hundreds of small cleavage-inducing RNAs and their cognate target genes were identified, significantly expanding the repertoire of known small RNA-guided cleavage events. Strikingly, both small RNAs and their target sites demonstrated significant overlap with retrotransposons, providing evidence for the long-standing speculation that retrotransposable elements in mRNAs are leveraged as signals for gene targeting. Furthermore, our analysis showed that the RNA cleavage pathway is also present in human cells but affecting a different repertoire of retrotransposons. These results show that small RNA-guided cleavage is more widespread than previously appreciated. Their impact on retrotransposons in non-coding regions shed light on important aspects of mammalian gene regulation. PMID:26975654

  11. Using machine learning and high-throughput RNA sequencing to classify the precursors of small non-coding RNAs.

    PubMed

    Ryvkin, Paul; Leung, Yuk Yee; Ungar, Lyle H; Gregory, Brian D; Wang, Li-San

    2014-05-01

    Recent advances in high-throughput sequencing allow researchers to examine the transcriptome in more detail than ever before. Using a method known as high-throughput small RNA-sequencing, we can now profile the expression of small regulatory RNAs such as microRNAs and small interfering RNAs (siRNAs) with a great deal of sensitivity. However, there are many other types of small RNAs (<50nt) present in the cell, including fragments derived from snoRNAs (small nucleolar RNAs), snRNAs (small nuclear RNAs), scRNAs (small cytoplasmic RNAs), tRNAs (transfer RNAs), and transposon-derived RNAs. Here, we present a user's guide for CoRAL (Classification of RNAs by Analysis of Length), a computational method for discriminating between different classes of RNA using high-throughput small RNA-sequencing data. Not only can CoRAL distinguish between RNA classes with high accuracy, but it also uses features that are relevant to small RNA biogenesis pathways. By doing so, CoRAL can give biologists a glimpse into the characteristics of different RNA processing pathways and how these might differ between tissue types, biological conditions, or even different species. CoRAL is available at http://wanglab.pcbi.upenn.edu/coral/. PMID:24145223

  12. Small Public Library Management

    ERIC Educational Resources Information Center

    Pearlmutter, Jane; Nelson, Paul

    2012-01-01

    Anyone at the helm of a small public library knows that every little detail counts. But juggling the responsibilities that are part and parcel of the job is far from easy. Finally, here's a handbook that includes everything administrators need to keep a handle on library operations, freeing them up to streamline and improve how the organization…

  13. Small Schools Reform Narratives

    ERIC Educational Resources Information Center

    Lehman, Beth M.; Berghoff, Beth

    2013-01-01

    This study explored complicated personal narratives of school reform generated by participants in response to a particular small schools reform initiative. Narrative data was dialogically generated in interviews with nine past participants of an urban high school conversion project planned and implemented over a span of five years toward the goal…

  14. Small Rural School Programs.

    ERIC Educational Resources Information Center

    Burgett, James

    Low cost or no cost ideas for programs in smaller rural schools are listed. Areas covered include public relations, special programs and curriculum. Based on the experience of a small school district in Elizabeth, Illinois, these ideas include the school's relationship to students, faculty and the community; extracurricular activities relating to…

  15. Benign small bowel tumor.

    PubMed Central

    Wilson, J M; Melvin, D B; Gray, G; Thorbjarnarson, B

    1975-01-01

    The clinical record and histologic sections of 84 cases of benign small bowel tumor are reviewed. Manifestations of systemic diseases, congenital anomalies, and lesions of either the ileocecal valve or periampullary region were excluded. In the same time span there were 96 small bowel malignancies. Clinical presentation, pathologic findings, management and result are compared to the collected published experience of about 2000 cases. There were 36 leiomyomas, 22 lipomas, 9 angiomas, 6 neurofibromas and 4 fibromas. Thirty-six men and 48 women were affected; the majority in their fifth and sixth decade. Seventy-eight were operative and 6 autopsy diagnoses. The most common symptom was obstruction (42%) followed by hemorrhage (34%) and pain (22%), relative frequency differing for the various specific tumors. There were rarely significant physical findings. A diagnosis of small bowel tumor was made radiologically in 30 patients. Because of the nonspecificity of other signs and symptoms, an acute awareness of the possibility of small bowel tumor is mandatory for preoperative anticipation of the diagnosis. Local resection was performed in all with no deaths or significant postoperative complications. PMID:1078626

  16. Small satellite radiometric measurements

    SciTech Connect

    Weber, P.G.

