Science.gov

Sample records for 241-z building decontamination

  1. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    SciTech Connect

    Mattlin, E.; Charboneau, S.; Johnston, G.; Hopkins, A.; Bloom, R.; Skeels, B.; Klos, D.B.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z

  2. THE INTEGRATION OF THE 241-Z BUILDING DECONTAMINATION & DECOMMISSIONING (D&D) UNDER COMPREHENSIVE ENVIRONMENTAL RESPONSE COMPENSATION & LIABILITY ACT (CERCLA) WITH RESOURCE CONSERVATION & RECOVERY ACT (RCRA) CLOSURE AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.

    2007-02-20

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.

  3. DISPOSAL OF RESIDUES FROM BUILDING DECONTAMINATION ACTIVITIES

    EPA Science Inventory

    After a building has gone through decontamination activities from a chemical attack there will be a significant amount of building decontamination residue that will need to undergo disposal. This project consists of a fundamental study to investigate the desorption of simulated c...

  4. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  5. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of

  6. COMPILATION OF AVAILABLE DATA ON BUILDING DECONTAMINATION ALTERNATIVES

    EPA Science Inventory

    The report presents an analysis of selected technologies that have been tested for their potential effectiveness in decontaminating a building that has been attacked using biological or chemical warfare agents, or using toxic industrial compounds. The technologies selected to be ...

  7. 8. DETAIL VIEW OF WEST SIDE OF BUILDING, DECONTAMINATION ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF WEST SIDE OF BUILDING, DECONTAMINATION ROOM. BETWEEN DATE OF THIS VIEW AND THAT OF ID-33-C-4, EXTERIOR TANK AND PIPING HAS BEEN REMOVED. INEEL PROOF NUMBER HD-17-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  8. Tank 241-Z-361 vapor sampling and analysis plan

    SciTech Connect

    BANNING, D.L.

    1999-02-23

    Tank 241-Z-361 is identified in the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement), Appendix C, (Ecology et al. 1994) as a unit to be remediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). As such, the U.S. Environmental Protection Agency will serve as the lead regulatory agency for remediation of this tank under the CERCLA process. At the time this unit was identified as a CERCLA site under the Tri-Party Agreement, it was placed within the 200-ZP-2 Operable Unit. In 1997, The Tri-parties redefined 200 Area Operable Units into waste groupings (Waste Site Grouping for 200 Areas Soils Investigations [DOE-RL 1992 and 1997]). A waste group contains waste sites that share similarities in geological conditions, function, and types of waste received. Tank 241-Z-361 is identified within the CERCLA Plutonium/Organic-rich Process Condensate/Process Waste Group (DOE-RL 1992). The Plutonium/Organic-rich Process Condensate/Process Waste Group has been prioritized for remediation beginning in the year 2004. Results of Tank 216-Z-361 sampling and analysis described in this Sampling and Analysis Plan (SAP) and in the SAP for sludge sampling (to be developed) will determine whether expedited response actions are required before 2004 because of the hazards associated with tank contents. Should data conclude that remediation of this tank should occur earlier than is planned for the other sites in the waste group, it is likely that removal alternatives will be analyzed in a separate Engineering Evaluation/Cost Analysis (EE/CA). Removal actions would proceed after the U.S. Environmental Protection Agency (EPA) signs an Action Memorandum describing the selected removal alternative for Tank 216-Z-361. If the data conclude that there is no immediate threat to human health and the environment from this tank, remedial actions for the tank will be defined in a

  9. RE-ENTERING BUILDING FOLLOWING CHEMICAL ATTACK: MEASURING THE EFFECTIVENESS OF SURFACE DECONTAMINATION

    EPA Science Inventory

    Prior to re-entering a building following a chemical attack, decontamination and testing must be conducted to determine whether toxic agents have been eliminated or reduced to safe levels. Building contents must also be decontaminated and tested or destroyed. Recent incidents i...

  10. VERIFICATION OF THE PERFORMANCE OF DECONTAMINATION TECHNOLOGIES IN EPA'S SAFE BUILDINGS PROGRAM

    EPA Science Inventory

    The paper describes initial progress in identifying and testing technologies applicable for decontaminating workplaces and other buildings that may be subject to chemical or biological attack. The EPA is using the process established in its Environmental Technology Verification (...

  11. PRACTICAL EXPERIENCES WITH TECHNOLOGIES FOR DECONTAMINATION OF B. ANTHRACIS IN LARGE BUILDINGS.

    EPA Science Inventory

    In the Fall of 2001 a number of buildings were contaminated with B. anthracis (B.A.) from letters processed through United States Postal Service and other mail handling facilities. All of the buildings have now been decontaminated using a variety of technologies. In a number of...

  12. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    SciTech Connect

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft{sup 2} and $96 per ft{sup 2} of cell surface area. 14 figs., 4 tabs.

  13. Building Toxic Metal Characterization and Decontamination Report: Area 6, Building 914

    SciTech Connect

    NSTec Industrial Hygiene

    2011-08-15

    The purpose of this report is to outline the toxic metal characterization and decontamination efforts in Area 6, Building 914. This includes the initial building inspection, the hotspot sampling, results/findings, building cleanup, and the verification sampling. Building 914 is a steel light frame building that was constructed in 1992. It is about 16,454 square feet, and five employees are assigned to this building. According to the building's floor plan blueprints, it could be inferred that this building was once a Wiremen/Lineman shop. In 2002-2004, the National Nuclear Security Administration Nevada Site Office embarked on a broad characterization of beryllium (Be) surface concentrations throughout the North Las Vegas Facility, the Nevada National Security Site (NNSS), and ancillary facilities like the Special Technologies Laboratory, Remote Sensing Laboratory, etc. Building 914 was part of this characterization. The results of the 2002 study illustrated that the metal housekeeping limits were within acceptable limits and from a Be standpoint, the building was determined to be fit for occupancy. On March 2, 2011, based on a request from Building 914 users, National Security Technologies, LLC (NSTec) Industrial Hygiene (IH) collected bulk samples from the southwest corner of Building 914 at heights above 6 feet where black dust had been noticed on this particular wall. IH conducted surface swipe sampling of the area and analyzed the samples for toxic metals, namely, beryllium (Be), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn). The sample results indicated values two to four times above the housekeeping threshold for Be, Cd, Cr, Pb, and Mn. Subsequently, the facility was closed and posted; the necessary personnel were notified; and controls were instituted for ingress and egress of the building. On March 17, 2011, IH performed an extensive sampling event involving the entire warehouse in accordance with NSTec Organization Procedure OP-P250

  14. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect

    Dean, L.N.

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  15. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine.

    PubMed

    Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V

    2012-01-01

    This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective.

  16. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    PubMed Central

    Lemieux, P.; Sieber, R.; Osborne, A.; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently robust conditions to adequately destroy bacterial spores bound to the BDR. In this study we investigated the effects of several variables related to autoclaving BDR, including time, temperature, pressure, item type, moisture content, packing density, packing orientation, autoclave bag integrity, and autoclave process sequence. The test team created simulated BDR from wallboard, ceiling tiles, carpet, and upholstered furniture, and embedded in the BDR were Geobacillus stearothermophilus biological indicator (BI) strips containing 106 spores and thermocouples to obtain time and temperature profile data associated with each BI strip. The results indicated that a single standard autoclave cycle did not effectively decontaminate the BDR. Autoclave cycles consisting of 120 min at 31.5 lb/in2 and 275°F and 75 min at 45 lb/in2 and 292°F effectively decontaminated the BDR material. Two sequential standard autoclave cycles consisting of 40 min at 31.5 lb/in2 and 275°F proved to be particularly effective, probably because the second cycle's evacuation step pulled the condensed water out of the pores of the materials, allowing better steam penetration. The results also indicated that the packing density and material type of the BDR in the autoclave could have a significant impact on the effectiveness of the decontamination process. PMID:17012597

  17. Decontamination Techniques and Fixative Coatings Evaluated in the Building 235-F Legacy Source Term Removal Study

    SciTech Connect

    WAYNE, FARRELL

    2005-04-21

    Savannah River Site Building 235-F was being considered for future plutonium storage and stabilization missions but the Defense Nuclear Facilities Safety Board (DNFSB) noted that large quantities of Plutonium-238 left in cells and gloveboxes from previous operations posed a potential hazard to both the existing and future workforce. This material resulted from the manufacture of Pu-238 heat sources used by the NASA space program to generate electricity for deep space exploration satellites. A multi-disciplinary team was assembled to propose a cost- effective solution to mitigate this legacy source term which would facilitate future DOE plutonium storage activities in 235-F. One aspect of this study involved an evaluation of commercially available radiological decontamination techniques to remove the legacy Pu-238 and fixative coatings that could stabilize any residual Pu-238 following decontamination activities. Four chemical methods were identified as most likely to meet decontamination objectives for this project and are discussed in detail. Short and long term fixatives will be reviewed with particular attention to the potential radiation damage caused by Pu-238, which has a high specific activity and would be expected to cause significant radiation damage to any coating applied. Encapsulants that were considered to mitigate the legacy Pu-238 will also be reviewed.

  18. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  19. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    SciTech Connect

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.

  20. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    SciTech Connect

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  1. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis.

    PubMed

    Wood, Joseph P; Blair Martin, G

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO(2)) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO(2) introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO(2) was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO(2) levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO(2) emissions below the limit. Numerous lessons were learned in the field trials of this ClO(2) decontamination technology.

  2. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  3. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    SciTech Connect

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  4. Lessons Learned from Decontamination Experiences

    SciTech Connect

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  5. The antimicrobial properties of cedar leaf (Thuja plicata) oil; a safe and efficient decontamination agent for buildings.

    PubMed

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-12-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings.

  6. The Antimicrobial Properties of Cedar Leaf (Thuja plicata) Oil; A Safe and Efficient Decontamination Agent for Buildings

    PubMed Central

    Hudson, James; Kuo, Michael; Vimalanathan, Selvarani

    2011-01-01

    Cedar leaf oil (CLO), derived from the Western red cedar, Thuja plicata, was evaluated as a safe and acceptable broad spectrum antimicrobial agent, with a view to its potential applications in buildings, including the alleviation of sick building syndrome. Various Gram-positive and Gram-negative human bacteria, and two fungal organisms, all known to be common environmental sources of potential infection, were selected and tested quantitatively, and all of them were found to be susceptible to CLO liquid and vapor. Bacterial spores and Aspergillus niger were sensitive, although less so than the vegetative bacteria. Similar tests with cultured human lung cells showed that continuous exposure to CLO vapor for at least 60 minutes was not toxic to the cells. Based on these results, CLO shows promise as a prospective safe, green, broad-spectrum anti-microbial agent for decontamination of buildings. PMID:22408584

  7. Gross decontamination experiment report

    SciTech Connect

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  8. Site Characterization Plan for decontamination and decommissioning of Buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-09-01

    Buildings 3506, the Waste Evaporator Facility, and 3515, the Fission Product Pilot Plant, at Oak Ridge National Laboratory (ORNL), are scheduled for decontamination and decommissioning (D&D). This Site Characterization Plan (SCP) presents the strategy and techniques to be used to characterize Buildings 3506/3515 for the purpose of planning D&D activities. The elements of the site characterization for Buildings 3506/3515 are planning and preparation, field investigation, and characterization reporting. Other level of effort activities will include management and oversight, project controls, meetings, and progress reporting. The objective of the site characterization is to determine the nature and extent of radioactive and hazardous materials and other industrial hazards in and around the buildings. This information will be used in subsequent planning to develop a detailed approach for final decommissioning of the facilities: (1) to evaluate decommissioning alternatives and design the most cost-effective D&D approach; (2) to determine the level and type of protection necessary for D&D workers; and (3) to estimate the types and volumes of wastes generated during D&D activities. The current D&D characterization scope includes the entire building, including the foundation and equipment or materials within the building. To estimate potential worker exposure from the soil during D&D, some subfoundation soil sample collection is planned. Buildings 3506/3515 are located in the ORNL main plant area, to the west and east, respectively, of the South Tank Farm. Building 3506 was built in 1949 to house a liquid waste evaporator and was subsequently used for an incinerator experiment. Partial D&D was done prior to abandonment, and most equipment has been removed. Building 3515 was built in 1948 to house fission product separation equipment. In about 1960, all entrances were sealed with concrete block and mortar. Building 3515 is expected to be highly contaminated.

  9. Systematic Evaluation of the Efficacy of Chlorine Dioxide in Decontamination of Building Interior Surfaces Contaminated with Anthrax Spores▿

    PubMed Central

    Rastogi, Vipin K.; Ryan, Shawn P.; Wallace, Lalena; Smith, Lisa S.; Shah, Saumil S.; Martin, G. Blair

    2010-01-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested. PMID:20305025

  10. Environmental decontamination

    SciTech Connect

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  11. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    SciTech Connect

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W.

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  12. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    SciTech Connect

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  13. Building 7602 Decontamination and Decommissioning for Reuse by Spallation Neutron Source

    SciTech Connect

    Brill, A.; Berger, J.; Kelsey, A.; Plummer, K.

    2002-02-26

    Building 7602 at the Oak Ridge National Laboratory (ORNL) was constructed in 1963 as a Reactor Service Building for the Experimental Gas-Cooled Reactor; the reactor was never fueled or operated, and the project was terminated in 1965. Significant building modifications were performed during the late 1970s and early 1980s. Beginning in 1984, separation processes and equipment development and testing were initiated for the Consolidated Fuel Reprocessing Program (CFRP). The principal materials used in the processes were depleted and natural uranium, nitric acid, and organic solvents. CFRP operations continued until 1994 when the program was discontinued and the facility declared surplus to the U.S. Department of Energy (DOE). Systems and equipment were shut down; feed and waste materials were removed; and process fluids, chemicals, and uranium were drained and flushed from systems. This paper will present an overview of the Building 7602 D&D activities, final radiological survey , facility modifications, and project interfaces.

  14. Closure report for decontamination and decommissioning (D and D) category, Corrective Action Unit 95, EPA Farm Laboratory Building 15-06, Nevada Test Site

    SciTech Connect

    1998-02-01

    The EPA Farm Laboratory Building 15-06 was located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is identified as Corrective Action Unit (CAU) 95, Corrective Action Site 15-41-01, in the Federal Facilities Agreement and Consent Order and was assigned to Functional Category 41 (Decontamination and Decommissioning [D and D] Facility.) In August 1997, the Department of Energy/Nevada (DOE/NV) accelerated the corrective actions for CAU 95. A final Corrective Action Decision Document and a draft Corrective Action Plan were submitted to the Nevada Division of Environmental Protection (NDEP) and notification was made to the NDEP that work would proceed at the site while the documents were reviewed. The NDEP approved the decontamination and demolition of the Laboratory Building as the corrective action alternative most suitable for the closure of CAU 95. Closure activities were initiated on September 2, 1997 and completed October 23, 1997. The decontamination of Building 15-06 was accomplished in conference with the D and D Subproject Characterization Work Plan and the Quality Assurance Project Plan.

  15. Alternatives evaluation for the decontamination and decommissioning of buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1994-01-01

    this is an alternative evaluation document that records the evaluation process and justification for choosing the alternative recommended for the decontamination and decommissioning (D&D) of the 3506 and 3515 buildings at the Oak Ridge National Laboratory (ORNL). The alternatives for the D&D of the two buildings were: (1) no action (continued surveillance and maintenance), (2) decontamination for free release, (3) entombment in place, (4) partial dismantlement, and (5) complete dismantlement. Soil remediation is not included in any of the alternatives. The recommended alternative for the D&D of Building 3506 is partial dismantlement at an estimated cost of $936, 000 in escalated dollars. The cost estimate for complete dismantlement is $1,384,000. The recommended alternative for the D&D of Building 3515 is complete dismantlement at an estimated cost of $3,733,000 in escalated dollars. This alternative is recommended, because the soils below the foundation of the 3515 building are highly contaminated, and removing the foundation in the D&D project results in lower overall worker risk, costs, and improved post-D&D site conditions. A further recommendation is to revise these cost estimates after the conclusion of the ongoing characterization study. The results of the characterization of the two buildings is expected to change some of the assumptions and resolve some of the uncertainties in the development of these estimates.

  16. Decontamination of Subway Railcar and Related Materials ...

    EPA Pesticide Factsheets

    Report In the event of a biological incident in a transportation hub such as a subway system, effective remediation of railcars, subway tunnels and stations will require the use of various decontamination approaches. One potential decontamination tool that could be used in such an event is the fogging of sporicidal liquids. The study described in this report builds on previous fogging decontamination research, but with a focus on decontaminating subway railcars and related materials.

  17. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  18. Gentilly 1: decontamination program

    SciTech Connect

    Le, H.; Denault, P.

    1985-11-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented.

  19. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  20. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    PubMed Central

    Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  1. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores.

    PubMed

    Wood, Joseph P; Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-22

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted.

  2. Decontamination and decommissioning of 61 plutonium gloveboxes in D-Wing, Building 212 Argonne National Laboratory-East: Final project report

    SciTech Connect

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    Argonne National Laboratory-East (ANL-E) is a government-owned, contractor operated, multipurpose research facility located 25 miles southwest of downtown Chicago on 689 hectares (1,700 acres) in DuPage County, Illinois, as shown in Figure 1.1. Building 212 is located in the central area of ANL-E, as shown in Figure 1.2. The purpose of this project was to eliminate the risk of radioactive material release from the contaminated glovebox systems and to make the laboratories available for unrestricted use. The following work objectives were established: (1) Identify and remove radioactive materials for return to ANL-E Special Materials control. (2) Remove and package the radioactively contaminated materials and equipment from the gloveboxes. (3) Decontaminate the gloveboxes to nontransuranic (non-TRU) levels. (4) Size-reduce and package the gloveboxes and support systems. (5) Document and dispose of the radioactive and mixed waste. (6) Decontaminate, survey, and release the nine laboratories and corridor areas for unrestricted use.

  3. DOE/EA-1519: Environmental Assessment for the Proposed Decontamination and Decommissioning of the Zero Power Reactors (Building 315) at Argonne National Laboratory (April 2005)

    SciTech Connect

    N /A

    2005-04-30

    The U.S. Department of Energy (DOE) is proposing to decontaminate and decommission the Zero Power Reactor (ZPR) facilities located in Building 315 at Argonne National Laboratory (ANL) in Argonne, Illinois (Figure 1-1). The proposed action would occur in two phases: ZPR-6 would be the focus of Phase I and ZPR-9 would be the focus of Phase II. DOE has prepared this environmental assessment (EA) in accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. {section} 4321 et seq., and applicable regulations (Title 40, Code of Federal Regulations [CFR] Parts 1500-1508 and 10 CFR Part 1021). This section describes the reactors and their current status.

  4. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    SciTech Connect

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  5. Evaluation of Hydrogel Technologies for the Decontamination ...

    EPA Pesticide Factsheets

    Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.

  6. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  7. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    SciTech Connect

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  8. Quantitative Method To Determine Sporicidal Decontamination of Building Surfaces by Gaseous Fumigants, and Issues Related to Laboratory-Scale Studies▿

    PubMed Central

    Rastogi, Vipin K.; Wallace, Lalena; Smith, Lisa S.; Ryan, Shawn P.; Martin, Blair

    2009-01-01

    Chlorine dioxide gas and vaporous hydrogen peroxide sterilant have been used in the cleanup of building interiors contaminated with spores of Bacillus anthracis. A systematic study, in collaboration with the U.S. Environmental Protection Agency, was jointly undertaken by the U.S. Army-Edgewood Chemical Biological Center to determine the sporicidal efficacies of these two fumigants on six building structural materials: carpet, ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. Critical issues related to high-throughput sample processing and spore recovery from porous and nonporous surfaces included (i) the extraction of spores from complex building materials, (ii) the effects of titer challenge levels on fumigant efficacy, and (iii) the impact of bioburden inclusion on spore recovery from surfaces and spore inactivation. Small pieces (1.3 by 1.3 cm of carpet, ceiling tile, wallboard, I-beam steel, and pinewood and 2.5 by 1.3 cm for cinder block) of the materials were inoculated with an aliquot of 50 μl containing the target number (1 × 106, 1 × 107, or 1 × 108) of avirulent spores of B. anthracis NNR1Δ1. The aliquot was dried overnight in a biosafety cabinet, and the spores were extracted by a combination of a 10-min sonication and a 2-min vortexing using 0.5% buffered peptone water as the recovery medium. No statistically significant drop in the kill efficacies of the fumigants was observed when the spore challenge level was increased from 6 log units to 8 log units, even though a general trend toward inhibition of fumigant efficacy was evident. The organic burden (0 to 5%) in the spore inoculum resulted in a statistically significant drop in spore recovery (at the 2 or 5% level). The effect on spore killing was a function of the organic bioburden amount and the material type. In summary, a high-throughput quantitative method was developed for determining the efficacies of fumigants, and the spore recoveries

  9. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    SciTech Connect

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 {micro}Sv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 {micro}Sv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey.

  10. The Walls Come Tumbling Down: Decontamination and Demolition of 29 Manhattan Project and Cold War-Era Buildings and Structures at Los Alamos National Laboratory-12301

    SciTech Connect

    Chaloupka, Allan B.; Finn, Kevin P.; Parsons, Duane A.

    2012-07-01

    When the nation's top scientists and military leaders converged on Los Alamos, New Mexico in the 1943, to work on the Manhattan Project, the facilities they used to conduct their top-secret work were quickly constructed and located in the middle of what eventually became the Los Alamos town site. After one of these early facilities caught on fire, it seemed wise to build labs and production facilities farther away from the homes of the town's residents. They chose to build facilities on what was then known as Delta Prime (DP) Mesa and called it Technical Area 21, or TA-21. With wartime urgency, a number of buildings were built at TA-21, some in as little as a few months. Before long, DP Mesa was populated with several nondescript metal and cinder-block buildings, including what became, immediately following the war, the world's first plutonium production facility. TA-21 also housed labs that used hazardous chemicals and analyzed americium, tritium and plutonium. TA-21 was a bustling center of research and production for the next several decades. Additional buildings were built there in the 1960's, but by the 1990's many of them had reached the end of their service lives. Labs and offices were moved to newer, more modern buildings. When Los Alamos National Laboratory received $212 million in funding from the American Recovery and Reinvestment Act in July 2009 for environmental cleanup projects, about $73 million of the funds were earmarked to decontaminate and demolish 21 of the old buildings at TA-21. Although some D and D of TA-21 buildings was performed in the 1990's, many of the facilities at DP Site remained relatively untouched for nearly three decades following their final operational use. In 2006, there were over three dozen buildings or structures on the mesa to be removed so that soil cleanup could be completed (and the land made available for transfer and reuse). The total footprint of buildings across the mesa was approximately 18,580 m{sup 2} (200

  11. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  12. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    SciTech Connect

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  13. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  14. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony; White, William; Cisar, Alan J.; Hitchens, G. Duncan; Fyffe, James

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  15. Decontamination and dismantlement of Plant 7 at Fernald

    SciTech Connect

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-11-07

    Decontamination and dismantlement (D&D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D&D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc.

  16. Total decontamination cost of the anthrax letter attacks.

    PubMed

    Schmitt, Ketra; Zacchia, Nicholas A

    2012-03-01

    All of the costs associated with decontamination following the 2001 anthrax letter attacks were summarized, estimated, and aggregated based on existing literature and news media reports. A comprehensive list of all affected structures was compiled. Costs were analyzed by building class and decontamination type. Sampling costs and costs of worker relocation were also included. Our analysis indicates that the total cost associated with decontamination was about $320 million.

  17. Waste Analysis Plan for 241-Z

    SciTech Connect

    HIRZEL, D.R.

    2000-04-21

    The 241-2 waste tanks are used to store, treat, and transfer waste to Tank Farms. The sampling requirements are established to identify the composition of the tank waste. The primary goal is to meet the Tank Farms acceptance criteria. Tank Farms will not accept waste without extensive characterization sample data. Process and lab wastes are sampled for suitability prior to routing to Tk-D8. The samples are helpful in tracking the amount of chemical constituents to determine treatment and are required to maintain Pu inventory and criticality prevention limitations. Likewise, the waste is sampled prior to inter-tank transfers. The revised Waste Analysis Plan for 241-2 (WAP) contains current facility, process and waste descriptions. The WAP lists the Double Shell Tank (DST) system acceptance criteria, sampling parameters and required analyses. The characterization data on historical process wastes was deleted. A section on the Tank Farms waste approval procedural process was added to describe the steps necessary and documentation required to transfer waste to the DST system. Failure to collect proper samples will result in Tank Farms' refusal to accept PFP waste until proper sampling conditions are met. This will use up unnecessary time and resources but not place the plant in a hazardous position.

  18. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  19. Anthrax Sampling and Decontamination: Technology Trade-Offs

    SciTech Connect

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  20. Food decontamination using nanomaterials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  1. Facility decontamination technology workshop

    SciTech Connect

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  2. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  3. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  4. Surface Decontamination of Blister Agents Lewisite, Sulfur ...

    EPA Pesticide Factsheets

    Journal Article Sulfur mustard (HD) and Lewisite (L) are blister agents that have a high potential for terrorist use. Agent Yellow (HL) is the eutectic mixture of HD and L. Bench-scale testing was used to determine the residual amount of these chemical warfare agents remaining on three building materials coupons (wood, metal and glass) after application of various decontaminants (household bleach, full strength and dilute; hydrogen peroxide 3 % solution; and EasyDECON® DF200).

  5. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  6. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  7. Chemical Decontaminant Testing

    DTIC Science & Technology

    2014-10-20

    Efficacy – Residual Liquid Test Methods. ................15 4.10 Material Compatibility Tests...Permissible Error of Measurement Contamination density (dose confirmation sample). Mass spectrometer (MS), gas chromatograph (GC) or liquid ...not decontaminated residual liquid ) using coupons. Concentration, in mass/area, ±15 percent, or at the MQL ±25 percent. Contaminant per sample

  8. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  9. Bacterial decontamination using ambient pressure nonthermal discharges

    SciTech Connect

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  10. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  11. Decontamination and detoxification of mycotoxins.

    PubMed

    Jemmali, M

    1990-01-01

    Product decontamination and chemical detoxification are needed because preventive measures are not fully able to avoid contamination by mycotoxins. Criteria for safety evaluation studies of decontaminated products have to be established. Few chemical methods are available on an industrial scale; among them, ammoniation and the mixture monomethylamine-calcium hydroxide treatments show greatest promise of short-term application to oilseed cakes. Technical, economic, and public health aspects of these treatments are considered. Other decontamination techniques are briefly reviewed.

  12. SURFACE DECONTAMINATION EFFICACY STUDIES FOR ...

    EPA Pesticide Factsheets

    Technical Brief This Technical Brief summarizes the findings from three studies in which the decontamination efficacy was determined for various liquid contaminants when applied to various surfaces that are contaminated with blister agents (vesicants).This may provide decision-makers with practical information on surface decontaminations options during a blister agent response.

  13. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  14. Decontamination solution development studies

    SciTech Connect

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement.

  15. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    SciTech Connect

    Klute, Stefan; Kupke, Peter

    2013-07-01

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  16. Skin decontamination: principles and perspectives.

