Science.gov

Sample records for 241-sy tank farm

  1. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  2. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  3. Status of tank 241-SY-101 data analyses

    SciTech Connect

    Anantatmula, R.P.

    1992-09-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. The safety issue involves the production, accumulation, and periodic release from these tanks of flammable gases in concentrations exceeding the lower flammability limits. This document deals primarily with tank 241-SY-101 from the SY Tank Farm. The flammable gas condition has existed for this tank since the tank was first filled in the time period from 1977 to 1980. During a general review of waste tank chemical stability in 1988--1989, this situation was re-examined and, in March 1990, the condition was declared to be an unreviewed safety question. Tank 241-SY-101 was placed under special operating restrictions, and a program of investigation was begun to evaluate the condition and determine appropriate courses of action. This report summarizes the data that have become available on tank 241-SY-101 since it was declared as an unreviewed safety question and updates the information reported in an earlier document (WHC-EP-0517). The report provides a technical basis for use in the evaluation of safety risks of the tank and subsequent resolution of the unreviewed safety question.

  4. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  5. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    SciTech Connect

    SHULTZ, M.V.

    1999-02-12

    Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  6. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    SciTech Connect

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    2012-10-04

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron, calcium

  7. Waste compatibility safety issues and final results for tank 241-SY-102 grab samples

    SciTech Connect

    Nuzum, J.L.

    1997-08-14

    Three grab samples (2SY-96-1, 2SY-96-2, and 2SY-96-3) were taken from Riser 1A of Tank 241-SY 102 on January 14, 1997, and received by 222-S Laboratory on January 14, 1997. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farm Waste Compatibility Program (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results. Acetone analysis was not performed in accordance with Cancellation of Acetone Analysis for Tank 241-SY-102 Grab Samples.

  8. Operability test procedure [Tank] 241-SY-101 equipment removal system

    SciTech Connect

    Mast, J.C.

    1994-12-08

    The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation.

  9. Process control plan for tank 241-SY-101 surface level rise remediation

    SciTech Connect

    ESTEY, S.D.

    1999-06-29

    The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within the past year or so, the waste in this tank has exhibited unexpected behavior in the form of rapidly increasing crust growth. The Process Control Plan (PCP), HNF-4264, was written to translate high-level guidance and regulatory criteria and express it in terms of operating instructions for the waste transfer system. These controls include: (1) Tank Farm Operations Administrative Controls developed in response to DOE-ORP direction reg,arding supplemental controls placed upon tank 241-SY-101 surface level rise remediation activities specifically involving waste transfer activities. (2) Authorization Basis controls (Basis for Interim Operation (BIO)/Technical Safety Requirements (TSRs)) and supplemental DOE direction. (3) Environmental, Industrial Hygiene and Safety controls. (4) Operating Specification Document (OSD) controls. (5) Good operating practices. Included in the document are descriptions of tank conditions, waste conditions, major equipment, and a high-level overview of the system and the line-ups in which it operates. Primarily, the PCP addresses how the waste transfer will be managed, defining the monitoring and control methods including material balances to determine the progress and to define completion criteria for the transfer. The actual plant modifications and waste transfer will be authorized and controlled by plant procedures.

  10. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    SciTech Connect

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.

  11. Structural analysis and evaluation of the 241SY101 tank annulus heat-up

    SciTech Connect

    Ziada, H.H.

    1994-10-19

    This document provides the structural analysis (static and thermal loads) of the 241SY101 tank to determine the maximum allowable temperature and rate of heating that could be applied to tank 241SY101 through annulus air heating without detrimental effects to the structural integrity of the concrete and steel liner of the tank.

  12. Tank characterization report for double-shell tank 241-SY-103

    SciTech Connect

    Conner, J.M., Westinghouse Hanford

    1996-09-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SY-103. This report supports the requirements of Tri-Party Agreement Milestone M-44 09.

  13. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  14. Solubilities of gases in simulated Tank 241-SY-101 wastes

    SciTech Connect

    Norton, J.D.; Pederson, L.R.

    1995-09-01

    Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

  15. Results of Waste Transfer and Back-Dilution in Tanks 241-SY-101 and 241-SY-102

    SciTech Connect

    LA Mahoney; ZI Antoniak; WB Barton; JM Conner; NW Kirch; CW Stewart; BE Wells

    2000-07-26

    This report chronicles the process of remediation of the flammable gas hazard in Tank 241-SY-101 (SY-101) by waste transfer and back-dilution from December 18, 1999 through April 2, 2000. A brief history is given of the development of the flammable gas retention and release hazard in this tank, and the transfer and dilution systems are outlined. A detailed narrative of each of the three transfer and dilution campaigns is given to provide structure for the balance of the report. Details of the behavior of specific data are then described, including the effect of transfer and dilution on the waste levels in Tanks SY-101 and SY-102, data from strain gauges on equipment suspended from the tank dome, changes in waste configuration as inferred from neutron and gamma logs, headspace gas concentrations, waste temperatures, and the mixerpump operating performance. Operating data and performance of the transfer pump in SY-101 are also discussed.

  16. Miscellaneous component design for Tank 241SY101 pump removal

    SciTech Connect

    Huang, F.H.

    1995-03-02

    A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document.

  17. Closed out Tank 241-SY-101 DACS system change request {number_sign}1--100

    SciTech Connect

    Gauck, G.J.

    1995-03-07

    This report is a compilation of system change requests processed during the development of the Data Acquisition and Control System for the Tank 241-SY-101 hydrogen mitigation project. Tank 241-SY-101 is on the Hydrogen Watch List. The disposition of the request, date the change was installed, date verified, and whether an Acceptance Test Procedure was required and completed are described for each request change.

  18. Jet mixer pump testing in Hanford tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-12-31

    A mixer pump was found effective in controlling and possibly eliminating large flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when gas-bearing sludge accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises to the surface releasing the trapped gas. Mixer pump operation is intended to keep gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed July 3, 1993, 7 days after a typical GRE. The initial pump operation in phase-A testing was extremely gentle, beginning with a series of daily pump {open_quotes}bumps{close_quotes} intended to keep the pump nozzles clear. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted 5-min period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of phase-B testing. By the end of phase B, thrice-weekly bumping became the rule.

  19. Assessment of gas accumulation and retention -- Tank 241-SY-101

    SciTech Connect

    Alleman, R.T.; Burke, T.M.; Reynolds, D.A.; Simpson, D.E.

    1993-03-01

    An approximate analysis has been carried out to assess and estimate the maximum quantity of gas that is likely to be accumulated within waste tank 241-SY-101, and the maximum quantity which is likely to be retained after gas release events (GRE). According to the phenomenological models used for this assessment, based on interpretation of current and recent operational data, the estimated gas generation rate in the tank is approximately 4 m{sup 3}/day (147 ft{sup 3}/day). About half of this gas is released as it is generated, which is (essentially) continuously. The remainder is accumulated within the slurry layer of settled solids at the bottom of the tank, and released episodically in GREs, known as ``burps,`` that are induced by unstable buoyant conditions which develop when sufficient gas accumulates in the slurry. Calculations based on gas volumes to cause neutral buoyancy in the slurry predict the following: the maximum gas accumulation (at 1 atm pressure) that can occur without triggering a GRE is in the range of 606 to 1,039 m{sup 3} (21,400 to 36,700 ft{sup 3}); and the maximum gas retention immediately after a GRE is equal to the maximum accumulation minus the gas released in the GRE. GREs do not necessarily involve all of the slurry. In the largest GREs, which are assumed to involve all of the slurry, the minimum gas release (at 1 atm pressure) is calculated to be in the range of 193 to 328 m{sup 3} (6,800 to 11,600 ft{sup 3}). The corresponding maximum gas retention would be 413 to 711 m{sup 3} (14,600 to 25,100 ft{sup 3}).

  20. Jet mixer pump testing in Hanford Tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-11-01

    A mixer pump was found effective in controlling and possibly eliminating large episodic flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when the gas-bearing sludge layer accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises through the surface crust releasing the trapped gas to the dome space. Mixer pump operation is intended to keep enough of the gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed in the tank on July 3, 1993, seven days after a typical GRE that met the safety criteria for pump installation. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted five-minute period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of Phase B testing. By the end of Phase B, thrice-weekly bumping during non-testing periods became the rule. The jets were aimed into previously undisturbed material and gas release induced by the pump increased immediately. In November, the pump was indexed progressively around the entire tank in 30{degrees} steps. This steadily released a large quantity of retained gas at each position and reduced the waste level to 400 inches, the minimum level in many years. By December, the jets had apparently excavated most of the gas-bearing sludge within reach, because only modest gas releases and essentially no level change occurred after pump operation. For the rest of Phase B testing, there were no large gas releases that would suggest a large volume of unmixed waste. The two thermocouple trees showed a uniform vertical temperature profile. In the month following Phase B, minimal pump operation apparently maintained most of the mixing achieved during testing.

  1. Tank characterization report for double-shell tank 241-SY-103

    SciTech Connect

    Hansen, D.R.

    1996-03-29

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-SY-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-09.

  2. Process Control Plan for Tank 241-SY-101 Surface Level Rise Remediation

    SciTech Connect

    ESTEY, S.D.

    1999-09-28

    The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within the last year or so, the waste in this tank has exhibited unexpected behavior (Rassat et al. 1999) in the form of rapidly increasing crust growth. This growth has been brought about by a rapidly increasing rate of gas entrapment within the crust. It has been conceived that the lack of crust agitation beginning upon the advent of mixer pump operations may have set-up a more consolidated, gas impermeable barrier when compared to a crust regularly broken up by the prior buoyant displacement events within the tank. As a result, a series of level-growth remediation activities have been developed for tank 241-SY-101. The initial activities are also known as near-term crust mitigation. The first activity of near-term mitigation is to perform the small transfer of convective waste from tank 241-SY-101 into tank 241-SY-102. A 100 kgal transfer represents about a 10% volume reduction allowing a 10% water in-tank dilution. Current thinking holds that this should be enough to dissolve nitrite solids in the crust and perhaps largely eliminate gas retention problem in the crust (Raymond 1999).

  3. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    SciTech Connect

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  4. Thermal analysis of tank 241-SY-101 to support structural assessment

    SciTech Connect

    Beaver, T.R.

    1994-10-14

    This report documents a thermal model of tank 241-SY-101 and the surrounding soil column that was used to predict tank temperatures resulting from heating of the annulus ventilation air. Transient results from the model were input to a structural model of the tank for evaluation of the annulus heat-up event.

  5. Mixer pump long term operations plan for Tank 241-SY-101 mitigation

    SciTech Connect

    Irwin, J.J.

    1994-09-07

    This document provides the general Operations Plan for performance of the mixer pump long term operations for Tank 241-SY-101 mitigation of gas retention and periodic release in Tank 101-SY. This operations plan will utilize a 112 kW (150 hp) mixing pump to agitate/suspend the particulates in the tank.

  6. Tank characterization report for Double-Shell Tank 241-SY-102

    SciTech Connect

    DiCenso, A.T.; Amato, L.C.; Winters, W.I.

    1995-06-09

    This tank characterization report presents an overview of Double-Shell Tank 241-SY-102 (hereafter, Tank 241-SY-102) and its waste contents. It provides estimated concentrations and inventories for the waste components based on the latest sampling and analysis activities and background tank information. This report describes the results of three sampling events. The first core sample was taken in October 1988. The tank supernate and sludge were next core sampled in February and March of 1990 (Tingey and Sasaki 1995). A grab sample of the supernate was taken in March of 1994. Tank 241-SY-102 is in active service and can be expected to have additional transfers to and from the tank that will alter the composition of the waste. The concentration and inventory estimates reported in this document no longer reflect the exact composition of the waste but represent the best estimates based on the most recent and available data. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-08 (Ecology, EPA, DOE 1994).

  7. Engineer/constructor description of work for Tank 241-SY-102 retrieval system, project W-211, initial tank retrieval systems

    SciTech Connect

    Rieck, C.A.

    1996-02-01

    This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2.

  8. An assessment of the dilution required to mitigate Hanford tank 241-SY-101

    SciTech Connect

    Hudson, J.D.; Bredt, P.R.; Felmy, A.R.; Stewart, C.W.; Tingey, J.M.; Trent, D.S.; Barney, G.S.; Herting, D.L.; Larrick, A.P.; Reynolds, D.A.

    1995-02-01

    A group of experts from PNL and WHC convened November 2 and 3, 1994, to screen the current state of knowledge about dilution and reach a consensus on the minimum dilution ratio that will achieve passive mitigation of Tank 241-SY-101 wastes and the dilution ratio that would satisfy the given cross-site transfer criteria with reasonable assurance. The panel evaluated the effects of dilution on the parameters important in gas generation, retention, and release and reached the following conclusions, which are deduced from the existing body of data, experience, and analyses: (1) Dissolution of solids is the single most important aspect of mitigation by dilution. We are confident that diluting until nitrates, nitrites, and aluminum salts are dissolved will mitigate Hanford flammable gas tanks; (2) Sufficient solids dissolution can be achieved in Tank 241-SY-101 at a dilution ratio of 1:1, which will result in a average specific gravity of approximately 1.35. It is likely that a 0.5:1 dilution will also mitigate 241-SY-101, but the current uncertainty is too high to recommend this dilution ratio; (3) The recommended dilution requires a diluent with at least 2 molar free hydroxide, because aluminum probably precipitates at lower hydroxide concentrations. The transfer criteria for Tank 241-SY-101 waste were also evaluated. These criteria have been specified as solids content {<=}30% (volume), viscosity {<=}30% cP and density <1.5 g/mL. (1) Solids content is the limiting criterion if it is defined as volume fraction of settled solids. A 1:1 dilution will satisfy this criterion at nominal premixing conditions in Tank 241-SY-101; however, analysis of Window E core samples suggests that up to 1.5:1 might be required. If the solids content is interpreted simply as solids volume fraction no further dilution is necessary, because Tank 241-SY-101 waste (excluding the crust) is already below 30%; (2) Bulk density is the next limiting criterion and is met at 0.4:1 dilution.

  9. Acceptance and operational test procedure for neutron and gamma probe application to tank 241-SY-101 MITs

    SciTech Connect

    CANNON, N.S.

    1999-06-02

    This ATP/OTP provides procedures for testing to be performed to verify that newly procured neutron and gamma probes (reduced diameter design modifications) for operation in the Tank 241-SY-101 MlTs are compatible with existing LOW van instrumentation and hardware. A set of moisture data versus elevation will be obtained from the Tank 241-SY-101 MITs, and (optionally) from the Tank 241-AX-I01 LOW as part of this testing program.

  10. Historical trends in tank 241-SY-101 waste temperatures and levels

    SciTech Connect

    Antoniak, Z.I.

    1993-09-01

    The gas release and fluctuating level of the waste in tank 241-SY-101 have prompted more detailed interest in its historical behavior, in hopes of achieving a better understanding of its current status. To examine the historical behavior, essentially all of the tank waste temperature and level data record has been retrieved, examined, and plotted in various ways. To aid in interpreting the data, the depth of the non-convective waste layer was estimated by using a least-squares Chebyshev approximation to the temperatures. This report documents the retrieval critical examination, and graphic presentation of 241-SY-101 temperature and waste level histories. The graphic presentations clearly indicate a tank cooling trend that has become precipitous since late 1991. The plots also clearly show the decreasing frequency of waste gas release events, increasing height of the non-convective layer, and larger level drops per event.

  11. The Potential for Buoyant Displacement Gas Release Events in Tank 241-SY-102 after Waste Transfer from Tank 241-SY-101

    SciTech Connect

    Wells, Beric E.; Meyer, Perry A.; Chen, Guang

    2000-04-10

    Tank 241-SY-101 is a double-shell radioactive waste storage tank containing waste that, before recent transfer and water back-dilution operations, was capable of retaining gas and producing flammable buoyant displacement gas release events (BD GREs). A BD GRE occurs when a portion of the nonconvective layer waste retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of the stored gas. Installing the mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has prevented BD GREs. Gas retention in the floating drust layer and the corresponding accelerated waste level growth made it necessary to begin waste removal and back-dilution with water in December 1999. During these operations, some of the SY-101 mixed slurry layer is removed and transferred into Tank 241-SY-102. There was some concern that adding the SY-101 waste into SY-102 could create a waste configuration in SY-102 capable of BD GREs. This report updates and extends earlier assessments of the potential for BD GRE conditions in SY-102 after waste is transferred from SY-101. We determined that, under the given assumptions, no possibility of BD GREs exists in SY-102 from the SY-101 waste being added during from December 1999 through March 2000.

  12. Acceptance and Operational Test Report for Neutron and Gamma Probe Application to Tank 241-SY-101 MITs

    SciTech Connect

    CANNON, N.S.

    1999-08-12

    This Operational Test Report (OTR) presents the results of the ATP/OTP testing performed to verify that newly procured neutron and gamma probes (reduced diameter design modifications) for operation in the Tank 241-SY-101 MITs are compatible with existing LOW van instrumentation and hardware. This verification was accomplished and a set of moisture data versus elevation were obtained from the Tank 241-SY-101 MITs as part of this testing program.

  13. Thermocouple module halt failure acceptance test procedure for Tank 241-SY-101 DACS-1

    SciTech Connect

    Ermi, A.M.

    1997-12-09

    The readiness of the Tank 241-SY-101 Data Acquisition and Control System (DACS-1) to provide monitoring and alarms for a halt failure of any thermocouple module will be tested during the performance of this procedure. Updated DACS-1 ``1/0 MODULE HEALTH STATUS``, ``MININ1``, and ``MININ2`` screens, which now provide indication of thermocouple module failure, will also be tested as part of this procedure.

  14. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    SciTech Connect

    BE Wells; PE Meyer; G Chen

    2000-05-10

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000.

  15. Engineering test plan for Tank 241-SY-101 in situ viscometer

    SciTech Connect

    Sobocinski, R.G.; Stokes, T.I.; Pearce, K.L.

    1994-11-01

    To obtain in situ measurements of the rheological properties within tank 241-SY-101, this document will implement the test strategy defined in PNLMIT-041994, acquisition and Reduction of Data Obtained in Tank SY-101 with the Ball Rheometer. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure.

  16. The behavior, quantity, and location of undissolved gas in Tank 241-SY-101

    SciTech Connect

    Brewster, M.E.; Gallagher, N.B.; Hudson, J.D.; Stewart, C.W.

    1995-10-01

    Mitigation of episodic flammable gas releases from Hanford Waste Tank 241-SY-101 was accomplished in July 1993 with the installation of a mixer pump that prevents gas retention. But is has not been possible until recently to measure the effects of mixing on the waste or how much gas remains and where it is located. Direct measurements of the void fraction and rheology of the mixed waste by the void fraction instrument (VFI) and ball rheometer along with previous data provide estimates of the location, quantity, and behavior of undissolved gas in the tank. This report documents the compilation and integration of the information that enables this understanding.

  17. Neutron and Gamma Probe Application to Hanford Tank 241-SY-101

    SciTech Connect

    CANNON, N.S.

    2000-02-01

    A neutron (moisture-sensitive) and gamma (in-situ radiation) probe technique has been utilized at a number of Hanford radioactive waste tanks for many years. This technology has been adapted for use in tank 241-SY-101's two Multifunction Instrument Trees (MITs) which have a hollow dry-well center opening two inches (51 cm) in diameter. These probes provide scans starting within a few inches of the tank bottom and traversing up through the top of the tank revealing a variety of waste features as a function of tank elevation. These features have been correlated with void fraction data obtained independently from two other devices, the Retained Gas Sampler (RGS) and the Void Fraction Instrument (VFI). The MIT probes offer the advantage of nearly continuous count-rate versus elevation scans and they can be operated significantly more often and at lower cost than temperature probes or the RGS or VFI devices while providing better depth resolution. The waste level in tank 241-SY-101 had been rising at higher rates than expected during 1998 and early 1999 indicating an increasing amount of trapped gas in the waste. The use of the MIT probes has assisted in evaluating changes in crust thickness and level and also in estimating relative changes in gas stored in the crust. This information is important in assuring that the tank remains in a safe configuration and will support safe waste transfer when those operations take place.

  18. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    SciTech Connect

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

    2003-10-01

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

  19. Chemical mechanisms for gas generation in Tank 241-SY-101

    SciTech Connect

    Strachan, D.M.; Pederson, L.R.; Bryan, S.A.; Ashby, E.C.; Liotta, C.; Barefield, E.K.; Meisel, D.; Jonah, C.D.; Sauer, M.C. Jr.

    1993-08-01

    The mixing of wastes at Hanford over the years has led to several safety concerns. These safety concerns fall into six categories: wastes that generate flammable gasses or gas mixtures; wastes that contain high concentrations of ferrocyanides or tanks suspected of containing large amounts of ferrocyanides; wastes that contain greater than 3 wt % total organic carbon; wastes from which toxic or noxious vapors are suspected of emanating; wastes that contain high radiolytic heat; and wastes that may contain sufficient fissile material to pose a criticality concern. This report addresses the chemistry associated with the generation of flammable gases.

  20. Tank 241-SY-101 push mode core sampling and analysis plan

    SciTech Connect

    CONNER, J.M.

    1998-10-09

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for push mode core samples from tank 241-SY-101 (SY-101). It is written in accordance with Data Quality Objective to Support Resolution of the Flammable Gas Safety Issue (Bauer 1998), Low Activity Waste Feed Data Quality Objectives (Wiemers and Miller 1997 and DOE 1998), Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Certa 1998), and the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues apply to tank SY-101 for this sampling event. Brown et al. also identifies high-level waste, regulatory, pretreatment and disposal issues as applicable issues for this tank. However, these issues will not be addressed via this sampling event.

  1. A survey of available information on gas generation in tank 241-SY-101

    SciTech Connect

    Strachan, D.M. ); Reynolds, D.A. ); Siemer, D.D. ); Wallace, R.W. )

    1991-03-01

    As a result of a concerted effort to determine the chemical and physical mechanisms underlying the generation and episodic release of gases from tank 241-SY-101, more commonly known as tank 101-SY, the Tank Waste Science Panel has been established at the Pacific Northwest Laboratory. Four of the members of this panel met to screen the available information on tank 101-SY and provide to the remaining members a shortened list of references that could be used to assess the mechanisms underlying the generation and episodic release of gases from tank 101-SY. This document is the result of this preliminary screening of information for the Tank Waste Science Panel and was provided to the Panel members at their first meeting. 14 refs., 3 tabs.

  2. Ultrasonic Examination of Double-Shell Tank 241-SY-102. Examination Completed June 2004

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2004-07-20

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA

  3. Ultrasonic Examination of Double-Shell Tank 241-SY-101. Examination Completed March 2004.

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2004-07-22

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations.

  4. Ultrasonic Examination of Double-Shell Tank 241-SY-101. Examination Completed March 2004.

    SciTech Connect

    Pardini, Allan F.; Posakony, Gerald J.

    2004-05-25

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations.

  5. Numerical simulation of jet mixing concepts in Tank 241-SY-101

    SciTech Connect

    Trent, D.S.; Michener, T.E.

    1993-03-01

    The episodic gas release events (GRES) that have characterized the behavior of Tank 241-SY-101 for the past several years are thought to result from gases generated by the waste material in it that become trapped in the layer of settled solids at the bottom of the tank. Several concepts for mitigating the GREs have been proposed. One concept involves mobilizing the solid particles with mixing jets. The rationale behind this idea is to prevent formation of a consolidated layer of settled solids at the bottom of the tank, thus inhibiting the accumulation of gas bubbles in this layer. Numerical simulations were conducted using the TEMPEST computer code to assess the viability and effectiveness of the proposed jet discharge concepts and operating parameters. Before these parametric studies were commenced, a series of turbulent jet studies were conducted that established the adequacy of the TEMPEST code for this application. Configurations studied for Tank 241-SY-101 include centrally located downward discharging jets, draft tubes, and horizontal jets that are either stationary or rotating. Parameter studies included varying the jet discharge velocity, jet diameter, discharge elevation, and material properties. A total of 18 simulations were conducted and are reported in this document. The effect of gas bubbles on the mixing dynamics was not included within the scope of this study.

  6. Tank 241-SY-102 January 2000 Compatibility Grab Samples Analytical Results for the Final Report [SEC 1 and 2

    SciTech Connect

    BELL, K.E.

    2000-05-11

    This document is the format IV, final report for the tank 241-SY-102 (SY-102) grab samples taken in January 2000 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank SY-102 samples were performed as directed in Comparability Grab Sampling and Analysis Plan for Fiscal Year 2000 (Sasaki 1999). No notification limits were exceeded. Preliminary data on samples 2SY-99-5, -6, and -7 were reported in ''Format II Report on Tank 241-SY-102 Waste Compatibility Grab Samples Taken in January 2000'' (Lockrem 2000). The data presented here represent the final results.

  7. Simulation and rheological analysis of Hanford Tank 241-SY-101. Final report

    SciTech Connect

    Sams, E.C.; Tennant, R.A.; Piccola, J.P. Jr.

    1993-10-01

    Rheological characterization and small scale simulation of Hanford Tank 241-SY-101 has been initiated to aid in the remediation efforts for the Department of Energy Hanford Site. The study has been initiated in response to growing concerns about the potential flammability hazard pertaining to the periodic release of up to 10,000 cubic feet of hydrogen, nitrous oxide, nitrogen, and ammonia gases. Various stimulants emulating the radioactive waste stored in this tank have been used to ascertain the rheological parameters of the waste, simulate the ongoing processes of gas generation and release phenomenon inside the tank, and determine the feasibility of jet mixing to achieve a controlled release of the gas mixture.

  8. Process Control Plan for Tank 241-SY-101 Surface Level Rise Remediation

    SciTech Connect

    ESTEY, S.D.

    1999-11-01

    The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within approximately the last year, the waste in this tank has exhibited unexpected behavior (Rassat et al. 1999) in the form of rapidly increasing crust growth. This growth has been brought about by a rapidly increasing rate of gas entrapment within the crust. It has been conceived that the lack of crust agitation beginning upon the advent of mixer pump operations may have set-up a more consolidated, gas impermeable barrier when compared to a crust regularly broken up by the prior buoyant displacement events within the tank. The interim goals of the project are to: (1) protect the mixer pump operability (2) begin releasing gas from the crust, and (3) begin dissolving the crust and solids in the slurry layer. The final goals of the project (Final State) are to solve both the level growth and BD-GRE safety issues in this tank by achieving a condition of the waste such that no active measures are required to safely store the waste, i.e., crust and non convective layer are mostly dissolved, and therefore the mixer pump will no longer be needed to prevent BD-GREs in excess of 100% LFL. Transfers (which are designed to create space in the tank) and dilution (which will dissolve the solids) will accomplish this. Dissolution of solids will result in a release of gas retained by those solids and remove that volume of solids as a future retention site.

  9. Structural analysis of multiport riser 5A installation on tank 241SY101

    SciTech Connect

    Strehlow, J.P.

    1994-09-16

    The Tank 101-SY multiport riser assembly in the 241-SY-101 waste tank will replace the existing 42 inch riser with four smaller ports. Each smaller port can be used independently to access the tank interior with equipment and instruments needed to mitigate the concentration of hydrogen in the tank. This document provides a design report on the structural evaluation of the multiport riser assembly as well as its anchorage. The multiport riser assembly is a steel structure installed directly above the 42-inch riser and sealed at the existing riser flange. The assembly is structurally supported by the concrete pad placed around the 42 inch riser. The multiport riser assembly will provide two 8-inch penetrations, one 12-inch penetration and one 24-inch penetration. Each penetration will have a shielding plate. These penetrations will be used to insert equipment such as a sonic probe into the tank. In addition to normal loads, non-reactor Safety Class 1 structures, systems and components are to withstand the effects of extreme environmental loads including Design Basis Earthquake (DBE), Design Basis Wind (DBW), Design Basis Flood, Volcanic Eruptions and other abnormal loads considered on a case by case basis. Non-reactor Safety Class 2, 3 and 4 structures, systems and components are those that are not Safety Class 1 and are respectively specified as onsite safety related, occupational safety related and non-safety related items. The 241-SY-101 tank is considered as a non-reactor Safety Class 1 structure. The multiport riser assembly is considered as a non-reactor Safety Class 2 structure since it serves to contain the radioactive and toxic materials under normal operating conditions. However, the pressure relief doors provided on the assembly are considered as Safety Class 1 structures.

  10. In situ determination of rheological properties and void fraction in Hanford Waste Tank 241-SY-101

    SciTech Connect

    Stewart, C.W.; Shepard, C.L.; Alzheimer, J.M.; Stokes, T.I.; Terrones, G.

    1995-08-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-101, which contains approximately one million gallons of radioactive waste. These instruments provided the first direct assay of the waste condition in the tank after more than a year of mixer pump operation. The two instruments were deployed in the tank in late 1994 and early 1995 to gather much-needed data on the effect prolonged mixer pump operation has on gas retention in the waste. The information supplied by these instruments has filled a great gap in the quantitative knowledge of the waste condition. The results show that the solids are well-mixed by the current mixer pump to within less than a meter of the tank bottom. Undisturbed sludge remains only on the lowest 10--30 cm and contains 10--12% void. The mixed slurry above contains less than 1% void and has no measurable yield strength and a shear-thinning viscosity of approximately 6 Poise at 1 sec{sup {minus}1}. Estimating the gas volumes in each of the four layers based on VFI data yields a total of 221 {+-} 57 m{sup 3} (7,800 {+-} 2,000 SCF) of gas at 1 atmosphere. Given the current waste level of 10.2 m (400 inches), the degassed waste level would be 9.8 m (386 inches). These results confirm that the mixer pump in Tank 241-SY-101 has performed the job it was installed to do--thoroughly mix the waste to release stored gas and prevent gas accumulation.

  11. Transport of Tank 241-SY-101 Waste Slurry: Effects of Dilution and Temperature on Critical Pipeline Velocity

    SciTech Connect

    KP Recknagle; Y Onishi

    1999-06-15

    This report presents the methods and results of calculations performed to predict the critical velocity and pressure drop required for the two-inch pipeline transfer of solid/liquid waste slurry from underground waste storage Tank 241-SY-101 to Tank 241-SY- 102 at the Hanford Site. The effects of temperature and dilution on the critical velocity were included in the analysis. These analyses show that Tank 241-SY-101 slurry should be diluted with water prior to delivery to Tank 241-SY-102. A dilution ratio of 1:1 is desirable and would allow the waste to be delivered at a critical velocity of 1.5 ft/sec. The system will be operated at a flow velocity of 6 ft/sec or greater therefore, this velocity will be sufficient to maintain a stable slurry delivery through the pipeline. The effect of temperature on the critical velocity is not a limiting factor when the slurry is diluted 1:1 with water. Pressure drop at the critical velocity would be approximately two feet for a 125-ft pipeline (or 250-ft equivalent straight pipeline). At 6 ft/sec, the pressure drop would be 20 feet over a 250-ft equivalent straight pipeline.