    1991-01-01

    A critical need for the Mission to Planet Earth is to provide continuous, well-calibrated radiometric data for the radiation budget. This paper describes a new, compact, flexible radiometer which will provide both spectrally integrated data and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted vehicles (RPVs). 12 refs., 2 figs.

  17. Automating Small Libraries.

    ERIC Educational Resources Information Center

    Swan, James

    1996-01-01

    Presents a four-phase plan for small libraries strategizing for automation: inventory and weeding, data conversion, implementation, and enhancements. Other topics include selecting a system, MARC records, compatibility, ease of use, industry standards, searching capabilities, support services, system security, screen displays, circulation modules,…

  18. DOE Small Hydropower Program

    SciTech Connect

    Hickman, W.W.; McLaughlin, T.B.

    1980-01-01

    The scope of work and activities of the Department of Energy's National Small Hydropower Program are discussed. Each portion of the program is discussed to provide an overall view of the program's depth. The three major subprograms are the Demonstration Projects subprogram, the Engineering Development subprogram, and the Loan subprogram. Program results are presented by graphic illustrations where applicable.

  19. Small Wonders Close Encounters

    ERIC Educational Resources Information Center

    Kniseley, MacGregor; Capraro, Karen

    2013-01-01

    This article introduces students to the world of digital microscopy. Looking at small objects through a digital microscope is like traveling through a foreign country for the first time. The experience is new, engaging, and exciting. A handheld digital microscope is an essential tool in a 21st century teacher's toolkit and the perfect tool to…

  20. Small Hive Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small hive beetles (SHB) have become serious pests of honey bees, especially in the southeastern region of the United States. Both adults and larvae cause serious feeding damages and their fecal matters contaminate harvestable honey. At present, Coumaphos (used as an in-hive treatment) and Gardstar ...

  1. Small Gas Engine Repair.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    Instructional materials are provided for a small gas engine course. A list of objectives appears first, followed by a list of internal parts and skills/competencies related to those parts for engine work, ignition and electrical systems, fuel system, crankcase lubrication system, arc welding skills, and gas welding skills. Outlines are provided…

  2. Small Can Be Beautiful.

    ERIC Educational Resources Information Center

    Van Patten, Betsy

    1984-01-01

    Grant proposals are most likely to succeed when they are based on solid, well-conceived ideas. Long-range planning is the best way to come up with workable ideas that will convince small foundations of a project's merits. Planning helps identify an institution's top priorities and achieve a consensus. (MLW)

  3. Small Is Beautiful.

    ERIC Educational Resources Information Center

    Rogers, Bethany

    This paper presents research findings and the testimony of educators, students, and researchers demonstrating that small schools meet the essential conditions for providing high-quality education to all students. These essential conditions are: (1) students are known well by their teachers; (2) students are actively engaged in learning and in…

  4. Deburring small intersecting holes

    SciTech Connect

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  5. Small Town Renewal Manual.

    ERIC Educational Resources Information Center

    Kenyon, Peter

    Over the last 2 decades, the loss of population and businesses in many small, inland, and remote Australian rural communities has intensified, largely because of the stress and uncertainty of volatile world commodity markets. This manual presents a range of survival and revival strategies that some communities have used to build resilient…

  6. Libraries for Small Museums.

    ERIC Educational Resources Information Center

    Anderson, Linda M.

    Presented are the very basic requirements for establishing a small special library operating under a limited budget. Physical plant organization, cataloging, book processing, circulation procedures, book selection and ordering and instructions for typists are covered. Although the practices discussed were established for a museum library, what is…

  7. Computers in Small Business.

    ERIC Educational Resources Information Center

    Rumberger, Russell W.; Levin, Henry M.

    A survey was administered to a sample of about 10,000 members of the National Federation of Independent Business in 1985 to ascertain a variety of information about the use of computers in the nation's small businesses, including the extent of their use, training needs of users, and impacts and benefits. Major findings summarized from the 2,813…

  8. Small Intestine Cancer Treatment

    MedlinePlus

    ... small intestine cancer include unexplained weight loss and abdominal pain. These and other signs and symptoms may be ... doctor if you have any of the following: Pain or cramps in the middle of the abdomen. Weight loss with no known reason. A lump ...

  9. Pancreatic small cell cancer.

    PubMed

    El Rassy, Elie; Tabchi, Samer; Kourie, Hampig Raphael; Assi, Tarek; Chebib, Ralph; Farhat, Fadi; Kattan, Joseph

    2016-06-01

    Small cell carcinoma (SCC) is most commonly associated with lung cancer. Extra-pulmonary SCC can originate in virtually any organ system, with the gastrointestinal tract being the most common site of involvement. We review the clinical presentation, pathogenesis, histology, imaging modalities and optimal therapeutic management of PSCC in light of available evidence. PMID:26566245

  10. Small Group Research

    ERIC Educational Resources Information Center

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  11. Small Remote Schools.