    PubMed

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  17. Oxidative Tritium Decontamination System

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

    2002-02-11

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

  18. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  19. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  20. Laser decontamination and decomposition of PCB-containing paint

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Kögler, P.; Friedrich, C.; Lippmann, W.; Hurtado, A.

    2017-01-01

    Decontamination of concrete surfaces contaminated with paint containing polychlorinated biphenyls is an elaborate and complex task that must be performed within the scope of nuclear power plant dismantling as well as conventional pollutant cleanup in buildings. The state of the art is mechanical decontamination, which generates dust as well as secondary waste and is both dangerous and physically demanding. Moreover, the ablated PCB-containing paint has to be treated in a separate process step. Laser technology offers a multitude of possibilities for contactless surface treatment with no restoring forces and a high potential for automation. An advanced experimental setup was developed for performing standard laser decontamination investigations on PCB-painted concrete surfaces. As tested with epoxy paints, a high-power diode laser with a laser power of 10 kW in continuous wave (CW) mode was implemented and resulted in decontamination of the concrete surfaces as well as significant PCB decomposition. The experimental results showed PCB removal of 96.8% from the concrete surface and PCB decomposition of 88.8% in the laser decontamination process. Significant PCDD/F formation was thereby avoided. A surface ablation rate of approx. 7.2 m2/h was realized.

  1. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide.

    PubMed

    Wagner, George W; Sorrick, David C; Procell, Lawrence R; Brickhouse, Mark D; Mcvey, Iain F; Schwartz, Lewis I

    2007-01-30

    Vaporized hydrogen peroxide (VHP) has proven efficacy for biological decontamination and is a common gaseous sterilant widely used by industry. Regarding chemical warfare agent decontamination, VHP is also effective against HD and VX, but not GD. Simple addition of ammonia gas to VHP affords reactivity toward GD, while maintaining efficacy for HD (and bioagents) and further enhancing efficacy for VX. Thus, modified VHP is a broad-spectrum CB decontaminant suitable for fumigant-type decontamination scenarios, i.e., building, aircraft, and vehicle interiors and sensitive equipment. Finally, as an interesting aside to the current study, commercial ammonia-containing cleaners are also shown to be effective surface decontaminants for GD, but not for VX or HD.

  2. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    SciTech Connect

    Vogt , B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  3. Chemical decontamination of façade cracks

    NASA Astrophysics Data System (ADS)

    Etzold, Merlin A.; Landel, Julien R.; Dalziel, Stuart B.

    2016-11-01

    The problem of cleaning and decontamination of buildings arises in the context of chemical spillages, terrorist attacks, industrial applications and in day-to-day situations such as the removal of graffiti. A common feature of all buildings is the existence of cracks and fissures, which act as contaminant traps. This contribution reports experiments and modelling of the removal of a water-soluble contaminant from the bottom of an idealised V-shaped crack. The contaminant is dissolved in a polymer thickened droplet. The surface washing techniques commonly used in industrial decontamination induce a flow in the crack which is mostly controlled by the crack geometry. Rinsing with pure water is compared against the situation in which a neutralising chemical is present. The cleaning process is modelled by solving the time-dependent diffusion equation within the droplet coupled to the steady state advection-diffusion equation outside the droplet. This approach is similar to the work of Landel et al. on decontaminating plane surfaces beneath falling films. Our results indicate that the proposed model describes successfully the earlier stages of decontamination. In later stages the dissolution of the thickened matrix may contribute to the process.

  4. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    SciTech Connect

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-11-15

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail.

  5. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  6. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  7. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  8. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  9. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  10. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS WORKER PROTECTION STANDARD Standard for Pesticide Handlers § 170.250 Decontamination. (a) Requirement. During any..., decontamination supplies for washing off pesticides and pesticide residues. (b) General conditions. (1)...

  11. Facility decontamination for reuse at West Valley

    SciTech Connect

    Gessner, R.F.; Tundo, D.; Lawrence, R.E.

    1989-01-01

    The West Valley Demonstration Project has been created to decontaminate and decommission a civilian fuel reprocessing plant. This activity involves decontamination of the former facility for installation of high- and low-level liquid waste processing equipment. About 70% of the plant has been decontaminated and liquid waste processing equipment installed. The decontamination effort utilized both contact and remote practices and a variety of commonplace and unique tools and equipment. Lessons learned during the cleanup are reviewed in this paper.

  12. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    SciTech Connect

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  13. YNPS main coolant system decontamination

    SciTech Connect

    Metcalf, E.T.

    1996-12-31

    The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

  14. Quality control of decontaminating agents.

    PubMed

    Arancegui, N; Cabanillas, M; Martinez, A; Funosas, E; Maestri, L; Hermida Lucena, P

    1999-01-01

    The present study evaluates the efficiency of the following decontaminating agents for the multiresistant, locally circulating bacterium Pseudomonas aeruginosa: glutaraldehyde 2%--makes A and B-, glutaraldehyde-formaldehyde; povidone-iodine-makes A, B and C-; sodium hypochloride; chloroxylenol--makes A and B-; and lapire chloride. The 9027 ATCC strain was used as a standard. A modification of the method of Kelsey and Sykes (1) was used to evaluate decontaminating efficiency. Highly satisfactory results were obtained with glutaraldehide 2% A and B, glutaraldehyde-formaldehyde and sodium hypochlorite. The results for povidone-iodine A, B and C were satisfactory but were unsatisfactory for chloroxylenol and lapirium chloride.

  15. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    SciTech Connect

    Moore, Murray E

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  16. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J. P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  17. Decontamination processes for waste glass canisters

    SciTech Connect

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO/sub 3/-HF and H/sub 2/C/sub 2/O/sub 4/ to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated.

  18. Technical Improvements to an Absorbing Supergel for Radiological Decontamination in Tropical Environments

    SciTech Connect

    Kaminski, Michael D.; Mertz, Carol J.; Kivenas, Nadia; demmer, Rick

    2016-01-01

    Argonne National Laboratory (Argonne) developed a superabsorbing gel-based process (SuperGel) for the decontamination of cesium from concrete and other porous building materials. Here, we report on results that tested the gel decontamination technology on specific concrete and ceramic formulations from a coastal city in Southeast Asia, which may differ significantly from some U.S. sources. Results are given for the evaluation of americium and cesium sequestering agents that are commercially available at a reasonable cost; the evaluation of a new SuperGel formulation that combines the decontamination properties of cesium and americium; the variation of the contamination concentration to determine the effects on the decontamination factors with concrete, tile, and brick samples; and pilot-scale testing (0.02–0.09 m2 or 6–12 in. square coupons).

  19. Review of the MDF-LSA 100 Spray Decontamination System

    DTIC Science & Technology

    2011-12-01

    UNCLASSIFIED Review of the MDF -LSA 100 Spray Decontamination System Rodi Sferopoulos Human Protection and Performance Division...and performance of the Modec Decontamination Foam ( MDF )-LSA 100 Spray Decontamination System as well as information regarding the decontamination...RELEASE UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Review of the MDF -LSA 100 Spray Decontamination System Executive Summary DSTO were

  20. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael Clair

    2001-09-01

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  1. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael C.

    2001-09-30

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  2. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    SciTech Connect

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  3. Electrolytic decontamination of conductive materials

    SciTech Connect

    Nelson, T.O.; Campbell, G.M.; Parker, J.L.; Getty, R.H.; Hergert, T.R.; Lindahl, K.A.; Peppers, L.G.

    1993-10-01

    Using the electrolytic method, the authors have demonstrated removal of Pu from contaminated conductive material. At EG&G Rocky Flats, they electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging > 1,000,000 counts per minute (cpm) down to levels ranging from 1,500 to < 250 cpm with the electrolytic method. More recently, the electrolytic work has continued at LANL as a joint project with EG&G. Impressively, electrolytic decontamination experiments on removal of Pu from oralloy coupons have shown decreases in swipable contamination that initially ranged from 500,000 to 1,500,000 disintegrations per minute (dpm) down to 0--2 dpm.

  4. Justification for Continued Operation for Tank 241-Z-361

    SciTech Connect

    BOGEN, D.M.

    1999-09-01

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  5. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    SciTech Connect

    BANNING, D.L.

    1999-08-05

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  6. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    SciTech Connect

    BANNING, D.L.

    1999-07-29

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  7. Decontamination of Drinking Water Infrastructure ...

    EPA Pesticide Factsheets

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  8. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  9. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  10. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    SciTech Connect

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  11. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  12. Mobile worksystems for decontamination and dismantlement

    SciTech Connect

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  13. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  14. Mobile worksystems for decontamination and dismantlement

    SciTech Connect

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-12-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D&D.

  15. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  16. Decontamination of protective clothing against radioactive contamination.

    PubMed

    Vošahlíková, I; Otáhal, P

    2014-11-01

    The aim of this study is to describe the experimental results of external surface mechanical decontamination of the studied materials forming selected suits. Seven types of personal protective suits declaring protection against radioactive aerosol contamination in different price ranges were selected for decontamination experiments. The outcome of this study is to compare the efficiency of a double-step decontamination process on various personal protective suits against radioactive contamination. A comparison of the decontamination effectiveness for the same type of suit, but for the different chemical mixtures ((140)La in a water-soluble or in a water-insoluble compound), was performed.

  17. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    SciTech Connect

    C. M. Obi

    2000-12-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document.

  18. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  19. Testing and evaluation of eight decontamination chemicals

    SciTech Connect

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO{sub 3}) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO{sub 3} solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ``high sodium`` TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages.

  20. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. ); Tolt, T.L. )

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  1. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  2. Managing mass casualties and decontamination.

    PubMed

    Chilcott, Robert P

    2014-11-01

    Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.

  3. Material Compatibility for Historic Items Decontaminated with ...

    EPA Pesticide Factsheets

    Report This project continued research of the effects of decontamination methods for biological agents on materials identified as representative of types of irreplaceable objects or works of art found in museums and/or archive settings. In the previous research, surrogate materials were checked for compatibility with four decontamination methods: chlorine dioxide, hydrogen peroxide vapor, methyl bromide, and ethylene oxide gas. This project investigated the effects of gamma irradiation, which has also been shown to be an effective decontamination method for biological agents, on the surrogate test materials.

  4. Minimizing decomposition of vaporized hydrogen peroxide for biological decontamination of galvanized steel ducting.

    PubMed

    Verce, Matthew F; Jayaraman, Buvaneswari; Ford, Timothy D; Fisher, Scott E; Gadgil, Ashok J; Carlsen, Tina M

    2008-08-01

    The behavior of vaporous hydrogen peroxide (VHP) was examined in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures (approximately 22 degrees C) and higher flow rates (approximately 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where bioaerosol contamination is likelyto reside, and also showed that VHP decomposition was enhanced at bends within the duct, compared to straight sections. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of approximately 100 mg/L H2O2(g) x min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 degrees C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distribute VHP throughout the entire building.

  5. MINIMIZING DECOMPOSITION OF VAPORIZED HYDROGEN PEROXIDE IN CLEAN GALVANIZED STEEL DUCTING: IMPLICATIONS FOR BIOLOGICAL DECONTAMINATION

    SciTech Connect

    Verce, M F; Jayaraman, B; Ford, T D; Fisher, S E; Gadgil, A J; Carlsen, T M

    2007-09-07

    This work examined the behavior of vaporous hydrogen peroxide (VHP) in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures ({approx} 22 C) and higher flow rates ({approx} 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where contamination is likely to reside, and also showed how bends encourage VHP decomposition. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of {approx} 100 mg/L H{sub 2}O{sub 2}(g){center_dot}min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distribute VHP throughout the entire building.

  6. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  7. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  8. Testing and comparison of seventeen decontamination chemicals

    SciTech Connect

    Demmer, R.L.

    1996-09-01

    This report details the testing and evaluation of seventeen decontamination chemicals. Tests were conducted with SIMCON (simulated contamination) coupons under controlled conditions to compare cleaning effectiveness, overall corrosion potential for plant equipment, interim waste generation and final waste generation.

  9. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  10. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  11. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  12. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    PubMed

    Stratilo, Chad W; Crichton, Melissa K F; Sawyer, Thomas W

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  13. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  14. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  15. Surface decontamination for blister agents Lewisite, sulfur mustard and agent yellow, a Lewisite and sulfur mustard mixture.

    PubMed

    Stone, Harry; See, David; Smiley, Autumn; Ellingson, Anthony; Schimmoeller, Jessica; Oudejans, Lukas

    2016-08-15

    Sulfur mustard (HD) and Lewisite (L) are blister agents that have a high potential for terrorist use; Agent Yellow (HL) is the eutectic mixture of HD and L. Bench-scale testing was used to determine the residual amount of these chemical warfare agents remaining on three building materials (wood, metal and glass) after application of various decontaminants (household bleach, full strength and dilute; hydrogen peroxide 3% solution; and EasyDECON(®) DF200). All decontaminants reduced the amount of L recovered from coupons. Application of dilute bleach showed little or no difference compared to natural attenuation in the amount of HD recovered from coupons. Full-strength bleach was the most effective of four decontaminants at reducing the amount of HD from coupons. Hydrogen peroxide (3% solution) and DF200 did decrease the amount of HD recovered from coupons more than natural attenuation (except DF200 against HD on metal), but substantial amounts of HD remained on some materials. Toxic HD by-products were generated by hydrogen peroxide treatment. The effectiveness of decontaminants was found to depend on agent, material, and decontaminant. Increased decontaminant reaction time (60min rather than 30min) did not significantly increase effectiveness.

  16. Comparison of calculations with the BUSCA code against the LACE-Espana aerosol decontamination experiments

    SciTech Connect

    Bellemare, L.; Kissane, M.P.; Cadarache, C.E.

    1995-12-31

    The decontamination of a flow containing aerosols and soluble vapours when it passes through a water pool is often very efficient. This is an important consideration in nuclear reactor safety analysis: in the event of a severe loss-of-coolant accident, quantities of water could remain in the coolant system between the core, releasing radioactive vapours and aerosols, and the breach to the containment or auxiliary building (e.g. in the pressurizer or steam generator secondary side). Mechanistic computer codes such as BUSCA, Ramsdale et al (1993), have been developed to predict decontamination in water pools by modelling the formation of bubbles, bubble behaviour and the thermal hydraulics and aerosol physics inside bubbles. The experimental programme LACE-Espana, Marcos et al (1994), generated data on aerosol decontamination in a water pool. A steam-nitrogen mixture loaded with caesium iodide particles was injected into a part-filled tank 2.5m below the water surface. The gas injection rate and the aerosol distribution were varied over eleven tests. The work presented here concerns the interpretation of the LACE-Espana tests using the BUSCA code. It is seen that despite taking into account aerosol losses in the apparatus before the pool, the calculations generally underpredict, often significantly, the experimentally observed decontamination. This result is in qualitative agreement with an earlier study, Calvo and Alonso (1994), though significantly different input data were used in those calculations and higher decontamination was predicted. The calculation-experiment difference is explained in part by the approximation of treating the aerosol entering the pool as lognormal, a limitation of the code. Looking for other explanations, the modelling of jet impaction deposition is examined since this is by far the dominant decontamination mechanism in the calculations.

  17. Bleaching process preferred to decontaminate odorants

    SciTech Connect

    1996-10-01

    The problem of decontaminating and disposing of out-of-service gas odorizers has long faced both gas transmission and distribution companies since the early 1980s. Finding a methodology to safely and effectively decontaminate odorant-contaminated equipment has caused many companies to simply cap the equipment and put it in storage. The recommended process of decontamination by odorant manufacturers is currently a bleaching-type process. A sodium hypochlorite solution is added to water and either circulated or left standing in the contaminated equipment. The sodium hypochlorite effectively neutralizes the smell of the odorant and slightly corrodes the inside of the equipment to neutralize any odorant which has permeated the metal. The waste sodium hypochlorite and water is then shipped as hazardous waste (pH of 12.5) or non-hazardous waste after the pH has been adjusted. The bleaching process has proven cost-effective and less time-consuming than most other methods including bioremediation. To effectively use it, there are several problems to overcome--most importantly the removal of residual product and the release of vapors into the atmosphere. River Valley Technologies, a contractor located in Cincinnati, OH, specializing in odorant-equipment decontamination, has developed several methods and engineering controls to eliminate most of the problems associated with decontaminating odorant equipment. The paper describes these methods.

  18. Laboratory Demonstration of Radiological Decontamination Using Radpro

    SciTech Connect

    Lear, P.; Greene, R.; Isham, J.; Martin, R.; Norton, C.

    2007-07-01

    In the event of terrorist activity involving the explosive dispersion of radioactive materials (a 'dirty' bomb), a number of different types of surfaces and substrates, including concrete, granite, brick, cinder block, tile, asphalt, wood, glass, plastic, iron, and steel, may become radiologically contaminated. Incident cleanup is assumed to involve decontamination of these surfaces. Laboratory testing was conducted using samples of concrete, ferrous metal, steel, aluminum, lead, tin, glass, lexan, vinyl, asphalt shingle, wood, and rubber surfaces. The surfaces were sprayed with Cs-137 or Co-60 solutions to simulate contamination. The entire surface area of the samples was surveyed using a Ludlum Model 2360 scaler/ratemeter with Ludlum Model 43-93-2 100 cm{sup 2} open area alpha/beta scintillation probe. The surfaces were then decontaminated using RadPro{sup R} chemical decontamination technology that is currently field proven and ready to deploy. The entire surface area of the samples was re-surveyed following decontamination. The RadPro{sup R} chemical decontamination technology was able to remove virtually all of the removable contamination and over 90% of the fixed contamination from these surfaces during the laboratory testing. (authors)

  19. Chemical Warfare Agent Degradation and Decontamination

    SciTech Connect

    Talmage, Sylvia Smith; Watson, Annetta Paule; Hauschild, Veronique; Munro, Nancy B; King, J.

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  20. Gastrointestinal decontamination in the acutely poisoned patient

    PubMed Central

    2011-01-01

    Objective To define the role of gastrointestinal (GI) decontamination of the poisoned patient. Data Sources A computer-based PubMed/MEDLINE search of the literature on GI decontamination in the poisoned patient with cross referencing of sources. Study Selection and Data Extraction Clinical, animal and in vitro studies were reviewed for clinical relevance to GI decontamination of the poisoned patient. Data Synthesis The literature suggests that previously, widely used, aggressive approaches including the use of ipecac syrup, gastric lavage, and cathartics are now rarely recommended. Whole bowel irrigation is still often recommended for slow-release drugs, metals, and patients who "pack" or "stuff" foreign bodies filled with drugs of abuse, but with little quality data to support it. Activated charcoal (AC), single or multiple doses, was also a previous mainstay of GI decontamination, but the utility of AC is now recognized to be limited and more time dependent than previously practiced. These recommendations have resulted in several treatment guidelines that are mostly based on retrospective analysis, animal studies or small case series, and rarely based on randomized clinical trials. Conclusions The current literature supports limited use of GI decontamination of the poisoned patient. PMID:21992527

  1. Residual methamphetamine in decontaminated clandestine drug laboratories.

    PubMed

    Patrick, Glen; Daniell, William; Treser, Charles

    2009-03-01

    This pilot cross-sectional study examined three previously decontaminated residential clandestine drug laboratories (CDLs) in Washington State to determine the distribution and magnitude of residual methamphetamine concentrations relative to the state decontamination standard. A total of 159 discrete random methamphetamine wipe samples were collected from the three CDLs, focusing on the master bedroom, bathroom, living room, and kitchen at each site. Additional samples were collected from specific non-random locations likely to be contacted by future residents (e.g., door knobs and light switches). Samples were analyzed for methamphetamine by EPA method 8270 for semivolatile organic chemicals. Overall, 59% of random samples and 75% of contact point samples contained methamphetamine in excess of the state decontamination standard (0.1 micro g/100 cm(2)). At each site, methamphetamine concentrations were generally higher and more variable in rooms where methamphetamine was prepared and used. Even compared with the less stringent standard adopted in Colorado (0.5 micro g/100cm(2)), a substantial number of samples at each site still demonstrated excessive residual methamphetamine (random samples, 25%; contact samples, 44%). Independent oversight of CDL decontamination in residential structures is warranted to protect public health. Further research on the efficacy of CDL decontamination procedures and subsequent verification of methods is needed.

  2. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    SciTech Connect

    Prosser, J.L.

    2006-07-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  3. Laser decontamination of epoxy painted concrete surfaces in nuclear plants

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2014-04-01

    Laser technology offers an efficient decontamination of surfaces contaminated by polychlorinated biphenyls (PCB) by precise application of highly focused laser beam power. In the context of nuclear decommissioning all walls and floors of a reactor building have to be cleaned from chemical-toxic substances. State of the art is a manual and mechanic ablation and a subsequent treatment in a hazardous waste incinerator. In this study, alternatively, a laser-based system exhibiting, decontamination rates of up to 6.4 m2/h has been operated using a 10 kW diode laser in continuous wave (CW) mode with a spot size of 45×10 mm2 and a wavelength of 980-1030 nm. The system allows a rapid heating of the surfaces up to temperatures of more than 1000 °C leading to ablation and thermal decomposition of PCB in one process step. Thermal quenching prevents formation of polychlorinated dioxines (PCDD) and polychlorinate furans (PCDF) in the flue gas. Additionally, an in situ measurement system based on laser induced fluorescence (LIF) is developed to monitor the thermal decomposition of PCB. For initial experiments samples covered with epoxy paint were used to evaluate the process and to carry out finite element based simulations. In this paper, experimental results of ablation tests by laser irradiation of epoxy painted concrete are presented and discussed.

  4. Decontamination and decommissioning surveillance and maintenance report for FY 1991

    SciTech Connect

    Gunter, David B.; Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  5. Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement

    SciTech Connect

    Neal A. Yancey

    2003-02-27

    technologies evaluated through the LSDDP have provided improvements in the following D&D areas: robotic underwater characterization of fuel storage pools, characterization of scrap metal for recycle, PCB and RCRA metals analysis in soil, water, paint, or sludge, subsurface characterization, personnel safety, waste disposal, scaffolding use, and remote radiation characterization of buildings and soil. It is estimated that the technologies demonstrated and deployed through this program will save more than $50 million dollars over the next 10 years at the INEEL alone. Of the $50 million estimated dollars saved, about 75% of the savings will come from characterization technologies, 11% from technologies associated with material dispositioning, 10% are associated with dismantlement technologies and the balance split between safety and decontamination.

  6. Decontamination trade study for the Light Duty Utility Arm

    SciTech Connect

    Rieck, R.H.

    1994-09-29

    Various methods were evaluated for decontaminating the Light Duty Utility Arm (LDUA). Physical capabilities of each method were compared with the constraints and requirements for the LDUA Decontamination System. Costs were compared and a referred alternative was chosen.

  7. Developments in Decontamination Technologies of Military Personnel and Equipment

    NASA Astrophysics Data System (ADS)

    Sata, Utkarsh R.; Ramkumar, Seshadri S.

    Individual protection is important for warfighters, first responders and civilians to meet the current threat of toxic chemicals and chemical warfare (CW) agents. Within the realm of individual protection, decontamination of warfare agents is not only required on the battlefield but also in laboratory, pilot plants, production and agent destruction sites. It is of high importance to evaluate various decontaminants and decontamination techniques for implementing the best practices in varying scenarios such as decontamination of personnel, sites and sensitive equipment.

  8. Radio-decontamination efficacy and safety studies on optimized decontamination lotion formulation.

    PubMed

    Rana, S; Bhatt, S; Dutta, M; Khan, A W; Ali, J; Sultana, S; Kotta, S; Ansari, S H; Sharma, R K

    2012-09-15

    Objective of the present study was to optimize decontamination lotion and to evaluate its relative decontamination efficacy using three radio-isotopes (Technetium-99m, Iodine-131 and Thallium-201) as contaminants with varying length of contaminant exposure (0-1h). Experiments were performed on Sprague Dawley rat's intact skin and human tissue equivalent models. Rat's hair was removed by using depilator after trimming with scissors. Relative decontamination efficacy of the optimized lotion was investigated and compared with water as control. Static counts were recorded before and after decontamination using single photon emission computed tomography (SPECT). Measured decontamination efficacy (DE) values were analyzed using one way ANOVA and Student's t-test (p value<0.05) and were found statistically significant. Decontamination efficacy of the lotion was observed to be 90 ± 5%, 80 ± 2% and 85 ± 2%, for the (131)I, (201)Tl and (99m)Tc radio-contaminants respectively on skin. Reduced contaminant removal was recorded for the skin which was cleaned by depilator (50-60%). Skin decontamination was found more efficacious for rat skin decontamination than the human tissue equivalent model. Decontamination efficacy of the lotion against (99m)Tc was recorded 70 ± 15% at 0-1h on the tissue equivalent model. In vitro chelation efficacy of the lotion was also established by using the instant thin layer chromatography-slica gel (ITLC-SG) and >95% of (99m)Tc was recorded. Neither erythema nor edema was scored in the primary skin irritancy test visually observed for two weeks.

  9. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  10. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  11. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    SciTech Connect

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  12. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    DTIC Science & Technology

    2016-07-01

    Used in this Evaluation Code Decontaminant Name Formulation Ingredients Rationale A Aero Wash IV Sodium nitrite, proprietary detergent blend...Surfactant designed for use on aircraft B Chlor Floc Sodium dichloroisocyanurate, water Previously used for chemical warfare agent decontamination...C Clorox bleach 6% Sodium hypochlorite, sodium hydroxide, water Previously used for chemical warfare agent decontamination D DI water Water

  13. Decontamination, decommissioning, and vendor advertorial issue, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  14. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  15. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  16. Looking West From rear (East) End of Office Building Including ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking West From rear (East) End of Office Building Including Recycle Storage Area, Loading Docks, and Decontamination Zone - Hematite Fuel Fabrication Facility, Office, 3300 State Road P, Festus, Jefferson County, MO

  17. Stress, Confidence, Performance, and Credibility Produced by Toxic Agent Training at the Chemical Decontamination Training Facility.

    DTIC Science & Technology

    1989-01-01

    building with sophisticated ventilatory and other decontamination equipment, sensitive chemical agent monitoring devices , amount of agent in use at any...responses to be distributed in two senses : first, they were not so extreme as to preclude improvement/decrement; second, they showed confidence to be...jumping. A zero score represents "a completely no-risk activity* and a score of ten "the most risky or dangerous activity a person could possibly dow

  18. Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system

    SciTech Connect

    LUKE, S.N.

    1999-02-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

  19. Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination.

    PubMed

    Hawkins, Steve A C; Simmons, Hugh A; Gough, Kevin C; Maddison, Ben C

    2015-01-24

    Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

  20. Decontamination Efficacy Testing of COTS SteriFx Prodcuts for Mass Personnel and Casualty Decontamination

    DTIC Science & Technology

    2011-09-01

    of all GRAS components. Previous work has demonstrated efficacy against spores, and this study was conducted to: confirm the safety of the product ...better understand the interaction of the product with common military and first responder equipment/vehicles, and the capacity of the technology to...the product is no more corrosive than common solutions used in decontamination scenarios. The efficacy of the formulation in decontaminating anthrax

  1. Testing and evaluation of light ablation decontamination

    SciTech Connect

    Demmer, R.L.; Ferguson, R.L.

    1994-10-01

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment.