  12. Level sensor replacement/sampling of Tank 241-SY-101 at the Hanford Site

    SciTech Connect

    Not Available

    1990-01-01

    The US Department of Energy (DOE) is responsible for management and storage of waste accumulated from the processing of defense reactor irradiated fuels for plutonium recovery at the Hanford Site. DOE is proposing to remove three level detectors from Tank 241-SY-101 and analyze the waste that is presently encrusted on the detectors. The proposed sampling is less intrusive than core sampling and will provide data regarding characterization of the crust to support future core sampling. The purpose of this environmental assessment (EA) is to provide information about the proposed action such that a decision can be made on whether a Finding of No Significant Impact should be issued or an environmental impact statement should be prepared. Therefore, this EA evaluates the proposed action and the no action alternative, in keeping with requirements of the National Environmental Policy Act of 1969 (NEPA) and regulations of the Council on Environmental Quality, Title 40, Code of Federal Regulations, parts 1500--1508. 6 refs.

  13. Evaluation of the generation and release of flammable gases in tank 241-SY-101

    SciTech Connect

    Babad, H.; Johnson, G.D.; Lechelt, J.A.; Reynolds, D.A. ); Pederson, L.R.; Strachan, D.M. ); Meisel, D.; Jonah, C. ); Ashby, E.C. )

    1991-11-01

    Tank 241-SY-101 is a double shell, high-level waste tank located in the 200 West Area of the Hanford Site. This tank contains about 1 million gallons of waste that was concentrated at the 242-S Evaporator. Shortly after the waste was put in the tank, the waste began to expand because the generation of gases. In 1990 this tank was declared to have an unreviewed safety question because of the periodic release of hydrogen and nitrous oxide. A safety program was established to conduct a characterization of the waste and vented gases and to determine an effective means to prevent the accumulation of flammable gases in the tank dome space and ventilation system. Results of the expanded characterization conducted in fiscal year 1991 are presented. The use of gas chromatographs, mass spectrometers, and hydrogen-specific monitors provided a greater understanding of the vented gases. Additional instrumentation placed in the tank also helped to provide more detailed information on tank temperatures, gas pressure, and gas flow rates. An extensive laboratory study involving the Westinghouse Hanford Company, Pacific Northwest Laboratory, Argonne National Laboratory, and the Georgia Institute of Technology was initiated for the purpose of determining the mechanisms responsible for the generation of various gases. These studies evaluate both radiolytic and thermochemical processes. Results of the first series of experiments are described.

  14. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    SciTech Connect

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  15. Chemical and physical processes in Tank 241-SY-101: A preliminary report

    SciTech Connect

    Not Available

    1991-02-01

    Since 1942, chemical and radioactive waste have been stored in underground tanks at the Hanford Site. In March 1981 one of the double shell tanks, 241-SY-101 (called 101-SY), began venting large quantities of gas, primarily hydrogen and nitrous oxide. Because of the potential for explosion Westinghouse Hanford Company and the US Department of Energy realized the need for knowledge about the processes occurring in this tank that lead to generation of the gases. In June 1990, the Pacific Northwest Laboratory began assembling a Tank Waste Science Panel to develop a better understanding of the processes occurring the Tank 101-SY. This knowledge is necessary to provide a technically defensible basis for the safety analyses, which will allow the tank contents to be sampled, as well as for the future remediation of the tank and its contents. The Panel concluded that the data available on Tank 101-SY are insufficient to allow the critical chemical and physical processes giving rise to gas formation and release to be unambiguously identified. To provide the needed information the Panel recommends that Tank 101-SY by physically and chemically characterized as fully as possible and as expeditiously as safety considerations allow, and laboratory studies and modeling efforts be undertaken the chemical and physical processes involved in gas generation and release. Finally, the Panel recommends that no remediation steps be taken until there is a better understanding of the chemical and physical phenomena occurring in Tank 101-SY. Premature remediation steps may only serve to compound the problem. Furthermore, such steps may change the chemical and physical characteristics of the tank and prevent a true understanding of the phenomena involved. As a consequence, similar problems in other tanks on the site may not be adequately addressed. 17 refs., 3 figs., 1 tab.

  16. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    SciTech Connect

    Rassat, Scot D.; Stewart, Charles W.; Wells, Beric E.; Kuhn, William L.; Antoniak, Zenen I.; Cuta, Judith M.; Recknagle, Kurtis P.; Terrones, Guillermo; Viswanathan, Vilayanur V.; Sukamto, Johanes H.; Mendoza, Donaldo P.

    2000-01-24

    Due primarily to an increase in floating crust thickness, the waste level in Tank 241-SY-101 has grown appreciably and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconvective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. The plan is to transfer some waste out and back-dilute with water in several steps. In this work, mechanisms and rates of waste solids dissolution and gas releases are evaluated theoretically and experimentally. Particular emphasis is given to crust dissolution processes and associated gas releases, although dissolution and gas release from the mixed-slurry and nonconvective layers are also considered. The release of hydrogen gas to the tank domespace is modeled for a number of scenarios. Under the tank conditions expected at the time of back-dilution, no plausible continuous or sudden gas release scenarios resulting in flammable hydrogen concentrations were identified.

  17. Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn

    SciTech Connect

    Heard, F.J.

    1995-11-01

    A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

  18. Laboratory testing of ozone oxidation of Hanford Site waste from Tank 241-SY-101

    SciTech Connect

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.

    1993-12-14

    Ozone was investigated as a reagent to oxidize and destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101 (Tank 101-SY). Two high-shear mixing apparatus were tested to perform the gas-to-solution mass transfer necessary to achieve efficient use of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics oxidized to form carbonate and oxalate as well as nitrate and nitrogen gas from nitrogen associated with the organic. oxidations of metal species also were observed directly or inferred by solubilities. The chemical reaction stoichiometries were consistent with reduction of one oxygen atom per ozone molecule. Acetate, oxalate, and formate were found to comprise about 40% of the genuine waste`s total organic carbon (TOC) concentration. Ozonation was found to be chemically feasible for destroying organic species (except oxalate) present in the wastes in Tank 101-SY. The simulated waste formulation used in these studies credibly modelled the ozonation behavior of the genuine waste.

  19. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    SciTech Connect

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  20. Numerical simulation of Hanford Tank 241-SY-101 jet initiated fluid dynamics

    SciTech Connect

    Trent, D.S.; Michener, T.E.

    1994-12-31

    The episodic Gas Release Events (GREs) that have characterized the behavior of Hanford tank 241-SY-101 for the past several years are thought to result from the entrapment of gases generated in the settled solids, i.e., sludge, layer of the tank. Gases consisting of about 36% hydrogen by volume, which are generated by complicated and poorly understood radiological and chemical processes, are apparently trapped in the settled solids layer until their accumulation initiates a buoyant upset of this layer, abruptly releasing large quantities of gas. Once concept for preventing the gas accumulation is to mobilize the settled materials with jet mixing. It is suggested that continual agitation of the settled solids using a mixer pump would free the gas bubbles so that they could continually escape, thus mitigating the potential for accumulation of flammable concentrations of hydrogen in the tank dome space following a GRE. A pump test is planned to evaluate the effectiveness of the jet mixing mitigation concept. The pump will circulate liquid from the upper layer of the tank, discharging it through two horizontal jets located approximately 2{1/2} ft above the tank floor. To prepare for start-up of this pump test, technical, operation, and safety questions concerning an anticipated gas release were addressed by numerical simulation using the TEMPEST computer code. Simulations of the pump initiated gas release revealed that the amount of gas that could potentially be released to the tank dome space is very sensitive to the initial conditions assumed for the amount and distribution of gas in the sludge layer. Calculations revealed that within the assumptions regarding gas distribution and content, the pump might initiate a rollover--followed by a significant gas release--if the sludge layer contains more than about 13 to 14% gas distributed with constant volume fraction.

  1. In situ determination of rheological properties and void fraction: Hanford Waste Tank 241-SY-103

    SciTech Connect

    Shepard, C.L.; Stewart, C.W.; Alzheimer, J.M.; Terrones, G.; Chen, G.; Wilkins, N.E.

    1995-11-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-103. The two instruments were deployed through risers 17C and 22A in July and August 1995 to gather data on the gas content and rheology of the waste. The results indicate that the nonconvective sludge layer contains up to 12% void and an apparent viscosity of 104 to 105 cP with a yield strength less than 210 Pa. The convective layer measured zero void and had no measurable yield strength. Its average viscosity was about 45 cP, and the density was less than 1.5 g/cc. The average void fraction was 0.047 {plus_minus} 0.015 at riser 17C and 0.091 {plus_minus} 0.015 at riser 22A. The stored gas volume based on these void fraction measurements is 213 {plus_minus} 42 M{sup 3} at 1 atmosphere.

  2. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    SciTech Connect

    SD Rassat; CW Stewart; BE Wells; WL Kuhn; ZI Antoniak; JM Cuta; KP Recknagle; G Terrones; VV Viswanathan; JH Sukamto; DP Mendoza

    2000-01-26

    Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate how added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification

  3. Potential for Waste Stratification from Back-Dilution in Tank 241-SY-101

    SciTech Connect

    Antoniak, Z.I.; Meyer, P.A.

    1999-10-20

    Since late 1997, the floating crust layer in Hanford Tank 241-SY-101 (SY-101) has grown about two meters by gas accumulation. To reverse crust growth and reduce its retained gas volume, the waste in SY-101 will be diluted by transferring at least 300,000 gal of waste out of the tank and replacing it with water. In the fall of 1999, approximately 100,000 gal of this waste will be transferred into Tank SY-102; within a few days of that initial transfer, approximately 100,000 gal of water will be added to SY-101. This initial back-dilution is being planned to ensure that the base of the floating crust layer will be lifted away from the mixer pump inlet with minimal effect on the crust itself. The concern is that the added water will pool under the crust, so the resulting fluid mixture will be too light to lift the crust away from the mixer pump and dissolution at the crust base could cause unwanted gas release. To ensure sufficient mixing to prevent such stratification, water will be added near the tank bottom either through an existing sparge ring on the base of the mixer pump or through the dilution line at the inlet of the transfer pump. A number of simulations using the TEMPEST code showed that the mixing of the water and waste by this method is rapid, and the water does not pool under the crust. Although a density gradient is present, its magnitude is small compared with the difference between the slurry and water density. The result is essentially the same whether water is introduced at the base of the mixer pump or at the transfer pump. There is little effect of water flowrate up to the 500 gpm studied. In all cases, the minimum density remained above that required to float the crust and well above the density of saturated liquid. This indicates that the base of the crust will rise during back-dilution and there will be little or no dissolution of the crust base because the water will be close to saturation from the dissolution of solids in the mixed slurry.

  4. Buoyant Response of the Tank 241-SY-101 Crust to Transfer and Back-Dilution

    SciTech Connect

    CW Stewart

    1999-11-08

    The mixer pump installed in Hanford Tank 241-SY-101 (SY-101) in July 1993 has prevented the large buoyant displacement gas release events (BD GRE) it has historically exhibited. But the absence of periodic disruption from GREs and the action of mixing have allowed the crust to grow. The accelerated gas retention has resulted in over 30 inches of waste level growth and the flammable gas volume stored in the crust has become a hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from below the crust, SY-101 will be diluted in the fall of 1999 to dissolve a large fraction of the solids in the tank. The plan is to transfer waste out and back-dilute with water in several steps of about 100,000 gallons each. Back-dilution water may be added at the transfer pump inlet, the base of the mixer pump, and on top of the crust. The mixer pump will continue to be required to prevent formation of a deep nonconnective layer and resumption of BD GREs. Therefore, it is vital to ensure that the transfer and back-dilution processes do not significantly degrade the pump's effectiveness. Part of the strategy to avoid mixer pump degradation is to keep the base of the crust layer well above the pump inlet, which is 236 inches above the tank bottom. The maximum transfer for which an equal back-dilution is possible without sinking the crust is 90 kgal if water is injected at the 96-inch transfer pump inlet and 120 kgal for injection at the 9-inch mixer pump burrowing ring. To keep the crust base above the lowest observed elevation of 295 inches, transfer and back-dilution must be limited to 143 kgal and 80 kgal, respectively, for the 96-inch back-dilution and 175 kgal with a 112 kgal back-dilution using the 9-inch back-dilution elevation. These limits can be avoided by adding water to the top of the crust to dissolve the negatively buoyant layers. If 20 kgal of water is placed on top of the crust and the rest of the back-dilution is placed

  5. Effects of Crust Ingestion on Mixer Pump Performance in Tank 241-SY-101: Workshop Results

    SciTech Connect

    Brennen, C.E.; Stewart, C.W.; Meyer, P.A.

    1999-10-20

    In August 1999, a workshop was held at Pacific Northwest National Laboratory to discuss the effects of crust ingestion on mixer pump performance in Hanford Waste Tank 241-SY-101. The main purpose of the workshop was to evaluate the potential for crust ingestion to degrade mixing and/or damage the mixer pump. The need for a previously determined 12-inch separation between the top of the mixer pump inlet and the crust base was evaluated. Participants included a representative from the pump manufacturer, an internationally known expert in centrifugal pump theory, Hanford scientists and engineers, and operational specialists representing relevant fields of expertise. The workshop focused on developing an understanding of the pump design, addressing the physics of entrainment of solids and gases into the pump, and assessing the effects of solids and gases on pump performance. The major conclusions are summarized as follows: (1) Entrainment of a moderate amount of solids or gas from the crust should not damage the pump or reduce its lifetime, though mixing effectiveness will be somewhat reduced. (2) Air binding should not damage the pump. Vibrations due to ingestion of gas, solids, and objects potentially could cause radial loads that might reduce the lifetime of bearings and seals. However, significant damage would require extreme conditions not associated with the small bubbles, fine solids, and chunks of relatively weak material typical of the crust. (3) The inlet duct extension opening, 235 inches from the tank bottom, should be considered the pump inlet, not the small gap at 262 inches. (4) A suction vortex exists at the inlet of all pumps. The characteristics of the inlet suction vortex in the mixer pump are very hard to predict, but its effects likely extend upward several feet. Because of this, the current 12-inch limit should be replaced with criteria based on actual monitored pump performance. The most obvious criterion (in addition to current operational

  6. Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste

    SciTech Connect

    Person, J.C.

    1996-05-30

    Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

  7. Analysis of several hazardous conditions for large transfer and back-dilution sequences in Tank 241-SY-101

    SciTech Connect

    CW Stewart; LA Mahoney; WB Barton

    2000-01-28

    The first transfer of 89 kgal of waste and back-dilution of 61 kgal of water in Hanford Tank 241-SY-101 was accomplished December 18--20, 1999. Limits were placed on the transfer and back-dilution volumes because of concerns about potential gas release, crust sinking, and degradation of mixer pump performance. Additional transfers and back-dilutions are being planned that will bring the total to 500 kgal, which should dissolve a large fraction of the solids in the tank and dilute it well beyond the point where significant gas retention can occur. This report provides the technical bases for removing the limits on transfer and back-dilution volume by evaluating the potential consequences of several postulated hazardous conditions in view of the results of the first campaign and results of additional analyses of waste behavior.

  8. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    SciTech Connect

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  9. Engineering work plan and design basis for 241-SY ventilation improvements

    SciTech Connect

    Andersen, J.A.

    1997-05-19

    There are three tanks in the 241-SY tank farm. Tank 241-SY101 and 241-SY-103 are flammable gas watch list tanks. Tank 241-SY-102 is included in the ventilation improvement process in an effort to further control air flow in the tank farm. This tank farm has only one outlet ventilation port for all three tanks. Flammable gas is released (may be steady and/or periodic) from the waste in the primary tank vapor space. The gas is removed from the tank by an active ventilation system. However, maintaining consistent measurable flow through the tank can be problematic due to the poor control capabilities of existing equipment. Low flow through the tank could allow flammable gas to build up in the tank and possibly exceed the lower flammability limit (LFL), prevent the most rapid removal of flammable gas from the tank after a sudden gas release, and/or cause high vacuum alarms to sound. Using the inlet and outlet down stream butterfly valves performs the current method of controlling flow in tank farm 241-SY. A filter station is installed on the inlet of each tank, but controlling air flow with its 12 inch butterfly valve is difficult. There is also in-leakage through pump and valve pits. Butterfly valves on the downstream side of each tank could also be used to control air flow. However, their large size and the relatively low air velocity make this control method also ineffective. The proposed method of optimizing tank air flow and pressure control capability is to install an air flow controller on the inlet of each existing filter station in SY farm, and seal as best as practical all other air leakage paths. Such air flow controllers have been installed on 241-AN and 241-AW tanks (see drawing H-2-85647).

  10. Engineering task plan for determining the interstitial liquid level in tank 241-SY-101 utilizing a neutron probe in the multifunction instrument tree

    SciTech Connect

    CANNON, N.S.

    1999-02-23

    This plan outlines the steps to be taken to modify existing neutron/gamma probe designs to allow insertion of these probes into the multifunction instrument trees (MITs) at tank 241-SY-101. The objective is to locate and track this tank's Interstitial Liquid Level (ILL). This plan provides scope, schedule, and cost estimates to achieve this objective, and assigns individual organizational responsibilities to carry out this task.

  11. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    SciTech Connect

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  12. Similarity analysis applied to the design of scaled tests of hydraulic mitigation methods for Tank 241-SY-101

    SciTech Connect

    Liljegren, L.M.

    1993-02-01

    The episodic gas releases from Tank 241-SY-101 (SY-101) pose a potential safety hazard. It is thought that gas releases occur because gases are generated and trapped in layers of settled solids located at the bottom of the tank. This document focuses on issues associated with testing of hydraulic mitigation technologies proposed for SY-101. The basic assumption underlying the concept of hydraulic mitigation is that mobilization or maintained suspension of the solids settled in the bottom of the tank wig prevent gas accumulation. Engineering of hydraulic technologies will require testing to determine the operating parameters required to mobilize the solids and to maintain these solids in suspension. Because full scale testing is extremely expensive (even when possible), scaled tests are needed to assess the merit of the proposed technologies and to provide data for numerical or analytical modeling. This research is conducted to support testing and evaluation of proposed hydraulic mitigation concepts only. The work here is oriented towards determining the jet velocities, nozzle sizes, and other operating parameters required to mobilize the settled solids in SY- 101 and maintain them in suspension.

  13. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    SciTech Connect

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  14. Buoyancy and Dissolution of the Floating Crust Layer in Tank 241-SY-101 During Transfer and Back-Dilution

    SciTech Connect

    CW Stewart; JH Sukamto; JM Cuta; SD Rassat

    1999-11-22

    To remediate gas retention in the floating crust layer and the potential for buoyant displacement gas releases from below the crust, waste will be transferred out of Hanford Tank 241-SY-101 (SY-101) in the fall of 1999 and back-diluted with water in several steps of about 100,000 gallons each. To evaluate the effects of back-dilution on the crust a static buoyancy model is derived that predicts crust and liquid surface elevations as a function of mixing efficiency and volume of water added during transfer and back-dilution. Experimental results are presented that demonstrate the basic physics involved and verify the operation of the models. A dissolution model is also developed to evaluate the effects of dissolution of solids on crust flotation. The model includes dissolution of solids suspended in the slurry as well as in the crust layers. The inventory and location of insoluble solids after dissolution of the soluble fraction are also tracked. The buoyancy model is applied to predict the crust behavior for the first back-dilution step in SY-101. Specific concerns addressed include conditions that could cause the crust to sink and back-dilution requirements that keep the base of the crust well above the mixer pump inlet.

  15. Pipeline Cross-Site Transfer Assessment for Tank 241-SY-101 Waste

    SciTech Connect

    Onishi, Yasuo; Wells, Beric E.; Hartley, Stacey A.; Cooley, Scott K.

    2002-02-20

    This study evaluated the feasibility of transferring waste now stored in Tank SY-101 in the 200 West Area of the Hanford Site to a storage tank in 200 East Area through a 6.2-mile-long, 3-inch-diameter stainless steel pipeline. Using the Wasp slurry transport model, the critical velocity and expected pressure drop were calculated to determine 1) whether current SY-101 waste can be transferred through the existing cross-site transfer pipeline without additional dilution and, if it is not possible, how much dilution is needed.

  16. ELECTROCHEMICAL CORROSION TEST RESULTS FOR TANK 241-SY-102 SUPERNATE GRAB SAMPLES

    SciTech Connect

    DUNCAN JB

    2007-04-09

    This report describes the electrochemical corrosion scans and conditions for testing of SY-102 supernatant samples taken December 2004. The testing was performed because the tank was under a Justification for Continued Operation allowing the supernatant composition to be outside the chemistry limits of Administrative Control 5.16, 'Corrosion Mitigation program'. A new electrochemical working electrode of A516 Grade 60 carbon steel was used for each scan; all scans were measured against a saturated calomel electrode, with carbon counter electrodes, and all scans were carried out at 50 C. The samples were scanned twice, once as received and once sparged with argon to deoxygenate the sample. For those scans conducted after argon purging, the corrosion rates ranged from 0.012 to 0.019 mpy. A test for stress corrosion cracking was carried out on one sample (2SY-04-07) with negative results.

  17. Evaluation of 241 AN tank farm flammable gas behavior

    SciTech Connect

    Reynolds, D.A.

    1994-01-01

    The 241 AN Tank Farm tanks 241-AN-103, -104, and 105 are Flammable Gas Watch List tanks. Characteristics exhibited by these tanks (i.e., surface level drops, pressure increases, and temperature profiles) are similar to those exhibited by tank 241-SY-101, which is also a Watch List tank. Although the characteristics exhibited by tank 241-SY-101 are also present in tanks 241-AN-103, -104, and 105, they are exhibited to a lesser degree in the AN Tank Farm tanks. The 241 AN Tank Farm tanks have only small surface level drops, and the pressure changes that occur are not sufficient to release an amount of gas that would cause the dome space to exceed the lower flammability limit (LFL) for hydrogen. Therefore, additional restrictions are probably unnecessary for working within the 241 AN Tank Farm, either within the dome space of the tanks or in the waste.

  18. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  19. Final report of the TWRS Plant Implementation Team to review potential reactive component in tank 241-T-111 and methane in tank 241-SY-101 gas release event

    SciTech Connect

    Engelman, D.B.

    1994-02-01

    This is the final report of the results of a Tank Waste Remediation Systems Plant Implementation Team chartered by TWRS Operations, in response to a potential Unreviewed Safety Question (USQ) due to the discovery of a reactive component in waste tank 241-T-111 (T-111). Tank T-111, a non-Watch List single-shell tank, has no historical evidence of any potential safety problems. Core samples from tank T-111 were taken in 1991 and analyzed in 1992. The presence of uncharacterized exotherms was identified in the first three segments of two cores and reported to tank farm management in November 1993.

  20. 241-SY-101 data acquisition and control system (DACS) remote operator interface operational test report

    SciTech Connect

    ERMI, A.M.

    1999-06-24

    The readiness of the upgraded 241-SY-101 Data Acquisition and Control System (DACS) to provide proper control and monitoring of the mixer pump and instrumentation in tank 241-SY-101 was evaluated by the performance of OTP-440-001. Results of the OTP are reported here.

  1. 241-SY-101 DACS High hydrogen abort limit reduction (SCR 473) acceptance test report

    SciTech Connect

    ERMI, A.M.

    1999-09-09

    The capability of the 241-SY-101 Data Acquisition and Control System (DACS) computer system to provide proper control and monitoring of the 241-SY-101 underground storage tank hydrogen monitoring system utilizing the reduced hydrogen abort limit of 0.69% was systematically evaluated by the performance of ATP HNF-4927. This document reports the results of the ATP.

  2. 241-SY-101 data acquisition and control system (DACS) operator interface upgrade operational test report

    SciTech Connect

    ERMI, A.M.

    1999-05-11

    This procedure provides instructions for readiness of the first portion of the upgraded 241-SY-101 Data Acquisition and Control System (DACS) computer system to provide proper control and monitoring of the mitigation mixer pump and instrumentation installed in the 241-SY-101 underground storage tank will be systematically evaluated by the performance of this procedure.

  3. 241-SY-101 DACS instrument problem screen (SCR 448) acceptance test procedure

    SciTech Connect

    ERMI, A.M.

    1999-06-28

    The operability of the 241-SY-101 Data Acquisition and Control System (DACS) to provide proper control and monitoring of the mitigation mixer pump and instrumentation installed in the 241-SY-101 underground storage tank utilizing the [INSTPROB] screen will be systematically evaluated by the performance of this procedure.

  4. Type B Investigation Report for 241-SY-101 Pump Start and 241-C-106 Pit Cleanout

    SciTech Connect

    Ewalt, J.R.

    1993-09-01

    In accordance with the direction of the Department of Energy (DOE) Manager, Richland Operations Office, a Type ``B`` investigation in accordance with the DOE Order 5484.1, Environmental Protection, Safety and Health Protection Information Reporting Requirements, has been conducted. The scope of the investigation included two events: The ``Inadvertent Mixer Pump Operation at 241-SY-101`` (RL-WHC-TANK FARM-1993-069); ``Inadequate Work Control Results in Personnel Skin Contamination at 241-C-106, Pit B`` (RL-WHC-TANK FARM-1993-071) events. Additionally, at the request of the President of the WHC, a broader investigation into Waste Tank Farm ``safety practices`` and ``Conduct of Operations`` was also conducted. The review was focused on (1) WHC organizations performing operations, maintenance, and radiological safety tasks; and (2) KEH organizations performing major maintenance tasks.

  5. 241-SY-101 mixer pump lifetime expectancy. Final report

    SciTech Connect

    Shaw, C.P.

    1995-12-08

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ``safety envelope``. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ``how long will this test pump last and how will the essential features fail?`` During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually.

  6. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  7. SY Tank Farm ventilation isolation option risk assessment report

    SciTech Connect

    Powers, T.B.; Morales, S.D.

    1994-03-01

    The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.

  8. Waste behavior during horizontal extrusion: Effect of waste strength for bentonite and kaolin/ludox simulants and strength estimates for wastes from Hanford waste tanks 241-SY-103, AW-101, AN-103, and S-102

    SciTech Connect

    Gauglitz, P.A.; Aikin, J.T.

    1997-10-01

    The Hanford Site has 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Nineteen of these SSTs and six of the DSTs have been placed on the Flammable Gas Watch List because they are known or suspected, in all but one case, to retain these flammable gases. Because these gases are flammable, their retention and episodic release pose a number of safety concerns. Understanding the physical mechanisms and waste properties that contribute to the retention and release of these gases will help to resolve the Flammable Gas Safety Issue. The strength of the waste plays a central role in the mechanisms of both bubble retention and bubble release. While recent in-situ measurements from the ball rheometer have provided results for five of the DSTs, waste strength measurements are typically not available for any of the SSTs or for the DSTs that have not been characterized with the ball rheometer. The overall purpose of this study is to develop a method to obtain strength estimates for actual wastes from observations of the wastes` behavior during extrusion from core samplers. The first objective of the study was to quantify waste behavior during horizontal extrusion by documenting the extrusion behavior of simulants with known strengths; the second was to estimate the strength of actual waste based on these simulant standards. Results showed a reproducible extrusion behavior for bentonite clay and kaolin/Ludox{reg_sign} simulants over strengths ranging from 30 to 6,500 Pa. The extrusion behavior was documented with both video recordings and still images. Based on these visual standards, strength estimates were made for wastes from DSTs 241-SY-103, 241-AW-101, and 241-AN-103 and SST 241-S-102.

  9. 1/12-Scale mixing interface visualization and buoyant particle release tests in support of Tank 241-SY-101 hydrogen mitigation

    SciTech Connect

    Eschbach, E.J.; Enderlin, C.W.

    1993-10-01

    In support of tank waste safety programs, visualization tests were performed in the 1/12-scale tank facility, using a low-viscosity simulant. The primary objective of the tests was to obtain video records of the transient jet-sludge interaction. The intent is that these videos will provide useful qualitative data for comparison with model predictions. Two tests were initially planned: mixing interface visualization (MIV) and buoyant particle release (BPR). Completion of the buoyant particle release test was set aside in order to complete additional MIV tests. Rheological measurements were made on simulant samples before testing, and the simulant was found to exhibit thixotropic behavior. Shear vane measurements were also made on an in-situ analog of the 1/12-scale tank simulant. Simulant shear strength has been observed to be time dependent. The primary objective of obtaining video records of jet-sludge interaction was satisfied, and the records yielded jet location information which may be of use in completing model comparisons. The modeling effort is not part of this task, but this report also discusses test specific instrumentation, visualization techniques, and shear vane instrumentation which would enable improved characterization of jet-sludge interaction and simulant characteristics.

  10. Acceptance test procedure, 241-SY-101/241-C-106 shot loading system

    SciTech Connect

    Ostrom, M.J.

    1994-11-01

    This Acceptance Test Procedure is for the 241-SY-101/241-C-106 Shot Loading System. The procedure will test the components of the Shot Loading System and its capability of adequately loading shot into the annular space of the Container. The loaded shot will provide shielding as required for transporting and storage of a contaminated pump after removal from the tank. This test serves as verification that the SLS is acceptable for use in the pump removal operations for Tanks 241-SY-101, 241-C-106 and 241-AY-102. The pump removal operation for these three tanks will be performed by two different organizations with different equipment, but the Shot Loading System will be compatible between the two operations.

  11. 241-SY-101 strain concentration factor development via nonlinear analysis. Volume 1 of 1

    SciTech Connect

    1997-03-01

    The 241-SY-101 waste storage tank at the Hanford-Site has been known to accumulate and release significant quantities of hydrogen gas. An analysis was performed to assess the tank`s structural integrity when subjected to postulated hydrogen deflagration loads. The analysis addressed many nonlinearities and appealed to a strain-based failure criteria. The model used to predict the global response of the tank was not refined enough to confidently predict local peak strains. Strain concentration factors were applied at structural discontinuities that were based on steel-lined reinforced-concrete containment studies. The discontinuities included large penetrations, small penetrations, springline geometries, stud/liner connections, and the {1/2} inch to 3/8 inch liner thickness transition. The only tank specific strain concentration factor applied in the evaluation was for the {1/2} inch to 3/8 inch liner thickness change in the dome. Review of the tank drawings reveals the possibility that a 4 inches Sch. 40 pipe penetrates the dome thickness transition region. It is not obvious how to combine the strain concentration factors for a small penetration with that of a thickness transition to arrive at a composite strain concentration factor. It is the goal of this effort to make an approximate determination of the relative significance of the 4 inch penetration and the {1/2} inch to 3/8 inch thickness transition in the 241-SY-101 dome geometry. This is accomplished by performing a parametric study with three general finite-element models. The first represents the thickness transition only, the second represents a 4 inch penetration only, and the third combines the thickness transition with a penetration model.

  12. Acceptance test procedure for SY Tank Farm replacement exhauster unit

    SciTech Connect

    Becken, G.W.

    1994-12-16

    The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

  13. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

  14. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    SciTech Connect

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.

  15. TANK FARM ENVIRONMENTAL REQUIREMENTS

    SciTech Connect

    TIFFT, S.R.