    ERIC Educational Resources Information Center

    Berger, Damien

    1997-01-01

    Examines the provision of two small government schools in Australia's Northern Territory in response to the aboriginal movement from central Australia to their homeland in the outer territories. A profile of the community is provided and the learning center development are discussed. (GR)

  12. Small Scale Industries.

    ERIC Educational Resources Information Center

    Rural Development Detwork Bulletin, 1977

    1977-01-01

    Innovative programs for the promotion of small-scale enterprise are being conducted by a variety of organizations, including universities, government agencies, international research institutes, and voluntary assistance agencies. Their activities encompass basic extension services, management of cooperatives, community action programs, and…

  13. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  14. Small Business Development Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This curriculum guide provides materials for an elective course for 11th- or 12th-grade students in small business development. It is intended to meet three times each week for 18 weeks. Introductory materials include instructor objectives; anticipated student outcomes; and correlations with Connecticut's common core of learning. Each of the eight…

  15. Small School Distributive Education.

    ERIC Educational Resources Information Center

    Barnes, Bill

    Information on an atypical 1966-67 Distributive Education pilot program in New Mexico was given. The program was unique since one instructor conducted this program in two schools which were in separate rural districts (Dexter and Hagerman). Since both communities were primarily agricultural, with small student populations, the cost of such a…

  16. Small Business Bibliography.

    ERIC Educational Resources Information Center

    Anderson, Wendell, Ed.

    Intended as a resource for both experienced businesspeople and those new to business, this annotated bibliography provides a list of books, pamphlets, periodicals, and videotapes of value in solving specific business problems. The bibliography begins with a list of resources recommended for the library of every small business and a survey of…

  17. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under an Army Small Business Innovation Research (SBIR) grant, Symbiotics, Inc. developed a software system that permits users to upgrade products from standalone applications so they can communicate in a distributed computing environment. Under a subsequent NASA SBIR grant, Symbiotics added additional tools to the SOCIAL product to enable NASA to coordinate conventional systems for planning Shuttle launch support operations. Using SOCIAL, data may be shared among applications in a computer network even when the applications are written in different programming languages. The product was introduced to the commercial market in 1993 and is used to monitor and control equipment for operation support and to integrate financial networks. The SBIR program was established to increase small business participation in federal R&D activities and to transfer government research to industry. InQuisiX is a reuse library providing high performance classification, cataloging, searching, browsing, retrieval and synthesis capabilities. These form the foundation for software reuse, producing higher quality software at lower cost and in less time. Software Productivity Solutions, Inc. developed the technology under Small Business Innovation Research (SBIR) projects funded by NASA and the Army and is marketing InQuisiX in conjunction with Science Applications International Corporation (SAIC). The SBIR program was established to increase small business participation in federal R&D activities and to transfer government research to industry.

  18. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    SciTech Connect

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  19. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs

    PubMed Central

    2013-01-01

    Viral vectors have become the best option for the delivery of therapeutic genes in conventional and RNA interference-based gene therapies. The current viral vectors for the delivery of small regulatory RNAs are based on DNA viruses and retroviruses/lentiviruses. Cytoplasmic RNA viruses have been excluded as viral vectors for RNAi therapy because of the nuclear localization of the microprocessor complex and the potential degradation of the viral RNA genome during the excision of any virus-encoded pre-microRNAs. However, in the last few years, the presence of several species of small RNAs (e.g., virus-derived small interfering RNAs, virus-derived short RNAs, and unusually small RNAs) in animals and cell cultures that are infected with cytoplasmic RNA viruses has suggested the existence of a non-canonical mechanism of microRNA biogenesis. Several studies have been conducted on the tick-borne encephalitis virus and on the Sindbis virus in which microRNA precursors were artificially incorporated and demonstrated the production of mature microRNAs. The ability of these viruses to recruit Drosha to the cytoplasm during infection resulted in the efficient processing of virus-encoded microRNA without the viral genome entering the nucleus. In this review, we discuss the relevance of these findings with an emphasis on the potential use of cytoplasmic RNA viruses as vehicles for the efficient delivery of therapeutic small RNAs. PMID:23759022

  20. [Small intestine bacterial overgrowth].

    PubMed

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190