  2. Hand decontamination: nurses' opinions and practices.

    PubMed

    Gould, D

    Infection is spread in hospital mainly by hands, making hand decontamination the most important means of preventing dissemination. There is some evidence to suggest that when access to hand-decontaminating agents is poor or the agents available are disliked, hands are washed too seldom, increasing risks of cross-infection. However, little attention has been paid to the use of towels and factors which promote their use, although it is known that damp hands transfer bacteria more readily than dry ones and that hands which become sore through poor drying have higher bacterial counts, contributing to the risk of cross-infection. This paper reports the results of the Nursing Times Hand Drying survey designed to assess nurses' access to hand decontamination agents and towels. The results suggest that the 112 nurses who participated were aware of the need for attention to hand hygiene but that access to both hand-decontaminating agents and paper towels was variable. Forty-one per cent complained of a shortage of soap and although nearly all used paper towels, these were in many cases of poor quality. Such towels were perceived as damaging to hands, leaving them feeling damp and sore. Good-quality, soft, paper towels were much appreciated by respondents in this sample. It is concluded that the quality of paper towels contributes to good infection control practice.

  3. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  4. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  5. Advances in Sterilization and Decontamination: a Survey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent technical advances made in the field of sterilization and decontamination and their applicability to private and commercial interests are discussed. Government-sponsored programs by NASA produced the bulk of material presented in this survey. The summary of past and current research discussed is detailed to enhance an effective transfer of technology from NASA to potential users.

  6. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  7. Biological Decontamination Using Pulsed Filamentary Microplasma Jet

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Lackmann, Jan-Wilm; Keil, Gernot; Bibinov, Nikita; Awakowicz, Peter

    Microplasma jet for the generation of pulsed filamentary discharge at atmospheric pressure has been devised for biological decontamination as well as for modification of surface properties. Long plasma-filament is generated inside a quartz tube and characterized using optical emission spectroscopy, current voltage measurements, numerical simulations and microphotography. Efficiency of our plasma source for the decontamination on inner surface of the tube as well as on objects placed in proximity of plasma effluent is studied. Escherichia coli (Gram-negative bacteria) and spores of Bacillus atrophaeus (Gram-positive bacteria) are used for the decontamination studies. Decontamination of Bacillus atrophaeus endospores, which are layered on PET polymer material, and placed in the proximity of plasma effluent, shows the mean logarithmic bacterial reduction of 3.67 for the treatment time of 120 s. Inactivation of Escherichia coli coated on inner surface of the tube shows the mean logarithmic bacterial reduction of about 5 for the treatment time of 30 s. In addition to this, inhibition studies of bacteria coated on agar plate are also carried out. It shows plasma effluent generated in our plasma source is very effective for the inhibition of bacterial colonization.

  8. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  9. Source Book on Plutonium and Its Decontamination

    DTIC Science & Technology

    1973-09-24

    Data Entered) UNCLASIFIED 20. ABSTRACT (Continued) |development of the coupled differential equations, based on the 1965 and the proposed 1973...61 XV Some Foreign Plutonium Decontamination Standards . . ...... 63 XVI Variability of Sol Sampling Data .... ..... .... 64 XVII Criteria for...Scheduling Feces Samples . . .......... 66 XVIII Types of Data which may be Coliected for Plutonium Inhalation Incidents . 66 XIX Percent Efficiencies for

  10. Electrolytic decontamination of the 3013 inner can

    SciTech Connect

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-12-31

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. Los Alamos National Laboratory (LANL) has designed a containment package in accordance with the DOE standard. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. With or without the food pack can, the material is placed inside the primary can and welded shut under a helium atmosphere. This activity takes place totally within the confinement of the glove box line. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. This fixture is then filled with a flowing electrolyte solution. A low DC electric current is made to flow between the can, acting as the anode, and the fixture, acting as the cathode. Following the decontamination, the system provides a flow of rinse water through the fixture to rinse the can of remaining salt residues. The system then carried out a drying cycle. Finally, the fixture is opened from the opposite side of the partition and the can surface monitored directly and through surface smears to assure that decontamination is adequate.

  11. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    SciTech Connect

    Boe, Timothy; Lemieux, Paul; Schultheisz, Daniel; Peake, Tom; Hayes, Colin

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  12. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  13. Condensed draft action description memorandum for the decontamination and decommissioning of Battelle Columbus facilities

    SciTech Connect

    1988-07-12

    Under provisions of the Surplus Facilities Management Program (SFMP), the US Department of Energy, Chicago Operations Office, proposes to provide funding for Surveillance and Maintenance (S & M) and subsequent Decontamination and Decommissioning (D & D) of fifteen facilities and associated premises belonging to Battelle Columbus Division. The fifteen facilities are contaminated as a result of nuclear research and development activities conducted over a period of approximately 43 years for DOE and its predecessor agencies--the Energy Research and Development Administration (ERDA), the Atomic Energy Commission (AEC) and the Manhattan Engineer District (MED). The proposed action includes continuation of ongoing S & M as well as a D & D of the facilities. The S & M activities include a continued environmental monitoring program to maintain assurance that radioactive contamination has not escaped to the surrounding environment; regularly scheduled inspection and maintenance of health, safety, and radiation protection equipment and instrumentation; a program of health physics surveillance monitoring, personnel dosimetry, and equipment and instrumentation maintenance and calibration; and emergency planning, training, and drills. The so- called dismantlement D & D mode is the proposed alternative for D & D of these facilities. For the facilities in question this will generally involve dismantlement and/or removal of equipment; decontamination of building structures; and restoration of the buildings. The decontamination will reduce contamination to levels consistent with unrestricted use of the facilities.

  14. [Decontamination of organophosphorus compounds: Towards new alternatives].

    PubMed

    Poirier, L; Jacquet, P; Elias, M; Daudé, D; Chabrière, E

    2017-03-03

    Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP.

  15. Microbiological decontamination of natural honey by irradiation

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  16. Decontamination of large components-test case

    SciTech Connect

    Mancini, A.; Bosco, B.

    1996-12-31

    The rising per-cubic-foot burial costs, together with the trend toward standardized above-ground burial sites, provides the basis for seeking an alternative to direct burial of large components. Large contaminated components such as steam generators can be safely dismantled and decontaminated for free release, metals recycle, and volume reduction. This grand-scale disposal technology will prove to be an economical and ecological alternative to direct burial or interim storage. Yankee Atomic Electric Company (YAEC) in Bolton, operators and decommissioners of the Yankee Nuclear Power Station in Rowe, Massachusetts, has teamed with Frank W Hake Associates in Memphis, TN, to decontaminate a large component as a test case. The large component is YAEC`s reactor pressure vessel head (RPVH). The 79 100 lb RPVH is surface contaminated with 0.7 Ci (1500 mR/h contact) resulting from 32 yr of operating in a 2000 psi, 530{degrees}F pressurized water reactor environment.

  17. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    SciTech Connect

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  18. 300 Area D4 Project 3rd Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    D. S. Smith

    2006-09-25

    This report documents the deactivation, decontamination, decommissioning, and demolition of five buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  19. 300 Area D4 Project 2nd Quarter FY06 Building Completion Report

    SciTech Connect

    David S. Smith

    2006-06-26

    This report documents the deactivation, decontamination, decommissioning, and demolition of 16 buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  20. 300 Area D4 Project 4th Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    D. S. Smith

    2007-01-30

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of nine buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  1. Advanced robotics for decontamination and dismantlement

    SciTech Connect

    Hamel, W.R.; Haley, D.C.

    1994-06-01

    The decontamination and dismantlement (D&D) robotics technology application area of the US Department of Energy`s Robotics Technology Development Program is explained and described. D&D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given.

  2. Does Concrete Self-Decontaminate VX

    DTIC Science & Technology

    2003-07-01

    DOES CONCRETE SELF-DECONTAMINATE VX? George W. Wagner, Richard J. O’Connor, and Lawrence R. Procell U.S. Army Edgewood Chemical ...this method avoids the problem of tenuous extraction procedures. In a recently published paper, Groenewold et al.2 examined the fate of dilute VX...concrete employed by Groenewold et al.,2 the current study examines VX droplets on the order of several µL to determine the behavior of VX on concrete in

  3. Method for electrochemical decontamination of radioactive metal

    DOEpatents

    Ekechukwu, Amy A.

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  4. Method for the decontamination of metallic surfaces

    DOEpatents

    Purohit, Ankur; Kaminski, Michael D.; Nunez, Luis

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  5. Methods of decontaminating surfaces and related compositions

    SciTech Connect

    Demmer, Ricky L.; Crosby, Daniel; Norton, Christopher J.

    2016-11-22

    A composition of matter includes water, at least one acid, at least one surfactant, at least one fluoride salt, and ammonium nitrate. A method of decontaminating a surface includes exposing a surface to such a composition and removing the composition from the surface. Other compositions of matter include water, a fatty alcohol ether sulfate, nitrilotriacetic acid, at least one of hydrochloric acid and nitric acid, sodium fluoride, potassium fluoride, ammonium nitrate, and gelatin.

  6. Conceptual design for a land decontamination robot

    SciTech Connect

    Zimmerman, G.P.

    1989-11-01

    This study investigates the development of a machine for the cleanup and/or treatment of land areas contaminated by a nuclear accident. This system of hardware components could remove radioactive, fallout-type contamination from rolling terrain, such as agricultural farm. This mobile system is remotely operable. This system could be referred to as a land decontamination robot.'' A survey of vendors has identified a set of hardware components which are commercially available and not special development items. These components include a large vacuum loader unit, a vehicle for moving the unit around the contaminated area, an industrial robot arm for moving the vacuum nozzle over the contaminated surface, an electronic remote control system, and a position determination system to assist with steering the vehicle on subsequent passes around the contaminated area. Cost estimates were developed for each component. Two versions of the decontamination robot'' were considered: (1) a truck-mounted vacuum loader unit, and (2) a trailer-mounted unit pulled by a bulldozer-type crawler. The costs of the hardware components for the truck-mounted unit are about $450,000; the trailer-mounted unit is about 10% more expensive. These costs are only the hardware costs; the costs associated with integrating this hardware into an operating decontamination system have not been included. Also not included are the costs of programming the sweeping motion of the robot arm and of any computer equipment or software necessary to process and display information relating to the vehicle's position within the contaminated area. It is assumed that these costs will at least equal the cost of the hardware and will thus move the total cost for the complete land decontamination robot system to a minimum of $1,000,000. 25 refs., 2 figs., 4 tabs.

  7. DESCALING AND DECONTAMINATING METHOD FOR METALS

    DOEpatents

    Baybarz, R.D.

    1961-04-25

    Oxide scale is removed from the surface of stainless steels and similar metals by contacting the metal under an inert atmosphere with a dilute sulfuric acid solution containing chromous sulfate. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M chromous sulfate and 0.4 to 0.6 M sulfuric acid. This process is particularly applicable to decontamination of aqueous homogsneous nuclear reactor systems.

  8. Decontamination system study for the Tank Waste Retrieval System

    SciTech Connect

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory`s decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO{sub 2} blasting decontamination technique was chosen as the best technology for the TWRS.

  9. Equipment decontamination: A brief survey of the DOE complex

    SciTech Connect

    Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

  10. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  11. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  12. Metallic surfaces decontamination by using laser light

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-07-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  13. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  14. Decontamination of radionuclides from skin: an overview.

    PubMed

    Tazrart, Anissa; Bérard, Philippe; Leiterer, Alexandra; Ménétrier, Florence

    2013-08-01

    The accident in Fukushima has emphasized the need to increase the capacity of health protection for exposed workers, first responders, and the general public in a major accident situation with release of radioactivity. Skin contamination is one of the most probable risks following major nuclear or radiological incidents, but this risk also exists and incidents can happen in industry, research laboratories, or in nuclear medicine departments. The aim of this paper is to provide an overview of the products currently used after skin contamination in order to highlight the needs and ways to improve the medical management of victims. From this review, it can be observed that the current use of these radiological decontamination products is essentially based on empiricism. In addition, some of these products are harsh and irritating, even toxic, possibly damaging the skin barrier. In some emergency situations in which clean water is in short supply, most of the current products cannot be used. Research on the mechanisms of action of decontaminating products is needed to develop a decontamination strategy.

  15. Aquatic toxicity of the decontamination agent: Multipurpose (DAM) decontamination solution. Final report, May-December 1992

    SciTech Connect

    Haley, M.V.; Kurnas, C.W.; Chester, N.A.; Muse, W.T.

    1994-05-01

    A new formulation, Decontaminating Agent: Multipurpose (DAM) Decontamination Solution, is being considered as a replacement to the DS-2 decontaminating solution. The new formulation is composed of calcium hypochlorite and N-cyclohexyl-2-pyrrolidinone. Since this is a new formulation little environmental data exists. To estimate potential impact to an aquatic environment, Daphnia magna and Photobacterium phosphoreum (a luminescent marine bacterium) were exposed to the DAM solution and to the individual components (Calcium hypochlorite and N-cyclohexyl-2-pyrrolidinone). The toxicity of the DAM solution to D. magna and P. phosphoreum was 5000 and 0.00053, respectively (highly toxic). The toxicity of calcium hypochlorite' and N-cyclohexyl-2-pyrrolidinone to daphnia was 0.04 mg/L (highly toxic) and 107 mg/L (moderately toxic), respectively.

  16. Post-Decontamination Vapor Sampling and Analytical Test Methods

    DTIC Science & Technology

    2015-08-12

    emission rate) after treatment with a decontamination system (decontaminant and/or applicator) used against CWAs, simulants, NTAs, TICs, or other...Residual liquid testing is addressed in TOP 08-2-061A1*. b. This TOP includes procedures for analyzing the decontamination of equipment and...Residual contaminant in samples from solid sorbent tubes (SSTs), or equivalent. Gas chromatograph (GC), liquid chromatograph (LC), flame

  17. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores.

  18. Personal protective equipment and decontamination of adults and children.

    PubMed

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident.

  19. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... separation, spraying, soaking, wiping, stripping of insulation, scraping, scarification or the use of... separated from regulated waste during decontamination (such as by chopping, shredding, scraping, abrading...

  20. CBRN Decontamination: Multiservice Tactics, Techniques, and Procedures for Chemical, Biological, Radiological, and Nuclear Decontamination

    DTIC Science & Technology

    2006-04-01

    operations with minimal resources. These exercises emphasize interoperability requirements and stress staff coordination. They also serve to identify...MOPP. (a) Physiological and psychological stress will occur during decontamination operations. Body temperature must be maintained within a narrow...movement. Work intensity, which is managed by leaders, is also a major contributing factor to heat stress . (b) Military personnel wearing MOPP while

  1. Methods for demolition of building E5625. Contractor report, September 1987-November 1988

    SciTech Connect

    Carpenter, T.J.; Hill, T.E.; Buchi, K.M.

    1990-03-01

    The U.S. Army Chemical Research, Development and Engineering Center (CRDEC) plans to dismantle and demolish the Pilot Plant (Building E5625). Now obsolete, this building was used to conduct chemical warfare (CW) agent studies. The objective of this program was to study and develop the best methods to safely demolish Building E5625. Aspects of the demolition considered included: environmental and personnel safety, applicable demolition techniques, debris disposal, and time and cost considerations. Five developed concepts were composed of combinations of the following major tasks: plan generation, site preparation, enclosing Building E5625 within a metal building, building demolition (selective or gantry crane/wrecking ball), hot gas decontamination of the entire building, decontamination of the building debris (chemical decontamination or incineration), and site closure.

  2. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Metal Decontamination Technologies

    SciTech Connect

    Lagos, L.E.; Ebadian, M.A.

    1998-01-01

    During the decontamination and decommissioning (D and D) activities being conducted by the U.S. Department of Energy (DOE), approximately 550,000 metric tons of contaminated metal will be generated by the disposition of contaminated buildings. The majority of the structural steel is considered to be radiologically contaminated. The D and D activities require the treatment of the structural steel to reduce occupational and environmental radiological exposures during dismantlement. Treatment technologies may also be required for possible recycling. Many proven commercial treatment technologies are available. These treatment processes vary in aggressiveness, safety requirements, secondary waste generation, necessary capital, and operation and maintenance costs. Choosing the appropriate technology to meet the decontamination objectives for structural steel is a difficult process. A single information source comparing innovative and nuclear and non-nuclear technologies in the areas of safety, cost and effectiveness is not currently commercially available to perform a detailed analysis. This study presents comparable data related to operation and maintenance, cost, and health and safely aspects of three readily available technologies and one innovative technology for nuclear decontamination. The technologies include Advance Recyclable Media System (ARMS{trademark}), NELCO Porta Shot Blast{trademark} (JHJ-2000), Pegasus Coating Removal System 7 (PCRS-7) and the innovative laser ablation technology called the Yag Eraser{trademark}.

  3. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  4. Contactless decontamination of hair samples: cannabinoids.

    PubMed

    Restolho, José; Barroso, Mário; Saramago, Benilde; Dias, Mário; Afonso, Carlos A M

    2017-02-01

    Room temperature ionic liquids (ILs) have already been shown to provide efficient extraction media for several systems, and to capture volatile compounds, namely opiates. In this work, a novel, contactless, artefact-free extraction procedure for the removal of Δ(9) -tetrahrydrocannabinol (THC) from the surface of human hair is presented. To prepare in vitro cannabinoids-contaminated hair, samples were flushed with hashish smoke for 7 h. The decontamination experiments were carried at 100 °C for 24 h, according to the procedure previously described. Fifty-three ILs were screened and presented decontamination efficiencies ranging from 0 to 96 %. Although the majority of the ILs presented efficiencies above 90%, the 1-ethanol-3-methyl tetrafluoroborate (96%) was chosen for further process optimization. The Design of Experiments results demonstrated that all studied variables were significant for the process and the obtained optimum conditions were: 100 °C, 13 h and 175 mg of IL. In the work of Perrotin-Brunel et al. (J. Mol. Struct. 2011, 987, 67), it is demonstrated that, at 100 °C, full conversion of tetrahydrocannabinolic acid (THCA) into THC is obtained after 60 min. Since our decontamination takes place over 13 h at 100 °C, full conversion of THCA into THC is expected. Additionally, our method was compared with the method proposed by Cairns et al. (Forensic Sci. Int. 2004, 145, 97), through the analysis of 15 in vitro contaminated hair samples. The results demonstrated that with our method a mean extraction efficiency of 11 % higher was obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    SciTech Connect

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-03-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost.

  6. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Decontamination standards. Chopping (including wire chopping), distilling, filtering, oil/water... regulated for disposal, from water, organic liquids, non-porous surfaces (including scrap metal from..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i)...

  7. Establishment of a Vaporous Hydrogen Peroxide Bio-Decontamination Capability

    DTIC Science & Technology

    2007-02-01

    of Colorado at Denver and Health Sciences Center. There he utilised mass spectrometry to investigate the biochemical pathways involved in lipid...part of DSTO’s work program in decontamination a customised Steris 1000ED VHP/mVHP bio- decontamination system has been acquired to carry out

  8. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i)...

  9. Investigation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Morgan, I.L.; Ally, M.R.

    1995-12-31

    Experiments have been conducted to investigate the capabilities of electrokinetic decontamination of concrete. Batch equilibration studies have determined that the loading of cesium and strontium on concrete may be decreased using electrolyte solutions containing competing cations, while solubilization of uranium and cobalt, that precipitate at high pH, will require lixiviants containing complexing agents. Dynamic electrokinetic experiments showed greater mobility of cesium than strontium, while some positive results were obtained for the transport of cobalt through concrete using EDTA and for uranium using carbonate.

  10. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  11. Lasers for the radioactive decontamination of concrete

    SciTech Connect

    Cannon, N.S.; Flesher, D.J.

    1993-10-01

    The use of lasers for removing radioactive contamination from concrete surfaces is being investigated at the US Department of Energy`s Hanford Site. A major advantage of a laser decontamination process is that no additional waste is generated. Test results using 50- and 600-W YAG (yttrium-aluminum-garnet) lasers have been extrapolated to more powerful commercially available units. The minimum removal rate for concrete in air is estimated at 420 cm{sup 2}/h (0.45 ft{sup 2}/h) to a depth of 0.64 cm (0.25 in.); underwater rates would be considerably reduced.

  12. Evaluation of cloths for decontamination by wiping

    SciTech Connect

    Rankin, W.N.; Reiff, D.J.; Fink, S.D. ); Luckenbach, R.L. )

    1990-01-01

    Treated polyester cloth was evaluated in laboratory-scale and larger-scale tests as an alternative to atomic wipes and cotton cloth for use in decontamination by wiping. The advantages of the treated polyester are as follows: does not react with nitric acid to form unstable product, more fire resistant, less volume of radioactive waste generated (versus atomic wipes), and product can be recovered by soaking the polyester cloths in nitric acid. Results are that even though treated polyester wiping cloths are slightly less effective than atomic wipes and cotton cloth, its many other benefits greatly outweigh this slight disadvantage. 5 figs.

  13. Automated Single Cell Data Decontamination Pipeline

    SciTech Connect

    Tennessen, Kristin; Pati, Amrita

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  14. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  15. Process for Descaling and Decontaminating Metals

    DOEpatents

    Baybarz, R. D.

    1961-04-25

    The oxide scale on the surface of stainless steels and similar metals is removed by contacting the metal under an inert atmosphere with a dilute H/sub 2/ SO/sub 4/ solution containing CrSO/sub 4/. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M CrSO/sub 4/ and 0.5 to 0.6 M H/sub 2/SO/sub 4/. The process is particularly applicable to decontamination of aqueous homogeneous nuclear reactor systems. (AEC)

  16. Microwave-Based Water Decontamination System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  17. Decontamination Technique Using Liquid And Supercritical CO{sub 2}

    SciTech Connect

    Kwanghoen Park; Hakwon Kim; Hongdoo Kim; Moonsung Koh; Yeonwoo Jin; Joungyoul Kim; Wai, Chein M.

    2002-07-01

    A green decontamination method using CO{sub 2} as a environmentally benign solvent has been studied for removal of contaminant in the nuclear power plant. We developed a decontamination technique using CO{sub 2} for removal of contaminants in working dresses. Owing to the low solubilizing. A reverse micelle system was developed. Fluorinated AOT was synthesized and used as surfactants forming microemulsions with water. Cobalt was decontaminated by dissolution into microemulsions in liquid CO{sub 2}. If this decontamination technique is applied to nuclear industry, the secondary waste during decontamination will be revolutionarily reduced. Negligibly small amount of water is a net waste, while the surfactants and solvent, CO{sub 2} are recovered and reused in the system. (authors)

  18. Decontamination of nuclear systems at the Grand Gulf Nuclear Station

    SciTech Connect

    Weed, R.D.; Baker, K.R.

    1996-12-31

    Early in 1994 Management at the Grand Gulf Nuclear Station realized that a potential decontamination of several reactor systems was needed to maintain the commitments to the {open_quotes}As Low As Reasonably Achievable{close_quotes} (ALARA) program. There was a substantial amount of planned outage work required to repair and replace some internals in loop isolation valves and there were inspections and other outage work that needed to be accomplished as it had been postponed from previous outages because of the radiation exposure levels in and around the system equipment. Management scheduled for the procurement specification to be revised to incorporate additional boundary areas which had not been previously considered. The schedule included the period for gathering bids, awarding a contract, and reviewing the contractor`s procedures and reports and granting approval for the decontamination to proceed during the upcoming outage. In addition to the reviews required by the engineering group for overall control of the process, the plant system engineers had to prepare procedures at the system level to provide for a smooth operation to be made during the decontamination of the systems. The system engineers were required to make certain that the decontamination fluids would be contained within the systems being decontaminated and that they would not cross contaminate any other system not being decontaminated. Since these nuclear stations do not have the provisions for decontaminating these systems with using additional equipment, the equipment required is furnished by the contractor as skid mounted packaged units which can be moved into the area, set up near the system being decontaminated, and after the decontamination is completed, the skid mounted packages are removed as part of the contract. Figure 1 shows a typical setup in block diagram required to perform a reactor system decontamination. 1 fig.

  19. Evaluation of five decontamination methods for filtering facepiece respirators.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2009-11-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  20. Radiation decontamination unit for the community hospital.

    PubMed

    Waldron, R L; Danielson, R A; Shultz, H E; Eckert, D E; Hendricks, K O

    1981-05-01

    "Freestanding" radiation decontamination units including surgical capability can be developed and made operational in small/medium sized community hospitals at relatively small cost and with minimal plant reconstruction. Because of the development of nuclear power plants in relatively remote areas and widespread transportation of radioactive materials it is important for hospitals and physicians to be prepared to handle radiation accident victims. The Radiological Assistance Program of the United States Department of Energy and the Radiation Emergency Assistance Center Training Site of Oak Ridge Associated Universities are ready to support individual hospitals and physicians in this endeavor. Adequate planning rather than luck, should be used in dealing with potential radiation accident victims. The radiation emergency team is headed by a physician on duty in the hospital. It is important that the team leader be knowledgeable in radiation accident management and have personnel trained in radiation accident management as members of this team. The senior administrative person on duty is responsible for intramural and extramural communications. Rapid mobilization of the radiation decontamination unit is important. Periodic drills are necessary for this mobilization and the smooth operation of the unit.

  1. A remotely operated robot for decontamination tasks

    SciTech Connect

    Dudar, A.M.; Vandewalle, R.C.

    1994-02-01

    Engineers in the Robotics Development Group at the Westinghouse Savannah River Company (WSRC) have developed a robot which will be used to decontaminate a pipe gallery of a tank farm used for nuclear waste storage. Personnel access is required into this pipe gallery to inspect existing pipes and perform repairs to secondary containment walls around the tank farm. Presently, the pipe gallery is littered with debris of various sizes and its surface is contaminated with activity levels up to 2.5E6 DPM (disintegrations per minute) alpha and exposure levels as high as 20 Rad/hr. Cleaning up this pipe gallery win be the mission of an all-hydraulic robotic vehicle developed in-house at WSRC caged the ``Remote Decon`` robot. The Remote Decon is a tracked vehicle which utilizes skid steering and features a six-degree-of-freedom (DOF) manipulator arm, a five-DOF front end loader type bucket with a rotating brush for scrubbing and decontaminating surfaces, and a three-DOF pan/tilt mechanism with cameras and lights. The Remote Decon system is connected to a control console via a 200 foot tethered cable. The control console was designed with ergonomics and simplicity as the main design factors and features three joysticks, video monitors, LED panels, and audible alarms.

  2. A Simple Decontamination Approach Using Hydrogen ...

    EPA Pesticide Factsheets

    Journal article To evaluate the use of relatively low levels of hydrogen peroxide vapor (HPV) for the inactivation of Bacillus anthracis spores within an indoor environment. Methods and Results: Laboratory-scale decontamination tests were conducted using bacterial spores of both B. anthracis Ames and Bacillus atrophaeus inoculated onto several types of materials. Pilot-scale tests were also conducted using a larger chamber furnished as an indoor office. Commercial off-the-shelf (COTS) humidifiers filled with aqueous solutions of 3% or 8% hydrogen peroxide were used to generate the HPV inside the mock office. The spores were exposed to the HPV for periods ranging from 8 hours up to one week. Conclusions: Four to seven day exposures to low levels of HPV (average air concentrations of approximately 5-10 parts per million) were effective in inactivating B. anthracis spores on multiple materials. The HPV can be generated with COTS humidifiers and household H2O2 solutions. With the exception of one test/material, B. atrophaeus spores were equally or more resistant to HPV inactivation compared to those from B. anthracis Ames. Significance and Impact of Study: This simple and effective decontamination method is another option that could be widely applied in the event of a B. anthracis spore release.