    2003-06-26

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements.

  16. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  17. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  18. Safety equipment list for the 241-SY-101 RAPID mitigation project

    SciTech Connect

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  19. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    SciTech Connect

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and the test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.

  20. Human-machine interface (HMI) report for 241-SY-101 data acquisition [and control] system (DACS) upgrade study

    SciTech Connect

    Truitt, R.W.

    1997-10-22

    This report provides an independent evaluation of information for a Windows based Human Machine Interface (HMI) to replace the existing DOS based Iconics HMI currently used in the Data Acquisition and Control System (DACS) used at Tank 241-SY-101. A fundamental reason for this evaluation is because of the difficulty of maintaining the system with obsolete, unsupported software. The DACS uses a software operator interface (Genesis for DOS HMI) that is no longer supported by its manufacturer, Iconics. In addition to its obsolescence, it is complex and difficult to train additional personnel on. The FY 1997 budget allocated $40K for phase 1 of a software/hardware upgrade that would have allowed the old DOS based system to be replaced by a current Windows based system. Unfortunately, budget constraints during FY 1997 has prompted deferral of the upgrade. The upgrade needs to be performed at the earliest possible time, before other failures render the system useless. Once completed, the upgrade could alleviate other concerns: spare pump software may be able to be incorporated into the same software as the existing pump, thereby eliminating the parallel path dilemma; and the newer, less complex software should expedite training of future personnel, and in the process, require that less technical time be required to maintain the system.

  1. Tank farms hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-09-30

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ``Interim Safety Basis Document, WHC-SD-WM-ISB-001`` as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process.

  2. Quarterly review of 241-SY-101 mixer pump data: October - December, 1998

    SciTech Connect

    CONNER, J.M.

    1999-05-11

    This report presents data obtained on 241-SY-101 pump performance. The period covered is October 1 through December 31, 1998. During the quarter: (1) There was an indication of a 7.0-inch increase in the waste level at riser lA, and an average growth rate of 0.076 inches per day. (2) There was an indication of a 2.3-inch increase in the waste level at riser 1C. This riser was flushed with water several times, which would lower the level of the crust at this location. (3) Gases continued to be released at less than the pre-pump installation baseline rate, indicating a decrease in the gas generation rate, or an increase in gas retention, or both. The release rate was about 60 percent of the rate in the previous few quarters, and only 44 percent of the pre-pump release rate. (4) There was no change in the parameters that monitor pump performance. Key controls exist for waste temperature, gas concentration, pump parameters, and long-term waste behavior associated with the safe operation of the mixer pump that mitigates the buoyant displacement gas release event behavior of 241-SY-101. Table 1-1 compares the key controls and the current state of the waste as of December 31, 1998.

  3. Protocol for disposition of tank farm equipment lists and tank farm drawings for year 2000 compliance

    SciTech Connect

    ADAMS, M.R.

    1999-02-23

    A program has been initiated to assess, renovate, document and certify tank farm field equipment for year 2000 compliance. The program is necessary to assure no adverse effects occur in tank farm operations as a result of equipment malfunction due to what is widely known as the ''millennium bug''. This document elaborates the protocols for reviewing field equipment lists and tank farm drawings for the purpose of identifying and resolving year 2000 compliance problems in tank farm equipment.

  4. ICPP Tank Farm systems analysis

    SciTech Connect

    Palmer, W.B.; Beer, M.J.; Cukars, M.; Law, J.P.; Millet, C.B.; Murphy, J.A.; Nenni, J.A.; Park, C.V.; Pruitt, J.I.; Thiel, E.C.; Ward, F.S.; Woodard, J.

    1994-01-01

    During the early years (1950--1965) of Idaho Chemical Processing Plant (ICPP) operations, eleven, 300,000-gallon waste storage tanks were constructed. A project was in progress to replace these aging tanks; however, since fuel reprocessing has been curtailed at ICPP, it is not clear that the new tanks are required. The Department of Energy (DOE) requested a systems engineering evaluation to determine the need for the new tanks. Over 100 alternatives were identified during a facilitated team meeting using Value Engineering techniques. After eliminating any ideas which clearly could not meet the requirements, the remaining ideas were combined into nine basic cases with five sub cases. These fourteen cases were then carefully defined using two methods. First, each case was drawn graphically to show waste processing equipment interfaces and time constraints where they existed or were imposed. Second, each case was analyzed using a time-dependent computer simulation of ICPP waste management activities to determine schedule interactions, liquid storage requirements, and solid waste quantities. Based on the evaluation data, the team developed the following recommendations: Install and operate the high-level liquid waste evaporator; minimize liquid waste generation as much as possible within the constraints of required ICPP operational, safety, and environmental commitments; bring a Waste Immobilization Facility on line by 2008 or earlier; operate NWCF as required to alleviate the need for new tank farm capacity; maximize the concentration of Na and K in the calcine to minimize the final amount of waste requiring immobilization; avoid using Bin Set 7 for calcine storage, if possible, to reduce future calcine retrieval and D&D costs; and use WM-190 for liquid waste storage and one of the pillar and panel vaulted tanks as the spare.

  5. Tank farms essential drawing plan

    SciTech Connect

    Domnoske-Rauch, L.A.

    1998-08-04

    The purpose of this document is to define criteria for selecting Essential Drawings, Support Drawings, and Controlled Print File (CPF) drawings and documents for facilities that are part of East and West Tank Farms. Also, the drawings and documents that meet the criteria are compiled separate listings. The Essential Drawing list and the Support Drawing list establish a priority for updating technical baseline drawings. The CPF drawings, denoted by an asterisk (*), defined the drawings and documents that Operations is required to maintain per the TWRS Administration Manual. The Routing Boards in Buildings 272-WA and 272-AW are not part of the CPF.

  6. Contingency plan for deployment of the void fraction instrument in Tank 241-AY-102

    SciTech Connect

    CONNER, J.M.

    1999-02-24

    High-heat producing sludge from tank 241-C-106 will be sluiced and transferred to tank 241-AY-102 beginning in October 1998. Safety analyses have postulated that after retrieval, the waste in 241-AY-102 may generate and retain unsafe levels of flammable gases (Noorani 1998, Pasamebmetoglu etal. 1997). Unsafe levels of retained gas are not expected, but cannot be ruled out because of the large uncertainty in the gas generation and retention rates. The Tank Waste Remediation System Basis for Interim Operation (Noorani 1998) identifies the need for a contingency plan to add void fraction monitoring to tank 241-AY-102 within 2 weeks of the identification of flammable gas buildup that would warrant monitoring. The Tank 241-C-106 Waste Retrieval Sluicing System Process Control Plan (Carothers et al. 1998) committed to providing a contingency plan for deployment of the void fraction instrument (VFI) in tank 241-AY-102. The VFI determines the local void fraction of the waste by compressing a waste sample captured in a gas-tight test chamber. The sample chamber is mounted on the end of a 76-cm (2.5-ft) arm that can be rotated from vertical to horizontal when the instrument is deployed. Once in the waste, the arm can be positioned horizontally and rotated to sample in different areas below the riser. The VFI is deployed using a crane. The VFI has been deployed previously in 241-AW, 241-AN, and 241-SY tank farms, most recently in tank 241-SY-101 in June and July 1998. An additional test in tank 241-SY-101 is planned in September 1998. Operating instructions for the VFI are included in the Void Fraction Instrument Operation and Maintenance Manual (Pearce 1994).

  7. Tank characterization report for double-shell tank 241-AN-102

    SciTech Connect

    Jo, J., Westinghouse Hanford

    1996-08-29

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists.

  8. ICPP Tank Farm planning through 2012

    SciTech Connect

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  9. Tank farm potential ignition sources

    SciTech Connect

    Scaief, C.C. III

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks.

  10. Tank farms criticality safety manual

    SciTech Connect

    FORT, L.A.

    2003-03-27

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  11. Quarterly review of 241-SY-101 mixer pump data: January - March 1999

    SciTech Connect

    CONNER, J.M.

    1999-07-22

    This report presents data obtained on 241-SY-101 pump performance. The period covered is January 1 through March 31, 1999. During the quarter: There were changes in pumping parameters. Both the pump volute pressure and amperage decreased during the quarter. It is not clear whether this was due to changes in waste properties (due to less solids or more entrained gas) or due to degradation of the pump. There was an indication of a 7.5-inch increase in the waste level at riser 1 A, and an average growth rate of 0.082 inches per day. There was an indication of a 5.7-inch increase in the waste level at riser 1C. This riser was flushed with water several times, which would lower the level of the crust at this location. Gases continued to be released at less than the pre-pump installation baseline rate, indicating a decrease in the gas generation rate, or an increase in gas retention, or both. The release rate was about 78 percent of the rate in the previous few quarters, and only 34 percent of the generation rate calculated prior to mixer pump installation in 1993. Key controls exist for waste temperature, gas concentration, pump parameters, and long-term waste behavior associated with the safe operation of the mixer pump that mitigates the buoyant displacement gas release event behavior of 241-SY-101. Table 1-1 compares the key controls and the current state of the waste as of March 3 1. 1999. The pump was run 28 times between January 1 and March 31, 1999. All of the pump runs were intended to be normal 25-minute, 1000-rpm excavation runs performed to mix the waste and release gas. Because of the pump oil often reached the high temperature alarm setpoint of 190 F, many of the runs were shortened (by as many as 8 minutes). This phenomenon was identified in November 1998, but got progressively worse over the quarter. The pump schedule was nominally three runs per week. However, core sampling activities interrupted the usual pump schedule several times during the quarter

  12. Quarterly Review of 241SY101 Mixer Pump Data 10/1998 Thru 12/1998

    SciTech Connect

    CONNER, J.M.

    1999-05-11

    This report presents data obtained on 241-SY-101 pump performance. The period covered is October 1 through December 31, 1998. During the quarter: (1) There was an indication of a 7.0-inch increase in the waste level at riser 1A, and an average growth rate of 0.076 inches per day; (2) There was an indication of a 2.3-inch increase in the waste level at riser 1C; (3) This riser was flushed with water several times, which would lower the level of the crust at this location; (4) Gases continued to be released at less than the pre-pump installation baseline rate, indicating a decrease in the gas generation rate, or an increase in gas retention, or both. The release rate was about 60 percent of the rate in the previous few quarters, and only 44 percent of the pre-pump release rate; and (5) There was no change in the parameters that monitor pump performance.

  13. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are

  14. Evaluation of tank waste transfers at 241-AW tank farm

    SciTech Connect

    Willis, W.L.

    1998-05-27

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required.

  15. Analysis of the flexible receiver lifting yoke and blast shield assembly. Tank 241SY101

    SciTech Connect

    Huang, F.H.

    1995-03-02

    The analysis of the lifting yoke and blast shield assembly considers the bending stress, weld strength, and resistance of the lug hole to tear out. The bending stress of the lifting lugs is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). Also considered in the calculations is the capability of the thick lugs to withstand the weight of the pump together with that of the container and strongback during rotation to the horizontal position.

  16. Structural analysis of the equipment removal system for tank 241SY101

    SciTech Connect

    Mackey, T.C.

    1995-03-02

    The calculations documented in this report show that the ERS major components are structurally qualified to complete the objective, i.e., to install the removed equipment into a shipping container and transport and store the container at the Central Waste Complex (CWC). The analysis for the structural members of the ERS components considers live load with an impact factor of 125 % added to dead load. An allowable stress of one-third yield is used for all structural components carrying the load based on DOE-RL-92-36. Adherence to DOE-RL-92-36 is not a code requirement. However, the loads considered make this factor of safety appropriate. The calculations meet the strength requirements of the American Institute for Steel Construction (ASIC 1989) for all non-critical structural elements.

  17. Thermocouple module halt acceptance test report for tank 241-SY-101 DACS-1

    SciTech Connect

    Larsen, D.C.

    1998-03-10

    Testing was started on February 24, 1998 and completed on February 25, 1998. The completed procedure consists of 4 acceptance test sections, 6.1 through 6.4. Three test exceptions were identified during the procedure. The first test exception was determined to be unrelated to the ATP and unfortunate that the instrument failed during the ATP. The next two test exceptions were disposition as acceptable because the alarming functions worked correctly in identifying a problem when software communications were interrupted. The test was completed satisfactorily over 2 days. The remainder of the acceptance test report is the completed test procedure.

  18. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    SciTech Connect

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  19. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  20. Toxic chemical considerations for tank farm releases

    SciTech Connect

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  1. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  2. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  3. DETAIL, CONTROL BOOTH, RP1 TANK FARM Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, CONTROL BOOTH, RP1 TANK FARM - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. AX Tank farm process impacts study

    SciTech Connect

    SKELLY, W.A.

    1999-03-18

    This study provides facility and process concepts and costs for partial decontamination of the most heavily contaminated debris from the demolition of the four AX tanks and ancillary equipment items. This debris would likely be classified as high-level and/or remote handle TRU waste based on source and radiological inventory. A process flow sheet was developed to treat contaminated metal wastes such as pipes and tank liners as well as contaminated concrete and the residual waste and grout left in the tanks after final waste retrieval. The treated solid waste is prepared for delivery to either the ERDF or the Low-Level waste burial grounds. Liquid waste products are delivered to the private vitrification contractor for further treatment and storage. This is one of several reports prepared for use by the Hanford Tanks Initiative Project to develop retrieval performance criteria for tank farms.

  5. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    SciTech Connect

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or {open_quotes}REDOX{close_quotes} process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as {open_quotes}assumed leakers{close_quotes} and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report.

  6. Hanford Tank Farm RCRA Corrective Action Program

    SciTech Connect

    Kristofzski, J.R.; Mann, F.M.; Anderson, F.J.; Lober, R.W.

    2007-07-01

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the U.S. Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: - Characterize the distribution and extent of the existing vadose zone contamination; - Determine how the contamination will move in the future; - Estimate the impacts of this contamination on groundwater and other media; - Develop and implement mitigative measures; - Develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper. (authors)

  7. ICPP tank farm closure study. Volume 1

    SciTech Connect

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  8. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  9. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  10. Analysis of ICPP tank farm infiltration

    SciTech Connect

    Richards, B.T.

    1993-10-01

    This report addresses water seeping into underground vaults which contain high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP). Each of the vaults contains from one to three sumps. The original purpose of the sumps was to serve as a backup leak detection system for release of HLLW from the storage tanks. However, water seeps into most of the vaults, filling the sumps, and defeating their purpose as a leak detection system. Leak detection for the HLLW storage tanks is based on measuring the level of liquid inside the tank. The source of water leaking into the vaults was raised as a concern by the State of Idaho INEL Oversight Group because this source could also be leaching contaminants released to soil in the vicinity of the tank farm and transporting contaminants to the aquifer. This report evaluates information concerning patterns of seepage into vault sumps, the chemistry of water in sumps, and water balances for the tank farm to determine the sources of water seeping into the vaults.

  11. Vadose zone characterization project at the Hanford Tank Farms: BY Tank Farm report

    SciTech Connect

    Kos, S.E.

    1997-02-01

    The US Department of Energy Grand Junction Office (GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the contamination distributed in the vadoze zone sediment beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information about the vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the BY Tank Farm.

  12. Treatment options for tank farms long-length contaminated equipment

    SciTech Connect

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  13. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  14. Tank Farm Operations Surveillance Automation Analysis

    SciTech Connect

    MARQUEZ, D.L.

    2000-12-21

    The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities.

  15. Hanford Tank Farms Vadose Zone Addendum to the S Tank Farm Report

    SciTech Connect

    Pearson, A.

    2000-08-01

    This addendum to the S Tank Farm Report (GJO-97-31-TAR, GJO-HAN-17) published in February 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the S Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the S Tank Farm at the DOE Hanford Site in the state of Washington.

  16. Hanford Tank Farms Vadose Zone, Addendum to the T Tank Farm Report

    SciTech Connect

    Spatz, Robert

    2000-07-01

    This addendum to the T Tank Farm Report (GJO-99-101-TARA, GJO-HAN-27) published in September 1999 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the T Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the T Tank Farm at the DOE Hanford Site in the state of Washington.

  17. Hanford Tank Farms Vadose Zone, Addendum to the TX Tank Farm Report

    SciTech Connect

    Spatz, R.

    2000-08-01

    This addendum to the TX Tank Farm Report (GJO-97-13-TAR, GJO-HAN-11) published in September 1997 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TX Tank Farm at the DOE Hanford Site in the state of Washington.

  18. Hanford Tank Farms Vadose Zone, Addendum to the BX Tank Farm Report

    SciTech Connect

    Pearson, A.W.

    2000-07-01

    This addendum to the BX Tank Farm Report (GJO-98-40-TARA, GJO-HAN-19) published in August 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the BX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the BX Tank Farm at the DOE Hanford Site in the state of Washington.

  19. Hanford Tank Farms Vadose Zone Addendum to the TY Tank Farm Report

    SciTech Connect

    Spatz, Robert

    2000-08-01

    This addendum to the TY Tank Farm Report (GJO-97-30-TAR, GJO-HAN-16) published in January 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the TY Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the TY Tank Farm at the DOE Hanford Site in the state of Washington.

  20. Credit BG. View looks south southeast toward tank farm, Rogers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looks south southeast toward tank farm, Rogers Dry Lake is in the background. Each cylindrical tank is labeled for jet fuel grade JP5. Two 2,000 gallon capacity rectangular tanks in midground are fabricated of concrete for storing hydrocarbons; they were constructed in 1993. Structure at extreme right of view is Building 4515, Jet Fuel Testing Laboratory - Edwards Air Force Base, North Base, Aircraft Fuel Tank Farm, Northeast of A Street, Boron, Kern County, CA

  1. 4. Contextual view of EPA Farm showing radwaste tank, facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Contextual view of EPA Farm showing rad-waste tank, facing south-southeast. - Nevada Test Site, Environmental Protection Agency Farm, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  2. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991. Hanford Tank Safety Project

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  3. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  4. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    SciTech Connect

    Harris, S.; Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual material in Tank 19 prior to operational closure. Tank 19 is a Type IV underground waste storage tank located in the F-Tank Farm. It is a cylindrical-shaped, carbon steel tank with a diameter of 85 feet, a height of 34.25 feet, and a working capacity of 1.3 million gallons. Tank 19 was placed in service in 1961 and initially received a small amount of low heat waste from Tank 17. It then served as an evaporator concentrate (saltcake) receiver from February 1962 to September 1976. Tank 19 also received the spent zeolite ion exchange media from a cesium removal column that once operated in the Northeast riser of the tank to remove cesium from the evaporator overheads. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual waste, Huff and Thaxton [2009] developed a plan to sample the waste during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 19 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 19. The procedure computes the uncertainty in analyte concentration as a

  5. Analysis of East Tank Farms Contamination Survey Frequency

    SciTech Connect

    ELDER, R.E.

    2000-04-10

    This document provides the justification for the change in survey frequency in East Tank Farms occupied contamination areas from weekly to monthly. The Tank Farms Radiological Control Organization has performed radiological surveys of its Contamination Area (CA) Double Shell Tank (DST) farms in 200 East Area on a weekly basis for several years. The task package (DST-W012) controlling these routines designates specific components, at a minimum, that must be surveyed whenever the task is performed. This document documents the evaluation of these survey requirements and provides the recommendation and basis for moving DST tank farms in the 200 East Area from a weekly to monthly contamination survey. The contamination surveys for occupied contamination areas in West Tank Farms (WTF) were changed from a weekly frequency to a monthly frequency in 1997. Review of contamination survey data in WTF indicates a monthly interval remains satisfactory.

  6. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  7. AX Tank farm closure settlement estimates and soil testing

    SciTech Connect

    BECKER, D.L.

    1999-03-25

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing.

  8. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  9. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    SciTech Connect

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  10. Minutes of the Tank Waste Science Panel meeting July 9--1, 1991. Hanford Tank Safety Project

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

  11. Inadvertent Intruder Calculatios for F Tank Farm

    SciTech Connect

    Koffman, L

    2005-09-12

    Savannah River National Laboratory (SRNL) has been providing radiological performance assessment analysis for Savannah River Site (SRS) solid waste disposal facilities (McDowell-Boyer 2000). The performance assessment considers numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. An Automated Intruder Analysis application was developed by SRNL (Koffman 2004) that simplifies the inadvertent intruder analysis into a routine, automated calculation. Based on SRNL's experience, personnel from Planning Integration & Technology of Closure Business Unit asked SRNL to assist with inadvertent intruder calculations for F Tank Farm to support the development of the Tank Closure Waste Determination Document. Meetings were held to discuss the scenarios to be calculated and the assumptions to be used in the calculations. As a result of the meetings, SRNL was asked to perform four scenario calculations. Two of the scenarios are the same as those calculated by the Automated Intruder Analysis application and these can be calculated directly by providing appropriate inputs. The other two scenarios involve use of groundwater by the intruder and the Automated Intruder Analysis application was adapted to perform these calculations. The four calculations to be performed are: (1) A post-drilling scenario in which the drilling penetrates a transfer line. (2) A calculation of internal exposure due to drinking water from a well located near a waste tank. (3) A post-drilling calculation in which waste is introduced by irrigation of the garden with water from a well located near a waste tank. (4) A resident scenario where a house is built above transfer lines. Note that calculations 1 and 4 use sources from the waste inventory in the transfer line (given in Table 1) whereas calculations 2

  12. Minutes of the Tank Waste Science Panel meeting, November 11--13, 1991

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The sixth meeting of the Tank Waste Science Panel was held November 11--13, 1991, in Pasco and Richland, Washington. Participating scientists presented the results of recent work on various aspects of issues relating to the generation and release of gases from Tank 241-SY-101 and the presence of ferrocyanide in other tanks at Hanford. Results are discussed.

  13. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    SciTech Connect

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  14. Supporting document for the historical tank content estimate for B-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  15. Supporting document for the historical tank content estimate for BY-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the historical tank content estimate for AP-tank farm

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  17. Supporting document for the historical tank content estimate for AX-tank farm

    SciTech Connect

    Brevick, C.H., Westinghouse Hanford

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  18. Supporting document for the historical tank content estimate for the S-tank farm

    SciTech Connect

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  19. Supporting document for the historical tank content estimate for A-Tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  20. Supporting document for the historical tank content estimate for AW-tank farm

    SciTech Connect

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  1. Supporting document for the historical tank content estimate for AN-tank farm

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  2. Supporting document for the historical tank content estimate for AY-tank farm

    SciTech Connect

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  3. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area.

  4. Supporting document for the historical tank content estimate for the SX-tank farm

    SciTech Connect

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  5. Supporting document for the historical tank content estimate for BX-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  6. Supporting document for the historical tank content estimate for C-tank farm

    SciTech Connect

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  7. Radiological Source Terms for Tank Farms Safety Analysis

    SciTech Connect

    COWLEY, W.L.

    2000-06-27

    This document provides Unit Liter Dose factors, atmospheric dispersion coefficients, breathing rates and instructions for using and customizing these factors for use in calculating radiological doses for accident analyses in the Hanford Tank Farms.

  8. Technical Baseline Summary Description for the Tank Farm Contractor

    SciTech Connect

    TEDESCHI, A.R.

    2000-04-21

    This document is a revision of the document titled above, summarizing the technical baseline of the Tank Farm Contractor. It is one of several documents prepared by CH2M HILL Hanford Group, Inc. to support the U.S. Department of Energy Office of River Protection Tank Waste Retrieval and Disposal Mission at Hanford.

  9. Tank farm instrumentation and data acquisition/management upgrade plan

    SciTech Connect

    Scaief, C.C. III

    1994-09-13

    This plan provides the strategy, implementation, and schedule for upgrading tank farm instrumentation, data acquisition and data management. The focus is on surveillance parameters to verify and maintain tank safety. The criteria do not necessarily constitute mandatory requirements but are based upon engineering judgement and best available information. Schedules reflect preliminary funding for FY95. For out years they are best engineering judgment.

  10. AX Tank Farm waste retrieval alternatives cost estimates

    SciTech Connect

    Krieg, S.A.

    1998-07-21

    This report presents the estimated costs associated with retrieval of the wastes from the four tanks in AX Tank Farm. The engineering cost estimates developed for this report are based on previous cost data prepared for Project W-320 and the HTI 241-C-106 Heel Retrieval System. The costs presented in this report address only the retrieval of the wastes from the four AX Farm tanks. This includes costs for equipment procurement, fabrication, installation, and operation to retrieve the wastes. The costs to modify the existing plant equipment and systems to support the retrieval equipment are also included. The estimates do not include operational costs associated with pumping the waste out of the waste receiver tank (241-AY-102) between AX Farm retrieval campaigns or transportation, processing, and disposal of the retrieved waste.

  11. Record of Decision Tank Farm Soil and INTEC Groundwater

    SciTech Connect

    L. S. Cahn

    2007-05-01

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact of groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank far soil and groundwater at INTEC.

  12. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    SciTech Connect

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms.

  13. Conceptual design report for tank farm restoration and safe operations, project W-314

    SciTech Connect

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  14. Minutes of the Tank Waste Science Panel meeting July 9--1, 1991

    SciTech Connect

    Strachan, D.M.

    1992-04-01

    The fifth meeting of the Tank Waste Science Panel was held July 9--11, 1991, in Atlanta, Georgia. The subject areas included the generation, retention, and release of gases from Tank 241-SY-101 and the chemistry of ferrocyanide wastes.

  15. Electrochemical Studies of Carbon Steel Corrosion in Hanford Double-Shell Tank Waste

    SciTech Connect

    Duncan, James B.; Windisch, Charles F.; Divine, James R.

    2007-03-11

    This paper reports on the electrochemical scans for the supernatant of Hanford double shell tank 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford double shell tank 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  16. Tank farm health and safety plan. Revision 2

    SciTech Connect

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  17. Minutes of the Tank Waste Science Panel Meeting March 25--27, 1992. Hanford Tank Safety Project

    SciTech Connect

    Schutz, W W; Strachan, D M

    1992-08-01

    Discussions from the seventh meeting of the Tank Waste Science are presented in Colorado. The subject areas included the generation of gases in Tank 241-SY-101, the possible use of sonication as a mitigation method, and analysis for organic constituents in core samples. Results presented and discussed include: Ferrocyanides appear to be rapidly dissolved in 1M NaOH; upon standing in the laboratory at ambient conditions oxalate precipitates from simulated wastes containing HEDTA. This suggests that one of the main components in the solids in Tank 241-SY-101 is oxalate; hydrogen evolved from waste samples from Tank 241-SY-101 is five times that observed in the off gas from the tank; data suggest that mitigation of Tank 241-SY-101 will not cause a high release of dissolved N{sub 2}O; when using a slurry for radiation studies, a portion of the generated gases is very difficult to remove. To totally recover the generated gases, the solids must first be dissolved. This result may have an impact on mitigation by mixing if the gases are not released. Using {sup 13}C-labeled organics in thermal degradation studies has allowed researchers to illucidate much of the kinetic mechanism for the degradation of HEDTA and glycolate. In addition to some of the intermediate, more complex organic species, oxalate, formate, and CO{sub 2} were identified; and analytic methods for organics in radioactive complex solutions such as that found in Tank 241-SY-101 have been developed and others continue to be developed.

  18. Worker Protection from Chemical Vapors: Hanford Tank Farms

    SciTech Connect

    Anderson, T.J.

    2007-07-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank head-spaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns, risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits (OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors. (authors)

  19. Modeling needs assessment for Hanford Tank Farm Operations. Vadose Zone Characterization Project at the Hanford Tank Farms

    SciTech Connect

    1996-04-01

    This report presents the results of a modeling-needs assessment conducted for Tank Farm Operations at the Hanford Site. The goal of this project is to integrate geophysical logging and subsurface transport modeling into a broader decision-based framework that will be made available to guide Tank Farm Operations in implementing future modeling studies. In support of this goal, previous subsurface transport modeling studies were reviewed, and stakeholder surveys and interviews were completed (1) to identify regulatory, stakeholder, and Native American concerns and the impacts of these concerns on Tank Farm Operations, (2) to identify technical constraints that impact site characterization and modeling efforts, and (3) to assess how subsurface transport modeling can best be used to support regulatory, stakeholder, Native American, and Tank Farm Operations needs. This report is organized into six sections. Following an introduction, Section 2.0 discusses background issues that relate to Tank Farm Operations. Section 3.0 summarizes the technical approach used to appraise the status of modeling and supporting characterization. Section 4.0 presents a detailed description of how the technical approach was implemented. Section 5.0 identifies findings and observations that relate to implementation of numerical modeling, and Section 6.0 presents recommendations for future activities.

  20. AX tank farm waste inventory study for the Hanford Tanks Initiative (HTI) project

    SciTech Connect

    Becker, D.L.

    1997-12-22

    In May of 1996, the US Department of Energy implemented a four-year demonstration project identified as the Hanford Tanks Initiative (HTI). The HTI mission is to minimize technical uncertainties and programmatic risks by conducting demonstrations to characterize and remove tank waste using technologies and methods that will be needed in the future to carry out tank waste remediation and tank farm closure at the Hanford Site. Included in the HTI scope is the development of retrieval performance evaluation criteria supporting readiness to close single-shell tanks in the future. A path forward that includes evaluation of closure basis alternatives has been outlined to support the development of retrieval performance evaluation criteria for the AX Farm, and eventual preparation of the SEIS for AX Farm closure. This report documents the results of the Task 4, Waste Inventory study performed to establish the best-basis inventory of waste contaminants for the AX Farm, provides a means of estimating future soil inventories, and provides data for estimating the nature and extent of contamination (radionuclide and chemical) resulting from residual tank waste subsequent to retrieval. Included in the report are a best-basis estimate of the existing radionuclide and chemical inventory in the AX Farm Tanks, an estimate of the nature and extent of existing radiological and chemical contamination from past leaks, a best-basis estimate of the radionuclide and chemical inventory in the AX Farm Tanks after retrieval of 90 percent, 99 percent, and 99.9 percent of the waste, and an estimate of the nature and extent of radionuclide and chemical contamination resulting from retrieval of waste for an assumed leakage from the tanks during retrieval.

  1. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    SciTech Connect

    Subramanian, K

    2007-10-01

    High level radioactive waste (HLW) is stored in underground storage tanks at the Savannah River Site. The SRS is proceeding with closure of the 22 tanks located in F-Area. Closure consists of removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. A performance assessment is being performed in support of closure of the F-Tank Farm. Initially, the carbon steel construction materials of the high level waste tanks will provide a barrier to the leaching of radionuclides into the soil. However, the carbon steel liners will degrade over time, most likely due to corrosion, and no longer provide a barrier. The tank life estimation in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. The tank life estimation in support of the F-Tank Farm closure performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. Consumption of the tank steel encased in grouted conditions was determined to occur either due to carbonation of the concrete leading to low pH conditions, or the chloride-induced de-passivation of the steel leading to accelerated corrosion. A deterministic approach was initially followed to estimate the life of the tank liner in grouted conditions or in soil conditions. The results of this life estimation are shown in Table 1 and Table 2 for grouted and soil conditions respectively. The tank life has been estimated under conservative assumptions of diffusion rates. However, the same process of

  2. Hanford tanks initiative alternatives generation and analysis plan for AX tank farm closure basis

    SciTech Connect

    Schaus, P. S.