  3. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    2000-06-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  4. Decontamination Project for Cell G of the Metal Recovery Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Mandry, G.J.; Grisham, R.W.

    1994-02-01

    The goal of the decontamination effort in Cell G at the Metal Recovery Facility, Building 3505, located at the Oak Ridge National Laboratory, was two-fold: to determine the effectiveness of the dry decontamination technique employed and to provide data required to assess whether additional decontamination using this method would be beneficial in the eventual decommissioning of the facility. Allied Technology Group (ATG) was contracted to remove a portion of the concrete surface in Cell G by a technique known as scabbling. Some metallic cell components were also scabbled to remove paint and other surface debris. Generally, the scabbling operation was a success. Levels of contamination were greatly reduced. The depth of contaminant penetration into the concrete surfaces of certain areas was much greater than had been anticipated, necessitating the removal of additional concrete and extending ATG`s period of performance. Scabbling and other related techniques will be extremely useful in the decontamination and decommissioning of other nuclear facilities with similar radiological profiles.

  5. 6. WASTE CALCINING FACILITY, LOOKING AT EAST SIDE OF BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. WASTE CALCINING FACILITY, LOOKING AT EAST SIDE OF BUILDING. CAMERA FACING WEST. SECTION OF BUILDING ON RIGHT IS NaK EQUIPMENT ROOM; ON LEFT, DECONTAMINATION ROOM. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  6. Long-term decontamination engineering study. Volume 1

    SciTech Connect

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  7. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  8. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    SciTech Connect

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  9. Comparative analysis of showering protocols for mass-casualty decontamination.

    PubMed

    Amlot, Richard; Larner, Joanne; Matar, Hazem; Jones, David R; Carter, Holly; Turner, Elizabeth A; Price, Shirley C; Chilcott, Robert P

    2010-01-01

    A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or "independent") design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore "contaminant", but the use of a cloth (in the absence of instructions) led to a significant ( appox. 20%) improvement in the effectiveness of decontamination over the standard protocol (p <0.05). Current mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.

  10. Decontamination and decommissioning activities photobriefing book FY 1999

    SciTech Connect

    2000-03-08

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book.

  11. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-05

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols.

  12. Decontamination of Johnston Island Coral: a preliminary study

    SciTech Connect

    Kochen, R.L.

    1986-02-17

    A preliminary investigation was completed on the characterization and decontamination of coral samples from Johnston Island. These samples were found to contain individual particles (2 to 0.25 mm) of contaminated coral as well as a piece of contaminated magnetic metal. They ranged in activity from about 70 to 811 nCi Am-241. The decontamination methods investigated were froth flotation, ferrite treatment, attrition scrubbing, ultrasonic treatment and dry sieving. Dry sieving, the more effective technique, separated about 42 wt % of the coral into a decontaminated fraction. This fraction (>4 mm) contained about 0.5% of the total activity. 7 refs., 3 tabs.

  13. Long term decontamination at the Hanford Site: A case study

    SciTech Connect

    Geuther, W.J.; Hansen, G.E.

    1995-02-01

    This paper describes an engineering study that evaluates decontamination requirements at Hanford and the potential reutilization of the first plutonium processing production facility as a decontamination facility. The logic used to develop the study, the options available for a long-term decontamination mission, and the resultant strategy recommended in the study are presented. The paper provides a starting point for other similar study efforts. The process flowsheets, regulatory restrictions, and preconceptual designs developed in this study are common throughout the nuclear waste industry.

  14. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    SciTech Connect

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  15. Developing Decontamination Tools and Approaches to ...

    EPA Pesticide Factsheets

    Developing Decontamination Tools and Approaches to Address Indoor Pesticide Contamination from Improper Bed Bug Treatments The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  16. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  17. Decontamination, decommissioning, and vendor advertorial issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  18. Shutting down a working vivarium for decontamination.

    PubMed

    Leszczynski, Jori; Wallace, Michelle; Tackett, Jamie; Jiron, Ursula; Collins, Jan; Warder, Char; Richardson, Laura; Bell, Lorraine; Russell, Carolyn

    2014-08-01

    Handling a rodent disease outbreak in a facility can be a challenge. After the University of Colorado Denver Office of Laboratory Animal Resources enhanced its sentinel monitoring program, > 90% of the animal colonies housed in a vivarium at the Anschutz Medical Campus (with an area of 50,000 net ft(2)), serving the labs of > 250 principal investigators, tested positive for multiple infective agents including mouse parvovirus, fur mites, pinworms and epizootic diarrhea of infant mice. The authors detail the process by which they planned and executed a shutdown and a decontamination of the facility, which involved the rederivation or cryopreservation of > 400 unique genetically modified mouse lines. The authors discuss the aspects of the project that were successful as well as those that could have been improved.

  19. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  20. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect

    1994-12-31

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

  1. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  2. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides: Thermodynamic and Kinetic Reactions between Isosaccharinate and Actinides on Metal and Concrete Surfaces

    SciTech Connect

    Rai, Dhanpat; Rao, Linfeng; Moore, Robert C.; Bontchev, Ranko; Holt, Kathleen

    2004-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on ISA species as a function of pH and on ISA interactions with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  3. DEVELOPMENT OF BIODEGRADABLE ISOSACCHARINATE-CONTAINING FOAMS FOR DECONTAMINATION OF ACTINIDES: THERMODYNAMIC AND KINETIC REACTIONS BETWEEN ISOSACCHARINATE AND ACTINIDES ON METAL AND CONCRETE SURFACES

    SciTech Connect

    Rai, Dhanpat; Moore, Robert C.; Linfeng, Rao; Tucker, Mark D.

    2003-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods, using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on the interactions of ISA with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  4. Enhanced toxic cloud knockdown spray system for decontamination applications

    SciTech Connect

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  6. 40 CFR 1065.516 - Sample system decontamination and preconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cycles § 1065.516 Sample system decontamination and preconditioning. This section describes how to manage... purified air or nitrogen. (3) When calculating zero emission levels, apply all applicable...

  7. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  8. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOEpatents

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  9. Method and coating composition for protecting and decontaminating surfaces

    DOEpatents

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  10. Cesium powder and pellets inner container decontamination method determination

    SciTech Connect

    Ferrell, P.C.

    1998-07-09

    The cesium powder and pellets inner container is to be performance tested per the criteria specified in Section 4.0 of HNF-2399, ``Design, Fabrication, and Assembly Criteria for Cesium Powder and Pellet Inner Container.`` The test criteria specifies that the inner container be water tight during decontamination of the exterior surface. Three prototypes will be immersed into a pool of water to simulate a water decontamination process.

  11. Cleanout and Decontamination of a Mustard Agent Ton Container.

    DTIC Science & Technology

    1997-06-01

    HD TCs using pressurized hot water and steam. ERDEC has successfully decontaminated two HD TCs in an ERDEC Toxic Test Chamber to a 3X condition using...this process. 14. SUBJECT TERMS 15. NUMBER OF PAGES Ton Containers HD Decontamination Alternative Technology Program 143 3X Condition Heel Hot Water ...the interior of the TC with pressurized hot water . The demonstration was designed to confirm the results of the first HD TC Cleanout Demonstration, and

  12. Reducing Risk of Salmonellosis through Egg Decontamination Processes

    PubMed Central

    Keerthirathne, Thilini Piushani; Ross, Kirstin; Fallowfield, Howard; Whiley, Harriet

    2017-01-01

    Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection. PMID:28327524

  13. Reducing Risk of Salmonellosis through Egg Decontamination Processes.

    PubMed

    Keerthirathne, Thilini Piushani; Ross, Kirstin; Fallowfield, Howard; Whiley, Harriet

    2017-03-22

    Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection.

  14. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  15. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  16. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  17. Application of Ultrasonic for Decontamination of Contaminated Soil - 13142

    SciTech Connect

    Vasilyev, A.P.; Lebedev, N.M.; Savkin, A.E.

    2013-07-01

    The trials of soil decontamination were carried out with the help of a pilot ultrasonic installation in different modes. The installation included a decontamination bath equipped with ultrasonic sources, a precipitator for solution purification from small particles (less than 80 micrometer), sorption filter for solution purification from radionuclides washing out from soil, a tank for decontamination solution, a pump for decontamination solution supply. The trials were carried out on artificially contaminated sand with specific activity of 4.5 10{sup 5} Bk/kg and really contaminated soil from Russian Scientific Center 'Kurchatovsky Institute' (RSC'KI') with specific activity of 2.9 10{sup 4} Bk/kg. It was established that application of ultrasonic intensify the process of soil reagent decontamination and increase its efficiency. The decontamination factor for the artificially contaminated soil was ∼200 and for soil from RSC'KI' ∼30. The flow-sheet diagram has been developed for the new installation as well as determined the main technological characteristics of the equipment. (authors)

  18. Analytical solution for aquifer decontamination by pumping

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Shyun; Woodside, Greg D.

    1988-08-01

    Rehabilitation of polluted aquifers is an important issue in groundwater study. The use of withdrawal wells to extract dissolved solutes from contaminated aquifers is a possible mechanical remedial technique. A mathematical model dealing with aquifer decontamination by pumping is developed. The pumping well with a constant flow rate is taken into account as a mathematical sink located at the center of the plume to be removed. This plume is assumed to have a circular geometry inside which the solute concentration is axial symmetric with respect to the well and is incorporated into the model as an initial condition that can be formulated in an analytic or a sectionally continuous function capable of representing a wide range of uniform or nonuniform profiles. It assumes advection and longitudinal mechanical dispersion to be the transport mechanisms on a radially converging groundwater flow field. The analytical solution detecting concentration variation inside the aquifer is determined in closed forms with the Green's function approach and the Laplace transform technique. Using the field data presented by Pickens and Grisak (1981), the analytical solution obtained very accurately reproduces the reported concentration history at the well during the withdrawal phase of the single-well injection-withdrawal tracer test. It is found that if the initial conditions are expressed in functions presenting noticeable concentration gradients at the plume boundary, adverse dispersion against the converging groundwater movement would cause spreading of solutes beyond the original extent of plume during pumping. If the initial conditions gradually decrease to zero concentration at the plume boundary where negligible concentration gradients exist, concentration distributions do not extend beyond the initial condition envelopes during the withdrawal process. Since the well is placed at the center of the plume where maximum concentration occurs, the analytical solution evaluated at

  19. Mobile worksystems for decontamination and decommissioning operations. Final report

    SciTech Connect

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  20. A Survey and Evaluation of Chemical Warfare Agent-Decontaminants and Decontamination

    DTIC Science & Technology

    1984-10-15

    have been incorporated into the M258/258AI decontamination kit to detoxify HD and V (7, 16). By mixing the chloramine-T with a VX simulant, malathion ...that up to 99.5% of the malathion was destroyed within I minute in the temperature range of 5° through 45° C. This report shows that chloramine-T...testing was con- ducted by spraying the chloramine-T-SADS II solution on a malathion -contaminated painted aluminum surface. It was found that approximately

  1. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    SciTech Connect

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m/sup 2/ (350,000 ft/sup 2/). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs.

  2. Decontamination of pesticide packing using ionizing radiation

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Mori, M. N.; Kodama, Yasko; Oikawa, H.; Sampa, M. H. O.

    2007-11-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry—GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  3. Establishing the irradiation dose for paper decontamination

    NASA Astrophysics Data System (ADS)

    Moise, Ioan Valentin; Virgolici, Marian; Negut, Constantin Daniel; Manea, Mihaela; Alexandru, Mioara; Trandafir, Laura; Zorila, Florina Lucica; Talasman, Catalina Mihaela; Manea, Daniela; Nisipeanu, Steluta; Haiducu, Maria; Balan, Zamfir

    2012-08-01

    Museums, libraries and archives are preserving documents that are slowly degrading due to the inherent ageing of the cellulose substrate or to the technological errors of the past (acid paper, iron gall ink). Beside this, large quantities of paper are rapidly damaged by biological attacks following natural disasters and improper storage conditions. The treatment of paper documents with ionizing radiation can be used for mass decontamination of cultural heritage items but conservators and restaurators are still reserved because of the radiation induced degradation. We conducted a study for establishing the dose needed for the effective treatment of paper documents, taking into account the biological burden and the irradiation effects on paper structure. We used physical testing specific to paper industry and less destructive analytical methods (thermal analysis). Our results show that an effective treatment can be performed with doses lower than 10 kGy. Old paper appears to be less affected by gamma radiation than recent paper but the sampling is highly affected by the non-uniform degree of the initial degradation status. The extent of testing for degradation and the magnitude of acceptable degradation should take into account the biological threat and the expected life time of the paper documents.

  4. Decontamination and decommissioning of Shippingport commercial reactor

    SciTech Connect

    Schreiber, J.

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  5. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Demmer, Ricky Lynn; Reese, Stephen Joseph

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  6. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  7. Kit systems for granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  8. Mycotoxins - prevention and decontamination by yeasts.

    PubMed

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  9. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  10. Cladding hull decontamination and densification process. Part 1. The prototype cladding hull decontamination system

    SciTech Connect

    Lambright, T.M.; Montgomery, D.R.

    1980-04-01

    A prototype system for decontaminating Zircaloy-4 cladding hulls has been assembled and tested at Pacific Northwest Laboratory. The decontamination process consists of treatment with a gaseous mixture of hydrogen fluoride (HF) and argon (Ar) followed by a dilute aqueous etch of ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. The continuous cleaning process described in this report successfully descaled small portions of most charges, but was unable to handle the original design capacity of 4 kg/hr because of problems in the following areas: control of HF reactor temperatures, regulation of HF and argon mixtures and flows, isolation of the HF reactor atmosphere from the aqueous washer/rinser atmosphere, regulation of undesirable side reactions, and control over hull transport through the system. Due to the limited time available to solve these problems, the system did not attain fully operational status. The work was performed with unirradiated hulls that simulated irradiated hulls. The system was not built to be remotely operable. The process chemistry and system equipment are described in this report with particular emphasis on critical operating areas. Recommendations for improved system operation are included.

  11. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part A, Decontamination and Decommissioning

    SciTech Connect

    Not Available

    1993-09-01

    This report documents activities of decontamination and decommissioning at ORNL. Topics discussed include general problems, waste types, containment, robotics automation and decontamination processes.

  12. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    PubMed Central

    Egan, Joseph R.; Amlôt, Richard

    2012-01-01

    In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS). The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing) of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit. PMID:23202768

  13. A review of plant decontamination methods: 1988 Update: Final report

    SciTech Connect

    Remark, J.F.

    1989-01-01

    This document updates the state-of-the-art in decontamination technology since the publication of the previous review (EPRI NP- 1128) in May 1981. A brief description of the corrosion-film characteristics is presented as well as corrosion film differences between a BWR and PWR. The generation transportation, activation, and deposition of the radioisotopes found throughout the reactor coolant system is also discussed. Successful, well executed, decontamination campaigns are always preceded by meticulous planning and careful procedure preparation which include contingency operations. The Decontamination Planning and Preparation Section describes the technical planning steps as well as the methodology that should be followed in order to select the optimum decontamination technique for a specific application. A review of a number of the decontamination methods commercialized since 1980 is presented. The basic mechanism for each process is described as well as specific applications of the technology in the fields. Where possible, results obtained in the field are presented. The information was obtained from industry vendors as well as personnel at the plant locations that have utilized the technology. 72 refs., 5 tabs.

  14. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  15. Modelling mass casualty decontamination systems informed by field exercise data.

    PubMed

    Egan, Joseph R; Amlôt, Richard

    2012-10-16

    In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS). The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing) of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.

  16. Beryllium decontamination with different solvents on different structures.

    PubMed

    Dufresne, A; Dion, C; Viau, S; Perrault, G

    2009-10-01

    The objective of the present work was to estimate the efficiency of moistened wipes in removing beryllium with different solutions including Citranox, Alconox, NaCl 5%, Resolve, and Ledizolv on various types of surfaces such as unpainted metal, wood frames, painted metal, concrete, painted concrete, and Plexiglas from three different occupational settings. Of the three plants that were investigated, only surfaces in the aluminium smelter were decontaminated down to the clearance reference level of 0.2 microg 100 cm(-2), with all the solvents used. In the machine tooling and milling department, the clearance level of 0.2 microg 100 cm(-2) was reached after the three decontaminations, with all the solvents. In the machine plant for the military, aerospace, and telecommunications industries, the beryllium concentrations on the concrete wall, before decontamination with the high-pressure gun, were usually >3 microg 100 cm(-2), and concentrations as high as 31 microg 100 cm(-2) were measured. After the high-pressure cleanup, the beryllium concentrations were sometimes reduced by a factor of 10, but never reached the clearance level. Beryllium compounds that had adhered to most types of structures that we attempted to decontaminate were reduced to below the clearance reference value except on concrete floors. There did not seem to be any difference between the decontamination actions for all the solvents used in this study.

  17. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  18. Distribution of radioactive Cesium in trees and effect of decontamination of forest contaminated by the Fukushima nuclear accident

    SciTech Connect

    Iijima, K.; Funaki, H.; Tokizawa, T.; Nakayama, S.

    2013-07-01

    In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident following the Great Tohoku earthquake and tsunami of March 11, 2011. In addition to buildings, roads and farmland, the forest adjacent to living areas was one of the main decontamination targets. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. This forest was located 1.3 km southwest of the Fukushima Daiichi Nuclear Power Plant and is dominated by Japanese cedar trees and fir trees. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of {sup 134}Cs and {sup 137}Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 100 x 60 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10- m width) of the forest also slightly decreased these dose rates. After decontamination, the

  19. Fixed-Price Subcontracting for Decontamination and Decommissioning of Small Facilities at Oak Ridge National Laboratory

    SciTech Connect

    Harper, M. A.; Julius, J. F. K.; McKenna, M. K.

    2002-02-26

    Abandoned facilities were decontaminated and decommissioned in preparation for final remediation of Solid Waste Storage Area (SWSA) 4 at Oak Ridge National Laboratory. The facilities varied in age from approximately 5 years to more than 40 years, with radiological conditions ranging from clean to highly contaminated with fission products. A fixed-price subcontract (FPSC) was awarded by the U.S. Department of Energy's (DOE's) Environmental Management (EM) Management and Integration (M&I) contractor for decontamination and decommissioning (D&D) of these facilities. Included in the FPSC scope were the following: preparation of pre-D&D regulatory documentation; demolition of surface structures to slab; stabilization of below-grade structures; waste management and disposal; and preparation of post-D&D regulatory documentation. Using stand-off techniques to the extent possible, building structures and ancillary equipment were prepared for demolition and demolished. A fixative coating system was used in conjunction with continuous water misting to control airborne contamination. Demolition waste consisted of two major streams: clean construction and demolition waste and low-level (radioactive) waste. The debris was size-reduced and packaged, again via remote means. At all times during the D&D, personnel safety, environmental compliance, and as low as reasonably achievable exposure considerations were paramount. Upon completion of D&D activities, each site was inspected and accepted by the M&I contractor. This project is a success story for fixed-price subcontracting of D&D work under DOE's M&I arrangement.

  20. Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program

    SciTech Connect

    Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  1. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation.

  2. RMDF leach-field decontamination. Final report

    SciTech Connect

    Carroll, J W; Marzec, J M; Stelle, A M

    1982-09-15

    The objective of the decontamination effort was to place the Radioactive Materials Disposal Facility (RMDF) leach field in a condition suitable for release for unrestricted use. Radioactively contaminated soil was excavated from the leach field to produce a condition of contamination as low as reasonably achievable (ALARA). The contaminated soil was boxed and shipped to an NRC-licensed burial site at Beatty, Nevada, and to the DOE burial site at Hanford, Washington. The soil excavation project successfully reduced the contamination level in the leach field to background levels, except for less than 0.6 mCi of Sr-90 and trace amounts of Cs-137 that are isolated in cracks in the bedrock. The cracks are greater than 10 ft below the surface and have been sealed with a bituminous asphalt mastic. A pathways analysis for radiation exposure to humans from the remaining radionuclides was performed, assuming intensive home gardening, and the results show that the total first year whole body dose equivalent would be about 0.1 mrem/year. This dose equivalent is a projection for the hypothetical ingestion of vegetables grown on the site. Assuming that an average adult consumes 64 kg of green leafy vegetables per year and that the entire yearly supply could be grown on the site, the amount of ingested Sr-90 and Cs-137 is calculated to be 1100 pCi/year and 200 pCi/year. This ingested quantity would produce a total first year whole body dose equivalent of 0.10 mrem, using the accepted soil-to-plant transfer factors of 0.0172 and 0.010 for Sr-90 and Cs-137, respectively. The whole body dose equivalent exposure value of 0.1 mrem/year is far below the tentative limit established by NRC of 5 mrem/year for areas released for unrestricted use.

  3. Decontamination Systems Information and Reseach Program

    SciTech Connect

    Cook, Echol E

    1998-04-01

    The following paragraphs comprise the research efforts during the first quarter of 1998 (January 1 - March 31). These tasks have been granted a continuation from the 1997 work and will all end in June 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final reports for all of the 1997 projects will be submitted afterwards as one document. During this period, groundwater extraction operations were completed on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data have been evaluated and graphs are presented. The plot of TCE Concentration versus Time shows that the up-gradient groundwater monitoring well produced consistent levels of TCE contamination. A similar trend was observed for the down-gradient wells via grab samples tested. Groundwater samples from the PVD test pad Zone of Influence showed consistent reductions in TCE concentrations with respect to time. In addition, a natural pulse frequency is evident which will have a significant impact on the efficiency of the contaminant removal under natural groundwater advection/diffusion processes. The relationships between the PVD Extraction Flow Rate versus Cumulative Time shows a clear trend in flow rate. Consistent values between 20 to 30 g.p.m. at the beginning of the extraction duration, to less than 10 g.p.m. by the end of the extraction cycle are observed. As evidenced by the aquifer's diminishing recharge levels, the PVD extraction is affecting the response of the aquifer's natural attenuation capability. Progress was also marked on the Injection and Circulation of Potable Water Through PVDs task. Data reduction from this sequence of testing is ongoing. Work planned for next quarter includes completing the Injection / Extraction of potable water task and beginning the Surfactant Injection and removal task.

  4. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    SciTech Connect

    Poderis, Reed J.; King, Rebecca A.

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  5. 300 Area D4 Project Fiscal Year 2008 Building Completion Report

    SciTech Connect

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of eighteen buildings in the 300 Area of the Hanford Site that were demolished in Fiscal Year 2008. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  6. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    SciTech Connect

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  7. 300 Area D4 Project 1st Quarter Fiscal Year 2006 Building Completion Report

    SciTech Connect

    David S. Smith

    2006-04-20

    This report documents the deactivation, decontamination, decommissioning, and demolition of the MO-052, 3225, 334, 334A, and 334-TF Buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  8. Development of the Decontamination Approach for the West Valley Demonstration Project Decontamination Project Plan

    SciTech Connect

    Milner, T. N.; Watters, W. T.

    2002-02-25

    This paper details the development of a decontamination approach for the West Valley Demonstration Project (WVDP), Decontamination Project Plan (Plan). The WVDP is operated by West Valley Nuclear Services Company (WVNSCO), a subsidiary of Westinghouse Government and Environmental Services, and its parent companies Washington Group International and British Nuclear Fuels Limited (BNFL). The WVDP is a waste management effort being conducted by the United States Department of Energy (DOE) at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States. This facility is part of the Western New York Nuclear Service Center (WNYNSC), which is owned by the New York State Energy Research and Development Authority (NYSERDA). As authorized by Congress in 1980 through the West Valley Demonstration Project Act (WVDP Act, Public Law 96-368), the DOE's primary mission at the WVDP is to solidify high-level liquid nuclear waste safely; transport the high-level waste (HLW) to a federal repository; and decontaminate and decommission the facilities and hardware used to solidify the HLW and conduct the WVDP. This includes a provision for the disposal of low-level waste (LLW) and transuranic waste (TRU) produced during processing of the HLW. Continuation of the effort to reduce the hazard and risk associated with historic operations to the extent needed to ensure the health and safety of the public and the environment will see a change in focus from stabilization of liquid HLW to stabilization of former plutonium and uranium extraction (PUREX) reprocessing plant facilities. This will be achieved through the activities of in-cell component removal and packaging, and preparation for long-term disposal of the long- lived radionuclides. These radionuclides are associated with the former PUREX facility operations, including, and upstream from, facilities utilized in the primary separation and first plutonium/uranium split cycles. The closure

  9. Fighting Ebola with novel spore decontamination technologies for the military

    SciTech Connect

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination.

  10. Criteria for the evaluation of a dilute decontamination demonstration

    SciTech Connect

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  11. Decontamination of biological warfare agents by a microwave plasma torch

    SciTech Connect

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393 l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  12. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; ...

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized asmore » a dry mixed-chemical for bacterial spore decontamination.« less

  13. Systems analysis of decontamination options for civilian vehicles.

    SciTech Connect

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  14. Electrolytic decontamination of conductive materials for hazardous waste management

    SciTech Connect

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodium nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.

  15. Effectiveness of Spray-Based Decontamination Methods for ...

    EPA Pesticide Factsheets

    Report The objective of this project was to assess the effectiveness of spray-based common decontamination methods for inactivating Bacillus (B.) atrophaeus (surrogate for B. anthracis) spores and bacteriophage MS2 (surrogate for foot and mouth disease virus [FMDV]) on selected test surfaces (with or without a model agricultural soil load). Relocation of viable viruses or spores from the contaminated coupon surfaces into aerosol or liquid fractions during the decontamination methods was investigated. This project was conducted to support jointly held missions of the U.S. Department of Homeland Security (DHS) and the U.S. Environmental Protection Agency (EPA). Within the EPA, the project supports the mission of EPA’s Homeland Security Research Program (HSRP) by providing relevant information pertinent to the decontamination of contaminated areas resulting from a biological incident.

  16. Testing and evaluation of electrokinetic decontamination of concrete

    SciTech Connect

    DePaoli, D.W.; Harris, M.T.; Ally, M.R.

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  17. Decontamination of biological warfare agents by a microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  18. 309 Building transition plan

    SciTech Connect

    Graves, C.E.

    1994-08-31

    The preparation for decontamination and decommissioning (transition) of the 309 Building is projected to be completed by the end of the fiscal year (FY) 1998. The major stabilization and decontamination efforts include the Plutonium Recycle Test Reactor (PRTR), fuel storage and transfer pits, Transfer Waste (TW) tanks and the Ion Exchange Vaults. In addition to stabilizing contaminated areas, equipment, components, records, waste products, etc., will be dispositioned. All nonessential systems, i.e., heating, ventilation, and air conditioning (HVAC), electrical, monitoring, fluids, etc., will be shut down and drained/de-energized. This will allow securing of the process, laboratory, and office areas of the facility. After that, the facility will be operated at a level commensurate with its surveillance needs while awaiting D&D. The implementation costs for FY 1995 through FY 1998 for the transition activities are estimated to be $1,070K, $2,115K, $2,939K, and $4,762K, respectively. Costs include an assumed company overhead of 20% and a 30% out year contingency.

  19. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    SciTech Connect

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  20. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOEpatents

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  1. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    SciTech Connect

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  2. Electron beam irradiation for biological decontamination of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  3. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  4. Fundamental study of cesium decontamination from soil by superconducting magnet

    NASA Astrophysics Data System (ADS)

    Igarashi, Susumu; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2013-11-01

    The radioactive substances have been spread out all over the surrounding area of Fukushima Daiichi Nuclear Power Plant caused by the accident in March 2011. Decontamination and volume reduction of radioactive substances, especially cesium ion, are desired issue. This study proposed a decontamination method of the soil by the magnetic separation using superconducting magnet. Cesium ion was adsorbed by Prussian blue in the potassium iodide solution. We succeeded in separating selectively the cesium ion-adsorbed Prussian blue out of the liquid phase by high gradient magnetic separation. High recovery ratio of the Prussian blue was achieved by this method.

  5. 2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PHOSPHATE UNLOADING BUILDING. VIEW IS TO THE NORTH. THIS STRUCTURE WAS RELOCATED TO THE SOUTH OF ITS ORIGINAL SITE IN 1993 FOR USE AS A DECONTAMINATION FACILITY WITHIN THE BUNKER HILL SUPERFUND SITE. - North Idaho Phosphate Company, Silver King Community, Kellogg, Shoshone County, ID

  6. 4. WASTE CALCINING FACILITY, LOOKING AT WEST SIDE OF BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WASTE CALCINING FACILITY, LOOKING AT WEST SIDE OF BUILDING. CAMERA FACING EAST. ROLL UP DOOR AND BRIDGE CRANE ARE IN CENTER OF VIEW. TANK NEAR WALL OF DECONTAMINATION ROOM FACILITATED FILLING OF THE ADSORBER VESSELS WITH SILICA GEL. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  7. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    SciTech Connect

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  8. Development of waste minimization and decontamination technologies at the Idaho Chemical Processing Plant

    SciTech Connect

    Ferguson, R.L.; Archibald, K.E.; Demmer, R.L.

    1995-11-01

    Emphasis on the minimization of decontamination secondary waste has increased because of restrictions on the use of hazardous chemicals and Idaho Chemical Processing Plant (ICPP) waste handling issues. The Lockheed Idaho Technologies Co. (LITCO) Decontamination Development Subunit has worked to evaluate and introduce new performed testing, evaluations, development and on-site demonstrations for a number of novel decontamination techniques that have not yet previously been used at the ICPP. This report will include information on decontamination techniques that have recently been evaluated by the Decontamination Development Subunit.

  9. 4. ARAI Shop and maintenance building ARA627. West side and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. ARA-I Shop and maintenance building ARA-627. West side and north end. Camera facing southeast. Shows original (lower roofed section) and later addition. Metal building next to south end is related to decontamination and demolition activities. Ineel photo no. 1-7. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  10. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  11. Pulse lavage washing in decontamination of allografts improves safety.

    PubMed

    Hirn, M; Laitinen, M; Vuento, R

    2003-01-01

    We analyzed the bacterial contamination rate of 140 femoral head allografts after rinsing the allografts in different decontamination solutions. Bacterial screening methods and cleansing effect of antibiotics (cefuroxime and rifampicin) and pulse lavage were compared. Swabbing and taking small pieces of bone for culture were the screening methods used. Both methods proved to be quite unreliable. Approximately one-fourth of the results were false negative. Culturing small pieces of bone gave the most accurate and reliable results and, therefore, can be recommended as a bacterial screening method. The use of antibiotics in allograft decontamination is controversial. In prophylactic use antibiotics include risks of allergic reactions and resistant development and our results in the present study show that antibiotics do not improve the decontamination any better than low-pressure pulse lavage with sterile saline solution. Therefore, pulse lavage with sterile saline solution can be recommended for allograft decontamination. Our results demonstrate that it decreases bacterial bioburden as effectively as the antibiotics without persisting the disadvantages.

  12. Decontamination and melting of low-level waste

    SciTech Connect

    Clements, D.W.

    1997-03-01

    This article describes the decommissioning project of the Capenhurst Diffusion Plant in Europe. Over 99 percent of the low-level waste was successfully treated and recycled. Topics include the following: decommissioning philosophy; specialized techniques including plant pretreatment, plant dismantling, size reduction, decontamination, melting, and encapsulation of waste; recycled materials and waste stream; project safety; cost drivers and savings. 5 refs., 5 figs.

  13. Atmospheric-pressure plasma decontamination/sterilization chamber

    SciTech Connect

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  14. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium hydroxide at a pH between 9 and 12, or water containing 5 percent sodium hydroxide by weight. (iv... paragraph (h) of this section. (6) Any person engaging in decontamination under this section is responsible... filter media and desiccant in the air dyers based on their existing PCB concentration. (ii) Test...

  15. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium hydroxide at a pH between 9 and 12, or water containing 5 percent sodium hydroxide by weight. (iv... paragraph (h) of this section. (6) Any person engaging in decontamination under this section is responsible... filter media and desiccant in the air dyers based on their existing PCB concentration. (ii) Test...

  16. Development of Novel Decontamination Techniques for Explosive Contaminated Facilities

    DTIC Science & Technology

    1984-08-01

    underground storage tanks , wastewater/ sludge sumps ventilation ducts, conduits and related explosive/munition production. The decontamination involves the removal of explosives from exposed surfaces of the materials as well as explosives that have penetrated porous media, cracks, and expansion joints. Site inspections have been performed and the contaminated structures include a wide range of concrete and wood frame

  17. The Ultimate Hacker: SETI Signals May Need to Be Decontaminated

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A., Jr.

    2004-06-01

    Biological contamination from space is a remote but recognized possibility. SETI signals might also contain harmful information. Some argue that a SETI signal could not contaminate a terrestrial computer because the idiosyncratic computer logic and code constitute an impenetrable firewall. Suggestions are given below on how to probe these arguments and decontaminate SETI signals.

  18. Minimal impact, waterless decontamination technologies for improving food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen contamination of produce, meats, poultry, shellfish, and other foods remains an ongoing concern. Chemical sanitizers are widely employed for foods and food contact surfaces. However, there is growing interest in the development of minimal impact, waterless decontamination processes that wil...

  19. 10. INTERIOR VIEW OF DECONTAMINATION ROOM ON MAIN FLOOR. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF DECONTAMINATION ROOM ON MAIN FLOOR. CAMERA FACING SOUTH. NOTE DRAIN PAN ON FLOOR. THIS WAS THE ONLY PROCESS-RELATED ROOM ACCESSIBLE TO PHOTOGRAPHER. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  20. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  1. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  2. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  3. [Decontamination of dental unit waterlines using disinfectants and filters].

    PubMed

    Monarca, S; Garusi, G; Gigola, P; Spampinato, L; Zani, C; Sapelli, P L

    2002-10-01

    Bacterial contamination of the dental unit water system can become a health problem for patients, particularly if they are immunodepressed. The present study has had the purpose of evaluating the effectiveness of methods of chemical decontamination using different disinfectants (peracetic acid, hydrogen peroxide, silver salts, chloramine T, glutaraldehyde T4) and methods of physical decontamination using synthetic membranes for the filtration of water. A preliminary removal procedure of the biofilm present in the waterline has been followed in a dental unit prepared on purpose for the research; subsequently different 2-week long maintenance procedures were applied using disinfectants injected by a pump and finally the bacterial contamination of the water flowing from the waterline was evaluated. The physical decontamination was performed using 0.22 mm membrane filters, which have been installed also in another dental unit, and the filtered water was analyzed to detect bacterial contamination. The preliminary procedure of biofilm removal succeeded obtaining germ-free water. Among the disinfectants used for the maintenance of the water quality only glutaraldehyde T4 was able to reduce the bacterial contamination under the limit suggested by the ADA. The membrane filter system was not able to purify the water, but when a disinfectant (peracetic acid) was used in the last part of the waterline good results were obtained. At present no decontamination system of dental waterline is available, and glutaraldehyde T4 seems to be the best disinfectant only if integrated with periodic biofilm removal for the maintenance of the water quality.

  4. Pesticides water decontamination in oxygen-limited conditions.

    PubMed

    Suciu, Nicoleta Alina; Ferrari, Federico; Vasileiadis, Sotirios; Merli, Annalisa; Capri, Ettore; Trevisan, Marco

    2013-01-01

    This study was undertaken to develop a laboratory bioreactor, with a functioning principle similar with that of biobed systems but working in oxygen-limited conditions, suitable for decontaminating wastewater mixtures with pesticides. The system is composed by two cylindrical plastic containers. The first one, where the pesticides solution is collected, is open, whereas the second one, where the biomass is disposed, is closed. The pesticides solution was pumped at the biomass surface and subsequently recollected and disposed in the first container. Four pesticides with different physical-chemical characteristics were tested. The results obtained showed a relatively good capacity of the developed prototype to decontaminate waste water containing the mixture of pesticides. The time of the experiment, the number of cycles that the solution made in the system and the environmental temperature have a significantly influence for the decontamination of acetochlor and chlorpyrifos whereas for the decontamination of terbuthylazine and metalaxyl no significant influence was observed. Even if the present prototype could represent a valid solution to manage the water pesticides residues in a farm and to increase the confidence of bystanders and residents, the practical difficulties when replacing the biomass could represent a limit of the system.

  5. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    SciTech Connect

    Nelson, J. L.; Divine, J. R.

    1981-05-01

    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  6. Plasma Decontamination of Space Equipment for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  7. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  8. Nonacid meat decontamination technologies: model studies and commercial applications.

    PubMed

    Sofos, J N; Smith, G C

    1998-11-10

    Increased consumer awareness and concern about microbial foodborne diseases has resulted in intensified efforts to reduce contamination of raw meat, as evidenced by new meat and poultry inspection regulations being implemented in the United States. In addition to requiring operation of meat and poultry slaughtering and processing plants under the principles of the hazard analysis critical control point (HACCP) system, the new regulations have established microbiological testing criteria for Escherichia coli and Salmonella, as a means of evaluating plant performance. These developments have renewed and intensified interest in the development and commercial application of meat and poultry decontamination procedures. Technologies developed and evaluated for decontamination include live animal cleaning/washing, chemical dehairing, carcass knife-trimming to remove physical contaminants, steam/hot water-vacuuming for spot-cleaning/decontamination of carcasses, spray washing/rinsing of carcasses with water of low or high pressures and temperatures or chemical solutions, and exposure of carcass sides to pressurized steam. Under appropriate conditions, the technologies applied to carcasses may reduce mean microbiological counts by approximately one-three log colony forming units (cfu)/cm2, and some of them have been approved and are employed in commercial applications (i.e., steam-vacuuming; carcass spray-washing with water, chlorine, organic acid or trisodium phosphate solutions; hot water deluging/spraying/rinsing, and pressurized steam). The contribution of these decontamination technologies to the enhancement of food safety will be determined over the long term, as surveillance data on microbial foodborne illness are collected. This review examines carcass decontamination technologies, other than organic acids, with emphasis placed on recent advances and commercial applications.

  9. Decontamination Systems Information and Research Program

    SciTech Connect

    Cook, Echol E; Beatty, Tia Maria

    1998-07-01

    The following paragraphs comprise the research efforts during the second quarter of 1998 (April 1 - June 30.) These tasks have been granted a continuation until the end of August 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final draft technical reports will be the next submission. During this period, work was completed on the Injection and Circulation of Potable Water Through PVDs on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data has been evaluated and representative graphs are presented. The plot of Cumulative Injected Volume vs. Cumulative Week Time show the ability to consistently inject through the two center PVDs at a rate of approximately ten (10) gallons per hour. This injection rate was achieved under a static head that varied from five (5) feet to three (3) feet. The plot of Extracted Flow Rate vs. Cumulative Week Time compares the extraction rate with and without the injection of water. The injection operation was continuous for eight hour periods while the extraction operation was executed over a pulsing schedule. Extraction rates as high as forty-five (45) gallons per hour were achieved in conjunction with injection (a 350% increase over no injection.) The retrieved TCE in the liquid phase varied to a considerable degree depending on the pulsing scheme, indicating a significant amount of stripping (volatilization) took place during the extraction process. A field experiment was conducted to confirm this. A liquid sample was obtained using the same vacuum system used in the pad operation and a second liquid sample was taken by a bailer. Analyzation of TCE concentration showed 99.5% volatilization when the vacuum system was used for extraction. This was also confirmed by data from the air monitoring program which indicated that 92%-99% of the retrieved TCE was being

  10. VIEW OF BUILDING 122 WHICH HOUSES THE ONSITE MEDICAL FACILITIES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 122 WHICH HOUSES THE ON-SITE MEDICAL FACILITIES OF THE ROCKY FLATS PLANT AND THE OCCUPATIONAL HEALTH AND INTERNAL DOSIMETRY ORGANIZATIONS. EMERGENCY MEDICAL SERVICES, DIAGNOSIS, DECONTAMINATION, FIRST AID, X-RAY, MINOR SURGICAL TREATMENT, AND AMBULATORY ACTIVITIES ARE CARRIED OUT IN THIS BUILDING. (1/98) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO

  11. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    SciTech Connect

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  12. Fighting Ebola with novel spore decontamination technologies for the military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  13. Fighting Ebola with novel spore decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  14. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    PubMed

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed.

  15. Decontamination of chemical tracers in droplets by a submerging thin film flow

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; McEvoy, Harry; Dalziel, Stuart B.

    2016-11-01

    We investigate the decontamination of chemical tracers contained in small viscous drops by a submerging falling film. This problem has applications in the decontamination of hazardous chemicals, following accidental releases or terrorist attacks. Toxic droplets lying on surfaces are cleaned by spraying a liquid decontaminant over the surface. The decontaminant film submerges the droplets, without detaching them, in order to neutralize toxic chemicals in the droplets. The decontamination process is controlled by advection, diffusion and reaction processes near the drop-film interface. Chemical tracers dissolve into the film flow forming a thin diffusive boundary layer at the interface. The chemical tracers are then neutralized through a reaction with a chemical decontaminant transported in the film. We assume in this work that the decontamination process occurs mainly in the film phase owing to low solubility of the decontaminant in the drop phase. We analyze the impact of the reaction time scale, assuming first-order reaction, in relation with the characteristic advection and diffusion time scales in the case of a single droplet. Using theoretical, numerical and experimental means, we find that the reaction time scale need to be significantly smaller than the characteristic time scale in the diffusive boundary layer in order to enhance noticeably the decontamination of a single toxic droplet. We discuss these results in the more general case of the decontamination of a large number of droplets. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  16. The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure.

    PubMed

    Joosen, M J A; van den Berg, R M; de Jong, A L; van der Schans, M J; Noort, D; Langenberg, J P

    2017-04-01

    The main goal of the present study was to obtain insight into depot formation and penetration following percutaneous VX poisoning, in order to identify an appropriate decontamination window that can enhance or support medical countermeasures. The study was executed in two phases, using the hairless guinea pig as an animal model. In the first phase the effect of various decontamination regimens on levels of free VX in skin and plasma were studied as well as on blood cholinesterase levels. Animals were exposed to 0.5 mg/kg VX and were not decontaminated (control), decontaminated with RSDL once at 15 or 90 min after exposure or three times at 15, 25 and 35 (10-min interval) or 15, 45 and 75 min after exposure (30-min interval). There was no significant effect of any of the decontamination regimens on the 6-h survival rate of the animals. However, all animals that had been decontaminated 15 min after exposure, showed a survival rate of more than 90%, compared to 50-60% in animals that were not decontaminated or decontaminated at 90 min after exposure. In the second phase of the study, hairless guinea pigs were exposed to 1 mg/kg VX on the shoulder, followed either by decontamination with RSDL (10 min interval), conventional treatment on indication of clinical signs or a combination thereof. It appeared that a thorough, repeated decontamination alone could not save the majority of the animals. A 100% survival rate was observed in the group that received a combination of decontamination and treatment. In conclusion, the effects of VX exposure could be influenced by various RSDL decontamination regimens. The results in freely moving animals showed that skin decontamination, although not fully effective in removing all VX from the skin and skin depot is crucial to support pharmacological intervention.

  17. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    PubMed

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin.

  18. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-11-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    SciTech Connect

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-03-05

    The Department of Energy`s (DOE) Office of Science and Technology Decontamination and Decommissioning (D&D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D&D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D&D Focus Area`s approach to verifying the benefits of the improved D&D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD`s awarded by the D&D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP`s selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP`s Plant 1 D&D Project which was an ongoing D&D Project for which a firm fixed price contract had been issued to the D&D Contractor. Thus, interferences with the baseline D&D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D&D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of {open_quotes}winners.{close_quotes} All demonstrated, technologies will be evaluated for incorporation into the FEMP`s baseline D&D strategy.

  20. Application of PHADEC method for the decontamination of radioactive steam piping components

    SciTech Connect

    Lo Frano, R.; Pilo, F.; Aquaro, D.

    2013-07-01

    The dismantling of nuclear plants is a complex activity that originates often a large quantity of radioactive contaminated residue. In this paper the attention was focused on the PHADEC (Phosphoric Acid Decontamination) plant adopted for the clearance of Caorso NPP (in Italy) metallic systems and components contaminated by Co{sup 60} (produced by the neutron capture in the iron materials), like the main steam lines, moisture separator of the turbine buildings, etc.. The PHADEC plant consists in a chemical off line treatment: the crud, deposited along the steam piping during life plant as an example, is removed by means of acid attacks in ponds coupled to a high pressure water washing. Due to the fact that the removed contaminated layers, essentially, iron oxides of various chemical composition, depend on components geometry, type of contamination and time of treatment in the PHADEC plant, it becomes of meaningful importance to suggest a procedure capable to improve the control of the PHADEC process parameters. This study aimed thus at the prediction and optimization of the mentioned treatment time in order to improve the efficiency of the plant itself and to achieve, in turn, the minimization of produced wastes. To the purpose an experimental campaign was carried out by analysing several samples, i.e. taken along the main steam piping line. Smear tests as well as metallographic analyses were carried out in order to determine respectively the radioactivity distribution and the crud composition on the inner surface of the components. Moreover the radioactivity in the crud thickness was measured. These values allowed finally to correlate the residence time in the acid attack ponds to the level of the achieved decontamination. (authors)

  1. Decontamination analysis of the NUWAX-83 accident site using DECON

    SciTech Connect

    Tawil, J.J.

    1983-11-01

    This report presents an analysis of the site restoration options for the NUWAX-83 site, at which an exercise was conducted involving a simulated nuclear weapons accident. This analysis was performed using a computer program deveoped by Pacific Northwest Laboratory. The computer program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are used in this report demonstrate its potential usefulness as a site restoration planning tool. Strategies that are analyzed with DECON include: (1) employing a Quick-Vac option, under which selected surfaces are vacuumed before they can be rained on; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring specific methods to be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying of the cleanup standards according to expected exposure to surface.

  2. Cefuroxime, rifampicin and pulse lavage in decontamination of allograft bone.

    PubMed

    Hirn, M; Laitinen, M; Pirkkalainen, S; Vuento, R

    2004-03-01

    The risk of bacterial infection through allogenic bone transplantation is one of the major problems facing tissue banks. Different screening methods and decontamination procedures are being used to achieve a safe surgical result. The purpose of this study was to investigate the contamination rate in fresh frozen bone allografts after treating them with different decontamination methods. The allografts were contaminated by rubbing on the operating theatre floor for 60 min, after which they were rinsed either with sterile physiological saline, cefuroxime or rifampicin solution or they were washed with low-pressure pulse lavage of sterile physiological saline. Our findings show that low-pressure pulse lavage with sterile saline solution is very effective in removing bacteria from bone allograft, when compared with the antibiotic solutions tested.

  3. Characteristics of low-level radioactive decontamination waste

    SciTech Connect

    Akers, D.W.; McConnell, J.W. Jr.; Morcos, N. )

    1993-02-01

    This document addresses the work performed during fiscal year 1992 at the Idaho National Engineering Laboratory by the Low-Level Radioactive Waste -- Decontamination Waste Program (FIN A6359), which is funded by the US Nuclear Regulatory Commission. The program evaluates the physical stability and leachability of solidified waste streams generated in the decontamination process of primary coolant systems in operating nuclear power stations. The data in this document include the chemical composition and characterization of waste streams from Peach Bottom Atomic Power Station Unit 3 and from Nine Mile Point Nuclear Plant Unit 1. The results of compressive strength testing on immersed and unimmersed solidified waste-form specimens from peach Bottom, and the results of leachate analysis are addressed. Cumulative fractional release rates and leachability indexes of those specimens were calculated and are included in this report.

  4. Testing of a portable ultrahigh pressure water decontamination system (UHPWDS)

    SciTech Connect

    Lovell, A.; Dahlby, J.

    1996-02-01

    This report describes the tests done with a portable ultrahigh pressure water decontamination system (UHPWDS) on highly radioactively contaminated surfaces. A small unit was purchased, modified, and used for in-situ decontamination to change the waste level of the contaminated box from transuranic (TRU) waste to low- level waste (LLW). Low-level waste is less costly by as much as a factor of five or more if compared with TRU waste when handling, storage, and disposal are considered. The portable unit we tested is commercially available and requires minimal utilities for operation. We describe the UHPWDS unit itself, a procedure for its use, the results of the testing we did, and conclusions including positive and negative aspects of the UHPWDS.

  5. Decontamination and Decommissioning activities photobriefing book FY 1997

    SciTech Connect

    1998-04-01

    The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

  6. Decontamination of the Plum Brook Reactor Facility Hot Cells

    SciTech Connect

    Peecook, K.M.

    2008-07-01

    The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

  7. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  8. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination

    SciTech Connect

    Samuel Traina; Shankar Sharma

    2005-07-12

    The Department of Energy has a goal of decontaminating an estimated 180,000 metric tons of metal wastes in various surplus facilities. Uranium (U) and other radioactive actinides and lanthanides are embedded within the mixed oxide structures of the passivity layers of corroded iron and steel. These toxic metals can be dissolved out of the surface layers by a naturally occurring bacterial siderophore called Desferrioxamine B (DFB). DFB is a trihydroxamate ligand with one amine and three hydroxamate groups, which chelates with metals through hydroxamate coordination. Complexation of DFB with U can be utilized in decontamination strategy of the passivity layers. Therefore, we have been studying reactions of uranyl U(VI) with zerovalent iron (Fe0) followed by dissolution by DFB. The objectives were to determine the structure and speciation of solution and solid phases of U and to assess the effectiveness of DVB in U dissolution.

  9. High-Power Ultrasound in Surface Cleaning and Decontamination

    NASA Astrophysics Data System (ADS)

    Awad, Sami B.

    High-power ultrasound is being widely utilized for decontamination in different industrial applications. The same technology is also being investigated as an effective tool for cleaning of components in the decontamination of produce. An understanding of the basic technology and how it works in cleaning various industrial parts should help in applying it on a large scale in the food industry. The technology has evolved throughout the past four decades. Different frequencies were developed and are now industrially available. The frequency range is from 20 kHz to 1 MHz. Current sound technology provides a uniform ultrasonic activity throughout the cleaning vessel, which was a major disadvantage in the earlier technology. The two main driving forces that affect cleaning of surfaces are cavitation and acoustic streaming. Both are generated as a result of the direct interaction of high-frequency sound waves with fluids.

  10. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    SciTech Connect

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  11. Laser-based characterization and decontamination of contaminated facilities

    SciTech Connect

    Leong, K.H.; Hunter, B.V.; Grace, J.E.; Pellin, M.J.; Leidich, H.F.; Kugler, T.R.

    1996-12-31

    This study examines the application of laser ablation to the characterization and decontamination of painted and unpainted concrete and metal surfaces that are typical of many facilities within the US Department of Energy complex. The utility of this promising technology is reviewed and the essential requirements for efficient ablation extracted. Recent data obtained on the ablation of painted steel surfaces and concrete are presented. The affects of beam irradiance, ablation speed and efficiency, and characteristics of the aerosol effluent are discussed. Characterization of the ablated components of the surface offers the ability of concurrent determination of the level of contamination. This concept can be applied online where the ablation endpoint can be determined. A conceptual system for the characterization and decontamination of surfaces is proposed.

  12. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-12-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities.

  13. Portable UV light as an alternative for decontamination.

    PubMed

    Petersson, Lasse Per; Albrecht, Urs-Vito; Sedlacek, Ludwig; Gemein, Stefanie; Gebel, Jürgen; Vonberg, Ralf-Peter

    2014-12-01

    We evaluated the capability of a commercially available hand-held device that emits ultraviolet (UV) light to disinfect plain surfaces. Eight bacterial species were tested, including Clostridium difficile ribotype 027 and 3 other spore-forming species. Even bacterial spores could be successfully inactivated within a few seconds of irradiation. UV light may provide an alternative for the decontamination of medical products, such as mobile phones or tablet computers, that cannot be treated otherwise.

  14. Decontamination Of Bacterial Spores by a Peptide-Mimic

    DTIC Science & Technology

    2006-11-01

    germination. Rode and Foster (1961) studied dodecylamine induced germination of Bacillus megaterium by following optical density changes in spore...from the four Bacillus organisms is shown at four different temperatures and various times. 5 Bacillus megaterium 30 60 90 120 150 180 210 240 Fr... Bacillus anthracis, has called urgent attention to detailed studies of bacterial spores, especially from the point of view of their decontamination

  15. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    SciTech Connect

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah River Site to demonstrate

  16. Decontamination Technologies for Emerging CBRNE Agents: Scoping Study

    DTIC Science & Technology

    2014-05-01

    persistent organic pollutants . For ENPs, the vulnerability was determined to be extreme for Al/Fe2O3, Al/CuO, Al/ammonium perchlorate and high for Al...materials. For sensitive equipment materials, the efficiency ranged from 41.9% to 100.0%. For plastic keyboards, diazinon was the easiest OP compound...trials to identify, optimize and demonstrate advanced decontamination technologies; 2) investigate the persistence of target agents on different

  17. Development of a Portable Binary Chlorine Dioxide Generator for Decontamination

    DTIC Science & Technology

    2010-03-01

    Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...2006 - 31-Dec-2009 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Final Report for Development of a Portable Chlorine Dioxide W911NF-06-1-0502 Generator...SUBJECT TERMS chlorine dioxide, generator, decontamination 16. SECURITY CLASSIFICATION OF: a. REPORT b.ABSTRACT c. THIS PAGE uu uu uu 17. LIMITATION

  18. Mechanistic Studies of Flavivirus Inhibition and Nanoparticle-Catalyzed Decontamination

    DTIC Science & Technology

    2016-06-01

    catalysts made from titanium oxide nano-materials. We used voltage activation of our TiO2 materials to create a novel germicide, and we described a...disinfection systems, we have extended our decontamination work with catalysts made from titanium oxide nano-materials. We used voltage activation...in many aspects like a fusion catalyst . Because they effect a macromolecular process that involves large scale conformational changes in the

  19. Methods for Decontamination of a Bipropellant Propulsion System

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2012-01-01

    Most propulsion systems are designed to be filled and flown, draining can be done but decontamination may be difficult. Transport of these systems may be difficult as well because flight weight vessels are not designed around DOT or UN shipping requirements. Repairs, failure analysis work or post firing inspections may be difficult or impossible to perform due to the hazards of residual propellants being present.