    1997-10-22

    The purpose of this document is: (1) to review the HTI Mission Analysis and related documents to determine their suitability for use in developing performance measures for AX Tank Farm closure, (2) to determine the completeness and representativeness of selected alternative closure scenarios, (3) to determine the completeness of current plans for development of tank end-state criteria, and (4) to analyze the activities that are necessary and sufficient to recommend the end-state criteria and performance measures for the AX Tank Farm and recommend activities not currently planned to support establishment of its end-state criteria.

  3. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    SciTech Connect

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option.

  4. Supporting document for the historical tank content estimate for S tank farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  5. Supporting document for the historical tank content estimate for BY Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  6. Supporting document for the historical tank content estimate for B Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  7. Supporting document for the historical tank content estimate for A Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  8. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    SciTech Connect

    Not Available

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  9. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    SciTech Connect

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-30

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  10. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... anticipated in 2016. No near-term procurement or installation plans are in place for the four other DST... Defense Nuclear Facilities Safety Board (Board) believes that current operations at the Hanford Tank Farms... both normal operating and accident conditions. The current control strategy does not include...

  11. View along road at "tank farm." From left to right: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View along road at "tank farm." From left to right: T18, T10, T8, T5, with new rain shed (Building No. 241) in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  12. Tank farm stack NESHAP designation determinations. Revision 2

    SciTech Connect

    Crummel, G.M.

    1996-01-18

    This document provides a determination of the status of Tank Farm Exhausters as regulated by the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) specified in the 40 Series Code of Federal Regulations (CFRs), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities.``

  13. Operational test procedure for SY tank farm replacement exhauster unit

    SciTech Connect

    McClees, J.

    1995-09-26

    This operational test procedure will verify that the remaining functions not tested per WHC-SD-WM-ATP-080, or components disturbed during final installation, as well as interfaces with other tank farm equipment and remote monitoring stations are operating correctly.

  14. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  15. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect

    Lockie, K.A.; Suttora, L.C.; Quigley, K.D.; Stanisich, N.

    2007-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  16. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  17. Environmental Program Description for the Tank Farm Contractor

    SciTech Connect

    POWELL, P.A.

    2001-01-02

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety and Health Management System Description for the Tank Farm Contractor (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of five core functions. Each section of this plan describes the activities (formerly known as the Tank Waste Remediation System) of the Tank Farm Contractor (TFC) environmental organization according to the following core functions: Perform Work within Controls; Establish Environmental Policy and Define Work Scope; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; an Provide Feedback and Continuous Improvement.

  18. RECOMMENDATIONS FOR SAMPLING OF TANK 18 IN F TANK FARM

    SciTech Connect

    Shine, G.

    2009-12-14

    Representative sampling is required for characterization of the residual floor material in Tank 18 prior to operational closure. Tank 18 is an 85-foot diameter, 34-foot high carbon steel tank with nominal operating volume of 1,300,000 gallons. It is a Type IV tank, and has been in service storing radioactive materials since 1959. Recent mechanical cleaning of the tank removed all mounds of material. Anticipating a low level of solids in the residual material, Huff and Thaxton [2009] developed a plan to sample the material during the final clean-up process while it would still be resident in sufficient quantities to support analytical determinations in four quadrants of the tank. Execution of the plan produced fewer solids than expected to support analytical determinations in all four quadrants. Huff and Thaxton [2009] then restructured the plan to characterize the residual floor material separately in the North and the South regions: two 'hemispheres.' This document provides sampling recommendations to complete the characterization of the residual material on the tank bottom following the guidance in Huff and Thaxton [2009] to split the tank floor into a North and a South hemisphere. The number of samples is determined from a modification of the formula previously published in Edwards [2001] and the sample characterization data for previous sampling of Tank 18 described by Oji [2009]. The uncertainty is quantified by an upper 95% confidence limit (UCL95%) on each analyte's mean concentration in Tank 18. The procedure computes the uncertainty in analyte concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North hemisphere is currently supported by a single Mantis rover sample obtained from a compact region near the center riser. A floor scrape sample was

  19. Hanford Single-Shell Tank Leak Causes and Locations - 241-B Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-11

    This document identifies 241-B Tank Farm (B Farm) leak cause and locations for the 100 series leaking tank (241-B-107) identified in RPP-RPT-49089, Hanford B-Farm Leak Inventory Assessments Report. This document satisfies the B Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  20. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    SciTech Connect

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  1. Tank farm waste characterization Technology Program Plan

    SciTech Connect

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved.

  2. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    SciTech Connect

    Becker, D.L.

    1997-11-03

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

  3. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    SciTech Connect

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  4. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  5. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  6. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  7. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    SciTech Connect

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  8. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2014-09-04

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) lead causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105 and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  9. Hanford Single-Shell Tank Leak Causes and Locations - 241-BY and 241-TY Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2013-11-19

    This document identifies 241-BY Tank Farm (BY Farm) and 241-TY Tank Farm (TY Farm) leak causes and locations for the 100 series leaking tanks (241-BY-103, 241-TY-103, 241-TY-104, 241-TY-105, and 241-TY-106) identified in RPP-RPT-43704, Hanford BY Farm Leak Assessments Report, and in RPP-RPT-42296, Hanford TY Farm Leak Assessments Report. This document satisfies the BY and TY Farm portion of the target (T04) in Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  10. PORFLOW Modeling Supporting The H-Tank Farm Performance Assessment

    SciTech Connect

    Jordan, J. M.; Flach, G. P.; Westbrook, M. L.

    2012-08-31

    Numerical simulations of groundwater flow and contaminant transport in the vadose and saturated zones have been conducted using the PORFLOW code in support of an overall Performance Assessment (PA) of the H-Tank Farm. This report provides technical detail on selected aspects of PORFLOW model development and describes the structure of the associated electronic files. The PORFLOW models for the H-Tank Farm PA, Rev. 1 were updated with grout, solubility, and inventory changes. The aquifer model was refined. In addition, a set of flow sensitivity runs were performed to allow flow to be varied in the related probabilistic GoldSim models. The final PORFLOW concentration values are used as input into a GoldSim dose calculator.

  11. ESP`s Tank 42 washwater transfer to the 241-F/H tank farms

    SciTech Connect

    Aponte, C.I.; Lee, E.D.

    1997-12-01

    As a result of the separation of the High-Level Liquid Waste Department into three separate organizations (formerly there were two) (Concentration, Storage, and Transfer (CST), Waste Pre-Treatment (WPT) and Waste Disposition (WD)) process interface controls were required. One of these controls is implementing the Waste the waste between CST and WPT. At present, CST`s Waste Acceptance Criteria is undergoing revision and WPT has not prepared the required Waste Compliance Plan (WCP). The Waste Pre-Treatment organization is making preparations for transferring spent washwater in Tank 42 to Tank 43 and/or Tank 22. The washwater transfer is expected to complete the washing steps for preparing ESP batch 1B sludge. This report is intended to perform the function of a Waste Compliance Plan for the proposed transfer. Previously, transfers between the Tank Farm and ITP/ESP were controlled by requirements outlined in the Tank Farm`s Technical Standards and ITP/ESP`s Process Requirements. Additionally, these controls are implemented primarily in operating procedure 241-FH-7TSQ and ITP Operations Manual SW16.1-SOP-WTS-1 which will be completed prior to performing the waste transfers.

  12. Tank farms justification for continued operations 007 Implementation Plan

    SciTech Connect

    Propson, J.G., Westinghouse Hanford

    1996-08-23

    This Implementation Plan (IP) provides detailed descriptions, cost estimates, and schedules of activities required to implement the controls specified in Flammable Gas/Slurry Growth Unreviewed Safety Question: Justification for Continued Operation for the Tank Farms at Hanford Site (WHC-SD-WM-JCO-007, Rev.0). This IP complies with the Interim Operational Safety Requirements (IOSR) Administrative Control 5.27 and WHC-IP-0842 Volume 4 Section 5.6 for such a plan.

  13. Human Resources Staffing Plan for the Tank Farm Contractor

    SciTech Connect

    BOSLEY, J.W.

    2000-04-22

    The Human Resources Staffing Plan quantified the equivalent staffing needs required for the Tank Farm Contractor (TFC) and its subcontractors to execute the readiness to proceed baseline between FY 2000-2008. The TFC staffing needs were assessed along with the staffings needs of Fluor Hanford and the privatization contractor. The plan then addressed the staffing needs and recruitment strategies required to execute the baseline.

  14. Toxic chemical considerations for tank farm releases. Revision 1

    SciTech Connect

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  15. Configuration Management Plan for the Tank Farm Contractor

    SciTech Connect

    WEIR, W.R.

    2000-04-21

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in the management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.

  16. Environmental Program Description for the Tank Farm Contractor

    SciTech Connect

    POWELL, P.A.

    2002-07-18

    The Environmental Services organization's mission is to achieve effective environmental compliance and stewardship in managing and closing the tank farms. This Environmental Program Plan was developed in support of that mission and the Integrated Environment, Safety, and Health Management System Description for the Tank Farm Contractor (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS consists of five core functions. Each section of this plan describes the activities of the Tank Farm Contractor (TFC) environmental and waste management organization according to the following core functions: (1) Perform Work within Controls; (2) Establish Environmental Policy and Define Work Scope; (3) Identify Hazards, Environmental Impacts, and Requirements; (4) Analyze Hazards and Environmental Impacts and Implement Controls; and (5) Provide Feedback and Continuous Improvement.

  17. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    SciTech Connect

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both chemically as well

  18. Supporting document for the north east quadrant historical tank content estimate report for AX-tank farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered in AX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  19. Supporting document for the North East Quandrant Historical Tank Content Estimate Report for BX-Tank Farm

    SciTech Connect

    Brevick, C.H.

    1994-06-01

    This supporting document provides historical in-depth characterization information gathered on BX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quandrant and the Hanford 200 East Areas.

  20. Supporting document for the north east quadrant historical tank content estimate report for C-Tank Farm

    SciTech Connect

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered on C-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas.

  1. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    SciTech Connect

    DODD RA

    2008-01-22

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  2. Conceptual design report for project W-457, AW tank farm monitoring and controls system

    SciTech Connect

    Mattichak, R.W.

    1996-10-10

    The 241-AW Tank Farm, located in the 200 East Area of the Hanford Site, contains six 1.16 Mgal double-shell tanks. The tanks are used primarily for storage of waste from facilities such as PUREX and B Plant. Tanks 102-AW and 106-AW commonly are used for staging waste concentrated by the evaporator.

  3. Analysis of historical gross gamma logging data from BY tank farm

    SciTech Connect

    MYERS, D.A.

    1999-10-13

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BY tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BY tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanisms.

  4. Analysis of historical gross gamma logging data from TY tank farm

    SciTech Connect

    MYERS, D.A.

    1999-10-19

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the TY tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the TY tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanism.

  5. Environmental Program Description for the Tank Farm Contractor

    SciTech Connect

    POWELL, P.A.

    2000-04-20

    This Environmental Program Description has been developed in support of the Integrated Environmental, Safety, and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan. This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Description for the Tank Farm Contractor (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of five core functions. Each section of this plan describes the activities (formerly known as the Tank Waste Remediation System) of the Tank Farm Contractor (TFC) environmental organization according to the following core functions: Establish Environmental Policy and Define Work Scope; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Provide Feedback and Continuous Improvement; and Perform Work within Controls.

  6. Stabilization of In-Tank Residual Wastes and External-Tank Soil Contamination for the Hanford Tank Closure Program: Applications to the AX Tank Farm

    SciTech Connect

    Anderson, H.L.; Dwyer, B.P.; Ho, C.; Krumhansl, J.L.; McKeen, G.; Molecke, M.A.; Westrich, H.R.; Zhang, P.

    1998-11-01

    Technical support for the Hanford Tank Closure Program focused on evaluation of concepts for immobilization of residual contaminants in the Hanford AX tanks and underlying soils, and identification of cost-effective approaches to improve long-term performance of AX tank farm cIosure systems. Project objectives are to develop materials or engineered systems that would significantly reduce the radionuclide transport to the groundwater from AX tanks containing residual waste. We pursued several studies that, if implemented, would help achieve these goals. They include: (1) tank fill design to reduce water inilltration and potential interaction with residual waste; (2) development of in-tank getter materials that would specifically sorb or sequester radionuclides; (3) evaluation of grout emplacement under and around the tanks to prevent waste leakage during waste retrieval or to minimize water infiltration beneath the tanks; (4) development of getters that will chemically fix specific radionuclides in soils under tanks; and (5) geochemical and hydrologic modeling of waste-water-soil-grout interactions. These studies differ in scope from the reducing grout tank fill employed at the Savannah River Site in that our strategy improves upon tank fill design by providing redundancy in the barriers to radionuclide migration and by modification the hydrogeochemistry external to the tanks.

  7. Robotic systems for the high level waste tank farm replacement project at INEL

    SciTech Connect

    Berger, A.; White, D.; Thompson, B.; Christensen, M.

    1993-06-01

    Westinghouse Idaho Nuclear Company (WINCO) is specifying and designing a new high level waste tank farm at the Idaho National Engineering Laboratory (INEL). The farm consists of four underground storage tanks, which replace the existing tanks. The new facility includes provisions for remote operations. One of the planned remote operations is robotic inspection of the tank from the interior and exterior. This paper describes the process used to design the robotic system for the inspection tasks.

  8. Upgrading a 1950s tank farm to meet the environmental standards of the 1990S

    SciTech Connect

    Butler, C.F.; Peterson, S.W.

    1995-12-31

    The Texaco Inc. Research and Development (Texaco) facility in Beacon, New York includes an above ground storage tank (AST) farm, known as Tank Farm No. 1, which consists of eighteen tanks with capacities ranging from 10,000 to 21,000 gallons. A second tank farm, at the Texaco, Beacon facility, designated as the Boiler House Tank Farm, includes three additional tanks with capacities from 10,000 to 44,900 gallons. The Tank Farm No. 1 AST systems are all vertical, carbon steel tanks which were initially installed in several phases in the 1950s. The Boiler House Tank Farm ASTs are also vertical, carbon steel tanks, including one riveted construction tank that was installed in 1931. Each of the Texaco ASTs are used to store a variety of petroleum products, including diesel fuel, stoddard solvent, used oil, and various grades of gasoline and gasoline components. The New York State Department of Environmental Conservation (NYSDEC) has established regulations for petroleum bulk storage in 6 NYCRR Parts 612 through 614. These regulations include requirements for monitoring and inspecting AST systems, including a rigorous ``out of service`` inspection, to be completed at least once every ten years. Although several revisions had been completed at Tank Farm No. 1 in recent years, including installation of a reinforced concrete secondary containment dike system and new above ground piping, the tank shells and most appurtenances (e.g. water drawoff valves), were unmodified since they were initially installed. On this basis, Texaco decided to upgrade the AST systems in conjunction with the NYSDEC ten-year inspections, by installing reinforced fiberglass liners in the tank floors, and by removing and/or replacing tank appurtenances to meet current industry standards and fire code requirements. This paper presents a summary of the program implemented to upgrade the Texaco, Beacon tank farm AST systems.

  9. Development of occupational exposure limits for the Hanford tank farms.

    PubMed

    Still, Kenneth R; Gardner, Donald E; Snyder, Robert; Anderson, Thomas J; Honeyman, James O; Timchalk, Charles

    2010-04-01

    Production of plutonium for the United States' nuclear weapons program from the 1940s to the 1980s generated 53 million gallons of radioactive chemical waste, which is stored in 177 underground tanks at the Hanford site in southeastern Washington State. Recent attempts to begin the retrieval and treatment of these wastes require moving the waste to more modern tanks and result in potential exposure of the workers to unfamiliar odors emanating from headspace in the tanks. Given the unknown risks involved, workers were placed on supplied air respiratory protection. CH2MHILL, the managers of the Hanford site tank farms, asked an Independent Toxicology Panel (ITP) to assist them in issues relating to an industrial hygiene and risk assessment problem. The ITP was called upon to help determine the risk of exposure to vapors from the tanks, and in general develop a strategy for solution of the problem. This paper presents the methods used to determine the chemicals of potential concern (COPCs) and the resultant development of screening values and Acceptable Occupational Exposure Limits (AOELs) for these COPCs. A total of 1826 chemicals were inventoried and evaluated. Over 1500 chemicals were identified in the waste tanks headspaces and more than 600 of these were assigned screening values; 72 of these compounds were recommended for AOEL development. Included in this list of 72 were 57 COPCs identified by the ITP and of these 47 were subsequently assigned AOELs. An exhaustive exposure assessment strategy was developed by the CH2MHILL industrial hygiene department to evaluate these COPCs. PMID:20180654

  10. Hanford Single-Shell Tank Leak Causes and Locations - 241-T Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2014-05-15

    This document identifies 241-T Tank Farm (T Farm) leak causes and locations for the 100 series leaking tanks (241-T-106 and 241-T-111) identified in RPP-RPT-55084, Rev. 0, Hanford 241-T Farm Leak Inventory Assessment Report. This document satisfies the T Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  11. Hanford Single-Shell Tank Leak Causes and Locations - 241-U Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2013-12-02

    This document identifies 241-U Tank Farm (U Farm) leak causes and locations for the 100 series leaking tanks (241-U-104, 241-U-110, and 241-U-112) identified in RPP-RPT-50097, Rev. 0, Hanford 241-U Farm Leak Inventory Assessment Report. This document satisfies the U-Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  12. Hanford Single-Shell Tank Leak Causes and Locations - 241-C Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2013-07-30

    This document identifies 241-C Tank Farm (C Farm) leak causes and locations for the 100 series leaking tanks (241-C-101 and 241-C-105) identified in RPP-RPT-33418, Rev. 2, Hanford C-Farm Leak Inventory Assessments Report. This document satisfies the C Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  13. Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm

    SciTech Connect

    Girardot, C. L.; Harlow, D> G.

    2014-07-22

    This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  14. Hanford Single-Shell Tank Leak Causes and Locations - 241-A Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2013-09-10

    This document identifies 241-A Tank Farm (A Farm) leak causes and locations for the 100 series leaking tanks (241-A-104 and 241-A-105) identified in RPP-ENV-37956, Hanford A and AX Farm Leak Assessment Report. This document satisfies the A Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  15. Tank Waste Remediation System (TWRS) Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor

    SciTech Connect

    BASCHE, A.D.

    2000-04-22

    The purpose of the Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor is to provide a third-party quantitative and qualitative cost and schedule risk analysis of HNF-1946. The purpose of this Financial Analysis for Phase 1 Privatization for the Tank Farm Contractor (TFC) is to document the results of the risk-based financial analysis of HNF-1946, Programmatic Baseline Summary for Phase 1 Privatization f o r the Tank Farm Contractor (Diediker 2000). This analysis was performed to evaluate how well the proposed baseline meets the U. S. Department of Energy, Office of River Protection (ORP) Letter OO-MSO-009, ''Contract NO. DE-AC06-99RL14047--The US Department of Energy, Office of River Protection (ORP) Mission Planning Guidance for Fiscal Year (FY) 2002--Revision 1'' (Short 2000). The letter requires a confidence level in the baseline schedule that is consistent with the Phase 1A readiness-to-proceed (RTP) assessment conducted in fiscal year (FY) 1998. Because the success of the project depends not only on the budget but also on the schedule, this risk analysis addresses both components of the baseline.

  16. Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard

    SciTech Connect

    Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

    1997-02-14

    In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

  17. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  18. Vapor sampling of the headspace of radioactive waste storage tanks

    SciTech Connect

    Reynolds, D.A., Westinghouse Hanford

    1996-05-22

    This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

  19. Neptunium Disposal to the Savannah River Site Tank Farm

    SciTech Connect

    Walker, D.D.

    2004-02-26

    Researchers investigated the neutralization of an acidic neptunium solution from a Savannah River Site (SRS) processing canyon and the properties of the resulting slurry to determine the feasibility of disposal in the SRS tank farm. The acidic solution displayed no properties that precluded the proposed disposal route. Neutralization of the acidic neptunium forms a 4 wt per cent slurry of precipitated metal hydroxides. The insoluble solids consist largely of iron (92 per cent) and neptunium hydroxides (2 per cent). The concentration of soluble neptunium remaining after neutralization equaled much less than previous solubility measurements predicted. Researchers used an apparatus similar to an Ostwald-type viscometer to estimate the consistency of the neptunium slurry with the solids present. The yield stress and consistency of the 4 wt per cent slurry will allow transfer through the tank farm, although concentration of the insoluble solids above 4 wt per cent may cause significant problems due to increased consistency and yield stress. The consistency of the 4 wt per cent slurry is 7.6 centipoise (cP) with a yield stress less than 1 Pascal (Pa). The neptunium slurry, when combined with actual washed radioactive sludge, slightly reduces the yield stress and consistency of the sludge and produces a combined slurry with acceptable rheological properties for vitrification.

  20. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  1. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    SciTech Connect

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-11-14

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

  2. ATMOSPHERIC DISPERSION COEFFICIENTS AND RADIOLOGICAL AND TOXICOLOGICAL EXPOSURE METHODOLOGY FOR USE IN TANK FARMS

    SciTech Connect

    GRIGSBY KM

    2011-04-07

    This report presents the atmospheric dispersion coefficients used in Tank Farms safety analysis. The basis equations for calculating radiological and toxicological exposures are also included. In this revision, the time averaging for toxicological consequence evaluations is clarified based on a review of DOE complex guidance and a review of tank farm chemicals.

  3. Analysis and Summary of Historical Dry Well Gamma Logs for S Tank Farm 200 West

    SciTech Connect

    MYERS, D.A.

    1999-11-22

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the S tank farm to locate the presence of mobile radionuclides in the subsurface.

  4. Regulatory issues associated with closure of the Hanford AX Tank Farm ancillary equipment

    SciTech Connect

    Becker, D.L.

    1998-09-02

    Liquid mixed, high-level radioactive waste has been stored in underground single-shell tanks at the US Department of Energy`s (DOE`s) Hanford Site. After retrieval of the waste from the single-shell tanks, the DOE will proceed with closure of the tank farm. The 241-AX Tank Farm includes four one-million gallon single-shell tanks in addition to sluice lines, transfer lines, ventilation headers, risers, pits, cribs, catch tanks, buildings, well and associated buried piping. This equipment is classified as ancillary equipment. This document addresses the requirements for regulatory close of the ancillary equipment in the Hanford Site 241-AX Tank Farm. The options identified for physical closure of the ancillary equipment include disposal in place, disposal in place after treatment, excavation and disposal on site in an empty single-shell tank, and excavation and disposal outside the AX Tank Farm. The document addresses the background of the Hanford Site and ancillary equipment in the AX Tank Farm, regulations for decontamination and decommissioning of radioactively contaminated equipment, requirements for the cleanup and disposal of radioactive wastes, cleanup and disposal requirements governing hazardous and mixed waste, and regulatory requirements and issues associated with each of the four physical closure options. This investigation was conducted by the Sandia National Laboratories, Albuquerque, New Mexico, during Fiscal Year 1998 for the Hanford Tanks Initiative Project.

  5. T Tank Farm Interim Cover Test - Design Plan

    SciTech Connect

    Zhang, Z. F.; Keller, Jason M.

    2006-07-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim cover on the surface. Such a cover is expected to prevent infiltrating water from reaching the plume and moving it further. Pacific Northwest National Laboratory has prepared a design plan to monitor and determine the effectiveness of the interim cover. A three-dimensional numerical simulation of water movement beneath a cover was conducted to guide the design of the plan. Soil water content, water pressure, and temperature will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests will be installed, one inside and one outside of the proposed cover. In fiscal year 2007, two additional instrument nests, both inside the proposed cover, will be installed. Each instrument nest contains a neutron access tube and a capacitance probe (to measure water content), and four heat-dissipation units (to measure pressure head and temperature). A datalogger and a meteorological station will be installed outside of the fence. Two drain gauges will be installed in locations inside and outside the cover for the purpose of measuring soil water flux.

  6. Data quality objectives for tank farms waste compatibility program. Revision 1

    SciTech Connect

    Fowler, K.D.

    1995-04-01

    Waste compatibility within the Tank Waste Remediation System (TWRS) double-shell tank farms at the Hanford Site is implemented via the Tank Farms Waste Transfer Compatibility Program, WHC-SD-WM-OCD-015. This DQO for waste compatibility includes a statement of the transfer problem(s), identification of safety and operations related decision elements relevant to waste transfers, a list of the data inputs to these decisions, a description of the transfers covered, and quantitative decision rules for the safety decisions.

  7. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... COMMISSION U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the... Savannah River Site F-Area Tank Farm Facility in Accordance with the National Defense Authorization Act for... DOE's waste disposal activities at the F-Area Tank Farm at the Savannah River Site, in accordance...

  8. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  9. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    SciTech Connect

    Crook, N.; McNeill, M.; Dunham, Ralph; Glaser, Danney R.

    2014-02-26

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114.

  10. High-level waste tank farm set point document

    SciTech Connect

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  11. Uranium phases in contaminated sediments below Hanford's U tank farm.

    PubMed

    Um, Wooyong; Wang, Zheming; Serne, R Jeffrey; Williams, Benjamin D; Brown, Christopher F; Dodge, Cleveland J; Francis, Arokiasamy J

    2009-06-15

    Macroscopic and spectroscopic investigations (XAFS, XRF, and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Secondary precipitates of U(VI) silicate precipitates (boltwoodite and uranophane) were present dominantly in shallow-depth sediments (15-16 m bgs), while adsorbed U(VI) phases and polynuclear U(VI) surface precipitates were considered to dominate in intermediate-depth sediments (20-25 m bgs). Only natural uranium was observed in the deeper sediments (> 28 m bgs) with no signs of contact with tank wastes containing Hanford-derived U(VI). Across all depths, most of the U(VI) was preferentially associated with the silt and clay size fractions of sediments. Strong correlation between U(VI) and Ca was found in the shallow-depth sediments, especially for the precipitated U(VI) silicates. Because U(VI) silicate precipitates dominate in the shallow-depth sediments, the released U(VI) concentration by macroscopic (bi)carbonate leaching resulted from both desorption and dissolution processes. Having different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments using several different methods would be needed to estimate U(VI) fate and transport correctly in the vadose zone. PMID:19603635

  12. Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm

    SciTech Connect

    Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; FRANCIS, AROKIASAMY J.

    2009-06-11

    Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone.

  13. Science Road Map for Phase 2 of the Tank-Farm Vadose Zone Program

    SciTech Connect

    Zachara, John M.; Freshley, Mark D.; Mann, Frederick M.

    2008-08-18

    Phase 1 of the Tank-Farm Vadose Zone Program (TFVZP) developed information on the nature and extent of vadose zone contamination in the tank farms through field studies, laboratory analyses and experiments, and historical data searches; assembled data and performed tank-farm risk analysis; and initiated interim corrective actions to lessen the impacts of tank leak contaminants. Pacific Northwest National Laboratory scientists and external collaborators at universities and U.S. Department of Energy user facilities sampled and analyzed contaminant plumes. These types of activities will continue during Phase 2 of the TFVZP to refine and expand scientific understanding of the subsurface beneath tank farms, especially of water movement, residual waste leaching, and contaminant transport.

  14. North Tank Farm data report for the Gunite and Associated Tanks at Oak Ridge National Laboratory

    SciTech Connect

    Rule, V.A.; Burks, B.L.; Hoesen, S.D. van

    1998-05-01

    The US Department of Energy (DOE) Office of Science and Technology, in cooperation with the Oak Ridge Environmental Management Program, has developed and demonstrated the first full-scale remotely operated system for cleaning radioactive liquid and waste from large underground storage tanks. The remotely operated waste retrieval system developed and demonstrated at Oak Ridge National Laboratory (ORNL) is designed to accomplish both retrieval of bulk waste, including liquids, thick sludge, and scarified concrete, and final tank cleaning. This report provides a summary of the North Tank Farm (NTF) operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations. The organization of this report is as follows: Section 1 provides an introduction to the report. Section 2 describes the NTF tank structures (W-3 and W-4 only) and the contents of the tanks. Section 3 outlines the objectives of the NTF testing and explains how these objectives were met. Section 4 provides a description of the various operating systems used in the NTF operations. Sections 5 and 6 present a summary of the data collected during NTF operations. Section 7 summarizes the maintenance activities performed and Section 8 summarizes the on-the-job training performed in the NTF. Section 9 summarizes the capital cost for the waste retrieval and characterization equipment and operating costs for performing the NTF work. Section 10 provides observations and lessons learned, and Section 11 provides a summary and conclusions.

  15. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    SciTech Connect

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  16. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    SciTech Connect

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  17. Hanford Single-Shell Tank Leak Causes and Locations - 241-SX Farm

    SciTech Connect

    Girardot, Crystal L.; Harlow, Donald G.

    2014-01-08

    This document identifies 241-SX Tank Farm (SX Farm) leak causes and locations for the 100 series leaking tanks (241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114, and 241-SX-115) identified in RPP-ENV-39658, Rev. 0, Hanford SX-Farm Leak Assessments Report. This document satisfies the SX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

  18. Possible explosive compounds in the Savannah River Site waste tank farm facilities

    SciTech Connect

    Hobbs, D.T.

    2000-04-13

    This report will be revised upon completion of current testing investigating the radiolytic stability of additional energetic materials and the analysis of tank farm samples for volatile and semi-volatile organic compounds.

  19. S Tank Farm SL-119 saltwell piping failure analysis report

    SciTech Connect

    Carlos, W.C.

    1994-08-05

    On January 24, 1992, while pressure testing saltwell line SL-119 in the 241-S Tank Farm, water was observed spraying out of heat trace enclosure. The SL-115, SL-116, SN-215, and SN-216 saltwell lines also recently failed pressure testing because of leaks. This study documents the pertinent facts about the SL-119 line and discusses the cause of the failures. The inspection of the SL-119 failure revealed two through-the-wall holes in the top center of the pipeline. The inspection also strongly suggests that the heat tracing system is directly responsible for causing the SL-119 failure. Poor design of the heat tracing system allowed water to enter, condense, and collect in the electric metallic tubing (EMT) carbon steel conduits. Water flowed to the bottom of the elbow of the conduit and corroded out the elbow. The design also allowed drifting desert sand to enter into the conduit and fall to the bottom (elbow) of the conduit. The sand became wet and aided in the corrosion of the elbow of the conduit. After the EMT conduits corroded though, the water dripped from the corroded ends of the EMT conduits onto the top of the saltwell pipe, corroding the two holes into the top of the line. If the heat tracing hot splice box had not allowed moisture to enter the EMT conduits, the saltwell piping would not have corroded and caused SL-119 to fail.

  20. AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS

    SciTech Connect

    SHULTZ MV

    2008-05-15

    CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process.

  1. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    SciTech Connect

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  2. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    SciTech Connect

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation and closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will

  3. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    SciTech Connect

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  4. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    SciTech Connect

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  5. Tank farm surveillance and waste status summary report for May 1994

    SciTech Connect

    Hanlon, B.M.

    1994-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  6. Tank farm surveillance and waste status summary report for October 1992

    SciTech Connect

    Hanlon, B.M.

    1993-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  7. Tank farm surveillance and waste status summary report for December 1992

    SciTech Connect

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  8. Tank farm surveillance and waste status summary report for January 1993

    SciTech Connect

    Hanlon, B.M.

    1993-03-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  9. Tank farm surveillance and waste status summary report for November 1992

    SciTech Connect

    Hanlon, B.M.

    1993-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  10. Tank Farm surveillance and waste status summary report for September 1993

    SciTech Connect

    Hanlon, B.M.

    1994-01-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  11. Tank Farm surveillance and waste status summary report for February 1994

    SciTech Connect

    Hanlon, B.M.

    1994-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is Intended to meet the requirement of US Department of Energy Richland Operations Office Order 5820.2A, Chapter 1, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  12. Tank farm surveillance and waste status summary report for December 1993

    SciTech Connect

    Hanlon, B.M.

    1994-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special 9 surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U.S. Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, U.S. Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  13. Tank farm surveillance and waste status summary report for June 1993

    SciTech Connect

    Hanlon, B.M.

    1993-10-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  14. Tank Farm surveillance and waste status summary report for July 1993

    SciTech Connect

    Hanlon, B.M.

    1993-11-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vesseL integrity are contained within the report. This report provides data on each of the existing 177 Large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  15. Tank farm surveillance and waste status summary report for November 1993

    SciTech Connect

    Hanlon, B.M.

    1994-02-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office Order 5820.2A, Chapter I. Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  16. T-TY Tank Farm Interim Surface Barrier Demonstration—Vadose Zone Monitoring Plan

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-09-27

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank of the 241-T Tank Farm in 1973. Five tanks are assumed to have leaked in the TY Farm. Many of the contaminants from those leaks still reside within the vadose zone within the T and TY Tank Farms. The Department of Energy’s Office of River Protection seeks to minimize the movement of these contaminant plumes by placing interim barriers on the ground surface. Such barriers are expected to prevent infiltrating water from reaching the plumes and moving them further. The soil water regime is monitored to determine the effectiveness of the interim surface barriers. Soil-water content and water pressure are monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. Four instrument nests were installed in the T Farm in fiscal year (FY) 2006 and FY2007; two nests were installed in the TY Farm in FY2010. Each instrument nest contains a neutron probe access tube, a capacitance probe, and four heat-dissipation units. A meteorological station has been installed at the north side of the fence of the T Farm. This document summarizes the monitoring methods, the instrument calibration and installation, and the vadose zone monitoring plan for interim barriers in T farm and TY Farm.

  17. Impact Assessment of Existing Vadose Zone Contamination at the Hanford Site SX Tank Farm

    SciTech Connect

    Khaleel, Raziuddin; White, Mark D.; Oostrom, Martinus; Wood, Marcus I.; Mann, Frederick M.; Kristofzski, John G.

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr–1, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 106 pCi L–1. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr–1, and compared to the base case (100 mm yr–1) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  18. IMPACT ASSESSMENT OF EXISTING VADOSE ZONE CONTAMINATION AT THE HANFORD SITE SX TANK FARM

    SciTech Connect

    KHALEEL R

    2007-11-01

    The USDOE has initiated an impact assessment of existing vadose zone contamination at the Hanford Site SX tank farm in southeastern Washington State. The assessment followed the Resource Conservation and Recovery Act (RCRA) Corrective Action process to address the impacts of past tank waste releases to the vadose zone at the single-shell tank farm. Numerical models were developed that consider the extent of contamination presently within the vadose zone and predict contaminant movement through the vadose zone to groundwater. The transport of representative mobile (technetium-99) and immobile (cesium-137) constituents was evaluated in modeling. The model considered the accelerated movement of moisture around and beneath single-shell tanks that is attributed to bare, gravel surfaces resulting from the construction of the underground storage tanks. Infiltration, possibly nearing 100 mm yr{sup -1}, is further amplified in the tank farm because of the umbrella effect created by percolating moisture being diverted by the impermeable, sloping surface of the large, 24-m-diameter, buried tank domes. For both the base case (no-action alternative) simulation and a simulation that considered placement of an interim surface barrier to minimize infiltration, predicted, groundwater concentrations for technetium-99 at the SX tank farm boundary were exceedingly high, on the order of 10{sup 6} pCi L{sup -1}. The predicted concentrations are, however, somewhat conservative because of our use of two-dimensional modeling for a three-dimensional problem. A series of simulations were performed, using recharge rates of 50, 30, and 10 mm yr{sup -1}, and compared to the basecase(100 mm yr{sup -1}) results. As expected, lowering meteoric recharge delayed peak arrival times and reduced peak concentrations at the tank farm boundary.

  19. Safety analysis report for the North Tank Farm, Tank W-11, and the Gunite and Associated Tanks -- Treatability Study, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Platfoot, J.H.

    1997-02-01

    The North Tank Farm (NTF) tanks consist of eight underground storage tanks which have been removed from service because of age and changes in liquid waste system needs and requirements. Tank W-11, which was constructed in 1943, has been removed from service, and contains several hundred gallons of liquid low-level waste (LLLW). The Gunite and Associated Tanks (GAAT) Treatability Study involves the demonstration of sludge removal techniques and equipment for use in other waste storage tanks throughout the Department of Energy (DOE) complex. The hazards associated with the NTF, Tank W-11, and the Treatability Study are identified in hazard identification table in Appendixes A, B, and C. The hazards identified for the NTF, Tank W-11, and the Treatability Study were analyzed in the preliminary hazards analyses (PHA) included as Appendices D and E. The PHA identifies potential accident scenarios and qualitatively estimates the consequences. Because of the limited quantities of materials present in the tanks and the types of energy sources that may result in release of the materials, none of the accidents identified are anticipated to result in significant adverse health effects to on-site or off-site personnel.

  20. Tank Farm surveillance and waste status summary report for March 1993

    SciTech Connect

    Hanlon, B.M.

    1993-05-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are Contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding flank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

  1. Gaseous analytes of concern at Hanford Tank Farms. Topical report

    SciTech Connect

    1996-03-01

    Large amounts of toxic and radioactive waste materials are stored in underground tanks at DOE sites. When the vapors in the tank headspaces vent to the open atmosphere a potentially dangerous situation can occur for personnel in the area. An open-path atmospheric pollution monitor is being developed for DOE to monitor the open air space above these tanks. In developing this monitor it is important to know what hazardous gases are most likely to be found in dangerous concentrations. These gases are called the Analytes of Concern. At the present time, measurements in eight tanks have detected thirty-one analytes in at least two tanks and fifteen analytes in only one tank. In addition to these gases, Carbon tetrachloride is considered to be an Analyte of Concern because it permeates the ground around the tanks. These Analytes are described and ranked according to a Hazard Index which combines their vapor pressure, density, and approximate danger level. The top sixteen ranked analytes which have been detected in at least two tanks comprise an {open_quotes}Analytes of Concern Test List{close_quotes} for determining the system performance of the atmospheric pollution monitor under development. A preliminary examination of the infrared spectra, barring atmospheric interferences, indicates that: The pollution monitor will detect all forty-seven Analytes!

  2. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  3. Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms

    SciTech Connect

    Dougherty, L.F., Westinghouse Hanford

    1996-09-10

    The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig`s percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized.

  4. Flammable Gas Safety Program: analysis of gas sampling probe locations in the SX-farm flammable gas watchlist tanks

    SciTech Connect

    McLaren, J.M.; Claybrook, S.W.

    1995-09-01

    An analysis was performed to determine the optimum ventilation line up for the AN Tank Farm. The analysis used the postulated maximum historical GRE in tanks AN-103, -104, and -105. Tank AN-104 was found to be limiting. The results of the analysis show that an airflow of 250 cfm through tanks 241-AN-103, -104, and -105 with an airflow of 100 cfm through tanks 241-AN-101, -102, -106, and -107 would be the optimum ventilation lineup.

  5. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  6. 2004 Initial Assessments of Closure for the S-SX Tank Farm: Numerical Simulations

    SciTech Connect

    Zhang, Z F; Freedman, Vicky L; Waichler, Scott R; White, Mark D

    2004-04-01

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the S-SX Tank Farm. This report documents the simulation of 7 cases (plus two verification) involving two-dimensional cross sections through the S Tank Farm (Tanks S-101, S102, and S-103) and the simulation of one case involving three-dimensional domain of the S Tank Farm. Using a unit release scenario at Tank S-103, three different types of leaks were simulated. These simulations assessed the effect of leaks during retrieval as well as residual wastes and ancillary equipment after closure. Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc 99). To evaluate the effect of sorption on contaminant transport, six different sorption coefficients were simulated for U 238. Overall, simulations results for the S Tank Farm showed that only a small fraction (< 0.4%) of the U-238 with sorption coefficients 0.6 mL/g migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leaks during retrieval demonstrated the highest peak concentrations and the earliest arrival times due to the high infiltration rate before water was added and surface barriers installed. Residual leaks were investigated with different release rate models, including uniform release, advection-dominated, diffusion-dominated, and saltcake (solubility-controlled) release models. Of the four models, peak concentrations were lowest and arrival times later for the uniform release model due to the lower release rate of the residual tank waste solids; similar high peak concentrations occurred for the advection

  7. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  8. Safety evaluation for adding water to tank 101-SY

    SciTech Connect

    Clinton, R.

    1994-12-09

    This document provides a new water limit for Tank 241-SY-101. The original limit was set at 9600 gallons. The new limit is now 20,000 gallons. There are various activities that require the use of additional water to the tank. The main activity is the removal of the temporary mixer pump. This requires a large amount of water which will exceed the original limit. Also, other activities such as flushing, adding a viscometer, and adding a void fraction meter requires additional water. The new limit safely incorporates these activities and allows room for more future activities.

  9. Regulatory analysis for the use of underground barriers at the Hanford Site tank farms

    SciTech Connect

    Hampsten, K.L.

    1994-08-12

    Sixty-seven of the single-shell tanks at the Hanford Site, Richland, Washington, are assumed to have leaked in the past. Some of the waste retrieval options being considered, such as past-practice sluicing (a process that uses hot water to dislodge waste for subsequent removal by pumping), have the potential for increasing releases of dangerous waste from these tanks. Underground barrier systems are being evaluated as a method to mitigate releases of tank waste to the soil and groundwater that may occur during retrieval activities. The following underground barrier system options are among those being evaluated to determine whether their construction at the Single-Shell Tank Farms is viable. (1) A desiccant barrier would be created by circulating air through the subsurface soil to lower and then maintain the water saturation below the levels required for liquids to flow. (2) An injected materials barrier would be created by injecting materials such as grout or silica into the subsurface soils to form a barrier around and under a given tank or tank farm. (3) A cryogenic barrier would be created by freezing subsurface soils in the vicinity of a tank or tank farm. An analysis is provided of the major regulatory requirements that may impact full scale construction and operation of an underground barrier system and a discussion of factors that should be considered throughout the barrier selection process, irrespective of the type of underground barrier system being considered. However, specific barrier systems will be identified when a given regulation will have significant impact on a particular type of barrier technology. Appendix A provides a matrix of requirements applicable to construction and operation of an underground barrier system.

  10. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    SciTech Connect

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  11. Compatibility of Polyvinyl Alcohol with the 241-F/H Tank Farm Liquid Waste

    SciTech Connect

    Oji, L.N.

    1998-11-25

    This report describes results from laboratory-scale oxidative mineralization of polyvinyl alcohol (PVA), and the evaluation of the F/H Tank Farms as a storage/disposal option for PVA waste solution generated in the Canyons and B-line decontamination operations.

  12. Controlled, clean, and stable design requirements document for single-shell tank farms

    SciTech Connect

    Vanderzanden, M.D., Westinghouse Hanford

    1996-06-19

    The Controlled, Clean, and Stable (CCS) Design Requirements Document (DRD) contains the technically defensible and traceable functions and requirements for maintaining the Single-Shell Tank Farms in a cost effective and safe interim end state. The CCSDRD functions and requirements constitute the project characteristics that are minimally sufficient to meet the CCS mission goals.

  13. Evaluation Criteria to Deliverables Crosswalk for the Tank Farm Contractor (Supercedes HNF-2020)

    SciTech Connect

    WOJTASEK, R.D.

    2000-04-24

    Before the Office of River Protection can authorize proceeding with Phase 1B, the Tank Farm Contractor (TFC) must demonstrate readiness to retrieve and deliver the waste to the privatization contractor and to receive and dispose of the products and by-products returned from treatment. The TFC has organized their plans for providing these support services into the within the River Protection Project.

  14. HANFORD TANK FARM RESOURCE CONVERVATION & RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    SciTech Connect

    KRISTOFZSKI, J.G.

    2007-01-15

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper.

  15. Functions and requirements for tank farm restoration and safe operations, Project W-314. Revision 3

    SciTech Connect

    Garrison, R.C.

    1995-02-01

    This Functions and Requirements document (FRD) establishes the basic performance criteria for Project W-314, in accordance with the guidance outlined in the letter from R.W. Brown, RL, to President, WHC, ``Tank Waste Remediation System (TWRS) Project Documentation Methodology,`` 94-PRJ-018, dated 3/18/94. The FRD replaces the Functional Design Criteria (FDC) as the project technical baseline documentation. Project W-314 will improve the reliability of safety related systems, minimize onsite health and safety hazards, and support waste retrieval and disposal activities by restoring and/or upgrading existing Tank Farm facilities and systems. The scope of Project W-314 encompasses the necessary restoration upgrades of the Tank Farms` instrumentation, ventilation, electrical distribution, and waste transfer systems.

  16. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    SciTech Connect

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  17. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    SciTech Connect

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL`s Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL`s low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans.

  18. Supporting document for the historical tank content estimate for SY-tank farm

    SciTech Connect

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  19. Level maintenance for Tank 101-SY mitigation-by-mixing test

    SciTech Connect

    Sobocinski, R.G.

    1994-11-16

    This document provides the procedure to be followed to implement the requirements of the Mixer Pump Long-Term Operations Plan for Tank 241-SY-101 Mitigation, WHC-SD-WM-PLN-081. The test is divided into 2 distinct sequences, named Single Position Pump Run and Tank Sweep. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure.

  20. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  1. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    SciTech Connect

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extent to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was

  2. Test set of gaseous analytes at Hanford tank farms

    SciTech Connect

    1997-01-01

    DOE has stored toxic and radioactive waste materials in large underground tanks. When the vapors in the tank headspaces vent to the open atmosphere a potentially dangerous situation can occur for personnel in the area. An open-path atmospheric pollution monitor is being developed to monitor the open air space above these tanks. In developing this infrared spectra monitor as a safety alert instrument, it is important to know what hazardous gases, called the Analytes of Concern, are most likely to be found in dangerous concentrations. The monitor must consider other gases which could interfere with measurements of the Analytes of Concern. The total list of gases called the Test Set Analytes form the basis for testing the pollution monitor. Prior measurements in 54 tank headspaces have detected 102 toxic air pollutants (TAPs) and over 1000 other analytes. The hazardous Analytes are ranked herein by a Hazardous Atmosphere Rating which combines their measured concentration, their density relative to air, and the concentration at which they become dangerous. The top 20 toxic air pollutants, as ranked by the Hazardous Atmosphere Rating, and the top 20 other analytes, in terms of measured concentrations, are analyzed for possible inclusion in the Test Set Analytes. Of these 40 gases, 20 are selected. To these 20 gases are added the 6 omnipresent atmospheric gases with the highest concentrations, since their spectra could interfere with measurements of the other spectra. The 26 Test Set Analytes are divided into a Primary Set and a Secondary Set. The Primary Set, gases which must be detectable by the monitor, includes the 6 atmospheric gases and the 6 hazardous gases which have been measured at dangerous concentrations. The Secondary Set gases need not be monitored at this time. The infrared spectra indicates that the pollution monitor will detect all 26 Test Set Analytes by thermal emission and will detect 15 Test Set Analytes by laser absorption.

  3. Data Quality Objectives for Tank Farms Waste Compatibility Program

    SciTech Connect

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.

  4. Replacement inhibitors for tank farm cooling coil systems

    SciTech Connect

    Hsu, T.C.

    1995-03-23

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems.

  5. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-12-31

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  6. Releases from the cooling water system in the Waste Tank Farm

    SciTech Connect

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases.

  7. CLUST; A non-disruptive secondary containment technology for underground storage tank farms

    SciTech Connect

    Castor, T.P.; Roberge, M.F. )

    1987-01-01

    To reduce the adverse effects of gasoline or hazardous waste leakage from underground storage tanks, a non-disruptive, secondary containment technology for containing leaking underground storage tanks (CLUST) is being developed. The CLUST process involves the selective emplacement of an impermeable polymeric barrier in the soil/gravel fill which surrounds underground storage tanks. The process can also be used to emplace an impermeable barrier below aboveground storage tanks which are either leaking or have a high potential for leaking. CLUST formulations, based on the experimental results to-date are presented. They show excellent compatibility with kerosene and a good compatibility with a variety of organic solvents. These formulations will thus be very useful in containing leaking underground storage tanks which contain gasoline, solvents, or other petroleum related products. Laboratory testing indicates that the performance of the CLUST barrier materials is an order of magnitude better in a simulated underground storage tank setting than in the bulk phase compatibility tests. The developed technique will allow the construction of secondary containment facilities without disrupting existing underground tank farms and their piping infrastructure. CLUST is intended to prevent and mitigate sudden releases and/or resulting environmental impacts from high hazard/high risk'' chemical and petroleum storage situations. Criteria for usage for the test barrier formulations are presented.

  8. Project Delivery Acquisition and Contracting Plan for the Tank Farm Contractor

    SciTech Connect

    MERCADO, L.C.

    2000-04-22

    This document is a plan presenting the process, strategies and approaches for vendor contracting by the Tank Farm Contractor. The plan focuses on contracting structures, practices, methods, and desired approaches in contracting. The U.S. Department of Energy (DOE), Office of River Protection (ORP) has contracted with the CH2M HILL Hanford Group, Inc. (CHG), as the Tank Farm Contractor (TFC), to support vitrification of Hanford Site tank waste by the Privatization Contractor. During Waste Feed Delivery Phase 1, waste will be retrieved from certain double-shell tanks and delivered to the Privatization Contractor to meet contract feed delivery requirements. Near-term project goals include upgrading infrastructure systems; retrieving and delivering the waste; and accepting the waste packages for interim onsite storage and disposal. Project Delivery includes individual projects assigned to provide the infrastructure and systems responsible to provide engineering, design, procurement, installation/construction, and testing/turnover of systems for retrieval of waste from Hanford double-shell tanks. This plan sets the requirements for projects work scope, contracting practices, structures, methods, and performance measurements. The plan is designed to integrate Life-Cycle Projects acquisitions and provide a consistent contracting approach. This effort will serve as a step improvement in contract reform implementing commercial practices into DOE projects.

  9. Phase 2 Rebaseline Report for Tank Farm Restoration and Safe Operations Project W-314

    SciTech Connect

    LENTSCH, J.W.

    2000-03-27

    Project W-314, (97-D-402) Tank Farm Restoration and Safe Operations is a multi-year, multiphase project established to upgrade selected 200 East and West Area Tank Farms to support the long-term mission of waste storage, retrieval, and transfer for vitrification. Key drivers for these upgrades include the planned timetable for transfer of waste to the privatized vitrification facility, regulatory compliance requirements (i.e., Washington State and Federal Regulations), and the Tri-Party Agreement (TPA). The previous baseline scope for Project W-314 was established based upon tank farm system assessments performed five to six years ago and was reflected in the previous baseline cost estimate, the Accelerated Replanning Estimate, completed in July 1997. The Accelerated Replanning Estimate splits the project into two phases: Phase 1 provides upgrades necessary to assure reliable waste retrieval and transfer to the anticipated vitrification plant. Phase 2 provides upgrades to selected primary and annulus tank farm ventilation systems that are required for compliant waste transfer, as well as other compliance-based upgrades to existing River Protection Project (WP) facilities and systems. The Accelerated Replanning Estimate provided the basis for Baseline Change Request TWR 97-066, which identified Phases 1 and 2 as $95 million and $206.5 million, respectively. Following completion of the Accelerated Replanning Estimate, several changes occurred that prompted a decision to rebaseline Phase 1, and subsequently Phase 2. Paramount among these was the delay in the Privatization schedule (90% case), lessons learned (in the year since the Accelerated Planning Report had been completed), and the adoption of an alternate waste transfer system route. The rebaselined cost of phase 1, $157 million, was substantially higher than the Accelerated Replanning Estimate for a number of reasons more thoroughly discussed in the Phase 1 Rebaseline Report, HNF-3781, January 1999. Since the

  10. Assessment of Concrete Repair Techniques for Radiologically Contaminated Tank Farm Pump and Valve Pits

    SciTech Connect

    MINTEER, D.J.

    2000-09-19

    As part of the scope of Project W-314, ''Tank Farm Restoration and Safe Operations,'' the condition of pump and valve pit walls and floors is being assessed, and repairs made as needed, to support upgrading the infrastructure necessary to safely transfer tank waste for treatment. Flaws in the surfaces of the pits (e.g., concrete crack/faults, protective coating deterioration) must be repaired to ensure containment integrity and to facilitate future decontamination of the pits. This engineering study presents a cost/risk/benefit evaluation of concrete and protective coating repair methods in pump and valve pits using various manual and remote tool systems.

  11. TANK FARM CLOSURE - A NEW TWIST ON REGULATORY STRATEGIES FOR CLOSURE OF WASTE TANK RESIDUALS FOLLOWING NUREG

    SciTech Connect

    LEHMAN LL

    2008-01-23

    Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures are different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose

  12. SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect

    MYERS DA; RUCKER D; LEVIT M; CUBBAGE B; HENDERSON C

    2009-09-24

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

  13. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    SciTech Connect

    D. Shanklin

    2006-07-19

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.

  14. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    SciTech Connect

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).

  15. BY tank farm waste inventory and transfer data for ITS-2 operation during January To December 1971

    SciTech Connect

    Reich, F.R., Westinghouse Hanford

    1996-08-02

    Data record inventory of pumping activities and liquid level changes including occasional operations comments for the BY Tank Farm. Waste inventory and transfer data for ITS-2 operation during January to December 1971.

  16. In-tank precipitation facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 5

    SciTech Connect

    1995-11-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.

  17. In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 3

    SciTech Connect

    Fisk, B.E.; Timian, D.A.

    1995-06-02

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document contains the records of cone penetrometer and dilatometer soundings for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report, Volume 3.

  18. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of

  19. Operational Safety Requirements and Operating Specification Documentation compliance instrumentation matrices: 200 East Area Tank Farms

    SciTech Connect

    Story, D.R.

    1995-03-01

    This document contains information about matrices complied of instrumentation used to comply with the existing Operational Safety Requirements from Safety Analysis Reports and Operating, Specification Documentation requirements for 200 East Area Tank Farms. These matrices contain the primary instrumentation needed to comply with each OSR and/or OSD requirement as well as any backup instrumentation that may be used should the primary device be out of service. The referenced matrices are provided as attachments to this document.

  20. Supporting document for the historical tank content estimate for AZ-tank farm

    SciTech Connect

    Kunthara, T. J., Fluor Daniel Hanford

    1997-03-12

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-110. This report supports the requirements of the Tri-Party Agreement Milestone M-44-05.

  1. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm

    SciTech Connect

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-01-10

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit.

  2. Characterization and Potential Remediation Approaches for Vadose Zone Contamination at Hanford 241-SX Tank Farm - 13235

    SciTech Connect

    Eberlein, Susan J.; Sydnor, Harold A.; Parker, Danny L.; Glaser, Danney R.

    2013-07-01

    Unplanned releases of radioactive and hazardous wastes have occurred at the 241-SX Tank Farm on the U.S. Department of Energy Hanford Site in southeast Washington State. Interim and long-term mitigation efforts are currently under evaluation for 241-SX Tank Farm. Two contiguous interim surface barriers have been designed for deployment at 241-SX Tank Farm to reduce future moisture infiltration; however, construction of the surface barriers has been deferred to allow testing of alternative technologies for soil moisture reduction and possibly contaminant source term reduction. Previous tests performed by other organizations at the Hanford Site have demonstrated that: vadose zone desiccation using large diameter (greater than 4 inch) boreholes is feasible; under certain circumstances, mobile contaminants may be removed in addition to water vapor; and small diameter (approximately 2 inch) boreholes (such as those placed by the direct push hydraulic hammer) can be used to perform vapor extractions. Evaluation of the previous work combined with laboratory test results have led to the design of a field proof-of-principle test to remove water and possibly mobile contaminants at greater depths, using small boreholes placed with the direct push unit. (authors)

  3. Pit Viper strikes at the Hanford site. Pit maintenance using robotics at the Hanford Tank Farms

    SciTech Connect

    Roeder-Smith, Lynne

    2002-06-30

    The Pit Viper - a remote operations waste retrieval system - was developed to replace manual operations in the valve pits of waste storge tanks at the Hanford Site. The system consists of a typical industrial backhoe fitted with a robotic manipulator arm and is operated remotely from a control trailer located outside of the tank farm. Cameras mounted to the arm and within the containment tent allow the operator to view the entire pit area and operate the system using a joystick. The arm's gripper can grasp a variety of tools that allow personnel to perform cleaning, debris removal, and concrete repair tasks -- a more efficient and less dose-intensive process than the previous "long-pole" method. The project team overcame a variety of obstacles during development and testing of the Pit Viper system, and deployment occurred in Hanford Tank C-104 in December 2001.

  4. Evaluation of ISDP Batch 2 Qualification Compliance to 512-S, DWPF, Tank Farm, and Saltstone Waste Acceptance Criteria

    SciTech Connect

    Shafer, A.

    2010-05-05

    The purpose of this report is to document the acceptability of the second macrobatch (Salt Batch 2) of Tank 49H waste to H Tank Farm, DWPF, and Saltstone for operation of the Interim Salt Disposition Project (ISDP). Tank 49 feed meets the Waste Acceptance Criteria (WAC) requirements specified by References 11, 12, and 13. Salt Batch 2 material is qualified and ready to be processed through ARP/MCU to the final disposal facilities.

  5. Record of Decision for Tank Farm Soil and INTEC Groundwater, Operable Unit 3-14

    SciTech Connect

    L. S. Cahn

    2007-05-16

    This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact to groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank farm soil and groundwater at INTEC. The response action selected in this ROD is necessary to protect the public health, welfare, or the environment from actual or threatened releases of hazardous substances into the environment. Such a release or threat of release may present an imminent and substantial endangerment to public health, welfare, or the environment. The remedial actions selected in this ROD are designed to reduce the potential threats to human health and the environment to acceptable levels. In addition, DOE-ID, EPA, and DEQ (the Agencies) have determined that no action is necessary under CERCLA to protect public health, welfare, or the environment at 16 sites located outside the tank farm boundary. The purposes of the selected remedy are to (1) contain contaminated soil as the radionuclides decay in place, (2) isolate current and future workers and biological receptors from contact with contaminated soil, and (3) restore the portion of Snake River Plain Aquifer contaminated by INTEC releases to Idaho Ground Water Quality

  6. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY2001 THRU CY2004

    SciTech Connect

    FAUROTE, J.M.

    2004-09-30

    Investigation into the meteorological influences on vapor incidents in the tank farms to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems.

  7. LESSONS LEARNED FROM PREVIOUS WASTE STORAGE TANK VAPOR CONTROL ATTEMPTS ON SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) FARMS

    SciTech Connect

    BAKER, D.M.

    2004-08-03

    This report forms the basis for a feasibility study and conceptual design to control vapor emissions from waste storage tanks at the Hanford Site. The Carbtrol, Vapor Mixing, and High Efficiency Gas Absorber (HEGA) vapor controls were evaluated to determine the lessons learned from previous failed vapor control attempts. This document illustrates the resulting findings based on that evaluation.

  8. Assessment of aircraft crash frequency for the Hanford site 200 Area tank farms

    SciTech Connect

    OBERG, B.D.

    2003-03-22

    Two factors, the near-airport crash frequency and the non-airport crash frequency, enter into the estimate of the annual aircraft crash frequency at a facility. The near-airport activities, Le., takeoffs and landings from any of the airports in a 23-statute-mile (smi) (20-nautical-mile, [nmi]) radius of the facilities, do not significantly contribute to the annual aircraft crash frequency for the 200 Area tank farms. However, using the methods of DOE-STD-3014-96, the total frequency of an aircraft crash for the 200 Area tank farms, all from non-airport operations, is calculated to be 7.10E-6/yr. Thus, DOE-STD-3014-96 requires a consequence analysis for aircraft crash. This total frequency consists of contributions from general aviation, helicopter activities, commercial air carriers and air taxis, and from large and small military aircraft. The major contribution to this total is from general aviation with a frequency of 6.77E-6/yr. All other types of aircraft have less than 1E-6/yr crash frequencies. The two individual aboveground facilities were in the realm of 1E-7/yr crash frequencies: 204-AR Waste Unloading Facility at 1.56E-7, and 242-T Evaporator at 8.62E-8. DOE-STD-3009-94, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', states that external events, such as aircraft crashes, are referred to as design basis accidents (DBA) and analyzed as such: ''if frequency of occurrence is estimated to exceed 10{sup -6}/yr conservatively calculated'' DOE-STD-3014-96 considers its method for estimating aircraft crash frequency as being conservative. Therefore, DOE-STD-3009-94 requires DBA analysis of an aircraft crash into the 200 Area tank farms. DOE-STD-3009-94 also states that beyond-DBAs are not evaluated for external events. Thus, it requires only a DBA analysis of the effects of an aircraft crash into the 200 Area tank farms. There are two attributes of an aircraft crash into a Hanford waste storage tank

  9. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275.