  20. Chemical Warfare Agent Decontamination Foaming Composition and Method

    DTIC Science & Technology

    2000-03-22

    Suitable oxidizers include other peroxy or hydroperoxy compounds, including, e.g., the acids and salts of peracetate , perborate monohydrate, perborate...foaming decontaminating composition comprises a pH adjustor. Suitable pH adjustors include hydrochloric acid , toluenesulfonic acid , and combinations...composition ranging from about 8 or greater, with a preferred pH ranging from about 8 to about 10. Suitable acids for lowering the pH (increasing acidity

  1. Decontamination efficacy of three commercial-off-the-shelf (COTS) sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis.

    PubMed

    Edmonds, Jason M; Sabol, Jonathan P; Rastogi, Vipin K

    2014-01-01

    In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation's remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types.

  2. Decontamination Efficacy of Three Commercial-Off-The-Shelf (COTS) Sporicidal Disinfectants on Medium-Sized Panels Contaminated with Surrogate Spores of Bacillus anthracis

    PubMed Central

    Sabol, Jonathan P.

    2014-01-01

    In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation’s remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types. PMID:24940605

  3. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    SciTech Connect

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  4. Leachability of decontamination reagents from cement waste forms

    SciTech Connect

    Piciulo, P.L.; Davis, M.S.; Adams, J.W.

    1984-11-26

    Brookhaven National Laboratory, in order to provide technical information needed by the US Nuclear Regulatory Commission to evaluate the adequacy of near-surface disposal of decontamination wstes, has begun to study the leachability of organic reagents from solidified simulated decontamination wastes. Laboratory-scale cement waste forms containing EDTA, picolinic acid or simulated LOMI decontamination reagent were leach tested. Samples containing an organic reagent on either mixed bed ion-exchange resins or anion exchange resins were tested. A fixed interval leach procedure was used, as well as the standard procedure ANS 16.1. The leachability indices measured for the release of the acid from resin/cement composites are: 10.1 for EDTA on mixed bed resins; 9.1 for picolinic acid on mixed bed resins; 9.2 for picolinic acid on anion exchange resins; 8.8 for picolinic acid in forms containing simulated low oxidation metallic ion (LOMI) reagent on mixed bed resins and 8.7 for picolinic acid in forms containing simulated LOMI reagent on anion exchange resins. The leachability indices measured varied with leach time and the data indicate that the release mechanism may not be simply diffusion controlled. 5 references, 2 tables.

  5. Assessment of strippable coatings for decontamination and decommissioning

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  6. Atmospheric Pressure Plasma Jet for Chem/Bio Warfare Decontamination

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Henins, Ivars; Park, Jaeyoung; Selwyn, Gary S.

    1999-11-01

    Atmospheric Pressure Plasma Jet (APPJ) technology may provide a much needed method of CBW decontamination which, unlike traditional decon methods, is dry and nondestructive to sensitive equipment and materials. The APPJ discharge uses a high-flow feedgas consisting primarily of an inert carrier gas, such as He, and a small amount of a reactive additive, such as O2, which flows between capacitively-coupled electrodes powered at 13.56 MHz. The plasma generates highly reactive metastable and atomic species of oxygen which are then directed onto a contaminated surface. The reactive effluent of the APPJ has been shown to effectively neutralize VX nerve agent as well as simulants for anthrax and mustard blister agent. Research efforts are now being directed towards reducing He consumption and increasing the allowable stand-off distance. Recent results demonstrate that by replacing the O2 reactive additive with CO2, ozone formation is greatly reduced. This has the result of extending the lifetime of atomic oxygen by an order of magnitude or more. A recirculating APP Decon Chamber which combines heat, vacuum, forced convection and reactivity is currently being developed for enhanced decontamination of sensitive equipment. Several techniques are also being evaluated for use in an APP Decon Jet for decontamination of items which cannot be placed inside a chamber.

  7. Methyl parathion in residential properties: relocation and decontamination methodology.

    PubMed Central

    Clark, J Milton; Bing-Canar, John; Renninger, Steve; Dollhopf, Ralph; El-Zein, Jason; Star, Dave; Zimmerman, Dea; Anisuzzaman, Abul; Boylan, Kathline; Tomaszewski, Terrence; Pearce, Ken; Yacovac, Rebecca; Erlwein, Bobby; Ward, John

    2002-01-01

    In November 1994 methyl parathion (MP), a restricted agricultural pesticide, was discovered to have been illegally sprayed within hundreds of residences in Lorain County, Ohio. Surface levels and air concentrations of MP revealed detectable levels of the pesticide 3 years after spraying. Because of the high toxicity of MP (lethal dose to 50% of rats tested [LD50] = 15 mg/kg) and long half-life indoors, risk-based relocation and decontamination criteria were created. Relocation criteria were derived based on levels of p-nitrophenol in urine, a metabolic byproduct of MP exposure. In Ohio, concentrations of MP on surfaces and in the air were also used to trigger relocations. The criteria applied in Ohio underwent refinement as cases of MP misuse were found in Mississippi and then in several other states. The MP investigation (1994-1997) was the largest pesticide misuse case in the nation, ultimately involving the sampling of 9,000 residences and the decontamination of 1,000 properties. This article describes the methodology used for relocation of residents and decontamination of properties having MP. PMID:12634141

  8. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  9. Innovative decontamination technology by abrasion in vibratory vessels

    SciTech Connect

    Fabbri, Silvio; Ilarri, Sergio

    2007-07-01

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  10. Decontamination Methods Used for Dental Burs – A Comparative Study

    PubMed Central

    Hugar, Deepa; Hugar, Santosh; Ranjan, Shashi; Kadani, Megha

    2014-01-01

    Aims and Objectives: Infection control and modes of sterilizations are the key factors to avoid cross transmission of infection in the field of dentistry. Transmission of disease or infection is noted with improper sterilization of reused instruments. Dental burs are the most important tool in any endodontic or conservative procedures of teeth involving tooth contouring, restorative filling procedures and endodontic procedures. Hence, the present study is undertaken to assess the efficacy of different methods of sterilization or decontamination which are routinely used in dental clinics. Materials and Methods: For the present study 96 round diamond burs were selected and divided into 6 groups. These burs were used for the access cavity preparation to get contamination and subjected for bacteriological culture. After getting base line date burs were subjected to manual scrubbing, hot air oven, glass bead sterilizer, ultrasonic cleaner and autoclave to get post decontamination data. Results: The study revealed that mean colony forming units/ml of Streptococcus mutans decreased maximum for autoclave with 80% reduction, for Lactobacilli 76% reduction and for Candida albicans maximum reduction seen for glass bead sterilizer with 74%. Conclusion: Findings of our study revealed that none of the methods used were found to be absolutely efficacious in the decontamination of dental burs. However, among the experimental groups used in the present study, autoclave was found to be the relatively best method. PMID:25121062

  11. Decontamination of mass casualties--re-evaluating existing dogma.

    PubMed

    Levitin, Howard W; Siegelson, Henry J; Dickinson, Stanley; Halpern, Pinchas; Haraguchi, Yoshikura; Nocera, Anthony; Turineck, David

    2003-01-01

    The events of 11 September 2001 became the catalyst for many to shift their disaster preparedness efforts towards mass-casualty incidents. Emergency responders, healthcare workers, emergency managers, and public health officials worldwide are being tasked to improve their readiness by acquiring equipment, providing training and implementing policy, especially in the area of mass-casualty decontamination. Accomplishing each of these tasks requires good information, which is lacking. Management of the incident scene and the approach to victim care varies throughout the world and is based more on dogma than scientific data. In order to plan effectively for and to manage a chemical, mass-casualty event, we must critically assess the criteria upon which we base our response. This paper reviews current standards surrounding the response to a release of hazardous materials that results in massive numbers of exposed human survivors. In addition, a significant effort is made to prepare an international perspective on this response. Preparations for the 24-hour threat of exposure of a community to hazardous material are a community responsibility for first-responders and the hospital. Preparations for a mass-casualty event related to a terrorist attack are a governmental responsibility. Reshaping response protocols and decontamination needs on the differences between vapor and liquid chemical threats can enable local responders to effectively manage a chemical attack resulting in mass casualties. Ensuring that hospitals have adequate resources and training to mount an effective decontamination response in a rapid manner is essential.

  12. Current concepts for oil decontamination of crush injuries: a review

    PubMed Central

    2014-01-01

    This anecdotal, non-systematic review serves to explore the principles and methods of effective oil decontamination from cutaneous wounds, particularly crush injuries. The current expansion of the petroleum industry is necessary to meet increasing world demands for oil. Most stages of oil refining and applications involve significant injury risks, particularly for crush injuries that become contaminated with petroleum compounds. A literature review regarding a standard of care for effective cutaneous oil decontamination is lacking. Based on case reports, animal models, and in vitro studies identified in our expert opinion review, standard water and soap cleansing may not be an appropriate approach. Instead, the principle of ‘like dissolves like’ guides the use of lipophilic, petroleum-derived solvents to attract and subsequently dissolve the petroleum contaminant from the skin injury. Limitations include paucity of and dated literature sources regarding the topic as well as no models specifically addressing crush injuries. Our literature review found that oil decontamination of cutaneous injuries may be best accomplished with oil-based cleansers. Certainly, this topic has significant importance for the potentially carcinogenic petroleum compounds that pervade virtually every aspect of modern human life. PMID:24855490

  13. Compatibility and Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard

    DTIC Science & Technology

    2014-05-01

    COMPATIBILITY AND DECONTAMINATION OF HIGH-DENSITY POLYETHYLENE EXPOSED TO SULFUR MUSTARD ECBC-TR-1235...Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...study to determine the compatability of high-density polyethylene (HDPE) with liquid mustard (HD) material and decontamination of HDPE when exposed

  14. Heat stress control in the TMI-2 (Three Mile Island Unit 2) defueling and decontamination activities

    SciTech Connect

    Schork, J.S.; Parfitt, B.A.

    1988-01-01

    During the initial stages of the Three Mile Island Unit 2 (TMI-2) defueling and decontamination activities for the reactor building, it was realized that the high levels of loose radioactive contamination would require the use of extensive protective clothing by entry personnel. While there was no doubt that layered protective clothing protects workers from becoming contaminated, it was recognized that these same layers of clothing would impose a very significant heat stress burden. To prevent the potentially serious consequences of a severe reaction to heat stress by workers in the hostile environment of the TMI-2 reactor building and yet maintain the reasonable work productivity necessary to perform the recovery adequately, an effective program of controlling worker exposure to heat stress had to be developed. Body-cooling devices produce a flow of cool air, which is introduced close to the skin to remove body heat through convection and increased sweat evaporation. The cooling effect produced by the Vortex tube successfully protected the workers from heat stress, however, there were several logistical and operational problems that hindered extensive use of these devices. The last type of cooling garment examined was the frozen water garment (FWG) developed by Elizier Kamon at the Pennsylvania State University as part of an Electric Power Research Institute research grant. Personal protection, i.e., body cooling, engineering controls, and administrative controls, have been implemented successfully.

  15. Summary of the Hanford Site decontamination, decommissioning, and cleanup, FY 1974--FY 1990

    SciTech Connect

    Wahlen, R.K.

    1991-08-01

    At the end of World War II, the demand for more production along with process and military surveillance changes at the Hanford Site caused a continuing cycle of building and obsolescence. This trend continued until 1964, when the cutback in plutonium production began. The cutback caused the shutdown of excess production facilities. The last of eight reactors was shut down in 1971. Since that time, N Reactor has been the only production reactor that has operated. In addition, changes in the method of separating plutonium caused a number of excess facilities in the 200 Areas. Before 1973, no structured program existed for the disposal of unusable facilities or for general cleanup. Following a plant-wide safety and housekeeping inspection in 1973, a program was developed for the disposal of all surplus facilities. Since the start of FY 1974, a total of 46 radioactively contaminated sites have been demolished and disposed of. In addition, 28 buildings have been decontaminated for in situ disposal or for reuse, 21 contaminated sites have been stabilized, 131 clean structures have been removed, and 93 clean sites have received special remedial action to eliminate potential safety and/or environmental hazards. This report summarizes these activities. 3 refs, 1 fig., 18 tabs.

  16. Proceedings of the workshop on transite decontamination dismantlement and recycle/disposal

    SciTech Connect

    Not Available

    1993-12-31

    On February 3--4, 1993, a workshop was conducted to examine issues associated with the decontamination, dismantlement, and recycle/disposal of transite located at the US Department of Energy Fernald site near Cincinnati, OH. The Fernald Environmental Management Project (FEMP) is a Superfund Site currently undergoing remediation. A major objective of the workshop was to assess the state-of-the-art of transite remediation, and generate concepts that could be useful to the Fernald Environmental Restoration Management Co. (FERMCO) for remediation of transite. Transite is a building material consisting of asbestos fiber and cement and may be radioactively contaminated as a result of past uranium processing operations at the FEMP. Many of the 100 buildings within the former uranium production area were constructed of transite siding and roofing and consequently, over 180,000 m{sup 2} of transite must be disposed or recycled. Thirty-six participants representing industry, academia, and government institutions such as the EPA and DOE assembled at the workshop to present their experience with transite, describe work in progress, and address the issues involved in remediating transite.

  17. RSDL decontamination of human skin contaminated with the nerve agent VX.

    PubMed

    Thors, L; Lindberg, S; Johansson, S; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2017-03-05

    Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by (31)P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL

  18. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    SciTech Connect

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation.

  19. 48 CFR 1523.303-71 - Decontamination of Government-furnished property.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENVIRONMENTAL PROTECTION AGENCY SOCIOECONOMIC PROGRAMS ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material and Material Safety Data 1523.303-71 Decontamination...

  20. 48 CFR 1523.303-71 - Decontamination of Government-furnished property.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENVIRONMENTAL PROTECTION AGENCY SOCIOECONOMIC PROGRAMS ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material and Material Safety Data 1523.303-71 Decontamination...

  1. 48 CFR 1523.303-71 - Decontamination of Government-furnished property.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENVIRONMENTAL PROTECTION AGENCY SOCIOECONOMIC PROGRAMS ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material and Material Safety Data 1523.303-71 Decontamination...

  2. 48 CFR 1523.303-71 - Decontamination of Government-furnished property.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENVIRONMENTAL PROTECTION AGENCY SOCIOECONOMIC PROGRAMS ENVIRONMENTAL, CONSERVATION, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material and Material Safety Data 1523.303-71 Decontamination...

  3. Water decontamination of chemical skin/eye splashes: a critical review.

    PubMed

    Hall, Alan H; Maibach, Howard I

    2006-01-01

    Skin/eye chemical splashes are a significant workplace problem. Initial water decontamination is usually recommended, but there are few well-conducted experimental animal and human studies of efficacy. An extensive review of the literature and other available information sources was performed to define the scope of the problem and critically review the evidence for water decontamination efficacy. Although water decontamination can decrease the severity of chemical skin/eye burns, it cannot completely prevent them. An ideal replacement decontamination solution would be sterile, nontoxic, chelating, polyvalent, amphoteric, and slightly hypertonic to retard skin or corneal penetration of the chemical.

  4. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), SECOND FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), SECOND FLOOR SHOWING PROCESS MAKEUP AREA AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING COLD LAB, DECONTAMINATION ROOM, MULTICURIE CELL ROOM, AND OFFICES. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051980. ALTERNATE ID NUMBER CPP-E-1980. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. Cost and Effectiveness of Decontamination Strategies in Radiation Contaminated Areas in Fukushima in Regard to External Radiation Dose

    PubMed Central

    Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko

    2013-01-01

    The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans. PMID:24069398

  7. Comparison of selected skin decontaminant products and regimens against VX in domestic swine.

    PubMed

    Bjarnason, S; Mikler, J; Hill, I; Tenn, C; Garrett, M; Caddy, N; Sawyer, T W

    2008-03-01

    An anesthetized domestic swine model was used to compare the efficacy and cross-contamination potential of selected skin decontaminant products and regimens against the chemical warfare agent, VX. Animals topically exposed to 2x, 3x or 5x LD(50) VX showed typical signs of organophosphate nerve agent poisoning, including miosis, salivation, mastication, dysrhythmias, and respiratory distress prior to death. Animals were exposed to 5x LD(50) VX and then decontaminated 45 min later with the reactive skin decontamination lotion (RSDL), Fuller's earth (FE), 0.5% hypochlorite, or soapy water. Survival was 100% when the reactive skin decontamination lotion or FE was utilized, although 50% of Fuller's earth-decontaminated animals exhibited serious signs of VX poisoning. Decontamination of VX-treated animals with 0.5% hypochlorite was less effective but also increased survival. Soapy water was ineffective in preventing lethality. Blood cholinesterase levels were not predictive of clinical outcome in decontaminated animals. The potential of "decontaminated" VX in open wounds to cause poisoning was assessed by vigorously mixing 5x LD(50) VX with the test decontaminants for 5 min and then placing the mixture onto a full-thickness skin wound. Soapy water was ineffective in preventing lethality. Although treatment with dry Fuller's earth prevented death and all signs of organophosphate poisoning, a significant proportion of treated animals decontaminated with Fuller's earth in aqueous suspension exhibited serious signs of organophosphate poisoning, suggesting that live agent may be desorbed from Fuller's earth when it is exposed to a liquid environment. Animals treated with reactive skin decontamination lotion or 0.5% hypochlorite-VX mixtures showed no signs of organophosphate poisoning during the 6- h test period.

  8. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    SciTech Connect

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

  9. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    PubMed

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2).

  10. Cold Regions Environmental Test of Nuclear, Biological, and Chemical Decontamination Equipment

    DTIC Science & Technology

    2007-11-02

    6502, Engine, Cold-starting and Warmup Tests. (2) Decontaminant mixing/filling. Evaluate ease of filling and mixing decontaminants at low temperatures...2. TOP 2-2-650, Engine Cold-Starting and Warmup Tests, 18 July 1980. 3. TOP 8-4-015, Cold Regions Logistics, Supportability Testing of Chemical

  11. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    DTIC Science & Technology

    2016-06-01

    A combined approach was developed that integrated two types of testing—dilute liquid-phase reactor results to determine 18 chemical reactivity...TRANSPORT AND REACTIVITY OF DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL ...2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a

  12. Field Evaluation of Whole Airliner Decontamination Technologies for Narrow-Body Aircraft

    DTIC Science & Technology

    2008-01-01

    Field Evaluation of Whole Airliner Decontamination Technologies for Narrow- Body Aircraft William F. Gale Hyacinth S. Gale Air Transportation...be the case with most decontamination chemistries, as VHP breaks down readily to water and oxygen. Nonetheless, the use of a fully closed-loop

  13. Decontamination of the populated areas contaminated as a result of nuclear accident

    SciTech Connect

    Voronik, N.I.; Shatilo, N.N.; Davydov, Y.P.

    1996-12-31

    Decontamination tests on urban surfaces contaminated by the Chernobyl accident have shown that Chernobyl fallout behaves differently from fallout from nuclear weapons tests and contamination on surfaces in nuclear power plant. The effectiveness of various decontamination compositions for removing Chernobyl fallout from urban surfaces and machinery was determined in a series of laboratory experiments and field trials.

  14. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  15. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  16. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  17. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  18. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  19. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  20. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  1. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    SciTech Connect

    Hauschild, Veronique; Watson, Annetta Paule; Bock, Robert Eldon

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed from data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.

  2. Evaluation of candidate decontaminants against percutaneous sulfur mustard and thickened soman challenges

    SciTech Connect

    Blank, J.A.; Hobson, D.W.; Menton, R.G.; Olson, C.T.; Korte, D.W.

    1993-05-13

    Studies were conducted to evaluate the efficacy of candidate skin decontaminants relative to a standard control decontaminant, XE-555 resin, against percutaneous sulfur mustard (HD) or thickened soman (TGD) challenge. Male, New Zealand White rabbits were used as the model system with lesion area as the end point for HD exposures and erythrocyte acetylcholinesterase (AChE) inhibition as the endpoint for TGD exposure. Initial studies were performed to establish assay parameters for, and to validate the use of, AChE inhibition as an endpoint for assessing candidate decontaminant efficacy against nerve agent exposures. XE-555 resin was concurrently evaluated with each candidate decontaminant for both assay control and comparative purpose. Decontamination was initiated at 1, 3, or 5 min after HD exposures and 2 min after TGD exposures. U.S. Army Medical Research Institute of Chemical Defense (USAMRICD) compounds 1513, 1514, 1515, 1516, and 1517 were evaluated against HD and against TGD. Results from these studies demonstrated the utility of AChE inhibition for evaluating skin decontaminants. None of the candidate decontaminants evaluated was more effective than the standard control decontaminant against HD or TGD exposures.

  3. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    Muth, T.R.; Shasteen, K.E.; Liby, A.L.

    1995-10-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE`s gaseous diffusion plants.

  4. [Biological decontamination of the imprints obtained from different dental materials].

    PubMed

    Brekhlichuk, P P; Petrov, V O; Bati, V V; Levchuk, O B; Boĭko, N V

    2013-01-01

    Microbiological contamination of the imprints made of alginate ("Ypeen") and silicone material ("Speedex") with and without the correction supplement has been investigated. Streptococcus and Staphylococcus have been estimated to be the most survivable species on the imprint surface, however their concentration differ depending on the type of imprints' material. The strains resistant to antibiotics dominated among all the isolated microorganisms. Bacterial preparations based on Bacillus - Biosporin and Subalin and some extracts of edible plants, fruits and berries can be used in dentistry for the decontamination of imprints obtained by the use of different materials.

  5. Atmospheric Pressure Plasmas for Decontamination of Complex Medical Devices

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter; Winter, Jörn; Polak, Martin; Ehlbeck, Jörg; von Woedtke, Thomas

    Atmospheric pressure plasma sources produce a multiplicity of different antimicrobial agents and are applicable to even complicated geometries as well as to heat sensitive materials. Thus, atmospheric pressure plasmas have a huge potential for the decontamination of even complex medical devices like central venous catheters and endoscopes. In this paper we present practicable realizations of atmospheric pressure plasma sources, namely plasma jet, dielectric barrier discharge and microwave driven discharge that are able to penetrate fine lumen or are adaptable to difficult geometries. Furthermore, the antimicrobial efficacy of these sources is given for one example setup in each case.

  6. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    SciTech Connect

    Bossart, S.J.

    1996-02-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D&D) one of its facilities using a combination of innovative and commercial D&D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer{trademark}. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA.

  7. Role of environmental cleanliness and decontamination in care homes.

    PubMed

    Cousins, Gary

    2016-01-06

    While it is widely accepted that the environment has an important role in transmission of healthcare-associated infections, there has been a paucity of empirical investigation in this area to date, and the majority of published literature relates to acute settings. People living in care homes come into contact with a communally used environment and communally used equipment daily. Equipment may include hoists, hoist slings, clinical monitoring equipment, commodes and shower chairs. In care homes, primary responsibility for decontamination lies with the healthcare team, most of whom are not nurses. The challenge for nurses working in care homes is their accountability for the provision of safe and effective care.

  8. UV/Ozone treatment to decontaminate tritium contaminated surfaces

    SciTech Connect

    Krasznai, J.P.; Mowat, R.

    1995-10-01

    Tritium contamination on surfaces is often encountered during operation and maintenance of equipment at the Darlington Tritium Removal Facility and likely at other tritium handling facilities. The use of efficient decontamination techniques that produce little or no secondary wastes is desirable. At Ontario Hydro Technologies (OHT) we have been developing a process utilizing a combination of ultraviolet (UV) radiation and ozone gas to remove tritium surface contamination from materials often used in tritium service. This paper summarizes the performance of the technique. The results are encouraging because the technique is very effective, simple in terms of equipment requirements and concentrates tritium in an easily managed waste form. 7 refs., 3 figs., 2 tabs.

  9. Spectral decontamination of a real-time helicopter simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.

    1983-01-01

    Nonlinear mathematical models of a rotor system, referred to as rotating blade-element models, produce steady-state, high-frequency harmonics of significant magnitude. In a discrete simulation model, certain of these harmonics may be incompatible with realistic real-time computational constraints because of their aliasing into the operational low-pass region. However, the energy is an aliased harmonic may be suppressed by increasing the computation rate of an isolated, causal nonlinearity and using an appropriate filter. This decontamination technique is applied to Sikorsky's real-time model of the Black Hawk helicopter, as supplied to NASA for handling-qualities investigations.

  10. Development of the 2007 Chemical Decontaminant Source Document

    DTIC Science & Technology

    2009-03-01

    8000 0 • 7000.0- 6000 0- 5000 0- 4000.0- 3000 0- 2000.0- 1000.0- o.o’ - 123.0/700 Q1/Q3 M*tt* t . jm 420 METHOD D: GC/MSD METHOD FOR VX...of the decontaminant life cycle, including research and development (R&D), science and technology (S& T ), testing and evaluation ( T &E), developmental...uses these same test procedures post milestone B for TRLs 7 through 9. The data generated from the science and technology (S& T ) and DT/OT must be

  11. Building Awareness.

    ERIC Educational Resources Information Center

    Meilach, Dona Z.

    2001-01-01

    Discusses the importance of developing students' building awareness by exploring logos, or buildings that symbolize a country, to learn about architecture and the cultures in different countries. Explores categories of buildings. Includes examples of logos from around the world. (CMK)

  12. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL(®)). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues.

  13. Decontamination Workshop for Emergency Responding Personnel "How Clean is Clean Enough" 12-14 September 2007

    DTIC Science & Technology

    2008-09-01

    Successful integration in DNC • Avoiding Tokyo ECBC Decontamination Worluhop Incident Management Incident Command Controls Decontamination & Patient...2004 DNC , as well as the annual Marathon, Fourth of July celebration, and First Night, the large crowds heighten the risk of terrorist actions...Evacuation Routes During 2004 DNC ECBC Decontamination Workshop In Summary. EMS Protection Issues Access to Those Affected Availability to Tx

  14. Electrolytic decontamination of metal low level waste (LLW) and mixed low level waste (MLLW)

    SciTech Connect

    1998-11-01

    Metal objects resulting from ER activities were decontaminated using electrolytic methods. The project involved about 500 kg of ballistic test projectiles, 23 augers and drill heads, and 50 pieces of shrapnel containing lead. All objects were free-released and either reclaimed as scrap metal or reused. Electrolytic decontamination was proven to be an effective method to decontaminate metal waste objects to free-release standards. A cost analysis showed the process to be economical, especially when applied to decontamination of mixed waste, TRU waste, or when the recovered materials could be reused or recycled. The cost of decontamination of scrap iron is approximately equal to the cost of its land disposal as low level waste.

  15. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  16. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    PubMed Central

    Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318

  17. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators.

    PubMed

    Lore, Michael B; Heimbuch, Brian K; Brown, Teanne L; Wander, Joseph D; Hinrichs, Steven H

    2012-01-01

    Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs.

  18. 111. ARAI Hot cell (ARA626) Building elevations of north, south, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ARA-I Hot cell (ARA-626) Building elevations of north, south, east, and west sides. Includes details of personnel decontamination area, dark room, and other features. Norman Engineering Company: 961-area/SF-626-A-3. Date: January 1959. Ineel index code no. 068-0626-00-613-102723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Advanced technologies for decontamination and conversion of scrap metals

    SciTech Connect

    Muth, T.R.; Moore, J.; Olson, D.; Mishra, B.