  10. Phytoestrogens and their metabolites in bulk-tank milk: effects of farm management and season.

    PubMed

    Adler, Steffen A; Purup, Stig; Hansen-Møller, Jens; Thuen, Erling; Steinshamn, Håvard

    2015-01-01

    Phytoestrogens have structures similar to endogenous steroids and may induce or inhibit the response of hormone receptors. The objectives of the present study were to compare the effects of long-term vs. short-term grassland management in organic and conventional dairy production systems, compare organic and conventional production systems and assess seasonal variation on phytoestrogen concentrations in bulk-tank milk. The concentrations of phytoestrogens were analyzed in bulk-tank milk sampled three times in two subsequent years from 28 dairy farms: Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. The proportion of red clover (Trifolium pretense L.) in the herbage was positively correlated with milk concentrations of the mammalian isoflavone equol. Therefore, organically produced bulk-tank milk contained more equol than conventionally produced milk, and milk from ORG-SG farms had more equol than milk from ORG-LG farms. Milk produced during the indoor-feeding periods had more equol than milk produced during the outdoor feeding period, because pastures contained less red clover than fields intended for silage production. Organically produced milk had also higher concentrations of the mammalian lignan enterolactone, but in contrast to equol, concentrations increased in the outdoor-feeding periods compared to the indoor-feeding periods. There were no indications of fertility problems on ORG-SG farms who had the highest red clover proportions in the herbage. This study shows that production system, grassland management, and season affect milk concentrations of phytoestrogens

  11. Phytoestrogens and Their Metabolites in Bulk-Tank Milk: Effects of Farm Management and Season

    PubMed Central

    Adler, Steffen A.; Purup, Stig; Hansen-Møller, Jens; Thuen, Erling; Steinshamn, Håvard

    2015-01-01

    Phytoestrogens have structures similar to endogenous steroids and may induce or inhibit the response of hormone receptors. The objectives of the present study were to compare the effects of long-term vs. short-term grassland management in organic and conventional dairy production systems, compare organic and conventional production systems and assess seasonal variation on phytoestrogen concentrations in bulk-tank milk. The concentrations of phytoestrogens were analyzed in bulk-tank milk sampled three times in two subsequent years from 28 dairy farms: Fourteen organic (ORG) dairy farms with either short-term or long-term grassland management were paired with 14 conventional (CON) farms with respect to grassland management. Grassland management varied in terms of time since establishment. Short-term grassland management (SG) was defined as establishment or reseeding every fourth year or more often, and long-term grassland management (LG) was defined as less frequent establishment or reseeding. The proportion of red clover (Trifolium pretense L.) in the herbage was positively correlated with milk concentrations of the mammalian isoflavone equol. Therefore, organically produced bulk-tank milk contained more equol than conventionally produced milk, and milk from ORG-SG farms had more equol than milk from ORG-LG farms. Milk produced during the indoor-feeding periods had more equol than milk produced during the outdoor feeding period, because pastures contained less red clover than fields intended for silage production. Organically produced milk had also higher concentrations of the mammalian lignan enterolactone, but in contrast to equol, concentrations increased in the outdoor-feeding periods compared to the indoor-feeding periods. There were no indications of fertility problems on ORG-SG farms who had the highest red clover proportions in the herbage. This study shows that production system, grassland management, and season affect milk concentrations of phytoestrogens

  12. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    SciTech Connect

    Laney, T.

    1994-08-30

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.

  13. Evaporation losses and dispersion of volatile organic compounds from tank farms.

    PubMed

    Howari, Fares M

    2015-05-01

    The present study is an application of a Gaussian dispersion model to evaluate volatilization losses from tank farms. It reports methodology to estimate evaporation losses of volatile organic compounds (VOCs) from organic liquid in storage tanks. This study used fixed roof and floating roof equations for breathing and working losses. Total loss, the breathing loss, vapor pressure, molecular weight of the product, tank diameter, diurnal temperature, paint factor, tank capacity, and number of turnovers were considered and factored in the calculation. AERMOD and ALOHA softwares were used to simulate the dispersion of VOCs under normal and accidental scenarios. For the modeling purposes, meteorological data such as annual average ambient temperature, annual average atmospheric pressure, daily minimum ambient temperature, daily maximum ambient temperature, solar insulation factor, and average wind speed were included as input in the calculation and modeling activities. The study took place in Sharjah Emirate in United Arab Emirates, which borders Dubai to the south and Ajman to the north, and the three form a conurbation. The reported method was used to estimate evaporation losses for baseline and hypothetical leak scenarios. Results of this research show that liquid storage tanks in the study area emit a low concentration of VOC under the studied and assumed conditions, e.g., new tanks with high performance sealing as well as the noted earlier climatic conditions. The dispersion of those concentrations is controlled by the prevailing wind direction. The predicted VOCs concentrations were within the range of the measured VOCs values in air. The study found that the spatial distributions of the predicted concentration attenuate with time and distance. Under the reported accidental spill scenario, the Gaussian model indicates that the danger area starts within the zone of less than 10 m. The danger area is subjected to flame pockets, and the VOC concentrations in this

  14. T Tank Farm Interim Surface Barrier Demonstration--Vadose Zone Monitoring Plan

    SciTech Connect

    Zhang, Z. F.; Keller, Jason M.; Strickland, Christopher E.

    2007-04-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste has entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Many of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. CH2M Hill Hanford Group, Inc. seeks to minimize movement of this residual contaminant plume by placing an interim barrier on the surface. Such a barrier is expected to prevent infiltrating water from reaching the plume and moving it further. A plan has been prepared to monitor and determine the effectiveness of the interim surface barrier. Soil water content and water pressure will be monitored using off-the-shelf equipment that can be installed by the hydraulic hammer technique. In fiscal year 2006, two instrument nests were installed. Each instrument nest contains a neutron probe access tube, a capacitance probe, four heat-dissipation units, and a drain gauge to measure soil water flux. A meteorological station has been installed outside of the fence. In fiscal year 2007, two additional instrument nests are planned to be installed beneath the proposed barrier.

  15. Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility

    SciTech Connect

    Bamberger, Judith A; Burks, Barry L; Quigley, Keith D; Falter, Diedre D

    2001-09-28

    The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. This review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.

  16. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  17. Design review report: 200 East upgrades for Project W-314, tank farm restoration and safe operations

    SciTech Connect

    Boes, K.A.

    1998-04-15

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314`s 200 East (200E) Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314 is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farm waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project`s work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first design package (AN Valve Pit Upgrades) was completed in November 1997, and the associated design verification activities are documented in HNF-1893. The second design package, 200 East (200E) Upgrades, was completed in March 1998. This design package identifies modifications to existing valve pits 241-AX-B and 241-A-B, as well as several new waste transfer pipelines to be constructed within the A Farm Complex of the 200E Area. The scope of the valve pit modifications includes new pit cover blocks, valve

  18. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    SciTech Connect

    Not Available

    1994-04-01

    The Safeguards and Security (S&S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S&S laws and regulations. Numerous S&S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S&S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    SciTech Connect

    Not Available

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  20. Possible explosive compounds in the Savannah River Site Tank Farm facilities. Revision 1

    SciTech Connect

    Hobbs, D.T.

    1995-04-27

    Since 1970, many studies have been conducted concerning the potential for explosive compounds in tank farm operations including ammonium nitrate, metal oxalates, and silver and mercury compounds. The study currently in progress is the most comprehensive to date, encompassing all previous studies and extending the scope to include all compounds that could be formed from the known species in SRS wastes. In addition to waste storage, the study also considers waste removal and waste processing operations. The total number of possible explosive compounds is so large that it would not be useful to list them all here. Instead, only those compounds are listed that are known to be present or could conceivably be formed from material that is known to be present in the waste. The general approach to the problem is: identify all of the constituents that are known to be present in the waste together with those that might be present from possible chemical and radiolytic reactions, determine the compounds that could be formed from these constituents, compare these compounds with those listed in the literature, and assess the formation and stability of these compounds against the conditions existing in the tank farm facilities.

  1. Possible explosive compounds in the Savannah River Site waste tank farm facilities

    SciTech Connect

    Hobbs, D.T.

    1992-03-15

    Based on a comparison of the known constituents in high-level nuclear waste stored at the Savannah River Site (SRS) and explosive compounds reported in the literature, only two classes of explosive compounds (metal NO{sub x} compounds and organic compounds) were identified as requiring further work to determine if they exist in the waste, and if so, in what quantities. Of the fourteen classes of explosive compounds identified as conceivably being present in tank farm operations, nine classes (metal fulminates, metal azides, halogen compounds, metal-amine complexes, nitrate/oxalate mixtures, metal oxalates, metal oxohalogenates, metal cyanides/cyanates, and peroxides) are not a hazard because these classes of compounds cannot be formed or accumulated in sufficient quantity, or they are not reactive at the conditions which exist in the tank farm facilities. Three of the classes (flammable gases, metal nitrides, and ammonia compounds and derivatives) are known to have the potential to build up to concentrations at which an observable reaction might occur. Controls have been in place for some time to limit the formation or control the concentration of these classes of compounds. A comprehensive list of conceivable explosive compounds is provided in Appendix 3.

  2. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY08 Report

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2009-02-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to minimize the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier.

  3. Short communication: Evaluation of bulk tank milk microbiological quality of nine dairy farms in Tennessee.

    PubMed

    Gillespie, B E; Lewis, M J; Boonyayatra, S; Maxwell, M L; Saxton, A; Oliver, S P; Almeida, R A

    2012-08-01

    The purpose of this study was to evaluate the bulk tank milk (BTM) quality of 9 East Tennessee dairy farms and to determine its relationship with selected quality milk parameters. Bulk tank milk samples (n=1,141) were collected over a 42-mo period (June 2006 through November 2009) from farms, based on their preliminary incubation count (PIC) history. Parameters of BTM quality evaluated in this study included somatic cell count (SCC), standard plate count (SPC), PIC, laboratory pasteurization count (LPC), Staphylococcus spp. count, Streptococcus spp. count, and coliform count. Strong correlations between SPC and Streptococcus spp. counts (0.72) and between SPC and PIC (0.70) were found. However, moderate correlations were seen among other milk quality parameters. In addition, seasonal variations for some milk quality parameters were noted. For example, milk quality parameters such as SCC, SPC, LPC, and coliform count were significantly higher in summer, whereas Streptococcus spp. counts were significantly higher in winter. No seasonal variation in PIC or Staphylococcus spp. counts was observed. Summarizing, results from this investigation showed the importance of using several bacterial counts (SCC, SPC, PIC, LPC, Streptococcus spp. count, Staphylococcus spp. count, and coliform counts) as simultaneous indicators of milk quality. PMID:22818441

  4. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  5. Stochastic Parameter Development for PORFLOW Simulations of the Hanford AX Tank Farm

    SciTech Connect

    Ho, C.K.; Baca, R.G.; Conrad, S.H.; Smith, G.A.; Shyr, L.; Wheeler, T.A.

    1999-01-01

    Parameters have been identified that can be modeled stochastically using PORFLOW and Latin Hypercube Sampling (LHS). These parameters include hydrologic and transport properties in the vadose and saturated zones, as well as source-term parameters and infiltration rates. A number of resources were used to define the parameter distributions, primarily those provided in the Retrieval Performance Evaluation Report (Jacobs, 1998). A linear rank regression was performed on the vadose-zone hydrologic parameters given in Khaleel and Freeman (1995) to determine if correlations existed between pairs of parameters. No strong correlations were found among the vadose-zone hydrologic parameters, and it was recommended that these parameters be sampled independently until future data or analyses reveal a strong correlation or functional relationship between parameters. Other distributions for source-term parameters, infiltration rates, and saturated-zone parameters that are required to stochastically analyze the performance of the AX Tank Farm using LHS/PORFLOW were adapted from distributions and values reported in Jacobs (1998) and other literature sources. Discussions pertaining to the geologic conceptualization, vadose-zone modeling, and saturated-zone modeling of the AX Tank Farm are also presented.

  6. Fire hazards analysis for W-413, West Area Tank Farm Storage and Staging Facility

    SciTech Connect

    Huckfeldt, R.A.; Lott, D.T.

    1994-12-14

    In accordance with DOE Order 5480.7A, a Fire Hazards Analysis must be performed for all new facilities. The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objectives of the Order are met. The Order acknowledges a graded approach commensurate with the hazards involved. Tank Farms Operations must sore/stage material and equipment such as pipes, fittings, conduit, instrumentation and others related items until work packages are ready to work. Consumable materials, such as nut, bolts and welding rod, are also requires to be stored for routine and emergency work. Connex boxes and open storage is currently used for much of the storage because of the limited space at and 272WA. Safety issues based on poor housekeeping and material deteriorating due to weather damage has resulted from this inadequate storage space. It has been determined that a storage building in close proximity to the Tank Farm work force would be cost effective. This facility is classified as a safety class 4 building.

  7. Treatment of ichthyophthiriasis after malachite green. I. Concrete tanks at salmonid farms.

    PubMed

    Rintamäki-Kinnunen, Päivi; Rahkonen, Mika; Mannermaa-Keränen, Anna-Liisa; Suomalainen, Lotta-Riina; Mykrä, Heikki; Valtonen, E Tellervo

    2005-04-01

    Since the use of malachite green was banned in many European countries, new alternative treatments have been tested to prevent white spot disease caused by Ichthyophthirius multifiliis. We tested formalin, potassium permanganate (KMnO4), chloramine-T, hydrogen peroxide (H2O2) and Per Aqua or Desirox alone or in combinations of 2 chemicals, one of which was always formalin, in 50 m2 concrete tanks at 2 farms producing salmon Salmo salar smolt in 2001 and 2002. Both Per Aqua and Desirox are combinations of peracetic acid, acetic acid and hydrogen peroxide. The alternative chemicals or their combinations can be used successfully to lower the parasite burden to such a level that no high mortality occurs during the first 4 wk after the start of an infection. This period of time allows the fish to develop immunity against these ciliates, and treatments can be reduced and stopped in due course. I. multifiliis decreased in number 3 to 4 wk after the beginning of the infection in all the treatments. Large differences in parasite burden and mortality occurred among the replicates in all except the Desirox-formalin tanks, which means that they are not as reliable as the malachite green-formalin used previously. It was also evident that the chemicals and their concentrations must be planned carefully to suit the conditions on each farm. PMID:15900690

  8. CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS

    SciTech Connect

    Reboul, S.

    2012-08-29

    The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from one another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF

  9. High-Level Waste Mechanical Sludge Removal at the Savannah River Site - F Tank Farm Closure Project

    SciTech Connect

    Jolly, R.C.Jr.; Martin, B.

    2008-07-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intra

  10. AIR AND RADON PATHWAY MODELING FOR THE F AREA TANK FARM

    SciTech Connect

    Dixon, K.; Phifer, M.

    2010-07-30

    An air and radon pathways analysis was conducted for the F-Area Tank Farm (FTF) to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. Additionally, the dose to the MEI was estimated at a seepage outcrop located 1600 m from the facility. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent radionuclide was estimated for the simulation period of 10,100 years.

  11. Tank Farm WM-182 and WM 183 Heel Slurry Samples PSD Results

    SciTech Connect

    Batcheller, Thomas Aquinas

    2000-09-01

    Particle size distribution (PSD) analysis of INTEC Tank Farm WM-182 and WM-183 heel slurry samples were performed using a modified Horiba LA-300 PSD analyzer at the RAL facility. There were two types of testing performed: typical PSD analysis, and setting rate testing. Although the heel slurry samples were obtained from two separate vessels, the particle size distribution results were quite similar. The slurry solids were from approximately a minimum particle size of 0.5 mm to a maximum of 230 mm-with about 90% of the material between 2-to-133 mm, and the cumulative 50% value at approximately 20 mm. This testing also revealed that high frequency sonication with an ultrasonic element may break-up larger particles in the WM-182 and WM-183 tank from heel slurries. This finding represents useful information regarding ultimate tank heel waste processing. Settling rate testing results were also fairly consistent with material from both vessels in that it appears that most of the mass of solids settle to an agglomerated, yet easily redispersed layer at the bottom. A dispersed and suspended material remained in the "clear" layer above the settled layer after about one-half an hour of settling time. This material had a statistical mode of approximately 5 mm and a maximum particle size of 30 mm.

  12. Tank Farm WM-182 and WM-183 Heel Slurry Samples PSD Results

    SciTech Connect

    Batcheller, T.A.; Huestis, G.M.

    2000-08-31

    Particle size distribution (PSD) analysis of INTEC Tank Farm WM-182 and WM-183 heel slurry samples were performed using a modified Horiba LA-300 PSD analyzer at the RAL facility. There were two types of testing performed: typical PSD analysis, and setting rate testing. Although the heel slurry samples were obtained from two separate vessels, the particle size distribution results were quite similar. The slurry solids were from approximately a minimum particle size of 0.5 mm to a maximum of 230 mm with about 90% of the material between 2-to-133 mm, and the cumulative 50% value at approximately 20 mm. This testing also revealed that high frequency sonication with an ultrasonic element may break-up larger particles in the WM-182 and WM-183 tank from heel slurries. This finding represents useful information regarding ultimate tank heel waste processing. Settling rate testing results were also fairly consistent with material from both vessels in that it appears that most of the mass of solids settle to an agglomerated, yet easily redispersed layer at the bottom. A dispersed and suspended material remained in the ''clear'' layer above the settled layer after about one-half an hour of settling time. This material had a statistical mode of approximately 5 mm and a maximum particle size of 30 mm.

  13. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  14. 2005 Closure Assessments for WMA-C Tank Farms: Numerical Simulations

    SciTech Connect

    Freedman, Vicky L; Zhang, Z F; Waichler, Scott R; Wurstner, Signe K

    2005-09-20

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, numerical simulations of flow and solute transport were executed to investigate different potential contaminant source scenarios that may pose long-term risks to groundwater from the closure of the C Tank Farm. These simulations were based on the initial assessment effort (Zhang et al., 2003), but implemented a revised approach that examined a range of key parameters and multiple base cases. Four different potential source types were identified to represent the four base cases, and included past leaks, diffusion releases from residual wastes, leaks during retrieval, and ancillary equipment sources. Using a two-dimensional cross section through the C Tank Farm (Tanks C-103–C-112) and a unit release from Tank C-112, two solutes (uranium-238 (U-238) and technetium-99 (Tc 99)) were transported through the problem domain. To evaluate the effect of sorption on contaminant transport, seven different sorption coefficients were simulated for U 238. Apart from differences in source releases, all four base cases utilized the same median parameter values to describe flow and contaminant transport at the WMA C. Forty-six additional cases were also run that examined individual transport responses to the upper and lower limits of the median parameter values implemented in the base case systems. For the conservative solute, Tc-99, results amongst the base cases showed that the simulations investigating past leaks demonstrated the highest peak concentrations and the earliest arrival times (48 years) due to the proximity of the plume to the water table and the high recharge rate before surface barriers were installed. Simulations investigating leaks during retrieval predicted peak concentrations ~60 times smaller than the past leak cases, and corresponding arrival times that occurred ~70 years later. The diffusion release base case

  15. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    SciTech Connect

    Scott Fendorf; Phil Jardine

    2006-07-21

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

  16. Engineering Report Single Shell Tank (SST) Farms Interim Measures to Limit Infiltration through the Vadose Zone [SEC 1 & 2 & 3

    SciTech Connect

    ANDERSON, F.J.

    2001-05-07

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathway for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  17. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  18. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and safety of raw milk are important attributes for consumers of milk and dairy products. The objective of this study was to assess the presence of a L. monocytogenes biofilm in milking equipment as a potential source of bulk tank milk contamination on a dairy farm. Weekly tests to monit...

  19. Fiscal Year 2009 Annual Report for Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater

    SciTech Connect

    Forsythe, Howard S.

    2010-04-10

    This annual report summarizes maintenance, monitoring, and inspection activities performed to implement the selected remedy for Waste Area Group 3, Operable Unit 3-14, Tank Farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Results from monitoring perched water and groundwater at the Idaho Nuclear Technology and Engineering Center are also presented.

  20. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  1. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  2. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  3. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    SciTech Connect

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  4. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  5. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  6. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    SciTech Connect

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  7. Farm management factors associated with bulk tank total bacterial count in Irish dairy herds during 2006/07

    PubMed Central

    2009-01-01

    Research has shown that total bacterial count (TBC), which is the bacterial growth per ml of milk over a fixed period of time, can be decreased by good hygiene and farm management practices. The objective of the current study was to quantify the associations between herd management factors and bulk tank TBC in Irish spring calving, grass-based dairy herds. The relationship between bulk tank TBC and farm management and infrastructure was examined using data from 400 randomly selected Irish dairy farms where the basal diet was grazed grass. Herd management factors associated with bulk tank TBC were identified using linear models with herd annual total bacterial score (i.e., arithmetic mean of the natural logarithm of bulk tank TBC) included as the dependent variable. All herd management factors were individually analysed in a separate regression model, that included an adjustment for geographical location of the farm. A multiple stepwise regression model was subsequently developed. Median bulk tank TBC for the sample herds was 18,483 cells/ml ranging from 10,441 to 130,458 cells/ml. Results from the multivariate analysis indicated that the following management practices were associated with low TBC; use of heated water in the milking parlour; participation in a milk recording scheme; and tail clipping of cows at a frequency greater than once per year. Increased level of hygiene of the parlour and cubicles were also associated with lower TBC. Herd management factors associated with bulk tank TBC in Irish grazing herds were generally in agreement with most previous studies from confinement systems of milk production. PMID:21851723

  8. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY10 Report

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2011-01-01

    The U.S. Department of Energy’s Office of River Protection has constructed interim surface barriers over a portion of the T and TY tank farms as part of the Interim Surface Barrier Demonstration Project. The interim surface barriers (hereafter referred to as the surface barriers or barriers) are designed to minimize the infiltration of precipitation into the soil zones containing radioactive contaminants and minimize the movement of the contaminants. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barriers at reducing soil moisture. Solar-powered systems were installed to continuously monitor soil water conditions at four locations in the T (i.e., instrument Nests TA, TB, TC, and TD) and the TY (i.e., instrument Nests TYA and TYB) Farms beneath the barriers and outside the barrier footprint as well as site meteorological conditions. Nests TA and TYA are placed in the area outside the barrier footprint and serve as controls, providing subsurface conditions outside the influence of the surface barriers. Nest TB provides subsurface measurements to assess surface-barrier edge effects. Nests TC, TD, and TYB are used to assess changes in soil-moisture conditions beneath the interim surface barriers.

  9. In-tank Precipitation Facility (ITP) and H-Tank Farm (HTF) geotechnical report, WSRC-TR-95-0057, Revision 0, Volume 1

    SciTech Connect

    1995-01-01

    A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static and dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies.

  10. 2003 Initial Assessments of Closure for the C Tank Farm Field Investigation Report (FIR):Numerical Simulations

    SciTech Connect

    Zhang, Z. F.; Freedman, Vicky L.; White, Mark D.

    2003-07-15

    In support of CH2M HILL Hanford Group, Inc.'s (CHG) preparation of a Field Investigative Report (FIR) for the closure of the Hanford Site Single-Shell Tank (SST) Waste Management Area (WMA) tank farms, a set of numerical simulations of flow and solute transport was executed to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the C Farm WMA. This report documents the simulation of 14 cases (and two verification cases) involving two-dimensional cross sections through the C Farm WMA tanks C-103 – C-112. Utilizing a unit release scenario at Tank C-112, four different types of leaks were simulated. These simulations assessed the impact of leakage during retrieval, past leaks, and tank residual wastes and tank ancillary equipment following closure activities. . Two transported solutes were considered: uranium-238 (U-238) and technetium-99 (Tc-99). To evaluate the impact of sorption to the subsurface materials, six different retardation coefficients were simulated for U-238. Overall, simulations results for the C Farm WMA showed that only a small fraction of the U-238 with retardation factors greater than 0.6 migrated from the vadose zone in all of the cases. For the conservative solute, Tc-99, results showed that the simulations investigating leakages during retrieval demonstrated the highest WMA peak concentrations and the earliest arrival times due to the high infiltration rate before the use of surface barriers and the addition of water into the system. Simulations investigating past leaks showed similar peaks and arrival times as the retrieval leak cases. Several different release rates were used to investigate contaminant transport from residual tank wastes. All showed similar peak concentrations and arrival times, except for the lowest initial release rate, which was 1,000 times slower than the highest release rate. Past leaks were also investigated with different release rate models, including

  11. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  12. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  13. Design review report: AN valve pit upgrades for Project W-314, tank farm restoration and safe operations

    SciTech Connect

    Boes, K.A.

    1998-01-13

    This Design Review Report (DRR) documents the contractor design verification methodology and records associated with project W-314`s AN Valve Pit Upgrades design package. The DRR includes the documented comments and their respective dispositions for this design. Acceptance of the comment dispositions and closure of the review comments is indicated by the signatures of the participating reviewers. Project W-314, Tank Farm Restoration and Safe Operations, is a project within the Tank Waste Remediation System (TWRS) Tank Waste Retrieval Program. This project provides capital upgrades for the existing Hanford tank farms` waste transfer, instrumentation, ventilation, and electrical infrastructure systems. To support established TWRS programmatic objectives, the project is organized into two distinct phases. The initial focus of the project (i.e., Phase 1) is on waste transfer system upgrades needed to support the TWRS Privatization waste feed delivery system. Phase 2 of the project will provide upgrades to support resolution of regulatory compliance issues, improve tank infrastructure reliability, and reduce overall plant operating/maintenance costs. Within Phase 1 of the W-314 project, the waste transfer system upgrades are further broken down into six major packages which align with the project`s work breakdown structure. Each of these six sub-elements includes the design, procurement, and construction activities necessary to accomplish the specific tank farm upgrades contained within the package. The first package to be performed is the AN Valve Pit Upgrades package. The scope of the modifications includes new pit cover blocks, valve manifolds, leak detectors, transfer line connections (for future planned transfer lines), and special protective coating for the 241-AN-A and 241-AN-B valve pits.

  14. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  15. T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D.; Sydnor, Harold A.

    2008-01-11

    CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight decrease. Soil-moisture contents at the depths of 1.3 m and

  16. A STRUCTURAL INTEGRITY EVALUATION OF THE TANK FARM WASTE TRANSFER SYSTEM

    SciTech Connect

    Wiersma, B.

    2006-03-09

    Radioactive supernate, salt, and/or sludge wastes (i.e., high level wastes) are confined in 49 underground storage tanks at the Savannah River Site (SRS). The waste is transported between tanks within and between the F and H area tank farms and other facilities on site via underground and a limited number of aboveground transfer lines. The Department of Energy - Savannah River Operations Office (DOE-SR) performed a comprehensive assessment of the structural integrity program for the Tank Farm waste transfer system at the SRS. This document addresses the following issues raised during the DOE assessment: (1) Inspections of failed or replaced transfer lines indicated that the wall thickness of some core and jacket piping is less than nominal; (2) No corrosion allowance is utilized in the transfer line structural qualification calculations. No basis for neglecting corrosion was provided in the calculations; (3) Wall loss due to erosion is not addressed in the transfer line structural qualification calculations; and (4) No basis is provided for neglecting intergranular stress corrosion cracking in the transfer line structural qualification calculations. The common theme in most of these issues is the need to assess the potential for occurrence of material degradation of the transfer line piping. The approach used to resolve these issues involved: (1) Review the design and specifications utilized to construct and fabricate the piping system; (2) Review degradation mechanisms for stainless steel and carbon steel and determine their relevance to the transfer line piping; (3) Review the transfer piping inspection data; (4) Life estimation calculations for the transfer lines; and (5) A Fitness-For-Service evaluation for one of the transfer line jackets. The evaluation concluded that the transfer line system piping has performed well for over fifty years. Although there have been instances of failures of the stainless steel core pipe during off-normal service, no significant

  17. Assessment of alternative mitigation concepts for Hanford flammable gas tanks

    SciTech Connect

    Stewart, C.W.; Schienbein, L.A.; Hudson, J.D.; Eschbach, E.J.; Lessor, D.L.

    1994-09-01

    This report provides a review and assessment of four selected mitigation concepts: pump jet mixing, sonic vibration, dilution, and heating. Though the relative levels of development of these concepts are quite different, some definite conclusions are made on their comparative feasibility. Key findings of this report are as follows. A mixer pump has proven to be a safe and effective active mitigation method in Tank 241-SY-101, and the authors are confident that mixer pumps will effectively mitigate other tanks with comparable waste configurations and properties. Low-frequency sonic vibration is also predicted to be effective for mitigation. Existing data cannot prove that dilution can mitigate gas release event (GRE) behavior. However, dilution is the only concept of the four that potentially offers passive mitigation. Like dilution, heating the waste cannot be proven with available information to mitigate GRE behavior. The designs, analyses, and data from which these conclusions are derived are presented along with recommendations.

  18. LIFE ESTIMATION OF TRANSFER LINES FOR TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    SciTech Connect

    Subramanian, K

    2007-10-01

    A performance assessment is being performed in support of closure of the F-Tank Farm. The performance assessment includes the life estimation of the transfer lines that are used to transport waste between tanks both within a facility (''intra-area'' transfer) and to other facilities (''inter-area'' transfers). The transfer line materials of construction will initially provide a barrier to contaminant escape. However, the materials will degrade over time, most likely due to corrosion, and will no longer provide a barrier to contaminant escape. The life estimation considered the corrosion of the core pipe under exposure to soil, estimated the thickness loss due to general corrosion, and the percentage of wall area breached due to localized corrosion mechanisms. There are three types of transfer lines that are to be addressed within the performance assessment: Type I, Type II/IIA and Type III. The life of the transfer lines were estimated as exposed to soil. Localized and general corrosion of the transfer lines exposed to soil was estimated to provide input to the fate and transport modeling of the performance assessment. Pitting corrosion was found to be the controlling mechanism for the degradation of the transfer lines and their consequent ability to maintain confinement of contaminants. It is assumed that 75% of the transfer line is needed intact to provide this confinement function, i.e. once 25% of the line wall is breached, the lines are considered incapable of confining contaminants. It is recommended that the percentage breached curves be utilized for each transfer line as shown in Figure 1 for the various stainless steel transfer lines.

  19. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6

    SciTech Connect

    Not Available

    1994-04-01

    The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

  20. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    SciTech Connect

    Willingham, W.E.

    1996-05-02

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  1. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  2. Surface geophysical exploration: developing noninvasive tools to monitor past leaks around Hanford's tank farms.

    PubMed

    Rucker, Dale F; Myers, David A; Cubbage, Brian; Levitt, Marc T; Noonan, Gillian E; McNeill, Michael; Henderson, Colin; Lober, Robert W

    2013-01-01

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure, specifically the steel-cased wells that surround the tanks, as "long" electrodes for both transmission of electrical current and measurements of voltage. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past 7 years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools to accommodate electrodes of all shapes and locations. The program is

  3. AIR AND RADON PATHWAY MODELING FOR THE F-AREA TANK FARM

    SciTech Connect

    Dixon, K; Mark Phifer, M

    2007-09-17

    The F-Area Tank Farm (FTF) is located within F-Area in the General Separations Area (GSA) of the Savannah River Site (SRS) as seen in Figure 1. The GSA contains the F and H Area Separations Facilities, the S-Area Defense Waste Processing Facility, the Z-Area Saltstone Facility, and the E-Area Low-Level Waste Disposal Facilities. The FTF is a nearly rectangular shaped area and comprises approximately 20 acres, which is bounded by SRS coordinates N 76,604.5 to N 77,560.0 and E 52,435.0 to E 53,369.0. SRS is in the process of preparing a Performance Assessment (PA) to support FTF closure. As part of the PA process, an analysis was conducted to evaluate the potential magnitude of gaseous release of radionuclides from the FTF over the 100-year institutional control period and 10,000-year post-closure compliance period. Specifically, an air and radon pathways analysis has been conducted to estimate the flux of volatile radionuclides and radon at the ground surface due to residual waste remaining in the tanks following closure. This analysis was used as the basis to estimate the dose to the maximally exposed individual (MEI) for the air pathway per Curie (Ci) of each radionuclide remaining in the combined FTF waste tanks. For the air pathway analysis, several gaseous radionuclides were considered. These included carbon-14 (C-14), chlorine-36 (Cl-36), iodine-129 (I-129), selenium-79 (Se-79), antimony-125 (Sb-125), tin-126 (Sn-126), tritium (H-3), and technetium-99 (Tc-99). The dose to the MEI was estimated at the SRS Boundary during the 100 year institutional control period. For the 10,000 year post closure compliance period, the dose to the MEI was estimated at the 100 m compliance point. For the radon pathway analysis, five parent radionuclides and their progeny were analyzed. These parent radionuclides included uranium-238 (U-238), plutonium-238 (Pu-238), uranium-234 (U-234), thorium-230 (Th-230), and radium-226 (Ra-226). The peak flux of radon-222 due to each parent

  4. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools

  5. Analysis and Summary Report of Historical Dry Well Gamma Logs for the 241-B Tank Farm 200 East

    SciTech Connect

    SYDNOR, H.A.

    2000-06-05

    This report provides a summary of the gross gamma ray data for the 241-B Tank Farm and is intended to identify changes in the gamma activity of gamma-emitting radionuclide contaminants around each accessible borehole, and is not intended to provide interpretation of the data relative to vadose zone mechanics. Trends in data, as well as areas where additional information would be helpful in evaluating the unusual nature of some of the data, are discussed.

  6. Sampling and Analysis Plan for the Gunite and Associated Tanks Treatability Study, wall coring and scraping in Tanks W-3 and W-4 (North Tank Farm), Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    This plan documents the procedures for collecting and analyzing wall core and wall scraping samples from Tanks W-3 and W-4 in the North Tank Farm. This is in support of the Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study of the Gunite and Associated Tanks at ORNL. The sampling and analysis will be in concert with sludge retrieval and sluicing of the tanks. Wall scraping and wall core samples will be collected from each quadrant in each tank by using a scraping sampler and a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory and analyzed for physical/radiological characteristics, including total activity, gross alpha, gross beta, radioactive Sr + Cs, and other alpha and gamma emitting radionuclides. The Data Quality Objectives process, based on US EPA guidance (EPA QA/G-4, Sept. 1994), was applied to identify the objectives of this sampling and analysis. Results of the analysis will be used to validate predictions of a Sr concrete diffusion model, estimate the amount of radioactivity remaining in the tank shells, provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and estimate the performance of the wall cleaning system.

  7. An Integrated System for Vadose Zone Monitoring, Model Calibration, Performance Assessment, and Prediction (MCAP) in Hanford's T Tank Farm

    NASA Astrophysics Data System (ADS)

    Zhang, Z. F.; Keller, J. M.; Myers, D. A.; Sydnor, H. A.

    2006-12-01

    The Hanford Site has 149 underground single-shell tanks that store hazardous radioactive waste. Many of these tanks and their associated infrastructure (e.g., pipelines, diversion boxes) have leaked. Some of the leaked waste is projected to have entered the groundwater. The largest known leak occurred from the T-106 Tank in 1973. Most of the contaminants from that leak still reside within the vadose zone beneath the T Tank Farm. To minimize movement of this residual contaminant plume, an interim infiltration barrier will be constructed on the ground surface. This barrier is expected to prevent infiltrating water from reaching the plume and moving it further towards groundwater. An integrated system will be used for vadose zone moisture monitoring, model calibration, performance assessment, and prediction (MCAP). The system is to be broadly- designed so that the data can be used for multiple purposes. In addition to monitoring soil water movement both under the proposed barrier and adjacent to it, the collected data can also be used to characterize vadose zone hydraulic properties and to calibrate a numerical model. The calibrated model can then be used to assess the performance of the infiltration barrier and to predict water flow and contaminant transport under conditions with and/or without a barrier. A MCAP system is being applied to the Hanford's T Tank Farm. Soil water content is to be monitored using both neutron and capacitance probes; soil water pressure and soil temperature will be monitored with heat dissipation sensors; and water flux will be measured using water fluxmeters. These instruments will be installed in direct push probe holes advanced by a hydraulic hammer unit. Excluding neutron probe measurements, all data collection and data transmittal will be sent to an automated central server. This design allows measurements to be taken continually and reduces the need for personnel to enter the farm thereby increasing worker safety. It is expected that

  8. Tank farm surveillance and waste status summary report for May 1993

    SciTech Connect

    Hanlon, B.M.

    1993-08-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

  9. Tank Farm surveillance and waste status summary report for April 1993

    SciTech Connect

    Hanlon, B.M.

    1993-07-01

    This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

  10. Process Options Description for Steam Reforming Flowsheet Model of INEEL Tank Farm Waste

    SciTech Connect

    Taylor, D.D.; Barnes, C.M.; Nichols, T.T.

    2002-05-21

    Technical information is provided herein that is required for development of a steady-state process simulation of a baseline steam reforming treatment train for Tank Farm waste at the Idaho National Engineering and Environmental Laboratory (INEEL). This document supercedes INEEL/EXT-2001-173, produced in FY2001 to support simulation of the direct vitrification treatment train which was the previous process baseline. A process block flow diagram for steam reforming is provided, together with a list of unit operations which constitute the process. A detailed description of each unit operation is given which includes its purpose, principal phenomena present, expected pressure and temperature ranges, key chemical species in the inlet steam, and the proposed manner in which the unit operation is to be modeled in the steady state process simulation. Models for the unit operations may be mechanistic (based on first principles), empirical (based solely on pilot test data without extrapolation) , or by correlations (based on extrapolative or statistical schemes applied to pilot test data). Composition data for the expected process feed streams is provided.

  11. Technical assessment of workplace air sampling requirements at tank farm facilities. Revision 1

    SciTech Connect

    Olsen, P.A.

    1994-09-21

    WHC-CM-1-6 is the primary guidance for radiological control at Westinghouse Hanford Company (WHC). It was written to implement DOE N 5480.6 ``US Department of Energy Radiological Control Manual`` as it applies to programs at Hanford which are now overseen by WHC. As such, it complies with Title 10, Part 835 of the Code of Federal Regulations. In addition to WHC-CM-1-6, there is HSRCM-1, the ``Hanford Site Radiological Control Manual`` and several Department of Energy (DOE) Orders, national consensus standards, and reports that provide criteria, standards, and requirements for workplace air sampling programs. This document provides a summary of these, as they apply to WHC facility workplace air sampling programs. This document also provides an evaluation of the compliance of Tank Farms` workplace air sampling program to the criteria, standards, and requirements and documents compliance with the requirements where appropriate. Where necessary, it also indicates changes needed to bring specific locations into compliance.

  12. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    SciTech Connect

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  13. Mitigation/remediation concepts for Hanford Site flammable gas generating waste tanks

    SciTech Connect

    Babad, H.; Deichman, J.L.; Johnson, B.M.; Lemon, D.K.; Strachan, D.M.

    1992-04-01

    This report presents a preliminary assessment of concepts for the mitigation and/or remediation of the hydrogen gas generation, storage, and periodic release in Tank 241-SY-101 (101-SY) and 22 other tanks. The 22 other tanks exhibit much less hydrogen generation (volume and concentration of released flammable gases) than Tank 101-SY and have not had the focus nor attention that has been given to Tank 101-SY. These tanks have been listed as potential hydrogen gas-generating tanks from analysis of tank performance and data from flowsheets and Track Radioactive Constituents Reports (TRAC). These lesser hydrogen-generating tanks will also need to be revisited and revalidated. Of the 23 hydrogen class tanks, 5 are double-shell tanks (DST) and 18 are single-shell tanks (SST). Options for mitigation or remediation are different for the two types of tanks because of age, configuration, and waste form. While this document principally focuses on Tank 101-SY, the information presented has been useful to address other tanks containing hydrogen-generating waste.

  14. Six Sigma Evaluation of the High Level Waste Tank Farm Corrosion Control Program at the Savannah River Site

    SciTech Connect

    Hill, P. J.

    2003-02-26

    Six Sigma is a disciplined approach to process improvement based on customer requirements and data. The goal is to develop or improve processes with defects that are measured at only a few parts per million. The process includes five phases: Identify, Measure, Analyze, Improve, and Control. This report describes the application of the Six Sigma process to improving the High Level Waste (HLW) Tank Farm Corrosion Control Program. The report documents the work performed and the tools utilized while applying the Six Sigma process from September 28, 2001 to April 1, 2002. During Fiscal Year 2001, the High Level Waste Division spent $5.9 million to analyze samples from the F and H Tank Farms. The largest portion of these analytical costs was $2.45 million that was spent to analyze samples taken to support the Corrosion Control Program. The objective of the Process Improvement Project (PIP) team was to reduce the number of analytical tasks required to support the Corrosion Control Program by 50 percent. Based on the data collected, the corrosion control decision process flowchart, and the use of the X-Y Matrix tool, the team determined that analyses in excess of the requirements of the corrosion control program were being performed. Only two of the seven analytical tasks currently performed are required for the 40 waste tanks governed by the Corrosion Control Program. Two additional analytical tasks are required for a small subset of the waste tanks resulting in an average of 2.7 tasks per sample compared to the current 7 tasks per sample. Forty HLW tanks are sampled periodically as part of the Corrosion Control Program. For each of these tanks, an analysis was performed to evaluate the stability of the chemistry in the tank and then to determine the statistical capability of the tank to meet minimum corrosion inhibitor limits. The analyses proved that most of the tanks were being sampled too frequently. Based on the results of these analyses and th e use of additional

  15. Effects of farm management practices and environmental factors on bulk tank milk antibodies against gastrointestinal nematodes in dairy farms across Canada.

    PubMed

    Vanderstichel, Raphaël; Dohoo, Ian; Sanchez, Javier; Conboy, Gary

    2012-04-01

    Enzyme-linked immunosorbent assays (ELISAs) have been used as a diagnostic tool to quantify levels of gastrointestinal nematodes in dairy cattle by measuring Ostertagia ostertagi antibodies in milk. Higher levels of O. ostertagi antibodies measured by ELISA methods, referred to as optical density ratios (ODRs), are associated with decreased milk production in dairy cattle. On-farm management practices (e.g. pasturing techniques and anthelmintic usage) can influence the exposure of cattle to nematode infections and the magnitude of acquired worm burdens. Additionally, environmental and climatic factors, such as land elevation and precipitation, may also influence the levels of gastrointestinal parasitism. This repeated cross-sectional study investigated the effect of farm management practices and surrounding environmental factors on bulk tank (BT) ODRs in herds from provinces across Canada, and further examined the potential effects of various anthelmintic treatment protocols on BT ODRs. A total of 195 herds contributed an average of 3.5 BT samples between December 2003 and April 2005. The farm management practices were recorded from a questionnaire asking producers about their pasturing methods (confined, pastured, etc.), pasture sharing practices (e.g. mixing heifers with milking cows) and anthelmintic treatments. Environmental data were downloaded online from various governmental databases (e.g. Natural Resources Canada, Statistics Canada, Environment Canada, etc.). Statistical models, accounting for repeated measures (multiple BT ODRs for each farm) and for clustering of farms within a region (province or ecoregion), were used to analyze environmental and farm management data. Overall, the greater the exposure that heifers and milking cows had to pasture, the higher the levels of anti-parasite antibodies detected in BT samples. Treating the entire herd or treating milking cows at calving reduced BT ODR values. Farms in areas with higher number of rainy days

  16. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    SciTech Connect

    Huckfeldt, R.A.

    1995-03-16

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only.

  17. PSA results for Hanford high level waste Tank 101-SY

    SciTech Connect

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1993-10-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

  18. Mechanisms of gas generation from simulated SY tank farm wastes: FY 1995 progress report

    SciTech Connect

    Barefield, E.K.; Boatright, D.; Deshpande, A.; Doctorovich, F.; Liotta, C.L.; Neumann, H.M.; Seymore, S.

    1996-07-01

    The objective of this work is to develop a better understanding of the mechanism of formation of flammable gases in the thermal decomposition of metal complexants such as HEDTA and sodium glycolate in simulated SY tank farm waste mixtures. This report summarizes the results of work done at the Georgia Institute of Technology in fiscal year 1995. Topics discussed are (1) long-term studies of the decomposition of HEDTA in simulated waste mixtures under an argon atmosphere at 90 and 120{degrees}C, including time profiles for disappearance of HEDTA and appearance of products and the quantitative analysis of the kinetic behavior; (2) considerations of hydroxylamine as an intermediate in the production of nitrogen containing gases by HEDTA decomposition; (3) some thoughts on the revision of the global mechanism for thermal decomposition of HEDTA under argon; (4) preliminary long-term studies of the decomposition of HEDTA in simulated waste under an oxygen atmosphere at 120{degrees}C; (5) estimation of the amount of NH{sub 3} in the gas phase above HEDTA reaction mixtures; and (6) further, examination of the interaction of aluminum with nitrite ion using {sup 27}Al NMR spectroscopy. Section 2 of this report describes the work conducted over the last three years at GIT. Section 3 contains a discussion of the kinetic behavior of HEDTA under argon; Section 4 discusses the role of hydroxylamine. Thermal decomposition of HEDTA to ED3A is the subject of Section 5, and decomposition of HEDTA in simulated waste mixtures under oxygen is covered in Section 6. In Section 7 we estimate ammonia in the gas phase; the role of aluminum is discussed in Section 8.

  19. Waste analysis plan for confirmation or completion of Tank Farms backlog waste designation

    SciTech Connect

    Not Available

    1993-08-01

    This waste analysis plan satisfies the requirements of Item 3 of Ecology Order 93NM-201 as amended per the Settlement Agreement. Item 3 states: ``Within forty (40) calendar days of receipt of this Order, the US Department of Energy Richland Operations (DOE-RL) and Westinghouse Hanford Company (WHC) shall provide Ecology with a plan for review and approval detailing the established criteria and procedures for waste inspection, segregation, sampling, designation, and repackaging of all containers reported in item {number_sign}1. The report shall include sampling plan criteria for different contaminated media, i.e., soils, compactable waste, high-efficiency particular air (HEPA) filters, etc., and a schedule for completing the work within the time allowed under this Order.`` Item 3 was amended per the Settlement Agreement as follows: ``In addition to the waste inspection plans for the ``unknowns`` previously provided and currently being supplemented, DOE-RL and WHC shall provide a draft waste analysis plan for the containers reported in Item 1 of the Order to Ecology by July 12, 1993. A final, DOE-RL approved waste analysis plan shall be submitted to Ecology by September 1, 1993, for Ecology`s written approval by September 15, 1993.`` Containers covered by the Order, Settlement Agreement, and this waste analysis plan consist of all those reported under Item 1 of the Order, less any containers that have been identified in unusual occurrences reported by Tank Farms. This waste analysis plan describes the procedures that will be undertaken to confirm or to complete designation of the solid waste identified in the Order.

  20. Waste analysis plan for confirmation or completion of Tank Farms backlog waste designation. Revision 1

    SciTech Connect

    Not Available

    1993-10-01

    On January 23, 1992, waste management problems in the Tank Farms were acknowledged through an Unusual Occurrence (UO) Report No. RL-WHC-TANKFARM-19920007 (DOE-RL 1992). On March 10, 1993, the Washington State Department of Ecology (Ecology) issued Order 93NM-201 (Order) to the US Department of Energy, Richland Operations Office (DOE-RL) and the Westinghouse Hanford Company (Westinghouse Hanford) asserting that ``DOE-RL and Westinghouse Hanford have failed to designate approximately 2,000 containers of solid waste in violation of WAC 173-303170(l)(a) and the procedures of WAC 173-303-070`` (Ecology 1993). On June 30, 1993, a Settlement Agreement and Order Thereon (Settlement Agreement) among Ecology, DOE-RL, and Westinghouse Hanford was approved by the Pollution Control Hearings Board (PCHB). Item 3 of the Settlement Agreement requires that DOE-RL and Westinghouse Hanford submit a waste analysis plan (WAP) for the waste subject to the Order by September 1, 1993 (PCHB 1993). This WAP satisfies the requirements of Item 3 of the Order as amended per the Settlement Agreement. Item 3 states: ``Within forty (40) calendar days of receipt of this Order, DOE-RL and WHC provide Ecology with a waste analysis plan for review and approval detailing the established criteria and procedures for waste inspection, segregation, sampling, designation, and repackaging of all containers reported in item No. 1. The report shall include sampling plan criteria for different contaminated media, i.e., soils, compactable waste, high-efficiency particular air (HEPA) filters, etc., and a schedule for completing the work within the time allowed under this Order.``

  1. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    SciTech Connect

    KIRKBRIDE, R.A.

    1999-05-04

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  3. Contamination assessment report, site 1-10, south tank farm. Phase 1. Version 3.2. Final report

    SciTech Connect

    1987-04-01

    This final report documents the phase I contamination survey of site 1-10, a storage tank farm constructed in 1942. 30 samples from 13 borings were analyzed for volatile and semivolatile organics and metal with separate analyses for As, Hg, and DBCP. C6H6, DCPD, Ch2Cl2, Cu, Zn, and Hg were detected at or above their respective indicator ranges. However, the concentrations of Cu and Zn appear to be consistent with the natural levels of these metals. A phase II program consisting of 22 additional borings and soil gas sampling is recommended to (1) determine the extent of contamination and (2) discover whether potential contaminants have leaked from the tanks. The volume of whether potentially contaminated soil present is estimated at 74,000 cubic yards. Appendices includes chemical names, Phase I chemical data, and comments and responses.

  4. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    SciTech Connect

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements

  5. Tank Farm Contractor Operation and Utilization Plan [SEC 1 Thru 3

    SciTech Connect

    KIRKBRIDE, R.A.

    2000-04-19

    This document updates the operating scenario and plans for feed delivery to BNFL Inc. of retrieval and waste from single-shell tanks, and the overall process flowsheets for Phases 1 and 2 of the River Protection Project. The plans and flowsheets are updated with the most recent guidance from ORP and tank-by-tank inventory. The results provide the technical basis for the RTP-2 planning effort. Sensitivity cases were run to evaluate the effect of changes on key parameters.

  6. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    SciTech Connect

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  7. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  8. F-Tank Farm Performance Assessment Updates through the Special Analysis Process at Savannah River Site - 12169

    SciTech Connect

    Layton, Mark H.

    2012-07-01

    The F-Area Tank Farm (FTF) is owned by the U.S. Department of Energy and operated by Savannah River Remediation, LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF is in the north-central portion of the SRS and occupies approximately 22 acres within F-Area. The FTF is an active radioactive waste storage facility consisting of 22 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. An FTF Performance Assessment (PA) was prepared to support the eventual closure of the FTF underground radioactive waste tanks and ancillary equipment. The PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified below for final closure of FTF. The FTank Farm is subject to a state industrial waste water permit and Federal Facility Agreement. Closure documentation will include an F-Tank Farm Closure Plan and tank-specific closure modules utilizing information from the performance assessment. For this reason, the State of South Carolina and the Environmental Protection Agency must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. The projected waste tank inventories in the FTF PA provide reasonably bounding FTF inventory projections while taking into account uncertainties in the effectiveness of future tank cleaning technologies. As waste is removed from the FTF waste tanks, the residual contaminants will be sampled and the remaining residual inventory is characterized. In this manner, tank specific data for the tank inventories at closure will be available to supplement the waste tank inventory projections currently used in the FTF PA. For FTF, the new tank specific data will

  9. 2004 Initial Assessments for the T and TX TY Tank Farm Field Investigation Report (FIR): Numerical Simulations

    SciTech Connect

    Zhang, Z. F.; Freedman, Vicky L.; Waichler, Scott R.

    2004-09-24

    In support of CH2M HILL Hanford Group, Inc.’s (CHG) preparation of a Field Investigative Report (FIR) for the Hanford Site Single-Shell Tank Waste Management Area (WMA) T and TX-TY, a suite of numerical simulations of flow and solute transport was executed using the STOMP code to predict the performance of surface barriers for reducing long-term risks from potential groundwater contamination at the T and TX-TY WMA. The scope and parametric data for these simulations were defined by a modeling data package provided by CHG. This report documents the simulation involving 2-D cross sections through the T Tank and the TX-TY Tank Farm. Eight cases were carried out for the cross sections to simulate the effects of interim barrier, water line leak, inventory distribution, and surface recharge on water flow and the transport of long-lived radionuclides (i.e., technecium-99 and uranium) and chemicals (i.e., nitrate and chromium For simulations with barriers, it is assumed that an interim barrier is in place by the year 2010. It was also assumed that, for all simulations, as part of tank farm closure, a closure barrier was in place by the year 2040. The modeling considers the estimated inventories of contaminants within the vadose zone and calculates the associated risk. It assumes that no tanks will leak in the future. Initial conditions for contaminant concentration are provided as part of inventory estimates for uranium, technetium-99, nitrate, and chromium. For moisture flow modeling, Neumann boundary conditions are prescribed at the surface with the flux equal to the recharge rate estimate. For transport modeling, a zero flux boundary is prescribed at the surface for uranium, technetium-99, nitrate, and chromium. The western and eastern boundaries are assigned no-flux boundaries for both flow and transport. The water table boundary is prescribed by water table elevations and the unconfined aquifer hydraulic gradient. No-flux boundaries are used for the lower boundary

  10. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  11. Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas

    SciTech Connect

    Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R.; Stewart, C.W.

    1994-07-01

    Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

  12. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    SciTech Connect

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  13. Analysis of power loss data for the 200 Area Tank Farms in support of K Basin SAR work

    SciTech Connect

    Shultz, M.V. Jr.

    1994-12-01

    An analysis of power loss data for the 200 Area Tank Farms was performed in support of K Basin safety analysis report work. The purpose of the analysis was to establish a relationship between the length of a power outage and its yearly frequency. This relationship can be used to determine whether the duration of a specific power loss is a risk concern. The information was developed from data contained in unusual occurrence reports (UORs) spanning a continuous period of 19.75 years. The average frequency of power loss calculated from the UOR information is 1.22 events per year. The mean of the power loss duration is 32.5 minutes an the median duration is 2 minutes. Nine events resulted in loss of power to both 200 East and 200 West areas simultaneously. Seven events (not necessarily the same events that resulted in loss of power to both 200 areas) resulted in outage durations exceeding 5 minutes. Approximately one-half of the events were caused by human error. The other half resulted from natural phenomena or equipment failures. None of the outages were reported to have any adverse effect on the tank farms.

  14. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    SciTech Connect

    Not Available

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  15. CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183

    SciTech Connect

    Thaxton, D; Timothy Baughman, T

    2008-01-16

    Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

  16. Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report

    SciTech Connect

    1999-09-01

    This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

  17. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.7 and 4.25. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2006. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at the Hanford Site. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physiochemical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. This report also presents the interpretation of data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone below the C Tank Farm. The information presented in this report supports the WMA A-AX, C, and U field investigation report in preparation by CH2M HILL Hanford Group, Inc.

  18. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  19. An Initial Evaluation Of Characterization And Closure Options For Underground Pipelines Within A Hanford Site Single-Shell Tank Farm

    SciTech Connect

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-01-10

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  20. Record keeping, genetic selection, educational experience and farm management effects on average milk yield per cow, milk fat percentage, bacterial score and bulk tank somatic cell count of dairy farms in the Central region of Thailand.

    PubMed

    Rhone, J A; Koonawootrittriron, S; Elzo, M A

    2008-12-01

    A study was conducted to estimate the record keeping, genetic selection, educational, and farm management effects on average milk yield per cow (AYC), milk fat percentage, bacterial score, and bulk tank somatic cell count (BTSCC) of dairy farms in the central region of Thailand. Farms were located in the provinces of Saraburi and Nakhon Ratchisima and were members of the Muaklek dairy cooperative. Records from individual animals were unavailable. Thus, farm records of milk yield, milk fat percentage, bacterial score, and BTCCC were collected from July 1, 2003 through June 30, 2006. Additional record keeping, genetic selection, education, and farm management information was collected through a questionnaire in May of 2006. Data from the Muaklek dairy cooperative and the questionnaire were then merged by a farm identification number. A single trait mixed model was used to analyze AYC, milk fat percentage, and BTSCC, while a log linear model was used to analyze bacterial score. Results showed that farms that kept records on individual animals had higher (P < 0.05) milk fat percentages and lower bacterial scores than farms that did not. Farms that used genetic information (EBV) and phenotypes when selecting sires were higher (P < 0.05) for milk fat percentage than farms that used only phenotypes and personal opinion. Farms milking cows with a single unit milking machine and by hand, had higher (P < 0.05) bacterial scores and BTSCC than farms using only a single or multi unit machine. Overall farms that kept individual animal records, used EBV when selecting sires, used a single method for collecting milk, and used family labor achieved higher performance from their herds than farms that did not. PMID:18975127

  1. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  2. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  3. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA Borehole 299-W10-27

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28,4.43, and 4.59. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in April 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C3830, C3831, and C3832 in the TX Tank Farm, and from borehole 299-W-10-27 installed northeast of the TY Tank Farm.

  4. FATE AND TRANSPORT OF RADIONUCLIDES BENEATH THE HANFORD TANK-FARMS: UNRAVELING COUPLED GEOCHEMICAL AND HYDROLOGICAL PROCESSES IN THE VADOSE ZONE

    EPA Science Inventory

    The overall goal of this research is to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration of radionuclides in the vadose zone beneath the Hanford Tank Farms. The study...

  5. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    SciTech Connect

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  6. Second biannaul recalibration of two spectral gamma-ray logging systems used for baseline characterization measurements in the Hanford Tank Farms

    SciTech Connect

    Koizumi, C.J.

    1996-08-01

    The U.S. Department of Energy`s (DOE) Grand Junction Projects Office (GJPO) is establishing an initial, or baseline, characterization of gamma-ray-emitting contaminants in the subsurface of the Tank Farms at the DOE Hanford Site in the State of Washington. These baseline data are gathered by logging existing monitoring boreholes with two high-resolution passive spectral gamma-ray logging systems (SGLSs) informally known as Gamma 1 and Gamma 2. Calibration of the logging systems is crucial to the assurance of data quality. The project document Vadose Zone Monitoring Project at the Hanford Tank Farms, Spectral Gamma-Ray Borehole Geophysical Logging Characterization and Baseline Monitoring Plan for the Hanford Single-Shell Tanks specifies that both systems must be recalibrated, using the calibration standards at the Hanford borehole logging calibration center, every 6 months. DOE presents a description of the first recalibrations.

  7. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  8. Rheology and retained gas measurements in Hanford tank 101-SY

    SciTech Connect

    Shepard, C.L.; Alzheimer, J.M.; Terrones, G.

    1995-12-31

    Several high-level radioactive waste tanks at the Hanford site are known to produce flammable gases. The best known of these tanks is tank 241-SY-101, and to mitigate the safety concerns associated with flammable gas release from this tank, a mixer pump was installed in mid-1993 to mix the waste contents and thereby eliminate or reduce the capability of the waste to retain gas. The mixer pump has proven very effective and only needs to be operated for 30 min about every other day. Large periodic gas release events no longer occur in this tank. However, specific information about the Theological character of the mixed waste and the amount of retained gas has been lacking. In order to determine the amount of gas still retained in the waste and the rheology of the mixed fluid, which is important in establishing the capability of the waste for retaining gas, two instruments were developed to probe the waste in situ. These instruments were the ball rheometer and the void fraction instrument (VFI).

  9. Characterization of Direct-Push Vadose Zone Sediments from the 241-B and 241-BX Tank Farms

    SciTech Connect

    Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong; Bjornstad, Bruce N.; Valenta, Michelle M.; Iovin, Cristian; Lanigan, David C.; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-21

    Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier I tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes

  10. Review of the Technical Basis of the Hydrogen Control Limit for Operations in Hanford Tank Farms

    SciTech Connect

    Mahoney, Lenna A. ); Stewart, Charles W. )

    2002-11-30

    The waste in Hanford tanks generates a mixture of flammable gases and releases it into the tank headspace. The potential hazard resulting from flammable gas generation requires that controls be established to prevent ignition and halt operations if gas concentrations reach levels of concern. In cases where only hydrogen is monitored, a control limit of 6,250 ppm hydrogen has been in use at Hanford for several years. The hydrogen-based control limit is intended to conservatively represent 25% of the lower flammability limit of a gas mixture, accounting for the presence of flammable gases other than hydrogen, with ammonia being the primary concern. This report reviews the technical basis of the current control limit based on observed and projected concentrations of hydrogen and ammonia representing a range of gas release scenarios. The conclusion supports the continued use of the current 6,250 ppm hydrogen control limit

  11. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    SciTech Connect

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters.

  12. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  13. Thermal modeling of tanks 241-AW-101 and 241-AN-104 with the TEMPEST code

    SciTech Connect

    Antoniak, Z.I.; Recknagle, K.P.

    1995-07-01

    The TEMPEST code was exercised in a preliminary study of double-shell Tanks 241 -AW-101 and 241-AN-104 thermal behavior. The two-dimensional model used is derived from our earlier studies on heat transfer from Tank 241-SY-101. Several changes were made to the model to simulate the waste and conditions in 241-AW-101 and 241-AN-104. The nonconvective waste layer was assumed to be 254 cm (100 in.) thick for Tank 241-AW-101, and 381 cm (150 in.) in Tank 241-AN-104. The remaining waste was assumed, for each tank, to consist of a convective layer with a 7.6-cm (3-inch) crust on top. The waste heat loads for 241-AW-101 and 241-AN-104 were taken to be 10 kW (3.4E4 Btu/hr) and 12 kW (4.0E4 Btu/hr), respectively. Present model predictions of maximum and convecting waste temperatures are within 1.7{degrees}C (3{degrees}F) of those measured in Tanks 241-AW-101 and 241-AN-104. The difference between the predicted and measured temperature is comparable to the uncertainty of the measurement equipment. These models, therefore, are suitable for estimating the temperatures within the tanks in the event of changing air flows, waste levels, and/or waste configurations.

  14. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    SciTech Connect

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  15. Characterization of Vadose Zone Sediments Below the C Tank Farm: Borehole C4297 and RCRA Borehole 299-E27-22

    SciTech Connect

    Brown, Christopher F.; Serne, R. JEFFREY; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Clayton, Ray E.; Valenta, Michelle M.; Vickerman, Tanya S.; Kutnyakov, Igor V.; Geiszler, Keith N.; Baum, Steven R.; Parker, Kent E.; Lindberg, Michael J.