    1994-12-31

    Recycle of radioactive scrap metals (RSM) from decommissioning of DOE uranium enrichment and nuclear weapons manufacturing facilities is mandatory to recapture the value of these metals and avoid the high cost of disposal by burial. The scrap metals conversion project detailed below focuses on the contaminated nickel associated with the gaseous diffusion plants. Stainless steel can be produced in MSC`s vacuum induction melting process (VIM) to the S30400 specification using nickel as an alloy constituent. Further the case alloy can be rolled in MSC`s rolling mill to the mechanical property specification for S30400 demonstrating the capability to manufacture the contaminated nickel into valuable end products at a facility licensed to handle radioactive materials. Bulk removal of Technetium from scrap nickel is theoretically possible in a reasonable length of time with the high calcium fluoride flux, however the need for the high temperature creates a practical problem due to flux volatility. Bulk decontamination is possible and perhaps more desirable if nickel is alloyed with copper to lower the melting point of the alloy allowing the use of the high calcium fluoride flux. Slag decontamination processes have been suggested which have been proven technically viable at the Colorado School of Mines.

  20. Decontamination of steel by melt refining: A literature review

    SciTech Connect

    Ozturk, B.; Fruehan, R.J.

    1994-12-31

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs.

  1. Oxidative Decontamination of Tritiated Materials Employing Ozone Gas

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora

    2001-11-12

    The Princeton Plasma Physics Laboratory has developed a process by which to significantly reduce surface and near surface tritium contamination from various materials. The Oxidative Tritium Decontamination System (OTDS) reacts gaseous state ozone (accelerated by presence of catalyst), with tritium entrained/deposited on the surface of components (stainless steel, copper, plastics, ceramics, etc.), for the purpose of activity reduction by means of oxidation-reduction chemistry. In addition to removing surface and near surface tritium contamination from (high monetary value) components for reuse in non-tritium environments, the OTDS has the capability of removing tritium from the surfaces of expendable items, which can then be disposed of in a less expensive fashion. The OTDS can be operated in a batch mode by which up to approximately 40 pounds of tritium contaminated (expendable) items can be processed and decontaminated to levels permissible for free release (less than1,000 dpm/100 cm 2). This paper will discuss the OTDS process, the level of tritium surface contamination removed from various materials, and a technique for ''deep scrubbing'' tritium from subsurface layers.

  2. A Nanosecond Pulsed Plasma Brush for Surface Decontamination

    NASA Astrophysics Data System (ADS)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi

    2015-11-01

    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with <= 10 kV, 200 ns pulses at a repetition rate of 1.5 kHz. The energy per pulse and average power are in the range of 1-3 mJ and 0.5-1.5 W, respectively. Helium containing varying concentrations of water vapor was evaluated as the carrier gas and was fed into the plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  3. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  4. Nanocrystalline zinc oxide for the decontamination of sarin.

    PubMed

    Mahato, T H; Prasad, G K; Singh, Beer; Acharya, J; Srivastava, A R; Vijayaraghavan, R

    2009-06-15

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of approximately 55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12h(-1) and 0.16 h in the initial stages of the reaction and 0.361 h(-1) and 1.9h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  5. Processes that contribute to radiocesium decontamination of feta cheese

    SciTech Connect

    Pappas, C.P.; Assimakopoulos, P.A.; Ioannides, K.G.; Pakou, A.A.; Mantzios, A.S.

    1989-05-01

    In a series of experiments, the transfer of radiocesium from ovine milk to feta cheese was investigated through modifications of the standard cheese making procedure. All variations explored showed no significant change in the percentage of radiocesium transfer and the milk-to-cheese transfer coefficient was determined as f=.79 plus/minus .04 L.kg-1. It is concluded that cesium, like the rest of the alkali metals, remains in the water phase and thus follows very closely the distribution of moisture into the products of cheese making. The possibility of radiocesium decontamination of mature feta during the customary storage of the product in brine was also explored in a second series of experiments. The theoretical model employed in the analysis of cesium transport from feta to brine is presented in the Appendix to this paper. Predictions of the model were validated by experiments. A procedure is thus proposed for decontaminating mature feta during storage through successive replacements of the storage medium. Nomograms are presented for the determination of the optimum time interval between changes of the brine and the radiocesium concentration remaining in the feta. Changes in the properties of the product induced by the proposed treatment were also investigated with respect to composition, taste, and overall quality.

  6. Innovative Decontamination Technology for Use in Gaseous Diffusion Plant Decommissioning

    SciTech Connect

    Peters, M.J.; Norton, C.J.; Fraikor, G.B.; Potter, G.L.; Chang, K.C.

    2006-07-01

    The results of bench scale tests demonstrated that TechXtract{sup R} RadPro{sup TM} technology (hereinafter referred to as RadPro{sup R}) can provide 100% coverage of complex mockup gaseous diffusion plant (GDP) equipment and can decontaminate uranium (U) deposits with 98% to 99.99% efficiency. Deployment tests demonstrated RadPro{sup R} can be applied as foam, mist/fog, or steam, and fully cover the internal surfaces of complex mockup equipment, including large piping. Decontamination tests demonstrated that two formulations of RadPro{sup R}, one with neutron attenuators and one without neutron attenuators, could remove up to 99.99% of uranyl fluoride deposits, one of the most difficult to remove deposits in GDP equipment. These results were supplemented by results from previous tests conducted in 1994 that showed RadPro{sup R} could remove >97% of U and Tc-99 contamination from actual GDP components. Operational use of RadPro{sup R} at other DOE and commercial facilities also support these data. (authors)

  7. Comparative study of different surface decontaminants on chicken quality.

    PubMed

    Sinhamahapatra, M; Biswas, S; Das, A K; Bhattacharyya, D

    2004-10-01

    (1) A comparative study on the effect of different surface decontaminants: hot water at 70 degrees C for one minute; 2% lactic acid for 30 s; 1200 p.p.m. acidified sodium chlorite (ASC) solution for 5 s and 50 p.p.m. chlorine solution for 5 min in the form of dips and sprays on the surface of dressed broilers for 0, 24 and 48 h of storage was conducted. (2) The variables studied were, total plate count (TPC), presumptive coliform count (PCC), pH and extract release volume (ERV). All treatments reduced TPC and PCC. (3) Lactic acid dip and hot water dip were the most effective for reducing TPC (1.36 and 1.28 log/cm2, respectively) with no significant difference between them. (4) ASC and hot water in dip could diminish PCC (1.37 and 1.34 log/cm2, respectively) and did not vary significantly. (5) No treatment affected muscle pH, water holding capacity (WHC), ERV, appearance, smell, tenderness and overall acceptability of treated broilers significantly. (6) Hot water treatment is the cheapest, most convenient and simplest decontamination technique for hygienic and wholesome poultry production.

  8. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  9. A solar powered handheld plasma source for microbial decontamination applications

    NASA Astrophysics Data System (ADS)

    Ni, Y.; Lynch, M. J.; Modic, M.; Whalley, R. D.; Walsh, J. L.

    2016-09-01

    A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s-1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2-8 log and was strongly dependent on the plasma generation conditions.

  10. Tritium contamination and decontamination of sealing oil for vacuum pump

    SciTech Connect

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I.; Kawamura, S.; Iwata, M.

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  11. Method of decontaminating a contaminated fluid by using photocatalytic particles

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)

    1994-01-01

    A system for decontaminating the contaminated fluid by using photocatalytic particles. The system includes a reactor tank for holding the contaminated fluid and the photocatalytic particles suspended in the contaminated fluid to form a slurry. Light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. The system also includes stirring blades for continuously agitating the irradiated fluid surface and for maintaining the particles in a suspended state within the fluid. The system also includes a cross flow filter for segregating the fluid (after decomposition) from the semiconductor powder. The cross flow filter is occasionally back flushed to remove any semiconductor powder that might have caked on the filter. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of such systems may be used to gradually decompose a chemical in the fluid. Preferably, the fluid is pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid. A method of decontaminating a contaminated fluid is also disclosed.

  12. Test report for cesium powder and pellets inner container decontamination method determination test

    SciTech Connect

    Kelly, D.L.

    1998-08-17

    This report documents the decontamination method determination testing that was performed on three cesium powder and pellets inner container test specimens The test specimens were provided by B and W Hanford Company (BVMC). The tests were conducted by the Numatec Hanford Company (NHC), in the 305 Building. Photographic evidence was also provided by NHC. The Test Plan and Test Report were provided by Waste Management Federal Services, Inc., Northwest Operations. Witnesses to testing included a test engineer, a BC project engineer, and a BC Quality Assurance (QA) representative. The Test Plan was modified with the mutual decision of the test engineer, the BWHC project engineer, and the BVMC QA representative. The results of this decision were written in red (permanent type) ink on the official copy of the test procedure, Due to the extent of the changes, a summary of the test results are provided in Section 3.0 of this Test Report. In addition, a copy of the official copy field documentation obtained during testing is included in Appendix A. The original Test Plan (HNF-2945) will be revised to indicate that extensive changes were required in the field during testing, however, the test documentation will stand as is (i.e., it will not be retyped, text shaded, etc.) due to the inclusion of the test parameters and results into this Test Report.

  13. Mass Casualty Decontamination Guidance and Psychosocial Aspects of CBRN Incident Management: A Review and Synthesis

    PubMed Central

    Carter, Holly; Amlôt, Richard

    2016-01-01

    Introduction: Mass casualty decontamination is an intervention employed by first responders at the scene of an incident involving noxious contaminants.  Many countries have sought to address the challenge of decontaminating large numbers of affected casualties through the provision of rapidly deployable temporary showering structures, with accompanying decontamination protocols.  In this paper we review decontamination guidance for emergency responders and associated research evidence, in order to establish to what extent psychosocial aspects of casualty management have been considered within these documents. The review focuses on five psychosocial aspects of incident management: likely public behaviour; responder management style; communication strategy; privacy/ modesty concerns; and vulnerable groups. Methods: Two structured literature reviews were carried out; one to identify decontamination guidance documents for first responders, and another to identify evidence which is relevant to the understanding of the psychosocial aspects of mass decontamination.  The guidance documents and relevant research were reviewed to identify whether the guidance documents contain information relating to psychosocial issues and where it exists, that the guidance is consistent with the existing evidence-base. Results: Psychosocial aspects of incident management receive limited attention in current decontamination guidance.  In addition, our review has identified a number of gaps and inconsistencies between guidance and research evidence.  For each of the five areas we identify: what is currently presented in guidance documents, to what extent this is consistent with the existing research evidence and where it diverges.  We present a series of evidence-based recommendations for updating decontamination guidance to address the psychosocial aspects of mass decontamination. Conclusions: Effective communication and respect for casualties’ needs are critical in ensuring

  14. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone

    PubMed Central

    Youkee, Daniel; Brown, Colin S.; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B.; Walker, Naomi F.; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  15. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    PubMed

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  16. Infections and exposures: reported incidents associated with unsuccessful decontamination of reusable surgical instruments.

    PubMed

    Southworth, P M

    2014-11-01

    Reusable surgical instruments provide a potential route for the transmission of pathogenic agents between patients in healthcare facilities. As such, the decontamination process between uses is a vital component in the prevention of healthcare-associated infections. This article reviews reported outbreaks and incidents associated with inappropriate, inadequate, or unsuccessful decontamination of surgical instruments, indicating potential pitfalls of decontamination practices worldwide. To the author's knowledge, this is the first review of surgical instrument decontamination failures. Databases of medical literature, Medline and Embase, were searched systematically. Articles detailing incidents associated with unsuccessful decontamination of surgical instruments were identified. Twenty-one articles were identified reporting incidents associated with failures in decontamination. A large proportion of incidents involved the attempted disinfection, rather than sterilization, of surgical instruments (43% of articles), counter to a number of national guidelines. Instruments used in eye surgery were most frequently reported to be associated with decontamination failures (29% of articles). Of the few articles detailing potential or confirmed pathogenic transmission, Pseudomonas aeruginosa and Mycobacterium spp. were most represented. One incident of possible variant Creutzfeldt-Jakob disease transmission was also identified. Limitations of analysing only published incidents mean that the likelihood of under-reporting (including reluctance to publish failure) must be considered. Despite these limitations, the small number of articles identified suggests a relatively low risk of cross-infection through reusable surgical instruments when cleaning/sterilization procedures are adhered to. The diverse nature of reported incidents also suggests that failures are not systemic.

  17. [Decontamination with clay or alcoholate of pigs percutaneously poisoned with VX and soman].

    PubMed

    Knezević, D L; Tadić, V

    1994-01-01

    The efficacy of clay or alcoholate as decontaminants in pigs percutaneously poisoned with 6 LD50 of O-ethyl S-2-diisopropylaminoethyl methylphosphonothioate (VX) and 3 LD50 of 1,2,2-trimethylpropyl methylphosphonofluoridate (soman) nerve gases was tested. It was assessed by the time of onset of the first signs of poisoning and death, as well as by the activity of blood cholinesterase (ChE). No toxic signs or fatalities were observed in decontaminated pigs, regardless of the decontaminant used. In VX poisoning up to 240 min. both decontaminants kept ChE values at normal level. Twenty four hours later, ChE activity in pigs decontaminated with clay was 71%, significantly higher than in pigs decontaminated with alcoholate (49%). In soman poisoning the activity in control group was maintained at almost normal level up to 60 min, followed by rapid fall to 58%. Further readings were impossible due to the death of all animals. No significant difference between decontaminants could be noticed throughout the observation of 24 hr. The values were kept between 80 and 100%, with the trend of rising after 120 min.

  18. Development and testing of a laser-based decontamination system

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Lippmann, W.; Hurtado, A.

    2013-06-01

    Decontamination of radioactive concrete surfaces may be necessary during operation or decommissioning of nuclear power plants. Usually only the upper layers of the concrete structure are contaminated and are removed using labor-intensive mechanical milling processes. Production of a large amount of dust, which can lead to secondary contamination, is inherent to these processes. Improvements in high-energy laser technology have now made it possible for laser radiation to be used in decontamination technologies for the removal of concrete layers. A decontamination unit comprising a diode laser with a beam power of 10 kW in continuous wave (CW) mode in combination with an autonomous manipulator was developed for use in nuclear plants. The laser beam melts the concrete surface to a depth of approximately 5 mm. Compressed air jets then detach the molten layer from the concrete surface and convey it to a suction system, with which it is transported to a collection container. Most of the radionuclides are trapped in the solidifying melt particles, which form an extremely stable effluent well suited to long-term storage. A relatively small amount of dust is generated in the process. Because there is no backlash during energy transfer, the laser device carrier can be designed to be lightweight and flexible. A specially developed manipulator that can move freely along walls and ceilings by means of suction plates is used for the carrier unit. This results in short setup times for preparing for use of the device and minimal personnel exposure to the radiation. Experiments were conducted on a concrete wall to demonstrate the functionality of the overall system in realistic conditions. An optimal ablation rate of 2.16 m²/h at an ablation depth of 1-5 mm was achieved. Today's commercially available diode lasers with powers higher than 50 kW enable ablation rates of >10 m²/h to be achieved and hence make these laser-based systems competitive alternatives to mechanical systems.

  19. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  20. Decontamination of Surfaces Exposed to Carbonbased Nanotubes and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Karimi, Zahra

    Contamination of surfaces by nanomaterials can happen due to accidental spillage and release or gradual accumulation during processing or handling. Considering the increasingly wide use of nanomaterials in industry and research labs and also taking into account the diversity of physical and chemical properties of different nanomaterials (such as solubility, aggregation/agglomeration, and surface reactivity), there is a pressing need to define reliable nanomaterial-specific decontamination guidelines. In this project, we propose and investigate a potential method for surface decontamination of carbon-based nanomaterials using solvent cleaning and wipes. The results show that the surfactant-assisted removal efficiencies of multi-walled carbon nanotubes, single walled carbon nantubes and single walled carbon nano-horns from silicon wafers through wiping is greater than 95%, 90% and 78%, respectively. The need for further studies to understand the mechanisms of nanomaterial removal from surfaces and development of standard techniques for surface decontamination of nanomaterials is highlighted. Another phase of experiments were performed to examine the efficiency of surfactants to remove multi-walled carbon nanotubes (MWCNTs) from silicon substrates with nano and microscaled features. In the first set of experiments, nanoscale features were induced on silicon wafers using SF6 and O2 plasma. Atomic force microscopy (AFM) was used to observe the surface topology and roughness. In the second set, well-defined microscale topological features were induced on silicon wafers using photo lithography and plasma etching. The etching time was varied to create semi-ellipsoidal pits with average diameter and height of ~ 7-9 microm, and ~ 1-3 microm, respectively. MWCNTs in the form of liquid solution were deposited on the surface of silicon wafers using the spin coating process. For the cleaning process, the contaminated surfaces were first sprayed with different types of surfactant

  1. Decontamination of carpet exposed to Microsporum canis hairs and spores.

    PubMed

    Moriello, Karen A

    2017-04-01

    Objectives The objective of this study was to evaluate the efficacy of vacuuming and three carpet cleaning methods for the removal of Microsporum canis spores and hairs from experimentally contaminated carpets. Methods Sterile Berber carpeting was artificially contaminated with naturally infective M canis hairs and spores. Carpet swatches were vacuumed for 10 s, 30 s and 60 s, and then cultured. Three carpet cleaning methods were evaluated on area rugs experimentally contaminated with infective material: a beater brush carpet shampooing, beater brush carpet shampooing post-disinfectant application and hot water extraction. Home cleaning products labeled as having efficacy against Trichophyton species were used in addition to 1% potassium peroxymonosulfate. Carpets were cultured at 24 h, 48 h and 7 days after cleaning. Good efficacy was no detectable spores at post-cleaning culture. Results All pretreatment carpet samples were culture positive for M canis (>300 colony-forming units [cfu]/site). Vacuuming did not decontaminate carpets but did remove intact hairs. Spores were not detected by wipe samples after two washings with an upright beater brush carpet shampooer or pretreatment with a disinfectant prior to carpet shampooing. Carpets cleaned with one hot water extraction technique had a decrease from 300 cfu/site to a mean of 5.5 cfu/site at 24 and 48 h post-cleaning and 2 cfu/site at day 7. The use of disinfectants was associated with odor, even when dry, and permanent discoloration. Hot water extraction cleaning was associated with the fastest drying time and no discoloration. Conclusions and relevance Carpets exposed to M canis can be disinfected via carpet shampooing or hot water extraction cleaning. Vacuuming of carpets is recommended to remove infective hairs. For homes, exposed carpeting can be decontaminated by routine washing with a carpet shampooer (twice) or hot water extraction. Use of pretreatment with a disinfectant is recommended when a high level

  2. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    NASA Technical Reports Server (NTRS)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range

  3. Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Novak, Debra A; Faulkner, Kimberly A; Palmiero, Andrew; Powell, Jeffrey; Shaffer, Ronald E

    2011-07-01

    The objective of this study was to determine if ultraviolet germicidal irradiation (UVGI), moist heat incubation (MHI), or microwave-generated steam (MGS) decontamination affects the fitting characteristics, odor, comfort, or donning ease of six N95 filtering facepiece respirator (FFR) models. For each model, 10 experienced test subjects qualified for the study by passing a standard OSHA quantitative fit test. Once qualified, each subject performed a series of fit tests to assess respirator fit and completed surveys to evaluate odor, comfort, and donning ease with FFRs that were not decontaminated (controls) and with FFRs of the same model that had been decontaminated. Respirator fit was quantitatively measured using a multidonning protocol with the TSI PORTACOUNT Plus and the N95 Companion accessory (designed to count only particles resulting from face to face-seal leakage). Participants' subjective appraisals of the respirator's odor, comfort, and donning ease were captured using a visual analog scale survey. Wilcoxon signed rank tests compared median values for fit, odor, comfort, and donning ease for each FFR and decontamination method against their respective controls for a given model. Two of the six FFRs demonstrated a statistically significant reduction (p < 0.05) in fit after MHI decontamination. However, for these two FFR models, post-decontamination mean fit factors were still ≥ 100. One of the other FFRs demonstrated a relatively small though statistically significant increase (p < 0.05) in median odor response after MHI decontamination. These data suggest that FFR users with characteristics similar to those in this study population would be unlikely to experience a clinically meaningful reduction in fit, increase in odor, increase in discomfort, or increased difficulty in donning with the six FFRs included in this study after UVGI, MHI, or MGS decontamination. Further research is needed before decontamination of N95 FFRs for purposes of reuse can be

  4. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination.

  5. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    if it does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) XX...Description: 2 x 4 x 8 KD WW/ SPF Stud Supplier/Source: Home Depot, Edgewood, MD Coupon Dimensions: 10 in. x 1 V-i in. x Vi in. • Preparation of

  6. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Chlorine Dioxide

    DTIC Science & Technology

    2009-02-01

    valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE ( DD -MM-YYYY) XX-02-09 2. REPORT TYPE Final 3...x 8 KD WW/ SPF Stud • Supplier/Source: Home Depot, Edgewood, MD • Coupon Dimensions: 10 in. x 1 Vi. in. x Vi in. • Preparation of Coupon: The

  7. The pharmacological activity of medical herbs after microbiological decontamination by irradiation

    NASA Astrophysics Data System (ADS)

    Owczarczyk, H. B.; Migdał, W.; K ȩdzia, B.

    2000-03-01

    In the Institute of Nuclear Chemistry and Technology research on microbiological decontamination of medicinal herbs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose of 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of essential biologically active substances such as essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of medicinal herbs has been found satisfactory after microbiological decontamination by irradiation.

  8. Safe decontamination of hospital autopsy rooms and ventilation system by formaldehyde generation.

    PubMed

    Coldiron, V R; Janssen, H E

    1984-02-01

    Space decontamination was required prior to the onset of a remodeling project in the autopsy suite of a large university-hospital complex. The National Institutes of Health procedure using formaldehyde gas as a disinfectant was modified to decontaminate not only the three autopsy rooms but also the exhaust ductwork and the three associated air incinerators. Modifications included an automated formaldehyde gas generator, a smoke test procedure for leaks, and an exhausting technique. This procedure proved to be successful and has the advantage of including the safety features necessary to conduct such a potentially hazardous decontamination in an occupied hospital.

  9. Skin decontamination with mineral cationic carrier against sarin determined in vivo.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2009-06-01

    Our Institute's nuclear, biological, and chemical defense research team continuously investigates and develops preparations for skin decontamination against nerve agents. In this in vivo study, we evaluated skin decontamination efficacy against sarin by a synthetic preparation called Mineral Cationic Carrier (MCC) with known ion exchange, absorption efficacy and bioactive potential. Mice were treated with increasing doses of sarin applied on their skin, and MCC was administered immediately after contamination. The results showed that decontamination with MCC could achieve therapeutic efficacy corresponding to 3 x LD(50) of percutaneous sarin and call for further research.

  10. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOEpatents

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  11. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review.

    PubMed

    Bilek, Seda Ersus; Turantaş, Fulya

    2013-08-16

    Decontamination of fresh fruits and vegetables is an important unsolved technological problem. The main focus of this review is to summarize and synthesize the results of studies and articles about ultrasonic processing which can be adapted to the wash water decontamination process for fruits and vegetables. This review will also provide an overview about the importance of an effective wash water decontamination process in fruits and vegetables, the increase of foodborne outbreaks caused by fresh fruits and vegetables, microbial inactivation using ultrasound, and an interpretation of the high power ultrasound results in the fruits and vegetable industry. In addition, the limitations of ultrasonic processing in commercial applications have also been introduced.

  12. Membrane treatment of liquid wastes from radiological decontamination operations.

    PubMed

    Svittsov, A A; Khubetsov, S B; Volchek, K

    2011-01-01

    The paper focuses on the evaluation of membrane filtration for the treatment of liquid radioactive streams generated in area decontamination operations. In this work, semi-permeable membranes were demonstrated to be effective reducing the volume of wastewater containing cesium and cobalt by two orders of a magnitude. The efficiency of membrane separation was enhanced by employing additives that enlarged the size of target radionuclide species and improved their rejection by the membranes. This was achieved by chelation with synthetic water-soluble polymers and by adsorption on micro particles of adsorbent coupled with micelle formation. The effect of wastewater composition and that of the radionuclide-binding additives on the volume reduction was investigated. Membrane treatment is expected to help simplify further processing and decrease disposal costs.

  13. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  14. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  15. Decontamination formulation with additive for enhanced mold remediation

    DOEpatents

    Tucker, Mark D.; Irvine, Kevin; Berger, Paul; Comstock, Robert

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  16. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    SciTech Connect

    1996-03-30

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities.

  17. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  18. Do potential SETI signals need to be decontaminated?

    NASA Astrophysics Data System (ADS)

    Carrigan, Richard A., Jr.

    2006-01-01

    Biological contamination from space samples is a remote but accepted possibility. Signals received by searches for extraterrestrial intelligence (SETI) could also contain harmful information in the spirit of a computer virus, the so-called "SETI Hacker" hypothesis. Over the last four decades extraterrestrial intelligence searches have given little consideration to this possibility. Some argue that information in an extraterrestrial signal could not attack a terrestrial computer because the computer logic and code is idiosyncratic and constitutes an impenetrable firewall. Suggestions are given on how to probe these arguments. Measures for decontaminating extraterrestrial intelligence signals (ETI) are discussed. Modifications to the current SETI detection protocol may be appropriate. Beyond that, the potential character of ETI message content requires much broader discussion.

  19. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-12-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  20. Decontamination and decommissioning experience at the Savannah River Site

    SciTech Connect

    Monson, R.W.

    1994-07-01

    A continuing concern within the DOE complex is how to address the retirement contains special of a facility which nuclear material (SNM). When the life expectancy of a facility has been reached, decisions must be made pertaining to (1) rial from the facility, removing the mate (2) accounting for the material and (3) final disposition of the material. This paper will discuss such a decontamination and decommissioning (D&D) process which we are presently dealing with at the Savannah River Site. The process must follow DOE Order 5633.3A as well as internal Company procedures regarding MC&A. In some D&D cases the material can be exempt from the DOE Order when all of the following criteria are met: (1) the material has been declared waste, (2) the material has been written off the MC&A books, and (3) the material is under the control of a waste management organization.

  1. Comparison of three decontamination methods for Mycobacterium bovis isolation

    PubMed Central

    Ambrosio, Simone Rodrigues; de Deus Oliveira, Eugenia Márcia; Rodriguez, Cesar Alejandro Rosales; Ferreira Neto, José Soares; Amaku, Marcos

    2008-01-01

    Sixty samples of tissue fragments with lesions suggestive of tuberculosis from bovine abattoirs, kept in saturated solution of sodium borate, were subjected to four treatments: 4% NaOH (Petroff Method), 12 % H2SO4 and 1.5% HPC (1-Hexadecylpyridinium Chloride) decontamination, and physiological saline solution (control). The HPC method showed the lowest contamination rate (3%) when compared to control (88%, p<0.001), NaOH (33%, p<0.001) and H2SO4 (21.7%, p<0.002). Regarding the isolation success, the HPC method was better (40%) than the control (3%, p<0.001), NaOH (13%, p=0.001) and H2SO4 (1.7%, p<0.001) methods. These results indicate that HPC is an alternative to the Petroff method. PMID:24031209

  2. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOEpatents

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  3. Plasma Decontamination of Uranium From the Interior of Aluminum Objects

    SciTech Connect

    Veilleux, J.M.; Munson, C.; Fitzpatrick, J.; Chamberlin, E.P.; El-Genk, M.S.