    2006-10-18

    The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) C. This report is the first of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from borehole C4297, installed adjacent to Tank C-105, and from borehole 299-E27-22, installed directly north of the C Tank Farm. Sediments from borehole 299-E27-22 were considered to be background uncontaminated sediments against which to compare contaminated sediments for the C Tank Farm characterization effort. This report also presents our interpretation of the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the C Tank Farm. The information presented in this report supports the A-AX, C and U Waste Management Area field investigation report(a) in preparation by CH2M HILL Hanford Group, Inc. A core log was generated for both boreholes and a geologic evaluation of all core samples was performed at the time of opening. Aliquots of sediment from the borehole core samples were analyzed and characterized in the laboratory for the following parameters: moisture content, gamma-emitting radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Two key radiocontaminants

  16. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  17. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  18. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    SciTech Connect

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  20. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    SciTech Connect

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing {open_quotes}nitrogen-inerted{close_quotes} corrosion with {open_quotes}air-equilibrated{close_quotes} corrosion under simulated tank vault conditions.

  1. A parametric study of double-shell tank response to internal high-frequency pressure loading

    SciTech Connect

    Baliga, R.; Choi, K.; Shulman, J.S.; Strehlow, J.P.; Abatt, G.

    1995-02-01

    The double-shell waste tank 241SY101 (SY101) is a 3,785,400-liter tank used to store radioactive waste at the Hanford Site near Richland, Washington. The tank waste has formed two layers of sludge in the tank; a convective and a nonconvective layer. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer of the waste. Various means of preventing the buildup of hydrogen molecules in the nonconvective layer have been investigated, including the use of a sonic probe that would transmit high-frequency acoustic pressure waves into the nonconvective layer of the waste. During the operation of the sonic probe, the pressure waves transmitted from the probe induce pressure time history loading on the inside surface of the primary tank. For low-frequency fluid-structure interaction loads, such as those associated with seismic events, the convective and impulsive effects of the waste-filled tank are well documented. However, for high-frequency loading, such as that associated with acoustic pressure waves, interactions between the waste and the primary tank are not understood. The pressure time history is represented by a harmonic function with a frequency range between 30 and 100 Hz. Structural analyses of the double-shell tank have been performed that address the tank`s response to the sonic probe acoustic pressure loads. This paper addresses the variations in the tank response as a function of percent waste mass considered to be effective in the dynamic excitation of the tank. It also compares results predicted by analyses that discretely model the liquid waste and presents recommendations for the simplified effective mass approach. Also considered in the parametric study is the effect of damping on the tank response for the same pressure loading.

  2. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  3. Prevalence, characterization, and antimicrobial resistance of Yersinia species and Yersinia enterocolitica isolated from raw milk in farm bulk tanks.

    PubMed

    Jamali, Hossein; Paydar, Mohammadjavad; Radmehr, Behrad; Ismail, Salmah

    2015-02-01

    The aims of this study were to investigate the prevalence and to characterize and determine the antibiotic resistance of Yersinia spp. isolates from raw milk. From September 2008 to August 2010, 446 raw milk samples were obtained from farm bulk milk tanks in Varamin, Iran. Yersinia spp. were detected in 29 (6.5%) samples, out of which 23 (79.3%), 5 (17.2%), and 1 (3.4%) were isolated from cow, sheep, and goat raw milk, respectively. The most common species isolated was Yersinia enterocolitica (65.5%), followed by Yersinia frederiksenii (31%), and Yersinia kristensenii (3.4%). Of the 19 Y. enterocolitica isolates, 14 (73.7%) were grouped into bioserotype 1A/O:9, 4 (21.1%) belonged to bioserotype 1B:O8, 1 (5.3%) belonged to bioserotype 4/O:3, and 1 isolate (biotype 1A) was not typable. All the isolates of biotypes 1B and 4harbored both the ystA and ail genes. However, all the isolates of biotype 1A were only positive for the ystB gene. The tested Yersinia spp. showed the highest percentages of resistance to tetracycline (48.3%), followed by ciprofloxacin and cephalothin (each 17.2%), ampicillin (13.8%), streptomycin (6.9%), and amoxicillin and nalidixic acid (each 3.4%). All of the tested isolates demonstrated significant sensitivity to gentamicin and chloramphenicol. Recovery of potentially pathogenic Y. enterocolitica from raw milk indicates high risks of yersiniosis associated with consumption of raw milk. PMID:25497824

  4. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  5. Fiscal year 1992 program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks. Revision 1

    SciTech Connect

    Johnson, G.D.

    1992-06-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. This safety issue involves flammable gas mixtures, consisting mainly of hydrogen, nitrous oxide, and that are generated and periodically released in concentrations that nitrogen, exceed the lower flamability limit. Initial activities of the program have been directed at tank 241-SY-101 because it exhibits the largest risk. Activities conducted in fiscal year (FY) 1991 included waste sampling, waste sample analysis, development of tank models, conducting laboratory tests with synthetic wastes, upgrading of tank instrumentation and ventilation systems, evaluation of new methods for characterizing waste, and development of remedial actions. In addition to the work being conducted to resolve the flammable gas issue, programs have been established (Gasper and Reep 1992) to develop corrective actions for high priority safety issues associated with potential explosive mixtures of ferrocyanides in tanks, potential organic-nitrate reactions in tanks, and for the continued cooling for heat generation in tank 106{degrees}C. The purpose of this document is to provide a brief description of the FY 1992 priorities, logic, work breakdown structure (WBS), and task descriptions for the Waste Tank Flammable Gas Stabilization Program.

  6. Evaluating detonation possibilities in a Hanford radioactive waste tank

    SciTech Connect

    Travis, J.R.; Fujita, R.K.; Ross, M.C.; Edwards, J.N.; Shepherd, J.E.

    1994-12-31

    Since the early 1940s, radioactive wastes generated from the defense operations at the Hanford site have been stored in underground waste storage tanks. During the intervening years, the waste products in some of these tanks have transformed into a potentially hazardous mixture of gases and solids as a result of radiolytic and thermal chemical reactions. One tank in particular, tank 241-SY-101, has been periodically releasing high concentrations of a hydrogen/nitrous oxide/nitrogen/ammonia gas mixture into the tank dome vapor space. The purpose of this study is to determine the conditions under which a detonation of the flammable gas mixture may occur and damage the tank system. There are two ways that a detonation can occur during a release of waste gases into the dome vapor space: direct initiation of detonation by a powerful ignition source and deflagration to detonation transition (DDT). The first case involves a strong ignition source of high energy, high power, or of large size [{approximately}1 g of high explosive (4.6 kJ) for a stoichiometric hydrogen-air mixture] to directly initiate a detonation by {open_quotes}shock{close_quotes} initiation. This strong ignition is thought to be incredible for in-tank ignition sources. The second process involves igniting the released waste gases, which results in a subsonic flame (deflagration) propagating into the unburned combustible gas. The flame accelerates to velocities that cause compression waves to form in front of the deflagration combustion wave. Shock waves may form and the combustion process may be transformed to a detonation wave.

  7. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196 and RCRA Borehole 299-W11-39

    SciTech Connect

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2004-09-01

    This report contains geologic, geochemical, and physical characterization data collected on sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and 299-W-11-39 installed northeast of the T Tank Farm. The measurements on sediments from borehole C4104 are compared to a nearby borehole 299-W10-196 placed through the plume from the 1973 T-106 tank leak. This report also presents the data in the context of sediment types, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the T Tank Farm. Sediment samples were characterized for: moisture content, gamma-emission radionuclides, one-to-one water extracts (which provide soil pH, electrical conductivity, cation, trace metal, radionuclide and anion data), total carbon and inorganic carbon content, and 8 M nitric acid extracts (which provide a measure of the total leachable sediment content of contaminants). Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We observed slight elevated pH values in samples from borehole C4104. The sediments from the three boreholes, C4104, C4105, and 299-W10-196 do show that sodium-, nitrate-, and sulfate-dominated fluids are present below tank T-106 and have formed a salt plume. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms and slightly less than those from the most saline porewater found in contaminated TX tank farm sediments. The boreholes could not penetrate below the gravel-rich strata of the Ringold Formation Wooded Island member (Rwi) (refusal was met at about 130 ft bgs); therefore, we could not identify the maximum vertical penetration of the tank related plumes. The moisture content, pH, electrical conductivity, nitrate, and technetium-99 profiles versus depth in the three

  8. Maximum First Transfer and Dilution Volumes for 241SY101

    SciTech Connect

    BARTON, W.B.

    1999-10-28

    This report discusses the solution to the following problem: what is the maximum waste transfer and dilution quantities and locations which can be allowed in the first transfer of waste from SY-101 given the following constraints? (1) The crust must float on the submerged waste (waste becomes less dense when diluted, eventually allowing crust to sink); (2) No credit is taken for the top dilution; (3) Addition of water to the bulk slurry through the transfer pump must be able to refloat the crust base to above 295 inches; (4) The margin between refloating to 295 inches and crust sinking must be at least 10,000 gallons; (5) The crust can't be thinned to less than 60 inches thick.

  9. SURFACE GEOPHYSICAL EXPLORATION OF B & BX & BY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect

    MYERS DA

    2007-09-28

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure.

  10. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    SciTech Connect

    MYERS DA; CUBBAGE R; BRAUCHLA R; O'BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  11. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  12. Characterization of Vadose Zone Sediments Below the TX Tank Farm: Probe Holes C3830, C3831, C3832 and 299-W10-27

    SciTech Connect

    Serne, R JEFFREY.; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; LeGore, Virginia L.; Orr, Robert D.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Valenta, Michelle M.; Vickerman, Tanya S.

    2004-04-01

    Pacific Northwest National Laboratory performed detailed analyses on vadose zone sediments from within Waste Management Area T-TX-TY. This report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from three probe holes (C3830, C3831, and C3832) in the TX Tank Farm, and from borehole 299-W-10-27. Sediments from borehole 299-W-10-27 are considered to be uncontaminated sediments that can be compared with contaminated sediments. This report also presents our interpretation of the sediment lithologies, the vertical extent of contamination, the migration potential of the contaminants, and the likely source of the contamination in the vadose zone and groundwater below the TX Tank Farm. Sediment from the probe holes was analyzed for: moisture, radionuclide and carbon contents;, one-to-one water extracts (soil pH, electrical conductivity, cation, trace metal, and anion data), and 8 M nitric acid extracts. Overall, our analyses showed that common ion exchange is a key mechanism that influences the distribution of contaminants within that portion of the vadose zone affected by tank liquor. We did not observe significant indications of caustic alteration of the sediment mineralogy or porosity, or significant zones of slightly elevated pH values in the probe holes. The sediments do show that sodium-, nitrate-, and sulfate-dominated fluids are present. The fluids are more dilute than tank fluids observed below tanks at the SX and BX Tank Farms. Three primary stratigraphic units were encountered in each probe hole: (1) backfill material, (2) the Hanford formation, and (3) the Cold Creek unit. Each of the probe holes contain thin fine-grained layers in the Hanford H2 stratigraphic unit that may impact the flow of leaked fluids and effect irregular and horizontal flow. The probe holes could not penetrate below the enriched calcium carbonate strata of the Cold Creek lower subunit; therefore, we did not

  13. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    SciTech Connect

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (``double-shell slurry``) containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however.

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  15. An Initial Evaluation of Characterization and Closure Options for Underground Pipelines within a Hanford Site Single-Shell Tank Farm - 13210

    SciTech Connect

    Badden, Janet W.; Connelly, Michael P.; Seeley, Paul N.; Hendrickson, Michelle L.

    2013-07-01

    The Hanford Site includes 149 single-shell tanks, organized in 12 'tank farms,' with contents managed as high-level mixed waste. The Hanford Federal Facility Agreement and Consent Order requires that one tank farm, the Waste Management Area C, be closed by June 30, 2019. A challenge to this project is the disposition and closure of Waste Management Area C underground pipelines. Waste Management Area C contains nearly seven miles of pipelines and 200 separate pipe segments. The pipelines were taken out of service decades ago and contain unknown volumes and concentrations of tank waste residuals from past operations. To understand the scope of activities that may be required for these pipelines, an evaluation was performed. The purpose of the evaluation was to identify what, if any, characterization methods and/or closure actions may be implemented at Waste Management Area C for closure of Waste Management Area C by 2019. Physical and analytical data do not exist for Waste Management Area C pipeline waste residuals. To develop estimates of residual volumes and inventories of contamination, an extensive search of available information on pipelines was conducted. The search included evaluating historical operation and occurrence records, physical attributes, schematics and drawings, and contaminant inventories associated with the process history of plutonium separations facilities and waste separations and stabilization operations. Scoping analyses of impacts to human health and the environment using three separate methodologies were then developed based on the waste residual estimates. All analyses resulted in preliminary assessments, indicating that pipeline waste residuals presented a comparably low long-term impact to groundwater with respect to soil, tank and other ancillary equipment residuals, but exceeded Washington State cleanup requirement values. In addition to performing the impact analyses, the assessment evaluated available sampling technologies and

  16. Requirements Verification Report AN Farm to 200E Waste Transfer System for Project W-314 Tank Farm Restoration and Safe Operations

    SciTech Connect

    MCGREW, D.L.

    1999-09-28

    This Requirements Verification Report (RVR) for Project W-314 ''AN Farm to 200E Waste Transfer System'' package provides documented verification of design compliance to all the applicable Project Development Specification (PDS) requirements. Additional PDS requirements verification will be performed during the project's procurement, construction, and testing phases, and the RVR will be updated to reflect this information as appropriate.

  17. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  18. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    SciTech Connect

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  19. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    SciTech Connect

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release

  20. Acquisition and reduction of data obtained from tank 101-SY in-situ ball rheometer

    SciTech Connect

    Shepard, C.L.; Chieda, M.A.; Kirihara, L.J.; Phillips, J.R.; Shekarriz, A.; Terrones, G.; Abbott, J.; Unal, C.; Pasamehmetoglu, K.O.; Graham, A.

    1995-02-01

    Development of the ball rheometer to measure rheological properties and density of the waste in Hanford Tank 241-SY-101 will be completed around September 1994. This instrument is expected to provide the first-of-its-kind in-situ measurements of the fluid properties of the waste contained within this tank. A mixer pump has been installed in this tank, and this pump has been very successful at mitigating the flammable gas problem associated with Tank 101-SY. The ball rheometer will serve as a diagnostic tool for judging the effectiveness of mixing in Tank 101-SY and others and will be one of few in-situ probes available for diagnostic measurements. Based on experiments performed at Los Alamos National Laboratory and Pacific Northwest Laboratory, it is believed that a generalized Bingham fluid model (Herschel-Bulkley fluid model) may be useful for describing at least some of the waste contained in Tank 101-SY, and data obtained in the tank will initially be reduced using this fluid model. The single largest uncertainty in the determination of the drag force on the ball is the drag force which will be experienced by the cable attached to the ball. This drag can be a substantial fraction of the total drag when the ball is deep within the tank. It is expected that the fluid properties may be history dependent, thus rheological properties of the undisturbed fluid may be different from the same properties after the fluid has been disturbed by passage of the ball. The data collection strategy allows the determination of the waste fluid rheology both in the undisturbed state and after it has been disturbed by the ball. Unlike the rheological parameters, measurement of density requires no model for its interpretation; however, the effects of yield stress may need to be accounted for. This measurement can be made with fairly good accuracy and may provide the most useful data in determination of mixer pump effectiveness.

  1. Acquisition and reduction of data obtained from Tank 101-SY in-situ ball rheometer

    SciTech Connect

    Shepard, C.L.; Chieda, M.A.; Kirihara, L.J.

    1994-12-01

    Development of the ball rheometer to measure rheological properties and density of the waste in Hanford Tank 241-SY-101 will be completed around September 1994. Since the ball rheometer project began, a mixer pump has been installed in this tank, and by all accounts this pump has been very successful at mitigating the flammable gas problem associated with Tank 101-SY. Present plans now call for the use of mixer pumps in several other tanks. The ball rheometer will serve as a diagnostic tool for judging the effectiveness of mixing in Tank 101-SY and others and will be one of few in-situ probes available for diagnostic measurements. The in-situ data collection strategy and the methods of data analysis and reduction are presented in this final report concerning this instrument. It is believed that a generalized Bingham fluid model (Herschel-Bulkley fluid model) may be useful for describing at least some of the waste contained in Tank 101-SY, and data obtained in the tank will initially be reduced using this fluid model. The single largest uncertainty in the determination of the drag force on the ball is the drag force which will be experienced by the cable attached to the ball. This drag can be a substantial fraction of the total drag when the ball is deep within the tank. Careful accounting of the cable drag will be important in the reduction of the data. The data collection strategy allows the determination of the waste fluid rheology both in the undisturbed state and after it has been disturbed by the ball. Fluid density will be measured at regular intervals.

  2. Assessments of the efficacy of a long-term application of a phytoremediation system using hybrid poplar trees at former oil tank farm sites.

    PubMed

    El-Gendy, Ahmed S; Svingos, Sotero; Brice, Donald; Garretson, Joel H; Schnoor, Jerald

    2009-05-01

    A poplar tree-phytoremediation system was installed at former refinery and tank farm sites in Cabin Creek, West Virginia, to cleanup petroleum-contaminated-soils and groundwater. Groundwater and soils in both sites were sampled and analyzed on a regular basis to monitor changes in contaminant concentration since 1999. The concentration of benzene, toluene, ethylbenzene, xylene, and gasoline range organics (GRO) decreased an average of 81%, 90%, 67%, 78%, and 82%, respectively, in the lower soil horizons and 34%, 84%, 12%, 19%, and 59%, respectively, in groundwater. In addition, concentrations of oxygen, methane, and carbon dioxide in soil gas demonstrated that tree roots dewatered soils and allowed penetration of oxygen deep into the soil profile, creating necessary conditions for rhizosphere bioremediation. Although required clean-up time can limit phytoremediation, it has proven to be a cost-effective strategy for site improvement if imminent pathways for human exposure and risk are not an issue. PMID:19472940

  3. Analysis of the Hydrologic Response Associated With Shutdown and Restart of the 200-ZP-1 WMA T Tank Farm Pump-and-Treat System

    SciTech Connect

    Spane, Frank A.

    2008-08-08

    This report examines possible hydrologic effects of pump-and-treat remediation actions and provides a detailed analysis of water-level measurements for selected 200-ZP-1 T Tank Farm pump-and-treat system monitor wells during a recent shutdown (May 1, 2008) and restart activity (June 4, 2008) involving extraction well 299-W11-46. Specifically, this report 1) applies to recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses to determine large-scale hydraulic properties, and 3) assesses characteristics and conditions that influence hydrologic responses (both laterally and vertically) associated with pump-and-treat systems. The general findings presented in this report have universal application for unconfined and confined aquifer systems.

  4. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    SciTech Connect

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher; Pabalan, Roberto; Pickett, David; Dinwiddie, Cynthia

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  5. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  6. An Alternative Treatment of Trace Chemical Constituents in Calculated Chemical Source Terms for Hanford Tank Farms Safety Analsyes

    SciTech Connect

    Huckaby, James L.

    2006-09-26

    Hanford Site high-level radioactive waste tank accident analyses require chemical waste toxicity source terms to assess potential accident consequences. Recent reviews of the current methodology used to generate source terms and the need to periodically update the sources terms has brought scrutiny to the manner in which trace waste constituents are included in the source terms. This report examines the importance of trace constituents to the chemical waste source terms, which are calculated as sums of fractions (SOFs), and recommends three changes to the manner in which trace constituents are included in the calculation SOFs.

  7. Hanford Tank Safety Project: Minutes of the Tank Waste Science Panel meeting, February 7--8, 1991

    SciTech Connect

    Strachan, D.M.

    1991-06-01

    The Tank Waste Science Panel met February 7--8, 1991, to review the latest data from the analyses of the October 24, 1990, gas release from Tank 241-SY-101 (101-SY) at Hanford; discuss the results of work being performed in support of the Hanford Tank Safety Project; and be briefed on the ferrocyanide issues included in the expanded scope of the Science Panel. The shapes of the gas release curves from the past three events are similar and correlate well with changes in waste level, but the correlation between the released volume of gas and the waste height is not as good. An analysis of the kinetics of gas generation from waste height measurements in Tank 101-SY suggests that the reaction giving rise to the gases in the tank is independent of the gas pressure and independent of the physical processes that give rise to the episodic release of the gases. Tank waste height data were also used to suggest that a floating crust formed early in the history of the tank and that the current crust is being made thicker in the eastern sector of the tank by repeated upheaval of waste slurry onto the surface. The correlation between the N{sub 2}O and N{sub 2} generated in the October release appears to be 1:1, suggesting a single mechanistic pathway. Analysis of other gas generation ratios, however, suggests that H{sub 2} and N{sub 2}O are evolved together, whereas N{sub 2} is from the air. If similar ratios are observed in planned radiolysis experiments are Argonne National Laboratory, radiolysis would appear to be generating most of the gases in Tank 101-SY. Data from analysis of synthetic waste crust using a dynamic x-ray diffractometer suggest that, in air, organics are being oxidized and liberating CO{sub 2} and NO{sub x}. Experiments at Savannah River Laboratory indicate that irradiation of solutions containing NO{sub 3} and organics can produce N{sub 2}O.

  8. Set Point Calculations for RAPID Project [Removal of Hold for HNF-5087 and HNF-5088 and HNF-5089

    SciTech Connect

    HICKMAN, G.L.

    1999-09-02

    The Respond and Pump in Days (RAPID) project was initiated to pump part of the contents of tank 241-SY-101 into tanks 241-SY-102. This document establishes the basis for all set points and ranges used in the RAPID project.

  9. Set point calculations for RAPID project

    SciTech Connect

    HICKMAN, G.L.

    1999-10-18

    The Respond and Pump in Days (RAPID) project was initiated to pump part of the contents of tank 241-SY-101 into tank 241-SY-102. This document establishes the basis for all set points and ranges used in the RAPID project.

  10. U.S. Nuclear Regulatory Commission Review of U.S. Department of Energy Non-High Level Waste Determination for Idaho National Laboratory Tank Farm Facility

    SciTech Connect

    Barr, C.S.; Yin, X.; Camper, L.W.; Whited, A.R.; Dinwiddie, C.L.; Howard, L.D.; Pabalan, R.T.; Pickett, D.

    2007-07-01

    The National Defense Authorization Act for Fiscal Year 2005 (NDAA) authorized the United States Department of Energy (DOE) to determine whether certain radioactive waste related to the reprocessing of spent nuclear fuel is not high-level-waste (HLW). The NDAA applies to DOE facilities in the States of South Carolina and Idaho. DOE must consult with the United States Nuclear Regulatory Commission (NRC) as part of its waste determination. NRC must coordinate with the affected state to monitor DOE's disposal actions to assess compliance with 10 CFR 61, Subpart C, performance objectives. The performance objectives in 10 CFR Part 61, Subpart C, contain requirements for protection of the public, inadvertent intruders, individuals during operations, and stability of the disposal site after closure. In September 2005, DOE submitted to NRC a draft non-HLW determination for waste incidental to reprocessing, including sodium-bearing waste [note: Sodium-bearing waste is a generic term used to describe radioactive wastes comprised of second- and third-cycle extraction fluid and decontamination fluids. This waste contains less activity and generally poses less risk than first-cycle extraction fluid (first-cycle extraction fluid contains most of the fission products)] (SBW) stored in the Idaho Nuclear Technology and Engineering Center tank farm facility (INTEC TFF) at the Idaho National Laboratory (INL). DOE plans to grout the underground tanks and concrete vaults that house these tanks to stabilize the waste in situ. DOE prepared a waste determination to demonstrate compliance with NDAA criteria, including a supporting performance assessment to demonstrate compliance with the performance objectives. To carry out its consultative role required by the NDAA, NRC uses a risk-informed, performance-based approach in its review of DOE waste determinations and performance assessments to focus on the key natural and engineered system features needed to support its compliance

  11. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  12. Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from Minnesota dairy farms.

    PubMed

    Haran, K P; Godden, S M; Boxrud, D; Jawahir, S; Bender, J B; Sreevatsan, S

    2012-03-01

    Staphylococcus aureus is a common causative agent of bovine mastitis in dairy herds. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals as well as the community is a significant and costly public health concern. S. aureus-related bovine mastitis is a common reason for therapeutic and/or prophylactic use of antibiotics on dairy farms. In this study, herd prevalence of S. aureus, including MRSA, was estimated from bulk tank milk (BTM) from Minnesota farms. A total of 150 pooled BTM samples from 50 farms, collected over 3 seasons (spring, summer, and fall of 2009), were assessed. Herd prevalence of methicillin-susceptible S. aureus (MSSA) was 84%, while MRSA herd prevalence was 4%. A total of 93 MSSA isolates and 2 MRSA isolates were recovered from 150 BTM samples. Antibiotic susceptibility testing of S. aureus isolates showed pansusceptibility in 54 isolates, resistance to a single antibiotic class in 21 isolates, resistance to two antibiotic classes in 13 isolates, and resistance to ≥3 antibiotics classes and thus multidrug resistance in 5 isolates. The two MRSA isolates displayed resistance to β-lactams, cephalosporins, and lincosamides and were multiresistant. Staphylococcal protein A gene (spa) typing identified spa types t529 and t034 most frequently among methicillin-susceptible isolates, while t121 was observed in MRSA isolates. Seven isolates, including the two MRSA isolates, produced staphylococcal enterotoxins B, C, D, and E on overnight culture. MRSA isolates were further genotyped using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Of the 2 MRSA isolates, one had a composite genotype profile of MLST ST 5-PFGE USA100-unknown spa type, which has been reported among hospital-associated MRSA isolates, while the second isolate carried the MLST ST 8-PFGE USA300-spa type t121 genotype, commonly identified among community-associated MRSA isolates. These results suggest that MRSA genotypes

  13. Structural analysis and evaluation of a mixer pump in a double-shell tank at the Hanford Site

    SciTech Connect

    Rezvani, M.A.; Strehlow, J.P.; Baliga, R.

    1993-08-01

    The double-shell waste tank 241-SY-101 is a 1,000,000 gallon tank used to store radioactive waste at the Hanford Site near Richland, Washington. With time the waste has formed two layers of sludge, a convective and a nonconvective layer. In addition, a crest has formed over the surface of the waste, isolating the convective layer from the vapor space. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer and under the crust. Over time, this hydrogen buildup increases pressure on the crest from beneath. Every 100 to 140 days, the pressure is released when the crust lifts upward in what is called a waste rollover. To prevent the release of a large volume of hydrogen to the vapor space, a mixer pump has been designed to be installed in the tank to circulate the waste and reduce or prevent the hydrogen buildup. The structural analysis and evaluation designed as part of the hydrogen mitigation test process and presented herein addresses the response of the mixer pump and the tank dome resulting from expected operational and design loads. The loads include deadweight, waste rollover, asymmetric thrust, and pump vibration, as well as seismic loads. The seismically induced loads take into consideration both the convective and the impulsive effects of the waste-filled tank. The structural evaluations were performed in accordance with applicable national codes and standards. The qualification of the mixer pump required the design of a unique mounting assembly to transfer the loads from the pump to the surrounding soil without overstressing the structural components such as the dome penetration riser. Also, special consideration was given to minimize the additional stresses in the already stressed concrete tank dome.

  14. Tank farms SSC compliance study

    SciTech Connect

    Kalia, J.

    1995-12-28

    This task plan describes the work performance necessary to verify that the various SSCs, and Administrative Controls are in place, maintained, and functioning as required to prevent or mitigate the identified potential accident scenarios in the Interim Safety Basis (ISB).

  15. Tank characterization reference guide

    SciTech Connect

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  16. NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SIDES OF LIQUID OXYGEN TANKS. Looking southwest along railroad track to AF Plant 72 - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  17. OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OFFICE AND INSTRUMENT ROOM SOUTH OF THE WEST TANK - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  18. SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SIDE OF TANKS. LOADING DOCK, WITH FIRST AID STATION IN LEFT FOREGROUND - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Liquid Oxygen & Nitrogen Storage Tank Farm, Intersection of Altair & Jupiter Boulevards, Boron, Kern County, CA

  19. Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  20. Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

  1. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    ERMI, A.M.

    2000-01-24

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.

  2. Computer system design description for the spare pump mini-dacs data acquisition and control system

    SciTech Connect

    Vargo, G.F. Jr.

    1994-09-29

    The attached document outlines the computer software design for the mini data acquisition and control system (DACS), that supports the testing of the spare pump for Tank 241-SY-101, at the maintenance and storage facility (MASF).

  3. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    SciTech Connect

    Johnson, M.G.; Badden, J.J.

    1995-02-13

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford.

  4. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    SciTech Connect

    D'Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  5. Tank 241-C-110 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  6. Tank 241-C-109 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-10

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  7. Tank 241-SX-106 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-SX-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  8. Tank 241-C-107 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  9. Tank 241-C-102 vapor sampling and analysis tank characterization report

    SciTech Connect

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

  10. Standard-B hydrogen monitoring system acceptance test report

    SciTech Connect

    Tran, T.T.

    1994-09-08

    Test Engineering was supported by Tank Waste Remediation System Safety Programs Engineering Support in the performance of an Acceptance Test Procedure (ATP) to qualify the Standard Hydrogen Monitoring System (SHMS) cabinet installed on waste tank 241-SY-103. The June 7, 1994 ATP performance was controlled by West Waste Tank Farms work package 2W-94-322. The ATP was conducted following the final installation of a second Whittaker electro-chemical hydrogen monitoring cell. The cabinet had been sited on the waste tank two years earlier, but never connected to the exhaust vent header to monitor Tank 241-SY-103 vent header exhaust gases. The cabinet was then modified, to remove two undesirable solid state hydrogen monitors and install a second Whittaker electro-chemical hydrogen monitoring sensor and signal conditioning. The ATP was used to assure that the cabinet wiring and components were properly installed and labeled and that the two years without operation had not seriously damaged the installed equipment. Electrical and pneumatic tests were performed to assure system integrity.

  11. Radioactive air emissions notice of construction 241-SY-101 crust growth near term mitigation

    SciTech Connect

    HOMAN, N.A.

    1999-04-12

    The following description and any attachments and references are provided to the Washington State Department of Health, Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with the Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of the information listed in Appendix A.'' Appendix A (WAC 246-247-110), lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 mrem/year total effective dose equivalent to the hypothetical offsite maximally exposed individual, and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application will also constitute EPA acceptance of this 40 CFR 61.09(a)(1) notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided at a later date.

  12. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    SciTech Connect

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  13. Historical tank content estimate for the southeast quadrant of the Hanford 200 area

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-14

    The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 Areas. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank- by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report.

  14. Historical tank content estimate for the northwest quadrant ofthe Hanford 200 west area

    SciTech Connect

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 West Area. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank-by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Labo1368ratory are also given in this report.

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  16. RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  18. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect

    Reidel, Stephen P.; Chamness, Mickie A.

    2007-12-14

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The purpose of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  19. Double-Shell Tank Construction: Extent of Condition

    SciTech Connect

    Venetz, Theodore J.; Gunter, Jason R.

    2014-05-13

    This presentation covers: quick recap of Hanford DSTs and the contribution of construction difficulties which led to the leak in tank AY-102; approach to Extent of Condition reviews; typical DST construction sequence; presentation of construction information resulting from extent of condition reviews of other DST farms with comparison to tank AY-102; and overall conclusion and impact of issues on the other DST tank farms.

  20. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.