    1997-04-21

    RF plasma glow discharges are being investigated for removing and recovering radioactive elements from contaminated objects, especially those contaminated with transuranic (TRU) materials. These plasmas, using nitrogen trifluoride as the working gas, have been successful at removing uranium and plutonium contaminants from test coupons of stainless steel and aluminum surfaces, including small cracks and crevices, and the interior surfaces of relatively hard to reach aluminum pipes. Contaminant removal exceeded 99.9% from simple surfaces and contaminant recovery using cryogenic traps has exceeded 50%. Work continues with the objective of demonstrating that transuranic contaminated waste can be transformed to low level waste (LLW) and to better understand the physics of the interaction between plasma and surface contaminants. This work summarizes the preliminary results from plasma decontamination from the interior of aluminum objects--the nooks and crannies experiments.

  4. Decontamination processes for low level radioactive waste metal objects

    SciTech Connect

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-12-31

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan`s radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan`s population, half that of the USA, lives in an area slightly smaller than that of California`s. If everyone`s backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan`s contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R&D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC.

  5. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    NASA Astrophysics Data System (ADS)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  6. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    SciTech Connect

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  7. Decontamination of transuranic waste metal by melt refining

    SciTech Connect

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-12-01

    Melt refining of transuraniuc- (TRU-) contaminated metals has been proposed as a decontamination process with the potential advantages of reclaiming metal and simplifying analytical problems. The feasibility of routinely achieving the 10 nCi/g (approx. 0.1 ppM) decontamination level by melt refining will demonstrate the removing of scrap metal from the TRU waste classification. To demonstrate this feasibility, mild steel, stainless steel, nickel, and copper were contaminated with 500 ppM PuO/sub 2/ and melted with various fluxes. Four different fluxes, borosilicate glass, blast furnace slag, high silica slag, and artificial basalt, were used in these studies. The solidified slags and metals were analyzed for their plutonium contents by the use of a combination of wet chemical and ..cap alpha..-activity counting technique. Partition ratios were calculated for plutonium using the analytical results of each experiment. Some metals were doubled refined to study the effect of secondary slag treatment. The initial weight of the slags was also varied to investigate its effect on plutonium removal. The results indicated that the use of proper slags is necessary for effective removal of plutonium. All four slags were effective in removing plutonium from the metals. Values of less than 1 ppM Pu (approx. 100 nCi/g) could be obtained in all cases. The double-refined samples were cleaned to less than 0.1 ppM Pu (approx. nCi/g), which is the goal. Variation in the slag weight did not change the results significantly. Double refining of the metal with small primary and secondary slag volume can be an effective process for removal of TRU contaminants from metals.

  8. Hair decontamination procedure prior to multi-class pesticide analysis.

    PubMed

    Duca, Radu-Corneliu; Hardy, Emilie; Salquèbre, Guillaume; Appenzeller, Brice M R

    2014-06-01

    Although increasing interest is being observed in hair analysis for the biomonitoring of human exposure to pesticides, some limitations still have to be addressed for optimum use of this matrix in that specific context. One main possible issue concerns the need to differentiate chemicals biologically incorporated into hair from those externally deposited on hair surface from contaminated air or dust. The present study focuses on the development of a washing procedure for the decontamination of hair before analysis of pesticides from different chemical classes. For this purpose, three different procedures of artificial contamination (with silica, cellulose, and aqueous solution) were used to simulate pesticides deposition on hair surface. Several washing solvents (four organic: acetone, dichloromethane, methanol, acetonitrile; and four aqueous: water, phosphate buffer, shampoo, sodium dodecylsulfate) were evaluated for their capacity to remove artificially deposited pesticides from hair surface. The most effective washing solvents were sodium dodecylsulfate and methanol for aqueous and organic solvents, respectively. Moreover, after a first washing with sodium dodecylsulfate or methanol, the majority of externally deposited pesticides was removed and a steady-state was reached since significantly lower amounts were removed by additional second and third washings. Finally, the effectiveness of a decontamination procedure comprising washing with sodium dodecylsulfate and methanol was successively demonstrated. In parallel, it was determined that the final procedure did not affect the chemicals biologically incorporated, as hair strands naturally containing pesticides were used. Such a procedure appears to remove in one-shot the fraction of chemicals located on hair surface and does not require repeated washing steps.

  9. In-Situ Biological Decontamination of an Ice Melting Probe

    NASA Astrophysics Data System (ADS)

    Digel, Ilya

    A major concern in space and even many terrestrial missions is the forward contamination of the alien environment with microbes and biological molecules, transported on spacecraft from Earth. Furthermore, organisms and molecules can be brought to the sampling place from the surface. All this can lead to serious misinterpretations of the obtained data and more impor-tantly, could irreversibly alter the pristine nature of the extraterrestrial environments. These issues were addressed and are constantly updated in COSPAR planetary protection policy (20 October 2002; Amended 24 March 2005; 20 July 2008). The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting. We evaluated survival rate of microorganisms on the melting probe as a function of both time and penetration depth. Special focus was made on deter-mination of the optimal concentration of chemical decontaminants (hydrogen peroxide and sodium hypochlorite) the peculiarities of their antimicrobial action at low temperatures (-80 to 0C) combined with constant dilution with melted ice and mechanical abrasion. Common, non-pathogenic microbial strains belonging to different morphological and metabolic groups (Pseudomonas, Micrococcus, Escherichia, Bacillus and others) were chosen as test objects for this study. The working part of the melting probe was first controllably contaminated by in-cubation in suspension of microbial cells. After appropriate sedimentation of microbial cells had been reached, the drilling-melting process was started using specially prepared sterile ice blocks. Every 2 minutes the samples were taken and analyzed. In the control tests, 1 mL of distilled water was injected into the penetration site at the onset of drilling. In the other tests, 1 mL of hydrogen peroxide (30Collected data suggest high efficacy of both used compounds in respect of all tested microbial groups. Typically, 99.9

  10. The feasibility study of hot cell decontamination by the PFC spray method

    SciTech Connect

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  11. Confirmatory/release survey of the property at 71 Pearce Avenue (Former EAD Building) in Tonawanda, New York

    SciTech Connect

    Salame-Alfie, A.; Alibozek, R.

    1995-12-31

    EAD Metallurgical, Inc., operated a facility in Tonawanda, New York, in which it utilized Americium 241 (Am-241) for the production of foil sources for use in smoke detectors. EAD was in operation between 1977 and 1983. By 1983, the company started losing money, and decided to relocate to Mexico. Before closing down its Tonawanda operation, however, it was required by the New York State Department of Labor (DOL) to decontaminate its facility to limits specified by DOL. No records of discharges to the sewer system were kept during this decontamination effort. Unsuccessful decontamination efforts by several EAD employees and contractors left the building contaminated, in particular the concrete floors and walls. To determine the scope of work for the decontamination project, staff from the New York State Departments of Health (DOH) and Environmental Conservation (DEC) conducted a Characterization Survey of the facility in 1993. This survey identified contamination levels of Am-241 in excess of release limits throughout the building, in the soil outside the facility, in pipes for sewage and interior drainage, and in an 8 x 8 x 11 foot sump pit in the building. DOH issued a request for proposals in early 1994 for the decontamination and subsequent decommissioning of the former EAD building, and NES/IES Inc. (NES) was awarded the contract to perform the remediation. DOH`s assignment was to provide an on-site presence to insure the completion of all agreed upon tasks, according to the terms of the contract and work plans submitted by NES. Additionally, the DOH staff acted as a liaison between NES, DOH, DEC and DOL central offices to review, comment and approve all changes or modifications to NES`s approach to the decontamination efforts. The assigned staff was also responsible for conducting confirmatory sampling and surveys of all areas deemed releasable to DOL and DEC criteria by NES.

  12. Building America

    SciTech Connect

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  13. Lasers and high-energy light as a decontamination tool for nuclear applications

    SciTech Connect

    Flesher, D.J.

    1993-12-01

    Light-aided decontamination (LAD) removal of paint and concrete layers is competitive with sand blasting rates. Remote operations, up to 137 m (450 ft), and lower waste volumes can provide cost, safety, and environmental advantages for nuclear facilities.

  14. Novel Fabric Containing Microcapsules of Chemical Decontaminants Encapsulated within Semipermeable Polymers.

    DTIC Science & Technology

    The invention concerns novel clothing fabrics containing microcapsules in a resin finish comprising reactive chemical decontamination agents...allowing the toxic chemicals to diffuse into the microcapsules where they undergo irreversible detoxifying chemical reactions.

  15. Decontamination of dental implant surface in peri-implantitis treatment: a literature review.

    PubMed

    Mellado-Valero, Ana; Buitrago-Vera, Pedro; Solá-Ruiz, María-Fernanda; Ferrer-García, Juan-Carlos

    2013-11-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics.

  16. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    SciTech Connect

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  17. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.

    PubMed

    Duchaine, Caroline

    2016-09-02

    Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.

  18. CATALYTIC ENZYME-BASED METHODS FOR WATER TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION

    EPA Science Inventory

    Current chemistry-based decontaminants for chemical or biological warfare agents and related toxic materials are caustic and have the potential for causing material and environmental damage. In addition, most are bulk liquids that require significant logistics and storage capabil...

  19. SUPERFUND TREATABILITY CLEARINGHOUSE: PCB SEDIMENT DECONTAMINATION PROCESS-SELECTION FOR TEST AND EVALUATION

    EPA Science Inventory

    This document is a report describing the assessment of seven alternative treatment processes that show potential for decontaminating polychlorinated biphenyl (PCB)-contaminated sediments. The processes are KPEG, MODAR Supercritical Water Oxidation, Bio-Clean, Ultrasonics/UV, C...

  20. [Effective cleansing and decontamination of the base of an injury; reduction in time for cicatrization].

    PubMed

    González, Juan Antonio Jiménez; Resúa, María Rosa Pérez

    2008-02-01

    The authors evaluate a solution and a gel composed of undecylenate prophyl betaine and polyhexanide recommended for cleansing and decontaminating injuries, without having any cytotoxic, irritating or sensibility effect which favors and stimulates the natural cicatrization process.

  1. Hypochlorite solution as a decontaminant in sulfur mustard contaminated skin defects in the euthymic hairless guinea pig

    SciTech Connect

    Gold, M.B.; Bongiovanni, R.; Scharf, B.A.; Gresham, V.C.; Woodward, C.L.

    1994-12-31

    Hypochlorite solutions are thought to be efficacious when used to topically decontaminate intact skin. However, few studies have examined the efficacy of decontamination of chemically contaminated wounds. Therefore, we compared the decontamination efficacy of sodium hypochlorite (0.5% and 2.5% solutions), calcium hypochlorite (0.5% and 2.5% solutions) and sterile water to untreated controls in wounds exposed to sulfur mustard (HD). Anesthetized euthymic hairless guinea pigs (EHGP) (n=6) were exposed to 20 mg/kg (approximately 0.4 LD%) HD in a full-thickness 8 mm surgical biopsy skin defect (i.e., wound). Each animal was subsequently decontaminated, after a two-minute intra-wound exposure to liquid HD, with nothing or one of the decontamination solutions. Decontamination efficacy was determined by the visual grading of the HD-traumatized wound lesion and by comparison of the expected HD-induced leukocyte suppression. Leukocyte suppression was inconsistent in all animals; therefore, the visual grading was the only viable evaluation method. No significant differences were observed among wounds decontaminated with any of the solutions. However, the skin surrounding non-decontaminated (but exposed) control animals showed the least visual pathology. The lesions induced following decontamination are presumed to be due to the mechanical flushing of HD onto the peri-lesional skin, or by chemical damage induced by the solution, or ND-solution interaction. Further studies are required to best delineate the optimal decontamination process for HD contaminated wounds.

  2. Healthy Buildings?

    ERIC Educational Resources Information Center

    Grubb, Deborah

    Health problems related to school buildings can be categorized in five major areas: sick-building syndrome; health-threatening building materials; environmental hazards such as radon gas and asbestos; lead poisoning; and poor indoor air quality due to smoke, chemicals, and other pollutants. This paper provides an overview of these areas,…

  3. Timing of decontamination and treatment in case of percutaneous VX poisoning: a mini review.

    PubMed

    Joosen, Marloes J A; van der Schans, Marcel J; Kuijpers, Willem C; van Helden, Herman P M; Noort, Daan

    2013-03-25

    Low volatile organophosphorous nerve agents such as VX, will most likely enter the body via the skin. The pharmacokinetics of drugs such as oximes, atropine and diazepam, are not aligned with the variable and persistent toxicokinetics of the agent. Repeated administration of these drugs showed to improve treatment efficacy compared to a single injection treatment. Because of the effectiveness of continuous treatment, it was investigated to what extent a subchronic pretreatment with carbamate (pyridostigmine or physostigmine combined with either procyclidine or scopolamine) would protect against percutaneous VX exposure. Inclusion of scopolamine in the pretreatment prevented seizures in all animals, but none of the pretreatments affected survival time or the onset time of cholinergic signs. These results indicate that percutaneous poisoning with VX requires additional conventional treatment in addition to the current pretreatment regimen. Decontamination of VX-exposed skin is one of the most important countermeasures to mitigate the effects of the exposure. To evaluate the window of opportunity for decontamination, the fielded skin decontaminant Reactive Skin Decontaminant Lotion (RSDL) was tested at different times in hairless guinea pigs percutaneously challenged with 4× LD50 VX in IPA. The results showed that RSDL decontamination at 15 min after exposure could not prevent progressive blood cholinesterase inhibition and therefore would still require additional treatment. A similar decontamination regimen with RSDL at 90 min showed that it still might effectively increase the time window of opportunity for treatment. In conclusion, the delay in absorption presents a window of opportunity for decontamination and treatment. The continuous release of VX from the skin presents a significant challenge for efficacious therapy, which should ideally consist of thorough decontamination and continuous treatment.

  4. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-01-01

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  5. Surface decontamination using a teleoperated vehicle and Kelly spray/vacuum system

    SciTech Connect

    Zollinger, W.T.; Dyches, G.M.

    1990-12-31

    A commercial teleoperated wheeled vehicle was fitted with a modified commercial spray/vacuum decontamination system to allow floor and wall decontamination of an existing process room in one of the chemical separations areas at the Savannah River Site (SRS). Custom end-of-arm tooling was designed to provide sufficient compliance for routine cleaning operations. An operator console was designed to allow complete control of the vehicle base and are movements as well as viewing operations via multiple television monitors. 3 refs.

  6. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    PubMed Central

    Kim, Jayang; Hong, Sungok; Choi, Yoorina

    2015-01-01

    Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco) was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE) was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin. PMID:26587416

  7. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    PubMed

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  8. Verification of Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores

    DTIC Science & Technology

    2004-11-17

    12980) • Spore Strips – Bacillus atrophaeus (ATCC 9372) Biological Indicator Spore Strip BUSINESS SENSITIVE Organisms Biological Indicators: SEM Images...BUSINESS SENSITIVE Verification of Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores M.L. Taylor, J.V...Commercial Decontamination Technologies in Bench-Scale Studies Using Bacillus anthracis Spores 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Conversion of transuranic waste to low level waste by decontamination: a technical and economic evaluation

    SciTech Connect

    Allen, R.P.; Hazelton, R.F.

    1984-12-01

    A study was conducted to evaluate the technical and economic feasibility of using in-situ decontamination techniques to convert glove boxes and other large TRU-contaminated components directly into LLW. The results of the technical evaluation indicate that in-situ decontamination of these types of components to non-TRU levels is technically feasible. Applicable decontamination techniques include electropolishing, hand scrubbing, chemical washes/sprays, strippable coatings and Freon spray-cleaning. The removal of contamination from crevices and other holdup areas remains a problem, but may be solved through further advances in decontamination technology. Also, the increase in the allowable maximum TRU level from 10 nCi/g to 100 nCi/g as defined in DOE Order 5820.2 reduces the removal requirement and facilitates measurement of the remaining quantities. The major emphasis of the study was on a cost/benefit evaluation that included a review and update of previous analyses and evaluations of TRU-waste volume reduction and conversion options. The results of the economic evaluation show, for the assumptions used, that there is a definite cost incentive to size reduce large components, and that decontamination of sectioned material has become cost competitive with the size reduction options. In-situ decontamination appears to be the lowest cost option when based on routine-type operations conducted by well-trained and properly equipped personnel. 16 references, 1 figure, 7 tables.

  10. Off-site consequences of radiological accidents: methods, costs and schedules for decontamination

    SciTech Connect

    Tawil, J.J.; Bold, F.C.; Harrer, B.J.; Currie, J.W.

    1985-08-01

    This report documents a data base and a computer program for conducting a decontamination analysis of a large, radiologically contaminated area. The data base, which was compiled largely through interviews with knowledgeable persons both in the public and private sectors, consists of the costs, physical inputs, rates and contaminant removal efficiencies of a large number of decontamination procedures. The computer program utilizes this data base along with information specific to the contaminated site to provide detailed information that includes the least costly method for effectively decontaminating each surface at the site, various types of property losses associated with the contamination, the time at which each subarea within the site should be decontaminated to minimize these property losses, the quantity of various types of labor and equipment necessary to complete the decontamination, dose to radiation workers, the costs for surveying and monitoring activities, and the disposal costs associated with radiological waste generated during cleanup. The program and data base are demonstrated with a decontamination analysis of a hypothetical site. 39 refs., 24 figs., 155 tabs.

  11. Hairy skin exposure to VX in vitro: effectiveness of delayed decontamination.

    PubMed

    Rolland, P; Bolzinger, M-A; Cruz, C; Josse, D; Briançon, S

    2013-02-01

    The chemical warfare agents such as VX represent a threat for both military and civilians, which involves an immediate need of effective decontamination systems. Since human scalp is usually unprotected compared to other body regions covered with clothes, it could be a preferential site of exposure in case of terrorist acts. The purpose of this study was to determine if skin decontamination could be efficient when performed more than 1h after exposure. In addition, the impact of hairs in skin contamination was investigated. By using in vitro skin models, we demonstrated that about 75% of the applied quantity of VX was recovered on the skin surface 2h after skin exposition, which means that it is worth decontaminating even if contamination occurred 2h before. The stratum corneum reservoir for VX was quickly established and persistent. In addition, the presence of hairs modified the percutaneous penetration of the nerve agent by binding of VX to hairs. Hair shaft has thus to be taken into account in the decontamination process. Reactive Skin Decontamination Lotion (RSDL) and Fuller's Earth (FE) were active in the skin decontamination 45min post-exposure, but RSDL was more efficient in reducing the amount of VX either in the skin or in the hair.

  12. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.

  13. Efficacy Assessment of Nucleic Acid Decontamination Reagents Used in Molecular Diagnostic Laboratories

    PubMed Central

    Fischer, Melina; Renevey, Nathalie; Thür, Barbara; Hoffmann, Donata; Beer, Martin; Hoffmann, Bernd

    2016-01-01

    The occurrence of nucleic acid cross contamination in the laboratory resulting in false positive results of diagnostic samples is seriously problematic. Despite precautions to minimize or even avoid nucleic acid cross contaminations, it may appear anyway. Until now, no standardized strategy is available to evaluate the efficacy of commercially offered decontamination reagents. Therefore, a protocol for the reliable determination of nucleic acid decontamination efficacy using highly standardized solution and surface tests was established and validated. All tested sodium hypochlorite-based reagents proved to be highly efficient in nucleic acid decontamination even after short reaction times. For DNA Away, a sodium hydroxide-based decontamination product, dose- and time-dependent effectiveness was ascertained. For two other commercial decontamination reagents, the phosphoric acid-based DNA Remover and the non-enzymatic reagent DNA-ExitusPlus™ IF, no reduction of amplifiable DNA/RNA was observed. In conclusion, a simple test procedure for evaluation of the elimination efficacy of decontamination reagents against amplifiable nucleic acid is presented. PMID:27410228

  14. Decontamination procedures for drugs of abuse in hair: are they sufficient?

    PubMed

    Blank, D L; Kidwell, D A

    1995-01-05

    This paper reviews the methods for decontaminating hair exposed to external solutions of drugs of abuse. Exposure of hair to cocaine at 1 microgram/ml for 5 min is sufficient to contaminate hair, yet decontamination is a very slow process. Using externally contaminated hair, a number of decontamination procedures were attempted, and none removed all the contamination. The percentage of external contamination removed depended on the hair type, with thick black hair being the most resistant to decontamination. Hair treated by dying incorporated externally applied drugs differently, depending on the hair type. Thick black hair became more absorbent whereas thin brown hair became less absorbent. Kinetic wash criteria are evaluated for their ability/inability to determine if hair has been contaminated from external sources. A theoretical framework for the incorporation and removal of drugs from hair is discussed, and the hypothesis that inaccessible domains exist in hair which trap drugs is critically examined. The results presented in this paper strongly suggest that much more information on the decontamination of hair and the differentiation of exogenously and endogenously incorporated drugs is needed before hair analysis can be employed in most forensic applications. We propose that the radioactive tracer methods discussed herein are well suited for evaluating any new decontamination or extraction technique.

  15. Chemical and biological warfare: Protection, decontamination, and disposal. January 1979-October 1989 (Citations from the NTIS data base). Report for January 1979-October 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other published searches in this series cover chemical warfare detection, defoliants, general studies, biochemistry and therapy, and biology, chemistry and toxicology associated with chemical warfare agents. (This updated bibliography contains 375 citations, 17 of which are new entries to the previous edition.)

  16. Decontamination of hard cheeses by pulsed UV light.

    PubMed

    Can, Fidan O; Demirci, Ali; Puri, Virendra M; Gourama, Hassan

    2014-10-01

    Cheese is a ready-to-eat food that may be contaminated on the surface by undesirable spoilage and pathogenic microorganisms during production, packaging, and postpackaging processes. Penicillium roqueforti is commonly found on cheese surfaces at refrigeration temperatures and is one of the most common spoilage fungal species. Consumption of cheese contaminated with Listeria monocytogenes can result in foodborne listeriosis. Therefore, cheese should be decontaminated at postprocessing stages. Pulsed UV light is a nonthermal method for food preservation that involves the use of intense short pulses to ensure microbial decontamination on the surface of foods or packaging materials. In this study, the efficacy of pulsed UV light for inactivation of P. roqueforti and L. monocytogenes inoculated onto packaged and unpackaged hard cheeses was investigated. Treatment times and the distance from the UV strobe were evaluated to determine optimum treatment conditions. Packaged and unpackaged cheeses were treated at distances of 5, 8, and 13 cm for up to 60 s. For P. roqueforti, maximum reduction after 40 s at 5 cm was 1.32 log CFU/cm(2) on unpackaged cheese and 1.24 log CFU/cm(2) on packaged cheese. Reductions of L. monocytogenes under the same treatment conditions were about 2.9 and 2.8 log CFU/cm(2) on packaged and unpackaged cheeses, respectively. The temperature changes and total energy increases were directly proportional to treatment time and inversely proportional to distance between the UV lamp and the samples. The changes in color and lipid oxidation were determined at mild (5 s at 13 cm), moderate (30 s at 8 cm), and extreme (40 s at 5 cm) treatments. The color and chemical quality of cheeses were not significantly different after mild treatments (P > 0.05). The mechanical properties of the plastic packaging material (polypropylene) also were evaluated after mild, moderate, and extreme treatments. A decreasing trend was noted for elastic modulus; however, no

  17. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    PubMed

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  18. The Decontamination, Decommissioning, and Demolition of the Engineering Test Reactor at the Idaho Cleanup Project

    SciTech Connect

    Coyne, D.W.

    2008-07-01

    In September 2007, CH2M-WG Idaho completed the decontamination, decommissioning and demolition (D and D) of the Engineering Test Reactor (ETR) facility. The 50-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, the removal of a large amount of hazardous materials as well as issues associated with the removal and disposal of the 112-ton reactor vessel. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, PCB oils and electrical components, lead, asbestos and mercury among others. The reactor required isolation in order to be removed. Due to activated metal within the reactor vessel, dose rates in the core region were approximately 1100 R/hr. Subsequent dose rates outside the vessel varied from 60 mR to greater than 2 R. Due to the dose rates, the project team decided to fill the reactor vessel with grout to a level above the core region and below the discharge to the canal. To remove the reactor, access to the 17 mounting shoes was required. These shoes were encased in the high density concrete biological shield approximately 8 feet below grade. The project team used explosives to remove the biological shield. The demolition had to be controlled to prevent damaging the reactor vessel and to limit the seismic impact on a nearby operating reactor. Upon completion of the blast, the concrete was removed exposing the support shoes for the vessel. The reactor building was then demolished to accommodate the twin gantry system used to lift the reactor vessel. In September, the reactor vessel was lifted and placed onto a multi-axle trailer for transport to an onsite disposal facility. (authors)

  19. 360 DEGREE PHOTOGRAPHY TO DOCUMENT & TRAIN & ORIENT PERSONNEL FOR DECONTAMINATION & DECOMMISSIONING

    SciTech Connect

    LEBARON, G.J.

    2001-11-12

    360{sup o} photo technology is being used to document conditions, especially hazardous conditions, at US. Department of Energy (DOE) facilities that are being closed. Traditional efforts to document the condition of rooms and cells, especially those difficult to enter due to the hazards present, using engineering drawings, documents, ''traditional flat'' photographs or videos, don't provide perspective. These miss items or quickly pan across areas of interest with little opportunity to study details. Therefore, it becomes necessary to make multiple entries into these hazardous areas resulting in work activities taking longer and increasing exposure and the risk of accidents. High-resolution digital cameras, in conjunction with software techniques, make possible 360{sup o} photos that allow a person to look all around, up and down, and zoom in or out. The software provides the opportunity to attach other information to a 360{sup o} photo such as sound files providing audio information; flat photos providing additional detail or information about what is behind a panel or around a comer; and text information which can be used to show radiological conditions or identify other hazards present but not readily visible. The software also allows other 360{sup o} photos to be attached to create a virtual tour where the user can move from area to area or room to room. The user is able to stop, study and zoom in on areas of interest. A virtual tour of a building or room can be used for facility documentation, work planning and orientation, and training. Documentation is developed during facility closure so people involved in follow-on activities can gain a perspective of the area, focus on points of interest and discuss what they would do or how they would respond to and manage conditions. Decontamination & Decommissioning (D&D) planners and workers can make use of the tour to plan work and decide ahead of time, while looking at the areas of interest, what and how tasks will

  20. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    SciTech Connect

    Raber, E.; McGuire, R.; Hoffman, M.; Alcaraz, A.; Shepley, D.; Elliot, J.; Krauter, P.; Garcia, E.

    2000-12-16

    The general philosophy of this work is to develop an integrated set of decontamination methods and tools that will work on the major CBW threat agents. The work includes some near term techniques that can be demonstrated within a year and implemented soon thereafter as well as longer term research objectives. It is recognized that there is a balance between somewhat less effective methods which can be demonstrated quickly and more effective ones which may require a much longer time to fruition. The optimum goal of this study is to find a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. One of the goals is to have decontamination systems that might be used by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and recertification (public perception and stakeholder acceptance) are of much greater importance. The specific objective of the LLNL work to date has been to evaluate various oxidizer systems as reagents to allow for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. Since we also wanted to maximize the contact time between the